
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-5-2014

Parasitic Databases Parasitic Databases

Svetlin Tzolov

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Tzolov, Svetlin, "Parasitic Databases" (2014). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F8487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/8487?utm_source=repository.rit.edu%2Ftheses%2F8487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Parasitic Databases

By

Svetlin Tzolov

Thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Information Technology

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences
Department of Information Technology

08/05/2014

Adviser: Dianne Bills
Approval Committee Members: Edward Holden, Yin Pan

Table of Contents
Abstract...i
Basic Premise...ii
What is a parasitic database?...ii

Figure 1. ICMP Packet Structure...iii
Figure 2. Example Payload of ICMP Data Request Packet...iv
Figure 3. Example Payload of ICMP Data Request Reply Packet..iv

Parasitic Database Storage Overview..v
Figure 4.1: Step 1 of Information Request...vii
Figure 4.2 : Step 2 of Information Request..vii
Figure 4.3 : Step 3 of Information Request...viii
Figure 4.4 : Step 4 of Information Request...ix
Figure 4.5 : Step 5 of Information Request...ix
Figure 5 : Basic Structure (assuming only two data packets)...x
Figure 6: Packet Cycling...xi

Storage and Redundancy..xii
Figure 7: Redundancy Metrics..xiii
Figure 8: Redundancy Country Types...xiv
Figure 9: Redundancy Target Type...xv
Figure 10: Redundancy Connection Type...xvi

Who Would Use This Technology and Why?..xvii
Database Issues...xviii

Row Storage...xviii
Figure 11: Data Encryption...xviii
Figure 12: Result Example..xix
Figure 13: Simple Row Storage..xix
Figure 14: Alphanumeric Row Storage..xx

Requesting Rows/User Identification...xxi
Figure 15: Authenticator Identification..xxii

Searching..xxiii
Figure 16: Row Storage Salting..xxiv
Figure 17: Data Request Format..xxiv

Security Issues..xxv
Parasitic Database Server Security..xxv
Server and Data Security...xxvii

Figure 18: Packet Interception..xxvii
Figure 19: Packet Stream Salting..xxix
Figure 20: Row Reconstruction..xxx

Client Security...xxx
Figure 21: Algorithm Distribution...xxxi
Figure 22: Algorithm Acquisition Without Physical Media...xxxii

Practical Documentation...xxxiv
Conclusion..xxxvi
References...xxxviii
Appendix 1..xxxix

Flowchart 1: Server Flowchart..xxxix
Flowchart 2: Client Flowchart...xl

Acknowledgments

I would like to thank everyone who has helped me along the way of this thesis.

Firstly I would like to thank my adviser Dianne Bills, who has helped me every step of the way and has
shown tremendous patience with my work. From helping me with developing my ideas to simply
offering words of encouragement when they were needed. A wonderful scholar with a lot of truly
interesting ideas and viewpoints on many fascinating topics. I truly could not have done it without you.

I would also like to thank the other members of my committee, Edward Holden and Yin Pan, both
experts in their fields and wonderful professors. Their insight and multitude of different views on my
works has helped me advance it much more productively.

I wish to thank all the professors that helped me through the classes that I have taken, as well as all the
helpful RIT staff that has supported me throughout my study here.

Finally I would like to thank my family for all their support and encouragement through the whole
process, from their concerns and words of reassurance to the constant question of when I am
graduating. I am glad you had faith in me throughout the entire development of this work. I love you all
and would have it no other way.

Abstract

A parasitic database combines the fundamental principles of parasitic storage with those of traditional

database theory to create a distributed data storage strategy that provides basic database functionality in

a design specifically intended to ensure high data security. This approach is inspired by parasitic

network storage in which information is stored within network traffic across many machines, usually

unbeknownst to their owners, using a communication protocol such as Internet Control Message

Protocol (ICMP), etc.

The basis for parasitic data storage is that highly confidential user data is physically "stored" through

continuous packet transfer between various nodes within a network. This thesis builds upon this initial

idea and presents a possible design approach that uses standard ICMP packet architecture. Database

data rows are divided across multiple packets on multiple network nodes by splitting and distributing

them in the Data fields of ICMP packets. These database data packets can then be managed by a

specially designed parasitic database management system with a client-server architecture.

Svetlin Tzolov 1

Basic Premise

The goal of this capstone is to gather information on and to propose a design for storing small amounts

of highly confidential data “parasitically” on a computer network, hereafter called a “parasitic

database” data-storage strategy. This includes an investigation on how this approach could be

implemented, its benefits and usefulness, security, and some of the problems that could be faced if it is

implemented. Key to this investigation is understanding the fundamental concepts of parasitic storage

on computer networks.

The basis for parasitic data storage is that user data is physically “stored” through continuous packet

transfer between various nodes within a network. This capstone builds upon an initial design idea - as

proposed in a 2011 ACM poster session [7] - and presents a possible design approach that uses standard

ICMP packet architecture. Database data rows are divided across multiple packets on multiple network

nodes by splitting and distributing them in the Data fields of ICMP packets. These database data

packets can then be managed by a specially designed parasitic database management system with a

client- server architecture. The overall design emphasis is on maintaining both data security and data

integrity.

What is a parasitic database?

The concept of a parasitic database is built upon the idea of parasitic storage. Parasitic storage means

storing information on many machines and network nodes, usually unknown to their owners, in

network traffic through either the Internet Control Message Protocol (ICMP) [1] or possibly with

Simple Mail Transfer Protocol (SMTP). [3]

Svetlin Tzolov 2

The basic idea supporting any communication between a networked client and server, including a

parasitic database server, is the “ping-pong” system of ICMP. A ping is a simple packet sent to a remote

machine that can be on a local or a remote network. Based on the RFC 792 specifications regarding

ICMP [4], the protocol was designed for troubleshooting connections and determining whether or not a

given machine, or network node, is reachable on a network. The default behavior for a computer that

receives a ping packet is to respond with a pong packet. This pong packet contains the same data that

was sent to it as a "life sign." This basic communications behavior is integral to the functionality of

parasitic storage and by extension parasitic databases. Figure 1 shows the basic structure of the ICMP

packets that is the basis for this investigation of parasitic databases.

Figure 1. ICMP Packet Structure

While the IP header section of the ICMP packet determines the “behind the scenes” functionality such

as where it will be sent to and who (it is saying) it is sent by (i.e. the Source and Destination IP

addresses) or the time to live (TTL) which determines through how many machines a packet can be

routed, the important areas for this project are in the Payload section. This part of the packet contains

the optional field Data which is critical to this entire idea. Any bits that are put into this field and sent

Svetlin Tzolov 3

out with an ICMP are returned when the target machine responds, thus allowing for parasitic storage

during the time that the packet is traveling.

Below is an example of a request for data from a client along with the reply containing the data from

the server. Both messages include “salt” which is random bits of data that are inserted into passwords

and other strings of data in order to make them more resistant to sniffing and other types of attacks. [5]

Type = 8 (Echo Reply Request) Code = 0 (No codes for

Echo request)

Checksum = CALCULATED

Data = Username;Salt;Password;Salt;Identifier-of-Requested-Data;Salt

Encryption Key 1, Encryption Key 2

Figure 2. Example Payload of ICMP Data Request Packet

In this example, the entire ICMP Data portion of the payload is transmitted as ciphertext. The distinct

portions of the data (Username, Password and Identifier-of-Requested-Data) could be encoded with

multiple separate keys in order to have layered protection in case there is a security leak and a key

becomes known to unauthorized personnel.

Type = 0 (Echo Reply) Code = 0 (No codes for

Echo request)

Checksum = CALCULATED

Data = ServerID;Salt;Data;Salt

Encryption Key 1, Encryption Key 2

Figure 3. Example Payload of ICMP Data Request Reply Packet

Svetlin Tzolov 4

Just like in the previous example, the ICMP Data field of the packet is used to send the database data

back to the requesting machine while still maintaining security through the use of salt and encryption.

This functionality is explained in more detail in the Database Issues section of this document.

Parasitic Database Storage Overview

The fundamental goals of a parasitic database are to provide the basic functionality of a traditional

RDBMS and to follow important principles such as ACID where possible, while providing several

extra layers of security in the form of data distribution over many nodes, encryption, salt as well as an

authentication system that can be tailored to various different deployment possibilities.

To accomplish the goals of parasitic databases, the Data field in the payload of ICMP packets is filled

with the database data that needs to be stored and that will be sent to a target machine. Once it reaches

the target machine, the packet with the payload is returned either immediately (ICMP) or after a

specified time (SMTP). This data is then sent out to another machine, without retaining it on the host.

Essentially this creates a constant up/down “stream” or flow of data that is never stored on the local

host but is instead continually cycled between the host and the external machines. Some of the benefits

of using a parasitic database include increased data security due to the nature of parasitic storage as

well as plausible deniability1 due to the setup of data transfer.

Using this approach for data storage requires that both the user data and the database metadata be

organized and stored so that external users can be authenticated or otherwise authorized, specific data

can be requested by these users, and typical data modification activities are supported - all without

1 ICMP traffic is common and the packets created by this system are not really distinguishable from other legitimate
network traffic unless there is a security leak.

Svetlin Tzolov 5

interference or loss of security. This type of datastore can reside on a network with no, or only very

short-lived, storage making this design ideal for handling sensitive information.

The principles for this are similar to the basis behind the authentication methods used in high security

systems. An example would be the authenticators that are used for remote, and sometimes even local,

connections to high-security systems. The passwords that these devices periodically create exist for a

very short time frame and are only valid until the next one is automatically generated. This makes

acquiring one by illegitimate ways very difficult since the information is only valid for a very short

time, much like the idea behind the packet system of the parasitic database. [6]

Simply stopping the Parasitic Database Server would destroy all of the database data without a trace,

since all packets stored under this strategy are transiently kept in memory as well as in the network

stream and would be lost when the machine loses power.

A request for information could be handled as follows. Please note that the following diagrams are

simplified by assuming that there is only one single ICMP packet.

Svetlin Tzolov 6

Figure 4.1: Step 1 of Information Request

This diagram displays the first step of the information request process. A single packet containing some

data is being “bounced” back and forth with ICMP messages between the parasitic data host and a

storage machine somewhere in cyberspace.

Figure 4.2 : Step 2 of Information Request

Svetlin Tzolov 7

The second step of the request process is that the Information Requester sends a PING request to a

random machine using a “spoofing” process. This means that the ICMP packet sent will contain the IP

of the Parasitic Database Host in the header as the “Source IP,” rather than the IP of the machine that

truly sent it, namely the Information Requester. The ICMP Data field will contain the requested

information ID or other identifier, as well as the real IP of the Requester, so that once the packet is

received by the Parasitic Database Host it will know how to structure the return packet. This means that

the random machine that is chosen is being used as a proxy.

Figure 4.3 : Step 3 of Information Request

In Step 3 of the request process the request is forwarded through a “reply process.” The previously

mentioned Random Machine forwards the request as a pong response to the Parasitic Database Host,

due to the nature of the header which contained its IP address in the source field. Thus, the random

machine believes that the Parasitic Database Host originally sent the packet.

Svetlin Tzolov 8

Figure 4.4 : Step 4 of Information Request

Once the Parasitic Database Host reads the payload of the packet it will retrieve the information

requested by waiting for the data (in previously sent out packet(s)) to return; and forwards it as one or

several ping packets to another Random Machine with a spoofed IP header containing the IP of the

Requester, forcing the Random Machine to essentially forward the packet instead of replying, just like

before.

Figure 4.5 : Step 5 of Information Request

Svetlin Tzolov 9

As shown in Figure 4.5, the Random Machine then “replies” to the ping of the Parasitic Database Host

and forwards the Pong to the Requester which then decodes the information in the payload of the

packet in the same way that the initial request was handled. During this entire exchange no direct

contact has been established between the Parasitic Database Host and the Information Requester at any

point in time. As previously mentioned, this provides plausible deniability in external networks and an

added layer of security in internal ones.

Figure 5 displays the basic structure of the “storage” technique that can be used when designing a

parasitic database, as well as a simple explanation of how redundancy could work. Again, transmission

complexity is simplified by assuming only two data packets.

Figure 5 : Basic Structure (assuming only two data packets)

Svetlin Tzolov 10

The data would be read from an external source which is disconnected after all data has been read. The

separate data payloads are then sent out to Machines 1 and 3 on the network. The Parasitic Database

Host or PDH, which functions as a packet injector, calculates (as explained in the Storage and

Redundancy section) while sending out the packets that they need only one redundant backup each and

sends these copies to Machine 2 and 4. This means that there are now two copies of each packet

circulating throughout the network.

Figure 6: Packet Cycling

Svetlin Tzolov 11

Figure 6 deals with the cycling mechanics of the database, which are used to prevent the data packets

from being noticed by the external machines (otherwise they could appear to be a DOS attack or at

least a PING probe) or from being predictable and vulnerable to sniffing or other types of detection. To

accomplish this, the packets cycle through many machines in a predetermined order that enables the

parasitic database host to avoid arousing unnecessary suspicion. In the above example we assume one

packet and a cycling count of four. The initial payload is sent to External Machine 1. Once the pong is

received the data is then sent out again to External Machine 2 with the same process repeating for all

four machines. Once the fourth machine replies, the cycle starts anew at Machine 1. This should

provide a good balance between detection prevention and using too many different external machines

which could cause unnecessary overhead.

Storage and Redundancy

Redundancy is a key property for any type of database, be it in the form of backups, mirror sites or

other methods of ensuring that no data is ever lost. Due to the nature of this database and the fact that

security is a critical issue, backups cannot be made in the same way as traditional databases. Thus

there needs to be a different type of redundancy to make sure that there is no data loss, even if a data

node holding a given packet goes down. To ensure this, the server must send out multiple copies of

each packet in order to ensure that a copy of a given data item is always available. An easy way to do

this is to have a set number of redundant packets. However this simplistic approach could either result

in too much redundancy, and thus cause pointless bandwidth use, or too little redundancy, risking data

loss. A better way to balance bandwidth use and achieve the level of redundancy necessary to avoid

data loss is to calculate the required number of redundant packets on the fly depending on a number of

relevant factors. These factors are:

Svetlin Tzolov 12

Metric Symbol Type or Units

Bandwidth B Bytes/second

Bandwidth Used BU Percentage (%)

Server Location Country Type C Category (see Figure 8)

Target Location Country Type CT Category (see Figure 8)

Target Type T Commercial/Residential

Connection Type CT DSL/Dialup/Satellite/Cable

Number of Data Chunks D Integer

Figure 7: Redundancy Metrics

There has been some research done on redundancy for parasitic storage [1][2], but not for the specific

scenario of a parasitic database. Other formulas and calculations for this handle this issue differently.

Some assume multiple senders and receivers as well as an at least a somewhat controlled environment,

meaning that variables such as line noise are important. The difference between these calculations and

what is required for the parasitic database is that the parasitic database will host small amounts of data

in various different locations in the world and it concentrates more on security, authentication and

sending discrete amounts of information through proxy machines rather than on raw throughput. It is

important for a database like this to remain “off the radar” by not being too active; so the total amount

of data that this type of database can store is dependent on how “hidden” it needs to be. Limiting its

throughput and therefore storage capability has to be balanced to allow for the data lookups and other

requests that a database must handle.[2] Because this kind of database could be deployed in various

locations in the world, it lends itself to providing a secure information exchange service in the field for

various types of organizations and corporations. Because of this potentially broad area of deployment,

it is important to have a redundancy formula that takes into account the capabilities of the available

network infrastructure at a given location, rather than specific line qualities. This would allow it to be

Svetlin Tzolov 13

deployed in both underdeveloped countries as well as in the internal networks of sophisticated

organizations. Because security and not throughput is the main concern of a parasitic database, the

calculations below concentrate more on the overarching performance measurements rather than on line-

specific details.

In order to allow extra, non-database related commands to be run, such as IP lookups for countries, as

well as to account for network issues, roughly 65-70% of the total bandwidth could be used to run the

database. This should ensure that data loss is highly unlikely and that the connection does not arouse

suspicion by being at peak use at all times due to the noise that can be created using the extra

bandwidth. In cases where secrecy is of greater importance, much less of the bandwidth should be

used, say about 10-20%. In such cases the data is generally much smaller and more compact as well,

which lends itself well to this approach. In order to prevent suspicion the rest of the bandwidth can be

used to simulate regular Internet use with highs and lows according to the hour of day. These are just

rough estimates, however; and more precise measurements should be done as the investigation of this

topic progresses.

The country in which transmission occurs is also important for this type of implementation and it can

be summarized as follows:

Type Examples Factor

Highly Developed Networks USA, Canada, Germany, France etc. 2

Medium Developed Networks Serbia, Kosovo etc. 3

Underdeveloped Networks Iraq, Ghana, Bhutan etc. 4

Figure 8: Redundancy Country Types

Svetlin Tzolov 14

These categories would each provide a factor for the formula to ensure that packets do not get lost due

to connection problems both within the countries from which they are being sent or the countries to

which they are beings sent.

Pinging a payload to a commercial machine such as a commercial website server or an internal

company server would have a greater potential of “staying alive” than using a residential machine

which might be turned off, disconnected, or change its IP address at any time. This means that a packet

going out to a commercial machine needs less redundancy in order to ensure no loss of data than a

packet sent to a residential one.

Type Examples Factor

Commercial www.google.com, in-house server 2

Residential Any personal machine 4

Figure 9: Redundancy Target Type

The different connection types available are shown in Figure 10. It is important to note that some are

more prone to connection problems than others. Anything sent through a cabled connection has a lesser

chance of being lost when compared to satellite. Both of these are also much less likely to lose any

packets when compared to dial-up, which gives us the following possible values for redundancy:

Svetlin Tzolov 15

Type Factor

Cable 1

Satellite 2

DSL 1

Dial-up 4

Figure 10: Redundancy Connection Type

A sample calculation, according to the metrics in Figure 7, of how much redundancy is needed could

look like this:

Calculation Formula Explanation

Total number of packets

that can be sent

((B*(BU/100))/70) ((Total Bandwidth*(Percent of

Bandwidth to be

used/100))/size of ping packet)

Total Number of Packets

that need to be circulating

for appropriate data

redundancy

D*(C+CT+T+TC) Number of packets*(Country

Type Server + Country Type

Target + Target Type +

Connection Type)

If the number of packets from calculation #1 > calculation #2 then this implementation can work as this

means that there is enough possible bandwidth to accommodate it in a given location. The total packet

redundancy required would be C+CT+T+TC per packet.

Svetlin Tzolov 16

Who Would Use This Technology and Why?

When using the ICMP protocol, this technology allows relatively small amounts of data to be stored in

a parasitic manner: roughly 7.3GB on a 2Mbps connection and up to 365GB or more on a 100Mbps

line, as calculated by Michal Zalewski in “Silence on the Wire” [3]. However neither of these numbers

factors in any of the extra functions and additions to the parasitic model that are required to support a

database architecture such as redundancy and obfuscating traffic.

This data storage strategy could be beneficial to a variety of organizations where data security is key.

On the high end, highly competitive research and development companies could decide to keep

strategic and key information on new prototypes, experiments or discoveries in a parasitic database

within their own internal network. This would add security should their external security measures be

breached, since an attacker would first have to determine that such a database strategy is in use and

then manage to sniff and decrypt coherent messages from the network traffic. Ideally, before the time

that this could occur, a company with appropriate network security would have noticed the breach and

would be acting upon it.

On the other end of the spectrum, this type of database can be used by private and federal organizations

that handle sensitive operations where access to information needs to be discrete and very hard to trace.

This could provide security in undercover operations for example, where agents would be under

surveillance. Authenticating and accessing data in this type of database would be nearly impossible to

identify and trace unless somebody knew exactly what to look for, and even then would be very hard

due to the use of encryption and salt which adds additional layers of security.

Svetlin Tzolov 17

Database Issues

There are many different features that make up a database; however for this implementation only the

basics will be considered. These include handling the relational table architecture as well as the DML

commands that are used to enter, edit and delete data. To implement these functions the database and

the clients will have to use techniques such as IP spoofing and packet header modification in order to

re-direct packets as required.

Row Storage

Storing the row data comes in two parts: pre-seed and post-seed. For pre seed, the rows are stored in an

unencrypted format, fed through an encryption/salting program (Figures 11, 12) then seeded into the

network to which the server is currently connected.

Figure 11: Data Encryption

Svetlin Tzolov 18

Figure 12: Result Example

Once the data is seeded, it is stored on the server in a way that allows for its retrieval and transmission

should it be requested by a client. This involves using a simple indexing system as well as adding

identifiers for the start of each row, in order to allow the reconstruction of the row by the client as

required and as explained in the Security section of this document. See the Figure 13 for an example of

how a seeded row would look when stored on the database server.

Primary Key Row Packets

1 142;421;531;23;551;203;124;125;5094

Figure 13: Simple Row Storage

Each row that is stored on the server follows this pattern. Each has a primary key as a unique identifier.

This is used when rows are requested, in order to retrieve the required packets and resend them. For

simplicity, this identifier can be either a system-generated, non-data pseudo-key (such as a numerically

increasing integer - although it does not allow for any true searching) or some type of alphanumeric

identifier that represents at least some part of the data that is required for searching such as dates,

Svetlin Tzolov 19

Encrypted Data

Part 1 Part 2 Part 3
Bogus Data

(Salt)

Bogus Data
(Salt)

Bogus Data
(Salt)

Part 5Part 4

Encrypted and Split Data

names etc. The row packet stream simply states the IDs of packets that belong to this row in no specific

order aside from the first one, as it denotes the first packet of the row in order to allow the client know

when it receives it where to begin.

The primary key can be coded in various ways to increase security and to only allow certain people to

understand and use it for searching the database, as show in the example below.

Primary Key Row Packets

3A1930 142;421;531;23;551;203;124;125;5094

Figure 14: Alphanumeric Row Storage

For example this sort of primary key could denote data from 3rd August 1930 or Room 3A in building

19 on floor 30. Using this sort of system supports versatility while not completely compromising

security. It does, however, limit the data somewhat since the primary key always needs to be unique

which is data dependent. This can be impossible for some types of data, and composite keys are more

difficult to implement. Composite keys would also lower data security since such a key would reveal

more about the data than would a unary key. Using anything other than a pure numeric primary key

lowers security in situations in which the server is compromised however it allows for (better)

searching and thus is a decision that must be weighed based on the specific goals of the system to be

implemented.

The row packet identifiers (IDs) are encrypted and stored in the Data portion of the ICMP packet along

with the data. The IDs for each packet are provided during the encryption process and are encrypted

according to an algorithm that does not grant them in a specific order as part of the security design.

Svetlin Tzolov 20

Some of the IDs belong to bogus data packets inserted solely for noise; however the server does not

differentiate them and it is up to the client to be able to filter out the unnecessary data, as explained in

the Security section of this document. The packets are listed in a random order in the packet ID string,

not in the order that the IDs were given, in order to increase security. The only ID that has a given order

is the first one, since it is important to denote which packet begins a row without any identification for

the end of the row or the order of the packets. This allows for the reconstruction of the row when

received by the client while still providing sufficient security for the data.

Requesting Rows/User Identification

Requesting rows from the server follows the basic method shown in Fig. 4.1 - 4.5 which is designed to

maintain security. Requesting rows from the server is only possible by requesting certain rows by

primary key which was described in the previous section.

To increase data control, a simple username/password system could be implemented in order to add

another layer of security. Such an implementation would look something like what is shown in Figure

2. This would allow only registered users to make use of the system which could be useful on closed

networks such as internal corporate networks; however it opens up another set of data that can be

compromised should the server be successfully attacked. This makes it slightly less useful for using this

system on open networks such as the Internet. It does, however, allow different users to have different

sets of permissions in order to access restricted portions of the data.

A possible authentication system that can be used on an open network is something that uses a timed

identification token such as a RSA dongle or other approach that provides an algorithm-based

authentication token. This would allow clients to forgo using user names, which could be traced for

Svetlin Tzolov 21

traffic or identification, completely while still allowing only authorized clients from accessing the data.

The following could be an example of this setup.

Type = 8 (Echo Reply Request) Code = 0 (No codes for

Echo request)

Checksum =

CALCULATED

Data = Salt;Authenticator Token;Salt;Identifier of requested data;Salt

Figure 15: Authenticator Identification

This setup is not impervious to a security breach however. If an attacker can compromise the

authentication and salting algorithm it would be possible to request any data from the server. Even if

they could not make use of it, this would be a security issue since it violates the rule of least privilege.

However it does more to protect individual users from being identified in case of a breach since there

would be no way to identify individual users when using the same authentication algorithm.

There is a middle ground between these two options, however. It would also be possible to split data

access into roles, as is done in many RDBMS such as Oracle, each having a separate authentication

algorithm that would allow the database to still implement the rule of least privilege while not

identifying individual users outright.

Similar to the primary key issue, the way that the authentication is done depends entirely on how and

where the system is implemented. Either can be supported.

Svetlin Tzolov 22

Searching

While security is undoubtedly an important part of the parasitic database, so is the basic database

functionality that is necessary for a system of this type to function. While many of the more complex

database functions that many take for granted in commercial databases are undoubtedly useful, they are

less feasible when dealing with the security measures put in place in this design. Functions such as

multiple row retrieval and advanced searching using multiple WHERE clauses, for example, are very

hard to implement in the current design since they require the server to have direct access to the data.

Giving the server access to the data is too big of a security risk for the functionality to compensate.

This database has not been designed to handle small databases containing simple, sensitive data that

does not require a lot of filtering to use.

The middle-ground solution for this limitation, however, would include some of the data, perhaps even

metadata, in the primary key to allow it to be searched like a string. Various parts of the key string can

represent different pieces of information as shown in the Row Storage section of this document. This

would be the only way that searching could be feasible in the current setup; however it means that the

primary keys would need to be salted at the very least in order to prevent data leaks in the case of a

security breach. If we take the example we used in that section the salted result could look something

like the following.

Original

Primary Key Row Packets

3A1930 142;421;531;23;551;203;124;125;5094

Svetlin Tzolov 23

Salted

Primary Key Row Packets

3214DGQWA1412QS9332FS0OIS 142;421;531;23;551;203;124;125;5094

Figure 16: Row Storage Salting

As shown in Figure 16, the data needed for a search is still there but would be much harder to decipher

should it be accessed by someone without authorization. Now to enable searching, all primary keys

would need to follow the same formula for construction as well as use the same salting algorithm and

be the same length. The server would need to have access to the salting algorithm in order to be able to

do searches on the primary key which is a security issue; however for some implementations it would

be better to allow the server access to it rather than not having it depending on the deployment location

of the server.

Searching could be implemented by allowing simple clauses to be sent to the server such as the

following.

Type = 8 (Echo Reply Request) Code = 0 (No codes for

Echo request)

Checksum =

CALCULATED

Data = Salt;Authenticator Token;Salt;RWHYG1900;Salt

Figure 17: Data Request Format

Svetlin Tzolov 24

Assuming the primary key for this row included the year 1930, this request could mean Request WHere

Year Greater than 1900. This is a simple example, however, and it can be enhanced with salting the

request format itself to increase security. This would require a basic database interpretation engine to

either be obtained or more likely written for this purpose, in order to include the various salting

algorithms. Considering that the clauses that can effectively be used in this setup are limited, a full

engine would not be required.

Security Issues

Security is always an issue when it comes to data and information storage, and it is no different here.

However, several additional threats are present along with the common ones that target databases.

Local security relating to securing the physical machine that is running the parasitic database will be

briefly discussed but not focused upon.

Parasitic Database Server Security

In order to start the flow of information into the parasitic database, the server must at some point have

access to data in raw form. This is a large security concern because the data that is to be sent out would

generally be sensitive and a compromise here would be catastrophic. To improve security, the database

data to be sent would be pre-encrypted on an external machine with no network connectivity in order to

prevent any network-related security concerns and to maintain the ability to strictly control physical

access to the machine. The encoding process would include the introduction of salt and white noise to

the data. The database data would then be split up into files containing packet-sized payloads and

prepared for insertion into the database. By doing this, the data that is being transported to the server

Svetlin Tzolov 25

and ultimately sent out is useless without the decryption key as well as knowledge of the algorithm that

determines the sequence of valid packets.

This data is then stored on an external storage device that will be used to transfer the data onto the

server. The server will sequentially read each file with the encoded data and send it out into the

network, setting up redundancy as it goes. Once all the data is read and sent into the network, the

external storage will be removed to increase security. The data would now exist solely on the network

as payloads. The actual server does not store any of the data at any time and does not have access to

any of the encryption/decryption keys. This means that even a physical compromise of the system

would not cause a sure loss of data. The server also has no access to the salt algorithm which means

that it has no way of distinguishing the real data packets from the fake ones. It simply replies to any

requests by retrieving the needed packets and simply forwarding the payload.

As displayed in Figure 7, the unencrypted data file, which is read from an external medium, is sent

through an encryption program that encrypts it as well as splitting it up into packet-sized files and

introducing salt as shown in Figure 8. By providing pre-split chunks of data we eliminate or at least

vastly limit the need for packet fragmentation which would cause unnecessary overhead as well as

possibly arouse suspicion if the packets that are sent out are too large.

Figure 12 shows an example of the result of the encryption process described in Figure 11. The base

data, once read, will be encrypted, split and then injected with bogus data as false packets according to

an algorithm. Only those parties that possess the correct algorithm to filter out the salt will be able to

read the real data. This helps ensure the security of the data and increase resistance to sniffing attacks

as well as sequential reads of the data when it is being loaded into the Parasitic Database Server or

Svetlin Tzolov 26

This figure shows a simplified setup of a row of data being split into four packets, each sent to a

different external machine. Packet 3 is intercepted either by a malicious hop in the routing that the

packet takes or at the external machine itself, since there is no real way to know what machine the

packets are being sent to outside of obvious IP ranges such as corporate or government controlled

servers that are likely to have packet scanning firewalls installed. Whatever the case may be, Packet 3

is now compromised. On its own, however, it is completely useless, since it will contain only part of

the encrypted data as well as salt. Thus it only has a "worth" similar to a portion of an encrypted .zip or

.rar file which are functionally "corrupt" and unusable until the entire archive is assembled.

Even if three quarters of the packets in this example were intercepted the same measures would prevent

access to the data. If all four of the packets are compromised, which means that there are other security

issues present, this database setup prevents full access in several other ways. First, there is no way that

an attacker will know exactly how many packets are used to transmit a row of data. While the packets

are numbered in a way that allows them to be ordered after receiving them, there is no termination

character that denotes the end of a row as a security measure. Rows that are requested from the

database are known to be complete only when received, ordered, desalted and decrypted, since openly

designating where rows begin and end would be a security flaw in this setup.

Second, an attacker would not know how to order any of the packets intercepted unless he is privy to

the numbering system used. If an attacker knows the system used for this database setup then there are

internal security issues that need to be addressed since this information is not available on the actual

parasitic database host - again as a security measure to prevent information being accessed if it is

compromised. This information is only available to the client. An unauthorized person having this

information would mean that the security of the client application has been breached.

Svetlin Tzolov 28

Third, if the previous security measures have failed and the data has been intercepted and properly

ordered, the attacker would still need to filter out the bogus packets, since each row is salted not only

within the data, but with additional salt-packets within the packet stream as well (see Fig. 19).

Figure 19: Packet Stream Salting

As shown in this example, a single row of data would be sent out as twelve packets, four of which are

filled with completely bogus data, yet are still sent when a row is requested. This is to strengthen the

resistance of the database to unauthorized access even if a full row of data is somehow intercepted.

Once the whole row is received, the client application must filter out the bogus packets before

decrypting or the resulting data will be corrupt, even though it does contain the row data somewhere.

To do this properly the client requires a separate algorithm to know which packets to filter out. This

information is stored separately from the actual application.

Fourth, if all previous security measures have failed, which means a catastrophic breach in security,

there is one final security measure in place to help prevent access to the data which is the actual data

encryption and salt algorithms. These allow the received, assembled, filtered data row to actually be

decrypted into usable data. They are again stored separately in order to prevent total security failure

should the client application be compromised. See Fig. 20.

Svetlin Tzolov 29

Figure 20: Row Reconstruction

Client Security

Keeping the server (and the data that flows from it) secure is very important since it is a single point of

failure should proper security measures not be taken. However, it is also vital to secure the client since

it contains information that could annul all other security measures if handled incorrectly.

As discussed previously the client has access to the following system components that each require

security measures:

 IP of the parasitic database host

 Bogus packet pruning algorithm

 Salt algorithm

 Encryption algorithm

Due to the amount of information that the client requires in order to function, it is vital to protect these

separate components in a way that makes sense for the specific setup that is used. The easiest way to

provide security is to store each of the items noted above in a separate physical medium, such as USB

Svetlin Tzolov 30

Part 1 Part 2 Part 3
Bogus Data

(Salt)

Bogus Data
(Salt)

Bogus Data
(Salt)

Part 5Part 4

Encrypted and Salted Row
Part 1 Part 2 Part 3 Part 5Part 4

Encrypted Row

Row of Data

Salt
Algorithm

Encryption
Algorithm

parasitic database host. The reply will be in the standard ping format; however there are some changes.

The first request will garner a response containing the salt algorithm. This will be unencrypted and will

not contain bogus packets, but since it is only one design component this is a necessary risk in order to

accomplish a functional client. The next request will be for the bogus-packet pruning algorithm, which

will be returned salted but unencrypted and, obviously, without bogus packets. The final request will be

for the encryption algorithm which will be returned salted and filled with bogus packets. After all

algorithm components have been acquired the client can begin operating. This process would need to

be repeated each time the computer/client is restarted which can also be a possible security issue.

However it is a risk that is necessary in order to avoid physical media.

This setup is not completely vulnerable before it receives the various algorithms, however. This is

because the client still uses the communication system detailed in Figure 4.2 and Figure 4.3. This

design allows the requests to have at least some basic security in that there is never any direct

communication between the client and the parasitic database host, whether for requesting the various

algorithms or the data itself. This combined with the constant network traffic load that an average

computer generates, along with that from other machines on the same line as well as any additional

noise created on purpose for the sake of obfuscation would make it more difficult to trace any specific

packet flow to and from the client or the server.

Svetlin Tzolov 33

Practical Documentation

For this thesis, the practical implementation addresses the foundation functionality of the parasitic

database approach proposed with the sole purpose of presenting the basic services of data storage: data

packet cycling along with request formation and handling by both the database client and server.

Multithreading is a necessity for even a basic implementation since the server's listener must continue

to function while other functions (such as sending replies) are running or else data cycling and client

requests could be lost. Multiple instances of other functions, such as handling multiple requests, can

only be used when multithreading is available.

In order to be able to send data requests from the client to the server, as well as the requested data

packets back to the client, IP addresses need to be spoofed. This can be done using a third machine as a

middleman in order not to have a direct connection between the client and the server. To do this

network packets need to be constructed from the lowest network layer, i.e. the physical layer, in order

to select the NIC that will be used to send the packets, Ethernet and finally the IP where the actual

spoofed IPs were introduced to the packet. The ICMP packet is then formed by combining all the

necessary layers along with the payload (i.e. data) that it will contain. (See Appendix 1)

The server application consists of one listener that is set to listen for both client data requests and the

data packets it sends itself for the storage cycling process. For the purposes of this capstone there are

only two data packets, each storing one row of user data, both of which are hardcoded into the

application. Full database functionality is left for later implementation. While cycling these packets via

ICMP requests, the server listens for requests from the client application and either sends the requested

Svetlin Tzolov 34

packet or shows an error message should a non-existent packet be requested.

The client application consists of a listener and the functionality necessary to request one data packet at

a time. Once the data packet is received it is simply displayed. Again, full client functionality is beyond

the scope of this capstone effort.

While this is a very simplistic demonstration of how the foundation communications of the proposed

parasitic database system could work, a true implementation would include several other, mostly

security, functions as well as full DMBS functionality. The data that is stored in the packets would

never be hardcoded but rather encrypted using an external application then read into the server from a

removable external storage device. The data itself would be fragmented across multiple packets as well

as salted and sent in a random order. This however is not needed to demonstrate the basic parasitic

data-handling functionality, and has been omitted in this initial implementation.

Several attempts to create this applications were made, in several different programming languages.

Initially the plan was to create it in Java. However to create an application like this requires very low

level access to system calls in order to craft the ICMP packets used, and Java does not provide such

native functionality. The next language tried was C, which while having all the necessary capabilities,

proved to be unnecessarily complex, especially the code needed for some parts of the packet crafting

process such as the checksum calculations. Doing multithreading in C is also rather arduous to

implement. Thus the final application was written in C# using SharpPCap and PcapDotNet libraries2

that allowed for access to the lower levels of the network protocol stack and enabled the creation of

custom ICMP packets with spoofed IPs.

2 http://pcapdotnet.codeplex.com/, http://sourceforge.net/projects/sharppcap/

Svetlin Tzolov 35

Conclusion

This thesis proposes the use of parasitic network storage for user data storage and outlines one possible

way to design and implement a parasitic database along with its basic functionality, with emphasis on

security and implementation details. The goal of this data storage strategy is to provide a secure

database platform for small sets of private or sensitive data that needs to be secured against network or

physical intrusion.

The concept of data packet cycling was developed as well as methods to ensure sufficient packet

redundancy so that user data is not lost. The communication approach using spoofed IP addresses - to

help ensure anonymity by using a random computer on the Internet as a relay - was proposed since

regular parasitic storage includes direct communication. Methods to help maintain data security such as

encryption, salt and specific distribution methods for the data were also discussed, as well as basic

database functionality such as querying, inserting and deleting rows.

A full implementation of the current design would include an encryption program to encrypt, salt, and

prepare the packets which would be fed into the server for storage via packet cycling. Appropriate

algorithms need to be identified or created for this. A proper implementation of the redundancy formula

is also needed in order to prevent data loss. Furthermore, many of the traditional database capabilities

are needed, such as functionality for inserting, deleting and updating rows as well as addressing the

issue of data indexing to support data searches and maintenance.

Further development of this project could include applying the methods researched here to other packet

Svetlin Tzolov 36

types such as SMTP or VoIP or even completely different network-based deployment systems. A more

in-depth and network-sensitive design of the database functionality (indexing, inserting/deleting rows,

dealing with row locking, etc.) should be investigated as well.

Svetlin Tzolov 37

References

[1] K. Rosenfeld, H. Sencar, N. Memon, "Volleystore: A Parasitic Storage Framework," June 2007,
http://isis.poly.edu/~parastore/volleystore.pdf. [Accessed 03/12/2010]

[2] J. Chen, J. Zhou, G. Zhou, "Characteristics analysis of parasitic storage, "Frontiers of
Optoelectronics in China, Vol. 3, no. 2, 09/17/2009.

[3] M. Zalewski, Silence on the wire: A Field Guide to Passive Reconnaissance and Indirect Attacks,
Edition of book, No Starch Press, 2005

[4] J. Postel, "DARPA Internet program protocol specification," September 1981,
http://www.ietf.org/rfc/rfc0792.txt. [Accessed 10/12/2010]

[5] C. Wille, "Storing Passwords - done right!," 1/5/2004,
http://www.aspheute.com/english/20040105.asp. [Accessed 10/12/2010]

[6] EMC Corporation, "RSA SecureID," http://www.rsa.com/node.aspx?id=1156. [Accessed
2/22/2011]

[7] Svetlin Tzolov, Dianne Bills, "Parasitic databases: an investigation", 2011-10-20, ACM New
York, NY, USA, 303-304. DOI=http://dl.acm.org/citation.cfm?doid=2047594.2047674

Svetlin Tzolov 38

http://www.rsa.com/node.aspx?id=1156
http://www.aspheute.com/english/20040105.asp
http://www.ietf.org/rfc/rfc0792.txt
http://isis.poly.edu/~parastore/volleystore.pdf

Appendix 1

Flowchart 1: Server Flowchart

Svetlin Tzolov 39

Flowchart 2: Client Flowchart

Svetlin Tzolov 40

	Parasitic Databases
	Recommended Citation

	Parasitic Databases: Proposal

