
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

12-2014

A Transformation-Based Foundation for Semantics-Directed Code A Transformation-Based Foundation for Semantics-Directed Code

Generation Generation

Arthur Nunes-Harwitt

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Nunes-Harwitt, Arthur, "A Transformation-Based Foundation for Semantics-Directed Code Generation"
(2014). Thesis. Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F8507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/8507?utm_source=repository.rit.edu%2Ftheses%2F8507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Transformation-Based Foundation for

Semantics-Directed Code Generation

by

Arthur Nunes-Harwitt

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in the B. Thomas Golisano College of

Computing and Information Sciences

Ph.D. Program in Computing and Information Sciences

Rochester Institute of Technology

Author signature

Approved by

Director of Ph.D. Program Date

December 2014

Rochester, NY, USA

c©2014 by Arthur Nunes-Harwitt
ALL RIGHTS RESERVED

ii

B. THOMAS GOLISANO COLLEGE OF
COMPUTING AND INFORMATION SCIENCES

ROCHESTER INSTITUTE OF TECHNOLOGY
ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

The Ph.D. Degree Dissertation of Arthur Nunes-Harwitt
has been examined and approved by the

dissertation committee as complete and satisfactory for the
dissertation requirement for Ph.D. degree
in Computing and Information Sciences

Dr. Matthew Fluet Date

Dr. James Heliotis Date

Dr. William McKeeman Date

Dr. S. Manian Ramkumar Date
Dissertation Examination Chairperson

Dr. Axel Schreiner Date
Dissertation Co-Supervisor

Dr. Pengcheng Shi Date
Dissertation Supervisor

December 2014

iii

iv

A Transformation-Based Foundation for Semantics-Directed
Code Generation

by

Arthur Nunes-Harwitt

December 2014

Abstract

Interpreters and compilers are two different ways of implementing programming lan-

guages. An interpreter directly executes its program input. It is a concise definition of the

semantics of a programming language and is easily implemented. A compiler translates

its program input into another language. It is more difficult to construct, but the code that

it generates runs faster than interpreted code.

In this dissertation, we propose a transformation-based foundation for deriving com-

pilers from semantic specifications in the form of four rules. These rules give apriori ad-

vice for staging, and allow explicit compiler derivation that would be less succinct with

partial evaluation. When applied, these rules turn an interpreter that directly executes

its program input into a compiler that emits the code that the interpreter would have

executed.

We formalize the language syntax and semantics to be used for the interpreter and

the compiler, and also specify a notion of equality. It is then possible to precisely state

the transformation rules and to prove both local and global correctness theorems. And

although the transformation rules were developed so as to apply to an interpreter writ-

ten in a denotational style, we consider how to modify non-denotational interpreters so

that the rules apply. Finally, we illustrate these ideas by considering a larger example: a

PROLOG implementation.

v

Acknowledgements

I am forever grateful to my advisor Professor Axel Schreiner. He not only saw my po-

tential, but he also played an active role in actualizing it when I thought all hope was

lost. Further, he tirelessly read draft upon draft of my papers, always providing helpful

suggestions. I would like to acknowledge Professor Pengcheng Shi for his support and

advice. He made sure to slow me down when I was too eager to rush ahead, and he made

sure to push me forward when I needed it. I am thankful to Professor Bill McKeeman for

nudging my research in its current direction. I am thankful to Professor Matthew Fluet

for carefully reading my proofs and reading drafts of my papers. I am thankful to Pro-

fessor Jim Heliotis for his helpful discussions. I would also like to acknowledge Melissa

Nunes-Harwitt for providing helpful feedback on all of my papers.

Professor Linwei Wang generously offered LATEX assistance.

Dr. Arthur C. Nunes Jr., Professor Axel Schreiner, Melissa Nunes-Harwitt, Professor

Stanislaw Radziszowski, Menachem Kiria, and Professor Hossein Shahmohamad helped

me eliminate errors in my epigraphs.

I am grateful for the encouragement of Brent Devere, and my gratitude also goes to all

my friends, living far away or around me.

vi

To my father, and to my mother, for setting an example. I humbly follow in your path.

To my wife Melissa, for your unconditional love and support. All this would have been impos-

sible without all that you have done for me.

vii

We choose to [. . .] do these [. . .] things, not because they are easy, but because

they are hard, because that goal will serve to organize and measure the best of

our energies and skills. . . .

- John Fitzgerald Kennedy

viii

Contents

Abstract v

Acknowledgements vi

Contents ix

List of Figures xiii

1 Introduction 1

1.1 A Semantics-Directed Approach to Code Generation 2

1.2 Overview . 3

2 Background and Related Work 4

2.1 Historical Overview . 5

2.2 Compiler Generators . 7

2.3 Partial Evaluation . 11

2.4 Staged Computation . 14

2.5 Summary . 16

ix

3 The Transformation Technique by Example 18

3.1 A Small Example . 19

3.1.1 Currying Dynamic Variables . 19

3.1.2 Code Via Quoting . 20

3.1.3 Lambda Lowering . 21

3.1.4 Expression Lifting . 22

3.1.5 Rule Ordering . 23

3.2 A Longer Example . 23

3.2.1 Currying . 26

3.2.2 Lambda lowering . 26

3.2.3 Expression lifting . 27

3.2.4 Quoting . 28

3.2.5 Output . 29

3.3 Summary . 30

4 A Formal Model 31

4.1 The Interpreter Language . 31

4.2 The Transformation Rules . 35

4.3 Local Correctness . 37

4.4 Global Correctness of a Sum Language Example 40

4.4.1 Applying the Transformations . 42

4.4.2 Correctness . 43

4.5 Global Correctness of an Abstract Denotational Example 44

4.5.1 Applying the Transformations . 46

4.5.2 Correctness . 48

x

5 Beyond Denotational Interpreters 50

5.1 Disentangling the Static and the Dynamic . 51

5.1.1 Unification Example . 51

5.1.2 Applying the Technique: A First Attempt 53

5.1.3 Revising the Algorithm . 54

5.2 Introducing Explicit Fixed-Points . 55

5.2.1 Example: While Loops . 55

5.2.2 Example: Regular Expressions . 56

5.3 Replacing Text with Denotation . 58

5.3.1 Interpreters Manipulating Terms . 59

5.3.2 Environments Containing Terms . 64

5.4 Summary . 67

6 A Larger Example: PROLOG 68

6.1 A Naïve Interpreter . 69

6.2 Efficiency and Denotation . 71

6.3 Improving Unification . 74

6.4 Currying and Lambda Lowering . 77

6.5 More Lambda Lowering . 79

6.6 Expression Lifting . 80

6.7 Code Generation . 81

6.8 Performance . 83

6.9 Summary . 85

7 Future Work 86

7.1 Relationship to Partial Evaluation . 86

7.2 Additional Examples . 87

xi

7.3 Additional Rules . 87

7.4 Additional Languages . 90

7.5 Automation . 91

8 Conclusion 94

8.1 The Transformation Technique . 94

8.2 Denotational Interpreters and Beyond . 95

8.3 Comparison to Partial Evaluation and Staging 95

8.4 Practical Benefits . 96

A Lemmata 97

xii

List of Figures

4.1 Interpreter language syntax. 32

4.2 Interpreter language semantics. 34

4.3 Interpreter language term equality. 35

4.4 Transformations . 36

5.1 CEK-machine . 63

xiii

xiv

Chapter 1
Introduction

ĽŸĎ ,ĚŽŸĚŰŃ ŮĚŚŤ ŊĆŸŽŐĎ
ĽŸĎ ,ĚĽŇ{ ŞĽŚĚŐĎĚ - ĽĂČĄ ĎĘ

.ŞČĆŐĚ ŞŸĞŐ ĎĘ
If one translates a verse literally, he

is a fabulator – but if he adds to it,

he is a blasphemer and a libeller.

B. Talmud Kiddushin 49a

A compiler is a computer program that when executed translates1 source code, or input

code, to target code, or output code; it is understood that the source code is in some fixed

high-level programming language and that the target code has the same meaning as the

source code.

What approaches are there that ensure that the target code preserves the semantics

of the source code? One approach is to guess what the target code should look like and

then prove that it preserves the semantics after the fact. Another approach is to derive

1Often the word “compiler” is used when translating to a low-level language, and the word “translator”
is used when translating to another high-level language. We will not make this distinction.

1

CHAPTER 1. INTRODUCTION

the target code from a semantic specification such as an interpreter. We argue that certain

transformations are an effective means of doing exactly that.

1.1 A Semantics-Directed Approach to Code Generation

Commonly, compilers are implemented via a syntax-directed approach which involves

writing code to generate instructions for each piece of abstract syntax. The code to be

generated is not derived from any specification; rather it is chosen by the compiler writer

in an ad-hoc fashion. In contrast, a semantics-directed code generator is a code generator

that has been derived from a semantic specification. Semantics-based approaches to code

generation have a number of benefits: correctness, ease of implementation, maintainabil-

ity, and rational justification. Two techniques for semantics-based code generation are

partial evaluation and staging.

Like Burstall and Darlington [17], the concern here is on fundamental rules for deriv-

ing programs. Their approach involves ideas at the core of equational reasoning: folding

and unfolding. Instead, here the focus is on an extension of the λ-calculus [8, 19, 38] for-

mulation of the S-m-n theorem [59, 70].

This thesis makes the following contributions. It identifies a transformation technique

in the form of four essential rules, and proves properties about those rules. An analysis

shows how this transformation technique can be applied to a class of interpreters even

broader than the class of denotational-style interpreters. Case studies suggest the utility

of these transformation rules and the transformation approach in general for deriving a

compiler from an interpreter.

This approach to creating compilers has the same benefits as other semantics-based ap-

proaches. These benefits are particularly valuable for domain-specific languages (DSLs)

[106] and experimental languages. In contrast to partial-evaluation based approaches, ad-

2

1.2. OVERVIEW

vantages include the ability to derive a compiler, and the possibility of naturally adding

additional stages to the transformation sequence so as, for example, to use more sophis-

ticated algorithms. In contrast to other work in staging, the advantage is a more formal

foundation for program transformation.

1.2 Overview

The rest of this thesis examines the transformation technique in detail. Chapter 2 is de-

voted to the various ideas related to the transformation technique. Chapter 3 introduces

the transformation technique informally. Chapter 4 formalizes the notions here so as to

state the rules precisely and to prove correctness results. Although the inspiration for the

transformation technique is denotational semantics, chapter 5 investigates to what extent

interpreters written in other styles may be modified so that the transformation technique

can be applied. Chapter 6 considers a more significant example: a PROLOG implementa-

tion. Chapter 7 outlines some thoughts concerning additional work that might be done.

Finally, chapter 8 concludes with a summary.

3

Chapter 2
Background and Related Work

Gutta cavat lapidem non bis,

sed saepe cadendo; sic homo fit

sapiens non bis, sed saepe

legendo.

A drop hollows out the stone by

falling not twice, but many times;

so too is a person made wise by

reading not two, but many books.

Giordano Bruno

The ideas discussed in this thesis lie in the intersection of three related areas: compiler

generation, partial evaluation, and staged computation. A historical section introduces

these areas. Then a section devoted to each area follows.

4

2.1. HISTORICAL OVERVIEW

2.1 Historical Overview

The term compiler was first used by Grace Hopper [48, 62] to describe program genera-

tion software. These early compilers gathered together, or compiled, subroutines from

subroutine libraries to form whole programs. Mike Karr [57] suggests that John Backus

referred to his FORTRAN project as a ‘compiler’ project to emphasize the utility of the

project independent of the ambitious translation aspect.

Every programmer has had the experience of finding a bug in even the simplest pro-

gram. Writing bug-free software is challenging. Frederick Brooks [15] observes that there

are layers to the challenge of writing bug-free software. He defines a programming system

as software that consists of a collection of coordinated, interacting programs, and he de-

fines a programming product as software that will be run and maintained by others. Brooks

suggests that a programming systems component is three times more difficult1 than an

ordinary program, and that a programming systems product is nine times more difficult.

At the very least, a compiler is inherently a component of a system involving the oper-

ating system, an editor, and perhaps other programs involved in writing the source and

running the target code. As such, a compiler is quite difficult to write. Indeed, a well-

known series of compiler texts [2–4] emphasizes the difficulty of writing a compiler by

depicting the complexity of compiler design as a dragon.

It is possible, and it is quite typical, to split a compiler into two components: the front-

end, and the back-end. The front-end involves computations associated with the source

such as lexical analysis, parsing, and type-checking. The back-end involves computations

associated with the target such as optimization and code-generation. The advantage of

splitting a compiler into front-end and back-end components is that it is then possible to

re-use the front-end for multiple targets and the back-end for multiple source languages.

1Brooks characterizes this notion of difficulty as cost to achieve a specified level of quality.

5

CHAPTER 2. BACKGROUND AND RELATED WORK

Further, it is common to refine this division one step further by tripartitioning the com-

piler into the front-end, the middle-end, and the back-end. The front-end then performs

tasks associated with input such as lexical analysis and parsing. The middle-end per-

forms tasks that manipulate internal representations such as type-checking, generation

of intermediate-code, and optimization. The back-end involves computations associated

with output such as target-optimization and generation of target-code. The front-end,

middle-end, and back-end all have posed challenges.

Early programming language efforts used ordinary English to specify the syntax; the

associated ad-hoc parsers required tremendous effort to develop. When working on Algol

58, John Backus [7] made an important breakthrough2 when he introduced BNF3 nota-

tion to express a context-free grammar (CFG) that specified the syntax. Because the class

of CFGs was so clearly specified, it was not long before general parsing algorithms (e.g.,

CYK, Earley), parsing algorithms for the regular subset, and linear time compiler-oriented

parsing algorithms appeared (e.g., Precedence Parsing, LL(k), LR(k), and LALR(k)). Fur-

ther, tools (e.g., XA [69], lex [65], and yacc [49]) emerged that effectively translated little

more than formal specifications into efficient parsing programs.

Code generation in early programming language efforts also involved ad-hoc tech-

niques. But there have been many advances in code-generation technology as well. In

particular, for back-ends tree-tiling [4, 80] and declarative machine descriptions [33] have

been used to specify at various levels how assembly code should be generated. Unfor-

tunately, for the generation of intermediate-code in middle-ends, ad-hoc techniques con-

tinue to be used; indeed, compiler textbooks take a ‘cookbook’ approach.

A principled approach to intermediate-code generation goes under the heading semantics-

2It may be that Backus was influenced by Chomsky [14] or Post [105]. In any case, the ideas seem to have
been in the air, and it was he who introduced them to the programming language community.

3There is a disagreement about whether BNF stands for ‘Backus Normal Form’ or ‘Backus Naur Form.’
Knuth [60] has noted that BNF is not a normal form in the usual mathematical sense. Peter Naur asserts that
his role in developing the notation was minuscule [105].

6

2.2. COMPILER GENERATORS

directed compiler generation. Diehl [34] observes that a compiler generated from a semantic

specification has the following advantages: correctness, ease of implementation — only

the specification needs to be written from scratch, maintainability — only the specifica-

tion needs to be modified, and rational justification for the code generated. For automatic

(middle-end) compiler generation, some form of partial evaluation [51] (i.e., a program spe-

cialization technique) is typically used; although occasionally other approaches are used.

The idea of staging [56,74,87] (i.e., separating a computation into one that runs earlier and

another that runs later) is more general than partial evaluation and may refer to automatic

or manual approaches to generation. These techniques have been leveraged to partially

or fully systematize code-generation. Nevertheless, the success achieved with front-ends,

namely the ability to automatically translate a specification into an efficient program, in

the realm of intermediate-code generation remains elusive.

2.2 Compiler Generators

Narrowly speaking, a compiler generator is a program that accepts a specification of a

source language S that describes both the syntax (S) and semantics, accepts a specification

of a target language T that describes both the syntax (T) and semantics, and generates a

compiler that accepts S programs and generates T programs. Broadly speaking, we use

the term even if aspects are missing (e.g., the parser, or the target specification) or an

interpreter is generated instead.

The first compiler generator is Peter Mosses’ Semantic Implementation System (SIS)

[73]. The specifications for syntax and semantics are tightly integrated. The lexical and

grammatical structure is expressed in a form called GRAM, which resembles BNF. The se-

mantics is specified in the Denotational Semantics Language (DSL) which is an extension of

the λ-calculus. Mosses’ system generates reasonable λ-terms; however, his term reducer

7

CHAPTER 2. BACKGROUND AND RELATED WORK

is quite slow.

Another pioneering compiler generator was CERES by H. Christiansen and Neil D.

Jones. Mads Tofte [101] subsequently simplified the CERES compiler generator by ob-

serving that a compiler generator is a kind of compiler. He appears to deemphasize the

use of a general partial evaluator.

Peter Lee [63, 64] criticizes Mosses’ work and others [79] and points out that the gen-

eration process, the generated compiler and the target code generated by the generated

compiler are all too slow and inefficient. Lee puts the blame squarely on denotational

semantics [95, 102]. In particular, he identifies the following four problems: (1) lack of

separability — when certain features are added, the entire semantics must be rewritten4;

(2) poor semantic engineering — the static and dynamic aspects are blurred5; (3) minimal-

ist semantic explication — some language features are described at a very high level that

provide no hint of low-level implementation (e.g., no distinction is made between param-

eters and other variables); and (4) lack of modularity — there are no semantic modules, and

interaction with the store relies on specific concrete mathematical details. While Lee pre-

serves the compositional6 aspect of denotational semantics, he replaces the details with

a two level semantics: a macrosemantics and a microsemantics. The macrosemantics is

expressed in a prefix-form operator expression (POE), which appears to be a standardized

abstract syntax. The microsemantics can be expressed in a number of ways ranging from

a high-level denotational semantics to a low-level assembly language description. How-

ever, the different microsemantics are not required to agree; for example, the assembly

language semantics for array indexing does no bounds checking. Lee’s system generates

4Subsequently, some in the denotational camp addressed this problem using the category theoretical con-
struct of monads [36, 71, 91, 93].

5This blurring of the the static and dynamic aspects can also be seen as an advantage [42] allowing for a
simpler description of the meaning.

6A compositional [102] semantics is one in which the meaning of an expression is a function of the meaning
of its sub-expressions.

8

2.2. COMPILER GENERATORS

compilers that can parse, statically type-check, and generate assembly code; further, it is

able to generate faster compilers that generate faster code. However, it is not clear how

flexible his compiler generator is, nor is it clear how confident one can be in its correctness.

In contrast, Jesper Jørgensen [54, 55] generates a realistic compiler for a Haskell-like

language that is specified using denotational semantics. Jørgensen calls the language he

implements BAWL. It resembles Miranda even more closely than Haskell. The specifi-

cations for syntax and semantics are not tightly integrated. The lexical and grammatical

structure is expressed in a form suitable for a YACC-like parser generator. Programs are

assumed to be type correct; there is no attempt at type-checking. Jørgensen does dis-

cuss how a meta-interpreter would allow the denotational definition language to be used

directly, and he gives some small examples. He further speculates that determining bind-

ing times might be easier with this approach. Nevertheless, the denotational semantics

is hand-translated7 into Scheme [58, 92] and then the resulting interpreter is enhanced to

perform ‘optimizations.’ If performed at run-time, the ‘optimizations’ would slow down

execution; however, they are designed so that the partial evaluator will perform them dur-

ing the static phase. The resulting compiler which targets Scheme, when coupled with an

optimizing Scheme compiler, performs better than a non-optimizing Miranda compiler

from Research Software Limited. However, an experimental optimizing research com-

piler from Chalmers University has even better performance.

Charles Consel and Siau Cheng Khoo [24] generate a simple PROLOG [32,104] compiler

that is specified using denotational semantics. Issues of syntax specification are ignored.

The denotational semantics is hand-translated into side-effect-free Scheme, and a partial

evaluator is used to create a compiler that targets Scheme. Consel and Khoo report that

compiled code runs six times faster than interpreted code, but they do not compare their

compiler to other PROLOG implementations. This compiler suffers from a number of is-

7Lazy evaluation was implemented via ‘suspensions’ rather than graph reduction.

9

CHAPTER 2. BACKGROUND AND RELATED WORK

sues. First, because their partial evaluator does not support side-effects, their approach

cannot take advantage of more sophisticated unification algorithms. Second, their ex-

amples of compiled programs show duplications of the database. Third, the generated

compiler cannot handle recursive PROLOG programs; recursion causes their compiler to

loop.

In order to demonstrate a new technique for doing binding time analysis, Olivier

Danvy and René Vestergaard [29] generate a compiler for a simplified Pascal-like lan-

guage. Issues of syntax specification and type-checking are ignored. The denotational

semantics is hand-translated into Scheme, where all globals have been turned into pa-

rameters because their binding time analyzer requires its input to be closed. Their partial

evaluator is then used to create a compiler that targets Scheme. Danvy and Vestergaard

report that generated code runs four times faster than interpreted code. In addition, they

point out that their compiler generates code that resembles three-address code [3,4]; how-

ever, it may be that that is a result of the semantics being expressed in a low level style.

Stephan Diehl [34] generates compilers for two simple languages. Issues of syntax

are ignored. From the specified big-step operational semantics [84, 102], an abstract ma-

chine is generated together with a compiler that targets that abstract machine. Diehl’s

system does this by first transforming the big-step operational semantics into a small-step

operational semantics [84,102]. This transformation is accomplished by recording the ad-

ditional information of the big-step derivation tree in an auxiliary context data structure.

Then pass-separation8 ensures that instructions either introduce other instructions or mod-

ify the context data, but not both. The capability of generating instructions for an abstract

machine is impressive, but the kind of abstract machine generated is restricted to what is

embodied in the transformation algorithm.

Michael J. A. Smith [90] focuses on the meta-level and provides a complete semantics-

8The idea and implementation of pass-separation was first explored by Hannan [46].

10

2.3. PARTIAL EVALUATION

directed compiler generator: SEMCOM. Syntax and semantics are specified in two parts:

the dynamic semantics and the static semantics. The dynamic semantics take the form

of an operational semantics (either big or small step) involving concrete syntactic forms,

from which an interpreter is generated. The static type system is powerful enough to

express polymorphic type systems and is used to generate the lexer, parser, and type-

checker. The comprehensiveness of the SEMCOM specification language is impressive;

however, it generates only interpreters, not compilers.

There have been various approaches to constructing compiler generators. As of yet,

no approach has been competitive with hand-crafted compilers. Partial evaluation is an

approach often taken for constructing a compiler generator. We explore this idea next.

2.3 Partial Evaluation

Partial evaluation [51] is a transformation technique for specializing programs. Program

specialization can mean simply replacing some of a function’s parameters with values;

however, specialization is usually understood to involve using those values to perform

some of the computation that does not depend on the remaining parameters. Jones et. al.

[51] suggest that Lionello A. Lombardi first used the term ‘partial evaluation’ essentially

as it is used today; however, Lombardi’s 1964 paper [66] does not seem to contain the

phrase ‘partial evaluation,’ and instead discusses ‘incremental computation.’ In the same

year as Lombardi’s paper, Peter J. Landin [61] used the term ‘partial evaluation’ when

discussing mechanisms for expression evaluation. Rodney M. Burstall and John Darling-

ton [17] provide the conceptual foundation for partial evaluation: unfolding, or expanding

definitions, and folding, or reducing definitions.

Kleene’s S-m-n theorem establishes that the minimal form of specialization is com-

putable, so programs can be written that perform this task. A partial evaluator is a program

11

CHAPTER 2. BACKGROUND AND RELATED WORK

that performs partial evaluation. Lionello A. Lombardi hinted at the use of a program to

do partial evaluation. Yoshihiko Futamura [42] was the first to clearly describe a partial

evaluator and point out what are now known as the first and second Futamura projec-

tions: that a partial evaluator can be used to do compilation and to create compilers.

The Futamura projections concern the following observations. We model a program-

ming language L as a three-tuple L = 〈E , L,D〉, where D is the set of data that the lan-

guage processes, L ⊆ D is the set of program representations, and E : L × D∗ → D is

the evaluator that maps a program representation and inputs to output. Given a pro-

gramming language L, a partial evaluator m has the property that for any L program e,

(E e (d1, d2)) = (E (E m (e, d1)) d2). Now first observe that if e is an interpreter for L2 and

p is an L2 program, then (E e (p, d)) = (E (E m (e, p)) d). Thus (E m (e, p)) can be regarded

as the target code, and λp.(E m (e, p)) can be regarded as a compiler. Second, observe that

(E m (e, p)) = (E (E m (m, e)) p). Thus we can reify the previous compiler abstraction as

(E m (m, e)); i.e., the partial evaluator is applied to itself.

In order to create a compiler using a partial evaluator m, m must be self-applicable.

Futamura [42] and other early researchers [10,35] were unable to construct a partial evalu-

ator with this property. One point of view is that the problem was that the partial evalua-

tor could not tell which which specializations were important and which were not. Jones,

Sestoft, and Søndergaard [52, 53] identified important specializations with ‘obvious’ ones

— specializations that could be identified via static analysis. They then made a distinction

between online partial evaluators (i.e., those that in a single phase decide what to special-

ize and then perform that specialization) and offline partial evaluators (i.e., those that have

two phases: one which performs a binding time analysis that determines what specializa-

tion should take place, and one which performs the specializations that the analysis indi-

cated). Their offline partial evaluator ‘mix’ was the first capable of self-application; it was

used to generate compilers for toy languages.

12

2.3. PARTIAL EVALUATION

Anders Bondorf and Olivier Danvy designed the offline self-applicable partial evalu-

ator Similix [13]. The language it handled was a subset of Scheme that included mutable

global variables. It also improved on previous efforts by better preserving termination

properties and by avoiding code duplication.

Charles Consel created the offline self-applicable partial evaluator Schism [20,21]. Ini-

tially, the language was restricted to a first-order side-effect-free subset of Scheme, but it

was subsequently expanded to allow higher-order functions as well.

Subsequent partial evaluators such as Tempo [22, 23] were frequently extensions of

well-established partial evaluators such as Schism.

The cogen approach [12,99] is an alternative to traditional partial evaluation. Like the

technique presented in this thesis, the emphasis is on generating a code generator. The

cogen approach borrows from the ideas involved in off-line partial evaluation. To create a

code generator, a binding time analysis is performed and the input program is annotated.

Instead of using the annotated program for partial evaluation, the annotations are reified

to generate the generator. Then the generator can be used for partial evaluation, if desired.

PGG [99, 100] is a partial evaluator that follows the cogen approach. According to Neil

D. Jones [50], it is one of the most sophisticated partial evaluation programs available at

the time of this writing.

Recently, despite beliefs that only offline partial evaluators could be self-applicable,

Robert Glück [43] developed an online self-applicable partial evaluator. The language is

a flowchart language that allows recursive calls. Glück observes that no new techniques

were used but rather the order of the techniques and recursive polyvariant specialization

were the key to the implementation.

Early partial evaluators had trouble with assignment and/or higher-order functions

[20, 21]. Although contemporary partial evaluators are more powerful, they are not al-

ways successful. Coming up with the right binding time improvements to help a par-

13

CHAPTER 2. BACKGROUND AND RELATED WORK

tial evaluator can be challenging because partial evaluation algorithms are quite compli-

cated [29]. Some prefer manual staging because it is more transparent. We consider this

idea next.

2.4 Staged Computation

A staged computation is a computation that is organized so that part of the computation

occurs at one stage, or time, and the rest of the computation occurs at another. Partial

evaluation is a technique for staging; however, this notion has broader scope and includes

(and today usually refers to) manual techniques.

LISP programmers have long enjoyed a kind of staging in the form of the eval operator

and macros. Further, LISP [58,68,92,94] dialects have always had a quotation mechanism

[9, 68] which has facilitated meta-programming. The eval operator allows staging in that

s-expressions can be constructed that look like programs. These programs can then be

evaluated by the eval operator in the global environment9. Macros allow staging in that

arbitrarily complex programs can be written that generate code in the form of an abstract

syntax tree usually expressed as an s-expression10 . This generated code is executed later11

with the non-macro portion of the program.

It appears that Ulrik Jørring and William L. Scherlis [56] were the first to use the term

‘staging.’ In their provocative paper, they show many examples of turning small inter-

preters into code generators. However, they are somewhat vague about the details of

transforming an interpreter. They comment, “[We] reorder computations a bit to separate

the stages...” but they do not explain how to do so.

A year later, Marc Feeley’s paper [37] appears concerning a closure-based approach

9As of R5RS [58], Scheme allows environments other than the global environment to be specified.
10Dialects of Scheme have used explicit abstract syntax representations [92].
11In some LISP dialects, when a macro would run was obscure.

14

2.4. STAGED COMPUTATION

to code generation. Although he does not reference Jørring and Scherlis and he does

not characterize his approach as one involving a transformation, his presentation of an

interpreter and a compiler side by side is suggestive. Feeley is very practical and has

performance results to show that his approach yields simple but high performing imple-

mentations.

Flemming Nielson and Hanne R. Nielson [75] view staging from the perspective of

implementing a traditional compiler for functional programming languages. They are

concerned that with the proliferation of higher-order functions there remains a lot of com-

putation that can be done at compile time but discovering this computation requires a

careful analysis. To aid such analyses, they introduce ‘two-level languages.’

Rowan Davies and Frank Pfenning [31] extend the work of Nielson and Nielson and

develop a multi-level language. Again following Nielson and Nielson they develop a type

system for binding-time analysis. Davies and Pfenning have in mind that the analysis

should be specifically useful for partial evaluation. Their type system is based on modal

logic and allows for the eval operator but not for open terms.

Since open terms are occasionally needed in partial evaluation, Rowan Davies [30]

developed a type system based on linear-time temporal logic. This type system allows for

open terms by abandoning the soundness of the eval operator12. This limitation entails

that the eval operator is not allowed.

Subsequently, Walid Taha and Tim Sheard [98] argue that multi-stage languages are

useful programming languages and should not just be viewed as an intermediate lan-

guages in a compiler (or other programming language oriented program). Although

Jørring and Scherlis are not referenced, Nielson and Nielson, and Davies and Pfenning

are referenced. Nevertheless they develop their own type system and deliver the pro-

gramming language MetaML. Unfortunately, this design is unsound because free vari-

12With open terms, the eval operator could attempt to evaluate an unbound variable.

15

CHAPTER 2. BACKGROUND AND RELATED WORK

ables may be encountered during evaluation. Taha, Benaissa, and Sheard [97] correct the

soundness issue.

Eugenio Moggi, Walid Taha, Zine El-Abidine Benaissa, and Tim Sheard [72, 96] return

to the design of the type system for MetaML. Their new approach borrows much from

Davies and Pfenning. They succeed in integrating both the linear-time temporal logic and

the modal logic providing MetaML with a sound type system that allows for both the eval

operator and open terms.

Tim Sheard and Simon Peyton Jones [88] add meta-programming features to Haskell.

Their approach differs from MetaML. The emphasis is on compile time meta-programming

like LISP macros. Unfortunately, also like LISP macros the type system does very little to

ensure correctness.

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy [18] explore an al-

ternative meta-programming implementation and extend OCaml to MetaOCaml. Their

implementation makes use of abstract syntax trees, gensym, and reflection. They report

that this new implementation yields respectable performance.

More recently, Aleksandar Nanevski and Frank Pfenning [74] extend the work of

Davies and Pfenning and incorporate into that logic some of the ideas from MetaOCaml

involving generated names. ν-abstraction is added to the language and a set of names

qualifies the modal operator. Thus their calculus and type system go beyond closed terms

and allow both open terms and the sound use of the the eval operator with only a single

modal operator.

2.5 Summary

At one end of the spectrum, partial evaluation is a mostly automatic program specializa-

tion technique. It can be used to turn interpreters into compilers. At the other end of

16

2.5. SUMMARY

the spectrum, staged computation is a mostly manual technique for specializing code. It

involves writing code that given a single input, does as much computation as possible,

and returns a function or function text that characterizes the rest of the computation that

depends on additional inputs. However, issues remain for both of these approaches.

Deriving a compiler using partial evaluation is cumbersome. Such a derivation is more

challenging than deriving a string-matching algorithm [28] because compiler generation

requires the partial evaluation of a traditional partial evaluator on the interpreter, or a

binding time analysis when using a cogen-based partial evaluator.

Further, partial evaluators have shortcomings both because they are automatic and

because they are not as automatic as claimed. Because they are automatic, they cannot

replace transparent definitional algorithms with more sophisticated algorithms. Fully au-

tomatic partial evaluators are often slow and/or generate slow code. Yet fully automatic

partial evaluators often do not succeed in eliminating static computation [29]. Thus man-

ual “binding time improvements” are needed to help the partial evaluator. Coming up

with the right improvements can be challenging because partial evaluation algorithms

are often quite complicated.

And so constructing a compiler completely automatically is unreasonable. Neverthe-

less, there should be a rational basis for compiler construction. The ideas of staging [56]

hint that a manual approach may be feasible, but they provide no notion of how to con-

struct the staged program.

This thesis presents a manual transformation technique that can be used to derive a

compiler from an interpreter. Because it is a manual technique, improved algorithms can

be introduced at any point. But even though the it is a manual technique, the transforma-

tion rules indicate exactly how to go about staging to the code.

17

Chapter 3
The Transformation Technique by

Example

Kako@i-to matematik skazal,

qto nasla�denie ne v

otkrytii istiny, no v

iskanii ee.

A mathematician once said:

pleasure lies not in discovering

truth, but seeking it.

Leo Tolstoy

The motivation for the transformation technique comes from several places: Marc

Feeley’s closure based approach to code generation [37], Kleene’s S-m-n theorem, and

denotational-semantics [95, 102]. The transformation technique involves applying four

rules: currying, lambda lowering, expression lifting, and quoting. To build intuition, we

start with a very small example that is not even an interpreter. Then we present a slightly

18

3.1. A SMALL EXAMPLE

larger example.

3.1 A Small Example

In this section, the transformation rules are motivated by the desire to both specialize and

generate text. For the sake of brevity, mathematical functions are used as examples.

3.1.1 Currying Dynamic Variables

Currying is a mathematical trick to make all functions take one argument; it transforms a

function of two or more arguments into a function of one argument that returns a func-

tion. For example, the multiplication function m(x, y) = x× y becomes m(x) = λy.x× y.

If we have in mind that x is known statically, but y is known dynamically, then apply-

ing the curried form to a statically known value specializes the multiplication function.

For example, applying m to 2 results in the following term: m(2) = λy.2 × y. Thus the

application of a curried function is a form of code generation.

Many programming languages, especially today, allow for first-class functions. In

Scheme [58], the multiplication example looks as follows.

(define (m x y) (* x y))

When curried, it becomes the following.

(define (m x) (lambda (y) (* x y)))

However, applying m to 2 yields an opaque result rather than the desired term. Some-

thing more is needed to see the text of the resulting procedure.

19

CHAPTER 3. THE TRANSFORMATION TECHNIQUE BY EXAMPLE

> (m 2)
#<procedure>

3.1.2 Code Via Quoting

To fix the problem in section 3.1.1, we want to see the text of the function rather than

the function itself (which may not be displayable). To return text, rather than a function,

we can use Scheme’s quotation and un-quotation mechanisms: backquote and comma.

The lambda expression is quoted and the lambda expression’s local free variables are

unquoted. Upon making this change, the term comes out as expected, although now eval

is needed to actually apply this function.

(define (m x) ‘(lambda (y) (* ,x y)))

> (m 2)
(lambda (y) (* 2 y))

But consider the following more complicated example of raising b to the nth power

using a recursive function and what happens when applying these currying and quoting

transformations.

(define (p n b) ; original
(if (= n 0)

1
(* b (p (- n 1) b))))

(define (p n) ; curried
(lambda (b)

(if (= n 0)
1
(* b ((p (- n 1)) b)))))

20

3.1. A SMALL EXAMPLE

(define (p n) ; quoted
‘(lambda (b)

(if (= ,n 0)
1
(* b ((p (- ,n 1)) b)))))

> (p 3)
(lambda (b)

(if (= 3 0) 1 (* b ((p (- 3 1)) b))))

The result this time is inadequate because a substantial amount of static computation

remains. In particular, the conditional does not depend on the parameter b and should not

be there. The code generated also assumes a run-time environment in which the curried

form of p that returns a number is defined. Of course, the goal is to eliminate the need for

such a run-time function.

3.1.3 Lambda Lowering

To fix the problem in section 3.1.2, we need to evaluate the test in the conditional. A way

to do that is to move the function with the formal parameter b inside the conditional after

currying. Upon making this sequence of transformations, applying the code generating

function does yield a simpler term.

; original

; curried

(define (p n) ; lambda lowered
(if (= n 0)

(lambda (b) 1)
(lambda (b) (* b ((p (- n 1)) b)))))

(define (p n) ; quoted
(if (= n 0)

‘(lambda (b) 1)
‘(lambda (b) (* b ((p (- ,n 1)) b)))))

21

CHAPTER 3. THE TRANSFORMATION TECHNIQUE BY EXAMPLE

> (p 3)
(lambda (b) (* b ((p (- 3 1)) b)))

While the result here is better, it is still inadequate because we have not yet eliminated

the reference to the function p.

3.1.4 Expression Lifting

To fix the problem in section 3.1.3, we need to evaluate the recursive call. Since it resides in

a λ-expression, the only way to evaluate the expression is to lift it out. Upon making this

sequence of transformations, applying the code generating function yields an ungainly

but fully simplified term1.

; original

; curried

; lambda lowered

(define (p n) ; expression lifted
(if (= n 0)

(lambda (b) 1)
(let ((f (p (- n 1))))

(lambda (b) (* b (f b))))))

(define (p n) ; quoted
(if (= n 0)

‘(lambda (b) 1)
(let ((f (p (- n 1))))

‘(lambda (b) (* b (,f b))))))

1This example is intended merely to illustrate the four transformation rules. A more serious algorithm for
computing powers would use repeated squaring. Further, this approach all by itself is insufficient for loop
unfolding since this code will unfold arbitrarily large powers.

22

3.2. A LONGER EXAMPLE

> (p 3)
(lambda (b)

(* b ((lambda (b)
(* b ((lambda (b)

(* b ((lambda (b) 1) b)))
b)))

b)))

Although ideally the generated code would be more readable, we can make it more

pleasant looking by post-processing2.

(lambda (b) (* b (* b (* b 1))))

3.1.5 Rule Ordering

When applying the rules above, they are performed in the following order. First the func-

tion is curried. Then the lambda lowering and expression lifting rules are applied repeat-

edly until those rules can no longer be applied. Finally the quoting rule is applied to all

λ-expressions derived from the curried function.

3.2 A Longer Example

To illustrate the technique, consider the application of regular expression matching. A

regular expression matching interpreter takes a regular expression and a string, and de-

termines if the string is in the language denoted by the regular expression. Often, the

regular expression is fixed, and we would like the code that answers whether a string is

in the language denoted by that fixed regular expression.

2The post-processing consists of copy-propagation and dead-code elimination. Again, we only make this
effort for human readers; the computer executes the unprocessed form.

23

CHAPTER 3. THE TRANSFORMATION TECHNIQUE BY EXAMPLE

Definition 1. A regular expression is one of the following, where the predicate testing each

option is in parentheses.

• The empty string. (null?)

• A character in the alphabet. (char?)

• The union of two regular expressions. (or?)

• The concatenation of two regular expressions. (cat?)

• The Kleene star of a regular expressions. (star?)

The matching algorithm is expressed in Scheme using continuation passing style; the

continuation (k) is the property that must be satisfied by the remainder of the string. In

the code below, a string is represented as a list of characters (cl).

(define (match regexp cl k)
(cond ((null? regexp) (k cl))

((char? regexp)
(if (null? cl)

#f
(and (eq? (car cl) regexp) (k (cdr cl)))))

((or? regexp)
(or (match (exp1<-or regexp) cl k)

(match (exp2<-or regexp) cl k)))
((cat? regexp)
(match (exp1<-cat regexp)

cl
(lambda (cl2)

(match (exp2<-cat regexp) cl2 k))))
((star? regexp)
(let loop ((cl2 cl))

(or (k cl2)
(match (exp<-star regexp)

cl2
(lambda (cl3)

(if (eq? cl2 cl3) #f (loop cl3)))))))
(else (error ’match "match’s input is bad"))))

24

3.2. A LONGER EXAMPLE

When regexp is the empty string, match invokes the continuation on the charac-

ter list. Note that the initial continuation verifies that the character list is empty. When

regexp is a character, match checks that the first character in the character list is that

character, and invokes the continuation on the tail of the character list. When regexp is a

union, match first tries the first option, and if that fails it backtracks and tries the second

option. When regexp is a concatenation, match recursively matches the first compo-

nent and adds a check for the second to the continuation. When regexp is a Kleene star,

match loops checking if either the continuation is satisfied (i.e., Kleene star corresponds

to the empty string) or the pattern to be repeated is matched; thus the shortest prefix is

matched.

In the following sections, we will now apply the technique to this interpreter and

derive a code generator.

25

CHAPTER 3. THE TRANSFORMATION TECHNIQUE BY EXAMPLE

3.2.1 Currying

A compiler for regular expressions must be a function that takes a regular expression;

hence the dynamic parameters are cl and k. They are removed from the top-level pa-

rameter list and put into the parameter list of the λ-expression. The recursive calls are

modified to account for this new protocol.

(define (match regexp)
(lambda (cl k)

(cond ((null? regexp) (k cl))
((char? regexp)
(if (null? cl)

#f
(and (eq? (car cl) regexp) (k (cdr cl)))))

((or? regexp)
(or ((match (exp1<-or regexp)) cl k)

((match (exp2<-or regexp)) cl k)))
((cat? regexp)
((match (exp1<-cat regexp))

cl
(lambda (cl2)

((match (exp2<-cat regexp)) cl2 k))))
((star? regexp)
(let loop ((cl2 cl))

(or (k cl2)
((match (exp<-star regexp))
cl2
(lambda (cl3)

(if (eq? cl2 cl3) #f (loop cl3)))))))
(else (error ’match "match’s input is bad")))))

3.2.2 Lambda lowering

Since (cond (e1 e2) ...) ≡ (if e1 e2 (cond ...)), it is possible to apply the

conditional form of the lambda lowering rule several times. The lambda just below the

definition in match is lowered into each branch of the cond-expression3.
3An exception to the rule is made in the error case; the lambda is not lowered. The motivation is practical:

it is preferable to find out right away that the input is invalid.

26

3.2. A LONGER EXAMPLE

(define (match regexp)
(cond ((null? regexp) (lambda (cl k) (k cl)))

((char? regexp)
(lambda (cl k)

(if (null? cl)
#f
(and (eq? (car cl) regexp) (k (cdr cl))))))

((or? regexp)
(lambda (cl k)

(or ((match (exp1<-or regexp)) cl k)
((match (exp2<-or regexp)) cl k))))

((cat? regexp)
(lambda (cl k)

((match (exp1<-cat regexp))
cl
(lambda (cl2)

((match (exp2<-cat regexp)) cl2 k)))))
((star? regexp)

(lambda (cl k)
(let loop ((cl2 cl))

(or (k cl2)
((match (exp<-star regexp))
cl2
(lambda (cl3)

(if (eq? cl2 cl3) #f (loop cl3))))))))
(else (error ’match "match’s input is bad"))))

3.2.3 Expression lifting

Since the recursive calls have been curried and do not depend on the dynamic variables,

it is possible to lift them out of the lowered lambdas. In this example, it is clear that the

calls will halt since the recursive calls are always on smaller structures.

27

CHAPTER 3. THE TRANSFORMATION TECHNIQUE BY EXAMPLE

(define (match regexp)
(cond ((null? regexp) (lambda (cl k) (k cl)))

((char? regexp)
(lambda (cl k)

(if (null? cl)
#f
(and (eq? (car cl) regexp) (k (cdr cl))))))

((or? regexp)
(let ((f1 (match (exp1<-or regexp)))

(f2 (match (exp2<-or regexp))))
(lambda (cl k) (or (f1 cl k) (f2 cl k)))))

((cat? regexp)
(let ((f1 (match (exp1<-cat regexp)))

(f2 (match (exp2<-cat regexp))))
(lambda (cl k)

(f1 cl (lambda (cl2) (f2 cl2 k))))))
((star? regexp)

(let ((f (match (exp<-star regexp))))
(lambda (cl k)

(let loop ((cl2 cl))
(or (k cl2)

(f cl2 (lambda (cl3)
(if (eq? cl2 cl3)

#f
(loop cl3)))))))))

(else (error ’match "match’s input is bad"))))

3.2.4 Quoting

Now each λ-expression is quoted. The Scheme backquote syntax is used to allow some

sub-expressions to be evaluated. In particular, non-global free variables are unquoted in

the text.

28

3.2. A LONGER EXAMPLE

(define (match regexp)
(cond ((null? regexp) ‘(lambda (cl k) (k cl)))

((char? regexp)
‘(lambda (cl k)

(if (null? cl)
#f
(and (eq? (car cl) ,regexp) (k (cdr cl))))))

((or? regexp)
(let ((f1 (match (exp1<-or regexp)))

(f2 (match (exp2<-or regexp))))
‘(lambda (cl k) (or (,f1 cl k) (,f2 cl k)))))

((cat? regexp)
(let ((f1 (match (exp1<-cat regexp)))

(f2 (match (exp2<-cat regexp))))
‘(lambda (cl k)

(,f1 cl (lambda (cl2) (,f2 cl2 k))))))
((star? regexp)

(let ((f (match (exp<-star regexp))))
‘(lambda (cl k)

(let loop ((cl2 cl))
(or (k cl2)

(,f cl2 (lambda (cl3)
(if (eq? cl2 cl3)

#f
(loop cl3)))))))))

(else (error ’match "match’s input is bad"))))

3.2.5 Output

When the regular expression is a∗(a∪ b), the simplified output becomes the following4.

4Although this example is more elaborate, it too is merely intended to be illustrative. The algorithm to
match a regular expression is inefficient: recall that union is implemented via backtracking.

29

CHAPTER 3. THE TRANSFORMATION TECHNIQUE BY EXAMPLE

(lambda (cl k)
(let ((k

(lambda (cl2)
(or (if (null? cl2)

#f
(and (eq? (car cl2) #\a)

(k (cdr cl2))))
(if (null? cl2)

#f
(and (eq? (car cl2) #\b)

(k (cdr cl2))))))))
(let loop ((cl2 cl))

(or (k cl2)
(let ((cl cl2)

(k (lambda (cl3)
(if (eq? cl2 cl3) #f (loop cl3)))))

(if (null? cl)
#f
(and (eq? (car cl) #\a) (k (cdr cl)))))))))

3.3 Summary

The transformation technique is not difficult to perform manually. By using four rules

(the transformation technique) we can turn an algorithm that computes a result into an

algorithm that generates code to compute the result. Finally, we see that the generated

code is respectable, but not breathtaking. The code that is generated can be no more

subtle than the algorithm or interpreter it is based on.

30

Chapter 4
A Formal Model

Μεταβάλλον ἀναπαύεται

Even as it changes, it stands still.

Heraclitus

The examples from chapter 3 illustrate how a procedure can be modified so that it

generates a λ-term. There the transformation rules were described informally. Here, we

will describe them formally. In order to do so, it is first necessary to articulate a suitable

language for writing interpreters. Once the interpreter language and the transformation

rules have been articulated, it is possible to prove correctness results.

4.1 The Interpreter Language

The examples in chapter 3 are written in Scheme. More generally, we are inspired by

Scheme, Common LISP, ML, and Haskell. Therefore, it is natural to construct a model

interpreter language based on the call-by-value λ-calculus; this calculus is extended with

constants, conditionals, and quotation (see figure 4.1). Constants and conditionals are

commonplace. In addition, a let-form is understood in the usual way to abbreviate the

31

CHAPTER 4. A FORMAL MODEL

Terms e ::= c
::= x
::= , y
::= λx̄.e
::= [[e]]
::= e0(ē)
::= let , y = e in e′

::= if e0 then e1 else e2

Values v ::= c
::= x
::= λx̄.e
::= [[e]]

let x = e in e′ is syntactic sugar. (See below.)

eval(e) is syntactic sugar. (See below.)

Figure 4.1: Interpreter language syntax.

application of a lambda expression, or abstraction1.

Definition 2. The form let x = e in e′ is syntactic sugar for (λx.e′)(e).

Definition 3. The form let x1 = e1, · · · , xn = en in e is syntactic sugar for

let x1 = e1 in · · · let xn = en in e.

There have been various approaches for describing program text in the context of the

λ-calculus2 [72, 74, 96]. Quotation and the let-form associated with quotation are inspired

by Nanevski and Pfenning [74] and require more discussion.

In LISP, both programs and data are parenthesized expressions. Data is distinguished

from programs by putting a quotation mark in front. Thus (+ 2 3) performs addition,

but ‘(+ 2 3) is a list. In the interpreter language above, +(2, 3) performs addition and

1We use the term “abstraction” when discussing both the meta-language (interpreter language) and the
language.

2Other models of computation such as Turing machines and recursive function theory naturally incorpo-
rate the notion of program text.

32

4.1. THE INTERPRETER LANGUAGE

[[+(2, 3)]] is data. The notation here differs somewhat from LISP in that LISP allows an

arbitrary form to be quoted; thus ‘(1 2 3) is simply a list of numbers. While the in-

terpreter language syntax allows the term [[1(2, 3)]], there is no other interpretation other

than application and so the term does not make sense. LISP also makes it possible to sub-

stitute values into a quoted form. The comma operator is used to unquote an expression.

Thus the LISP expression (let ((y 2)) ‘(+ ,y 3)) evaluates to a list whose second

component is 2. In the interpreter language above, the comma is not an operator; rather a

second kind of variable is introduced, the comma-variable, which is intended to resemble

LISP’s application of the comma operator to a variable. The let-form for comma-variables

is used for substituting into a quoted expression. In the interpreter language, the comma

example is written let , y = 2 in [[+((, y), 3)]]. Further, it is natural to use this let-form to

define the operator eval.

Definition 4. The form eval(e) is syntactic sugar for let , y = e in , y.

The meaning of this interpreter language λ-calculus is mostly standard (see figure 4.2).

A function δ is assumed that characterizes how constant/primitive operators act on val-

ues. Again, the approach to modeling quotation requires some discussion. In LISP, we

have that (let ((y ‘(+ 3 4))) ‘(* 2 ,y)) evaluates to the list (* 2 (+ 3 4)).

This can be understood as removing the quotation and replacing the comma-variable with

the unquoted term. In LISP, the body of the let-form cannot be a comma-variable; in LISP

the comma operator must appear inside a quasi-quote form. However, in the interpreter

language it is possible. Observe that when the body of the let-form is the comma-variable,

the quoted term is unquoted thereby implementing the eval operator.

But what should the result be when applying eval to an unquoted value, and more

generally how should the let-form for comma-variables behave? Traditionally LISP allows

the application of eval to unquoted expressions. Thus (eval 2) evaluates to 2. In

33

CHAPTER 4. A FORMAL MODEL

δ(cop, v̄) = v′

cop(v̄)→ v′ (λx̄.e)(v̄)→ e[x̄ := v̄]
v 6= [[e]]

let , y = v in eb → eb[, y := v] let , y = [[e]] in eb → eb[, y := e]

if False then e1 else e2 → e2

v 6= False

if v then e1 else e2 → e1

ei → e′i 0 ≤ i ≤ n
v0(v1 · · · vi−1 ei ei+1 · · · en)→ v0(v1 · · · vi−1 e

′
i ei+1 · · · en)

e→ e′

let , y = e in eb → let , y = e′ in eb

e→ e′

if e then e1 else e2 → if e′ then e1 else e2

Figure 4.2: Interpreter language semantics.

the discussion of syntax above, there was an example in which a comma-variable was

bound to the unquoted value 2. However, the following example exposes a complication;

consider (let ((y (list 1 2 3))) ‘(car ,y)). It evaluates to the list (car (1

2 3)), which is not what we wanted; we wanted the list (car ’(1 2 3)). Should

something additional happen with unquoted values or not? We argue that the example

with the 2, and not the example with the list, gets at the essence and that the anomaly with

the list is due to unfortunate syntax. If we could write something like (let ((y [1 2

3])) ‘(car ,y)) in LISP, there would not be a problem3. And so the rule for the

let-form with comma-variables is merely to replace the comma-variable with the already

unquoted value.

Reduction can be extended to an equivalence relation by making sure the relation is

reflexive, symmetric, and transitive (see figure 4.3). In addition, when making arguments

it is useful to be able to say that sub-structural equality implies equality. Hence the equa-

tional rules for structural equality are added.

3Lurking in the background is the issue of equality. Scheme has the operator eq? which is not extensional.
We will assume that only extensional equality is used.

34

4.2. THE TRANSFORMATION RULES

e = e
reflexive

e = e′

e′ = e
symmetric

e = e′ e′ = e′′

e = e′′
transitive

e→ e′

e = e′
reduction

e ≡α e′
e = e′

α
e = e′

λx̄.e = λx̄.e′
ξ

ei = e′i 0 ≤ i ≤ n
e0(e1 · · · ei−1 ei ei+1 · · · en) = e0(e1 · · · ei−1 e

′
i ei+1 · · · en)

e = e′

let , y = e in eb = let , y = e′ in eb

e = e′

let , y = e′′ in e = let , y = e′′ in e′

e = e′

if e then e1 else e2 = if e′ then e1 else e2

e = e′

if e0 then e else e2 = if e0 then e′ else e2

e = e′

if e0 then e1 else e = if e0 then e1 else e′
e = e′

[[e]] = [[e′]]

Figure 4.3: Interpreter language term equality.

4.2 The Transformation Rules

In chapter 3, we mentioned that the transformation technique was inspired by denota-

tional semantics. That is because a denotational definition can be understood as a com-

piler: given a term, we are free to evaluate the recursive calls and derive a λ-term. Yet the

call-by-value evaluation strategy prevents reducing the applications inside abstractions.

The key idea behind the transformations is the following: An expression within an ab-

straction cannot be evaluated, and so the code is restructured so that the expression is no

longer within the abstraction. The formal transformations are in figure 4.4.

Rules (4.1) and (4.2) are about currying. The equivalence of functions and their curried

counterparts is well known. Although the rules are expressed as local changes, rule (4.2)

must be applied completely using non-local assumptions and information.

Rules (4.3) and (4.4) are about lambda lowering. These rules involve moving an ex-

pression that is just inside an abstraction and does not depend on the parameters of an

abstraction out of the abstraction. In particular, if the abstraction body is a conditional,

but the conditional does not depend on the abstraction’s parameters, we may regard the

35

CHAPTER 4. A FORMAL MODEL

λs̄, d̄.e ↪→ λs̄.λd̄.e (4.1)

ec(ēs, ēd) ↪→ ec(ēs)(ēd) (4.2)

if ec is an expression that reduces to a curried function.

λx̄.if e then e1 else e2 ↪→ if e then (λx̄.e1) else (λx̄.e2) (4.3)
if xi /∈ FV(e)

λx̄.let z = e in eb ↪→ let z = e in λx̄.eb (4.4)
if xi /∈ FV(e) and z 6= xi

λx̄.e′[u := e] ↪→ let z = e in λx̄.e′[u := z] (4.5)
if z is fresh and xi /∈ FV(e)

let z1 = e1 in · · · let zn = en in λd̄.e ↪→ (4.6)
let , z1 = e1 in · · ·

let , zn = en in
[[λd̄.e[z1 := , z1] · · · [zn := , zn]]]

when FV(λd̄.e) = {z1, . . . , zn}, each , zi is fresh,
and FV(ei) ∩ {z1, . . . , zn} = ∅ for each i

The transformation relation is denoted by ↪→.

Figure 4.4: Transformations

36

4.3. LOCAL CORRECTNESS

conditional as specifying one of two abstractions. Or, if the abstraction body defines an

intermediate value that does not depend on the parameters, we may regard the definition

as occurring outside the body of the abstraction.

Rule (4.5) is expression lifting. This rule is similar to lambda lowering insofar as both

involve moving an expression out of an abstraction. However, with expression lifting, the

entire expression is moved completely out of the abstraction if it does not depend on the

parameters of the abstraction. Typically, the expression being lifted is an application.

Rule (4.6) is about quotation. It transforms an expression that returns an abstraction

into an expression that returns the text that represents that abstraction. Note that the

rule states that the variables that become comma-variables are exactly those that are in

scope from the surrounding let. In practice, we relax this restriction slightly and allow a

function’s formal parameters to be unquoted without being in a let. Following the formal

requirement of the rule in that case is trivial but wordy.

4.3 Local Correctness

The correctness of rules (4.3), (4.4), and (4.5) relies only on local reasoning. Note that they

all assume that the evaluation of e terminates. If that is not the case, looping outside of an

abstraction is always observed, but looping inside an abstraction is observed only if the

abstraction is called. In practice, it is clear for rules (4.3) and (4.4) whether or not e termi-

nates: typically it is a call to a structure predicate and it does not loop. The termination of

e in rule (4.5) is more subtle. If it is a recursive call on sub-structure it will terminate. If

it is a recursive call on the same structure it will not terminate. Otherwise, termination is

not obvious.

For rule (4.3), concerning lambda lowering for a conditional, we first need a technical

lemma. (The proof of the lemma is in appendix A.)

37

CHAPTER 4. A FORMAL MODEL

Lemma 1. If e→∗ v then (if e then e1 else e2)→∗ (if v then e1 else e2).

Informally, the argument for the correctness of rule (4.3) is that if e reduces to a value

v, then the body of the abstraction depends on v. When false, the body is e2; otherwise

the body is e1. And that is what the right-hand-side says.

Theorem 1. If e→∗ v, and xi /∈ FV(e) then (λx̄.if e then e1 else e2) = (if e then λx̄.e1 else λx̄.e2).

Proof. By case analysis on v.

• Suppose v 6= False.

λx̄.if e then e1 else e2 = λx̄.if v then e1 else e2

= λx̄.e1

= if v then λx̄.e1 else λx̄.e2

= if e then λx̄.e1 else λx̄.e2

• Suppose v = False.

The argument is similar.

For rule (4.4), concerning lambda lowering for a let-binding, we first need a technical

lemma. (The proof of the lemma is in appendix A.)

Lemma 2. If e→∗ v then (let z = e in eb)→∗ (let z = v in eb).

Informally, the argument for the correctness of rule (4.4) is that if e reduces to a value

v, then the let on the left-hand-side substitutes v for z in eb. The let on the right-hand-side

38

4.3. LOCAL CORRECTNESS

substitutes v for z in the abstraction, but it passes right through and becomes a substitu-

tion in eb since z is distinct from the formal parameters.

Theorem 2. If e→∗ v, z 6= xi, and xi /∈ FV(e) then (let z = e in λx̄.eb) = (λx̄.let z = e in eb).

Proof.

let z = e in λx̄.eb = let z = v in λx̄.eb

= (λx̄.eb)[z := v]

= λx̄.(eb[z := v])

= λx̄.let z = v in eb

= λx̄.let z = e in eb

For rule (4.5), concerning expression lifting, we first need a technical lemma. (The

proof of the lemma is in appendix A.)

Lemma 3. If e′ = v then (e[u := e′]) = (e[u := v]).

Informally, the argument for the correctness of rule (4.5) is that if e reduces to a value

v, then the body of the abstraction on the left-hand-side will replace u with v. The let on

the right-hand-side also ultimately replaces u with v since the substitution for z passes

right through the abstraction.

39

CHAPTER 4. A FORMAL MODEL

Theorem 3. If e′ →∗ v, z is fresh, and xi /∈ FV(e′) then (let z = e′ in λx̄.e[u := z]) =

(λx̄.e[u := e′]).

Proof.

let z = e′ in λx̄.e[u := z] = let z = v in λx̄.e[u := z]

= (λx̄.e[u := z])[z := v]

= λx̄.(e[u := z][z := v])

= λx̄.e[u := v]

= λx̄.e[u := e′]

With rule (4.6), the transformed expression reduces to a different value from the orig-

inal, and so here the notion of correctness is different.

4.4 Global Correctness of a Sum Language Example

Correctness for rule (4.6) means that applying the eval operator to the text that results from

applying the transformed interpreter results in the same value that the original interpreter

yields. Rule (4.6) requires non-local information and assumptions; it must be applied to

all branches of a conditional. Here we consider a concrete sum language example. For the

sake of brevity, we write the evaluator in pseudo-code based on ML and Haskell that can

readily be translated into the interpreter language. It is used to implement a simple sum

language evaluator for a language involving numbers, variables, and sums. The evaluator

is transformed, and the resulting compiler is proved correct.

40

4.4. GLOBAL CORRECTNESS OF A SUM LANGUAGE EXAMPLE

First it is necessary to define the sum language. We can imagine that N refers to a set

of numbers, V refers to a set of variables, and S is a constructor that builds syntactic sums.

Definition 5. Given sets N and V , L(N,V) is the smallest set satisfying the following.

• n ∈ L(N,V) if n ∈ N , and

• x ∈ L(N,V) if x ∈ V , and

• S(t1, t2) ∈ L(N,V) if t1, t2 ∈ L(N,V).

Now we can define the sum language evaluator. We can imagine that a is the operator

that applies an environment to a variable, and that p is the plus function.

E : L(N,V)×R→ N
E(n, ρ) = n
E(x, ρ) = a(ρ, x)
E(S(t1, t2), ρ) = p(E(t1, ρ), E(t2, ρ))

Note that the interpreter language in figure 4.1 does not include a form in which

a function is defined by a set of equations. Rather, this pseudo-code is shorthand for

the following term, where E is a variable, ⊥ is a constant, Y is the call-by-value fixed-

point/recursion operator, t ∈ N refers to a number predicate, t ∈ V refers to a variable

predicate, s? is the sum predicate, and s1 and s2 are the sum selectors.

let E = Y(λf. λ(t, ρ).
if t ∈ N then t
else if t ∈ V then a(ρ, t)
else if s?(t) then p(f(s1(t), ρ), f(s2(t), ρ))
else ⊥)

in E

41

CHAPTER 4. A FORMAL MODEL

4.4.1 Applying the Transformations

In the following sub-sections, we will now apply the technique to this evaluator and de-

rive a code generator.

Currying and Lambda Lowering

A compiler for sum expressions must be a function that takes a sum expression. The

dynamic parameter is the environment variable ρ because values for variables are not

known until run-time. This parameter is removed from the top-level parameter list and

put into the parameter list of the λ-expression. The recursive calls are modified to account

for this new protocol. Since, in this shorthand, currying involves introducing a λ and

moving a parameter from the left of the equal-sign to the right, lambda lowering occurs

as well.

E1(n) = λρ.n
E1(x) = λρ.a(ρ, x)
E1(S(t1, t2)) = λρ.p(E1(t1)(ρ), E1(t2)(ρ))

Expression Lifting

Since the recursive calls have been curried and do not depend on the dynamic variables,

it is possible to lift them out of the lowered lambdas. It is clear that the calls will halt since

the recursive calls are always on smaller structures.

E2(n) = λρ.n
E2(x) = λρ.a(ρ, x)
E2(S(t1, t2)) = let f1 = E2(t1), f2 = E2(t2) in λρ.p(f1(ρ), f2(ρ))

42

4.4. GLOBAL CORRECTNESS OF A SUM LANGUAGE EXAMPLE

Quoting

Now each λ-expression is quoted, and the let-bound variables are unquoted.

E3(n) = [[λρ.n]]
E3(x) = [[λρ.a(ρ, x)]]
E3(S(t1, t2)) = let , f1 = E3(t1), , f2 = E3(t2) in [[λρ.p((, f1)(ρ), (, f2)(ρ))]]

4.4.2 Correctness

Correctness of the compiler E3 means that the text that E3 generates, when evaluated and

supplied with the dynamic parameters, produces the same result as the evaluator E . This

result is established by showing the text E3 generates is the same as E .

Theorem 4. For any t ∈ L(N,V), E3(t) = [[λρ.E(t, ρ)]].

Proof. By structural induction on t.

• Suppose t = n. E3(n) = [[λρ.n]] = [[λρ.E(n, ρ)]]

• Suppose t = x. E3(x) = [[λρ.a(ρ, x)]] = [[λρ.E(x, ρ)]]

• Suppose t = S(t1, t2).

E3(S(t1, t2)) = let , f1 = E3(t1), , f2 = E3(t2) in [[λρ.p((, f1)(ρ), (, f2)(ρ))]]

= let , f1 = [[λρ.E(t1, ρ)]], , f2 = [[λρ.E(t2, ρ)]] in [[λρ.p((, f1)(ρ), (, f2)(ρ))]]

= [[λρ.p((λρ.E(t1, ρ))(ρ), (λρ.E(t2, ρ))(ρ))]]

= [[λρ.p(E(t1, ρ), E(t2, ρ))]]

= [[λρ.E(S(t1, t2), ρ)]]

43

CHAPTER 4. A FORMAL MODEL

Given theorem 4, the correctness result is merely a matter of applying the eval operator

to eliminate the quotation.

Corollary 1. For any t ∈ L(N,V), for any ρ ∈ R, eval(E3(t))(ρ) = E(t, ρ).

Proof.

eval(E3(t))(ρ) = eval([[λρ.E(t, ρ)]])(ρ)

= (λρ.E(t, ρ))(ρ)

= E(t, ρ)

4.5 Global Correctness of an Abstract Denotational Example

Although the evaluator in section 4.4 was described fairly concretely, two key functions

a and p were never formally defined. Therefore it is possible to view that evaluator as an

abstract interpreter. In this section, we take that sort of abstraction to the extreme so that

we can claim correctness for all denotational-style interpreters of this form.

Here too it is necessary to define the language the evaluator will operate on. Instead

of being dependent on two sets N and V , we generalize and allow for dependence on a

collection of sets X̄ . An element from one of the sets in the collection X̄ is a base case; the

operators Cj are constructors that involve sub-terms and possibly elements from sets in

the collection.

44

4.5. GLOBAL CORRECTNESS OF AN ABSTRACT DENOTATIONAL EXAMPLE

Definition 6. Given a finite collection of sets X̄ , L(X̄) is the smallest set satisfying the following.

• xi ∈ L(X̄) if xi ∈ Xi, and

• Cj(x̄j , t̄j) ∈ L(X̄) if xij ∈ Xi and tij ∈ L(X̄).

Now we can define the abstract evaluator. In addition to terms from the language

L(X̄), it also takes some number of static parameters and some number of dynamic pa-

rameters and returns an answer. If the first input is a base case, the result is a function

(gi) of a computation of the input with the static parameters (hsi) and a computation of the

input with the dynamic parameters (hdi). If the first input is a compound structure charac-

terized by a constructor, the result is a function (gj) of a computation of the non-recursive

part of the input with the static parameters (hcsj), a computation of the non-recursive part

of the input with the dynamic parameters (hcdj), and recursive calls on the recursive parts

of the input.

E : L(X̄)× S̄ × D̄ → A
E(xi, s̄, d̄) = gi(h

s
i(s̄, xi), h

d
i (d̄, xi))

E(Cj(x̄j , t̄j), s̄, d̄) = gj(h
cs
j (s̄, x̄j), h

cd
j (d̄, x̄j), E(t1j , s̄, d̄), · · · , E(t

|t̄j |
j , s̄, d̄))

Again, shorthand notation is used to express the following term, where it is assumed

that there is a predicate to test t ∈ Xi, cj? are predicates, cxj is a selector for the non-

recursive component of the jth compound structure, and cij are the selectors for the recur-

sive components of the jth compound structure.

45

CHAPTER 4. A FORMAL MODEL

let E = Y(λf. λ(t, s̄, d̄).
if · · ·
else if t ∈ Xi then gi(h

s
i(s̄, t), h

d
i (d̄, t))

...
else if cj?(t) then gj(h

cs
j (s̄, cxj(t)), h

cd
j (d̄, cxj(t)), f(c1

j (t), s̄, d̄), · · ·)
...
else ⊥)

in E

4.5.1 Applying the Transformations

In the following sub-sections, we will now apply the technique to this abstract evaluator

and derive an abstract code generator.

Currying and Lambda Lowering

Based on the notation used, it is clear which variables to curry. The dynamic parameters

are removed from the top-level parameter list and put into the parameter list of the λ-

expression. The recursive calls are modified to account for this new protocol. Since, in

this shorthand, currying involves introducing a λ and moving a parameter from the left

of the equal-sign to the right, lambda lowering occurs as well. While it doesn’t occur in

this formulation, were there an if or a let on the right-hand side, there would be the need

for additional lambda lowering.

E1(xi, s̄) = λd̄.gi(h
s
i(s̄, xi), h

d
i (d̄, xi))

E1(Cj(x̄j , t̄j), s̄) = λd̄.gj(h
cs
j (s̄, x̄j), h

cd
j (d̄, x̄j), E1(t1j , s̄)(d̄), · · · , E1(t

|t̄j |
j , s̄)(d̄))

46

4.5. GLOBAL CORRECTNESS OF AN ABSTRACT DENOTATIONAL EXAMPLE

Expression Lifting

Since the recursive calls have been curried and do not depend on the dynamic variables,

it is possible to lift them out of the lowered lambdas. It is clear that the calls will halt since

the recursive calls are always on smaller structures. There are also non-recursive calls

involving the static parameters that can be lifted out. We explicitly assume that those

functions are total.

E2(xi, s̄) = let y = hsi(s̄, xi) in λd̄.gi(y, hdi (d̄, xi))
E2(Cj(x̄j , t̄j), s̄) =
let y = hcsj (s̄, x̄j),

u1 = E2(t1j , s̄),
...
u|t̄j | = E2(t

|t̄j |
j , s̄)

in λd̄.gj(y, h
cd
j (d̄, x̄j), u1(d̄), · · · , u|t̄j |(d̄))

Quoting

Now each λ-expression is quoted, and the let-bound variables are unquoted.

E3(xi, s̄) = let , y = hsi(s̄, xi) in [[λd̄.gi(, y, h
d
i (d̄, xi))]]

E3(Cj(x̄j , t̄j), s̄) =
let , y = hcsj (s̄, x̄j),

, u1 = E3(t1j , s̄),
...
, u|t̄j | = E3(t

|t̄j |
j , s̄)

in [[λd̄.gj(, y, h
cd
j (d̄, x̄j), (, u1)(d̄), · · · , (, u|t̄j |)(d̄))]]

47

CHAPTER 4. A FORMAL MODEL

4.5.2 Correctness

Again, correctness of the compiler E3 means that the text that E3 generates, when evalu-

ated and supplied with the dynamic parameters, produces the same result as the evalua-

tor E . This result is established by showing the text E3 generates is the same as E . For this

result, a little more must be assumed.

Definition 7. Given a term h, h is total if for any terms ē, h(ē) = v.

Definition 8. Given a term h, h is quote free if for any terms ē, h(ē) = v implies v 6= [[e′]].

As mentioned in section 4.5.1, because functions other than recursive calls are lifted

out, there must be an explicit assumption that those functions are total. Further, it has been

an implicit assumption that the evaluator makes no use of quoted terms. That assumption

becomes explicit here.

Theorem 5. For any t ∈ L(X̄), for any s̄ ∈ S̄, if hsi and hcsj are total and quote free, then

E3(t, s̄) = [[λd̄.E(t, s̄, d̄)]].

Proof. By structural induction on t.

• Suppose t = xi. Since hsi is total and quote free, hsi(s̄, xi) = v and v 6= [[e]].

E3(xi, s̄) = let , y = hsi(s̄, xi) in [[λd̄.gi(, y, h
d
i (d̄, xi))]]

= let , y = v in [[λd̄.gi(, y, h
d
i (d̄, xi))]]

= [[λd̄.gi(v, h
d
i (d̄, xi))]]

= [[λd̄.gi(h
s
i(s̄, xi), h

d
i (d̄, xi))]]

= [[λd̄.E(xi, s̄, d̄)]]

48

4.5. GLOBAL CORRECTNESS OF AN ABSTRACT DENOTATIONAL EXAMPLE

• Suppose t = Cj(x̄j , t̄j). Since hcsj is total and quote free, hcsj (s̄, x̄j) = v and v 6= [[e]].

E3(Cj(x̄j , t̄j), s̄) = let , y = hcsj (s̄, x̄j),

, u1 = E3(t1j , s̄),
...
, u|t̄j | = E3(t

|t̄j |
j , s̄)

in [[λd̄.gj(, y, h
cd
j (d̄, x̄j), (, u1)(d̄), · · · , (, u|t̄j |)(d̄))]]

= let , y = v,
, u1 = [[λd̄.E(t1j , s̄, d̄)]],
...
, u|t̄j | = [[λd̄.E(t

|t̄j |
j , s̄, d̄)]]

in [[λd̄.gj(, y, h
cd
j (d̄, x̄j), (, u1)(d̄), · · · , (, u|t̄j |)(d̄))]]

= [[λd̄.gj(v, h
cd
j (d̄, x̄j), (λd̄.E(t1j , s̄, d̄))(d̄), · · · , (λd̄.E(t

|t̄j |
j , s̄, d̄))(d̄))]]

= [[λd̄.gj(v, h
cd
j (d̄, x̄j), E(t1j , s̄, d̄), · · · , E(t

|t̄j |
j , s̄, d̄))]]

= [[λd̄.gj(h
cs
j (s̄, x̄j), h

cd
j (d̄, x̄j), E(t1j , s̄, d̄), · · · , E(t

|t̄j |
j , s̄, d̄))]]

= [[λd̄.E(Cj(x̄j , t̄j), s̄, d̄)]]

Again, the correctness result follows immediately from theorem 5, and so the assump-

tions of the theorem must be duplicated.

Corollary 2. For any t ∈ L(X̄), for any s̄ ∈ S̄, for any d̄ ∈ D̄, if hsi and hcsj are total and quote

free, then eval(E3(t, s̄))(d̄) = E(t, s̄, d̄).

Thus the transformation technique works for denotational-style interpreters. This time

we omit the proof since the argument is essentially the same as the argument for corol-

lary 1.

49

Chapter 5
Beyond Denotational Interpreters

éJ

	
¯

�
IªÔg

.
ð H. A

�
JºË@ @

	
Yë

�
HP Qm

	
¯

@ 	PQ�
�m× I. �AmÌ'@ éJ
Ë @ h. A

�
Jm�'

 AÓ ©J
Ô
g
.

É
	
m× PA�

�
J

	
k@ ð ÉÒ�Ó ¨AJ.

�
�@ 	á«

I wrote this book and compiled in it

everything that is necessary for the

computer, avoiding both boring

verbosity and misleading brevity.

Ghiyath al-Din Jamshid al-Kashi

As we have seen, the transformation technique can be applied to an interpreter written

in a denotational style. But if one attempts to apply the transformation technique directly

to a non-denotational interpreter, it is quite likely that the transformation technique will

fail. Nevertheless, often such an interpreter can be modified so that minor changes put it

back in the realm of the denotational.

This chapter focuses on specific ways in which interpreters and interpreter related al-

gorithms might not be denotational and gives examples of such algorithms and of an ap-

propriate modification. The first section discusses the issue of the static and the dynamic

50

5.1. DISENTANGLING THE STATIC AND THE DYNAMIC

being entangled. The second and third sections discuss issues that can arise from an oper-

ational style interpreter. The last section summarizes the modifications. Throughout this

chapter pseudo-code is used that resembles ML and Haskell.

5.1 Disentangling the Static and the Dynamic

When writing an interpreter it can happen that some parameter that should be static is

dependent on a dynamic parameter. In particular, pattern matching and unification al-

gorithms for very high level languages often suffer from this problem. If the static and

dynamic are entangled then the transformation technique cannot be applied because the

lowering and lifting rules will be blocked. Often such an entanglement is the result of the

algorithm having to immediately check the value of a dynamic parameter that is passed

back into the function because its type is the Maybe type (or something similar). The

modification is then to express the algorithm using continuations instead.

5.1.1 Unification Example

We consider the concrete example of unification. In order to discuss unification algo-

rithms, it is first necessary to define what the domain of the algorithm is. It is also worth-

while to formally define the meaning of unification. With that background, unification

algorithms and their interaction with the transformation technique can be discussed.

The set of terms about which we ask the question of unification is defined as follows.

Term ::= n
::= s
::= X
::= []
::= Cons(t1, t2)

where n is a number, s ∈ Sym is a symbol, X ∈ Var is a variable, and tk is a Term.

Definition 9. A substitution θ is a function θ : Var→ Term.

51

CHAPTER 5. BEYOND DENOTATIONAL INTERPRETERS

Definition 10. Given a substitution θ, θ∗ is the function θ∗ : Term → Term that extends the

domain of θ to all terms.

θ∗(n) = n
θ∗(s) = s
θ∗(X) = θ(X)
θ∗([]) = []
θ∗(Cons(t1, t2)) = Cons(θ∗(t1), θ∗(t2))

Definition 11. Given terms t1, t2 ∈ Term, t1 and t2 unify if there exists a substitution θ such

that θ∗(t1) = θ∗(t2). Such a substitution is called a unifier.

To verify that two terms unify, it is simplest to rely on the definition above. But a

somewhat more efficient verifier combines equality checking with the use of the substitu-

tion leading to an algorithm that performs structural equality on each kind of term while

applying the unifier to variables. The substitution, when a unifier, can be viewed as a

certificate that proves the terms unify. A starting point for a unification algorithm is this

verification procedure; however, instead of taking a certificate as a parameter, the unifica-

tion algorithm must take a substitution and return a certificate or an indication of failure.

This parameter is initialized to be the identity substitution. A natural choice for the pa-

rameter type and the return type is Maybe(U), where U is the type of the representation

of the substitution1. These ideas lead to the following unification algorithm.

1The substitution could be represented by a function type, but since the infinite portion is the identity
function, it could also be represented as a finite data structure such as a set or list.

52

5.1. DISENTANGLING THE STATIC AND THE DYNAMIC

U : Term× Term×Maybe(U)→ Maybe(U)
U(_, _,Nothing) = Nothing
U(n1, n2, θ) = if n1 = n2 then θ else Nothing
U(s1, s2, θ) = if s1 = s2 then θ else Nothing
U(X, t2, θ) = UVar(t2, X, θ)
U(t1, X, θ) = UVar(t1, X, θ)
U([], [], θ) = θ
U(Cons(t1, t2),Cons(t′1, t

′
2), θ) = U(t2, t

′
2,U(t1, t

′
1, θ))

U(_, _, θ) = Nothing

Note that the order of the clauses above is significant. The function UVar is a specialized

unification function; its second argument must be a variable. We omit the details of UVar.

5.1.2 Applying the Technique: A First Attempt

We now apply the transformation technique to the above unification algorithm. It is nec-

essary to decide what is static and what is dynamic. The unifier must be dynamic, in

general. It seems reasonable to allow both terms to be static; although we may reconsider

this choice in the future.

When written in the form above, currying and some lambda lowering happen at once.

When attempting to apply those transformations, we see that lambda lowering cannot

be performed. We are stuck. To emphasize the point, consider the algorithm written in

Scheme notation.

(define (unify t1 t2 theta)
(if (nothing? theta)

nothing
(cond ((and (number? t1) (number? t2))

(if (= t1 t2) theta *nothing*))
...

)))

Currying is not a problem:

53

CHAPTER 5. BEYOND DENOTATIONAL INTERPRETERS

(define (unify t1 t2)
(lambda (theta)

(if (nothing? theta)

nothing
(cond ((and (number? t1) (number? t2))

(if (= t1 t2) theta *nothing*))
...

))))

Notice that lambda lowering is not possible because the free variables of the test ex-

pression include the formal parameter theta. In this sense the static and the dynamic are

entangled.

We suggest that the Maybe type2 may be harmful for staged computation. Another

approach involves using continuations instead. Continuation passing style has been used

successfully in partial evaluation: a static term stuck in a dynamic context is replaced with

a static calculation coupled with a dynamic continuation parameter. Although the issue

of context here is in some ways similar since the inner conditional is in a dynamic context,

making the context a parameter is not viable. Further, such a context exists only to check

if it is necessary to fail right away. Continuations allow for a more natural3 and efficient

way to express such a notion.

5.1.3 Revising the Algorithm

To solve the problem from the previous section we introduce two new dynamic parame-

ters: a success continuation and a failure continuation. Now the θ parameter will repre-

sent only one thing: the unifier. The new unification algorithm now follows.

2Both Maybe and continuations are examples of monads. That provided a hint for the switch.
3An alternative would be to move the test on θ just before it is needed and into the case for cons.

54

5.2. INTRODUCING EXPLICIT FIXED-POINTS

U : Term× Term× U × (U → Maybe(U))× (()→ Maybe(U))→ Maybe(U)
U(n1, n2, θ, κs, κf) = if n1 = n2 then κs(θ) else κf ()
U(s1, s2, θ, κs, κf) = if s1 = s2 then κs(θ) else κf ()
U(X, t2, θ, κs, κf) = UVar(t2, X, θ, κs, κf)
U(t1, X, θ, κs, κf) = UVar(t1, X, θ, κs, κf)
U([], [], θ, κs, κf) = κs(θ)
U(Cons(t1, t2),Cons(t′1, t

′
2), θ, κs, κf) = U(t1, t

′
1, θ, (λθ

′.U(t2, t
′
2, θ
′, κs, κf)), κf)

U(_, _, θ, κs, κf) = κf ()

We observe that the transformation technique can be applied to this version success-

fully with the caveat that some dynamic unification may be necessary because the dy-

namic unifier parameter could contain terms to unify.

5.2 Introducing Explicit Fixed-Points

Interpreters may be based on an operational semantics rather than a denotational seman-

tics. The transformation technique may then fail to be applicable. In particular, iteration

constructs are often defined in terms of themselves in operational-style interpreters. The

transformation technique will lead to infinite loops on this sort of expansive recursion.

Following Gunter [45], we solve this problem in the interpreter by explicitly identifying

the fixed-point and eliminating the expansive recursion.

5.2.1 Example: While Loops

For example, consider the following interpreter snippet for a while-loop construct. If the

test expression b evaluates to False then the command c is not executed. If the test expres-

sion b evaluates to True then the command c is executed at least once. The interpreter (I)

is invoked on c and s, where s is the interpreter state, and it returns the new state. Then

iteration is achieved by invoking the interpreter on the entire while command.

55

CHAPTER 5. BEYOND DENOTATIONAL INTERPRETERS

I(While b c, s) =
if E(b, s) = False then s else I(While b c, I(c, s))

After currying and lambda lowering that snippet becomes the following.

I(While b c) =
λs. if E(b)(s) = False then s else I(While b c)(I(c)(s))

But attempting to lift I(While b c) will lead to non-termination, and so the expression

lifting rule should not be used.

I(While b c) =
let f1 = E(b)
f2 = I(While b c)← causes non-termination
f3 = I(c)
in λs. if f1(s) = False then s else f2(f3(s))

However, if we let g = I(While b c) it becomes apparent that this function can be com-

puted; g is the fixed-point function.

g(s) = if E(b)(s) = False then s else g(I(c)(s))

5.2.2 Example: Regular Expressions

Another example involves revisiting the regular expression code from chapter 3 so that

it includes Kleene-star in a different way. Suppose we had not anticipated deriving a

compiler and wrote the Kleene-star case in an operational style.

56

5.2. INTRODUCING EXPLICIT FIXED-POINTS

...
((star? regexp)
(or (k cl)

(match (exp<-star regexp)
cl
(lambda (cl3)

(if (eq? cl cl3) #f (match regexp cl3 k))))))

The transformation technique does not succeed on this augmented interpreter. If we

apply currying, lambda lowering, and start to apply expression lifting, it becomes ap-

parent that one expression cannot be lifted because it will not terminate outside the λ-

expression.

...
((star? regexp)
(let ((f1 (match (exp<-star regexp))))

(lambda (cl k)
(or (k cl)

(f1
cl
(lambda (cl3) ; if lifted, (match regexp) will loop!

(if (eq? cl cl3) #f ((match regexp) cl3 k))))))))

It is clear that the expression (match regexp) will loop if lifted. Again, we solve

the problem by introducing the explicit fixed-point function. Let f2 = (match regexp),

then (match regexp) = λ(c`, k). · · · (match regexp) · · · becomes f2 = λ(c`, k). · · · f2 · · · .

We then get the following code.

57

CHAPTER 5. BEYOND DENOTATIONAL INTERPRETERS

...
((star? regexp)
(let ((f1 (match (exp<-star regexp))))

(letrec ((f2 (lambda (cl k)
(or (k cl)

(f1
cl
(lambda (cl3)
(if (eq? cl cl3) #f (f2 cl3 k))))))))

f2)))

The body of the let is not what the quoting rule needs, and so we eta-expand.

...
((star? regexp)
(let ((f1 (match (exp<-star regexp))))

(lambda (cl k)
((letrec ((f2 (lambda (cl k)

(or (k cl)
(f1
cl
(lambda (cl3)

(if (eq? cl cl3) #f (f2 cl3 k))))))))
f2) cl k))))

Now the quoting rule can be applied. When performed, we get a code generator for

regular expressions that includes Kleene-star forms.

5.3 Replacing Text with Denotation

Another way that operationally based definitions can lead to problems for the transforma-

tion technique is when an operational-style interpreter manipulates program text rather

than some denoted value. When this happens in an interpreter that supports first-class

functions, often the portion of the interpreter concerning abstractions cannot be turned

58

5.3. REPLACING TEXT WITH DENOTATION

into a code-generator since there is no recursive call on the body of the abstraction. There

may be other kinds of terms for which this issue arises as well. When this happens in an

interpreter in which functions are not expressed values, a portion of the interpreter when

turned into a code-generator will loop on procedure definitions that make use of recur-

sion. The solution in these cases is to modify the interpreter so that it returns functions

containing recursive calls to the interpreter on the text rather than the text itself. We will

first consider the case of interpreters that manipulate text, and then the case of procedure

environments that contain text.

5.3.1 Interpreters Manipulating Terms

For both big-step and small-step operational semantics, it is customary for an abstraction

to “evaluate to itself.” Thus for a big-step semantics we see rules such as λx.M ⇓ λx.M .

And for small step semantics, we see no rule at all for abstractions. Operational-style

interpreters are just as unsuitable for the transformation technique; abstractions evaluate

to closures that contain program text. The transformation technique cannot be applied to

an interpreter written in such a style. The modification is straightforward: introduce a

call to the interpreter on the body of the abstraction that is suitably shielded. We illustrate

this modification for both big-step and small-step oriented interpreters.

Big-Step Interpreters

For example, consider the following big-step oriented interpreter snippet for an abstrac-

tion construct. An abstraction evaluates to a closure: E(Fun x e, env) = Closure(x, e, env),

where E is the evaluator, x is a variable, e is an expression, and env is the environment.

The transformations do not introduce calls, and so there cannot be a compiler call on the

sub-expression e since there is not one in the interpreter. Nevertheless, such an interpreter

59

CHAPTER 5. BEYOND DENOTATIONAL INTERPRETERS

can be modified to be denotational. The call to the evaluator can be moved4 inside the clo-

sure hidden inside an abstraction: E(Fun x e, env) = Closure(x, λ(env′).E(e, env′), env).

For another big-step example, we choose Abelson and Sussman’s interpreter from

their classic text [1]. The code is somewhat lengthy so we only include the essentials

concerning abstractions and applications.

Their evaluator has several cases. Abelson and Sussman prefer to reserve the word

“closure” for the mathematical notion, and name the function that makes a closure make-

procedure. In the case of an application, the value of the operator is applied to the

values of the operands.

(define (sicp-eval exp env)
(cond ...

((lambda? exp)
(make-procedure (lambda-parameters exp)

(lambda-body exp)
env))

...
((application? exp)
(sicp-apply (sicp-eval (operator exp) env)

(list-of-values (operands exp) env)))
...))

(define (make-procedure parameters body env)
(list ’procedure parameters body env))

The application function must distinguish user defined procedures from primitive
procedures. A user defined procedure is applied by evaluating its body in the extended
environment.

4Of course, the meaning of the application must be correspondingly modified as well. Our solution is not
unique, but we feel that it is the simplest.

60

5.3. REPLACING TEXT WITH DENOTATION

(define (sicp-apply procedure arguments)
(cond ...

((compound-procedure? procedure)
(eval-sequence
(procedure-body procedure)
(extend-environment

(procedure-parameters procedure)
arguments
(procedure-environment procedure))))

...))

Observe that an abstraction, or lambda expression, evaluates to a closure that contains

the text of the abstraction. When applying a closure to a list of values, it is this text that

is evaluated in the extended environment. The modification is then to move the recursive

evaluation call to the construction of the closure storing a (meta-level) function instead.

Applying the closure is then a matter of invoking that (meta-level) function. Note that the

new version of make-procedure builds a structure containing a function instead of text.

(define (make-procedure parameters body env)
(list ’procedure

parameters
(lambda (env2) (eval-sequence body env2))
env))

The new application function calls the function in the closure rather than the evaluator.

(define (sicp-apply procedure arguments)
(cond ...

((compound-procedure? procedure)
((procedure-body procedure)
(extend-environment
(procedure-parameters procedure)
arguments
(procedure-environment procedure))))

...))

61

CHAPTER 5. BEYOND DENOTATIONAL INTERPRETERS

With this change, the transformation technique can be used to derive a compiler. The

code portions following the transformation are below.

(define (sicp-eval exp env)
(cond ...

((lambda? exp)
(let ((f (make-procedure (lambda-parameters exp)

(lambda-body exp))))
‘(lambda (env) (,f env))))

...
((application? exp)
(let ((f1 (sicp-eval (operator exp)))

(f2 (list-of-values (operands exp))))
‘(lambda (env) (sicp-apply (,f1 env) (,f2 env)))))

...))

(define (make-procedure parameters body)
(let ((f (eval-sequence body)))

‘(lambda (env)
(list ’procedure

,(reify parameters)
(lambda (env2) (,f env2))
env))))

A Small-Step Interpreter

For the small-step oriented interpreter, we choose Felleisen’s CEK-machine [38,39]. It is a

small-step operational semantics for the call-by-value λ-calculus. (See figure 5.1.) It was

the first virtual machine derived from a term calculus.

These rules state that evaluating an application first involves evaluating the compo-

nents of the application. When working on one component, the other must be saved as

part of the continuation. When both (all the) components have been reduced to values the

closure, or constant operator, is applied to its argument. There is also a rule for looking

up variables.

62

5.3. REPLACING TEXT WITH DENOTATION

E ∈ Env ::= [] | (x, (V,E)) :: E
K ∈ K ::= k∅ | fun(V,E,K) | arg(M,E,K)

lookup(x, (y, (V,E)) :: E′) =

{
(V,E) if x = y
lookup(x,E′) otherwise

C ∈ C ::= 〈M,E,K〉

〈(M N), E,K〉 7−→ 〈M,E, arg(N,E,K)〉
〈V,E, arg(N,E′,K)〉 7−→ 〈N,E′, fun(V,E,K)〉 if V /∈ Variables
〈c, E, fun(cop , E

′,K)〉 7−→ 〈δ(cop , c), [],K〉
〈V,E, fun((λx.M), E′,K)〉 7−→ 〈M, (x, (V,E)) :: E′,K〉 if V /∈ Variables
〈x,E,K〉 7−→ 〈lookup(x,E)1, lookup(x,E)2,K〉

Figure 5.1: CEK-machine

This interpreter can be re-expressed to emphasize structural recursion as follows.

ECEK(c, e, κ) = κ(c, e)
ECEK(x, e, κ) = κ(v, e′) where (v, e′) = lookup(x, e)
ECEK((λx.M), e, κ) = κ((λx.M), e)
ECEK((M N), e, κ) = ECEK(M, e,mkArg(N, e, κ))

mkArg(M, e, κ) = λ(v, e′).ECEK(M, e,mkFun(v, e′, κ))

mkFun(v, e, κ) =

{
λ(v′, e′).κ(δ(cop , c), e) if v = cop and v′ = c
λ(v′, e′).ECEK(M, (x, (v′, e′)) :: e, κ) if v = (λx.M)

In the second version, the continuations are functions. For values, the continuation is

invoked on the value.

Note that in either way of expressing the interpreter, the meaning of an abstraction is

characterized by its environment and its textual body. Also when evaluating an applica-

tion, the operand is saved as text. As in the previous example, we introduce early calls

to the interpreter that are shielded with abstractions. The notation f is used to denote

meta-level functions.

63

CHAPTER 5. BEYOND DENOTATIONAL INTERPRETERS

ECEK((λx.M), e, κ) = κ(op(x, λ(e′, κ′).ECEK(M, e′, κ′)), e)
ECEK((M N), e, κ) = ECEK(M, e,mkArg(λ(e′, κ′).ECEK(N, e′, κ′), e, κ))

mkArg(f, e, κ) = λ(v, e′).f(e,mkFun(v, e′, κ))

mkFun(v, e, κ) =

{
λ(v′, e′).κ(δ(cop , c), e) if v = cop and v′ = c
λ(v′, e′).f((x, (v′, e′)) :: e, κ) if v = op(x, f)

Now the transformation technique can be used to derive a compiler.

ECEK(c) = [[λ(e, κ).κ(c, e)]]
ECEK(x) = [[λ(e, κ).κ(v, e′) where (v, e′) = lookup(x, e)]]
ECEK((λx.M)) = let , f = ECEK(M) in [[λ(e, κ).κ(op(x, λ(e′, κ′).(, f)(e′, κ′)), e)]]
ECEK((M N)) = let , f1 = ECEK(M), , f2 = ECEK(N)

in [[λ(e, κ).(, f1)(e,mkArg(λ(e′, κ′).(, f2)(e′, κ′), e, κ))]]

5.3.2 Environments Containing Terms

Another place that code text can linger is in an environment. With a first-order language,

function definitions are not treated like other expressions. Consider the following first-

order language.

Π ::= Let ∆ e
∆ ::= ε

::= y(x) = e,∆
e ::= n

::= x
::= e1 + e2

::= e1 − e2

::= e1 × e2

::= If0 e1 e2 e3

::= y(e)
where n is a number, x is a variable, and y is a function variable.

An instance of Π, a program, is a collection of function definitions, together with a

main expression that is evaluated. Expressions are either numbers, variables, arithmetic

64

5.3. REPLACING TEXT WITH DENOTATION

expressions, conditionals, or function calls. The variable name y is used to distinguish

function names from variables denoting expressed values. The notation ∆(y) is used to

look up a function definition.

Now consider the following interpreter for this language.

P(Let ∆ e) = E(e,∆, ρ0)

E(n,∆, ρ) = n
E(x,∆, ρ) = ρ(x)
E(e1 + e2,∆, ρ) = E(e1,∆, ρ) + E(e2,∆, ρ)
E(e1 − e2,∆, ρ) = E(e1,∆, ρ)− E(e2,∆, ρ)
E(e1 × e2,∆, ρ) = E(e1,∆, ρ)× E(e2,∆, ρ)
E(If0 e1 e2 e3,∆, ρ) = if E(e1,∆, ρ) = 0 then E(e2,∆, ρ) else E(e3,∆, ρ)
E(y(e),∆, ρ) = E(e′,∆, ρ0[x 7→ E(e,∆, ρ)]) where (x, e′) = ∆(y)

This interpreter evaluates expressions in the context of the function definitions (∆)

and the environment (ρ). It may at first appear to be denotational, but it is not. There is no

denotation for the function definitions (∆). In particular, if we curry E and let ∆ = y(x) =

If0 x 1 (x× y(x− 1)), ε then when we try to determine the meaning of y(x− 1) we find we

cannot. Either ∆ is dynamic and we cannot statically compute e′, or ∆ is static and there

is an infinite loop.

E(y(x− 1),∆) = E(If0 x 1 (x× y(x− 1)),∆)

= λρ.if E(x,∆)(ρ) = 0 then E(1,∆)(ρ) else E(x× y(x− 1),∆)(ρ)

Further, when expanding the last interpreter application we get the following.

E(x× y(x− 1),∆) = λρ.E(x,∆)(ρ)× E(y(x− 1),∆)(ρ)

Thus expanding E(y(x− 1),∆) requires the expansion of E(y(x− 1),∆).

65

CHAPTER 5. BEYOND DENOTATIONAL INTERPRETERS

To modify this interpreter, it is necessary to determine the meaning of the function

definitions (∆) as well. The notation g is used to denote a meta-level function.

P(Let ∆ e) = E(e,D(∆), ρ0)

D(∆) = {(y, (λ(v, δ).E(e, δ, ρ0[x 7→ v]))) | y is a function variable, (x, e) = ∆(y)}

E(n, δ, ρ) = n
E(x, δ, ρ) = ρ(x)
E(e1 + e2, δ, ρ) = E(e1, δ, ρ) + E(e2, δ, ρ)
E(e1 − e2, δ, ρ) = E(e1, δ, ρ)− E(e2, δ, ρ)
E(e1 × e2, δ, ρ) = E(e1, δ, ρ)× E(e2, δ, ρ)
E(If0 e1 e2 e3, δ, ρ) = if E(e1, δ, ρ) = 0 then E(e2, δ, ρ) else E(e3, δ, ρ)
E(y(e), δ, ρ) = g(E(e, δ, ρ), δ) where g = δ(y)

Now the transformation technique can be used to derive a compiler.

P(Let ∆ e) = let f = E(e), δ = D(∆) in [[λ().(, f)((, δ), ρ0)]]

D(∆) = {(y, let f = E(e) in [[λ(v, δ).(, f)(δ, ρ0[x 7→ v])]]) | y is a function variable, (x, e) = ∆(y)}

E(n) = [[λ(δ, ρ).n]]
E(x) = [[λ(δ, ρ).ρ(x)]]
E(e1 + e2) = let , f1 = E(e1), , f2 = E(e2) in [[λ(δ, ρ).(, f1)(δ, ρ) + (, f2)(δ, ρ)]]
E(e1 − e2) = let , f1 = E(e1), , f2 = E(e2) in [[λ(δ, ρ).(, f1)(δ, ρ)− (, f2)(δ, ρ)]]
E(e1 × e2) = let , f1 = E(e1), , f2 = E(e2) in [[λ(δ, ρ).(, f1)(δ, ρ)× (, f2)(δ, ρ)]]
E(If0 e1 e2 e3) =
let , f1 = E(e1)
, f2 = E(e2)
, f3 = E(e3)

in [[λ(δ, ρ).if (, f1)(δ, ρ) = 0 then (, f2)(δ, ρ) else (, f3)(δ, ρ)]]
E(y(e)) = let , f = E(e) in [[λ(δ, ρ).g((, f)(δ, ρ), δ) where g = δ(y)]]

Above, we see that the function definitions environment is dynamic, but that the func-

tions are still compiled because of D. Hence recursive calls pose no problems.

66

5.4. SUMMARY

5.4 Summary

The arguments in chapter 4 showed that the rules deal successfully with interpreters writ-

ten in a denotational style. The current chapter has shown that certain other coding styles

can be modified so that the rules will still succeed: Section 5.1 showed that if static and

dynamic parameters seem to be entangled, programming with continuations might be the

appropriate modification, especially if the entanglement results from using successful re-

sults wrapped into Maybe to accommodate an algorithm failure. Section 5.2 showed that

if an interpreter is written in an operational-style and recursively calls itself on its input

term, the interpreter can be modified so that the algorithm is expressed using a fixed-point

and in that way the interpreter is made denotational. Section 5.3 showed that if an inter-

preter is written in an operational-style and manipulates text where a denotational-style

interpreter would manipulate a denoted value, the interpreter can be modified so that the

text is eliminated by introducing calls to the interpreter in those places. Altogether, the

rules provide code generation for a broader class of algorithms and coding styles. How-

ever, there is no proof that they will always be applicable, nor is it clear whether or not

there are other cases that are missing.

67

Chapter 6
A Larger Example: PROLOG

Was beweisbar ist, soll in der

Wissenschaft nicht ohne Beweis

geglaubt werden.

In science, what can be proved

should not be believed without a

proof.

Richard Dedekind

In his now classic text Paradigms of Artificial Intelligence Programming [76], Norvig dis-

cusses two PROLOG [32] implementations. The first is a naïve interpreter and the second

is a fairly sophisticated compiler that targets Common LISP [94]. Although Norvig dis-

cusses both an interpreter and a compiler, he makes no explicit connection between them.

In contrast, we use the ideas from chapters 4 and 5 to derive a compiler. We start with a

naïve PROLOG interpreter written in a natural style similar to Norvig’s interpreter. This

interpreter is transformed into a denotational-style interpreter with efficient unification.

Then the rules are applied so as to derive a compiler. Finally, we compare the performance

68

6.1. A NAÏVE INTERPRETER

of our compiler to Norvig’s compiler.

6.1 A Naïve Interpreter

Our naïve PROLOG interpreter is not identical to Norvig’s. While he represents a success

continuation as a single list of terms to prove, we represent both success and failure con-

tinuations explicitly as functions. Although the naïve interpreter is written in a functional

style, there is no notion of a denotation of the program/database (∆). In this chapter as

well, the notation for the pseudo-code borrows from ML and Haskell.

First we introduce the types used in the interpreter pseudo-code below. The class of

predicates Pred and the class of terms Term are at the core of a description of PROLOG syn-

tax. A predicate looks like a Boolean-valued function call, and a term is either a number,

a variable, or a predicate. Backus-Naur form is used to formally define these classes:

t ∈ Term ::= n
::= X
::= P

P ∈ Pred ::= i(t1, . . . , tn)
where n is a number, i is an identifier, Var is the set of all variables, X ∈ Var is a

variable, and tk is a Term.

A substitution is used to map variables to terms. Sub denotes the class of substitutions,

which is shorthand for Var → Term. A clause is a predicate that is the consequence of

some conjunction of predicates. Clause denotes the class of clauses, which is shorthand

for Pred× [Pred]. Now a PROLOG program/database is understood as a sequence, or list,

of clauses.

Pseudo-code for a naïve PROLOG interpreter consists of four functions charged with

proving results and support functions for unification and for copying terms. The last four

arguments for the proving functions are the unification substitution (θ), the database (∆),

69

CHAPTER 6. A LARGER EXAMPLE: PROLOG

the success continuation (κs), and the failure continuation (κf). A success continuation

takes a failure continuation so that additional solutions can be found. The types of these

variables now follow1.

θ : Sub

∆ : [Clause]

κs : Sub× (()→ Answer)→ Answer

κf : ()→ Answer

The interactive entry point to the proving functions is the prove-query function (PQ)

which attempts to prove all the predicates of a query using the initial substitution and the

initial continuations. It takes a list of predicates and a database.

Π : [Pred]

PQ(Π,∆) = PA(Π, θ0,∆, κs0, κf0)

Prove-query delegates to a function prove-all (PA) that attempts to prove all the pred-

icates in the list Π: if the list is empty it succeeds, otherwise prove (P) is called on the first

term with the success continuation extended to prove the rest.

PA([], θ,∆, κs, κf) = κs(θ, κf)
PA(P :: Π, θ,∆, κs, κf) =
P(P, θ,∆, (λ(θ′, κ′f).PA(Π, θ′,∆, κs, κ

′
f)), κf)

The function prove (P) attempts to prove a predicate by delegating to prove-goal (PG).

P(P, θ,∆, κs, κf) = PG(∆, P, θ,∆, κs, κf)

Finally, the function prove-goal (PG) attempts to prove a predicate by proving one

clause (η) from its database of clauses. If the list of clauses is empty it fails. Otherwise

it attempts to unify the predicate with the predicate in the first clause. If that succeeds it

1The specific type of Answer is left undefined. It is possible for the initial continuations to convey the
results using a variety of types.

70

6.2. EFFICIENCY AND DENOTATION

then attempts to prove all the predicates in the clause predicate list by invoking prove-all

(PA); if that fails it tries another clause.

PG([], P, θ,∆, κs, κf) = κf ()
PG(η :: ∆′, P, θ,∆, κs, κf) =
let (P ′,Π) = copy(η)
κ′f = λ().PG(∆′, P, θ,∆, κs, κf)

in U(P ′, P, θ, (λ(θ′).PA(Π, θ′,∆, κs, κ
′
f)), κ′f)

The function prove-goal (PG) makes use of two functions: copy and U . The function

copy copies terms and renames any variables in the copied clause. It is this mechanism that

ensures that local variables do not affect other local variables of the same name. Gener-

ating fresh variable names requires state, which could be maintained using an additional

parameter; the details are not shown here.

The function U determines if two terms unify. If so, the unify success continuation,

which takes only a substitution parameter, is called. If not, the unify failure continuation

is called. The details of the unification implementation are also not shown.

Missing features include primitive predicates, cut, and special cases for tail-recursion.

These pose no particular challenge and are omitted for the sake of brevity. A hook for

primitive predicates could be added to prove-all (PA). Supporting cut requires a third con-

tinuation parameter initialized by prove (P). Supporting tail-recursion involves adding

cases for singleton lists to prove-all (PA) and prove-goal (PG).

6.2 Efficiency and Denotation

The function prove-goal (PG) looks through the entire data-base (∆) to find a match. Thus

U is invoked on the head of every clause. Unification is somewhat heavyweight. It is

possible to filter out clauses that cannot unify using lighter-weight comparisons based on

71

CHAPTER 6. A LARGER EXAMPLE: PROLOG

the clause head’s identifier and the clause head’s arity. We use the notation ∆(i/n) to

indicate filtering by identifier and arity because this filtering resembles an environment

look-up. The pseudo-code is modified as follows.

Instead of passing the predicate to prove, prove-all (PA) passes the components of the

predicate: the identifier, the arity, and the list of terms.

PA([], θ,∆, κs, κf) = κs(θ, κf)
PA((i(t1, . . . , tn)) :: Π, θ,∆, κs, κf) =
P(i, n, [t1, . . . , tn], θ,∆, (λ(θ′, κ′f).PA(Π, θ′,∆, κs, κ

′
f)), κf)

Prove (P) then uses the identifier and the arity to find only the relevant clauses in the

database. Since all the clauses passed to prove-goal (PG) have the same identifier, only

the list of terms (τ) needs to be passed.

P(i, n, τ, θ,∆, κs, κf) = PG(∆(i/n), τ, θ,∆, κs, κf)

Since prove-goal (PG) now takes a term-list parameter rather than a predicate, the

unification function must be correspondingly adjusted.

PG([], τ, θ,∆, κs, κf) = κf ()
PG(η :: ∆′, τ, θ,∆, κs, κf) =
let (i(t1, . . . , tn),Π) = copy(η)
κ′f = λ().PG(∆′, τ, θ,∆, κs, κf)

in U([t1, . . . , tn], τ, θ, (λ(θ′).PA(Π, θ′,∆, κs, κ
′
f)), κ′f)

From this point of view it becomes apparent that ∆(i/n) maps to a list of clauses (i.e.,

program text) and not to any denoted value. As discussed in chapter 5, the transformation

rules may fail on an interpreter that is not denotational. In fact, if the transformation

technique were applied to the interpreter above, it would yield a compiler that looped on

recursive PROLOG programs. We make use of the solution discussed in chapter 5, and we

72

6.2. EFFICIENCY AND DENOTATION

introduce a new function D that maps a database to its denotation. The call to prove-goal

(PG) is moved from prove (P) to the denotation of a collection of clauses. A database

denotation can be understood either as a table or a function that maps an identifier and

arity to a single function that succeeds or fails based on whether or not the terms provided

satisfy the indicated predicate. We use δ = D(∆) as notation for a database denotation.

D(∆) = {(i/n, (λ(τ, θ, δ, κs, κf).PG(∆(i/n), τ, θ, δ, κs, κf))) | i is an identifier, n ∈ N}

Prove-query, prove-all, prove, and prove-goal must all be modified to take the database

denotation.

PQ(Π, δ) = PA(Π, θ0, δ, κs0, κf0)

PA([], θ, δ, κs, κf) = κs(θ, κf)
PA((i(t1, . . . , tn)) :: Π, θ, δ, κs, κf) =
P(i, n, [t1, . . . , tn], θ, δ, (λ(θ′, κ′f).PA(Π, θ′, δ, κs, κ

′
f)), κf)

Prove (P) now looks very different. Instead of supplying prove-goal (PG) with some

text from the database, it calls the function associated with the identifier and arity.

P(i, n, τ, θ, δ, κs, κf) = δ(i/n)(τ, θ, δ, κs, κf)

PG([], τ, θ, δ, κs, κf) = κf ()
PG(η :: ∆, τ, θ, δ, κs, κf) =
let (i(t1, . . . , tn),Π) = copy(η)
κ′f = λ().PG(∆, τ, θ, δ, κs, κf)

in U([t1, . . . , tn], τ, θ, (λ(θ′).PA(Π, θ′, δ, κs, κ
′
f)), κ′f)

At this point, the interpreter in the form of the four proving functions is expressed in

denotational-style, and the transformation technique applies. Before applying the tech-

nique we improve the efficiency of unification.

73

CHAPTER 6. A LARGER EXAMPLE: PROLOG

6.3 Improving Unification

Norvig comments that a possible next step is improving unification. He forgoes adding

a union-find based unification algorithm to the interpreter in order to jump directly to

a compiler. In this section, we add a more sophisticated unification algorithm to the in-

terpreter so as to derive a compiler. The substitution (θ) is removed. We also take the

opportunity here to avoid completely copying a term, and instead determine a mapping

from variables to logic variables. This mapping is written in factored form (π ◦φ) to allow

more static computation to occur. The first factor is referred to as the pre-frame and the

second as the frame.

A pre-frame is the class of mappings from variables to natural numbers. PreFrame

denotes the class of pre-frames, which is shorthand for Var → N. A frame is the class

of mappings from natural numbers to logic variables. Frame denotes the class of frames,

which is shorthand for N→ LogicVar.

Additional types are necessary when the unification algorithm changes. The class of

terms is still used to describe what a PROLOG program looks like, but since the union-

find approach to unification turns variables into data-structures, a new class of values

is needed that describes the run-time data structures. A functor looks like a constructor

function call, and a value is either a number, a logic variable, or a functor. Funct denotes

the class of functors and Value denotes the class of values. Backus-Naur form is used to

formally define these classes.

v ∈ Value ::= n
::= χ
::= F

F ∈ Funct ::= i(v1, . . . , vn)
where n is a number, i is an identifier, χ ∈ LogicVar is a logic variable, and vk is a Value.

It is possible to say more about the structure of logic variables. When displaying logic

variables it is useful to have the original variable from the program and a number to

74

6.3. IMPROVING UNIFICATION

distinguish it from others, but the essence is simply a container. Thus LogicVar is short-

hand for Var × N× Location.

Now the arguments to the proving functions are more varied. The last two arguments

for all of them are again the success continuation and the failure continuation. Because a

substitution is no longer used, the type of the success continuation has changed.

κs : (()→ Answer)→ Answer

κf : ()→ Answer

Prove-all (PA) takes a pre-frame and a frame.

π : PreFrame

φ : Frame

Prove (P) and prove-goal (PG) take a list of values.

ν : [Value]

The previous pseudo-code is transformed to make use of the more sophisticated uni-

fication algorithm. Destructive unification and logic variables require state. Here too the

state parameter and the implementation details are not shown. This improvement to uni-

fication does improve the overall performance of the interpreter.

The functions in the database denotation are now constructed so that the arguments

correspond to the arguments that the new version of prove-goal (PG) needs.

D(∆) = {(i/n, (λ(ν, δ, κs, κf).PG(∆(i/n), ν, δ, κs, κf))) | i is an identifier, n ∈ N}

Instead of merely supplying an initial substitution, prove-query (PQ) must construct

an initial pre-frame and frame based on the variables in the predicate list Π to supply

to prove-all (PA). The function varsFromPred returns a list of all the unique variables in a

predicate list. The function newPreFrame turns a list of variables into a map from variables

to numbers, and the function newFrame turns that same list of variables into a map from

numbers to logic variables.

75

CHAPTER 6. A LARGER EXAMPLE: PROLOG

PQ(Π, δ) =
let ` = varsFromPred(Π)
π0 = newPreFrame(`)
φ0 = newFrame(`)
in PA(Π, π0, φ0, δ, κs0, κf0)

Prove-all (PA) now uses the function toValues to convert its term list to a list of values

so that prove (P) will not need to keep track of a frame.

PA([], π, φ, δ, κs, κf) = κs(κf)
PA((i(t1, . . . , tn)) :: Π, π, φ, δ, κs, κf) =
P(i, n, toValues([t1, . . . , tn], π, φ), δ, (λ(κ′f).PA(Π, π, φ, δ, κs, κ

′
f)), κf)

P(i, n, ν, δ, κs, κf) = δ(i/n)(ν, δ, κs, κf)

Prove-goal (PG) does not take a substitution any more, nor does it take a frame. How-

ever, it creates a frame based on the variables in the first clause from its list of clauses

using the function varsFromClause. This frame is supplied to the unification algorithm so

that the values associated with the terms can be unified with the list of values (ν) that were

supplied as an argument. The unification function is adjusted again so that destructive

unification is used and logic variables are set and unset. The unsetting is hidden in the

unification failure continuations.

PG([], ν, δ, κs, κf) = κf ()
PG(η :: ∆, ν, δ, κs, κf) =
let (i(t1, . . . , tn),Π) = η
` = varsFromClause(η)
π = newPreFrame(`)
φ = newFrame(`)
in U([t1, . . . , tn], π, φ, ν,(λ(κ′f).PA(Π, π, φ, δ, κs, κ

′
f)),

(λ().PG(∆, ν, δ, κs, κf)))

76

6.4. CURRYING AND LAMBDA LOWERING

At this point, not only is the interpreter expressed in a denotational-style, but it also

uses an efficient unification algorithm. The transformation technique can now effectively

be applied to this interpreter. The next subsections describe their application.

6.4 Currying and Lambda Lowering

Currying involves little more than moving the dynamic parameters from the left to the

right side of the equal sign. Since conditionals are implicit and involve separate equations,

this movement also achieves lambda lowering. The lambda lowering that remains is to

lower the lambda through the let in prove-goal (PG). Of course, all the calls to the curried

functions must be modified.

The pseudo-code from the previous subsection is transformed using rules (1), (2), and

(3) from chapter 4.

When prove-goal (PG) is curried, it produces a function. Thus the abstraction in the

database denotation can be eta-reduced.

D(∆) = {(i/n,PG(∆(i/n))) | i is an identifier, n ∈ N}

For prove-query (PQ), the query itself is static, but the database denotation remains

dynamic and is curried. We also see that prove-all (PA) has been curried and that the call

has been changed.

PQ(Π) =
λ(δ).
let ` = varsFromPred(Π)
π0 = newPreFrame(`)
φ0 = newFrame(`)
in PA(Π, π0)(φ0, δ, κs0, κf0)

The static parameters for prove-all (PA) are the list of predicates and the pre-frame.

77

CHAPTER 6. A LARGER EXAMPLE: PROLOG

The frame itself, the database denotation, and the continuations remain dynamic and are

curried. We see that the recursive call to PA and the call to toValues have been adjusted.

PA([], π) = λ(φ, δ, κs, κf).κs(κf)
PA((i(t1, . . . , tn)) :: Π, π) =
λ(φ, δ, κs, κf).P(i,

n,
toValues([t1, . . . , tn], π)(φ),
δ,
(λ(κ′f).PA(Π, π)(φ, δ, κs, κ

′
f)),

κf)

The function prove (P) is, in effect, a call operator. All of the parameters are dynamic,

so no currying occurs here.

P(i, n, ν, δ, κs, κf) = δ(i/n)(ν, δ, κs, κf)

For prove-goal (PG), only the list of clauses is static. All the other parameters are

curried. Not only are the calls to prove-goal and prove-all adjusted, but also the call to U

is adjusted as well since it is also curried.

PG([]) = λ(ν, δ, κs, κf).κf ()
PG(η :: ∆) =
λ(ν, δ, κs, κf).
let (i(t1, . . . , tn),Π) = η
` = varsFromClause(η)
π = newPreFrame(`)
φ = newFrame(`)
in U([t1, . . . , tn], π)

(φ,
ν,
(λ(κ′f).PA(Π, π)(φ, δ, κs, κ

′
f)),

(λ().PG(∆)(ν, δ, κs, κf)))

78

6.5. MORE LAMBDA LOWERING

6.5 More Lambda Lowering

In addition to lowering the lambdas into the conditional expressions, we lower the lamb-

das into the let as well. This move allows the variables to be determined statically. Then

only the frame is allocated dynamically.

The previous pseudo-code is now transformed using rule (4) from chapter 4.

The initial pre-frame (π0) depends only on the static list of predicates (Π), so the

lambda can be lowered into the first let. However, the initial frame (φ0) implicitly depends

on the dynamic store since allocating a frame involves storage allocation. Therefore, the

lambda cannot be lowered into that let.

PQ(Π) =
let ` = varsFromPred(Π)
π0 = newPreFrame(`)
in λ(δ). let φ0 = newFrame(`)

in PA(Π, π0)(φ0, δ, κs0, κf0)

Similarly, in prove-goal (PG) the lambda can be lowered past the pre-frame but no

lower.

PG([]) = λ(ν, δ, κs, κf).κf ()
PG(η :: ∆) =
let (i(t1, . . . , tn),Π) = η
` = varsFromClause(η)
π = newPreFrame(`)
in λ(ν, δ, κs, κf).

let φ = newFrame(`)
in U([t1, . . . , tn], π)

(φ,
ν,
(λ(κ′f).PA(Π, π)(φ, δ, κs, κ

′
f)),

(λ().PG(∆)(ν, δ, κs, κf)))

79

CHAPTER 6. A LARGER EXAMPLE: PROLOG

6.6 Expression Lifting

Since the calls to the prove functions do not depend on the dynamic variables, it is possible

to lift them out of the lowered lambdas. We do this now so that the functions can be

generated statically rather than dynamically.

Now the pseudo-code from the previous section is transformed using rule (5) from

chapter 4.

In prove-query (PQ), the call to prove-all (PA) only depends on the list of predicates

and the pre-frame, so it can be lifted.

PQ(Π) =
let ` = varsFromPred(Π)
π0 = newPreFrame(`)
f = PA(Π, π0)
in λ(δ). let φ0 = newFrame(`)

in f(φ0, δ, κs0, κf0)

Prove-all (PA) has a recursive call. This call is lifted as well as a call to toValues which

depends only on the predicate and the pre-frame.

PA([], π) = λ(φ, δ, κs, κf).κs(κf)
PA((i(t1, . . . , tn)) :: Π, π) =
let f1 = toValues([t1, . . . , tn], π)
f2 = PA(Π, π)
in λ(φ, δ, κs, κf).P(i,

n,
f1(φ),
δ,
(λ(κ′f).f2(φ, δ, κs, κ

′
f)),

κf)

80

6.7. CODE GENERATION

In prove-goal (PG), it is also possible to lift the call to prove-all (PA). In addition, the

recursive call is lifted as is the static portion of unification.

PG([]) = λ(ν, δ, κs, κf).κf ()
PG(η :: ∆) =
let (i(t1, . . . , tn),Π) = η
` = varsFromClause(η)
π = newPreFrame(`)
f1 = U([t1, . . . , tn], π)
f2 = PA(Π, π)
f3 = PG(∆)
in λ(ν, δ, κs, κf).

let φ = newFrame(`)
in f1(φ,

ν,
(λ(κ′f).f2(φ, δ, κs, κ

′
f)),

(λ().f3(ν, δ, κs, κf)))

6.7 Code Generation

Since we are interested in generating text, we quote the relevant portions: the functions

with dynamic variables. Rule (6) is applied to the previous pseudo-code.

In prove-query (PQ), the abstraction inside the let is quoted using the bracket notation,

and the variables w and f are unquoted using the comma notation.

PQ(Π) =
let ` = varsFromPred(Π)
π0 = newPreFrame(`)
, w = `
, f = PA(Π, π0)
in [[λ(δ). let φ0 = newFrame(, w)

in (, f)(φ0, δ, κs0, κf0)]]

81

CHAPTER 6. A LARGER EXAMPLE: PROLOG

The prove-query function now generates text that interfaces with the text of the database

denotation.

The abstraction in the let is quoted in prove-all (PA). The variables f1 and f2 are

unquoted as are i and n.

PA([], π) = [[λ(φ, δ, κs, κf).κs(κf)]]
PA((i(t1, . . . , tn)) :: Π, π) =
let , i = i
, n = n
, f1 = toValues([t1, . . . , tn], π)
, f2 = PA(Π, π)
in [[λ(φ, δ, κs, κf).P((, i),

(, n),
(, f1)(φ),
δ,
(λ(κ′f).(, f2)(φ, δ, κs, κ

′
f)),

κf)]]

For prove-goal (PG), the abstraction in the let is again quoted. The variables f1, f2, f3,

and w are unquoted.

82

6.8. PERFORMANCE

PG([]) = [[λ(ν, δ, κs, κf).κf ()]]
PG(η :: ∆) =

let (i(t1, . . . , tn),Π) = η
` = varsFromClause(η)
π = newPreFrame(`)
, w = `
, f1 = U([t1, . . . , tn], π)
, f2 = PA(Π, π)
, f3 = PG(∆)
in [[λ(ν, δ, κs, κf).

let φ = newFrame(, w)
in (, f1)(φ,

ν,
(λ(κ′f).(, f2)(φ, δ, κs, κ

′
f)),

(λ().(, f3)(ν, δ, κs, κf)))]]

The database denotation D(∆) is now text that constructs a table associating identi-

fiers augmented with the arity with program text generated by prove-goal (PG), and δ is

initialized to the table generated by that text when executed. Hence D is now a compiler.

To use this compiler interactively, the database denotation must be loaded, and any query

text generated must be subsequently executed.

6.8 Performance

To gauge the performance of the compiler derived in this chapter we make use of a sim-

ple benchmark: the naïve Fibonacci function using Peano arithmetic. We found Norvig’s

compiler implementation to be quite respectable with timing results that appeared to be

the same as SWI PROLOG (version 6.6.1). We directly compare our implementation only

to Norvig’s. We used SBCL Common LISP version 1.1.6.0-3c5581a using the default con-

figuration on a MacBook Pro running Mac OS 10.7.5 on a 2GHz Intel Core i7 with 6GB of

memory.

83

CHAPTER 6. A LARGER EXAMPLE: PROLOG

fib(15) Norvig compiler interpreter

avg user time (ms) 2.7 4.3 20.0

avg GC time (ms) 0 0 0

avg MB consed 0.5 2.8 6.5

First we compare the denotational interpreter with efficient unification to the derived

compiler and observe the performance boost of the transformation technique. The com-

piler is about 4.7 times faster than the interpreter. The interpreter allocates about 2.3 times

as much memory.

We see that Norvig’s implementation is only about 1.6 times faster than ours. Our

implementation allocates about 5.5 times as much memory. However, when n is only 15,

the benchmark does not stress the memory. We consider this next and raise n to 20.

fib(20) Norvig compiler interpreter

avg user time (ms) 17.2 52.0 238.6

avg GC time (ms) 0 160.0 145.3

avg MB consed 5.6 37.7 88.3

The differences are more pronounced here. Nevertheless, without including the garbage

collection time, Norvig’s implementation is still only about three times faster than ours.

In this case, our implementation allocates about 6.7 times as much memory.

We have also looked at other benchmarks, including the n-queens problem. We find

that the performance results are very similar. The derived compiler is several times faster

than the interpreter and it is in the ballpark of Norvig’s implementation. Garbage collec-

tion continues to have a significant negative impact on performance, but the variation in

the factors has not been completely characterized.

84

6.9. SUMMARY

One reason that Norvig’s implementation has higher performance is that it has an

explicit optimization phase akin to copy-propagation. Further, his implementation effec-

tively allocates frames on the Common LISP run-time stack, whereas our implementation

allocates frames in the heap. Even though our implementation currently lacks these en-

hancements, we consider its performance quite respectable.

6.9 Summary

Inspired by Norvig’s PROLOG implementations, we showed how to derive a serious com-

piler from an interpreter. Having started with a naïve non-denotational PROLOG inter-

preter, we used the ideas from chapter 5 to derive a denotational one. Then we upgraded

the unification algorithm to a fast union-find based implementation. The interpreter was

then ready to be transformed by the transformation technique. The transformations were

successfully applied. The resulting PROLOG compiler generates code with respectable

performance.

85

Chapter 7
Future Work

J’ai réinventé le passé pour voir

la beauté de l’avenir.

I reinvented the past to see the

beauty of the future.

Louis Aragon

Here we outline additional interesting ideas, additional examples, and theory that we

would like to pursue.

7.1 Relationship to Partial Evaluation

Partial evaluation relies on equational reasoning. So too, the correctness proofs of the

rules rely on equational reasoning. Hence, the transformation rules are a focused form of

equational reasoning. We believe the rules get at the essence of the important equational

reasoning that occurs in partial evaluation. We anticipate arguing explicitly that that is

the case via both examples and formal proof.

86

7.2. ADDITIONAL EXAMPLES

7.2 Additional Examples

Additional examples of the transformation technique can highlight both its conceptual

and practical value. Although there have been many early successes creating self-applicable

off-line partial evaluators, creating self-applicable on-line partial evaluators has been much

more challenging. The only one constructed so far has been for a flowchart language [43].

We believe that we can use the concepts in this thesis to construct a self-applicable on-line

partial evaluator for Scheme.

Pattern matching compilers similar to the example in chapter 1 are quite practical. Un-

fortunately, that particular example is merely a toy for illustration purposes. The usual

approach to generating fast pattern matchers from regular expressions involves compiling

them into finite automata. Such an approach does not appear to fit well with the transfor-

mation technique. However, an alternative approach involving “derivatives” of regular

expressions is receiving increased attention [16, 25, 78, 82]. That approach appears to be a

good fit and would make a nice practical example. Other kinds of pattern matching, such

as on trees, may also make nice practical examples.

7.3 Additional Rules

The transformation technique consists of four rules. We have argued that these rules

work, but we might wonder whether and to what extent additional rules would be bene-

ficial.

Are those four rules even enough? For the interpreter language from chapter 4, we

argue informally that no additional rules are necessary. The currying rules introduce an

abstraction from which sub-expressions can be extracted, the quoting rule turns that ab-

straction into text, and the remaining rules extract sub-expressions from that abstraction.

87

CHAPTER 7. FUTURE WORK

Assuming the body of the abstraction has no sub-expressions involving quotation, there

are only five cases. For variables and constants, there is nothing to extract. If the body

is also an abstraction, we assume the rules are enough for that abstraction, and use them

again. If the body is an application, use the expression lifting rule (4.5) on either the sub-

expressions or the entire expression; that is all that can be done. If the body is a condi-

tional, use the expression lifting rule (4.5) on sub-expressions or use the lambda lowering

rule (4.3) if only the first sub-expression is independent of the parameters; that is all that

can be done. We anticipate formalizing this argument.

We briefly observe that the argument above did not use the lambda lowering for a

let-binding rule (4.4). It is possible to use only the expression lifting rule (4.5) to achieve a

transformation very similar to rule (4.4). Nevertheless, it is convenient and natural during

manual transformation to use rule (4.4). Further rule (4.4) avoids the introduction of an

extra variable; an additional rule would be needed to eliminate the extra variable.

What about languages that are larger than the interpreter language? In Scheme, we

used the lambda lowering rule on cond even though the rule is defined only for if. In

principle, if additional forms are defined in terms of the forms available in the interpreter

language, then it is possible to macro-expand these new forms and apply the rules di-

rectly. Informally, we feel free to un-expand the forms for readability. Nevertheless, it

may be worthwhile to have special derived rules associated with derived forms. If there

are additional forms that cannot be defined in terms of the forms available in the inter-

preter language, then additional rules might be necessary.

In addition to the transformation technique, we have discussed how to extend its ap-

plicability by adjusting non-denotational interpreters to make them denotational. These

adjustment heuristics are reminiscent of rules. We anticipate investigating whether it is

possible to formulate rules that transform an operational semantics into a denotational

one, but we are not optimistic.

88

7.3. ADDITIONAL RULES

Recall that rule (4.6) from chapter 4 quoted an abstraction for which all free variables

were accounted for. Thus the terms that are generated are always closed. But it is possible

to imagine that other rules might yield simpler and possibly more efficient terms by ma-

nipulating open terms. We consider as an example the CPS-transform. We observe that

given a CPS-style interpreter, the transformation technique yields a Plotkin style CPS-

transform [83] which generates code with “administrative” reductions. The interpreter

follows.

cρκ = κ(c)
xρκ = κ(ρ(x))

λx.Mρκ = κ(λvκ′.M(ρ[x 7→ v])κ′)

(M N)ρκ = Mρ(λm.Nρ(λn.m(n, κ)))

Applying the transformation technique yields the Plotkin style CPS-transform.

c = [[λρκ.κ(c)]]
x = [[λρκ.κ(ρ(x))]]

λx.M = let , f = M in [[λρκ.κ(λvκ′.(, f)(ρ[x 7→ v])κ′)]]

(M N) = let , f1 = M in let , f2 = N in [[λρκ.(, f1)ρ(λm.(, f2)ρ(λn.m(n, κ)))]]

On ((λx.x) 5) the transform above yields the following lengthy term.

(λρκ.((λρκ.κ((λvκ′.((λρκ.κ(ρ(x)))(ρ[x 7→ v])κ′))))ρ(λm.((λρκ.κ(5))ρ(λn.m(n, κ))))))

In each case in the interpreter the quoted text begins with λρκ. It seems plausible to

push the quotation inward. The function must then take a textual variable, and the gen-

erated text must be embedded in an abstraction. The variables f , f1, and f2 are no longer

text but functions that return text. (For the sake of clarity, we use LISP style unquoting,

including the unquoting of full expressions.) This code generator is then similar to the

Danvy and Filinski [26, 27] optimized CPS transform.

M = [[λρκ., (M [[κ]] [[ρ]])]]

c = λρκ.[[(, κ)(c)]]

x = λρκ.[[(, κ)((, ρ)(x))]]

λx.M = let , f = M in λρκ.[[(, κ)(λvκ′., (f [[(, ρ)[x 7→ v]]] [[κ′]]))]]

(M N) = let , f1 = M in let , f2 = N in λρκ.(f1 ρ [[(λm., (f2 ρ [[(λn.m(n, (, κ)))]]))]])

89

CHAPTER 7. FUTURE WORK

On ((λx.x) 5) the transform above yields the following shorter term.

(λρκ.((λm.((λn.m(n, κ))5))(λvκ′.(κ′(ρ[x 7→ v])(x)))))

Suitable rules embodying the transformation above involving open terms could ex-

tend the work on the CPS-transform to all compilers.

7.4 Additional Languages

All the examples in this thesis have been implemented in either Scheme or Common LISP.

Can the transformation technique be used in other languages? What are the key charac-

teristics needed so that the transformation technique can be applied? Are there languages

other than Scheme and Common LISP that posses these characteristics?

The needed characteristics are implicit in the definition of the interpreter language

from chapter 4. In particular, we need a high-level language with first-class functions

and some means of quotation. We also suggest garbage collection as a key feature so that

programming will not be too painful.

There are experimental languages that are specifically designed for meta-programming:

Meta-ML [98] and Template Haskell [88]. These languages were designed to have the

needed characteristics.

Most other LISP dialects also have these characteristics. Thus popular alternative LISP

implementations such as Racket [40, 41] and Closure [85] can be used.

There have also been some languages inspired by LISP that are becoming popular that

retain the relevant features. For example, Scala [77, 86] and Julia [11] both have first class

functions and quotation.

What about more mainstream languages such as C# and Java? For some time, C# [47]

has had first class functions. First class functions have become a part of Java with Java

8 [44]. But neither one has the kind of quotation discussed in this thesis. It is still possible

90

7.5. AUTOMATION

to fake quotation and generate text with the more primitive notions of strings and string

concatenation. It should be possible to use the transformation technique in this more

limited fashion for these languages.

We anticipate exploring examples of the transformation technique using these other

languages.

7.5 Automation

We believe that attempting to fully automate the conversion of an interpreter into a com-

piler is not worthwhile. For example, in chapter 6 we saw that to construct a realistic

compiler, it was necessary to replace the naïve unification algorithm with the more so-

phisticated union-find based implementation. In general, no automatic system will be

capable of such insight. Nevertheless, it may be useful for larger programs to have tools

to help apply the transformation rules.

Implementing currying appears straightforward. If the name of the function to be

curried and the static parameters are specified, it is trivial to modify the code so that

a function involving the static parameters is returned. Correcting the calling protocol

requires more effort1. Assuming all possible call locations are circumscribed, these call

locations would need to be identified. Further, it would be necessary to verify that no

other functions flow to those locations. For such a flow analysis, 0CFA [89] should be

adequate.

Implementing rules (4.3), (4.4), and (4.5), the rules that stage the computation, should

also be mostly straightforward. As hinted at in section 7.3, when automating, rule 4.4

would be replaced with a rule to contract applications applied to variables. One difficulty

when implementing rules (4.3) and (4.5) involves verifying that particular terms termi-
1Flow analysis seems like a natural choice for identifying call sites; however, for a statically typed lan-

guage, typing checking could also be used.

91

CHAPTER 7. FUTURE WORK

nate. The solution could be to have a simple function attempt to prove that the term in

question does terminate. If it succeeds, then the transformation can proceed. If it fails,

it could either log that it does not actually know the term terminates, or it could query

a human oracle. Another difficulty is if some parameters, such as the store, are implicit.

A careless implementation might automatically lift terms incorrectly that make use of

these implicit parameters. Such implicit parameters are not arbitrary; they are typically

restricted to the store parameter and perhaps the I/O parameter. Thus it is likely that

an analysis could identify which functions perform side-effects and thereby make explicit

the implicit parameters.

Finally, there are two reasons why quoting may be the trickiest to implement. First,

one would like to relax the restriction that the free variables are all locally let-bound. This

restriction makes it easy to see that not only are all the free variables under consideration,

but also that they are all suitably modified so that they become comma-variables. In

practice, we have not followed this rule to the letter (for example in chapter 6); we allowed

parameters that are not let-bound to be included among those that were unquoted. It is

likely that the way to proceed is to have a rule preprocessing phase that identifies the non-

global free variables in an abstraction and adds the needed let forms so that the original

rule applies.

Second, the semantics of Scheme unquoting is more complicated than the model of

unquoting in this thesis. In particular, we allow a comma-variable to be replaced with un-

quoted values. For Scheme, this semantics entails that numbers and symbols are treated

the same way. But that is a problem in Scheme. If a symbol is inserted into a list repre-

senting code, the symbol becomes a variable.

For example, (let ((s ’x)) ‘(memq ,s ’(x))) will generate code with an un-

bound variable. Instead, the code (let ((s ”x)) ‘(memq ,s ’(x))) will generate

the desired code.

92

7.5. AUTOMATION

For a more accurate model, we can preserve comma-variables, but require that the let

form only substitute quoted values. This change leads to several complications. Since we

would like to be able to achieve the same effect as replacing a comma-variable with an

unquoted value, we need a new reify operator that converts a value into appropriate text.

Formalizing the semantics of such an operator might look something like the following.

pvq→ [[v]]

e→ e′

peq→ pe′q

When we change the let form and add the reify operator, we find that some expressions

among the let-bound variables need to be reified and some do not. How can we tell which

is which? We conjecture that the answer involves a type analysis using a type system

similar to that found in [74].

93

Chapter 8
Conclusion

All’s Well That Ends Well

William Shakespeare

In this chapter we summarize what has been accomplished. Specifically, we review

the transformation technique, mention how it can often be extended to non-denotational

interpreters, and comment on the benefits.

8.1 The Transformation Technique

This thesis has presented a new transformation technique for deriving a compiler from

an interpreter. This technique consists of the application of four rules: Currying, Lambda

Lowering, Expression Lifting, and Quoting. Currying splits the static and dynamic pa-

rameters and turns a function with static and dynamic parameters into one that returns a

function with dynamic parameters. Lambda lowering moves the testing in a conditional

out of an abstraction. Expression lifting moves an expression out of an abstraction. Quot-

ing turns a function that returns a function into a function that returns text. We have

proved that lambda lowering and expression lifting preserve the meaning of terms. And

94

8.2. DENOTATIONAL INTERPRETERS AND BEYOND

we have proved that the transformation technique yields a correct compiler given an ab-

stract denotational interpreter.

8.2 Denotational Interpreters and Beyond

One of the ideas motivating the transformation technique comes from denotational se-

mantics: a denotational semantics is a compiler. Mathematically, we are free to use a re-

duction strategy in which applications inside abstractions are reduced. To get a compiler

in the context of a reduction strategy that does not go inside abstractions, we must move

the expressions that would be reduced out of the abstraction. Thus the transformation

technique is designed to work on interpreters written in a denotational style.

Yet interpreters are not always written in a denotational style. A common alternative is

basing an interpreter on an operational semantics. Certain key operational idioms cannot

be trivially interpreted denotationally. For example, neither recursive interpreter calls on

forms that are not substructures nor the interpreter leaving program text in the environ-

ment or returned values can be viewed denotationally. In those cases, we showed how to

turn an operational style interpreter into a denotational one by, for example, introducing a

fixed-point function or inserting calls to the interpreter. At that point, the transformation

technique applies.

8.3 Comparison to Partial Evaluation and Staging

In chapter 2, we discussed partial evaluation as a technique similar in spirit to the trans-

formation technique. There we argued that although one can derive target code for par-

ticular examples using partial evaluation, deriving a code-generator is laborious because

the equational reasoning must be performed on both the interpreter and the partial evalu-

95

CHAPTER 8. CONCLUSION

ator. We also argued that using cogen-based partial evaluation to derive a code-generator

is similarly laborious because of the need for the separate step of the binding time analy-

sis. In chapter 6, we implicitly argued that the transformation technique has practical and

conceptual advantages over partial evaluation. The practical advantage is that, in contrast

to Consel and Khoo [24], we were able to use the transformation technique to construct

a PROLOG compiler capable of compiling recursive clauses. The conceptual advantage of

the transformation technique is that while partial evaluation obscured the issue of recur-

sion, the rules proposed here dealt with the issue successfully.

Chapter 2 also discussed the manual technique of staging. From the beginning, Jørring

and Scherlis [56] hinted that interpreters could be mechanically transformed into compil-

ers, but they did not say how to do so. However, subsequent work [18, 74, 98] in staging

relies on the programmer guessing a staged form of an algorithm; a type-checking algo-

rithm provides a post-facto verification. In contrast, we believe that the transformation

technique presented in this thesis fulfills the vision of Jørring and Scherlis by providing

apriori advice to help the programmer perform the staging.

8.4 Practical Benefits

The advantage of an interpreter is that it is easier to write. The advantage of a compiler is

that it generates code that runs faster than the interpreter. The transformation technique

turns an interpreter into a compiler. One benefit is that the derived compiler is guaranteed

to preserve the semantics of the interpreter. Another benefit is that deriving the compiler

takes a marginal effort beyond the effort of writing the interpreter. Thus one gets a com-

piler for about the effort of an interpreter. Finally, a benefit is that the generated code does

indeed run faster. In our experiments, compiled code runs almost five times faster than

the interpreted code.

96

Appendix A
Lemmata

Lemma 1. If e→∗ v then (if e then e1 else e2)→∗ (if v then e1 else e2).

Proof. By mathematical induction on the number of reduction steps.

• Suppose e→0 v. Then e is identical to v and the result follows immediately.

• Assume that e′ →k v implies (if e′ then e1 else e2)→∗ (if v then e1 else e2).

– Suppose e→k+1 v. Then e→ e′ →k v.

The reduction e → e′ implies (if e then e1 else e2) → (if e′ then e1 else e2).

Since e′ →k v, it follows from the assumption that (if e′ then e1 else e2) →∗

(if v then e1 else e2). Hence the result follows.

97

APPENDIX A. LEMMATA

Lemma 2. If e→∗ v then (λz.eb)(e)→∗ (λz.eb)(v).

Proof. By mathematical induction on the number of reduction steps.

• Suppose e→0 v. Then e is identical to v and the result follows immediately.

• Assume that e′ →k v implies (λz.eb)(e
′)→∗ (λz.eb)(v).

– Suppose e→k+1 v. Then e→ e′ →k v.

The reduction e → e′ implies (λz.eb)(e) → (λz.eb)(e
′). Since e′ →k v, it follows

from the assumption that ((λz.eb)(e
′)→∗ (λz.eb)(v). Hence the result follows.

Lemma 3. If e′ = v then (e[u := e′]) = (e[u := v]).

Proof. By structural induction on e.

• Suppose e is a constant c. Then the two expressions are identical and equality fol-

lows from the fact that equality is reflexive.

• Suppose e is a variable x.

– Suppose x = u. Then equality follows from the assumption that e′ = v.

– Suppose x 6= u. Then the two expressions are identical and equality follows

from the fact that equality is reflexive.

• Suppose e is a comma variable , y. Then the two expressions are identical and equal-

ity follows from the fact that equality is reflexive.

• Assume e′ = v implies (e′′[u := e′]) = (e′′[u := v]) if e′′ is a substructure of e.

98

– Suppose e is an abstraction (λx̄.e′′). Without loss of generality, assume u 6= xi.

Then (λx̄.e′′)[u := e′] is (λx̄.(e′′[u := e′])), and (λx̄.e′′)[u := v] is (λx̄.(e′′[u :=

v])). It follows from the assumption that (e′′[u := e′]) = (e′′[u := v]). Hence

by the abstraction equality rule (ξ), the abstractions are equal.

– Suppose e is a quoted form [[e′′]]. Note that [[e′′]][u := e′] is [[(e′′[u := e′])]], and

[[e′′]][u := v] is [[(e′′[u := v])]]. It follows from the assumption that (e′′[u :=

e′]) = (e′′[u := v]). Hence by the quoted form equality rule, the quoted forms

are equal.

– Suppose e is an application e0(e1, · · · , en). Note that e0(e1, · · · , en)[u := e′]

is (e0[u := e′])(e1[u := e′], · · · , en[u := e′]), and e0(e1, · · · , en)[u := v] is

(e0[u := v])(e1[u := v], · · · , en[u := v]). It follows from the assumption that

for every component term ei, (ei[u := e′]) = (ei[u := v]). Hence by repeated

application of the application equality rule, the applications are equal.

– Suppose e is a let-form let , y = e1 in e2. Note that (let , y = e1 in e2)[u := e′]

is let , y = (e1[u := e′]) in (e2[u := e′]), and (let , y = e1 in e2)[u := v] is

let , y = (e1[u := v]) in (e2[u := v]). It follows from the assumption that for

each component term ei, (ei[u := e′]) = (ei[u := v]). Hence by application of

the two let-form equality rules, the let-forms are equal.

– Suppose e is a conditional if e0 then e1 else e2. Note that (if e0 then e1 else e2)[u :=

e′] is if (e0[u := e′]) then (e1[u := e′]) else (e2[u := e′]), and (if e0 then e1

else e2)[u := v] is if (e0[u := v]) then (e1[u := v]) else (e2[u := v]). It

follows from the assumption that for each component term ei, (ei[u := e′]) =

(ei[u := v]). Hence by application of the three conditional form equality rules,

the conditionals are equal.

99

Bibliography

[1] H. Abelson, G. J. Sussman. Structure and Interpretation of Computer Programs. The MIT

Press; 2nd edition, 1996.

[2] A. V. Aho, J. D. Ullman. Principles of Compiler Design. Addison Wesley, 1977.

[3] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison

Wesley, 1986.

[4] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison Wesley; 2nd edition, 2007.

[5] H. Ait-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, 1991.

[6] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1991.

[7] J. W. Backus. The Syntax and Semantics of the Proposed International Algebraic Lan-

guage of Zürich ACM-GAMM Conference. Proceedings of the International Conference

on Information Processing, UNESCO, 125–132, 1959.

[8] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North Holland, 1985.

100

BIBLIOGRAPHY

[9] A. Bawden. Quasiquotation in Lisp. Partial Evaluation and Semantic-Based Program

Manipulation, 4–12, 1999.

[10] L. Beckman, A. Haraldson, Ö. Osarksson, E. Sandewall. A Partial Evaluator, and its

Use as a Programming Tool. Artificial Intelligence, Vol. 7, No. 4, 319 – 357, 1976.

[11] J. Bezanson, S. Karpinski, V. B. Shah, A. Edelman. Julia: A Fast Dynamic Language

for Technical Computing. arXiv:1209.5145 [cs.PL].

[12] L. Birkedal, M. Welinder. Hand-Writing Program Generator Generators. Program-

ming Language Implementation and Logic Programming, Springer, 1994.

[13] A. Bondorf, O. Danvy. Automatic Autoprojection of Recursive Equations with Global

Variables and Abstract Data Types. Science of Computer Programming, Vol. 16, 151–195,

1991.

[14] G. Booch. Oral History of John Backus. http://archive.computerhistory.

org/resources/text/Oral_History/Backus_John/.

[15] F. P. Brooks, Jr. The Mythical Man Month. Addison Wesley; 2nd edition, 1995.

[16] J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, Vol. 11, No.

4, 481–494, 1964.

[17] R. M. Bustall, J. Darlington. A Transformation System for Developing Recursive

Programs. Journal of the ACM, Vol. 24, No. 1, 44–67, 1977.

[18] C. Calcagno, W. Taha, L. Huang, X. Leroy. Implementing multi-stage languages using

ASTs, gensym, and reflection. Generative Programming and Component Engineering, 57–

76, 2003.

[19] A. Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.

101

http://archive.computerhistory.org/resources/text/Oral_History/Backus_John/
http://archive.computerhistory.org/resources/text/Oral_History/Backus_John/

BIBLIOGRAPHY

[20] C. Consel. A Tour of Schism: A Partial Evaluation System for Higher-Order Applica-

tive Languages. Proceedings of the 1993 ACM SIGPLAN symposium on Partial evaluation

and semantics-based program manipulation, 145–154, 1993.

[21] C. Consel. New Insights into Partial Evaluation: The Schism Experiment. Lecture

Notes in Computer Science, Vol. 300, 236–246, Springer-Verlag, 1988.

[22] C. Consel. Tempo Specializer - History and Contributions. http://phoenix.labri.

fr/software/tempo/doc/tempo-doc-contrib.html#history.

[23] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, E.-N. Volanschi, J. Lawall,

J. Noyé. Tempo: Specializing Systems Applications and Beyond. ACM Computing

Surveys, Vol. 30, No. 3es, 1998.

[24] C. Consel, S. C. Khoo. Semantics-Directed Generation of a Prolog Compiler. Science

of Computer Programming, Vol. 21, No. 3, 263–291, 1993.

[25] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

[26] O. Danvy, A. Filinski. Abstracting Control. Proceedings of the 1990 ACM Conference on

LISP and Functional Progamming, 151–160, 1990.

[27] O. Danvy, A. Filinski. Representing Control: A Study of the CPS Transformation.

Mathematical Structures in Computer Science, Vol. 2, No. 4, 361 – 391, 1992.

[28] O. Danvy, H. K. Rohde. On Obtaining the Boyer-Moore String-Matching Algorithm

by Partial Evaluation. Information Processing Letters, Vol. 99, No. 4, 158–162, 2006.

[29] O. Danvy and R. Vestergaard. Semantics Based Compiling: A Case Study in Type

Directed Partial Evaluation. Eighth International Symposium on Programming Language

Implementation and Logic Programming, 182–497, 1996.

102

http://phoenix.labri.fr/software/tempo/doc/tempo-doc-contrib.html#history
http://phoenix.labri.fr/software/tempo/doc/tempo-doc-contrib.html#history

BIBLIOGRAPHY

[30] R. Davies. A Temporal-Logic Approach to Binding-Time Analysis. Proceedings of the

Symposium on Logic in Computer Science, 184–195, 1996.

[31] R. Davies, F. Pfenning. A Modal Analysis of Staged Computation. Journal of the ACM,

Vol. 48, No. 3, 555–604, 2001.

[32] P. Deransart, A. Ed-Dbali, L. Cervoni. Prolog: The Standard: Reference Manual.

Springer, 1996.

[33] J. Dias. Automatically Generating the Back End of a Compiler Using Declarative Machine

Descriptions. PhD thesis, Harvard University, Cambridge, MA, USA, 2008.

[34] S. Diehl. Semantics-Directed Generation of Compilers and Abstract Machines. PhD thesis,

University of the Saarland, Saarbrücken, Germany, 1996.

[35] A. P. Ershov. On the Essence of Compilation. Formal Description of Programming

Concepts, 391–420, North-Holland, 1978.

[36] D. Espinosa. Semantic Lego. PhD thesis, Columbia University, New York, NY, USA,

1995.

[37] M. Feeley, G. LaPalme. Using Closures for Code Generation. Computer Language, Vol.

12, No. 1, 47–66, 1987.

[38] M. Felleisen, R. B. Findler, M. Flatt. Semantics Engineering with PLT Redex. MIT Press,

2009.

[39] M. Felleisen, D. P. Friedman. Control Operators, the SECD-machine, and the λ-

calculus. Formal Description of Programming Concepts III edited by M. Wirsing, 193–

217. Elsevier, 1986.

103

BIBLIOGRAPHY

[40] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, M.

Felleisen. DrScheme: A Programming Environment for Scheme. Journal of Functional

Programming, Vol. 12, No. 2, 159–182, 2002.

[41] M. Flatt et al. The Racket Reference. http://docs.racket-lang.org/

reference/, 2014.

[42] Y. Futamura. Partial Evaluation of Computation Process – An Approach to a

Compiler-Compiler. Systems, Computers, Controls, Vol. 2, No. 5, 45–50, 1971.

[43] R. Glück. A Self-Applicable Online Partial Evaluator for Recursive Flowchart Lan-

guages. Software: Practice and Experience, Vol. 42, No. 6, 649–673, 2012.

[44] J. Gosling, B. Joy, G. L. Steele Jr., G. Bracha, A. Buckley. The Java Language Specification,

Java SE 8 Edition. Addison-Wesley Professional, 2014.

[45] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT

Press, 1992.

[46] J. Hannan. Operational Semantics-Directed Compilers and Machine Architectures.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, 1215–1247,

1994.

[47] A. Hejlsberg, S. Wiltamuth, P. Golde. C# language specification. Addison-Wesley, 2003.

[48] G. Hopper. The Education of a Computer. Proceedings of the Association for Computing

Machinery Conference, 243–249, May 1952.

[49] S. C. Johnson. Yacc: Yet Another Compiler Compiler. Computing Science Technical

Report No. 32, Bell Laboratories, Murray Hill, NJ 07974, 1975.

[50] N. D. Jones. Personal Communication, 2013.

104

http://docs.racket-lang.org/reference/
http://docs.racket-lang.org/reference/

BIBLIOGRAPHY

[51] N. D. Jones, C. K. Gomard, P. Sestoft, L. O. Andersen, T. Mogensen. Partial Evaluation

and Automatic Program Generation. Prentice Hall International, 1993.

[52] N. D. Jones, P. Sestoft, H. Søndergaard. An Experiment in Partial Evaluation: The

Generation of a Compiler Generator. Lecture Notes in Computer Science, Vol. 202, 124–

140, Springer-Verlag, 1985.

[53] N. D. Jones, P. Sestoft, H. Søndergaard. MIX: A Self-Applicable Partial Evaluator for

Experiments in Compiler Generation. LISP and Symbolic Computation, Vol. 2, No. 1,

9–50, 1989.

[54] J. Jørgensen. Compiler Generation by Partial Evaluation. Master’s Thesis, DIKU,

University of Copenhagen, Denmark, 1992.

[55] J. Jørgensen. Generating a Compiler for a Lazy Language by Partial Evaluation.

Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, 258–268, 1992.

[56] U. Jørring, W. L. Scherlis. Compilers and Staging Transformations. Symposium on

Principles of Programming Languages, 86–96, 1986.

[57] M. Karr. Personal Communication.

[58] R. Kelsey, W. Clinger, J. Rees editors. Revised5 Report on the Algorithmic Language

Scheme. ACM SIGPLAN Notices, Vol. 33, No. 9, 26–76, 1998.

[59] S. C. Kleene. Introduction to Metamathematics. North-Holland, 1964.

[60] D. E. Knuth. Backus Normal Form vs. Backus Naur Form. Communications of the

ACM, Vol. 7, No. 12, 735–736, 1964.

105

BIBLIOGRAPHY

[61] P. J. Landin. The Mechanical Evaluation of Expressions. Computer Journal, Vol. 6,

308–320, 1964.

[62] H. Lawson. http://www.computerhistory.org/events/lectures/cobol_

06121997/index.shtml.

[63] P. Lee. Realistic Compiler Generation. MIT Press, 1990.

[64] P. Lee, U. Pleban. A Realistic Compiler Generator Based on High-Level Semantics:

Another Progress Report. Proceedings of the 14th ACM SIGACT-SIGPLAN symposium

on Principles of programming languages, 284–295,1987.

[65] M. E. Lesk. Lex – A Lexical Analyzer Generator. Computing Science Technical Report

No. 39, Bell Laboratories, Murray Hill, NJ 07974, 1975.

[66] L. A. Lombardi. Lisp as the Language for an Incremental Computer. The Programming

Language LISP: Its Operation and Applications, MIT Press, 204–219, 1964.

[67] D. Maier, D. S. Warren. Computing with Logic: Logic Programming with Prolog. Ben-

jamin Cummings, 1988.

[68] J. McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, 1962.

[69] W. M. McKeeman, J. J. Horning, D. B. Wortman. A Compiler Generator. Prentice-Hall,

1970.

[70] E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall/CRC, 2009.

[71] E. Moggi. Notions of Computation and Monads. Information and Computation, Vol.

93, 55-92, 1991.

[72] E. Moggi, W. Taha, Z. Benaissa, T. Sheard. An Idealized MetaML: Simpler, and More

Expressive. Proeedings of the European Symposium on Programming, 193–207, 1999.

106

http://www.computerhistory.org/events/lectures/cobol_06121997/index.shtml
http://www.computerhistory.org/events/lectures/cobol_06121997/index.shtml

BIBLIOGRAPHY

[73] P. Mosses. SIS, Semantics Implementation System: Reference Manual and User Guide.

DAIMI Technical Report MD-30, University of Aarhus, Denmark, 1979.

[74] A. Nanevski, F. Pfenning. Staged Computation with Names and Necessity. Journal of

Functional Programming, Vol. 15, No. 6, 893–939, 2005.

[75] F. Nielson, H. R. Nielson. Two-Level Functional Languages. Cambridge University

Press, 1992.

[76] P. Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in Common

Lisp. Morgan Kaufmann, 1991.

[77] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov, M.

Schinz, E. Stenman, M. Zenger. An overview of the Scala programming language. No.

LAMP-REPORT-2004-006. 2004.

[78] S. Owens, J. Reppy, A. Turon. Regular-expression derivatives re-examined. Journal of

Functional Programming, Vol. 19, No. 2, 173-190, 2009.

[79] L. Paulson. A Semantics-Directed Compiler Generator. Symposium on Principles of

Programming Languages, 224–232, 1982.

[80] E. Pelegrí-Llopart, S. L. Graham. Optimal code generation for expression trees: An

application of BURS theory. Symposium on Principles of Programming Languages, 294–

308, 1988.

[81] F. C. N. Pereira, D. H. D. Warren. Definite clause grammars for language analysis —

A survey of the formalism and a comparison with augmented transition networks.

Artificial Intelligence, Vol. 13, No. 3, 231–278, 1980.

[82] N. Pippenger. Theories of Computability. Cambridge University Press, 1997.

107

BIBLIOGRAPHY

[83] G. D. Plotkin. Call-by-Name, Call-by-Value and the λ-Calculus. Theoretical Computer

Science, Vol. 1, 125–159, 1975.

[84] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report

DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark,

1981.

[85] A. Rathore. Clojure in Action. Manning Publications, 2011.

[86] T. Rompf, M. Odersky. Lightweight modular staging: a pragmatic approach to run-

time code generation and compiled DSLs. Communications of the ACM, Vol. 55, no. 6,

121 – 130, 2012.

[87] T. Sheard, Z. Benaissa. From Interpreter to Compiler Using Staging and Monads.

Proceeeding of the 1998 International Conference on Functional Programming, 1998.

[88] T. Sheard, S. P. Jones. Template meta-programming for Haskell. Proceedings of the

2002 ACM SIGPLAN workshop on Haskell, 1 – 16, 2002.

[89] O. Shivers. Control-Flow Analysis of Higher-Order Languages or Taming Lambda. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA , USA, 1991.

[90] M. J. A. Smith. Semantics-Directed Compiler Generation. Part II Dissertation, Uni-

versity of Cambridge, Computer Laboratory, http://lanther.co.uk/compsci/

semcom/semcom.pdf, Cambridge, UK, 2005.

[91] J. Sobel, E. Hilsdale, R. K. Dybvig, D. P. Friedman. Abstraction and Performance

from Explicit Monadic Reflection. Unpublished manuscript, 1999.

[92] M. Sperber, R. K. Dybvig, M. Flatt, A. V. Straaten editors. Revised6 Report on the

Algorithmic Language Scheme. http://www.r6rs.org/.

108

http://lanther.co.uk/compsci/semcom/semcom.pdf
http://lanther.co.uk/compsci/semcom/semcom.pdf
http://www.r6rs.org/

BIBLIOGRAPHY

[93] G. L. Steele Jr. Building Interpreters by Composing Monads. Proceedings of the 21st

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 472 – 492,

1994.

[94] G. L. Steele Jr. Common LISP: The Language. Digital Press; 2nd edition, 1984.

[95] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory. MIT Press, 1981.

[96] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon

Graduate Institute of Science and Technology, Hillsboro, Oregon, USA, 1999.

[97] W. Taha, Z. Benaissa, T. Sheard. Multi-Stage Programming: Axiomatization and Type

Safety. Automata, Languages and Programming, 918–929, 1998.

[98] W. Taha, T. Sheard. Multi-Stage Programming with Explicit Annotations. Workshop

on Partial Evaluation and Semantics Based Program Manipulation, 203–217, 1997.

[99] P. J. Thiemann. Cogen in Six Lines. ACM SIGPLAN Notices, Vol. 31, No. 6. ACM,

1996.

[100] P. J. Thiemann. The PGG system–user manual. 2000.

[101] M. Tofte. Compiler Generators: What They Can Do, What They Might Do, and What They

Will Probably Never Do. Springer, 1990.

[102] F. Turbak, D. Gifford, M. A. Sheldon. Design Concepts in Programming Languages.

MIT Press, 2008.

[103] D. H. D. Warren. An Abstract Prolog Instruction Set. Report 309, Artificial Intelli-

gence Center, SRI International, Menlo Park, CA, October 1983.

109

BIBLIOGRAPHY

[104] D. H. D. Warren, L. M. Pereira. PROLOG — The Language and It’s Implementa-

tion Compared with LISP. Proceedings of the Symposium on Artificial Intelligence and

Programming Languages. SIGPLAN Notices Vol. 12, No. 8, 1977.

[105] R. L. Wexelblat. History of Programming Languages. Academic Press, 1981.

[106] J. Zeng. Partial Evaluation for Code Generation from Domain-Specific Languages. PhD

thesis, Columbia University, New York, NY, USA, 2007.

110

	A Transformation-Based Foundation for Semantics-Directed Code Generation
	Recommended Citation

	Acknowledgements
	Contents
	List of Figures
	Introduction
	A Semantics-Directed Approach to Code Generation
	Overview

	Background and Related Work
	Historical Overview
	Compiler Generators
	Partial Evaluation
	Staged Computation
	Summary

	The Transformation Technique by Example
	A Small Example
	Currying Dynamic Variables
	Code Via Quoting
	Lambda Lowering
	Expression Lifting
	Rule Ordering

	A Longer Example
	Currying
	Lambda lowering
	Expression lifting
	Quoting
	Output

	Summary

	A Formal Model
	The Interpreter Language
	The Transformation Rules
	Local Correctness
	Global Correctness of a Sum Language Example
	Applying the Transformations
	Correctness

	Global Correctness of an Abstract Denotational Example
	Applying the Transformations
	Correctness

	Beyond Denotational Interpreters
	Disentangling the Static and the Dynamic
	Unification Example
	Applying the Technique: A First Attempt
	Revising the Algorithm

	Introducing Explicit Fixed-Points
	Example: While Loops
	Example: Regular Expressions

	Replacing Text with Denotation
	Interpreters Manipulating Terms
	Environments Containing Terms

	Summary

	A Larger Example: PROLOG
	A Naïve Interpreter
	Efficiency and Denotation
	Improving Unification
	Currying and Lambda Lowering
	More Lambda Lowering
	Expression Lifting
	Code Generation
	Performance
	Summary

	Future Work
	Relationship to Partial Evaluation
	Additional Examples
	Additional Rules
	Additional Languages
	Automation

	Conclusion
	The Transformation Technique
	Denotational Interpreters and Beyond
	Comparison to Partial Evaluation and Staging
	Practical Benefits

	Lemmata

