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Abstract 

Computational performance associated with high-dimensional data is a common challenge 

for real-world classification and recognition systems. Subspace learning has received 

considerable attention as a means of finding an efficient low-dimensional representation that 

leads to better classification and efficient processing.  A Grassmann manifold is a space that 

promotes smooth surfaces, where points represent subspaces and the relationship between points 

is defined by a mapping of an orthogonal matrix.  Grassmann learning involves embedding high 

dimensional subspaces and kernelizing the embedding onto a projection space where distance 

computations can be effectively performed.   

In this dissertation, Grassmann learning and its benefits towards action classification and 

face recognition in terms of accuracy and performance are investigated and evaluated.  

Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP) 

are proposed as Grassmann inspired subspace learning algorithms.  GSR is a novel subspace 

learning algorithm that combines the benefits of Grassmann manifolds with sparse 

representations using least squares loss ℓ1-norm minimization for improved classification.  

GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann 

manifolds and Spectral Regression in a framework that supports high discrimination between 

classes and achieves computational benefits by using manifold modeling and avoiding eigen-

decomposition.  The effectiveness of GSR and GRASP is demonstrated for computationally 

intensive classification problems: (a) multi-view action classification using the IXMAS Multi-

View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action 

classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face 
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recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended 

Yale Face Database B (YALE).   

Additional contributions include the definition of Motion History Surfaces (MHS) and 

Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video 

sequences and 3D depth sequences.  An in-depth analysis of Grassmann metrics is applied on 

high dimensional data with different levels of noise and data distributions which reveals that 

standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold.  

Finally, an extensive performance analysis is made that supports Grassmann subspace learning 

as an effective approach for classification and recognition.   
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1 Introduction 

The automatic recognition of human actions a fundamental but challenging task in computer 

vision research for a wide variety of applications including autonomous surveillance, law 

enforcement, health care monitoring systems, and human computer interfacing.  Automatic face 

recognition is another important task for many applications. The main challenge of such systems 

is their ability to classify in unconstrained environments.  Images of human actors can vary by 

their sizes, shapes, poses, occlusions, viewpoint variations, noise, and lighting.  Additionally, 

action classification systems would need to account for action execution speed requiring spatio-

temporal representations that are invariant to such factors.   

The most common approaches to classification involve extracting meaningful features from 

images or video and applying statistical or machine learning tools to make classification 

decisions.  Optimal action representations are those that can capture both the spatial structure of 

an activity and its temporal structure over time.  While many features can represent spatial and 

temporal domains independently, there are spatio-temporal features that are capable of 

representing both domains, such as space-time interest points and 3D Harris corner detectors.  

Such features are well-suited for challenging applications such as multi-view and 3D action 

classification systems.  Within these domains are a wide variety of representations involving 

normalization, invariance, and exhaustive search.  Similarly, face image representations are 

expected to be robust enough to distinguish between a wide range of human subjects and under 

unconstrained conditions such as variations in illumination and facial expressions.  Local binary 

patterns and local ternary patterns are among the most popular face image representations.   

Methodologies that can account for the statistical and geometric properties of high 

dimensional representations have proven to be extremely valuable in deriving meaningful 
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information.  Principal component analysis (PCA) is a common dimensionality reduction method 

based on the eigenvectors of the covariance matrix.  Although fast, PCA does not maintain 

geometry and local structuring of high dimensional data.  Manifold learning techniques have 

been developed to handle non-linear dimensionality reduction.  Manifold learning involves 

reducing high dimensional data to a lower dimensional space while optimally preserving the 

local geometries from the high dimensional information.  An ideal mapping should be fast, 

preserve clustering, and account for occlusions and outliers.  There are many dimensionality 

reduction algorithms that are powerful enablers of robust classification and in this dissertation 

the benefits and drawbacks of many of these methods are discussed.  As an alternative, sparse 

representations are methods of finding sparse solutions that are useful in a variety of applications 

including classification.     

Grassmann learning is a dimensionality reduction algorithm where subspaces are mapped as 

points onto a smooth and curved surface where distances between subspaces are geodesic.  The 

main advantage of Grassmann learning over traditional manifold learning methods is that high 

dimensional feature representations may not typically lie on a Euclidean space.  Grassmann 

learning maps subspaces onto points based on orthogonal constraints, promoting high between-

class discrimination by their geometrical structuring, and accounting for missing data through 

subspace spanning.    Grassmann kernelization embeds subspaces onto a projection space where 

distance computations can be effectively performed.   

In this dissertation, representations for action classification and face recognition systems are 

explored in Chapter 2.  Spatio-temporal surface descriptors for multi-view and 3D action 

classification systems are presented using radial distance measures and 3D joint descriptors for 

multi-view and 3D action classification.  These surfaces have proven to be effective at 
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representing actions while being invariant to time, scale, and localization.  These spatio-temporal 

surface representations motivated the development of more robust motion surface 

representations.  Motion surfaces, proposed in this dissertation, have proven to be very effective 

representations for describing where motion exists in a scene and how motion evolves over time.  

Motion history surface (MHS) and motion depth surface (MDS) descriptors are suitable for 

activity representations for multi-view and 3D depth action sequences.   

In Chapter 3 dimensionality reduction algorithms including principal component analysis, 

multidimensional scaling, local linear embedding, and linear extensions of graph embedding are 

discussed and evaluated.  The benefits and drawbacks of these methods are identified including 

time complexities.  Grassmann learning and its benefits towards action classification and face 

recognition in terms of accuracy and performance are investigated in Chapter 4.  Grassmann 

learning in a kernelized principal component analysis framework is defined and evaluated.  In 

Chapter 5, Grassmannian Sparse Representation (GSR) is proposed as a Grassmann inspired 

subspace learning algorithm.  GSR is a novel subspace learning algorithm that combines the 

benefits of Grassmann manifolds with sparse representations using least squares loss ℓ1-norm 

minimization for improved classification.  Sparse representations are introduced as a method for 

finding sparse solutions for underdetermined systems.  Images and video sequences can be 

encoded using sparse representations to be more easily interpretable and classification using least 

squares loss ℓ1-norm minimization shows to be suitable for classification at the cost of poor 

computational performance.  This framework is extended into a Grassmann learning framework 

through GSR.  The high cost of poor performance through GSR encouraged the pursuit of a 

faster learning framework.  Grassmannian Spectral Regression (GRASP) is introduced in 

Chapter 6.  GRASP is a novel subspace learning algorithm that leverages the benefits of 
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Grassmann manifolds and Spectral Regression in a framework that supports high discrimination 

between classes and achieves computational benefits by using manifold modeling and avoiding 

eigen-decomposition.   

In Chapter 7, the classification accuracies and performance of all previously discussed 

learning methods including GSR and GRASP are presented for computationally intensive action 

and face datasets.  An in-depth analysis of Grassmann metrics is applied on high dimensional 

data with different levels of noise and data distributions revealing that standardized Grassmann 

kernels are favorable over Grassmann geodesic metrics in a Grassmann space.  GSR and GRASP 

are compared against existing sparse representations, manifold learning, and Grassmann learning 

methodologies.  An extensive performance analysis is made that support Grassmann subspace 

learning through GSR and GRASP as effective approaches for classification and recognition 

over state-of-the-art approaches.  The dissertation concludes in Chapter Error! Reference 

source not found..   

 

1.1 Contributions 

In this section the contributions made in this dissertation are explicitly defined.  The first is the 

definition of radial distances and radial distance surfaces as action representations.  Such 

surfaces have shown to be suitable representations for multi-view action classification.  This 

work was extended to handle 3D action sequences using 3D joint surface descriptors.  This led to 

the evolution of motion surfaces where motion history surfaces (MHS) and motion depth 

surfaces (MDS) are proposed as descriptors that can accurately represent motion in multi-view 

and 3D action classification applications.   
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The main contributions of this dissertation are the definition of Grassmannian Sparse 

Representations and Grassmannian Spectral Regression for high classification accuracy and 

computational performance.  With this, an extensive evaluation is made on Grassmann metrics 

which is not found at this level of depth in the existing literature.  Through experiments and 

evaluation, this dissertation exposes the benefit of using Grassmann kernels with robust 

classifiers over geodesic metrics using kernel standardization.  Additionally, a thorough time 

complexity evaluation is made on all learning methods. 
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2 Representations for Action Classification and Face Recognition 

2.1 Action Representations 

Weinland et al. [1] discuss a broad range of spatial, temporal, and spatio-temporal approaches for 

addressing action classification problems. Spatial action representations attempt to describe the 

spatial structure of actions.  Body models [2], body pose estimations [3], kinematic joint models 

[4], and stick figures [5] tend to be intuitive and descriptive, but may require significant training 

and computational resources.  Spatial parametric image features include contour/silhouette 

representations [6], optical flow [7], and motion history images/motion energy images [8].  Such 

features do not require body part labeling or tracking, but are computationally intensive because 

of high dimensional data representations and difficulties with occlusions.  Spatial statistical 

approaches are based on the statistics of local features, such as features detected using the Harris 

corner detector [9].  Local feature descriptors can be classified using Bag of Features [10], 

Support Vector Machines (SVM’s) [11], local Principal Component Analysis (local PCA) [12], 

and Manifold Learning - e.g. supervised locality preserving projections (sLPP) [13].  The main 

benefits of spatial statistical representations are that they are not relying on body part labeling, 

silhouette extraction, and localization.  However, such representations are usually unordered and 

of varying sizes making it difficult to use with classifiers.   

Temporal representations of human actions identify the temporal structure of an action and 

are categorized into action grammars [14], action templates [15], and temporal statistics [16].  

Action grammars identify an action by a set of action primitives.  Given a set of all action 

primitives, an action grammar acts as a function to learn the transitions between those primitives.  

A popular method for identifying action primitive transitions is the use of Hidden Markov 

Models (HMM).  Many action recognition systems utilize action grammars with HMM’s 
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including Kruger and Grest [17] and Chakraborty et al. [18].  Action grammars are highly 

modular but require manual structuring making action grammars impractical for systems 

intended to classify a large set of action classes.  Action templates are a combination of action 

primitives into one larger representation.  Pattern matching is usually applied to compare actions 

to a collection of action templates in a database.  Junejo et al. [19] propose a view independent 

approach to action recognition on 2D video sequences using Self Similarity Matrices (SSM).  

Their approach captures temporal histograms of gradient orientations in the spatial domain and 

concatenates the features descriptors into one large local SSM feature vector descriptor.  This 

feature vector descriptor is an action template.  Yao et al. [20] collect action pose templates as a 

combination of Histogram of Gradient (HoG) features and Histogram of Optical Flow (HoF) 

features.  These templates are classified using Support Vector Machines (SVM’s).  Action 

templates are known to be effective and discriminative, but do not have a built-in mechanism to 

account for temporal segmentation.   Temporal statistics find statistical patterns of actions in the 

temporal domain such as identifying frequent features over time.    

Spatio-temporal representations are those that can describe an action structure in both the 

spatial and temporal domains.  One of the earliest spatio-temporal feature descriptors was 

introduced by Laptev and Lindeberg [21] by extending on the Harris Corner Detector algorithm 

to detect space-time interest points that can be used to represent motion-based activities.  Other 

spatio-temporal interest points include cuboids using temporal Gabor filters [22], Harris 3D 

detectors as a 3D extension of the Harris corner detector for detecting significant local variations 

on both space and time [23], and Hessian detectors that are scale and affine invariant across the 

space and time domains [24].  Vili et al. [25] introduce dynamic texture descriptors to describe 

human movement.  A human action is represented as a volume in XYT space and Local Binary 
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Patterns are used to extract histogram features in the XT and YT spaces.  An interesting action 

representation that inspired the action descriptor used in this dissertation is the spatio-temporal 

action surfaces covered by Souvenir and Parrigan [26].  The 2D Radon transform was applied on 

each frame of an action and converted to a 1D signal called the R-Transform.  A surface was 

created as a sequence of these signals called the RXS surface.  These surfaces are then scaled 

down to a standard time interval while preserving action information supporting the concept of 

spatio-temporal invariance. 

 

2.1.1 Action Representations for Multi-View and 3D Applications 

Autonomous action classification systems can be restricted by visual sensor constraints or benefit 

from their physical positions in a scene.  Multiple view recognition systems tend to use standard 

RGB cameras, while 3D cameras used in the gaming industry can provide both color and depth 

information.  An overview of multi-view and 3D action classification systems are discussed in 

this section.  

Weinland et al. [1] explain that viewpoint independence is commonly addressed by 

normalization, invariance, or exhaustive search.  View normalization is based on correcting the 

current view through a transformation to a canonical view.  This approach is taken in the work of 

Gkalelis et al. [27] who use multi-view posture vectors of synchronized frames along with a 

combination of circular shifting Discrete Fourier Transforms to determine the posture of an 

individual relative to the current view.   Ding et al. [28] present a pose-normalization algorithm 

using random forest embedded active shape models to map 2D features into a 3D corresponding 

space.  Similarly, Iosifidis et al. [29] applied morphological operations on binary body masks of 

the torsos of individuals and extrapolated from the ratio of the width and the height of the torso 
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along with centroid movements the relative posture of the body with respect to the current view.  

Drawbacks of this approach are the scale and body shape dependency of the torsos as well as 

expected physical translation across a scene to calculate the posture position.  Iosifidis et al.’s 

[30] later work approached the issues of torso and translation dependencies by creating multiple 

view binary masks.  Bodor et al. [31] used image based rendering to reconstruct views that 

would be suitable for classifiers.  Silhouettes from multiple cameras were captured and projected 

into a 3D space so that the 3D motion path could be determined.  These motion paths were then 

used to determine the orthogonal views needed for classifiers.  However, this system assumes 

linear motion paths, so activities such as turning around and punching are not expected to be 

easily classified.   

A view-invariant matching approach depends on finding common features across multiple 

views.  Popular view-invariant feature representations are Self-Similarity Matrices (SSM) [19], 

which represent distances between action representations, and Cross Ratios (CR) [32] which 

determine common interest points across multiple action frames.  View normalization methods 

are based on a single transformation for body orientation and view invariance.  In comparison, 

SSM and CR methods, which ignore transformation dependent features, also perform an 

exhaustive search over all possible transformations to identify matching pairs.  These methods 

are categorized as view-invariant and exhaustive.  Holte et al. [33] propose view-invariant 3D 

feature descriptors based on motion information which are the 3D Motion Context (3D-MC) and 

the Harmonic Motion Context (HMC).  Motion vectors computed from 2D action sequences are 

extended to 3D flow using pixel to vertex correspondences which are combined to create 3D 

motion vector fields.  A combination of 3D-MC, which is a 3D extension of general shape 

context, and HMC, which is a spherical representation of weighted sums of spherical harmonics, 
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are used to provide a view-invariant representation of an action.  Normalized correlation 

coefficients between the test and training action sequences are used to classify actions. 

The recent availability of cost-effective depth cameras, such as the Microsoft Kinect sensor, 

provides a significant advantage, as depth images can facilitate body posture estimation and 

action classification.  Benefits over traditional image sensors include automatic background 

segmentation, limb identification and invariance to illumination, color, and texture.  Shotton et 

al.  [34] used depth data to calculate kinematic joint positions using spatial mode distributions 

along with randomized decision forests. Their approach is invariant to pose, body shape, and 

clothing.  Similarly Schwarz et al.  [35] used depth cameras to identify points on a human with a 

maximal geodesic distance from the body center of mass, along with optical flow to make 

predictions on joint tracking while considering occlusions.  Beyond kinematic joint tracking, 

recent research has extended to understanding gestures and actions from depth maps using action 

graphs  [36], statistical analysis on actionlets  [37], and Hidden Markov Models  [38] [39]. 

 

2.2 Face Representations 

Face image representations are encodings that describe facial images and, ideally, should be 

robust enough to distinguish between human subjects.  Eigenfaces [40] is an approach based on 

finding principal components of face images that linearly project the image space to a low 

dimensional feature space.  Although effective under ideal lighting conditions, frontal pose and 

neutral facial expressions, eigenfaces are not robust and outliers from varying lighting 

conditions, view angles, and expressions can result in undesired classification errors.  Fisherfaces 

[41] maintain the Euclidean structure while maintaining high between class discrimination and 
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being less sensitive to lighting and expressions.  Laplacianfaces [42] preserve the local structure 

of the image space and detects the face manifold structure.   

A challenge for Eigenfaces, Fisherfaces, and Laplacianfaces is robustness to lighting 

conditions and facial expressions.  Tann and Triggs [43] identify three categories for dealing 

with these factors which are appearance-based, normalization-based, and feature-based methods. 

Appearance-based methods require building a large training set that covers varying illumination 

conditions and expressions.  Normalization-based methods involve the normalization techniques 

such as histograms.  This included gamma correction, Difference of Gaussian (DoG) Filtering, 

and contrast equalization.  Figure 2-3 shows eight different subjects under varying illumination 

conditions and their corresponding normalization in the second row.  The illumination invariant 

approach illustrated was proposed by Tann and Triggs [43] using gamma corrections, DoG 

filtering, masking, and contrast equalization.   

Feature-based methods identify illumination and expression invariant features.  One such 

example is Local Binary Patterns (LBP) which has proven to be effective for texture 

representations while being highly discriminative and invariant to global gray-level 

transformations for lighting invariance.  LBP is based on thresholding image pixel 

neighborhoods and encoding a binary pattern.  The original LBP method applies an operator on 

each pixel of an image which thresholds the neighboring pixels at the value of the central pixel.  

The result of this operator is an image patch with an 8-bit code.  An example of a basic LBP 

operator and its resulting 8-bit code is shown in Figure 2-1.  The central pixel with value 77 is 

analyzed with a 3x3 window.  Any neighboring pixel values greater than 77 are assigned a 

binary value of 1.  Any that are less than 77 are assigned a binary value of 0.  After applying the 

LBP operator, the binary encoding is an 8-bit value read from the top left neighbor clockwise 
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around the central pixel.  The encoding is considered uniform if there is at most one transition 

from 0 to 1 or 1 to 0 (i.e.: 1110001).  The resulting encoding in the example provided is not 

uniform because there are two transitions for 0 to 1 and 1 to 0.  The uniform properties of image 

patches are useful for histograms that identify uniform and non-uniform patterns.   

 

 
Figure 2-1: The LBP operation and the resulting 8-bit encoding of the central pixel [43]. 

 

LBP is popular for face image representations [44] [45] and there are many extensions. 

Ojala et al. [46] propose a scale and rotation invariant extension of LBP.  The work in [47] 

proposes patch-based descriptors using three-patch and four-patch binary patterns.  The main 

disadvantage of LPB’s is the lack of sensitivity to noise.  Local Ternary Patterns [43] is an 

extension of LBP that accounts for robustness to noise and weak illumination gradients by using 

a three valued code instead of a binary code.  Values within a certain tolerance are assigned a 

value of 0, values above the tolerance are assigned a value of 1, and values below the tolerance 

are assigned a value of -1.  LTP encodings are demonstrated in the Figure 2-2.  Figure 2-3 

illustrates sample face images from the YALE database which have been illumination 

normalized.  The third and fourth rows show the result LBP and LTP images for those 

illumination normalized faces. 
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Figure 2-2: The LTP operation and the resulting 8-bit encoding of the central pixel [43]. 

 

 
Figure 2-3: Normalization based processing of face images from the YALE face database 

under different lighting conditions.  The top row shows the original images and the second 

row shows the resulting illumination normalized face images.  The third row shows the 

LBP image representations.  The fourth row shows the LTP image representations.   

 

2.3 Radial Distance Representations for Action Recognition 

The first contribution in this dissertation is the definition of radial distance surfaces [13] as 

efficient feature representations.   Locality Preserving Projection (LPP), a manifold learning 

technique, was used for learning low dimensional representations of action primitives to 

recognize activities across multiple views.  To adapt the action classification problem for 3D 
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depth maps, 3D joint descriptors [48] are also proposed.  Radial distances, radial distance 

surfaces, 3D joint surfaces, and the manifold learning framework are presented in this section.   

 

2.3.1 Radial Distance Measures 

Radial distances are features based on distances from a centroid to the outer contour of a 

silhouette.  A manifold learning framework was used for obtaining low dimensional 

representations of action primitives that can be used to recognize activities across multiple views.  

For each frame of an entire activity video, silhouettes were represented by binary images after 

background subtraction.  To efficiently describe a silhouette in some detail while maintaining 

robustness to noise, radial distances were defined from the silhouette centroid to the farthest 

contour at various angle increments, so that they capture the entire signature over 360 degrees.  

Radial distances of a silhouette are illustrated in Figure 2-4.   

 

   
Figure 2-4: An example of (left) a silhouette of a subject performing a waving action and 

(right) the corresponding radial distances from the origin to the contour boundaries over 

360 degrees.   

 

Connected components are identified along with their corresponding areas, bounding box 

regions, and centroids.  During the training phase, the largest detected object was cropped and 
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processed, since it was assumed that there was only one individual conducting an activity at a 

time and the largest connected component in a frame was that individual.  During the testing 

phase, the system did not make such assumptions and could process multiple individuals in a 

single scene.  By cropping the detected connected region, the region 𝐼(𝑥, 𝑦) could be processed 

while preserving the characteristic of scale and localization invariance since the size and location 

of the silhouette could be ignored.  

Once a bounding box was established along with the centroid of the silhouette, the binary 

silhouette image was converted to a contour plot.  The Euclidean distance from the (𝑥, 𝑦) 

centroid to the (𝑥, 𝑦) bounds of the contour over 360 degrees in increments of 5 degrees using 

Equation (1) could then be determined, where 𝐼(𝑥, 𝑦) is the silhouette image, 𝜃 is the angle of 

the radial distance vector between the centroid and the contour, and 𝑟 is the radial distance.   

𝐼(𝑥, 𝑦) → 𝑟(𝜃) 

𝑟(𝜃) = √(𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑥(𝜃)𝑐𝑜𝑛𝑡𝑜𝑢𝑟)
2 − (𝑦𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑦(𝜃)𝑐𝑜𝑛𝑡𝑜𝑢𝑟)

2 

(1) 

This resulted in 72 radial measures that could be used to form a 2D signal describing the 

radial distance measures of a silhouettes’ contour between 0 and 360 degrees as shown in Figure 

2-5b.  To further preserve scale invariance the radial magnitude is normalized using Equation (2) 

and is illustrated in Figure 2-5c. 

𝑟′(𝜃) =
𝑟(𝜃)

max𝜃(𝑟(𝜃))
 (2) 
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Figure 2-5: An example of (a) a bounding box around a silhouette, (b) the corresponding 

radial measure plot over 72 evenly distributed angles, and (c) the normalized signal.  The 

two peaks between 50 and 150 degrees represent the outline of the legs of the individuals 

and the peak at 265 degrees represents the detection of the individuals head. 

 

2.3.2 Radial Distance Surfaces 

To formulate a radial distance based spatio-temporal action descriptor, time was added as an 

additional parameter.  The radial distance approach was applied on a single instance of time and 

combined into a surface.  An instance of a cropped region defined by 𝐼(𝑥, 𝑦) could be defined as 

a function with a temporal parameter 𝐼(𝑥, 𝑦, 𝑡).  In [26], the R-Transform of each frame of an 

action was combined to form the RXS surface that described the entire activity over time.  In our 

process we followed a similar approach by creating a radial distance surface that could also 
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describe an activity over time.  Equations (1) and (2) were enhanced to include time as a 

parameter resulting in Equations (3) and (4).   

 

𝐼(𝑥, 𝑦, 𝑡) → 𝑟𝑡(𝜃) 

𝑟𝑡(𝜃) = √(𝑥𝑡,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑥(𝜃)𝑡,𝑐𝑜𝑛𝑡𝑜𝑢𝑟)
2
− (𝑦𝑡,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑦(𝜃)𝑡,𝑐𝑜𝑛𝑡𝑜𝑢𝑟)

2
 

(3) 

 

𝑟′𝑡(𝜃) =
𝑟𝑡(𝜃)

max𝜃,𝑡(𝑟𝑡(𝜃))
 (4) 

 

By incorporating time, the 2D signals defining an instance in time became a 3D surface 

defined by radial magnitude, angle, and time as shown in Figure 2-6.  As previously mentioned 

an action is not executed in a fixed amount of time.  The same individual bending down in one 

scene might take six seconds in one trial and take ten seconds in another trial.  The system must 

support time invariance and this can be done by normalizing the time axis of the surface. 

 

Figure 2-6: An example of a 3-D surface plot defining the punching action from three 

different camera views from the IXMAS dataset. 
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Locality Preserving Projections (LPP) is a linear dimensionality reduction algorithm that 

computes a lower dimensional representation of data from a high dimensional space. It is a linear 

approximation of the nonlinear Laplacian Eigenmap and is discussed in Section 3.4.  In our work 

[13], LPP was used to evaluate radial distance surfaces on the IXMAS multi-view dataset 

(Section 7.2.2).  In the experimental evaluation, one manifold was used to represent all actions of 

all views.  This only required one transformation to reduce our large input data set using LPP.  

As a result this form of multi-view training is equivalent to viewpoint independence based on 

exhaustive searching as discussed by Weinland et al. [1].  The approach requires a training 

dictionary with enough action representations to represent multiple views to make accurate 

classification decisions.   

Figure 2-7 shows the 3D embedding of high dimensional radial distance surface actions.  

Ten actions were trained using manifold learning reducing 5,000 dimensions down to only three 

dimensions for visual illustration.  As shown in Figure 2-7, there are clear separations between 

activities independently of the view in a 3D space.  Point, kick, Bend down, and stand-up were 

the most discriminative but the remaining actions, although clustered, do overlap with each other 

using this framework.   
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Figure 2-7: The 3D embedding for trained activities from the IXMAS dataset.  The actions 

are Check Watch, Cross Arms, Scratch Head, Bend Down, Stand Up, Turn Around, Wave, 

Punch, Kick, and Point.   

 

 
CHECK 

WATCH 

CROSS 

ARMS 

SCRATCH 

HEAD 

BEND 

DOWN 

STAND 

UP 
TURN WAVE PUNCH KICK POINT 

CHECK WATCH 0.80  0.20        

CROSS ARMS  0.91    0.09     

SCRATCH HEAD   0.92    0.08    

BEND DOWN    1.00       

STAND UP     1.00      

TURN AROUND 0.13 0.04 0.04   0.79     

WAVE       1.0    

PUNCH       0.08 0.92   

KICK         1.0  

POINT       0.10   0.90 

Table 1: Confusion matrix for 1-NN with a 92.48% average accuracy using LPP and radial 

distance surfaces on the IXMAS dataset. 

 

Table 1 shows the confusion matrix results after testing new data against the trained data 

using leave one subject out cross validation.  Using the 1-nearest neighbor classifier, the overall 
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accuracy was 92.48% with turn around being the most difficult action to classify.  The accuracy 

with 3 nearest neighbor and 5 nearest neighbor is 93.23% and 93.98% respectively. 

Overall the results look promising with the highest recognition rates using the 5-nearest 

neighbor classifier.  The biggest challenge is finding a clear separation between similar activities.  

For example, scratch head and wave can be confused because both actions require the act of 

raising an arm towards the head and, since the viewpoint the action is being captured from is not 

fixed, there is potential for confusion.  The classification of the turning around action has a high 

error rate because the radial distance measure is not effective in capturing useful information of 

this action over time.  With actions such as punching and kicking, the radial distance surface plot 

indicates a significant change while the turning around surface plot is not as descriptive. 

 

2.3.3 3D Joint Descriptor Surfaces 

Radial distance features collect descriptive information for 2D images, but do not take advantage 

of the information provided by the depth dimension in the 3D depth maps.  For example, actions 

such as a forward punch (punch towards the camera) are poorly described by the silhouette, but 

are described much better with depth data.  The 3D joint coordinates, that are available through 

the Microsoft Kinect interface software, were selected to capture the depth dimension.  The 3D 

joint coordinates were calculated using the approach proposed by Shotton et al. [34], where 3D 

positions of body joints are predicted from a single depth camera using randomized decision 

forest classifiers for body part labeling.  Specifically, mean-shift is used to classify each pixel in 

an image using spatial mode distribution along with the randomized decision forests to propose 

3D joint positions. The approach is invariant to pose, body shape, and clothing.   
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The Microsoft Research 3D Dataset (MSRAction3D) (Section 7.2.4) includes the 3D joint 

data comprised of 20 coordinates of joint positions in a frame along with their corresponding 

depth value and confidence level.  The joint positions include the locations of hands, wrists, 

elbows, shoulders, the head, the shoulder center, the spine, the hip center, the hips, the knees, the 

ankles, and feet.  These kinematic coordinates are captured into a feature vector after the joint 

coordinates are subtracted from the center torso of the human to define relative data and account 

for localization invariance.  The difference between the coordinates and the torso coordinates are 

then normalized to define features which are scale invariant. 

Figure 2-8 shows examples of joint positions on sample frames of a subject performing a 

tennis swing action.  The 2D coordinates of the joints are normalized individually from the depth 

values and the coordinates and the depth data are vectorized into a 1D feature vector of 60 

features (20 x-values, 20 y-values, and 20 depth values). 

 

 
Figure 2-8: Video depth sequences from the MSRAction3D dataset with 3D joint tracking on a 

subject executing a tennis swing action. 

 

The 3D joint descriptors only represent spatial structures of an instance of time of human 

pose.  Temporal structuring is necessary to capture the description of an entire action, but it is 

known that actions can vary in execution time.  To account for time variations we created surface 

plots from the feature descriptors which capture the entire action and normalize the surface 

descriptor in the time domain.  This creates surface descriptors that are invariant to activity 
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execution time.  Our approach is presented in [48] and is inspired from our earlier work in [13].  

Figure 2-9 presents an example of a 3D joint tracking surface representing a tennis swing action. 

 

  
Figure 2-9: The normalized 3D joint tracking surface for a tennis swing action from the 

MSRActrion3D dataset.    

 

 

2.3.4 Radial Distance Surfaces and 3D Joint Surface Descriptor Evaluation 

In [48], an evaluation was made using radial distance surfaces, 3D joint surfaces, and a combined 

larger representation of both descriptors as one representation.  LPP was used as the manifold 

learning method with a nearest neighbor classifier on the MSRAction3D dataset consisting of 

depth map sequences.  There are ten subjects of varying shapes and sizes performing twenty 

actions two to three times at various speeds.  The dataset actions are listed in Table 2 which is 

organized in the same experimental setup as [36].  The 20 actions were divided into three subsets 

consisting of 8 actions each. Additionally, we also tested against the entire set of activities 

(subset 4).  The subsets 1 and 2 were designed to group activities with similar movements while 

the third subset was designed to group actions that are more likely to be error prone due to their 

similarities.  In our experiments, we considered cross validation through random selection and 

training and testing with half of the data samples as well as leave one subject out training. 
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Subset 1 Subset 2 Subset 3 Subset 4 

Hor. Arm Wave 

Hammer 

Forward Punch 

High Throw 

Hand Clap 

Bend 

Tennis Serve 

Pickup & Throw 

High Arm Wave 

Hand Catch 

Draw X 

Draw Tick 

Draw Circle 

Two Hand Wave 

Forward Kick 

Side Boxing 

High Throw 

Forward Kick 

Side Kick 

Jogging 

Tennis Swing 

Tennis Serve 

Golf Swing 

Pickup & 

Throw 

All Actions 

Table 2: The MSRAction3D action subsets used for action classification experiments.   

 

 

Radial  

Distance 

3D Joint 

Tracking 

Radial Distance &  

3D Joint Tracking 

 Cross Validation 

Subset 1 78.31% 84.34% 87.95% 

Subset 2 74.47% 77.66% 78.72% 

Subset 3 91.58% 98.95% 98.95% 

Subset 4 65.09% 73.71% 73.28% 

 Leave One Subject Out 

Subset 1 89.01% 77.65% 92.34% 

Subset 2 73.73% 74.45% 80.01% 

Subset 3 85.05% 91.70% 92.98% 

Subset 4 67.00% 76.14% 76.49% 

Table 3: Action classification accuracy on the MSRAction3D dataset.  Cross validation and 

leave one subject out testing were used with radial distance measures, 3D joint tracking, and a 

combined descriptor. 

 

As presented in Table 3, the combination of radial distance surfaces with 3D joint tracking 

meets or exceeds the classification accuracy of either radial distances or 3D joint tracking 

independently.  In subset 1 where actions were grouped because of their similarities, we achieve 

92.34% accuracy using leave one subject out which indicates that the approach is strongly 

invariant to individual size, shape, location in a scene, and action execution time which is what 

our approach was intended to address.   Furthermore, our approach performs extremely well on 
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subset 3 which was intended to evaluate similar activities.  This demonstrates that manifold 

learning on descriptor surfaces are strong in classifying similar activities and are therefore highly 

discriminative.   

Through cross validation the most problematic action to classify for 3D joint tracking was 

draw X which frequently got confused with horizontal arm wave.  For radial distances forward 

punch was frequently confused with horizontal arm wave which is understandable since the 

radial distances are similar between these depth related actions.  The combined descriptor faces 

challenges distinguishing between hammer and tennis serve as well as between draw X and 

horizontal arm wave.  When our training set became larger using the leave one subject out 

approach the most challenging action to classify was draw tick which frequently got confused 

with hammer and forward punch.   

 

2.4 Motion Images as Action Descriptors 

The next contribution is the formulation of spatio-temporal motion surfaces that can be adapted 

for multi-view and 3D action classification applications.  To avoid the complexity involved with 

body part labeling and tracking, motion images are utilized as temporal templates.  The 

advantages of motion images include simple representations that provide good performance, 

ability to represent the direction of motion in a scene, and ability to identify where motion exists 

in a scene.  Motion images are extended to represent 3D motion for 3D action classification.  

These feature representations can be defined into a spatio-temporal descriptor through surfaces 

similar to radial distance surfaces.  This section presents motion images, motion history surfaces, 

and motion depth surfaces.   
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2.4.1 Motion Energy Images and Motion History Images 

Motion history images are the primary spatial parametric features used in this dissertation for 

action classification systems.  Proposed by Davis and Bobick [49], Motion History Images 

(MHI’s) are temporal templates that are capable of describing where motion exists in a scene and 

how the motion is evolving over time.  The MHI features are based on Motion Energy Images 

(MEI’s) which offer a binary representation of where motion occurs in a scene.  It is an indicator 

of motion over time.  Given a video frame 𝐼(𝑥, 𝑦, 𝑡), calculate a binary image 𝐷(𝑥, 𝑦, 𝑡) as the 

difference image between 𝐼(𝑥, 𝑦, 𝑡) and 𝐼(𝑥, 𝑦, 𝑡 ± ∆) where ∆ is a time offset.  The binary MEI 

𝐸𝜏(𝑥, 𝑦, 𝑡) is defined as: 

𝐸𝜏(𝑥, 𝑦, 𝑡) =⋃𝐷

𝜏−1

𝑖=0

(𝑥, 𝑦, 𝑡 − 𝑖) (5) 

where τ is the temporal extent of the action.  This equation captures motion across τ. An example 

of MEI’s is shown in the second row of Figure 2-10.    

MHI’s capture how motion changes over time in addition to where motion changes over 

time.  The MHI descriptor 𝐻𝜏(𝑥, 𝑦, 𝑡)is defined as: 

𝐻𝜏(𝑥, 𝑦, 𝑡) = {
𝜏𝑖𝑓𝜓(𝑥, 𝑦, 𝑡) = 1

max(0, 𝐻𝜏(𝑥, 𝑦, 𝑡 − 1) − 𝛼)𝑜. 𝑤.
 (6) 

where 𝜏 describes the initial motion response, the decay operator is regulated by 𝛼, and 𝜓(𝑥, 𝑦, 𝑡) 

is an update function.  There are many variants of update functions [8] including background 

subtraction, image differencing, and optical flow.  Sample motion history images in Figure 2-10 

are shown using a background subtraction update function.  The MHI shows more recent motion 

appearing brighter than older motion.  A main advantage of MHI is that the results represent the 

direction of motion.   
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Figure 2-10: A subject from the i3DPost Multi-View dataset walking across a scene and 

then sitting.   The second row shows the corresponding Motion Energy Images and the 

third row shows the corresponding Motion History Images with 𝝉 = 𝟕.   

 

2.4.2 Motion History Surfaces 

The MHI descriptor is useful in identifying spatial and temporal structuring of actions, however, 

the MHI representations in their current form do not easily allow for comparisons between 

various actions.  Actions vary in terms of the time of execution making it difficult to formulate 

an action classification method.  Furthermore, human subjects executing such actions can vary in 

size and their style in performing actions.  It is desired to formulate an action template as one 

large representation of an action of a fixed size that can be invariant to scale, position in a scene, 

and action execution time.   

To do so, spatio-temporal action surfaces are composed from MHI primitives that can 

account for these factors.   Regions of interest (ROI) of a scene are identified where the motion 

occurs eliminating the issue of localization.  To preserve invariance to human sizes each ROI is 
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resized using bicubic interpolation.  Figure 2-11 demonstrates an example frame of a subject 

walking and the resulting fixed size representation of that frame.   

 
Figure 2-11: An instance of time of an i3DPost multi-view scene of an individual walking in 

MHI form.  The top row shows the original frame.  The second row shows the bounding 

boxes around the region of interest.  The bottom row shows a fixed size representation of 

that same subject.   

 

These fixed size action primitives offer spatial representations but do not identify any 

temporal structuring beyond the MHI representation of each action primitive at one instance of 

time.  To formulate spatio-temporal action templates, we collect entire action sequences and 

concatenate the MHI descriptors to form motion history surfaces.  In this formulation, the motion 

history surfaces become spatio-temporal action templates.  These surfaces are normalized using 

Equation (7) to encourage minimum scale variations while preserving relative frame information.  

Action surfaces can vary due to the execution time of an action by an individual. To account for 

time invariance, these surfaces are resized using bicubic interpolation.  Azary and Savakis 

propose motion history surfaces in [50] for multi-view action classification systems.  Radial 

distance surfaces combined with skeletal tracking are considered for 3D action classification 
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systems in [48].  Spatio-temporal action surfaces for an individual walking across multiple views 

are shown in Figure 2-12.   

𝐻𝜏′ =
𝐻𝜏

𝑚𝑎𝑥𝑥,𝑦,𝑡(𝐻𝜏)
 (7) 

 

 

 
Figure 2-12: Spatio-temporal motion history surfaces for eight views of an individual 

walking from the i3DPost dataset.   
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2.4.3 Motion Depth Surfaces 

For 3D video sequences, we use Motion Depth Surfaces (MDS’s) by incorporating the additional 

dimension of depth.  Assuming 𝐼(𝑥, 𝑦, 𝑡) represents a depth value at pixel (𝑥, 𝑦) for time 𝑡, we 

define a motion depth image (MDI) as follows: 

𝑀𝐷𝐼𝜏(𝑥, 𝑦, 𝑡) = {
𝐼(𝑥, 𝑦)𝑖𝑓𝐷(𝑥, 𝑦, 𝑡) = 1

max(0,𝑀𝐷𝐼𝜏(𝑥, 𝑦, 𝑡 − 1) − 𝛼)
 (8) 

This formulation permits us to capture motion activity in the depth direction as well as 

within a frame.  We concatenate each MDI to create a motion depth surface (MDS) that 

represents spatio-temporal motion with built-in depth motion.  As was done with MHS, these 

surfaces were scaled to a fixed size to account for variations in the timing of actions and to 

ensure that the number of dimensions of each action descriptor remains consistent and its size is 

manageable. 

Examples of subjects executing a horizontal arm wave and a forward punch from the 

MSRAction3D dataset shows how the direction of depth is incorporated into the MDS descriptor 

as shown in Figure 2-13.  Similarly, Figure 2-14 shows a comparison of an MHS and an MDS 

description of the ASL gesture for Green from the MSRGesture3D dataset. 

 

Horizontal Arm Wave
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Forward Punch 

 
Figure 2-13: A comparison of MHI (top rows) with MDI (bottom rows) for subjects 

performing a horizontal arm wave action and a forward punch from the MSRAction3D 

dataset. 

 

a) 

 

b) 

 

Figure 2-14: (a) Sample frames of the ASL sign for Green from the MSRGesture3D 

dataset.  The top row frames show MHI’s and the bottom row frames show MDI’s.  (b) The 

corresponding MHS and MDS. 
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3 Dimensionality Reduction Methodologies 

The high dimensional data that represent an action or a face can become overwhelming when 

dealing with a large number of data samples.  A common challenge for real-world classification 

and recognition systems is the computational performance associated with processing high-

dimensional data.  Subspace learning dimensionality reduction addresses the issue of high 

dimensional data by finding an efficient low-dimensional representation. The following sections 

focus on dimensionality reduction methods including principal component analysis (PCA), 

metric multidimensional scaling (MDS), local linear embedding (LLE), and linear extensions of 

graph embedding (LGE).   

 

3.1 Principal Component Analysis 

Principle Component Analysis (PCA) is a widely used methodology for reducing the dimensions 

of complex and/or noisy data sets to extract relevant information that can be beneficial in 

describing the data.  It is a linear technique that projects data along the directions of maximal 

variance.  PCA has been employed for action classification systems in several works including 

[51] and [52].  In this section, PCA is overviewed, including its benefits and limitations, as 

outlined in [53] and [54].  For data sets with large number of samples n the information can be 

computationally expensive to process.  PCA aims to reduce noise and redundancy while 

preserving the global structure of the high dimensional data [55] by preserving the maximal 

variance.    Given 𝑛-samples of data 𝑿, each of 𝑚-dimensions, PCA provides a way to calculate 

a lower dimensional representation 𝒀 of the higher dimensional data through a transformation 

𝒀′ = 𝑷′𝑿.  To solve for this transformation, PCA calculates a square covariance matrix. PCA 

solves for the principal components of all samples by calculating the eigenvectors of the 



32 | P a g e  

 

covariance matrix to identify principal components of maximal variance.  An alternative 

approach to finding the eigenvectors involves Singular Value Decomposition (SVD). 

PCA is a linear method for extracting linear features based on maximal variance.  When the 

data set is a representation of non-linear features, the principal components may not be effective 

in simplifying the data set successfully.  For an illustrative example, four 3D shapes are 

presented in Figure 3-1.  The first row shows the original 3D representations: swiss roll, 

Gaussian, twin peaks, and intersect.  The colors identify classes associated with each sample.  

The 2D representations after applying principal component analysis are shown in the second 

row.  PCA performs well in representing the swiss roll and Gaussian surfaces, but the other more 

complex shapes do not show a consistent pattern of within class clustering.   

 

 
Figure 3-1: PCA dimensionality reduction examples including the swiss roll, Gaussian, twin 

peak, and intersection. 
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Given 𝑛 as the number of data samples and 𝑝 as the number of classes, the covariance matrix 

computation of PCA has a time complexity of 𝑂(𝑝2𝑛).  The eigenvalue decomposition has a 

time complexity of 𝑂(𝑝3).  Therefore, PCA has a time complexity of 𝑂(𝑝2𝑛 + 𝑝3) [56].   

 

3.2 Metric Multidimensional Scaling 

Metric Multidimensional Scaling (MDS) is a linear technique for dimensionality reduction based 

on proximity data analysis.  MDS attempts to define a distance measure between data in the high 

dimensional space that would be preserved in a lower dimensional space and is a good identifier 

of clustering patterns.  MDS has been used for a wide variety of applications including stock 

market analysis [57], wireless sensor network localizations [58], and protein binding predictions 

[59].   

Given a data set 𝑿 = {𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏} for which each element in the data set resides in a high 

dimensional space 𝐵 such that 𝑿𝑖 ∈ ℝ𝐵, MDS will solve for a lower dimensional representation 

set 𝒀 = {𝒀1, 𝒀2, … , 𝒀𝑛} in space 𝑏 such that 𝒀𝑖 ∈ ℝ𝑏 and 𝑏 ≪ 𝐵.  This mapping is approximated 

by the distances between samples following ‖𝑿𝑖 − 𝑿𝑗‖ [60].  A square dissimilarity matrix is 

created which measures the distance between each pair of elements in the high dimensional 

space as demonstrated in Equation (9) with 𝐷𝑖𝑖 = 0 and 𝐷𝑖𝑗 > 0.   

𝑫 = [

𝐷11 ⋯ 𝐷1𝑗
⋮ ⋱ ⋮
𝐷𝑖1 ⋯ 𝐷𝑖𝑗

] (9) 

The Minkowski distance metric [61] shown in Equation (10) is a general distance measure 

between elements where n is the number of data samples.  This equation is transformed to the 

City-Block metric [62] and the Euclidean distance metric when 𝑟 = 1 and 𝑟 = 2 respectively.  
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Such distance measures can be used as proximity measures in the high dimensional space 

depending on the application.   

𝐷𝑖𝑗 = [∑|𝑿𝑖𝑘 − 𝑿𝑗𝑘|
𝑟

𝑛

𝑘=1

]

1
𝑟

 (10) 

Given the dissimilarity matrix 𝑫, the MDS problem becomes a minimization problem for 

which we desire a transformation that will minimize the error of the distances in a lower 

dimensional space.  To do this we use the following stress function as a least squares criterion.  

The stress function 𝑆𝐷(𝑿1, 𝑿2, … , 𝑿𝑛) in Equation (11) measures the deviation between the 

distance 𝐷𝑖𝑗 and the target distance ‖𝑿𝑖 − 𝑿𝑗‖.   

𝑆𝐷(𝑿1, 𝑿2, … , 𝑿𝑛) = √∑∑(𝐷𝑖𝑗 − ‖𝑿𝑖 −𝑿𝑗‖)
2

𝑛

𝑗=1

𝑛

𝑖=1

 (11) 

Equation (12) shows the minimization function that minimizes the stress over all points 

while finding the transformation that will reduce the number of dimension from 𝐵 to 𝑏 such that 

𝑏 ≪ 𝐵 [63].   

min
𝑌

∑∑(‖𝑿𝑖 − 𝑿𝑗‖
2
− ‖𝒀𝑖 − 𝒀𝑗‖

2
)
2

𝑛

𝑗=1

𝑛

𝑖=1

 

min
𝑌

∑∑(𝐷𝑖𝑗
𝑋 − 𝐷𝑖𝑗

𝑌)
2

𝑛

𝑗=1

𝑛

𝑖=1

 

(12) 

The method of minimization with metric multidimensional scaling is an eigenvalue problem.  

The distance matrix 𝑫𝑋 is converted to a matrix of inner products 𝑿′𝑿 which reduces Equation 

(12) to Equation (13). 

min
𝑌

∑∑(𝑿𝑖
′𝑿𝑗 − 𝒀𝑖′𝒀𝑗)

2
𝑛

𝑗=1

𝑛

𝑖=1

 (13) 
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The eigenvectors 𝑽 of 𝑿′𝑿 are used to solve for the top 𝑚 eigenvalues, 𝝀.  The coordinates 

are transformed from high dimensional space 𝐵 with 𝑿𝑖 ∈ ℝ𝐵 to lower dimensional space 𝑏 with 

𝒀𝑖 ∈ ℝ𝑏 following Equation (14).  Figure 3-2 shows the 2D representations of 3D shapes that 

were reduced through MDS using a Euclidean distance metric (𝑟 = 2). 

𝒀 = 𝝀1/2𝑽′ (14) 

 
Figure 3-2: MDS dimensionality reduction examples including the swiss roll, Gaussian, 

twin peak, and intersection. 

 

The lower dimensional representation of the training data only represents the original high 

dimensional training data and it is unclear how to map new testing data samples.  For this reason, 

MDS is ideal for proximity and cluster analysis, but is not ideal for systems requiring the 

classification of new data samples.  The computational complexity of MDS is 𝑂(𝑛3) [64].   

3.3 Locally Linear Embedding 

Locally Linear Embedding (LLE) is an unsupervised eigenvector method for dimensionality 

reduction that preserves the embedding of high dimensional data through maximal 

discrimination in the lower dimensional space.  The result is a preservation of the underlying 
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structure of the manifold.  LLE has been used for a wide variety of applications including the 

mapping of DNA gene expressions [65] and super resolution [66].   

Given a data set 𝑿 = {𝑿1, 𝑿2, … , 𝑿𝑛} for which each element in the data set resides in a high 

dimensional space 𝐷 such that 𝑿𝑖 ∈ ℝ𝐷,  LLE maps 𝑿 to a lower dimensional representation 

new data set 𝒀 = {𝒀1, 𝒀2, … , 𝒀𝑛} for which each element in 𝒀 resides in a lower dimensional 

space 𝑑 such that 𝒀𝑖 ∈ ℝ𝑑 and 𝑑 ≪ 𝐷.  LLE uses multiple stages for this mapping.  First, it 

computes the nearest neighbors of each data point 𝑿𝑖.  Then, it constructs a weight matrix 𝑾𝑖𝑗 

between all data points 𝑿𝑖 that represent the local linear geometry.  Weights are assigned a value 

of zero for the pairs that are not considered nearest neighbors.  Nearest neighbor weights are 

computed in a manner that can best reconstruct each data point from its neighbors in the lower 

dimensional space.  This is accomplished by establishing measurement of reconstruction errors 

based on the cost function of Equation (15).  This cost function identifies how well each 𝑿𝑖 can 

be linearly constructed from its nearest neighbors 𝑿𝑁(1)…𝑿𝑁(𝑘) [67].   

𝜀(𝑊) =∑|𝑿𝑖 −∑𝑾𝑗
(𝑖)𝑿𝑁(𝑗)

𝑘

𝑗=1

|

2
𝑛

𝑖=1

 (15) 

This cost function is designed to ensure invariance to rotation and scale [68].  The constraint 

∑ 𝑾𝑗
(𝑖)𝑘

𝑗=1 = 1 ensures the sum of the weights between 𝑿𝑖 and all selected neighbors will sum to 

1 and be invariant to translation.  The cost function can then be treated as a constrained least 

squares problem to solve for the optimal weights. These weights represent the local linear 

geometry of the patches since they were determined by assigning weights of the nearest 

neighbors of 𝑿𝑖.  Given the optimal weights, the final step of the LLE algorithm is to compute 

the lower dimensional neighborhood-preserving mapping 𝒀 based on the selected weights using 

the following cost function.   
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Φ(𝑌) =∑|𝒀𝑖 −∑𝑊𝑗
(𝑖)𝒀𝑁(𝑗)

𝑘

𝑗=1

|

2
𝑛

𝑖=1

 (16) 

 

Constraining ∑ 𝒀𝑖 = 0𝑖  and 1 𝑁⁄ ∑ 𝒀𝑖′𝒀𝑖 = 𝐼𝑖  results in the following cost function. 

Φ(𝑌) =∑|(𝑰 −𝑾)𝒀𝑖|
2 = 𝑡𝑟(𝒀′𝑴𝒀)

𝑛

𝑖=1

 (17) 

where 𝑴 ∈ 𝑅𝑁×𝑁 and 𝑴 = (𝑰 −𝑾)′(𝑰 −𝑾).  The final step of LLE is to compute the bottom 

non-zero eigenvalues of matrix 𝑴.   

Similar to MDS, the lower dimensional representation of the training data only represents 

the original high dimensional training data and it is unclear how to map new testing data 

samples.  For this reason, LLE is ideal for preserving the embedding of high dimensional data 

through maximal discrimination and analyzing clustering patterns, but not ideal as a method for 

learning and classifying new test data.  Figure 3-3 illustrates the 2D mappings of 3D shapes.  

Notice how the shapes are clustered in patches.  The time complexity of LLE is a sum of 

searching the nearest neighbors 𝑂(𝐷𝑛3), computing the reconstruction weights 𝑂(𝐷𝑛𝑘3), and 

computing the eigenvalues 𝑂(𝑘𝐷𝑛3)  [69], where 𝑛 is the number of data samples, 𝐷 is the 

number of dimensions in the high dimensional space, and 𝑘 is the number of nearest neighbors.   
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Figure 3-3: LLE dimensionality reduction examples including the swiss roll, Gaussian, twin 

peak, and intersection. 

 

3.4 Linear Extensions of Graph Embedding 

Linear Extensions of Graph Embedding (LGE) methods are eigen-based linearized techniques to 

solve linear approximations of non-linear systems through dimensionality reduction.  They 

include linear discriminant analysis (LDA) [70], locality preserving projections (LPP) [71], and 

neighborhood preserving embedding (NPE) [72].  Manifold learning by Locality Preserving 

Projections (LPP) preserves local neighborhood information and was first reported for action 

classification systems in the work of Wang and Suter [73].  Linear Discriminant Analysis (LDA) 

was applied to action classification in [74]. 

The LGE family of linear dimensionality reduction algorithms computes a lower 

dimensional representation of data from a high dimensional space, while preserving the local 

structure of the input data [55].  LGE solves transformations from a high dimensional space to a 

lower dimensional space which preserve local neighborhood information.  LPP is a linear 

approximation of the nonlinear Laplacian Eigenmap [71] [75] and a generalization of LDA.  An 
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action represented in a lower dimensional space is spatially close to other actions in the same 

manner as in the higher dimensional space. 

Nonlinear methods such as LLE, Isomap, and Laplacian Eigenmaps reveal the relationship 

of training data samples along a manifold by learning the global structure of such manifolds and 

finding mutual relationships among the training data samples [76].  However, since these 

methods model data with nonlinear approaches, the lower dimensional representation of the 

training data only represents the original high dimensional training data and it is unclear how to 

map new testing data samples, as explained by He and Niyogi [71].  LGE methods are linear 

algorithms and can map new test data making these algorithms more effective and faster than the 

previously mentioned techniques [71] [76].   

Suppose we are given a set of training data with 𝑛 points such as 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑛} in 

space ℝ𝐷 where ℝ𝐷 is the high-dimensional space of the original data set of 𝐷 dimensions.  The 

objective is to find a transformation matrix 𝑨 that can map 𝒙𝑖 to 𝒚𝑖 with {𝒚1, … , 𝒚𝑛} in space ℝ𝑑 

for which 𝑑 ≪ 𝐷, as shown in Equation (18), while preserving local neighborhood information.  

The representation 𝒚𝑖 of data in 𝑑-dimensional space is obtained by a transformation of higher 

dimensional data 𝒙𝑖 in 𝐷 dimensional space.  LGE solves for this transformation through a graph 

embedding framework.   

𝒚′𝒊 = 𝑨′𝒙𝒊 

𝑨 ∈ ℝ𝐷×𝑑 

(18) 

The first step of the LGE algorithm is to form the adjacency graph between nodes.  Given 𝑮 

as a graph with 𝑛 nodes, an edge is assigned between nodes 𝑖 and 𝑗 if 𝒙𝑖 and 𝒙𝑗 are close to each 

other.  Two variations of determining the closeness between nodes are the k-nearest neighbor and 
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ε-ball [77]. The k-nearest neighbor approach is to select the k closest points to 𝒙𝑖.  The ε-ball 

approach is to find points that satisfy Equation (19) given a parameter ε. 

‖𝒙𝒊 − 𝒙𝒋‖
2
< 𝜀 (19) 

Given the adjacency graph 𝑮 weights are assigned to detected edges on a separate weight 

matrix 𝑾 = (𝑤𝑖𝑗)𝑛×𝑛.  For unconnected nodes, a weight of zero is assigned while for connected 

nodes, weights can be determined using two variations.  The first is the Simple-Minded approach 

for which a weight is automatically assigned a unitary value if two nodes are connected as shown 

in Equation (20). 

𝑤𝑖𝑗 = {
1𝑖𝑓𝒙𝑖𝑎𝑛𝑑𝒙𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑡𝑜𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑐𝑙𝑎𝑠𝑠

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20) 

The second variation is based on similar, but distinguishable weight matrices that are 

specific to LDA, LPP, and NPE as discussed by Cai et al. [78].  For example, the LDA weight 

matrix is defined by Equation (21) where 𝑛 is the number of samples associated with classes 𝒙𝑖 

and 𝒙𝑗.  By doing so, LDA accounts for within-class scattering.   

𝑤𝑖𝑗 = {
1/𝑛𝑖𝑓𝒙𝒊𝑎𝑛𝑑𝒙𝒋𝑏𝑒𝑙𝑜𝑛𝑔𝑡𝑜𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑐𝑙𝑎𝑠𝑠

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21) 

LPP utilizes the heat kernel approach as shown in Equation (22) for which a weight can be 

calculated given a parameter of t [71] [75].  This weight matrix allows for linear projective 

mappings which preserve the neighborhood structure of a data set.  The equation comes from the 

studies of heat dispersion of solids and liquids.   

𝑤𝑖𝑗 = 𝑒
‖𝒙𝒊−𝒙𝒋‖

2

𝑡  
(22) 

NPE conststructs a weight matrix based on k-nearest neighbors.  The weight matrix is 

estimated by finding weights that minimize the residual sum of squares for reconstructing each 
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𝒙𝑖 from its 𝑘 nearest within-class neighbors given the objective function and constraint of 

Equation (23) [72].   

argmin
𝑤𝑖𝑗

∑‖𝒙𝒊 −∑𝑤𝑖𝑗𝒙𝒋
𝑗

‖

𝑖

2 

subject to ∑ 𝑤𝑖𝑗 = 1𝑗 ,𝑗 = 1,2, … , 𝑘 

𝑘 = #𝑜𝑓𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 

(23) 

Given the weight matrix, the diagonal degree matrix D whose elements are the sums of the 

columns of 𝑾 is solved in Equation (24).  The diagonal degree matrix is a diagonal matrix where 

each diagonal value identifies how many edges each vertex has.  This means that higher values 

of 𝑫𝑖𝑖 are more connected to other vertices and therefore more significant. 

𝑫𝑖𝑖 =∑ 𝑤𝑖𝑗
𝑗

 (24) 

The Laplacian Matrix 𝑳 is also solved by subtracting the adjacency weight matrix from the 

diagonal degree matrix as shown in Equation (25).   

𝑳 = 𝑫 −𝑾 (25) 

An objective function used to solve for the optimal map 𝒚 from the graph is defined in 

Equation (26).  This objective function preserves local neighborhood structuring by ensuring that 

if 𝑖 and 𝑗 are close, than 𝒚𝑖 and 𝒚𝑗 are also close.   

argmin
𝑨

∑(𝒚′𝒊 − 𝒚′𝒋)
2

𝑖𝑗

𝑤𝑖𝑗 (26) 

Given the linear relationship 𝒚′𝒊 = 𝑨′𝒙𝒊, the objective function is reduced to that of 

Equation (27) through algebraic formulation. 

1

2
∑(𝒚′𝒊 − 𝒚′𝒋)

2

𝑖𝑗

𝑤𝑖𝑗 =
1

2
∑(𝑨′𝒙𝑖 − 𝑨′𝒙𝑗)

2

𝑖𝑗

𝑤𝑖𝑗 (27) 
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𝒀′(𝑫 −𝑾)𝒀 = 𝑨′𝑿(𝑫 −𝑾)𝑿′𝑨 

𝒀′𝑳𝒀 = 𝑨′𝑿𝑳𝑿′𝑨 

The objective functions are transformed into the minimization problems of Equation (28).  

Constraining 𝒀′𝑫𝒀 = 1 and 𝑨′𝑿𝑫𝑿′𝑨 = 1 removes arbitrary scaling, promotes a unique 

solution, and reduced the minimization problems to: 

min
𝒀

𝒀′𝑳𝒀

𝒀′𝑫𝒀
→ min

𝒀
𝒀′𝑫𝒀=𝟏

𝒀′𝑳𝒀 

min
𝑨

𝑨′𝑿𝑳𝑿′𝑨

𝑨′𝑿𝑫𝑿′𝑨
→ min

𝑨
𝑨′𝑿𝑫𝑿′𝑨=1

𝑨′𝑿𝑳𝑿′𝑨 

(28) 

 

The final stage of the LGE algorithm is to form the Eigenmaps.  This is done by solving for 

the eigenvectors and eigenvalues in Equation (28).  For min
𝒀

𝒀′𝑳𝒀, 𝒀 is a column of vectors 

which are the solutions of the equation ordered according to their eigenvalues λ0<λ1<…<λl-1.    

The optimal 𝒀 is given by the minimum eigenvalue solution to the generalized eigenvalue 

problem in Equation (29).   

𝑳𝒀 = 𝝀𝑫𝒀 (29) 

Similarly, 𝑨 is a column of vectors which are the solutions of the equation ordered according to 

their eigenvalues λ0<λ1<…<λl-1 [71].  The optimal 𝑨 is given by the minimum eigenvalue 

solution to the following generalized eigenvalue problem in Equation (30).   

𝑿𝑳𝑿′𝑨 = 𝝀𝑿𝑫𝑿′𝑨 (30) 

Note that these are two separate generalized eigenvalue problems for which the eigenvalues 

are not the same.  The optimal transformation matrix 𝑨 is then used to map high dimensional 

data into a lower dimensional space following the linear relationship 𝒚′𝒊 = 𝑨′𝒙𝒊.  Figure 3-4 
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demonstrates improvements over PCA for the previous clustering example and illustrates how 

LGE methods preserve neighborhood information.   

 

 
Figure 3-4: LDA, LPP, and NPE dimensionality reduction examples including the swiss 

roll, Gaussian, twin peak, and intersection. 

 

All 2D embeddings show a preservation of neighborhood classes as their corresponding 3D 

shapes.  LDA, LPP, and NPE mappings vary based on the constructed weight matrix and NPE is 

not as effective as LDA or LPP for class separation and clustering for the swiss roll and intersect 

surfaces.   This is because NPE relies on a weight matrix based on k-nearest neighbors and the 

weight matrix cannot account for the intersection of multiple classes.  LGE has a cubic 
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complexity of order 𝑂 (
3

2
𝑛2𝐷 +

9

2
𝑛3) where 𝑛 is the number of data samples and 𝐷 is the 

number of dimensions for each feature, where 𝐷 > 𝑛 [78]. 
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4 Grassmann Learning 

Another approach for deriving meaningful information from high dimensional data is to find 

low-dimensional representations through linear subspaces using Riemann and Grassmann 

manifolds.  A manifold is a topological space embedded in a high dimensional Euclidean space 

ℝ𝐷, such that each manifold point has a neighborhood homeomorphic to a Euclidean space of 

dimension 𝑚 < 𝐷 [79].  A Riemannian manifold 𝑅(𝑀, 𝑔), is a differentiable manifold 𝑀 with a 

smoothly varying inner product 𝑔 on a tangent space at each point, 𝑝.  Each point on a 

Riemannian manifold is essentially a vector space composed of tangent vectors of all possible 

curves passing through each point 𝑝 [80].  This property makes a Riemannian manifold a 

naturally smooth and curved surface where geodesic metrics can be applied.  Riemannian 

manifolds are an alternative over traditional manifolds where high dimensional feature 

representations do not typically lie on a Euclidean space.  Harandi et al. [81] demonstrated 

improvements in discrimination accuracy by embedding data onto Riemannian manifolds and 

applying LPP on Riemannian pseudo kernels for the applications of gesture recognition, person 

re-identification, and texture classification. 

Grassmann manifolds 𝐺(𝑚,𝐷), a subset of Riemannian manifolds, are manifolds where 

distances between subspaces can be measured by principal angles.  They are the set of 𝑚-

dimensional linear subspaces of 𝑅𝐷 [82].  Grassmann manifolds offer a computation advantage 

by allowing subspaces to be represented as individual points, they promote high class 

discrimination by their geometrical structuring, and they account for missing data through 

subspace spanning.  Shigenaka et al. [83] present the Grassmann Distance Mutual Subspace 

Method (GD-MSM) and Grassmann Kernel Support Vector Machines (GK-SVM) for improved 

face recognition in comparison to MSM and SVM alone.  Park and Savvides [84] adopted 
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Grassmann kernels into Kernel Principal Component Analysis (KPCA) for face recognition.  

Turaga et al. [85] embedded representations on Grassmann manifolds and used probability 

density functions to estimate classes on noisy data with applications on face recognition, shape 

matching, shape retrieval, and multi-view systems.  Hamm and Lee [82] proposed Grassmann 

kernelized linear discriminant analysis (GDA) for face recognition and object categorization.  

Similarly, Harandi et al. [79] proposed a Grassmann based graph embedding framework for 

action analysis.   

 

4.1 Grassmann Framework 

Given 𝑛 training samples in 𝑪 ∈ ℝ𝐷, solve for 𝑚 unit vector representations of each class where 

𝑚 is the number of samples of each class.  Unit vector representations are determined through 

singular value decomposition (SVD), such that: 

𝑪𝐷×𝑚 = 𝑼𝐷×𝐷𝑺𝐷×𝑚𝑽
′
𝑚×𝑚 

𝑼′𝑼 = 𝑰, 𝑽′𝑽 = 𝑰 

(31) 

where 𝑼𝐷×𝐷 is an orthogonal matrix whose columns are the eigenvectors of 𝑪𝑪′ and 𝑽𝑚×𝑚 is the 

transpose of an orthogonal matrix whose columns are the eigenvectors of 𝑪′𝑪.  The diagonal 

matrix 𝑺𝐷×𝑚 contains the singular values in descending order.  With the orthogonal matrix 𝑼𝐷×𝐷 

define a unit vector 𝒖1×𝐷 representation of each sample with an imposed orthogonal constraint.  

The unit vectors of each 𝑘-class are grouped into an orthonormal matrix 𝒀𝐷×𝑚.  The span of the 

orthonormal matrix 𝒀𝐷×𝑚 represents a subspace of a class on a Grassmann manifold.  If the 

columns of 𝒀 span a vector 𝒖, then 𝒖 can be classified to that subspace.  The distances between 
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subspaces can be measured by their principal angles.  A visual overview of the Grassmann 

framework is shown in Figure 4-1.   

 
Figure 4-1: This figure demonstrates the mapping of three classes from a Euclidean space 

onto a Grassmann manifold.  The span of the orthonormal matrix 𝒀 represents a subspace 

as a single point on a Grassmann manifold.  The geodesic distance between subspaces, 

𝒅(𝒀𝒊, 𝒀𝒋) = ∑ 𝜽𝒊
𝟐𝒎

𝒊=𝟏 , is a function of principal angles.   
 

There are many benefits to using Grassmann manifolds.  The span of orthonormal matrices 

embedded as single points promotes high between-class discrimination and promotes within-

class clustering.  It also allows for directly comparing two subspaces, which is computationally 

cheaper than measuring all distances between individual elements [82].  Embedding points on a 

Grassmann manifold has a complexity of 𝑂(𝐷𝑚2) where 𝐷 is the number of dimensions and 𝑚 
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is the number of subspaces [86]. Additionally, Grassmann manifolds fill in missing information 

through linear spans of subspaces.   

For an illustrative example, Figure 4-2 shows original 3D shapes and their corresponding 

orthogonal embedding where each class is plotted separately.  The classes in each example are 

clustered and are separable by their principal angles from other classes, and capable of being 

compared to other subspaces by geodesic metrics.  In all examples, classes are clustered into 

planes that cross through the origin at different angles.  The amount of separation is identifiable 

by the difference of principal angles between classes.   

 

 

 

 

                 

 
Figure 4-2: The transformation of data from a 3D Euclidean space to their orthogonal 

embedding.  Each class clusters into planes that cross through the origin and classes are 

separated from each other based on their principal angles. 

 

4.2 Grassmannian Metrics 

Given the span of two subspaces 𝒀𝟏 and 𝒀𝟐, a similarity measure between them is a measure 

based on principal angles 𝜽 = [𝜃1, … , 𝜃𝑚].  The principal angle between two orthonormal 

matrices is determined by: 



49 | P a g e  

 

𝑐𝑜𝑠𝜃𝑏 = max
𝒖𝑏∈𝑠𝑝𝑎𝑛(𝒀1)

𝒗𝑏∈𝑠𝑝𝑎𝑛(𝑌2)

(𝒖𝑏
′ 𝒗𝑏) 

𝑠. 𝑡.𝒖𝑏
′ 𝒖𝑏 = 1, 𝒗𝑏

′ 𝒗𝑏 = 1 

𝒖𝑏
′ 𝒖𝑖 = 0,𝒗𝑏

′ 𝒗𝑖 = 0 

(𝑖 = 1,… , 𝑏 − 1) 

(32) 

This is equivalent to solving for the principal angles using SVD such that: 

𝒀𝟏′𝒀𝟐 = 𝑼𝑺𝑽′ 

𝑑𝑖𝑎𝑔(𝑺) = (𝑐𝑜𝑠𝜃1, … , 𝑐𝑜𝑠𝜃𝑚) 

(33) 

Shigenaka et al. [83] and Hamm and Lee [82] define similarity metrics based on principal 

angles as shown in Equations (34) through (39).  Each similarity measure has their benefits and 

drawbacks.  For example, any measure based on all principal angles will balance class 

discrimination and robustness to noise.  Measures based on the smallest principal angle 𝜃1 tend 

to be more robust to noise and less discriminative.  Measures based on the largest principal angle 

𝜃𝑚 tend to be discriminative and less robust to noise.   

Projection: 𝑑(𝒀𝑖, 𝒀𝑗) = (𝑚 − ∑ 𝑐𝑜𝑠2𝜃𝑖
𝑚
𝑖=1 )1/2 (34) 

Binet-Cauchy: 𝑑(𝒀𝑖 , 𝒀𝑗) = (1 − ∏ 𝑐𝑜𝑠2𝜃𝑖𝑖 )1/2 (35) 

Max Correlation: 𝑑(𝒀𝑖 , 𝒀𝑗) = (1 − 𝑐𝑜𝑠2𝜃1)
1/2 (36) 

Min Correlation: 𝑑(𝒀𝑖 , 𝒀𝑗) = (1 − 𝑐𝑜𝑠2𝜃𝑚)
1/2 (37) 

Procrustes: 𝑑(𝒀𝑖 , 𝒀𝑗) = 2 (∑ 𝑠𝑖𝑛2
𝜃𝑖

2

𝑚
𝑖=1 )

1/2

 (38) 

Geodesic: 𝑑(𝒀𝑖, 𝒀𝑗) = ∑ 𝜃𝑖
2𝑚

𝑖=1  (39) 

Mean Distance: 𝑑(𝒀𝑖 , 𝒀𝑗) =
1

𝑚
∑ 𝑠𝑖𝑛2𝜃𝑖
𝑚
𝑖=1  (40) 
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4.3 Grassmannian Kernels 

Grassmann manifolds are naturally smooth and curved surfaces. The geometrical characteristics 

and structuring of Grassmann manifolds are discussed in [87], [88]. With this smooth 

characteristic, the distance between two subspaces is geodesic.  Grassmann kernels provide a 

means to simplify subspace metrics so that geodesic computations are avoided. Three common 

Grassmann kernels are projection kernels, canonical correlation kernels, and Binet-Cauchy 

kernels.  In this dissertation, projection kernels are used since they have proven to be the most 

effective.   

4.3.1 Grassmann Projection Kernels 

A projection kernel 𝒌𝑝 maps an isometric embedding from the Grassmannian space to a 

projection space.  A projection metric is used to calculate the distance between subspaces by 

measuring the principal angles, 𝜽 = [𝜃1, … , 𝜃𝑚].  The principal angle between two orthonormal 

matrices is determined by: 

𝑐𝑜𝑠𝜃𝑏 = max
𝒖𝑏∈𝑠𝑝𝑎𝑛(𝒀1)

𝒗𝑏∈𝑠𝑝𝑎𝑛(𝑌2)

(𝒖𝑏
′ 𝒗𝑏) 

𝑠. 𝑡.𝒖𝑏
′ 𝒖𝑏 = 1, 𝒗𝑏

′ 𝒗𝑏 = 1,𝒖𝑏
′ 𝒖𝑖 = 0,𝒗𝑏

′ 𝒗𝑖 = 0 

(𝑖 = 1,… , 𝑏 − 1) 

(41) 

The principal angle is related to the projection metric by: 

𝑑𝑝(𝒀1, 𝒀2) = (∑𝑠𝑖𝑛2𝜃𝑖

𝑘

𝑖=1

)

1
2

= (𝑚 −∑𝑐𝑜𝑠2𝜃𝑖

𝑘

𝑖=1

)

1
2

 (42) 

This allows for Euclidean distance metrics between two subspaces from isometric 

embeddings.  The projection of two matrices 𝒀1 and 𝒀2 as defined by proposition 1 of Hamm 

and Lee [82]: 
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𝐾𝑝(𝒀1, 𝒀2) = 𝑡𝑟[(𝒀1𝒀1
′ )(𝒀2𝒀2

′ )] = ‖𝒀1′𝒀2‖𝐹
2  (43) 

The projection kernel can be calculated as the Frobenius norm which is ‖𝒀1′𝒀2‖𝐹
2 , the 

square root of the sum of the absolute squares of 𝒀1′𝒀2.  Grassmann kernels require kernel-based 

methods for classification such as PCA, LDA, etc., as reported in Turaga et al. [89].  Grassmann 

learning with projection kernels have a time complexity of 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2)). 

 

4.4 Grassmannian Principal Component Analysis 

A major challenge associated with feature representations, such as motion history surfaces or 

histograms of local ternary patterns, is high dimensional data representations.  The volume of 

data can be difficult to handle, especially as the number of samples and classes are large.  Such 

data representations can be filled with outliers, noise, redundant data, and are extremely 

expensive to process in their current high dimensional format.  For this reason, subspace learning 

methods are explored to reduce these action representations to a form that can be processed and 

analyzed.  The motivation for using Grassmann learning is because of its unique characteristics 

to promote high class discrimination through smooth and curved surfaced, and its ability to 

improve performance by embedding spans of orthonormal matrices as individual points.  A 

general overview of Grassmann learning is illustrated in Figure 4-3 for face recognition.  Local 

ternary pattern histograms of face image are embedded onto a Grassmann space where projection 

kernels are created for training and testing as a function of the principal angles between 

subspaces.  The kernels are used for manifold learning of lower dimensional representations.  In 

this section, we consider PCA in combination with Grassmann learning and define Grassmann 

kernel principal component analysis (GPCA).   
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Figure 4-3: An overview of Grassmannian based classifiers for face recognition.  For face 

recognition, local ternary pattern histograms are derived from face images and mapped 

onto a Grassmann space.  Training and testing Grassmann kernels are constructed and 

processed through manifold learning or sparse representations. 

 

As discussed in Section 3.1, PCA is a linear method for extracting linear features.  When 

processing non-linear features the principal components determined by maximal variance are 

typically not effective in simplifying the data set successfully.  Kernel PCA (KPCA) [90] has 

proven to be more effective at extracting non-linear structures from data and is well suited for 

non-linear features.   Mika et al. [91] utilize KPCA using Gaussian kernels for denoising and 
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reconstruction of hand writing characters. Liu [92] used a Gabor based kernel in KPCA for facial 

expression recognition.   

Park and Savvides [84] proposed Multifactor Grassmann Manifolds (MGM) which are a 

combination of Grassmann manifolds with multi-linear subspace methods included GPCA.  PCA 

identifies principal components of maximal variance by calculating the eigenvectors of the 

covariance matrix.  GPCA identifies non-linear features of high dimensional data by forming the 

covariance matrix of a Grassmann kernel, and then calculating the eigenvectors of the covariance 

matrix to identify principal components of maximal variance.  The benefit to using Grassmann 

kernels is due to representations that map an isometric embedding from the Grassmannian space 

to a projection space while promoting high discrimination.  The principal components 

determined from a Grassmann kernel covariance matrix respect non-linear feature subspaces and 

high between-class separability.  Figure 4-4 shows the 2D embedding of 3D shapes after 

applying GPCA including a variation in subspace sizes of a single point.   

As the subspace sizes increase we see a more clear separation of classes.  However, the class 

separation does not appear to be discriminative enough for classification and recognition 

systems.  Even the three class twin peak shape shows difficulty in distinguishing between the 

maroon and blue class although there is a clear separation with the green class.   

Given that Grassmann learning has a complexity of 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2)) with projection 

kernels and that PCA has a complexity is 𝑂(𝑝2𝑛 + 𝑝3), the GPCA time complexity is expected 

to be 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2 + 𝑝2𝑚 + 𝑝3)) where 𝑛 is the number of data samples, 𝐷 is the number of 

dimensions, 𝑚 is the number of Grassmann subspaces, and  𝑝 is the number of classes.    
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Figure 4-4: The 2D embedding of 3D shapes after applying GPCA.  The first row shows the 

original 3D shapes.  The remaining rows show the embedding when each sub space is 

composed of 5, 15, 20, and 100 data samples per subspace respectively. 
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5 Grassmannian Sparse Representations 

In this chapter, the sparse representations framework and its applications towards classification is 

presented.  Sparse representations are followed up with the formal definition of Grassmannian 

Sparse Representations (GSR),  a subspace learning algorithm that combines the benefits of 

Grassmann manifolds with sparse representations using least squares loss ℓ1-norm minimization 

for improved classification.  GSR is another major contribution in this dissertation.  This section 

begins with a background on sparse representations and concludes with a formal definition of 

GSR.   

 

5.1 Sparse Representations 

Another recent development for finding lower dimensional representations is sparse 

representations.  The term sparse is a measurable property of a vector associated with the 

number of non-zero entries contained in that vector.  In many real-world systems, data is often 

sparsely represented, which means that a small portion of a data representation can describe the 

entire system, and would be beneficial in reducing high-dimensional data.  The theory stems 

from the Pareto Principle, a phenomenon that in any population contributing to some common 

effect only a few members of the population actually contributes to the majority of the effect 

[93].  This phenomenon can be observed in a wide variety of applications including economics 

[94], biology [95], and social networks [96].   Sparse representations are a method for finding 

sparse solutions for underdetermined systems.  In computer vision applications, images or video 

sequences can be encoded using sparse representations to be more easily interpretable and much 

faster to process.  Sparse representations have been used for face recognition [97], super-

resolution [98], denoising [99], and image classification [100]. 
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Sparse representation methods have also been utilized for action classification frameworks.  

Zhang et al. [101] use sparse representations and Bag of Words of spatio-temporal feature 

descriptors which are projected into a lower dimensional space using PCA and apply ℓ1-

minimization to classify actions.  Liu et al. [102] use motion context descriptors to represent 

frame description and motion context and find sparse representations. 

Another recent trend showing success is the interaction of dimensionality reduction methods 

with sparse representations for improved classification and recognition.  Ptucha and Savakis 

[103] defined a framework for facial expression recognition that combined LGE with K-SVD, an 

iterative sparse coding technique utilizing singular value decomposition similar to k-means 

clustering.  Lu et al. [104] propose a framework for super-resolution which combines sparse 

coding with spectral graph processing to learn the geometrical structure of training data.  Zheng 

et al. [105] proposed a sparse coding objective function method that imposes a graph Laplacian 

regularizer to solve for sparse representations while also accounting for geometrical structures.  

Experiments were applied for clustering analysis for facial expressions and object classification 

with a higher rate of success than sparse coding alone.  A major drawback with sparse 

representation classification methods is the issue of run-time performance and memory 

utilization.  The theoretical complexity is difficult to analyze although studies suggest that ℓ1-

norm minimization in the Lasso formulation has an exponential worse case complexity [106] 

[107].  For this reason, sparse representation classification for high dimensional recognition and 

classification systems are not ideal. 

Given a matrix 𝑫𝑚×𝑛 = [𝑫1, 𝑫2, … , 𝑫𝑝] representing an over-complete dictionary of 𝑛-

action samples, each of 𝑚-dimensions, with 𝑝 separate action classes and a test sample 𝒙, a 

linear representation is defined as:  
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𝒙 = 𝑫𝒂 (44) 

where 𝒂0 = [0,… , 0, 𝑎′𝑝, 0, … ,0] ∈ 𝑅𝑛 is a sparse coefficient vector whose entries are all zero 

except for those associated with the pth action class.  Corruption and occlusions can complicate 

the action classification process affecting the coefficient vector representation [108] by either 

providing no unique solution or allowing many solutions.  Least squares minimization 

approaches can be used to address the issue.  If there is a large number of action classes 𝑝, the 

coefficient representation is naturally sparse [101] and ideally we can find the sparsest solution 

using ℓ0-norm minimization: 

�̂� = arg𝑚𝑖𝑛 ‖𝒂‖0𝑠. 𝑡.𝒙 = 𝑫𝒂 (45) 

where ‖𝒂‖0 counts the number of non-zeros in vector 𝒂. However, the system is 

underdetermined and finding the sparsest solution is NP-hard.  ℓ2-norm minimization or 

Euclidean norm is a least squares minimization approach based on:  

�̂� = arg𝑚𝑖𝑛 ‖𝒂‖2
2𝑠. 𝑡.𝒙 = 𝑫𝒂 (46) 

where ‖𝒂‖2
2 = ∑ 𝒂𝑖

2
𝑖 .  ℓ2-norm minimization assumes that the best-fit curve has a minimal sum 

of squared deviations from a dataset [109].  Advantages of ℓ2-norm minimization are that the 

solution to the problem is performed easily and the result is always unique.  However, an issue 

with ℓ2-norm minimization is that the approach assumes a normal distribution which may not be 

the case for collected data due to noise and errors in the dataset resulting in outliers [110].  ℓ2-

norm minimization utilizes all available examples in order to identify the solution.   If the 

solution �̂� is sparse enough, ℓ0-norm minimization is equal to that of ℓ1-norm minimization [101] 

[111]: 

�̂� = arg𝑚𝑖𝑛 ‖𝒂‖1𝑠. 𝑡.𝒙 = 𝑫𝒂 (47) 
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where ‖𝒂‖1 = ∑ |𝒂|𝑖 .  ℓ1-norm minimization promotes sparse solutions and can be reformed as a 

convex linear programming optimization method.  Furthermore, ℓ1-norm minimization is an 

effective technique for solving underdetermined systems of linear equations [112] and 

concentrates on few non-zero coefficients making the approach robust with built-in outlier 

detection.   

There are many methods for ℓ1-norm minimization, and in this paper we focus on the least 

squares loss method with regularization: 

�̂� = arg𝑚𝑖𝑛 ‖𝑫𝒂 − 𝒙‖
2
2
+ 𝜆‖𝒂‖1𝑠. 𝑡.𝒙 = 𝑫𝒂 (48) 

where 𝜆 is ℓ1-norm regularization parameter which is used to achieve sparser solutions.  When a 

problem solution is known to be sparse, an applied penalty through regularization provides low 

variance feature selection, improved approximations, and more interpretable solutions [113].  

This is apparent in Figure 5-1 showing the reconstruction coefficients when 𝜆 = 0 and 𝜆 = 300.  

When 𝜆 = 0, the problem is reduced to an ℓ2-norm minimization problem. 

 

  
Figure 5-1: These plots show the reconstruction coefficients from the LFW dataset using 

least squares loss method with regularization following Equation (48).  The left plot shows 

the coefficients when 𝝀 = 𝟎, an ℓ2-norm minimization problem.  The right plot shows the 

coefficients when 𝝀 = 𝟑𝟎𝟎.   
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Given the sparse coefficient vector �̂�, minimum reconstruction error can be used to classify 

a test sample to class 𝑝.  Minimum reconstruction is a preferred classification heuristic because it 

preserves the linear structure of face and action representations by utilizing all non-zero 

coefficients [97] for reconstruction.  Minimum reconstruction is done by reconstructing a sample 

from each class and comparing them against the reconstructed sample from all classes using 

Equation (49)  to minimize the residuals.  The smallest residual identifies the class 𝑝. 

𝑝∗ =
arg𝑚𝑖𝑛
𝑖 = 1: 𝑝

‖𝑫�̂�𝒊 − 𝒙‖
2
 (49) 

  

5.2 3D Action Classification Using Sparse Spatio-Temporal Feature 

Representations 

In this section we present the incorporation of sparse representations for 3D action classification 

as presented in [114].  Our goal is to define feature descriptors which represent an over-complete 

dictionary of human actions from depth data, meaning that the dimension of the feature vector is 

larger than the dimension of the input.  We selected two distinct feature descriptors for 

comparison and evaluation, kinematic 3D joint surfaces (Section 2.3.3) and raw depth data.  For 

raw depth surfaces, we utilized features extracted from raw depth data by determining the largest 

connected object in the scene and defining a bounding box around that region of interest.  The 

raw data is read from the scene, scaled to a constant feature size, and normalized to obtain a 

feature descriptor that is invariant to scale and localization.  As was done for 3D joint surfaces, 

to account for variance in action execution time the raw depth surface features were resized to a 

fixed length using bicubic interpolation.  Figure 5-2 shows the resulting descriptor plot for raw 
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depth data for one instance of time of a subject executing a waving action.  Figure 5-3 shows the 

resulting raw 3D action surface for that same action. 

 

  
Figure 5-2: Example frame of a test subject performing a waving action in 3D space with 

kinematic coordinates from the MSRAction3D dataset.  The plot shows the depth surface 

descriptor for that frame instance.     

 

  
Figure 5-3: The action surface plot for raw 3D depth information of 768 features across 40 

frames of a subject executing a waving action from the MSRAction3D dataset.   

 

The MSRAction3D dataset (Section 7.2.4) was used for our experiment with the same 

experimental setup described in Section 2.3.4.  Twenty actions were divided into three subsets 

consisting of eight actions each as presented in Table 2.  Additionally, we test against the entire 

set of. The subsets 1 and 2 were designed to group activities with similar movements while 

subset 3 was designed to group actions that are more dissimilar, and therefore more suitable for 

sparser solutions.  2-fold cross validation (2FCV) was used where we randomly select half the 

subjects for testing and half the subjects for training, and additionally we train and test on both 

sets allowing for each action sample to be used for either training or validation on each fold.  To 
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ensure large and over-complete dictionaries, we also experiment with leave one out cross 

validation (LOOCV) where each test subject is validated against the remaining subjects and 

repeated for all subjects until all subjects have been used for training and testing.  The results of 

our approach are presented in Table 4 and Table 5 for the kinematic joint feature descriptor and 

the raw depth data extrapolated from the 3D video sequences using ℓ1-norm minimization and 

ℓ2-norm nearest neighbor.  

 

Subset 
Cross Validation 

Approach 

ℓ1-norm 

Minimization 

ℓ2-norm 

Nearest Neighbor 

Subset 1 
LOOCV 80.73% 80.21% 

2FCV 77.66% 76.60% 

Subset 2 
LOOCV 77.11% 78.78% 

2FCV 73.17% 75.61% 

Subset 3 
LOOCV 93.89% 89.29% 

2FCV 91.58% 89.47% 

Subset 4 
LOOCV 72.11% 72.32% 

2FCV 63.23% 73.54% 

Table 4: Results from the MSRAction3D dataset using kinematic joint feature descriptors 

and cross validation methods, ℓ1-norm minimization and nearest neighbor. 

 

Subset 
Cross Validation 

Approach 

ℓ1-norm 

Minimization 

ℓ2-norm 

Nearest Neighbor 

Subset 1 
LOOCV 67.79% 61.76% 

2FCV 74.47% 69.15% 

Subset 2 
LOOCV 84.50% 71.50% 

2FCV 84.15% 67.07% 

Subset 3 
LOOCV 82.37% 74.99% 

2FCV 88.42% 86.32% 

Subset 4 
LOOCV 71.05% 58.82% 

2FCV 76.23% 71.75% 

Table 5: Results from the MSRAction3D dataset using raw depth feature descriptors and 

cross validation methods against ℓ1-norm minimization and nearest neighbor. 

 

As suspected, the best action classification accuracies came from subset 3 because the 

dissimilarity between the grouped actions naturally encourages sparser solutions.  We also find 

that with kinematic joint descriptors, ℓ1-norm minimization does not drastically outperform ℓ2-

norm minimization.  This indicates that the normal distribution and utilization of all available 
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training examples is sufficient and that the kinematic descriptor is not sparse enough to 

accurately classify actions.  However, the kinematic joint descriptor is very powerful descriptor 

for accurate action classification. 

When examining the raw depth data feature descriptor, we begin to see that the natural 

sparse representation of each action sequence results in an improvement over nearest neighbor 

classification.  We obtain an accuracy of 76.23% on all 20 3D video actions using 2FCV which 

performs 5.18% better than LOOCV, indicating that the training dictionaries are over-complete 

without training a majority of the action samples.  This is even more apparent when noticing that 

in almost all cases 2FCV’s outperform LOOCV for both ℓ2-norm minimization and ℓ1-norm 

minimization.   

5.3 Grassmann Learning with Sparse Representations 

Grassmannian Sparse Representations (GSR) is proposed in this dissertation as a framework 

which combines Grassmannian kernels and sparse representations using least squares loss.  The 

benefits of GSR include improved computational efficiency by reducing the coefficient 

reconstruction vector size, high with-in class integration along with high between-class 

separability promoted by Grassmann manifolds, and efficient representations promoted by ℓ1-

norm minimization.  The motivation is to combine computational efficiency and high class 

discrimination, promoted by the structure of Grassmann manifolds, with efficient data 

representation promoted by ℓ1-norm minimization.   

We construct a training projection kernel𝑲𝑡𝑟𝑎𝑖𝑛 of size 𝑚𝑡𝑟𝑎𝑖𝑛 ×𝑚𝑡𝑟𝑎𝑖𝑛, as a kernel 

mapping of all data elements between each other, where 𝑚𝑡𝑟𝑎𝑖𝑛 is the number of training 

subspaces.  Similarly we construct a testing projection kernel 𝑲𝑡𝑒𝑠𝑡 of size 𝑚𝑡𝑟𝑎𝑖𝑛 ×𝑚𝑡𝑒𝑠𝑡, 

which maps training subspaces to testing subspaces, where 𝑚𝑡𝑒𝑠𝑡 is the number of testing 
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subspaces.  With this configuration, kernels can be introduced into the least squares loss function 

with regularization of Equation (50) such that: 

�̂� = arg𝑚𝑖𝑛 ‖𝑲𝑡𝑟𝑎𝑖𝑛𝒂 − 𝑲𝑡𝑒𝑠𝑡(𝑖)‖
2
2
+ 𝜆‖𝒂‖1 

𝑠. 𝑡. 𝑲𝑡𝑒𝑠𝑡 = 𝑲𝑡𝑟𝑎𝑖𝑛𝒂, 𝑖 = [1,… ,𝑚𝑡𝑒𝑠𝑡] 

(50) 

where 𝑲𝑡𝑟𝑎𝑖𝑛 is the training projection kernel, 𝑲𝑡𝑒𝑠𝑡 is the testing kernel, 𝒂 is the coefficient 

vector, and 𝑚𝑡𝑒𝑠𝑡 is number of test elements which is equal to the number of testing subspaces.  

The objective function above promotes sparse solutions through ℓ1-norm minimization, an 

effective technique for solving underdetermined systems of linear equations with outlier 

detection, and promotes class discrimination through Grassmannian manifolds.  It should also be 

noted that either individual elements or a group of elements may be treated as a single subspace 

through Grassmann learning depending on the application.   

With the reduction from a high dimensional space to training and testing kernels, 

classification can be carried out using minimum reconstruction to identify which Grassmann 

embedded subspace class is most associated with a new Grassmann embedded test sample.  

Given the coefficient vector �̂� determined from Grassmann kernels, minimum reconstruction can 

be used to classify a test sample by reconstructing a sample from each class from projected 

Grassmann points and comparing them against the reconstructed sample from all classes of 

projected Grassmann points using: 

𝑝∗ =
arg𝑚𝑖𝑛
𝑗 = 1: 𝑝

‖𝑲𝑡𝑟𝑎𝑖𝑛�̂�
𝒋 −𝑲𝑡𝑒𝑠𝑡(𝑖)‖2 

𝑠. 𝑡. 𝑖 = [1, … ,𝑚𝑡𝑒𝑠𝑡] 

(51) 

There are many benefits of the GSR framework.  Fast high dimensional data reduction is 

achieved through linear derivations of weighted isometric embeddings from a Grassmann space 

to a Euclidean space.  The Grassmannian component of the algorithm supports high between 
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class discrimination because these manifolds have smooth structure and can fill in missing data 

through linear spanning.   

The sparse representation component of the algorithm is representing a linear combination 

of basis vectors from Grassmann kernels rather than high dimensional data input.  This 

automatically incorporates the benefits of Grassmann learning in a sparse coding framework.  

Additionally, regularization can easily be incorporated to solve for the sparse reconstruction 

coefficients.  Grassmann subspaces can represent an entire class and the number of sparse 

reconstruction coefficients can reduce to the number of classes in the classification system.  For 

multi-view action systems, a single action class, independent of the viewpoint, can be 

represented as a single point on a Grasssmann space.  Multiple trials of the same 3D action class 

can also be represented as single points.  Face images of one subject of varying illuminations and 

expressions can be represented as a single point.  These reductions simplify reconstruction and 

will reduce the computation load.      

Grassmann learning has a squared time complexity of 𝑂(𝑛2𝐷𝑚2) with projection kernels 

[79] where 𝑛 is the number of samples, 𝑚 is the number of subspaces in the Grassmann space, 

and 𝐷 is the number of dimensions of each input sample.  Sparse representation classification has 

a theoretical exponential complexity.  However, in the GSR framework the time complexity 

would be exponential on a Grassmann kernel and can therefore perform the fastest when an 

entire class is represented as a single point on a Grassmann space. 
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6 Grassmannian Spectral Regression 

In this chapter spectral regression and its applications towards classification is presented.  

Spectral regression is followed up with the formal definition of Grassmannian Spectral 

Regression (GRASP), a subspace learning algorithm which leverages the benefits of Grassmann 

manifolds and Spectral Regression in a framework that supports high discrimination between 

classes and achieves computational benefits by using manifold modeling and avoiding eigen-

decomposition.  GRASP is the next major contribution in this dissertation.   

 

6.1 Spectral Regression 

While eigen-based linear subspace approaches are effective at learning linear and non-linear 

representations of data, recent efforts have emerged towards least squares frameworks because of 

drawbacks associated with eigen-formulations.  DelaTorre [115] suggests that eigen-

decomposition results in normalization factors and inaccuracies with rank deficient matrices, and 

proposes a least-squares weighted kernel reduced rank regression (LS-WKRRR).  Cai et al. [78] 

encourage the avoidance of eigen-decomposition because of computational inefficiencies and 

introduces Spectral Regression for regularized subspace learning.  Based on regression and 

spectral graph analysis, this approach enables regularization which is not as simple to do with 

eigen-decomposition.  

Spectral Regression (SR) [78] is a regularized subspace learning approach that overcomes 

the disadvantages of eigen-based approaches in terms of inefficiencies in execution time 

performance, memory allocation, and regularization.  With the LGE framework the minimization 

problem for 𝒀 is min
𝒀

𝒀′𝑳𝒀

𝒀′𝑫𝒀
 and the minimization problem for 𝑨 is min

𝑨

𝑨′𝑿𝑳𝑿′𝑨

𝑨′𝑿𝑫𝑿′𝑨
.  Constraining 
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𝒀′𝑫𝒀 = 1 and 𝑨′𝑿𝑫𝑿′𝑨 = 1 allows for the problems to be generalized to the minimization 

problems min
𝑨

𝒀′𝑳𝒀 and min
𝑨

𝑨′𝑿𝑳𝑿′𝑨 respectively.  These are also equivalent to the 

maximization problems max
𝒀

𝒀′𝑾𝒀 and max
𝑨

𝑨′𝑿𝑾𝑿′𝑨 corresponding to their maximum 

eigenvalues: 

𝑾𝒀 = 𝝀𝑫𝒀 (52) 

𝑿𝑾𝑿′𝑨 = 𝝀𝑿𝑫𝑿′𝑨 (53) 

The eigenvalues 𝝀 for Equation (52) and the eigenvalues 𝝀 for Equation (53) are distinct.  

Given the linear relationship 𝒀′ = 𝑨′𝑿 and that 𝑨 is the eigenvectors of Equation (53), the 

Spectral Regression framework redefines 𝒀 to be the eigenvectors of Equation (52) so that the 

eigenvalues 𝝀 of both eigen-problems are the same.  To solve for the eigenvectors 𝑨∗ efficiently 

the spectral regression approach follows a two-step iterative process outlined below: 

(1) Solve for 𝒀 in Equation (52). 

(2) Solve for the eigenvectors 𝑨∗ corresponding to the maximum eigenvalue of Equation (53) 

that satisfies 𝒀′ = 𝑨′𝑿, using least squares regression and the equation below where 𝒚𝒊 is 

the 𝑖𝑡ℎ element of 𝒀.   

𝑨∗ = argmin
𝑨

∑(𝑨′𝒙𝒊 − 𝒚′𝒊)
2

𝑛

𝑖=1

 (54) 

The minimization problem could be underdetermined with many possible solutions.  To 

account for this, regularization can be used with parameter 𝛼 regulating the amount of shrinkage, 

and an applied penalty on the norm of 𝑨, where ‖𝑨‖2 is an ℓ2 norm: 

𝑨∗ = argmin
𝑨

(∑(𝑨′𝒙𝒊 − 𝒚𝒊)
2

𝑛

𝑖=1

+ 𝛼‖𝑨‖2) (55) 
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A class value is assigned by performing classification in the lower dimensional space using 

k-Nearest Neighbor (k-NN) or another classifier.  Other types of regularizers can be 

incorporated, which demonstrates the flexibility of regularized subspace learning for adaptation 

to various applications.   

Spectral Regression is known to be more effective for smaller class problems [78].  Figure 

6-1 shows spectral regression dimensionality reduction on the same four shapes in our example 

with a varying regularization parameter, 𝛼.   

 

 
Figure 6-1: Spectral regression dimensionality reduction examples including the swiss roll, 

Gaussian, twin peak, and intersection with a varying regularization parameter, 𝜶. 
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With Spectral Regression, the Gaussian surface is embedded in a different yet separable 

manner compared to PCA and LPP when 𝛼 is small.  As the 𝛼 increases the 2D embedding of 

the Gaussian shape takes form and appears more separable.  Meanwhile, the intersect shape 

appears more separable when 𝛼 is small.  Regularization appears to have minimal impact on the 

swiss roll and twin peaks shapes.  The twin peaks class separation is closely clustered in 

comparison to PCA and LPP.  The swiss roll and intersect shapes class discrimination is 

degraded in comparison to LPP because of the larger number of classes involved.   

While LGE has a cubic complexity, analysis of computation complexities finds that Spectral 

Regression has a linear complexity of 𝑂(2𝑐𝑠𝑛𝐷) where 𝑛 is the number of data samples, 𝐷 is the 

number of dimensions for each feature such that 𝐷 > 𝑛, 𝑐 is the number of classes, and 𝑠 is the 

number of iterations in the least squares framework [78]. 

 

6.2 Grassmann Learning with Spectral Regression 

Grassmannian Spectral Regression (GRASP) combines Grassmann manifolds with Spectral 

Regression in a framework that is computationally efficient, offers improved class separability, 

supports regularization, and does not require eigen-decomposition.  The important benefit of 

GRASP is improved classification performance due to high within class integration along with 

high between-class separability promoted by Grassmann manifolds, along with a drastic 

improvement in computational performance achieved by manifold modeling and avoiding eigen-

decomposition.  There are two problems with eigen-decomposition subspace learning.  First they 

add a level of computational complexity as suggested by DelaTorre [115].  Secondly, such 

algorithms do not easily incorporate regularization. 
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To begin, we construct training projection kernels 𝑲𝑡𝑟𝑎𝑖𝑛 of size 𝑚𝑡𝑟𝑎𝑖𝑛 ×𝑚𝑡𝑟𝑎𝑖𝑛, as a 

kernel mapping of all data elements, where 𝑚𝑡𝑟𝑎𝑖𝑛 is the number of training subspaces.  

Similarly we construct testing projection kernels 𝑲𝑡𝑒𝑠𝑡 of size 𝑚𝑡𝑟𝑎𝑖𝑛 ×𝑚𝑡𝑒𝑠𝑡, which map 

training subspaces to testing subspaces, where 𝑚𝑡𝑒𝑠𝑡 is the number of testing subspaces.  These 

kernels map the Grassmannian space to a projective space.  The objective is to find a 

transformation matrix 𝑨 that maintains the linear relationship and preserves neighborhood 

information between the training Grassmannian kernel 𝑲 and the lower dimensional 

representation 𝒀: 

𝒀′ = 𝑨′𝑲 (56) 

This can be accomplished through the spectral regression framework.  Given the eigen-

problems 𝑾𝒀 = 𝝀𝑫𝒀 and 𝑲𝑾𝑲′𝑨 = 𝝀𝑲𝑫𝑲′𝑨, redefine 𝒀 to be the eigenvectors so that the 

eigenvalues 𝝀 of both eigen-problems are the same.  The eigenvectors 𝑨∗ can be solved by the 

following two step process: 

(1) Solve for 𝒀 in 𝑾𝒀 = 𝝀𝑫𝒀 

(2) Solve for the eigenvectors 𝑨∗ corresponding to the maximum eigenvalue of 𝑲𝑾𝑲′𝑨 =

𝝀𝑲𝑫𝑲′𝑨 that satisfies 𝒀′ = 𝑨′𝑲.   

We use least squares regression by introducing Grassmann kernels into the least squares loss 

function with regularization to promote a unique solution such that: 

𝑨∗ = argmin
𝑨

(∑(𝑨′𝑘𝑖 − 𝒚𝑖)
2

𝑃

𝑖=1

+ 𝜆‖𝑨‖2) 

𝑲 = [𝑘1,  … , 𝑘𝑃],        𝒀 = [𝒚1,  … , 𝒚𝑃]
′ 

(57) 
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where P is the number of subspaces on the Grassmann manifold, {𝑘𝑖}𝑖=1
𝑃 ∈ 𝐺(𝑚,𝐷).  This 

formulation [116] allows for least squares regularization of an isometric embedding in 

Grassmann space instead of a high dimensional Euclidean space.   

𝑲 can be any type of kernel and in this dissertation projection kernels are used.  A weighted 

representation of the projection kernels and canonical correlation kernels was proposed in [82], 

such that 𝑲 = 𝛼𝑲𝑝 + 𝛽𝑲𝑐𝑐, where 𝛼 regulates the projection kernel and 𝛽 regulates the 

canonical correlation kernel. The eigenvectors 𝑨∗ gives a linear method of reducing the kernel 

data such that 𝒀′ = 𝑨′𝑲.  It is then possible reduce the dimensions of the training and testing 

kernels following: 

𝒀𝑡𝑟𝑎𝑖𝑛 = 𝑨′𝑲𝑡𝑟𝑎𝑖𝑛 

𝒀𝑡𝑒𝑠𝑡 = 𝑨′𝑲𝑡𝑒𝑠𝑡 

(58) 

With the reduced training and testing kernels, classification can be carried out using k-NN to 

classify a test subspace.  Since each training subspace represents an entire class, only one nearest 

neighbor (1-NN) classification is required because each training class is represented as a single 

point on a Grassmann space.  There are many benefits of the GRASP framework.  The spectral 

regression component of the algorithm allows for regularization to quickly converge to a unique 

solution while avoiding the computational burden of eigen-based approaches.  Fast high 

dimensional data reduction is achieved through linear derivations of weighted isometric 

embeddings from a Grassmann space to a Euclidean space.  The Grassmannian component of the 

algorithm supports high between class discrimination because these manifolds have smooth 

structure and can fill in missing data through linear spanning.   

Figure 6-2 demonstrates the 2D embedding of 3D shapes with various subspace sizes.  This 

example illustrates how the number of samples decreases and class clustering improves as the 
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number of samples per subspace increase.  When compared to GPCA there is a more clear class 

separation as the subspace sizes become larger. 

Grassmann learning has a complexity of 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2)) with projection kernels.  Given 

that Spectral Regression has a linear computational complexity of 𝑂(2𝑐𝑠𝑛𝐷), GRASP would 

require 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2 + 2𝑐2𝑠)) or 𝑂(𝑛2𝐷𝑚2) operations.  This is because spectral regression 

is applied on Grassmann projection kernels where the number of data samples 𝑛 is equal to the 

number of classes 𝑐, and the number of dimensions 𝐷 of each class is a scalar.  This is equal to 

the graph embedding discriminant analysis squared complexity of 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2 +𝑚3)) or 

𝑂(𝑛2𝐷𝑚2) operations [79] when 𝑚 ≪ 𝐷 and 𝑛 ≪ 𝐷.  The difference is minimal for small input 

action classification systems.  However, as the number of samples 𝑛 increases, so does the 

number of inputs 𝑛 in each subspace 𝑚.  As the inputs get larger, GRASP would maintain its 

performance while Grassmann graph embedding techniques would require more operations. 
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Figure 6-2: The 2D embedding of 3D shapes after applying GRASP.  The first row shows 

the original 3D shapes.  The remaining rows show the embedding when each sub space is 

composed of 5, 15, 20, and 100 data samples per subspace respectively. 
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7 Experimental Setup and Analysis 

In this section the experimental setup of GSR and GRASP is presented.  The focus is on multi-

view action classification, 3D action classification, and face recognition.  Motion history surface 

(MHS) descriptors [116] were used for multi-view datasets and motion depth surface (MDS) 

descriptors [117] were used for 3D datasets.  Local Ternary Pattern descriptors [43] were used 

for facial recognition datasets.   

 

7.1 Evaluation Assumptions 

A few assumptions are presumed for the work presented in this dissertation.  It is assumed that 

all actions provided in the action datasets have segmented silhouettes obtained through an 

existing approach.  All action and face datasets provide images without major occlusions.  This 

means that actors are visible in a scene throughout most of the time that an action is being 

conducted without purposely being blocked from the view of the camera.  For face images, 

actors with glasses and under extreme illumination variations are expected.  For action 

classification, the most complex scenes performed in all the datasets are interactions between 

individuals which are provided by the i3DPost dataset.  It is also assumed that the action 

classification systems being evaluated are segmented in time, i.e. we are given the starting and 

ending time of an action.  In other words the systems used do not automatically apply temporal 

segmentation.   
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7.2 Datasets 

The datasets used for experimentation are (a) multi-view action datasets using the i3DPost Multi-

View dataset, the IXMAS Multi-View dataset, and the WVU Multi-View dataset; (b) 3D action 

datasets using the MSRAction3D dataset and MSRGesture3D dataset; and (c) face image 

datasets using the ATT dataset, LFW dataset, and Yale Extended Face dataset. 

 

7.2.1 i3DPost Multi-View Human Action Dataset (i3DPost) 

The i3DPost multi-view human action dataset [27] provides synchronized multiple views of 

individuals performing action sequences.  The dataset consists of synchronized high definition 

images of 8 views performed by 8 people executing 12 actions.   

 
Figure 7-1: These are sample frames from the i3DPost multi-view dataset.  The top group 

of images show a sample of all 12 actions from one view.  The bottom group of images show 

multiple views of one instance of time of a wave action.   

 

Each action is performed over 125 frames.  The actions include individual actions such as 

walk, run, jump, bend, hand-wave, and jump in place.  The dataset also includes action 

combinations where multiple actions are executed in the same sequence, which are sit-stand up, 

run-fall, walk-sit, and run-jump-walk.  Finally, the dataset also include interactions between two 
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individuals, which are handshake and pull.  The images are provided in a high-resolution color 

format in PNG files and also include background images for image differencing, camera 

calibration parameters for 3D reconstruction, and 3D mesh models. 

7.2.2 INRIA Xmas Motion Acquisition Sequences (IXMAS) 

The INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset was presented by Weinland 

et al. [118] and was created in 2005 including extracted silhouettes.  The dataset offers 390x291 

pixels resolution images in PNG/BPM formats.  There are five synchronized views captured at 

50FPS of ten subjects executing 14 actions between 2 and 3 trials each.  The fifth view is a top 

view and was ignored in the experiments.  The actions include Check Watch, Cross Arms, 

Scratch Head, Sit Down, Get Up, Turn Around, Walk, Wave, Punch, Kick, Point, Pick Up, Throw 

(overhand), and Throw (underhand).  Underhand throwing was excluded from the experiments 

because there were 75% less underhand throwing samples than all other action samples.      

 

 
 

 
Figure 7-2: Samples from the IXMAS dataset.  The top images show four views of an 

individual executing Scratch Head, Pick Up, and Wave.  The bottom images show one view 

of one subject performing a Punch.   
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7.2.3 West Virginia University Multi-View Action Dataset (WVU) 

The West Virginia University (WVU) multi-view dataset [119] provides 8 views of 5 subjects 

performing 12 actions executed at 20FPS and a resolution of 640x480 pixels.  The actions 

include Standing Still, Nodding head, Clapping, Waving 1 hand, Waving 2 hands, Punching, 

Jogging, Jumping Jack, Kicking, Picking, Throwing, and Bowling.  The standing still action was 

excluded because the motion history surface descriptors expect motion.  The action sequences 

are not consistently synchronized over all views as can be seen in Figure 7-3 and extracting the 

silhouettes from this dataset were challenging because of variations in lighting in various images.   

 

  

  
Figure 7-3: Sample frames from the WVU dataset.  The top group of images show multiple 

views of one instance of time of a subject performing a two handed wave.  The bottom group 

shows a subject performing jumping jacks.   

 

7.2.4 Microsoft Research Action 3D Dataset (MSRAction3D) 

The Microsoft Research Action 3D (MSRAction3D) Dataset [36] consists of depth map 

sequences recorded with a depth sensor at 15 FPS and 320×240 pixel resolution.  There are ten 

subjects performing twenty actions two to three times for a total of 567 depth map sequences.  

The dataset actions are: high arm wave, horizontal arm wave, hammer, catch, tennis swing, 

forward punch, high throw, draw X, draw tick, tennis serve, draw circle, hand clap, two hand 
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wave, side boxing, golf swing, side boxing bend, forward kick, side kick, jogging, and pick up 

and throw.  No corresponding RGB information is available, however 3D joint positions are 

available.  All silhouettes have been segmented as demonstrated in the sample action frames of 

Figure 7-4.  Figure 7-5 illustrates sample depth frames with kinematic joint identifiers.  

  
Figure 7-4: Sample depth frames from the MSRAction3D dataset showing a forward punch 

action.   

 

 

 
Figure 7-5: Sample frames from the MSRAction3D dataset with plotted kinematic joints of 

a high arm wave, horizontal arm wave, golf swing, draw X, two-hand wave, side boxing, 

side kick, and a tennis serve. 

 

7.2.5 Microsoft Research Gesture3D Dataset (MSRGesture3D) 

In the Microsoft Research Gesture3D (MSRGesture3D) dataset [120] there are ten people 

performing 12 American Sign Language (ASL) gestures which represent Z, J, Where, Store, Pig, 

Past, Hungary, Green, Finish, Blue, Bathroom, and Milk.  There are between two and three 
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gesture trials for each subject with a total of 336 image files.  The dataset consists of depth map 

sequences recorded with a depth sensor at 10 FPS and resolution of 106×160 pixels.  The dataset 

contains some dead frames and we applied interpolation to correct for the dead frames when 

applicable.  The sample frames for the ASL for the letters J and Z are shown in Figure 7-6.   

 

 
Figure 7-6: Sample depth frames from the MSRGesture3D dataset showing the ASL for J 

(top) and ASL for Z (bottom). 

 

7.2.6 Database of Faces from AT&T Laboratories (ATT) 

The database of faces from AT&T laboratories (ATT) [121] is a collection of faces images from 

40 subjects with 10 face images per subject.  There are a total of 400 face images in PGM file 

format.  Each face image is 92x112 pixels and all images are grayscale.  The face images of each 

subject can vary by pose, lighting, facial expressions, and facial details such as glasses as 

demonstrated in Figure 7-7.  Figure 7-8 shows a sample face image of each of the 40 subjects.  

All subjects and all faces images are used in our experiments.   
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Figure 7-7: Face images for two subjects from the database of faces from AT&T 

laboratories.  The face images of the first subject contain images with and without glasses.  

The second subject face images vary by expression.   

 

 
Figure 7-8: Sample face images from each of the 40 subjects from the database of faces 

from AT&T laboratories.   

 

7.2.7 Labeled Faces in the Wild (LFW) 

The Labeled Faces in the Wild (LFW) dataset [122] is a face database with 5749 individuals and 

13,233 total face images collected from the web.  The images are cropped and are in PGM file 

format.  The subjects vary by many parameters including pose, lighting, expression, background, 

race, ethnicity, age, gender, clothing, hairstyles, camera quality, color saturation, and focus.  In 
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our experiments, we used all subjects who have at least 20 face images.  We did not exceed the 

use of 30 face images per subject.  Therefore, 62 subjects were used for face recognition with a 

total of 1,673 total face images.  Figure 7-9 shows multiple face image samples of two subjects.  

These samples illustrate face images that vary in terms of expressions, pose, and illumination.  

Figure 7-10 shows a sample image from each of the 62 subjects used for evaluation.   

 
Figure 7-9: Face images for Donald Rumsfeld (top) and Hans Blix (bottom) from the 

labeled faces in the wild database.   
 

 
Figure 7-10: One face image sample of each of the 62 subjects from the labeled faces in the 

wild database. 
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7.2.8 Extended Yale Face Database B (YALE) 

The Yale Face Database and Extended Yale Face Database B (YALE) [123] were combined for 

a collection of 38 individuals and 2,424 total face images in PGM file format.  Each subject has 

approximately 9 poses and 64 illumination conditions.  None of the subjects wear glasses but 

subjects do vary by race, ethnicity, and gender.  Figure 7-11 shows 65 sample faces images of 

one subject that vary by illumination.  Notice how the subjects eyes changes as the illumination 

is varied.  Figure 7-12 shows one face image sample of each of the 38 subjects used for 

evaluation.   

 
Figure 7-11: 65 face images for one subject which vary by illumination. 
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Figure 7-12: One face image sample of each of the 38 subjects used from the Yale Extended 

B dataset. 

 

7.3 Grassmann Similarity Measure Analysis 

The next major contribution is the evaluation of Grassmann measures on all datasets to compare 

against Grassmann learning methods including GPCA, GLDA, GLPP, GSR, and GRASP.  The 

purpose of this section is to identify the various Grassmann metrics that measure distances 

between Grassmann points and to identify the benefits and drawbacks.   

Large Grassmann subspaces are expected to reduce the processing time since the span of 

these subspaces are represented as individual points on a Grassmann manifold. This 

characteristic is demonstrated in Figure 7-13 which shows the separation by principal angles 

between each action class for the i3DPost, IXMAS, WVU, and MSRAction3D datasets in a 

Grassmann space using the geodesic metric 𝑑(𝒀𝑖 , 𝒀𝑗) = ‖𝜽‖2.   

 

 



83 | P a g e  

 

 

 
 

Figure 7-13: The principal angles in a Grassmann space between action classes for the 

i3DPost, IXMAS, WVU, and MSRAction3D datasets. 
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For all datasets, similar actions are correlated through Grassmann learning.  For the i3DPost 

dataset relative to the Run-fall action, Grassmann learning identifies the actions Walk, Walk-sit, 

Run-jump-walk, and Run to be clustered and closest to Run-fall.  Run-fall is farthest from Bend.  

Grassmann learning also promotes between class discrimination.  It is apparent that mobility 

actions (those that involve movement across a scene) group together in the first quadrant while 

immobile actions group together in the second quadrant.  For the IXMAS dataset relative to the 

Check Watch action, the actions Scratch Head, Cross Arms, and Wave are closest and are actions 

where the actor uses their arms. Actions Punch and Point are also closely correlated in a 

Grassmann space.  The Walk action is clearly dissimilar from all the other actions.  For the WVU 

dataset the action Throwing is closest to Bowling and Punching which are conceptually similar 

and farthest from Waving 2 Hands.  For the MSRAction3D dataset Hammer is closest to 

Forward Punch and High Throw which are also very similar and farthest from Two Handed 

Wave.   

Constraints of identifying closeness relationships through orthogonal mappings can also 

enforce unwanted relationships.  For the i3DPost example, a Hand wave is considered closest to 

Sit-stand up and Jump in place which is not naturally correlated but is learned that way due to 

orthogonal constraints imposed on a Grassmann space for all actions relative to each other.  

Overall, Grassmann learning using the span of orthonormal matrices embedded as single points 

do show effort to promote high between-class discrimination and promote within-class 

clustering.  This demonstrates the advantage of Grassmann learning in the GSR and GRASP 

frameworks for increasing the between class separability while decreasing the with-in class 

separability.   
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 Grassmann 

Measures 
i3DPost IXMAS WVU 

MSR 

Action3D 

MSR 

Gesture3D 
ATT LFW 

Yale 

Extended B 
S

in
g

le
 

Projection 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89% 

Binet-Cauchy 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89% 

Max Correlation 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89% 

Min Correlation 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89% 

Procrustes 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89% 

Geodesic 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89% 

Mean Distance 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89% 

A
ll

 

Projection 94.79% 98.46% 78.18% 74.23% 87.50% 100.00% 70.16% 100.00% 

Binet-Cauchy 93.75% 97.69% 78.18% 62.56% 77.50% 72.50% 67.74% 100.00% 

Max Correlation 84.38% 90.00% 67.27% 44.31% 67.50% 26.25% 39.52% 100.00% 

Min Correlation 94.79% 89.23% 72.72% 78.06% 92.50% 100.00% 97.58% 100.00% 

Procrustes 94.79% 98.46% 80.00% 70.25% 80.00% 100.00% 69.35% 100.00% 

Geodesic 93.75% 98.46% 80.00% 69.63% 78.33% 100.00% 97.58% 100.00% 

Mean Distance 94.79% 98.46% 78.18% 74.23% 87.50% 100.00% 68.55% 100.00% 

Table 6: The Grassmann similarity measures between subspaces on a Grassmann 

manifold.  The first group shows similarity measures where each test action sample is a 

unique point on a Grassmann manifold and there is one principal angle between each 

subspace.  The second group shows the similarity measures when test samples of the same 

class are grouped and represented as a single point on a Grassmann space.  There are 

multiple principal angles between subspaces for the second group.   

 

Table 6 shows the Grassmann similarity measures using the techniques outlined in 

Equations (34) through (40).  All training inputs of the same action class represent a single point 

on a Grassmann space.  This means that the number of training subspaces 𝑚𝑡𝑟𝑎𝑖𝑛 is equal to the 

number of action classes 𝑝.  For testing, two separate experiments were run.  In the first case, 

each test sample is treated as a single point on a Grassmann space and labelled as “Single”.  This 

means that the number of testing subspaces 𝑚𝑡𝑒𝑠𝑡 is equal to the number of test samples 𝑛, 

(𝑚𝑡𝑒𝑠𝑡 = 𝑛).  In the second experiment, all test inputs of the same class were grouped into one 

subspace and labelled as “All” (𝑚𝑡𝑒𝑠𝑡 ≪ 𝑛).  This is ideal for systems where multiple test 

samples are classified simultaneously, such as multiple views, multiple trials of an unknown 

action, or multiple face images of a single unknown subject.   

Given Equations (34) through (40) for all experiments in the “Single” setup, there is exactly 

one principal angle since each subspace 𝒀𝐷×𝑞 has only one test sample (𝑞 = 1).  With exactly 
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one principal angle between subspaces, all Grassmann measures will have equivalent 

classification results.  The ATT and Yale Extended B dataset have the highest classification 

accuracies.  The ATT dataset is fairly clean with 10 similar face images per subject for 40 

subjects.  The Yale Extended B dataset has a high amount of face images per subject and only 38 

subjects.  The LTP descriptor for face recognition is clearly capable of representing face images 

in a discriminative manner.  The LFW dataset is more challenging because of the uncontrolled 

environment for capturing the face images off of the web with a larger amount of test subjects.  

The WVU dataset has the lowest classification accuracies for the action datasets which is 

attributed to the high levels of noise due to lighting inconsistencies and multi-view 

synchronization issues.   

For the “All” setup, classification accuracies increase in comparison to the “Single” setup.  

This indicates that Grassmann learning does fill in missing data through linear spanning and is 

more robust when the number of points on a Grassmann manifold is small and the number of 

samples representing those points is large.  Metrics that classify well on the i3DPost dataset 

utilize all principal angles and a similar pattern emerges with the IXMAS and WVU datasets 

indicating that the metrics have a good balance of robustness to noise and class clustering.  The 

minimum correlation metric performs best on the MSRAction3D, MSRGesture3D, and LFW 

datasets indicating that the largest principal angle is the most effective for classification.  This 

means that the input data of these datasets are highly clustered.  The Yale Extended B dataset 

classifies perfectly independent of the Grassmann measure being evaluated.  This is attributed to 

the large Grassmann subspaces that represent a single point on a Grassmann space.  The larger 

the subspaces become, the more discriminative the distances between other classes.  The ATT 
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dataset classifies the worse for the max correlation metric.  This indicates that the distribution of 

LTP image data are highly discriminative.   

This evaluation identifies that not one specific Grassmann measure is ideal for all datasets.  

For example, the minimum correlation measure is ideal for the i3DPost, MSRAction3D, 

MSRGesture3D, and LFW datasets.  However, the minimum correlation measure is also the 

worse classifier for the IXMAS dataset.  Grassmann measures are dependent on the distribution 

of the high dimensional data [82].  Kernels can be standardized and therefore kernelization 

provides a way of avoiding functions based on principal angles that are dependent on data 

distributions and can be processed using kernel-based methods [89].  This is a motivation to 

apply kernelization and evaluate GSR and GRASP. 

7.4 Grassmann Kernel Standardization 

As previously mentions, data distributions affect the classification accuracies of geodesic metrics 

in a Grassmann space.  The next contribution in this dissertation is the proposal and justification 

Grassmann kernel standardization to ignore variations between individual Grassmann points 

when subspace sizes vary.  Assume Grassmann kernels follow a Gaussian distribution 𝑓(𝒙) =

1

𝜎√2𝜋
𝑒
−
(𝒙−𝜇)2

2𝜎2  as shown in the red curve of Table 7.  A kernel would have a non-zero mean𝜇 and 

a non-unitary standard deviation 𝜎.  If a kernel follows a standard normal distribution 𝑓(𝒙) =

1

√2𝜋
𝑒−

𝒙2

2  as shown in the blue curve, data would be centered with 𝜇 = 0 and 𝜎 = 1.   
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No Normalization 𝑓(𝒌) = 𝒌 

Zero mean 𝑓(𝒌) = 𝒌 − 𝜇 

Zero mean and unit variance 𝑓(𝒌) =
𝒌 − 𝜇

𝜎
 

Table 7: Centered and Standard Normal Distributions 

 

In Figure 7-14 the 3D embeddings of four 3D shapes with corresponding 2D embeddings of 

zero mean is shown.  The result is the centered distribution of the data.   

 

  

 
Figure 7-14: GRASP embeddings after normalizing the Grassmann kernels (𝝁 = 𝟎)  
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In the Figure 7-15 the identical distribution after centering the Grassmann kernels and 

dividing by the standard deviation to standardize the kernel are shown.  The embedding look 

identical except the embedding are centered and scaled.   

 

 
Figure 7-15: GRASP embedding after normalizing the Grassmann kernels and  (𝝁 = 𝟎, 𝝈 =
𝟏)  

 

Kernel standardization on GRASP and GSR allows for learning algorithms such as spectral 

regression and sparse representations to be effective while ignoring Grassmann point distribution 

variations.  Figure 7-16 and Figure 7-17 presents results on the impact of kernel normalization on 

GRASP and GSR and the classification accuracies when varying training and testing subspace 

sizes evaluated on the multi-view datasets.  The patterns for GRASP and GSR are consistent for 

all evaluated datasets.  When centering the Grassmann kernels without dividing by the standard 

deviation, the best classification accuracy is achieved when maintaining a consistent subspace 
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size for the training and testing kernels.   Meanwhile, as the subspace sizes vary between the 

training and testing kernels, a significant drop in classification accuracy is observed.  For 

example, the IXMAS dataset has a classification accuracy of 90.85% when the subspace sizes 

are equal to 3.  However, when the training subspace size is set to 110 and testing subspace size 

is set to 3, the classification accuracy drops down to 7.69%.  This setup is suitable for 

applications such as multi-view surveillance systems or systems where there are identical 

subspace sizes for training and testing.  When centering the Grassmann kernels while dividing by 

the standard deviation, the best classification accuracies are obtained when the training subspace 

sizes are large.  Results for the i3DPost dataset show an 86.72% classification accuracy when 

training subspace sizes are 56 samples per subspace while testing subspace sizes are one sample 

per subspace.   

𝑓(𝑘) = 𝑘 − 𝜇      𝑓(𝑘) =
𝑘−𝜇

𝜎
 

 

 
Figure 7-16: i3DPost GRASP (top row) and GSR (bottom row) classification accuracies 

without (left) and with (right) kernel standardization. 
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𝑓(𝑘) = 𝑘 − 𝜇      𝑓(𝑘) =
𝑘−𝜇

𝜎
 

 

 
Figure 7-17: IXMAS GRASP (top row) and GSR (bottom row) classification accuracies 

without (left) and with (right) kernel standardization. 

 

This interesting observation suggests that Grassmann methods do not need to be restricted to 

fixed subspace sizes if Grassmann kernels are standardized.  This also supports the motivation 

for using Grassmann kernel based manifold learning over Grassmann metrics in a Grassmann 

space.  Equations (34) through (39) presented Grassmann metrics and each metric has their 

benefits and drawbacks based on the level of noise and the data distribution. The utilization of 

Grassmann kernels which can be standardized overcomes the Grassmann metric dependencies on 

noise and distributions.  The manipulation of Grassmann kernels in this manner would be ideal 

for applications where test samples can vary such as single view surveillance systems or 3D 

action classification while maintaining very large training subspace sizes.   
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7.5 Sparse Representation Analysis 

Figure 7-18 shows the sparse coefficients and corresponding residuals determined through sparse 

representations on the i3DPost, MSRAction3D, and LFW datasets for the classification of one 

test sample.   

 

 

  

  
Figure 7-18: The coefficient vectors and corresponding residuals determined through 

Sparse Representations for one test sample from the i3DPost, MSRAction3D, and LFW 

datasets.  The test samples were Walk for i3DPost, Wave 1 for MSRAction3D, and Subject 1 

for LFW.   
 



93 | P a g e  

 

The non-zero coefficients from the sparse coefficient vector were used to reconstruct a 

sample from each class in the dictionary.  The residuals are calculated using Equation (49) .  For 

each evaluation the first action class or face image was used for testing.  This means the smallest 

residual is expected to be the first class from each dataset.   

Figure 7-18 shows that all classes were correctly classified since the smallest residual from 

each bar chart is the first class.  For i3DPost, Walk has the smallest residual from all the action 

classes with Walk/Sit trailing as the second smallest.  We also observe that the largest residual is 

Sit/Stand which can identify the most orthogonal class to the Walk action.  Similar patterns can 

be observed with the MSRAction3D dataset.  Wave 1 which is a high arm wave was correctly 

classified and the second trailing action is Wave 2 which is a horizontal arm wave.  Sparse 

representations identify that the most orthogonal action to the high arm wave is Punch 1 which is 

a forward punch.  For the LFW dataset, the residuals identify subject 1 to be correctly classified.  

The trailing subject was subject 43 and the most orthogonal subject was subject 62.  Figure 7-19 

shows the face images corresponding to the subject identifiers.  The face on the left is the test 

image.  The face image in green to the right shows that the test image was correctly classified to 

the right subject.  Subject 43 is the second most similar subject to subject 1.  Subject 62 in red is 

the most different subject to the test subject.    

 

   
Figure 7-19: The face image test sample is shown on the left.  Sparse representations 

identify subject 1 to be the most similar, subject 43 to be the second most similar and 

subject 62 to be the most different.   
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The residuals for each evaluation are very good at identifying classes and orthogonal 

classes.  However, the processing times needed to obtain the coefficient vectors and apply 

minimum reconstruction are extremely slow as indicated by Figure 7-18.  This is because the 

coefficient vector sizes are equal to the number of test inputs for each experiment and with 

exponential time complexities the processing time is extremely high.   

 

7.6 Grassmannian Sparse Representation Analysis 

Figure 7-20 shows the sparse coefficients and corresponding classification times for one subject 

in the same datasets of Section 7.5 using GSR.  All samples of a single class are represented as a 

single point on a Grassmann space, resulting in coefficient vectors of a size equal to the number 

of classes.  GSR eliminates the need for additional mapping between a large coefficient vector to 

its corresponding action class and as a result the minimum reconstruction method is simplified.  

Although still not ideal for real-time performance, the performance and classification accuracies 

have considerably improved when comparing to sparse representations on high dimensional data.  

We see that the i3DPost evaluation took 1822.55 seconds to process using sparse representations 

and only 0.56 seconds to process through GSR.  Similar speed ups can be observed on the 

remaining datasets.   

Another observation is the residuals determined through GSR.  The residuals for each 

evaluation are more apparent for identifying a class and are stronger indicators of the most 

suitable class.  The remaining classes have similar and higher residuals.  This is because the 

Grassmann learning component of GSR has managed to find orthonormal mappings that promote 

within class clustering and between-class discrimination.  This demonstrates that GSR is capable 

of reducing coefficient vectors while maintaining high classification accuracy.   
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Figure 7-20: The calculated coefficient vector representations and classification times 

through GSR for one subject of each action dataset and one fold of the LFW face dataset.  

The coefficient vector sizes have reduced down to the number of classes in comparison to 

sparse representation classification.  The datasets analyzed are the i3DPost, MSRAction3D, 

and LFW datasets. 

 

7.7 Classification and Performance Results and Analysis 

Experiments based on Euclidean ℓ-2 norm, PCA, LDA, LPP, NPE, and Spectral Regression were 

classified using k-NN with k=3. Combinations of Grassmann kernel methods including GPCA 
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[84], GLDA [82], GLPP [79] [81], and GRASP [116] were classified using k-NN with k=1, 

since each Grassmann point represents a single class.  Sparse representations and GSR [117] 

were classified using minimum reconstruction.  Computational processing times for each 

algorithm were also captured.  All action experiments were based on leave one subject out cross 

validation (LOOCV).  All face recognition experiments were evaluated using 2-fold cross 

validation (2FCV).  In all experiments, all inputs from each database were used unless otherwise 

noted in the descriptions of the datasets.   

The classification accuracy results shown in Table 8 and Figure 7-21 show experimental 

classification results using various algorithms on the three multi-view datasets, two 3D datasets, 

and three face datasets.  The “Single” and “All” references identify whether test samples for 

𝑚𝑡𝑒𝑠𝑡 were treated as single subspaces (𝑚𝑡𝑒𝑠𝑡 = 1) or subspaces composed of all available test 

samples associated with a class.  The latter is ideal for systems where multiple test samples are 

classified simultaneously, such as multiple views or multiple trials of an unknown action, or 

multiple samples of the sane unknown face.   

 
Method i3DPost IXMAS WVU 

MSR 

Action3D 

MSR 

Gesture3D 
ATT LFW 

Yale 

Extended B 

 

k-NN (k=3) 79.30% 63.22% 40.87% 65.93% 74.11% 92.00% 31.54% 94.16% 

 

PCA 79.30% 66.17% 42.94% 66.12% 74.11% 92.00% 31.54% 94.16% 

 

LDA 78.78% 57.91% 38.54% 76.00% 82.14% 99.50% 43.20% 92.98% 

 

LPP 80.73% 64.72% 41.67% 76.91% 78.87% 99.50% 38.65% 99.14% 

 

NPE 73.96% 63.76% 42.10% 77.03% 81.55% 99.00% 21.78% 96.63% 

 

Sparse Rep. 79.56% 74.28% 48.41% 79.54% 83.33% 99.25% 69.53% 99.35% 

 

Spectral Reg. 77.99% 57.71% 38.82% 77.00% 80.06% 99.00% 43.97% 99.02% 

S
in

g
le

 

GPCA 90.36% 44.94% 63.14% 76.07% 87.50% 99.00% 55.09% 98.85% 

GLDA 90.76% 78.01% 62.66% 53.70% 86.90% 99.00% 31.93% 98.76% 

GLPP 90.36% 79.38% 63.14% 76.07% 87.80% 99.00% 55.09% 98.85% 

GSR 91.41% 79.19% 60.29% 76.17% 87.20% 99.00% 53.92% 98.85% 

GRASP 90.49% 80.76% 63.76% 75.04% 88.39% 99.00% 57.53% 98.89% 

A
ll

 

GPCA 92.71% 77.69% 80.00% 72.54% 85.83% 100.00% 66.94% 100.00% 

GLDA 90.63% 90.77% 80.00% 57.70% 85.83% 100.00% 58.87% 100.00% 

GLPP 92.71% 93.08% 80.00% 72.54% 85.83% 100.00% 67.74% 100.00% 

GSR 95.83% 96.92% 90.91% 77.17% 87.50% 100.00% 96.77% 100.00% 

GRASP 94.79% 97.69% 81.82% 75.13% 87.50% 100.00% 83.87% 100.00% 

Table 8: The classification accuracies for various algorithms evaluated on multi-view action datasets, 3D 

action datasets, and face recognition datasets.   
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Figure 7-21: Classification charts for standard learning, Grassmann learning with single test inputs, and 

Grassmann learning with all test inputs of one class. 

 

In  Table 8, the best classification accuracies for each dataset are highlighted in bold for test 

subspaces representing a single action input (labeled Single) and for an entire set of actions 

(labeled All).  Visualization of these results is shown in Figure 7-21.  The IXMAS, WVU, and 

LFW datasets are clearly the most challenging datasets to evaluate.  The IXMAS dataset is 

challenging because there are more classes than subjects.  The WVU dataset is challenging for 

the same reason and because of high levels of noise due to lighting inconsistencies and multi-

view synchronization issues.  The LFW dataset is challenging because of the high amount of 

unconstrained face images collected from different sources off the web.  The results from non-

Grassmann based methods show that sparse representations are the most effective for high 
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classification results with GSR accurately classifying 96.77% on the LFW dataset. This is a 

12.9% lead over GRASP and a 29.03% leaver over GLPP.   

The Grassmann based algorithms are much better at classifying actions and recognizing 

faces than the non-Grassmann algorithms, with GRASP and GSR performing at or near the top 

for the single and all cases.  All Grassmann based methods have very similar classification 

accuracies when test subspaces are represented as single inputs but there are cases when certain 

methods classify poorly.  GPCA is a poor learning method for the IXMAS dataset while GLDA 

is a poor learning method for the MSRAction3D and LFW datasets.  When test subspaces 

represent an entire class as a point on a Grassmann space, GRASP and GSR have an advantage 

over GPCA and the graph embedding frameworks.  For the less challenging datasets including 

ATT and Yale Extended B, all standard learning and Grassmann methods classify extremely 

well.  GRASP has a slight edge over GSR on the IXMAS dataset.  GRASP and GSR classify the 

same on the MSRGesture3D dataset.  However, GSR has shown to have the best classification 

accuracy for the most challenging datasets including WVU and LFW.   

Figure 7-22 and Figure 7-23 shows the confusion matrices with single test subspaces and all 

test samples of one class in a subspace.  The GSR classification results are shown on the i3DPost 

dataset and the GRASP classification results are shown on the IXMAS dataset.  The confusion 

matrices identify high within-class clustering and high between class discrimination.  For the 

GSR results in the “single” case, we see acceptable levels of errors.  For example, Walk is 

misclassified 11 times with Walk-sit.  Run-jump-walk is misclassified 8 times with Walk.  When 

a Grassmann point represents an entire test class in the “all” case, classification errors are 

minimal.  Factoring in that this system is classifying actions from multiple views proves that 

GSR is robust, efficient, and accurate.  Similar patterns are noticeable on the i3DPost dataset 
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using GRASP.  In the “single” case, Scratch Head is confused 19 times with Wave.  Punch is 

confused 15 times with Point.  In the “all” case classification errors are minimized.   

 

 
 

 
Figure 7-22: Confusion matrices that show the classifications made through GSR on the 

i3DPost dataset.  The classifications were made with single test subspaces (top) and all test 

elements of one class in one single subspace (bottom).   
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Figure 7-23: Confusion matrices that show the classifications made through GRASP on the 

XIMAS dataset.  The classifications were made with single test subspaces (top) and all test 

elements of one class in one single subspace (bottom).   

 

Table 9 shows the execution performance times for all algorithms on all datasets.  The 

processing times in green identify the fastest processing times for each group of evaluations.  

The processing times in red identify the slowest processing times for each group of evaluations.  

Although sparse representations with minimum reconstruction are very good for classification 
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they are also the slowest performance with estimated exponential complexities.  When sparse 

representations are applied in a Grassmann framework through GSR, classification times were 

drastically improved to exceed standard classification methods.  The drastic classification 

improvement can be attributed to the sizes of the sparse coefficient vectors.  Sparse 

representations on individual test samples mean larger sparse coefficient vectors.  The larger the 

coefficient vectors, the more likely classification errors can be made due to the extreme high 

dimensions of input samples and variability between inputs.  Through Grassmann learning entire 

classes can be embedded as single points in a Grassmann space.  This promotes within class 

clustering and between class discrimination.  When combined with the sparse representation 

framework, classification accuracy and performance is improved. 

Classification results through GSR are still not fast enough for real-time applications.  

Figure 7-24 shows the performance charts for various Grassmann learning methods where GSR 

is clearly slower.  GRASP was proposed as a fast performing classification framework to 

overcome the performance drawbacks of GSR.  Spectral regression frameworks tend to be the 

fastest by avoiding eigen-decomposition.  Manifold learning with Grassmann frameworks show 

considerable improved processing times compared to standard methods.  This is because the 

points embedded on a Grassmann manifold represent trained action subspaces rather than 

individual training samples.  In both the single element subspaces and all element subspaces, 

GRASP has a slight edge for computational performance over graph embedding frameworks.  

However, because graph based learning and spectral regression are being applied on Grassmann 

kernels which have already reduced the high dimensional data of the original inputs, the 

computational advantage of GRASP is relatively small.  A more significant improvement in 

performance can be observed as the number of classes increase.   
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Method 
i3DPost 

(sec) 

IXMAS 

(SEC) 

WVU 

(sec) 

MSR 

Action3D 

(sec) 

MSR 

Gesture3D 

(sec) 

ATT 

(sec) 

LFW 

(sec) 

Yale 

Extended B 

(sec) 

 

k-NN (k=3) 407.59 1440.09 3585.82 216.88 78.45 3.63 603.41 448.02 

 

PCA 93.13 266.71 133.05 37.39 25.58 0.53 245.48 393.30 

 

LDA 20.61 49.05 27.09 10.83 6.21 0.29 6.34 22.91 

 

LPP 21.65 50.28 26.38 9.99 6.83 0.33 5.95 24.55 

 

NPE 23.29 52.66 19.07 8.66 6.48 0.38 6.19 21.89 

 

Sparse Rep. 20015.38 22573.86 22336.66 4024.79 2300.78 70.57 5188.19 2313.62 

 

Spectral Reg. 11.62 19.22 16.74 6.17 4.03 0.25 4.12 17.54 

S
in

g
le

 

GPCA 0.14 0.29 0.41 0.16 0.17 0.31 0.90 1.11 

GLDA 0.13 0.35 0.31 0.16 0.09 0.08 0.69 1.24 

GLPP 0.13 0.33 0.32 0.16 0.09 0.08 0.54 1.57 

GSR 10.33 60.95 17.86 26.52 3.74 3.94 103.47 52.96 

GRASP 0.13 0.24 0.30 0.09 0.06 0.08 0.88 1.22 

A
ll

 

GPCA 0.03 0.07 0.02 0.07 0.04 0.06 0.10 0.06 

GLDA 0.03 0.06 0.04 0.09 0.04 0.02 0.07 0.03 

GLPP 0.03 0.05 0.06 0.10 0.04 0.02 0.05 0.13 

GSR 3.01 8.64 3.05 10.27 1.51 2.24 15.24 4.83 

GRASP 0.02 0.03 0.01 0.04 0.03 0.02 0.07 0.05 

Table 9: The classification performance in seconds for various algorithms evaluated on 

multi-view action datasets, 3D action datasets, and face datasets.   

 

 

 
Figure 7-24: Performance charts for Grassmann learning with single test inputs, and 

Grassmann learning with all test inputs of one class.   
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When comparing GSR and GRASP against each Grassmann metric in Table 6, we see that 

GSR and GRASP are consistent in meeting classification accuracies depending on the 

distribution of the data in the datasets.  For example, when comparing the minimum correlation 

metric results against GSR, we see that IXMAS classification through GSR has improved by 

7.69% while meeting or slightly trailing in the other datasets.  Meanwhile metrics that classify 

well on the IXMAS dataset classify extremely poor on the LFW dataset.  Kernelization through 

GSR and GRASP eliminate the dependency on the data distributions by projecting Grassmann 

points onto a projective space where kernel standardization can be applied.  Overall, Grassmann 

measures are ideal when data distribution and noise levels are known while GSR is ideal when 

data distribution and noise levels are unknown. 

7.8 Comparison to State-Of-The-Art Methods 

In this section we compare the classification accuracies of GSR and GRASP against state-of-the-

art methods on the i3DPost, IXMAS, MSRAction3D, MSRGesture3D, ATT, and YALE 

datasets.  The WVU dataset has not been thoroughly evaluated by many state-of-the-art methods 

and the few papers that have evaluated this dataset have not provided sufficient information 

regarding experimental setup to allow for a direct comparison.  The intended use of LFW, as 

presented by Huang et al. [122], is for evaluating the matching of face pairs.  Given a pair of face 

images, methods which use LFW output match probabilities rather than hard decisions.  GSR 

and GRASP require training sets and could not be accurately compared to the LFW 

methodology.    

GSR and GRASP results are presented in the “Single” and “All” Grassmann subspace 

configurations.  The most comparable configuration to the state-of-the-art methods is the 

“Single” Grassmann subspace configuration because individual test samples are compared 
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against a trained set rather than groups of unknown test samples of the same class being 

compared against a trained set.  All results identified in bold indicate the top performing methods 

excluding results presented for the “All” Grassmann subspace configurations which are expected 

to classify better than the “Single” Grassmann subspace configuration.   

7.8.1 i3DPost Multi-View Human Action Dataset (i3DPost) 

For the i3DPost dataset, all comparisons are based on LOOCV.  Gkalelis et al. [27] introduced 

the i3DPost dataset and applied fuzzy vector quantization with linear discriminant analysis for 

human movement recognition and report their results when classifying five actions.   Iosifidis et 

al. [30] used fuzzy vector quantization with artificial neural networks and fuzzy vector 

quantization with linear discriminant analysis [29] for action recognition evaluated on eight 

actions.  Azary and Savakis [50] used sparse representations on motion history surfaces with a 

minimum reconstruction residual classifier and ran experiments on variations of action subsets.  

Holte et al. [33] used view-invariant 3D motion based vector fields from 3D Motion Context 

(3D-MC) and the Harmonic Motion Context (HMC) as action representations.  Karali and 

ElHelw [124] combine motion history of skeleton volumes and temporal change in bounding 

volume utilizing logistic model trees, Mahalanobis distances, and linear discriminant analysis. 

 

Action Subset 

Label 
Action List 

All Actions 
Walk, Run, Jump, Bend, Hand-wave, Jump in place, Sit-stand up, Run-fall, Walk-sit, Run-jump-

walk, Handshake, Pull 

11 Actions 
Walk, Run, Jump, Bend, Hand-wave, Jump in place, Sit-stand up, Run-fall, Walk-sit, Run-jump-

walk, Handshake 

10 Actions 
Walk, Run, Jump, Bend, Hand-wave, Jump in place, Sit-stand up, Run-fall, Walk-sit, Run-jump-

walk 

8 Actions Walk, Run, Jump, Bend, Hand-wave, Jump in place, Sit-stand up, Run-fall 

6 Actions Walk, Run, Jump, Bend, Hand-wave, Jump in place 

5 Actions (E1) Walk, Run, Jump, Bend, Jump in place 

5 Actions (E2) Walk, Jump, Bend, Hand-wave, Jump in place 

Table 10: Action subsets for the i3DPost dataset as reported in the works of [27], [29], [30], [33], [50], and 

[124].   
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Method All 

Actions 

11 

Actions 

10 

Actions 
8 

Actions 

6 

Actions 

5 

Actions  

(E1) 

5 

Actions 

(E2) 

GSR (Single) 91.41% 88.92% 87.50% 91.60% 92.71% 92.50% 97.19% 

GRASP (Single) 90.49% 90.06% 90.47% 92.97% 93.49% 93.13% 96.25% 

GSR (All) 95.83% 89.77% 88.75% 92.19% 95.83% 95.00% 100% 

GRASP (All) 94.79% 96.59% 96.25% 90.63% 95.83% 97.50% 100% 

Gkalelis et al. [27]      90.00%  

Iosifidis et al. [30]    95.50%    

Azary and Savakis [50] 87.37%  86.72% 93.16% 92.97% 89.06%  

Holte et al. [33]    80.00%  89.58%  97.50% 

Karali and ElHelw [124]  89.00%      

Iosifidis et al. [29]    90.88%    

Table 11: The classification results of state-of-the-art approaches in the i3DPost dataset.   

 

The subset action list is shown in Table 10 and the corresponding classification results are 

shown in Table 11.  The comparison shows that Grassmann based methods classify better except 

for the eight action experimental setup and the five action experimental setup (E2).  For the eight 

action experimental setup, Iosifidis et al. [30] outperformed GSR and GRASP with fuzzy vector 

quantization and artificial neural networks.  Holte et al.’s [33] 3D-MC and HMC methods 

outperformed GSR and GRASP by 0.31% and 1.25% respectively.   

7.8.2 INRIA Xmas Motion Acquisition Sequences (IXMAS) 

For the IXMAS dataset, all comparisons are assumed to be based on LOOCV.    Wu et al. [125] 

uses multiple kernel learning with augmented features (AFKML) to fuse spatio-temporal and 

local appearance features.  Liu and Shah [126] used maximization of mutual information (MMI) 

clustering with support vector machines.  Yan et al. [127] build 4D action feature models to 

encode shapes of actors from multiple views.  Orrite et al. [128] used histograms of normalized 

optical flow.  Karali and ElHelw’s [124] method classifies best when comparing against “Single” 

Grassmann subspace configurations.  However, their results exclude an entire action set of 

“throw”.   
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Method Number of 

Views 

Excluded Actions Classification 

Results 

GSR (Single) 4 Excludes under hand throw 79.19% 

GRASP (Single) 4 Excludes under hand throw 80.76% 

GSR (All) 4 Excludes under hand throw 96.92% 

GRASP (All) 4 Excludes under hand throw 97.69% 

Wu et al. [125] 4 Excludes all throw 88.20% 

Liu and Shah [126] 4 Excludes underhand throw 82.80% 

Yan et al. [127] 4 Excludes throw and point 78.00% 

Karali and ElHelw [124] Unknown Excludes all throw 88.48% 

Orrite et al. [128] Unknown Unknown 73.30% 

Table 12: The classification results of state-of-the-art approaches in the IXMAS dataset. 

 

7.8.3 Microsoft Research Action 3D Dataset (MSRAction3D) 

For the MSRAction3D dataset, the list of action subsets used in the experiments are presented in 

Table 13.  These subsets have been consistently used as baselines in existing literature.  Subset 1 

and Subset 2 group actions with similar characteristics.  Subset 3 groups actions that are 

dissimilar.  The full set is introduced in this dissertation as a new baseline and includes all 

actions.  

Subset 1 Subset 2 Subset 3 Full Set 
Hor. Arm Wave  

Hammer  

Forward Punch  

High Throw  

Hand Clap  

Bend  

Tennis Serve  

Pickup & Throw  

High Arm Wave  

Hand Catch  

Draw X  

Draw Tick  

Draw Circle  

Two Hand Wave  

Forward Kick  

Side Boxing  

High Throw  

Forward Kick  

Side Kick  

Jogging  

Tennis Swing  

Tennis Serve  

Golf Swing  

Pickup & Throw  

 

 

 

All Actions  

Table 13: Action subsets for the MSRAction3D dataset.   

To compare against state-of-the-art results, the same experimental setup is carried out, 

where twenty actions were divided into three subsets consisting of eight actions. The Subsets 1 

and 2 were designed to group activities with similar movements while Subset 3 was designed to 

group actions that are more dissimilar.  As in the work of Li et al. [36] and many existing 

publications, three types of tests were conducted as follows: training with 1/3 of the training 

samples and testing with 2/3 of the samples, training with 2/3 of the samples and testing against 
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1/3, and training with half of the samples and testing against the other half.  Cross validation was 

not used, and without knowing which samples were used for testing and training for each test, we 

compare against the same experimental setup with random samples selected for training and 

testing.  However, LOOCV results are also presented where each test subject is validated against 

the remaining subjects and repeated for all subjects until all subjects have been used for training 

and testing.  Since the average classification results over the three subsets are commonly 

presented, the average results are also presented for GSR and GRASP.   

The work of Li et al. [36] use action graphs to model the dynamics of the actions and a Bag 

of Features (BoF) to encode the action and classify test samples against a training set.  Yang et 

al. [129] extracted histograms of oriented gradients (HOG) from depth motion maps.  Yang and 

Tian [130] propose applying PCA and normalization computed channels of depth data which 

they call Eigenjoints.  Wang et al. [131] present a pose estimation algorithm and exploit spatio-

temporal pose structures.   

Table 14 presents classification results when 1/3 of the data samples were trained and 2/3 of 

the data samples were tested.  The results indicate that the method proposed by Xia et al. [132] is 

the most effective.  Their approach uses histograms of kinematic joint positions which are 

projected into a lower dimensional space using linear discriminant analysis and classified based 

on visual word clustering.   

Subset Subset 1 Subset 2 Subset 3 
Average of 

Subsets[1 2 3]  
Full Set 

GSR (Single) 96.12% 91.03% 93.65% 93.60% 86.36% 

GRASP (Single) 93.75% 92.57% 92.84% 93.05% 87.52% 

GSR (All) 100% 100% 100% 100% 100% 

GRASP (All) 100% 100% 100% 100% 100% 

Li et al. [36] 89.50% 89.00% 96.30% 91.60% N/A 

Yang and Tian [130] 94.70% 95.40% 97.30% 92.47% N/A 

Yang et al. [129] 97.30% 92.20% 98.00% 95.83% N/A 

Xia et al. [132] 98.47% 96.67% 93.47% 96.20% N/A 

Table 14: The classification results of state-of-the-art approaches on the MSRAction3D dataset with 1/3 

randomly trained samples, 2/3 randomly tested samples.   
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Table 15 presents classification results when 2/3 of the data samples were trained and1/3 of 

the data samples were tested.  GRASP classified with a 100% accuracy on Subset 1 while Xia et 

al. [132] classifies the best for Subset 2 and Yang et al. [129] classifies the best on Subset 3.  

Yang and Tian [130] maintain the best balance of classification results on all three subsets with 

an average of 97.77%.  When comparing the average results for this experimental setup, GRASP 

and GSR slightly trail the leading methods by 0.51% and 0.65% respectively.   

Subset Subset 1 Subset 2 Subset 3 
Average of 

Subsets[1 2 3]  
Full Set 

GSR (Single) 97.92% 95.42% 98.44% 97.26% 94.00% 

GRASP (Single) 100% 92.92% 98.44% 97.12% 93.54% 

GSR (All) 100% 100% 100% 100% 100% 

GRASP (All) 100% 100% 100% 100% 100% 

Li et al. [36] 93.40% 92.90% 96.30% 94.20% N/A 

Yang and Tian [130] 97.30% 98.70% 97.30% 97.77% N/A 

Yang et al. [129] 98.70% 94.70% 98.70% 97.37% N/A 

Xia et al. [132] 98.61% 97.92% 94.93% 97.15% N/A 

Table 15: The classification results of state-of-the-art approaches on the MSRAction3D dataset with 2/3 

randomly trained samples, 1/3 randomly tested samples.    

 

Table 16 presents classification results when 1/2 of the data samples were trained and1/2 of 

the data samples were tested.  It is observed that for this configuration GRASP and GSR classify 

the best with 95.63% and 95.13% respectively.   

Subset Subset 1 Subset 2 Subset 3 
Average of 

Subsets[1 2 3]  
Full Set 

GSR (Single) 96.58% 95.31% 93.49% 95.13% 92.72% 

GRASP (Single) 97.72% 94.35% 94.62% 95.63% 91.23% 

GSR (All) 100% 100% 100% 100% 100% 

GRASP (All) 100% 100% 100% 100% 100% 

Li et al. [36] 72.90% 71.90% 79.20% 74.67% N/A 

Yang and Tian [130] 74.50% 76.10% 96.40% 82.33% N/A 

Yang et al. [129] 96.20% 84.10% 94.60% 91.63% N/A 

Wang et al. [131] Not Provided Not Provided Not Provided 90.22% N/A 

Ellis et al. [133] Not Provided Not Provided Not Provided 65.70% N/A 

Xia et al. [132] 87.98% 85.48% 63.46% 78.97% N/A 

Table 16: The classification results of state-of-the-art approaches on the MSRAction3D dataset with 1/2 

randomly trained samples, 1/2 randomly tested samples.    

Table 17 presents classification results using LOOCV and only comparing GSR and 

GRASP.  This is because the cross validation method is not presented in any existing literature 
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on the MSRAction3D dataset.  However, the results are important because they identify that 

action recognition is more challenging when the same subjects are excluded from the training 

set.  Table 14 through Table 16 show average classification results in the 90th percentile.  

However, LOOCV proves to be more challenging with Grassmann based classification results in 

the 80th percentile range.  GSR proves to be more effective than GRASP for the subsets and 

when evaluating the full set of all actions.   

Subset Subset 1 Subset 2 Subset 3 
Average of 

Subsets[1 2 3]  
Full Set 

GSR (Single) 81.67% 81.15% 87.88% 83.57% 76.17% 

GRASP (Single) 80.53% 80.35% 86.74% 82.54% 75.04% 

GSR (All) 78.45% 80.72% 89.50% 82.89% 77.17% 

GRASP (All) 76.44% 82.81% 88.96% 82.74% 75.13% 

Table 17: The classification results of state-of-the-art approaches on the MSRAction3D dataset using leave one 

subject out cross validation.     

 

7.8.4 Microsoft Research Gesture3D Dataset (MSRGesture3D) 

For the MSRGesture3D dataset, all ASL gestures are evaluated using LOOCV and reported in 

Table 18.  The results indicate that Grassmann learning in the “Single” and “All” Grassmann 

subspace configurations trail state-of-the-art approaches between 0.5% to 3.33%.  The second 

leading method is by Zhang and Tian [134] who present edge enhanced depth motion maps that 

can be classified with kernelized support vector machines.  The leading method is presented by 

Oreifej and Liu [135] who present a 4D descriptor based on depth, time, and spatial coordinates 

using histograms of normal orientations.   
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Subset All Gestures 

GSR (Single) 87.20% 

GRASP (Single) 87.50% 

GSR (All) 87.20% 

GRASP (All) 87.50% 

Kurakin et al. [120] 87.70% 

Wang et al. [136] 88.50% 

Oreifej and Liu [135] 92.45% 

Yang et al. [129] 89.20% 

Zhang and Tian [134] 90.53% 

Table 18: The classification results of state-of-the-art approaches on the MSRGesture3D dataset using leave 

one subject out cross validation.     

 

7.8.5 Database of Faces from AT&T Laboratories (ATT) 

For the ATT dataset, 2FCV results are reported for GSR and GRASP and compared against the 

state-of-the-art methods listed in Table 19.  The “Single” Grassmann subspace configuration of 

GSR and GRASP outperform all methods by a range of 12.36% to 0.13%.  The closest 

competitive method is presented by Faraji and Qi [137] who present neutrosophic set 

preprocessing for noise removal and facial feature enhancement along with kernel Fisher linear 

discriminant analysis (KFLDA) and Tan and Triggs (TT) discriminant method.  The next closest 

competitive method is reported at 98.53% by Liu et al. [138] using a method called spherical 

marginal Fisher analysis.  This method is an extension of marginal Fisher analysis.  

Subset 
Classification 

Results 

GSR (Single) 99.00% 

GRASP (Single) 99.00% 

GSR (All) 100% 

GRASP (All) 100% 

Yang et al. [139] 96.00% 

Cai et al. [140] 96.35% 

Faraji and Qi [137] 98.87% 

Xu et al. [141] 96.50% 

Gumus et al. [142] 95.30% 

Choi et al. [143] 86.64% 

Fernandes and Bala [144] 96.00% 

Liu et al. [138] 98.53% 

Table 19: The classification results of state-of-the-art approaches on the ATT dataset using 2-fold cross 

validation. 
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7.8.6 Extended Yale Face Database B (YALE) 

For the YALE dataset, 2FCV results are reported for GSR and GRASP and compared against the 

state-of-the-art methods listed in Table 20.  The results indicate that GRASP is the top performer 

with GSR trailing by only 0.04%.  The closest competitive method is presented by Fernandes 

and Bala [144] with a classification accuracy of 97.50% using regularized linear discriminant 

analysis with probabilistic reasoning models.  Cai et al. [140] report classification results of 

95.17% using orthogonal Laplacian-faces (OLF).   

Subset 
Classification 

Results 

GSR (Single) 98.85% 

GRASP (Single) 98.89% 

GSR (All) 100% 

GRASP (All) 100% 

Yang et al. [139] 84.24% 

Cai et al. [140] 95.17% 

Choi et al. [143] 82.13% 

Fernandes and Bala [144] 97.50% 

Liu et al. [138] 86.13% 

Table 20: The classification results of state-of-the-art approaches on the YALE dataset using 2-fold cross 

validation. 

 

7.9 Benefits and Limitations of Grassmann Learning 

As previously explained, there are many benefits to using Grassmann manifolds including 

promoting high between-class discrimination and within-class clustering, computational 

advantages, and accounting for missing information through linear spans of subspaces.  

Grassmann learning can be used for various classification and recognition problems including 

action, face, and object classification.  Grassmann learning has proven to be effective when large 

amounts of training information is available and subspaces are well represented by large amounts 

of data samples on a Grassmann manifold. Grassmann learning is difficult to use in an 

unsupervised framework without class labeling.  A better understanding of data clustering on 
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Grassmann manifolds is necessary to explore and implement unsupervised Grassmann learning 

methods.  Grassmann learning has also shown to be less discriminative for large class systems 

with subspaces represented by a small number of data samples.      
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8 Conclusions 

The benefits of Grassmann learning for processing high dimensional data and easing 

computation loads were explored.  This dissertation began by discussing high dimensional 

representations and radial distance surfaces were proposed.  Such surfaces were found to be scale 

invariant, localization invariant, and time invariant for multi-view action classification.  This was 

justified through manifold learning with LPP.  However, the results indicate that the approach is 

not robust in terms of promoting high between-class discrimination and requires an exhaustive 

dictionary of action representations across multiple views.  The next contribution in this 

dissertation is the definition of motion history surfaces (MHS) and motion depth surfaces (MDS) 

based on spatio-temporal considerations.  These high dimensional surfaces were evaluated with 

dimensionality reduction algorithms including PCA, LGE, Spectral Regression, Grassmann 

learning, and Sparse Representations.   

For sparse representations, we presented a novel approach to action classification of 3D 

video sequences using sparse representations of spatio-temporal kinematic joint features and raw 

depth features which are invariant to scale and localization.  We created over-complete 

dictionaries and took advantage of the sparse nature of the feature descriptors to classify actions 

using least squares loss ℓ1-norm minimization with parameter regularization.  We found that the 

representations of raw depth features are naturally sparser than kinematic joint features as a 

result of comparing ℓ1-norm minimization with ℓ2-norm nearest neighbor classification.   

Understanding the benefits and drawbacks of these various learning techniques allowed for 

the next major contribution of this dissertation with the GSR and GRASP frameworks.  These 

methods are intended to improve classification accuracies and improved run-time performance.  

An extensive evaluation of GSR and GRASP was made for the applications of action 
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classification and face recognition.  Beyond the GSR and GRASP framework, another major 

contribution is the observation of standardizing Grassmann kernel distributions and its impact on 

classification accuracies using GSR and GRASP.  We discovered that standardization allows for 

the best results when there is variation in subspace sizes between Grassmann points.   

 

8.1 Future Work 

There are many research opportunities to explore within the framework of GSR and GRASP 

methodologies and beyond.  Applications such as object recognition and super-resolution can be 

explored through GSR and GRASP.   However, GSR and GRASP are supervised learning 

algorithms and are not suited for clustering analysis.  Gruber and Theis [145] have found 

improved clustering patterns when applying k-means clustering on Grassmann manifolds.  

Similar and more recent work using k-means clustering on Grassmann manifolds was also 

observed by Shirazi et al. [146] with a potential to improve action classification accuracies.  The 

understanding of clustering patterns on a Grassmann manifold can give rise to unsupervised 

learning algorithms that can also account for high between class discrimination and high within-

class clustering.  Grassmann learning can be incorporated into clustering methods such as MDS, 

LLE, and Isomap for improved clustering and it would be interesting to see the benefits and 

drawbacks of such Grassmann clustering approaches.  Beyond Grassmann clustering, Grassmann 

classifiers for face sequence recognition using SVM’s are presented in the work of Shigenaka et 

al. [147].  Similarly, Vemulapalli et al. [148] present a general framework for SVM classifiers on 

Riemannian manifolds using kernel learning approaches.  There is opportunity to explore the 

effectiveness of SVM classifiers on Grassmann manifolds.   
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