
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

8-5-2014 

Parasitic Databases Parasitic Databases 

Svetlin Tzolov 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Tzolov, Svetlin, "Parasitic Databases" (2014). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F8487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/8487?utm_source=repository.rit.edu%2Ftheses%2F8487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Parasitic Databases

By

Svetlin Tzolov

Thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Information Technology

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences
Department of Information Technology

08/05/2014

Adviser: Dianne Bills 
Approval Committee Members: Edward Holden, Yin Pan



Table of Contents
Abstract.......................................................................................................................................................i
Basic Premise.............................................................................................................................................ii
What is a parasitic database?.....................................................................................................................ii

Figure 1. ICMP Packet Structure.....................................................................................................iii
Figure 2. Example Payload of ICMP Data Request Packet.............................................................iv
Figure 3. Example Payload of ICMP Data Request Reply Packet..................................................iv

Parasitic Database Storage Overview........................................................................................................v
Figure 4.1: Step 1 of Information Request.....................................................................................vii
Figure 4.2 : Step 2 of Information Request....................................................................................vii
Figure 4.3 : Step 3 of Information Request...................................................................................viii
Figure 4.4 : Step 4 of Information Request.....................................................................................ix
Figure 4.5 : Step 5 of Information Request.....................................................................................ix
Figure 5 : Basic Structure (assuming only two data packets)...........................................................x
Figure 6: Packet Cycling.................................................................................................................xi

Storage and Redundancy..........................................................................................................................xii
Figure 7: Redundancy Metrics......................................................................................................xiii
Figure 8: Redundancy Country Types...........................................................................................xiv
Figure 9: Redundancy Target Type.................................................................................................xv
Figure 10: Redundancy Connection Type.....................................................................................xvi

Who Would Use This Technology and Why?........................................................................................xvii
Database Issues.....................................................................................................................................xviii

Row Storage.....................................................................................................................................xviii
Figure 11: Data Encryption.........................................................................................................xviii
Figure 12: Result Example............................................................................................................xix
Figure 13: Simple Row Storage....................................................................................................xix
Figure 14: Alphanumeric Row Storage..........................................................................................xx

Requesting Rows/User Identification.................................................................................................xxi
Figure 15: Authenticator Identification........................................................................................xxii

Searching..........................................................................................................................................xxiii
Figure 16: Row Storage Salting..................................................................................................xxiv
Figure 17: Data Request Format..................................................................................................xxiv

Security Issues........................................................................................................................................xxv
Parasitic Database Server Security....................................................................................................xxv
Server and Data Security.................................................................................................................xxvii

Figure 18: Packet Interception....................................................................................................xxvii
Figure 19: Packet Stream Salting................................................................................................xxix
Figure 20: Row Reconstruction....................................................................................................xxx

Client Security...................................................................................................................................xxx
Figure 21: Algorithm Distribution...............................................................................................xxxi
Figure 22: Algorithm Acquisition Without Physical Media.......................................................xxxii

Practical Documentation.....................................................................................................................xxxiv
Conclusion..........................................................................................................................................xxxvi
References.........................................................................................................................................xxxviii
Appendix 1..........................................................................................................................................xxxix

Flowchart 1: Server Flowchart..................................................................................................xxxix
Flowchart 2: Client Flowchart.........................................................................................................xl



Acknowledgments

I would like to thank everyone who has helped me along the way of this thesis.

Firstly I would like to thank my adviser Dianne Bills, who has helped me every step of the way and has 
shown tremendous patience with my work. From helping me with developing my ideas to simply 
offering words of encouragement when they were needed. A wonderful scholar with a lot of truly 
interesting ideas and viewpoints on many fascinating topics. I truly could not have done it without you.

I would also like to thank the other members of my committee, Edward Holden and Yin Pan, both 
experts in their fields and wonderful professors. Their insight and multitude of different views on my 
works has helped me advance it much more productively.

I wish to thank all the professors that helped me through the classes that I have taken, as well as all the 
helpful RIT staff that has supported me throughout my study here.

Finally I would like to thank my family for all their support and encouragement through the whole 
process, from their concerns and words of reassurance to the constant question of when I am 
graduating. I am glad you had faith in me throughout the entire development of this work. I love you all 
and would have it no other way.



Abstract

A parasitic database combines the fundamental principles of parasitic storage with those of traditional 

database theory to create a distributed data storage strategy that provides basic database functionality in 

a design specifically intended to ensure high data security.  This approach is inspired by parasitic 

network storage in which information is stored within network traffic across many machines, usually 

unbeknownst to their owners, using a communication protocol such as Internet Control Message 

Protocol (ICMP), etc.  

The basis for parasitic data storage is that highly confidential user data is physically "stored" through 

continuous packet transfer between various nodes within a network. This thesis builds upon this initial 

idea and presents a possible design approach that uses standard ICMP packet architecture. Database 

data rows are divided across multiple packets on multiple network nodes by splitting and distributing 

them in the Data fields of ICMP packets. These database data packets can then be managed by a 

specially designed parasitic database management system with a client-server architecture.
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Basic Premise

The goal of this capstone is to gather information on and to propose a design for storing small amounts 

of highly confidential data “parasitically” on a computer network, hereafter called a “parasitic 

database” data-storage strategy. This includes an investigation on how this approach could be 

implemented, its benefits and usefulness, security, and some of the problems that could be faced if it is 

implemented. Key to this investigation is understanding the fundamental concepts of parasitic storage 

on computer networks.

The basis for parasitic data storage is that user data is physically “stored” through continuous packet 

transfer between various nodes within a network. This capstone builds upon an initial design idea - as 

proposed in a 2011 ACM poster session [7] - and presents a possible design approach that uses standard 

ICMP packet architecture. Database data rows are divided across multiple packets on multiple network 

nodes by splitting and distributing them in the Data fields of ICMP packets. These database data 

packets can then be managed by a specially designed parasitic database management system with a 

client- server architecture. The overall design emphasis is on maintaining both data security and data 

integrity.

What is a parasitic database?

The concept of a parasitic database is built upon the idea of parasitic storage. Parasitic storage means 

storing information on many machines and network nodes, usually unknown to their owners, in 

network traffic through either the Internet Control Message Protocol (ICMP) [1] or possibly with 

Simple Mail Transfer Protocol (SMTP). [3] 
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The basic idea supporting any communication between a networked client and server, including a 

parasitic database server, is the “ping-pong” system of ICMP. A ping is a simple packet sent to a remote 

machine that can be on a local or a remote network. Based on the RFC 792 specifications regarding 

ICMP [4], the protocol was designed for troubleshooting connections and determining whether or not a 

given machine, or network node, is reachable on a network. The default behavior for a computer that 

receives a ping packet is to respond with a pong packet. This pong packet contains the same data that 

was sent to it as a "life sign." This basic communications behavior is integral to the functionality of 

parasitic storage and by extension parasitic databases. Figure 1 shows the basic structure of the ICMP 

packets that is the basis for this investigation of parasitic databases.

Figure  1. ICMP Packet Structure

While the IP header section of the ICMP packet determines the “behind the scenes” functionality such 

as where it will be sent to and who (it is saying) it is sent by (i.e. the Source and Destination IP 

addresses) or the time to live (TTL) which determines through how many machines a packet can be 

routed, the important areas for this project are in the Payload section. This part of the packet contains 

the optional field Data which is critical to this entire idea. Any bits that are put into this field and sent 
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out with an ICMP are returned when the target machine responds, thus allowing for parasitic storage 

during the time that the packet is traveling.

Below is an example of a request for data from a client along with the reply containing the data from 

the server. Both messages include “salt” which is random bits of data that are inserted into passwords 

and other strings of data in order to make them more resistant to sniffing and other types of attacks. [5]

Type = 8 (Echo Reply Request) Code = 0 (No codes for 

Echo request)

Checksum = CALCULATED

Data = Username;Salt;Password;Salt;Identifier-of-Requested-Data;Salt

Encryption Key 1, Encryption Key 2

Figure  2.  Example Payload of ICMP Data Request Packet

In this example, the entire ICMP Data portion of the payload is transmitted as ciphertext. The distinct 

portions of the data (Username, Password and Identifier-of-Requested-Data) could be encoded with 

multiple separate keys in order to have layered protection in case there is a security leak and a key 

becomes known to unauthorized personnel.

Type = 0 (Echo Reply) Code = 0 (No codes for 

Echo request)

Checksum = CALCULATED

Data = ServerID;Salt;Data;Salt

Encryption Key 1, Encryption Key 2

Figure  3. Example Payload of ICMP Data Request Reply Packet
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Just like in the previous example, the ICMP Data field of the packet is used to send the database data 

back to the requesting machine while still maintaining security through the use of salt and encryption. 

This functionality is explained in more detail in the Database Issues section of this document.

Parasitic Database Storage Overview

The fundamental goals of a parasitic database are to provide the basic functionality of a traditional 

RDBMS and to follow important principles such as ACID where possible, while providing several 

extra layers of security in the form of data distribution over many nodes, encryption, salt as well as an 

authentication system that can be tailored to various different deployment possibilities.

To accomplish the goals of parasitic databases, the Data field in the payload of ICMP packets is filled 

with the database data that needs to be stored and that will be sent to a target machine. Once it reaches 

the target machine, the packet with the payload is returned either immediately (ICMP) or after a 

specified time (SMTP). This data is then sent out to another machine, without retaining it on the host. 

Essentially this creates a constant up/down “stream” or flow of data that is never stored on the local 

host but is instead continually cycled between the host and the external machines. Some of the benefits 

of using a parasitic database include increased data security due to the nature of parasitic storage as 

well as plausible deniability1 due to the setup of data transfer.

Using this approach for data storage requires that both the user data and the database metadata be 

organized and stored so that external users can be authenticated or otherwise authorized, specific data 

can be requested by these users, and typical data modification activities are supported - all without 

1 ICMP traffic is common and the packets created by this system are not really distinguishable from other legitimate 
network traffic unless there is a security leak.
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interference or loss of security.  This type of datastore can reside on a network with no, or only very 

short-lived, storage making this design ideal for handling sensitive information.

The principles for this are similar to the basis behind the authentication methods used in high security 

systems. An example would be the authenticators that are used for remote, and sometimes even local, 

connections to high-security systems. The passwords that these devices periodically create exist for a 

very short time frame and are only valid until the next one is automatically generated. This makes 

acquiring one by illegitimate ways very difficult since the information is only valid for a very short 

time, much like the idea behind the packet system of the parasitic database. [6]

 

Simply stopping the Parasitic Database Server would destroy all of the database data without a trace, 

since all packets stored under this strategy are transiently kept in memory as well as in the network 

stream and would be lost when the machine loses power. 

A request for information could be handled as follows. Please note that the following diagrams are 

simplified by  assuming that there is only one single ICMP packet.
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Figure  4.1: Step 1 of Information Request

This diagram displays the first step of the information request process. A single packet containing some 

data is being “bounced” back and forth with ICMP messages between the parasitic data host and a 

storage machine somewhere in cyberspace.

Figure  4.2 : Step 2 of Information Request
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The second step of the request process is that the Information Requester sends a PING request to a 

random machine using a “spoofing” process.  This means that the ICMP packet sent will contain the IP 

of the Parasitic Database Host in the header as the “Source IP,” rather than the IP of the machine that 

truly sent it, namely the Information Requester. The ICMP Data field will contain the requested 

information ID or other identifier, as well as the real IP of the Requester, so that once the packet is 

received by the Parasitic Database Host it will know how to structure the return packet. This means that 

the random machine that is chosen is being used as a proxy.

Figure  4.3 : Step 3 of Information Request

In Step 3 of the request process the request is forwarded through a “reply process.” The previously 

mentioned Random Machine forwards the request as a pong response to the Parasitic Database Host, 

due to the nature of the header which contained its IP address in the source field. Thus, the random 

machine believes that the Parasitic Database Host originally sent the packet.
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Figure  4.4 : Step 4 of Information Request

Once the Parasitic Database Host reads the payload of the packet it will retrieve the information 

requested by waiting for the data (in previously sent out packet(s)) to return; and forwards it as one or 

several ping packets to another Random Machine with a spoofed IP header containing the IP of the 

Requester, forcing the Random Machine to essentially forward the packet instead of replying, just like 

before.

Figure  4.5 : Step 5 of Information Request
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As shown in Figure 4.5, the Random Machine then “replies” to the ping of the Parasitic Database Host 

and forwards the Pong to the Requester which then decodes the information in the payload of the 

packet in the same way that the initial request was handled. During this entire exchange no direct 

contact has been established between the Parasitic Database Host and the Information Requester at any 

point in time. As previously mentioned, this provides plausible deniability in external networks and an 

added layer of security in internal ones.

Figure 5 displays the basic structure of the “storage” technique that can be used when designing a 

parasitic database, as well as a simple explanation of how redundancy could work. Again, transmission 

complexity is simplified by assuming only two data packets.

Figure  5 : Basic Structure (assuming only two data packets)
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The data would be read from an external source which is disconnected after all data has been read. The 

separate data payloads are then sent out to Machines 1 and 3 on the network. The Parasitic Database 

Host or PDH, which functions as a packet injector, calculates (as explained in the Storage and 

Redundancy section) while sending out the packets that they need only one redundant backup each and 

sends these copies to Machine 2 and 4. This means that there are now two copies of each packet 

circulating throughout the network.

Figure  6: Packet Cycling
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Figure 6 deals with the cycling mechanics of the database, which are used to prevent the data packets 

from being noticed by the external machines (otherwise they could appear to be a DOS attack or at 

least a PING probe) or from being predictable and vulnerable to sniffing or other types of detection. To 

accomplish this, the packets cycle through many machines in a predetermined order that enables the 

parasitic database host to avoid arousing unnecessary suspicion. In the above example we assume one 

packet and a cycling count of four. The initial payload is sent to External Machine 1. Once the pong is 

received the data is then sent out again to External Machine 2 with the same process repeating for all 

four machines. Once the fourth machine replies, the cycle starts anew at Machine 1. This should 

provide a good balance between detection prevention and using too many different external machines 

which could cause unnecessary overhead.

Storage and Redundancy

Redundancy is a key property for any type of database, be it in the form of backups, mirror sites or 

other methods of ensuring that no data is ever lost.  Due to the nature of this database and the fact that 

security is a critical issue, backups cannot be made in the same way as traditional databases.  Thus 

there needs to be a different type of redundancy to make sure that there is no data loss, even if a data 

node holding a given packet goes down. To ensure this, the server must send out multiple copies of 

each packet in order to ensure that a copy of a given data item is always available. An easy way to do 

this is to have a set number of redundant packets. However this simplistic approach could either result 

in too much redundancy, and thus cause pointless bandwidth use, or too little redundancy, risking data 

loss. A better way to balance bandwidth use and achieve the level of redundancy necessary to avoid 

data loss is to calculate the required number of redundant packets on the fly depending on a number of 

relevant factors. These factors are:
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Metric Symbol Type or Units

Bandwidth B Bytes/second

Bandwidth Used BU Percentage (%)

Server Location Country Type C Category (see Figure 8)

Target Location Country Type CT Category (see Figure 8)

Target Type T Commercial/Residential

Connection Type CT DSL/Dialup/Satellite/Cable

Number of Data Chunks D Integer

Figure 7: Redundancy Metrics

There has been some research done on redundancy for parasitic storage [1][2], but not for the specific 

scenario of a parasitic database. Other formulas and calculations for this handle this issue differently. 

Some assume multiple senders and receivers as well as an at least a somewhat controlled environment, 

meaning that variables such as line noise are important. The difference between these calculations and 

what is required for the parasitic database is that the parasitic database will host small amounts of data 

in various different locations in the world and it concentrates more on security, authentication and 

sending discrete amounts of information through proxy machines rather than on raw throughput. It is 

important for a database like this to remain “off the radar” by not being too active; so the total amount 

of data that this type of database can store is dependent on how “hidden” it needs to be. Limiting its 

throughput and therefore storage capability has to be balanced to allow for the data lookups and other 

requests that a database must handle.[2] Because this kind of database could be deployed in various 

locations in the world, it lends itself to providing a secure information exchange service in the field for 

various types of organizations and corporations. Because of this potentially broad area of deployment, 

it is important to have a redundancy formula that takes into account the capabilities of the available 

network infrastructure at a given location, rather than specific line qualities. This would allow it to be 
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deployed in both underdeveloped countries as well as in the internal networks of sophisticated 

organizations. Because security and not throughput is the main concern of a parasitic database, the 

calculations below concentrate more on the overarching performance measurements rather than on line-

specific details.

In order to allow extra, non-database related commands to be run, such as IP lookups for countries, as 

well as to account for network issues, roughly 65-70% of the total bandwidth  could be used to run the 

database. This should ensure that data loss is highly unlikely and that the connection does not arouse 

suspicion by being at peak use at all times due to the noise that can be created using the extra 

bandwidth.  In cases where secrecy is of greater importance, much less of the bandwidth should be 

used, say about 10-20%. In such cases the data is generally much smaller and more compact as well, 

which lends itself well to this approach. In order to prevent suspicion the rest of the bandwidth can be 

used to simulate regular Internet use with highs and lows according to the hour of day. These are just 

rough estimates, however; and more precise measurements should be done as the investigation of this 

topic progresses.

The country in which transmission occurs is also important for this type of implementation and it can 

be summarized as follows:

Type Examples Factor

Highly Developed Networks USA, Canada, Germany, France etc. 2

Medium Developed Networks Serbia, Kosovo etc. 3

Underdeveloped Networks Iraq, Ghana, Bhutan etc. 4

Figure 8: Redundancy Country Types
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These categories would each provide a factor for the formula to ensure that packets do not get lost due 

to connection problems both within the countries from which they are being sent or the countries to 

which they are beings sent.

Pinging a payload to a commercial machine such as a commercial website server or an internal 

company server would have a greater potential of “staying alive” than using a residential machine 

which might be turned off, disconnected, or change its IP address at any time. This means that a packet 

going out to a commercial machine needs less redundancy in order to ensure no loss of data than a 

packet sent to a residential one.

Type Examples Factor

Commercial www.google.com, in-house server 2

Residential Any personal machine 4

Figure 9: Redundancy Target Type

The different connection types available are shown in Figure 10.  It is important to note that some are 

more prone to connection problems than others. Anything sent through a cabled connection has a lesser 

chance of being lost when compared to satellite. Both of these are also much less likely to lose any 

packets when compared to dial-up, which gives us the following possible values for redundancy:
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Type Factor

Cable 1

Satellite 2

DSL 1

Dial-up 4

Figure 10: Redundancy Connection Type

A sample calculation, according to the metrics in Figure 7, of how much redundancy is needed could 

look like this:

Calculation Formula Explanation

Total number of packets 

that can be sent

((B*(BU/100))/70) ((Total Bandwidth*(Percent of 

Bandwidth to be 

used/100))/size of ping packet)

Total Number of Packets 

that need to be circulating 

for appropriate data 

redundancy

D*(C+CT+T+TC) Number of packets*(Country 

Type Server + Country Type 

Target + Target Type + 

Connection Type)

If the number of packets from calculation #1 > calculation #2 then this implementation can work as this 

means that there is enough possible bandwidth to accommodate it in a given location.  The total packet 

redundancy required would be  C+CT+T+TC per packet.
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Who Would Use This Technology and Why?

When using the ICMP protocol, this technology allows relatively small amounts of data to be stored in 

a parasitic manner: roughly 7.3GB on a 2Mbps connection and up to 365GB or more on a 100Mbps 

line,  as calculated by Michal Zalewski in “Silence on the Wire” [3]. However neither of these numbers 

factors in any of the extra functions and additions to the parasitic model that are required to support a 

database architecture such as redundancy and obfuscating traffic.

This data storage strategy could be beneficial to a variety of organizations where data security is key. 

On the high end, highly competitive research and development companies could decide to keep 

strategic and key information on new prototypes, experiments or discoveries in a parasitic database 

within their own internal network. This would add security should their external security measures be 

breached, since an attacker would first have to determine that such a database strategy is in use and 

then manage to sniff and decrypt coherent messages from the network traffic. Ideally, before the time 

that this could occur, a company with appropriate network security would have noticed the breach and 

would be acting upon it.

On the other end of the spectrum, this type of database can be used by private and federal organizations 

that handle sensitive operations where access to information needs to be discrete and very hard to trace. 

This could provide security in undercover operations for example, where agents would be under 

surveillance. Authenticating and accessing data in this type of database would be nearly impossible to 

identify and trace unless somebody knew exactly what to look for, and even then would be very hard 

due to the use of encryption and salt which adds additional layers of security.
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Database Issues

There are many different features that make up a database; however for this implementation only the 

basics will be considered. These include handling the relational table architecture as well as the DML 

commands that are used to enter, edit and delete data. To implement these functions the database and 

the clients will have to use techniques such as IP spoofing and packet header modification in order to 

re-direct packets as required.

Row Storage

Storing the row data comes in two parts: pre-seed and post-seed. For pre seed, the rows are stored in an 

unencrypted format, fed through an encryption/salting program (Figures 11, 12) then seeded into the 

network to which the server is currently connected.

Figure  11: Data Encryption
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Figure  12: Result Example

Once the data is seeded, it is stored on the server in a way that allows for its retrieval and transmission 

should it be requested by a client. This involves using a simple indexing system as well as adding 

identifiers for the start of each row, in order to allow the reconstruction of the row by the client as 

required and as explained in the Security section of this document. See the Figure 13 for an example of 

how a seeded row would look when stored on the database server.

Primary Key Row Packets

1 142;421;531;23;551;203;124;125;5094

Figure 13: Simple Row Storage

Each row that is stored on the server follows this pattern. Each has a primary key as a unique identifier. 

This is used when rows are requested, in order to retrieve the required packets and resend them. For 

simplicity, this identifier can be either a system-generated, non-data pseudo-key (such as a numerically 

increasing integer - although it does not allow for any true searching) or some type of alphanumeric 

identifier that represents at least some part of the data that is required for searching such as dates, 
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names etc. The row packet stream simply states the IDs of packets that belong to this row in no specific 

order aside from the first one, as it denotes the first packet of the row in order to allow the client know 

when it receives it where to begin.

The primary key can be coded in various ways to increase security and to only allow certain people to 

understand and use it for searching the database, as show in the example below.

Primary Key Row Packets

3A1930 142;421;531;23;551;203;124;125;5094

Figure 14: Alphanumeric Row Storage

For example this sort of primary key could denote data from 3rd August 1930 or Room 3A in building 

19 on floor 30. Using this sort of system supports versatility while not completely compromising 

security. It does, however, limit the data somewhat since the primary key always needs to be unique 

which is data dependent.  This can be impossible for some types of data, and composite keys are more 

difficult to implement. Composite keys would also lower data security since such a key would reveal 

more about the data than would a unary key. Using anything other than a pure numeric primary key 

lowers security in situations in which the server is compromised however it allows for (better) 

searching and thus is a decision that must be weighed based on the specific goals of the system to be 

implemented.

The row packet identifiers (IDs) are encrypted and stored in the Data portion of the ICMP packet along 

with the data. The IDs for each packet are provided during the encryption process and are encrypted 

according to an algorithm that does not grant them in a specific order as part of the security design. 
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Some of the IDs belong to bogus data packets inserted solely for noise; however the server does not 

differentiate them and it is up to the client to be able to filter out the unnecessary data, as explained in 

the Security section of this document. The packets are listed in a random order in the packet ID string, 

not in the order that the IDs were given, in order to increase security. The only ID that has a given order 

is the first one, since it is important to denote which packet begins a row without any identification for 

the end of the row or the order of the packets. This allows for the reconstruction of the row when 

received by the client while still providing sufficient security for the data.

Requesting Rows/User Identification

Requesting rows from the server follows the basic method shown in Fig. 4.1 - 4.5 which is designed to 

maintain security.  Requesting rows from the server is only possible by requesting certain rows by 

primary key which was described in the previous section. 

To increase data control, a simple username/password system could be implemented in order to add 

another layer of security. Such an implementation would look something like what is shown in Figure 

2. This would allow only registered users to make use of the system which could be useful on closed 

networks such as internal corporate networks; however it opens up another set of data that can be 

compromised should the server be successfully attacked. This makes it slightly less useful for using this 

system on open networks such as the Internet. It does, however, allow different users to have different 

sets of permissions in order to access restricted portions of the data.

A possible authentication system that can be used on an open network is something that uses a timed 

identification token such as a RSA dongle or other approach that provides an algorithm-based 

authentication token. This would allow clients to forgo using user names, which could be traced for 
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traffic or identification, completely while still allowing only authorized clients from accessing the data. 

The following could be an example of this setup.

Type = 8 (Echo Reply Request) Code = 0 (No codes for 

Echo request)

Checksum = 

CALCULATED

Data = Salt;Authenticator Token;Salt;Identifier of requested data;Salt

Figure 15: Authenticator Identification

This setup is not impervious to a security breach however. If an attacker can compromise the 

authentication and salting algorithm it would be possible to request any data from the server. Even if 

they could not make use of it, this would be a security issue since it violates the rule of least privilege.  

However it does more to protect individual users from being identified in case of a breach since there 

would be no way to identify individual users when using the same authentication algorithm.

There is a middle ground between these two options, however. It would also be possible to split data 

access into roles, as is done in many RDBMS such as Oracle, each having a separate authentication 

algorithm that would allow the database to still implement the rule of least privilege while not 

identifying individual users outright.

Similar to the primary key issue, the way that the authentication is done depends entirely on how and 

where the system is implemented.  Either can be supported.
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Searching

While security is undoubtedly an important part of the parasitic database, so is the basic database 

functionality that is necessary for a system of this type to function. While many of the more complex 

database functions that many take for granted in commercial databases are undoubtedly useful, they are 

less feasible when dealing with the security measures put in place in this design. Functions such as 

multiple row retrieval and advanced searching using multiple WHERE clauses, for example, are very 

hard to implement in the current design since they require the server to have direct access to the data. 

Giving the server access to the data is too big of a security risk for the functionality to compensate. 

This database has not been designed to handle small databases containing simple, sensitive data that 

does not require a lot of filtering to use. 

The middle-ground solution for this limitation, however, would include some of the data, perhaps even 

metadata, in the primary key to allow it to be searched like a string. Various parts of the key string can 

represent different pieces of information as shown in the Row Storage section of this document. This 

would be the only way that searching could be feasible in the current setup; however it means that the 

primary keys would need to be salted at the very least in order to prevent data leaks in the case of a 

security breach. If we take the example we used in that section the salted result could look something 

like the following.

Original

Primary Key Row Packets

3A1930 142;421;531;23;551;203;124;125;5094
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Salted

Primary Key Row Packets

3214DGQWA1412QS9332FS0OIS 142;421;531;23;551;203;124;125;5094

Figure 16: Row Storage Salting

As shown in Figure 16, the data needed for a search is still there but would be much harder to decipher 

should it be accessed by someone without authorization. Now to enable searching, all primary keys 

would need to follow the same formula for construction as well as use the same salting algorithm and 

be the same length. The server would need to have access to the salting algorithm in order to be able to 

do searches on the primary key which is a security issue; however for some implementations it would 

be better to allow the server access to it rather than not having it depending on the deployment location 

of the server.

Searching could be implemented by allowing simple clauses to be sent to the server such as the 

following.

Type = 8 (Echo Reply Request) Code = 0 (No codes for 

Echo request)

Checksum = 

CALCULATED

Data = Salt;Authenticator Token;Salt;RWHYG1900;Salt

Figure 17: Data Request Format
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Assuming the primary key for this row included the year 1930, this request could mean Request WHere 

Year Greater than 1900. This is a simple example, however, and it can be enhanced with salting the 

request format itself to increase security. This would require a basic database interpretation engine to 

either be obtained or more likely written for this purpose, in order to include the various salting 

algorithms. Considering that the clauses that can effectively be used in this setup are limited, a full 

engine would not be required.

Security Issues

Security is always an issue when it comes to data and information storage, and it is no different here. 

However, several additional threats are present along with the common ones that target databases. 

Local security relating to securing the physical machine that is running the parasitic database will be 

briefly discussed but not focused upon.

Parasitic Database Server Security

In order to start the flow of information into the parasitic database, the server must at some point have 

access to data in raw form. This is a large security concern because the data that is to be sent out would 

generally be sensitive and a compromise here would be catastrophic. To improve security, the database 

data to be sent would be pre-encrypted on an external machine with no network connectivity in order to 

prevent any network-related security concerns and to maintain the ability to strictly control physical 

access to the machine. The encoding process would include the introduction of salt and white noise to 

the data. The database data would then be split up into files containing packet-sized payloads and 

prepared for insertion into the database. By doing this, the data that is being transported to the server 
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and ultimately sent out is useless without the decryption key as well as knowledge of the algorithm that 

determines the sequence of valid packets.

This data is then stored on an external storage device that will be used to transfer the data onto the 

server. The server will sequentially read each file with the encoded data and send it out into the 

network, setting up redundancy as it goes. Once all the data is read and sent into the network, the 

external storage will be removed to increase security. The data would now exist solely on the network 

as payloads. The actual server does not store any of the data at any time and does not have access to 

any of the encryption/decryption keys. This means that even a physical compromise of the system 

would not cause a sure loss of data. The server also has no access to the salt algorithm which means 

that it has no way of distinguishing the real data packets from the fake ones. It simply replies to any 

requests by retrieving the needed packets and simply forwarding the payload.

As displayed in Figure 7, the unencrypted data file, which is read from an external medium, is sent 

through an encryption program that encrypts it as well as splitting it up into packet-sized files and 

introducing salt as shown in Figure 8. By providing pre-split chunks of data we eliminate or at least 

vastly limit the need for packet fragmentation which would cause unnecessary overhead as well as 

possibly arouse suspicion if the packets that are sent out are too large.

Figure 12 shows an example of the result of the encryption process described in Figure 11. The base 

data, once read, will be encrypted, split and then injected with bogus data as false packets according to 

an algorithm. Only those parties that possess the correct algorithm to filter out the salt will be able to 

read the real data. This helps ensure the security of the data and increase resistance to sniffing attacks 

as well as sequential reads of the data when it is being loaded into the Parasitic Database Server or 
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This figure shows a simplified setup of a row of data being split into four packets, each sent to a 

different external machine.  Packet 3 is intercepted either by a malicious hop in the routing that the 

packet takes or at the external machine itself, since there is no real way to know what machine the 

packets are being sent to outside of obvious IP ranges  such as corporate or government controlled 

servers that are likely to have packet scanning firewalls installed. Whatever the case may be, Packet 3 

is now compromised. On its own, however, it is completely useless, since it will contain only part of 

the encrypted data as well as salt.  Thus it only has a "worth" similar to a portion of an encrypted .zip or 

.rar file which are functionally "corrupt" and unusable until the entire archive is assembled.

Even if three quarters of the packets in this example were intercepted the same measures would prevent 

access to the data. If all four of the packets are compromised, which means that there are other security 

issues present, this database setup prevents full access in several other ways.  First, there is no way that 

an attacker will know exactly how many packets are  used to transmit a row of data. While the packets 

are numbered in a way that allows them to be ordered after receiving them, there is no termination 

character that denotes the end of a row as a security measure. Rows that are requested from the 

database are known to be complete only when received, ordered, desalted and decrypted, since openly 

designating where rows begin and end would be a security flaw in this setup.

Second, an attacker would not know how to order any of the packets intercepted unless he is privy to 

the numbering system used. If an attacker knows the system used for this database setup then there are 

internal security issues that need to be addressed since this information is not available on the actual 

parasitic database host - again as a security measure to prevent information being accessed if it is 

compromised.  This information is only available to the client. An unauthorized person having this 

information would mean that the security of the client application has been breached.
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Third, if the previous security measures have failed and the data has been intercepted and properly 

ordered, the attacker would still need to filter out the bogus packets, since each row is salted not only 

within the data, but with additional salt-packets within the packet stream as well (see Fig. 19).

Figure 19: Packet Stream Salting

As shown in this example, a single row of data would be sent out as twelve packets, four of which are 

filled with completely bogus data, yet are still sent when a row is requested. This is to strengthen the 

resistance of the database to unauthorized access even if a full row of data is somehow intercepted. 

Once the whole row is received, the client application must filter out the bogus packets before 

decrypting or the resulting data will be corrupt, even though it does contain the row data somewhere. 

To do this properly the client requires a separate algorithm to know which packets to filter out.  This 

information is stored separately from the actual application.

Fourth, if all previous security measures have failed, which means a catastrophic breach in security, 

there is one final security measure in place to help prevent access to the data  which is the actual data 

encryption and salt algorithms. These allow the received, assembled, filtered data row to actually be 

decrypted into usable data. They are again stored separately in order to prevent total security failure 

should the client application be compromised. See Fig. 20.
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Figure 20: Row Reconstruction

Client Security

Keeping the server (and the data that flows from it) secure is very important since it is a single point of 

failure should proper security measures not be taken.  However, it is also vital to secure the client since 

it contains information that could annul all other security measures if handled incorrectly.

As discussed previously the client has access to the following system components that each require 

security measures:

 IP of the parasitic database host

 Bogus packet pruning algorithm

 Salt algorithm

 Encryption algorithm

Due to the amount of information that the client requires in order to function, it is vital to protect these 

separate components in a way that makes sense for the specific setup that is used. The easiest way to 

provide security is to store each of the items noted above in a separate physical medium, such as USB 
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parasitic database host. The reply will be in the standard ping format; however there are some changes. 

The first request will garner a response containing the salt algorithm. This will be unencrypted and will 

not contain bogus packets, but since it is only one design component this is a necessary risk in order to 

accomplish a functional client. The next request will be for the bogus-packet pruning algorithm, which 

will be returned salted but unencrypted and, obviously, without bogus packets. The final request will be 

for the encryption algorithm which will be returned salted and filled with bogus packets. After all 

algorithm components have been acquired the client can begin operating. This process would need to 

be repeated each time the computer/client is restarted which can also be a possible security issue.   

However it is a risk that is necessary in order to avoid physical media.

This setup is not completely vulnerable before it receives the various algorithms, however.  This is 

because the client still uses the communication system detailed in Figure 4.2 and Figure 4.3. This 

design allows the requests to have at least some basic security in that there is never any direct 

communication between the client and the parasitic database host, whether for requesting the various 

algorithms or the data itself. This combined with the constant network traffic load that an average 

computer generates, along with that from other machines on the same line as well as any additional 

noise created on purpose for the sake of obfuscation would make it more difficult to trace any specific 

packet flow to and from the client or the server.
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Practical Documentation

For this thesis, the practical implementation addresses the foundation functionality of the parasitic 

database approach proposed with the sole purpose of presenting the basic services of data storage: data 

packet cycling along with request formation and handling by both the database client and server.

Multithreading is a necessity for even a basic implementation since the server's listener must continue 

to function while other functions (such as sending replies) are running or else data cycling and client 

requests could be lost. Multiple instances of other functions, such as handling multiple requests, can 

only be used when multithreading is available.

In order to be able to send data requests from the client to the server, as well as the requested data 

packets back to the client, IP addresses need to be spoofed. This can be done using a third machine as a 

middleman in order not to have a direct connection between the client and the server. To do this 

network packets need to be constructed from the lowest network layer, i.e. the physical layer, in order 

to select the NIC that will be used to send the packets, Ethernet and finally the IP where the actual 

spoofed IPs were introduced to the packet. The ICMP packet is then formed by combining all the 

necessary layers along with the payload (i.e. data) that it will contain. (See Appendix 1)

The server application consists of one listener that is set to listen for both client data requests and the 

data packets it sends itself for the storage cycling process. For the purposes of this capstone there are 

only two data packets, each storing one row of user data, both of which are hardcoded into the 

application. Full database functionality is left for later implementation. While cycling these packets via 

ICMP requests, the server listens for requests from the client application and either sends the requested 
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packet or shows an error message should a non-existent packet be requested.

The client application consists of a listener and the functionality necessary to request one data packet at 

a time. Once the data packet is received it is simply displayed. Again, full client functionality is beyond 

the scope of this capstone effort.

While this is a very simplistic demonstration of how the foundation communications of the proposed 

parasitic database system could work, a true implementation would include several other, mostly 

security, functions as well as full DMBS functionality. The data that is stored in the packets would 

never be hardcoded but rather encrypted using an external application then read into the server from a 

removable external storage device. The data itself would be fragmented across multiple packets as well 

as salted and sent in a random order. This however is not needed to demonstrate the basic parasitic 

data-handling functionality, and has been omitted in this initial implementation.

Several attempts to create this applications were made, in several different programming languages. 

Initially the plan was to create it in Java. However to create an application like this requires very low 

level access to system calls in order to craft the ICMP packets used, and Java does not provide such 

native functionality. The next language tried was C, which while having all the necessary capabilities, 

proved to be unnecessarily complex, especially the code needed for some parts of the packet crafting 

process such as the checksum calculations. Doing multithreading in C is also rather arduous to 

implement. Thus the final application was written in C# using SharpPCap and PcapDotNet libraries2 

that allowed for access to the lower levels of the network protocol stack and enabled the creation of 

custom ICMP packets with spoofed IPs.

2 http://pcapdotnet.codeplex.com/, http://sourceforge.net/projects/sharppcap/
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Conclusion

This thesis proposes the use of parasitic network storage for user data storage and outlines one possible 

way to design and implement a parasitic database along with its basic functionality, with emphasis on 

security and implementation details. The goal of this data storage strategy is to provide a secure 

database platform for small sets of private or sensitive data that needs to be secured against network or 

physical intrusion.

The concept of data packet cycling was developed as well as methods to ensure sufficient packet 

redundancy so that user data is not lost. The communication approach using spoofed IP addresses - to 

help ensure anonymity by using a random computer on the Internet as a relay - was proposed since 

regular parasitic storage includes direct communication. Methods to help maintain data security such as 

encryption, salt and specific distribution methods for the data were also discussed, as well as basic 

database functionality such as querying, inserting and deleting rows.

A full implementation of the current design would include an encryption program to encrypt, salt, and 

prepare the packets which would be fed into the server for storage via packet cycling. Appropriate 

algorithms need to be identified or created for this. A proper implementation of the redundancy formula 

is also needed in order to prevent data loss. Furthermore, many of the traditional database capabilities 

are needed, such as functionality for inserting, deleting and updating rows as well as addressing the 

issue of data indexing to support data searches and maintenance.

Further development of this project could include applying the methods researched here to other packet 
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types such as SMTP or VoIP or even completely different network-based deployment systems. A more 

in-depth and network-sensitive design of the database functionality  (indexing, inserting/deleting rows, 

dealing with row locking, etc.) should be investigated as well. 
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Appendix 1

Flowchart 1: Server Flowchart
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Flowchart 2: Client Flowchart
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