
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

1-1-2014

Grassmann Learning for Recognition and Classification Grassmann Learning for Recognition and Classification

Sherif Azary

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Azary, Sherif, "Grassmann Learning for Recognition and Classification" (2014). Thesis. Rochester Institute
of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F8452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/8452?utm_source=repository.rit.edu%2Ftheses%2F8452&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Grassmann Learning for Recognition and

Classification

Ph.D. Dissertation

by

Sherif Azary

B. THOMAS GOLISANO COLLEGE OF COMPUTING AND INFORMATION SCIENCES

DEPARTMENT OF COMPUTING AND INFORMATION SCIENCES-PHD

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

Date:

Monday, April 28, 2014

Dissertation Advisor:

Dr. Andreas Savakis, Professor, Department of Computer Engineering, RIT

Dissertation Committee:

Dr. Nathan D. Cahill, Associate Professor, School of Mathematical Sciences, RIT

Dr. Shanchieh J. Yang, Associate Professor & Department Head, Department of Computer Engineering, RIT

Dr. Richard Zanibbi, Associate Professor, Department of Computer Science, RIT

Defense Chair:

Dr. Dhireesha Kudithipudi, Associate Professor, Department of Computer Engineering, RIT

i

B. THOMAS GOLISANO COLLEGE OF

COMPUTING AND INFORMATION SCIENCES

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

 The Ph.D. Degree Dissertation of Sherif Azary has been examined and approved by the

dissertation committee as complete and satisfactory for the dissertation requirement for Ph.D.

degree in Computing and Information Sciences

Dr. Andreas Savakis, Advisor (date)

Dr. Nathan D. Cahill, Member (date)

Dr. Shanchieh J. Yang, Member (date)

Dr. Richard Zanibbi, Member (date)

Dr. Dhireesha Kudithipudi, Defense Chair (date)

Dr. Pengcheng Shi, Ph.D. Program Director (date)

B. Thomas College of Computing and Information Sciences

ii

Abstract

Computational performance associated with high-dimensional data is a common challenge

for real-world classification and recognition systems. Subspace learning has received

considerable attention as a means of finding an efficient low-dimensional representation that

leads to better classification and efficient processing. A Grassmann manifold is a space that

promotes smooth surfaces, where points represent subspaces and the relationship between points

is defined by a mapping of an orthogonal matrix. Grassmann learning involves embedding high

dimensional subspaces and kernelizing the embedding onto a projection space where distance

computations can be effectively performed.

In this dissertation, Grassmann learning and its benefits towards action classification and

face recognition in terms of accuracy and performance are investigated and evaluated.

Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP)

are proposed as Grassmann inspired subspace learning algorithms. GSR is a novel subspace

learning algorithm that combines the benefits of Grassmann manifolds with sparse

representations using least squares loss ℓ1-norm minimization for improved classification.

GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann

manifolds and Spectral Regression in a framework that supports high discrimination between

classes and achieves computational benefits by using manifold modeling and avoiding eigen-

decomposition. The effectiveness of GSR and GRASP is demonstrated for computationally

intensive classification problems: (a) multi-view action classification using the IXMAS Multi-

View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action

classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face

iii

recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended

Yale Face Database B (YALE).

Additional contributions include the definition of Motion History Surfaces (MHS) and

Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video

sequences and 3D depth sequences. An in-depth analysis of Grassmann metrics is applied on

high dimensional data with different levels of noise and data distributions which reveals that

standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold.

Finally, an extensive performance analysis is made that supports Grassmann subspace learning

as an effective approach for classification and recognition.

iv

 Acknowledgements

I would like to express my deepest gratitude to my advisor, Dr. Andreas Savakis, for his

guidance, support, patience, mentorship, and encouragement in making this research possible.

Dr. Andreas Savakis has always been accommodating to my schedule and encouraged me to

complete my research while I worked full-time and moved away from Rochester, NY to further

my career. Without this encouragement I would not be where I am today and I am grateful. Dr.

Andreas Savakis and Dr. Shanchieh J. Yang have also provided financial support for my PhD

research and I thank them for believing in me.

I would also like to thank my committee and defense chair, Dr. Nathan D. Cahill, Dr.

Shanchieh J. Yang, Dr. Richard Zanibbi, and Dr. Dhireesha Kudithipudi for their support and

advice in making this dissertation possible. They have always been accommodating to my

schedule and extremely supportive to make this research productive and stimulating. It has been

an honor. I would like to thank Dr. Pengcheng Shi for accepting me into the Computing and

Information Science Ph.D. program and believing in me to complete my research as a part-time

student with a full-time job.

I would like to thank my colleagues, Dr. Grigorios Tsagkatakis and Dr. Raymond Ptucha,

for their friendship, academic advice, and words of encouragement. I also cannot express

enough appreciation to Joyce Hart, Kathryn Stefanik, and Lorrie Jo Turner for their academic

support.

I would like to thank my brother and his wife, Hani and Mary Azary, for their continuous

words of encouragement and being great friends. I would like to thank my brother in law,

Johnny Girgis, and my good friend, Pete Henen, for their friendship and humor. I would like to

thank my parents, Wahid and Samia Azary, for their patience, love, and raising me with a

passion for problem solving and math. I owe the success of my education and my career to

them. Finally, I would like to thank my wife, May, for always being there for me, and for her

love and understanding, and for being my best friend.

v

Table of Contents

1 Introduction .. 1

1.1 Contributions... 4

2 Representations for Action Classification and Face Recognition 6

2.1 Action Representations ... 6

2.1.1 Action Representations for Multi-View and 3D Applications 8

2.2 Face Representations .. 10

2.3 Radial Distance Representations for Action Recognition 13

2.3.1 Radial Distance Measures ... 14

2.3.2 Radial Distance Surfaces ... 16

2.3.3 3D Joint Descriptor Surfaces ... 20

2.3.4 Radial Distance Surfaces and 3D Joint Surface Descriptor Evaluation 22

2.4 Motion Images as Action Descriptors... 24

2.4.1 Motion Energy Images and Motion History Images 25

2.4.2 Motion History Surfaces .. 26

2.4.3 Motion Depth Surfaces .. 29

3 Dimensionality Reduction Methodologies ... 31

3.1 Principal Component Analysis ... 31

3.2 Metric Multidimensional Scaling ... 33

3.3 Locally Linear Embedding ... 35

3.4 Linear Extensions of Graph Embedding ... 38

4 Grassmann Learning .. 45

4.1 Grassmann Framework ... 46

vi

4.2 Grassmannian Metrics .. 48

4.3 Grassmannian Kernels .. 50

4.3.1 Grassmann Projection Kernels .. 50

4.4 Grassmannian Principal Component Analysis.. 51

5 Grassmannian Sparse Representations ... 55

5.1 Sparse Representations ... 55

5.2 3D Action Classification Using Sparse Spatio-Temporal Feature Representations 59

5.3 Grassmann Learning with Sparse Representations ... 62

6 Grassmannian Spectral Regression .. 65

6.1 Spectral Regression ... 65

6.2 Grassmann Learning with Spectral Regression .. 68

7 Experimental Setup and Analysis .. 73

7.1 Evaluation Assumptions ... 73

7.2 Datasets ... 74

7.2.1 i3DPost Multi-View Human Action Dataset (i3DPost) 74

7.2.2 INRIA Xmas Motion Acquisition Sequences (IXMAS) 75

7.2.3 West Virginia University Multi-View Action Dataset (WVU) 76

7.2.4 Microsoft Research Action 3D Dataset (MSRAction3D) 76

7.2.5 Microsoft Research Gesture3D Dataset (MSRGesture3D) 77

7.2.6 Database of Faces from AT&T Laboratories (ATT) 78

7.2.7 Labeled Faces in the Wild (LFW) ... 79

7.2.8 Extended Yale Face Database B (YALE) ... 81

7.3 Grassmann Similarity Measure Analysis .. 82

vii

7.4 Grassmann Kernel Standardization... 87

7.5 Sparse Representation Analysis .. 92

7.6 Grassmannian Sparse Representation Analysis .. 94

7.7 Classification and Performance Results and Analysis .. 95

7.8 Comparison to State-Of-The-Art Methods ... 103

7.8.1 i3DPost Multi-View Human Action Dataset (i3DPost) 104

7.8.2 INRIA Xmas Motion Acquisition Sequences (IXMAS) 105

7.8.3 Microsoft Research Action 3D Dataset (MSRAction3D) 106

7.8.4 Microsoft Research Gesture3D Dataset (MSRGesture3D) 109

7.8.5 Database of Faces from AT&T Laboratories (ATT) 110

7.8.6 Extended Yale Face Database B (YALE) ... 111

7.9 Benefits and Limitations of Grassmann Learning .. 111

8 Conclusions .. 113

8.1 Future Work .. 114

9 References .. 115

1 | P a g e

1 Introduction

The automatic recognition of human actions a fundamental but challenging task in computer

vision research for a wide variety of applications including autonomous surveillance, law

enforcement, health care monitoring systems, and human computer interfacing. Automatic face

recognition is another important task for many applications. The main challenge of such systems

is their ability to classify in unconstrained environments. Images of human actors can vary by

their sizes, shapes, poses, occlusions, viewpoint variations, noise, and lighting. Additionally,

action classification systems would need to account for action execution speed requiring spatio-

temporal representations that are invariant to such factors.

The most common approaches to classification involve extracting meaningful features from

images or video and applying statistical or machine learning tools to make classification

decisions. Optimal action representations are those that can capture both the spatial structure of

an activity and its temporal structure over time. While many features can represent spatial and

temporal domains independently, there are spatio-temporal features that are capable of

representing both domains, such as space-time interest points and 3D Harris corner detectors.

Such features are well-suited for challenging applications such as multi-view and 3D action

classification systems. Within these domains are a wide variety of representations involving

normalization, invariance, and exhaustive search. Similarly, face image representations are

expected to be robust enough to distinguish between a wide range of human subjects and under

unconstrained conditions such as variations in illumination and facial expressions. Local binary

patterns and local ternary patterns are among the most popular face image representations.

Methodologies that can account for the statistical and geometric properties of high

dimensional representations have proven to be extremely valuable in deriving meaningful

2 | P a g e

information. Principal component analysis (PCA) is a common dimensionality reduction method

based on the eigenvectors of the covariance matrix. Although fast, PCA does not maintain

geometry and local structuring of high dimensional data. Manifold learning techniques have

been developed to handle non-linear dimensionality reduction. Manifold learning involves

reducing high dimensional data to a lower dimensional space while optimally preserving the

local geometries from the high dimensional information. An ideal mapping should be fast,

preserve clustering, and account for occlusions and outliers. There are many dimensionality

reduction algorithms that are powerful enablers of robust classification and in this dissertation

the benefits and drawbacks of many of these methods are discussed. As an alternative, sparse

representations are methods of finding sparse solutions that are useful in a variety of applications

including classification.

Grassmann learning is a dimensionality reduction algorithm where subspaces are mapped as

points onto a smooth and curved surface where distances between subspaces are geodesic. The

main advantage of Grassmann learning over traditional manifold learning methods is that high

dimensional feature representations may not typically lie on a Euclidean space. Grassmann

learning maps subspaces onto points based on orthogonal constraints, promoting high between-

class discrimination by their geometrical structuring, and accounting for missing data through

subspace spanning. Grassmann kernelization embeds subspaces onto a projection space where

distance computations can be effectively performed.

In this dissertation, representations for action classification and face recognition systems are

explored in Chapter 2. Spatio-temporal surface descriptors for multi-view and 3D action

classification systems are presented using radial distance measures and 3D joint descriptors for

multi-view and 3D action classification. These surfaces have proven to be effective at

3 | P a g e

representing actions while being invariant to time, scale, and localization. These spatio-temporal

surface representations motivated the development of more robust motion surface

representations. Motion surfaces, proposed in this dissertation, have proven to be very effective

representations for describing where motion exists in a scene and how motion evolves over time.

Motion history surface (MHS) and motion depth surface (MDS) descriptors are suitable for

activity representations for multi-view and 3D depth action sequences.

In Chapter 3 dimensionality reduction algorithms including principal component analysis,

multidimensional scaling, local linear embedding, and linear extensions of graph embedding are

discussed and evaluated. The benefits and drawbacks of these methods are identified including

time complexities. Grassmann learning and its benefits towards action classification and face

recognition in terms of accuracy and performance are investigated in Chapter 4. Grassmann

learning in a kernelized principal component analysis framework is defined and evaluated. In

Chapter 5, Grassmannian Sparse Representation (GSR) is proposed as a Grassmann inspired

subspace learning algorithm. GSR is a novel subspace learning algorithm that combines the

benefits of Grassmann manifolds with sparse representations using least squares loss ℓ1-norm

minimization for improved classification. Sparse representations are introduced as a method for

finding sparse solutions for underdetermined systems. Images and video sequences can be

encoded using sparse representations to be more easily interpretable and classification using least

squares loss ℓ1-norm minimization shows to be suitable for classification at the cost of poor

computational performance. This framework is extended into a Grassmann learning framework

through GSR. The high cost of poor performance through GSR encouraged the pursuit of a

faster learning framework. Grassmannian Spectral Regression (GRASP) is introduced in

Chapter 6. GRASP is a novel subspace learning algorithm that leverages the benefits of

4 | P a g e

Grassmann manifolds and Spectral Regression in a framework that supports high discrimination

between classes and achieves computational benefits by using manifold modeling and avoiding

eigen-decomposition.

In Chapter 7, the classification accuracies and performance of all previously discussed

learning methods including GSR and GRASP are presented for computationally intensive action

and face datasets. An in-depth analysis of Grassmann metrics is applied on high dimensional

data with different levels of noise and data distributions revealing that standardized Grassmann

kernels are favorable over Grassmann geodesic metrics in a Grassmann space. GSR and GRASP

are compared against existing sparse representations, manifold learning, and Grassmann learning

methodologies. An extensive performance analysis is made that support Grassmann subspace

learning through GSR and GRASP as effective approaches for classification and recognition

over state-of-the-art approaches. The dissertation concludes in Chapter Error! Reference

source not found..

1.1 Contributions

In this section the contributions made in this dissertation are explicitly defined. The first is the

definition of radial distances and radial distance surfaces as action representations. Such

surfaces have shown to be suitable representations for multi-view action classification. This

work was extended to handle 3D action sequences using 3D joint surface descriptors. This led to

the evolution of motion surfaces where motion history surfaces (MHS) and motion depth

surfaces (MDS) are proposed as descriptors that can accurately represent motion in multi-view

and 3D action classification applications.

5 | P a g e

The main contributions of this dissertation are the definition of Grassmannian Sparse

Representations and Grassmannian Spectral Regression for high classification accuracy and

computational performance. With this, an extensive evaluation is made on Grassmann metrics

which is not found at this level of depth in the existing literature. Through experiments and

evaluation, this dissertation exposes the benefit of using Grassmann kernels with robust

classifiers over geodesic metrics using kernel standardization. Additionally, a thorough time

complexity evaluation is made on all learning methods.

6 | P a g e

2 Representations for Action Classification and Face Recognition

2.1 Action Representations

Weinland et al. [1] discuss a broad range of spatial, temporal, and spatio-temporal approaches for

addressing action classification problems. Spatial action representations attempt to describe the

spatial structure of actions. Body models [2], body pose estimations [3], kinematic joint models

[4], and stick figures [5] tend to be intuitive and descriptive, but may require significant training

and computational resources. Spatial parametric image features include contour/silhouette

representations [6], optical flow [7], and motion history images/motion energy images [8]. Such

features do not require body part labeling or tracking, but are computationally intensive because

of high dimensional data representations and difficulties with occlusions. Spatial statistical

approaches are based on the statistics of local features, such as features detected using the Harris

corner detector [9]. Local feature descriptors can be classified using Bag of Features [10],

Support Vector Machines (SVM’s) [11], local Principal Component Analysis (local PCA) [12],

and Manifold Learning - e.g. supervised locality preserving projections (sLPP) [13]. The main

benefits of spatial statistical representations are that they are not relying on body part labeling,

silhouette extraction, and localization. However, such representations are usually unordered and

of varying sizes making it difficult to use with classifiers.

Temporal representations of human actions identify the temporal structure of an action and

are categorized into action grammars [14], action templates [15], and temporal statistics [16].

Action grammars identify an action by a set of action primitives. Given a set of all action

primitives, an action grammar acts as a function to learn the transitions between those primitives.

A popular method for identifying action primitive transitions is the use of Hidden Markov

Models (HMM). Many action recognition systems utilize action grammars with HMM’s

7 | P a g e

including Kruger and Grest [17] and Chakraborty et al. [18]. Action grammars are highly

modular but require manual structuring making action grammars impractical for systems

intended to classify a large set of action classes. Action templates are a combination of action

primitives into one larger representation. Pattern matching is usually applied to compare actions

to a collection of action templates in a database. Junejo et al. [19] propose a view independent

approach to action recognition on 2D video sequences using Self Similarity Matrices (SSM).

Their approach captures temporal histograms of gradient orientations in the spatial domain and

concatenates the features descriptors into one large local SSM feature vector descriptor. This

feature vector descriptor is an action template. Yao et al. [20] collect action pose templates as a

combination of Histogram of Gradient (HoG) features and Histogram of Optical Flow (HoF)

features. These templates are classified using Support Vector Machines (SVM’s). Action

templates are known to be effective and discriminative, but do not have a built-in mechanism to

account for temporal segmentation. Temporal statistics find statistical patterns of actions in the

temporal domain such as identifying frequent features over time.

Spatio-temporal representations are those that can describe an action structure in both the

spatial and temporal domains. One of the earliest spatio-temporal feature descriptors was

introduced by Laptev and Lindeberg [21] by extending on the Harris Corner Detector algorithm

to detect space-time interest points that can be used to represent motion-based activities. Other

spatio-temporal interest points include cuboids using temporal Gabor filters [22], Harris 3D

detectors as a 3D extension of the Harris corner detector for detecting significant local variations

on both space and time [23], and Hessian detectors that are scale and affine invariant across the

space and time domains [24]. Vili et al. [25] introduce dynamic texture descriptors to describe

human movement. A human action is represented as a volume in XYT space and Local Binary

8 | P a g e

Patterns are used to extract histogram features in the XT and YT spaces. An interesting action

representation that inspired the action descriptor used in this dissertation is the spatio-temporal

action surfaces covered by Souvenir and Parrigan [26]. The 2D Radon transform was applied on

each frame of an action and converted to a 1D signal called the R-Transform. A surface was

created as a sequence of these signals called the RXS surface. These surfaces are then scaled

down to a standard time interval while preserving action information supporting the concept of

spatio-temporal invariance.

2.1.1 Action Representations for Multi-View and 3D Applications

Autonomous action classification systems can be restricted by visual sensor constraints or benefit

from their physical positions in a scene. Multiple view recognition systems tend to use standard

RGB cameras, while 3D cameras used in the gaming industry can provide both color and depth

information. An overview of multi-view and 3D action classification systems are discussed in

this section.

Weinland et al. [1] explain that viewpoint independence is commonly addressed by

normalization, invariance, or exhaustive search. View normalization is based on correcting the

current view through a transformation to a canonical view. This approach is taken in the work of

Gkalelis et al. [27] who use multi-view posture vectors of synchronized frames along with a

combination of circular shifting Discrete Fourier Transforms to determine the posture of an

individual relative to the current view. Ding et al. [28] present a pose-normalization algorithm

using random forest embedded active shape models to map 2D features into a 3D corresponding

space. Similarly, Iosifidis et al. [29] applied morphological operations on binary body masks of

the torsos of individuals and extrapolated from the ratio of the width and the height of the torso

9 | P a g e

along with centroid movements the relative posture of the body with respect to the current view.

Drawbacks of this approach are the scale and body shape dependency of the torsos as well as

expected physical translation across a scene to calculate the posture position. Iosifidis et al.’s

[30] later work approached the issues of torso and translation dependencies by creating multiple

view binary masks. Bodor et al. [31] used image based rendering to reconstruct views that

would be suitable for classifiers. Silhouettes from multiple cameras were captured and projected

into a 3D space so that the 3D motion path could be determined. These motion paths were then

used to determine the orthogonal views needed for classifiers. However, this system assumes

linear motion paths, so activities such as turning around and punching are not expected to be

easily classified.

A view-invariant matching approach depends on finding common features across multiple

views. Popular view-invariant feature representations are Self-Similarity Matrices (SSM) [19],

which represent distances between action representations, and Cross Ratios (CR) [32] which

determine common interest points across multiple action frames. View normalization methods

are based on a single transformation for body orientation and view invariance. In comparison,

SSM and CR methods, which ignore transformation dependent features, also perform an

exhaustive search over all possible transformations to identify matching pairs. These methods

are categorized as view-invariant and exhaustive. Holte et al. [33] propose view-invariant 3D

feature descriptors based on motion information which are the 3D Motion Context (3D-MC) and

the Harmonic Motion Context (HMC). Motion vectors computed from 2D action sequences are

extended to 3D flow using pixel to vertex correspondences which are combined to create 3D

motion vector fields. A combination of 3D-MC, which is a 3D extension of general shape

context, and HMC, which is a spherical representation of weighted sums of spherical harmonics,

10 | P a g e

are used to provide a view-invariant representation of an action. Normalized correlation

coefficients between the test and training action sequences are used to classify actions.

The recent availability of cost-effective depth cameras, such as the Microsoft Kinect sensor,

provides a significant advantage, as depth images can facilitate body posture estimation and

action classification. Benefits over traditional image sensors include automatic background

segmentation, limb identification and invariance to illumination, color, and texture. Shotton et

al. [34] used depth data to calculate kinematic joint positions using spatial mode distributions

along with randomized decision forests. Their approach is invariant to pose, body shape, and

clothing. Similarly Schwarz et al. [35] used depth cameras to identify points on a human with a

maximal geodesic distance from the body center of mass, along with optical flow to make

predictions on joint tracking while considering occlusions. Beyond kinematic joint tracking,

recent research has extended to understanding gestures and actions from depth maps using action

graphs [36], statistical analysis on actionlets [37], and Hidden Markov Models [38] [39].

2.2 Face Representations

Face image representations are encodings that describe facial images and, ideally, should be

robust enough to distinguish between human subjects. Eigenfaces [40] is an approach based on

finding principal components of face images that linearly project the image space to a low

dimensional feature space. Although effective under ideal lighting conditions, frontal pose and

neutral facial expressions, eigenfaces are not robust and outliers from varying lighting

conditions, view angles, and expressions can result in undesired classification errors. Fisherfaces

[41] maintain the Euclidean structure while maintaining high between class discrimination and

11 | P a g e

being less sensitive to lighting and expressions. Laplacianfaces [42] preserve the local structure

of the image space and detects the face manifold structure.

A challenge for Eigenfaces, Fisherfaces, and Laplacianfaces is robustness to lighting

conditions and facial expressions. Tann and Triggs [43] identify three categories for dealing

with these factors which are appearance-based, normalization-based, and feature-based methods.

Appearance-based methods require building a large training set that covers varying illumination

conditions and expressions. Normalization-based methods involve the normalization techniques

such as histograms. This included gamma correction, Difference of Gaussian (DoG) Filtering,

and contrast equalization. Figure 2-3 shows eight different subjects under varying illumination

conditions and their corresponding normalization in the second row. The illumination invariant

approach illustrated was proposed by Tann and Triggs [43] using gamma corrections, DoG

filtering, masking, and contrast equalization.

Feature-based methods identify illumination and expression invariant features. One such

example is Local Binary Patterns (LBP) which has proven to be effective for texture

representations while being highly discriminative and invariant to global gray-level

transformations for lighting invariance. LBP is based on thresholding image pixel

neighborhoods and encoding a binary pattern. The original LBP method applies an operator on

each pixel of an image which thresholds the neighboring pixels at the value of the central pixel.

The result of this operator is an image patch with an 8-bit code. An example of a basic LBP

operator and its resulting 8-bit code is shown in Figure 2-1. The central pixel with value 77 is

analyzed with a 3x3 window. Any neighboring pixel values greater than 77 are assigned a

binary value of 1. Any that are less than 77 are assigned a binary value of 0. After applying the

LBP operator, the binary encoding is an 8-bit value read from the top left neighbor clockwise

12 | P a g e

around the central pixel. The encoding is considered uniform if there is at most one transition

from 0 to 1 or 1 to 0 (i.e.: 1110001). The resulting encoding in the example provided is not

uniform because there are two transitions for 0 to 1 and 1 to 0. The uniform properties of image

patches are useful for histograms that identify uniform and non-uniform patterns.

Figure 2-1: The LBP operation and the resulting 8-bit encoding of the central pixel [43].

LBP is popular for face image representations [44] [45] and there are many extensions.

Ojala et al. [46] propose a scale and rotation invariant extension of LBP. The work in [47]

proposes patch-based descriptors using three-patch and four-patch binary patterns. The main

disadvantage of LPB’s is the lack of sensitivity to noise. Local Ternary Patterns [43] is an

extension of LBP that accounts for robustness to noise and weak illumination gradients by using

a three valued code instead of a binary code. Values within a certain tolerance are assigned a

value of 0, values above the tolerance are assigned a value of 1, and values below the tolerance

are assigned a value of -1. LTP encodings are demonstrated in the Figure 2-2. Figure 2-3

illustrates sample face images from the YALE database which have been illumination

normalized. The third and fourth rows show the result LBP and LTP images for those

illumination normalized faces.

13 | P a g e

Figure 2-2: The LTP operation and the resulting 8-bit encoding of the central pixel [43].

Figure 2-3: Normalization based processing of face images from the YALE face database

under different lighting conditions. The top row shows the original images and the second

row shows the resulting illumination normalized face images. The third row shows the

LBP image representations. The fourth row shows the LTP image representations.

2.3 Radial Distance Representations for Action Recognition

The first contribution in this dissertation is the definition of radial distance surfaces [13] as

efficient feature representations. Locality Preserving Projection (LPP), a manifold learning

technique, was used for learning low dimensional representations of action primitives to

recognize activities across multiple views. To adapt the action classification problem for 3D

14 | P a g e

depth maps, 3D joint descriptors [48] are also proposed. Radial distances, radial distance

surfaces, 3D joint surfaces, and the manifold learning framework are presented in this section.

2.3.1 Radial Distance Measures

Radial distances are features based on distances from a centroid to the outer contour of a

silhouette. A manifold learning framework was used for obtaining low dimensional

representations of action primitives that can be used to recognize activities across multiple views.

For each frame of an entire activity video, silhouettes were represented by binary images after

background subtraction. To efficiently describe a silhouette in some detail while maintaining

robustness to noise, radial distances were defined from the silhouette centroid to the farthest

contour at various angle increments, so that they capture the entire signature over 360 degrees.

Radial distances of a silhouette are illustrated in Figure 2-4.

Figure 2-4: An example of (left) a silhouette of a subject performing a waving action and

(right) the corresponding radial distances from the origin to the contour boundaries over

360 degrees.

Connected components are identified along with their corresponding areas, bounding box

regions, and centroids. During the training phase, the largest detected object was cropped and

15 | P a g e

processed, since it was assumed that there was only one individual conducting an activity at a

time and the largest connected component in a frame was that individual. During the testing

phase, the system did not make such assumptions and could process multiple individuals in a

single scene. By cropping the detected connected region, the region 𝐼(𝑥, 𝑦) could be processed

while preserving the characteristic of scale and localization invariance since the size and location

of the silhouette could be ignored.

Once a bounding box was established along with the centroid of the silhouette, the binary

silhouette image was converted to a contour plot. The Euclidean distance from the (𝑥, 𝑦)

centroid to the (𝑥, 𝑦) bounds of the contour over 360 degrees in increments of 5 degrees using

Equation (1) could then be determined, where 𝐼(𝑥, 𝑦) is the silhouette image, 𝜃 is the angle of

the radial distance vector between the centroid and the contour, and 𝑟 is the radial distance.

𝐼(𝑥, 𝑦) → 𝑟(𝜃)

𝑟(𝜃) = √(𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑥(𝜃)𝑐𝑜𝑛𝑡𝑜𝑢𝑟)
2 − (𝑦𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑦(𝜃)𝑐𝑜𝑛𝑡𝑜𝑢𝑟)

2

(1)

This resulted in 72 radial measures that could be used to form a 2D signal describing the

radial distance measures of a silhouettes’ contour between 0 and 360 degrees as shown in Figure

2-5b. To further preserve scale invariance the radial magnitude is normalized using Equation (2)

and is illustrated in Figure 2-5c.

𝑟′(𝜃) =
𝑟(𝜃)

max𝜃(𝑟(𝜃))
 (2)

16 | P a g e

Figure 2-5: An example of (a) a bounding box around a silhouette, (b) the corresponding

radial measure plot over 72 evenly distributed angles, and (c) the normalized signal. The

two peaks between 50 and 150 degrees represent the outline of the legs of the individuals

and the peak at 265 degrees represents the detection of the individuals head.

2.3.2 Radial Distance Surfaces

To formulate a radial distance based spatio-temporal action descriptor, time was added as an

additional parameter. The radial distance approach was applied on a single instance of time and

combined into a surface. An instance of a cropped region defined by 𝐼(𝑥, 𝑦) could be defined as

a function with a temporal parameter 𝐼(𝑥, 𝑦, 𝑡). In [26], the R-Transform of each frame of an

action was combined to form the RXS surface that described the entire activity over time. In our

process we followed a similar approach by creating a radial distance surface that could also

17 | P a g e

describe an activity over time. Equations (1) and (2) were enhanced to include time as a

parameter resulting in Equations (3) and (4).

𝐼(𝑥, 𝑦, 𝑡) → 𝑟𝑡(𝜃)

𝑟𝑡(𝜃) = √(𝑥𝑡,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑥(𝜃)𝑡,𝑐𝑜𝑛𝑡𝑜𝑢𝑟)
2
− (𝑦𝑡,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑−𝑦(𝜃)𝑡,𝑐𝑜𝑛𝑡𝑜𝑢𝑟)

2

(3)

𝑟′𝑡(𝜃) =
𝑟𝑡(𝜃)

max𝜃,𝑡(𝑟𝑡(𝜃))
 (4)

By incorporating time, the 2D signals defining an instance in time became a 3D surface

defined by radial magnitude, angle, and time as shown in Figure 2-6. As previously mentioned

an action is not executed in a fixed amount of time. The same individual bending down in one

scene might take six seconds in one trial and take ten seconds in another trial. The system must

support time invariance and this can be done by normalizing the time axis of the surface.

Figure 2-6: An example of a 3-D surface plot defining the punching action from three

different camera views from the IXMAS dataset.

18 | P a g e

Locality Preserving Projections (LPP) is a linear dimensionality reduction algorithm that

computes a lower dimensional representation of data from a high dimensional space. It is a linear

approximation of the nonlinear Laplacian Eigenmap and is discussed in Section 3.4. In our work

[13], LPP was used to evaluate radial distance surfaces on the IXMAS multi-view dataset

(Section 7.2.2). In the experimental evaluation, one manifold was used to represent all actions of

all views. This only required one transformation to reduce our large input data set using LPP.

As a result this form of multi-view training is equivalent to viewpoint independence based on

exhaustive searching as discussed by Weinland et al. [1]. The approach requires a training

dictionary with enough action representations to represent multiple views to make accurate

classification decisions.

Figure 2-7 shows the 3D embedding of high dimensional radial distance surface actions.

Ten actions were trained using manifold learning reducing 5,000 dimensions down to only three

dimensions for visual illustration. As shown in Figure 2-7, there are clear separations between

activities independently of the view in a 3D space. Point, kick, Bend down, and stand-up were

the most discriminative but the remaining actions, although clustered, do overlap with each other

using this framework.

19 | P a g e

Figure 2-7: The 3D embedding for trained activities from the IXMAS dataset. The actions

are Check Watch, Cross Arms, Scratch Head, Bend Down, Stand Up, Turn Around, Wave,

Punch, Kick, and Point.

CHECK

WATCH

CROSS

ARMS

SCRATCH

HEAD

BEND

DOWN

STAND

UP
TURN WAVE PUNCH KICK POINT

CHECK WATCH 0.80 0.20

CROSS ARMS 0.91 0.09

SCRATCH HEAD 0.92 0.08

BEND DOWN 1.00

STAND UP 1.00

TURN AROUND 0.13 0.04 0.04 0.79

WAVE 1.0

PUNCH 0.08 0.92

KICK 1.0

POINT 0.10 0.90

Table 1: Confusion matrix for 1-NN with a 92.48% average accuracy using LPP and radial

distance surfaces on the IXMAS dataset.

Table 1 shows the confusion matrix results after testing new data against the trained data

using leave one subject out cross validation. Using the 1-nearest neighbor classifier, the overall

20 | P a g e

accuracy was 92.48% with turn around being the most difficult action to classify. The accuracy

with 3 nearest neighbor and 5 nearest neighbor is 93.23% and 93.98% respectively.

Overall the results look promising with the highest recognition rates using the 5-nearest

neighbor classifier. The biggest challenge is finding a clear separation between similar activities.

For example, scratch head and wave can be confused because both actions require the act of

raising an arm towards the head and, since the viewpoint the action is being captured from is not

fixed, there is potential for confusion. The classification of the turning around action has a high

error rate because the radial distance measure is not effective in capturing useful information of

this action over time. With actions such as punching and kicking, the radial distance surface plot

indicates a significant change while the turning around surface plot is not as descriptive.

2.3.3 3D Joint Descriptor Surfaces

Radial distance features collect descriptive information for 2D images, but do not take advantage

of the information provided by the depth dimension in the 3D depth maps. For example, actions

such as a forward punch (punch towards the camera) are poorly described by the silhouette, but

are described much better with depth data. The 3D joint coordinates, that are available through

the Microsoft Kinect interface software, were selected to capture the depth dimension. The 3D

joint coordinates were calculated using the approach proposed by Shotton et al. [34], where 3D

positions of body joints are predicted from a single depth camera using randomized decision

forest classifiers for body part labeling. Specifically, mean-shift is used to classify each pixel in

an image using spatial mode distribution along with the randomized decision forests to propose

3D joint positions. The approach is invariant to pose, body shape, and clothing.

21 | P a g e

The Microsoft Research 3D Dataset (MSRAction3D) (Section 7.2.4) includes the 3D joint

data comprised of 20 coordinates of joint positions in a frame along with their corresponding

depth value and confidence level. The joint positions include the locations of hands, wrists,

elbows, shoulders, the head, the shoulder center, the spine, the hip center, the hips, the knees, the

ankles, and feet. These kinematic coordinates are captured into a feature vector after the joint

coordinates are subtracted from the center torso of the human to define relative data and account

for localization invariance. The difference between the coordinates and the torso coordinates are

then normalized to define features which are scale invariant.

Figure 2-8 shows examples of joint positions on sample frames of a subject performing a

tennis swing action. The 2D coordinates of the joints are normalized individually from the depth

values and the coordinates and the depth data are vectorized into a 1D feature vector of 60

features (20 x-values, 20 y-values, and 20 depth values).

Figure 2-8: Video depth sequences from the MSRAction3D dataset with 3D joint tracking on a

subject executing a tennis swing action.

The 3D joint descriptors only represent spatial structures of an instance of time of human

pose. Temporal structuring is necessary to capture the description of an entire action, but it is

known that actions can vary in execution time. To account for time variations we created surface

plots from the feature descriptors which capture the entire action and normalize the surface

descriptor in the time domain. This creates surface descriptors that are invariant to activity

22 | P a g e

execution time. Our approach is presented in [48] and is inspired from our earlier work in [13].

Figure 2-9 presents an example of a 3D joint tracking surface representing a tennis swing action.

Figure 2-9: The normalized 3D joint tracking surface for a tennis swing action from the

MSRActrion3D dataset.

2.3.4 Radial Distance Surfaces and 3D Joint Surface Descriptor Evaluation

In [48], an evaluation was made using radial distance surfaces, 3D joint surfaces, and a combined

larger representation of both descriptors as one representation. LPP was used as the manifold

learning method with a nearest neighbor classifier on the MSRAction3D dataset consisting of

depth map sequences. There are ten subjects of varying shapes and sizes performing twenty

actions two to three times at various speeds. The dataset actions are listed in Table 2 which is

organized in the same experimental setup as [36]. The 20 actions were divided into three subsets

consisting of 8 actions each. Additionally, we also tested against the entire set of activities

(subset 4). The subsets 1 and 2 were designed to group activities with similar movements while

the third subset was designed to group actions that are more likely to be error prone due to their

similarities. In our experiments, we considered cross validation through random selection and

training and testing with half of the data samples as well as leave one subject out training.

0
20

40
60

0

20

40
0

0.5

1

of FeaturesTime

M
a
g
n
it
u
d
e

23 | P a g e

Subset 1 Subset 2 Subset 3 Subset 4

Hor. Arm Wave

Hammer

Forward Punch

High Throw

Hand Clap

Bend

Tennis Serve

Pickup & Throw

High Arm Wave

Hand Catch

Draw X

Draw Tick

Draw Circle

Two Hand Wave

Forward Kick

Side Boxing

High Throw

Forward Kick

Side Kick

Jogging

Tennis Swing

Tennis Serve

Golf Swing

Pickup &

Throw

All Actions

Table 2: The MSRAction3D action subsets used for action classification experiments.

Radial

Distance

3D Joint

Tracking

Radial Distance &

3D Joint Tracking

 Cross Validation

Subset 1 78.31% 84.34% 87.95%

Subset 2 74.47% 77.66% 78.72%

Subset 3 91.58% 98.95% 98.95%

Subset 4 65.09% 73.71% 73.28%

 Leave One Subject Out

Subset 1 89.01% 77.65% 92.34%

Subset 2 73.73% 74.45% 80.01%

Subset 3 85.05% 91.70% 92.98%

Subset 4 67.00% 76.14% 76.49%

Table 3: Action classification accuracy on the MSRAction3D dataset. Cross validation and

leave one subject out testing were used with radial distance measures, 3D joint tracking, and a

combined descriptor.

As presented in Table 3, the combination of radial distance surfaces with 3D joint tracking

meets or exceeds the classification accuracy of either radial distances or 3D joint tracking

independently. In subset 1 where actions were grouped because of their similarities, we achieve

92.34% accuracy using leave one subject out which indicates that the approach is strongly

invariant to individual size, shape, location in a scene, and action execution time which is what

our approach was intended to address. Furthermore, our approach performs extremely well on

24 | P a g e

subset 3 which was intended to evaluate similar activities. This demonstrates that manifold

learning on descriptor surfaces are strong in classifying similar activities and are therefore highly

discriminative.

Through cross validation the most problematic action to classify for 3D joint tracking was

draw X which frequently got confused with horizontal arm wave. For radial distances forward

punch was frequently confused with horizontal arm wave which is understandable since the

radial distances are similar between these depth related actions. The combined descriptor faces

challenges distinguishing between hammer and tennis serve as well as between draw X and

horizontal arm wave. When our training set became larger using the leave one subject out

approach the most challenging action to classify was draw tick which frequently got confused

with hammer and forward punch.

2.4 Motion Images as Action Descriptors

The next contribution is the formulation of spatio-temporal motion surfaces that can be adapted

for multi-view and 3D action classification applications. To avoid the complexity involved with

body part labeling and tracking, motion images are utilized as temporal templates. The

advantages of motion images include simple representations that provide good performance,

ability to represent the direction of motion in a scene, and ability to identify where motion exists

in a scene. Motion images are extended to represent 3D motion for 3D action classification.

These feature representations can be defined into a spatio-temporal descriptor through surfaces

similar to radial distance surfaces. This section presents motion images, motion history surfaces,

and motion depth surfaces.

25 | P a g e

2.4.1 Motion Energy Images and Motion History Images

Motion history images are the primary spatial parametric features used in this dissertation for

action classification systems. Proposed by Davis and Bobick [49], Motion History Images

(MHI’s) are temporal templates that are capable of describing where motion exists in a scene and

how the motion is evolving over time. The MHI features are based on Motion Energy Images

(MEI’s) which offer a binary representation of where motion occurs in a scene. It is an indicator

of motion over time. Given a video frame 𝐼(𝑥, 𝑦, 𝑡), calculate a binary image 𝐷(𝑥, 𝑦, 𝑡) as the

difference image between 𝐼(𝑥, 𝑦, 𝑡) and 𝐼(𝑥, 𝑦, 𝑡 ± ∆) where ∆ is a time offset. The binary MEI

𝐸𝜏(𝑥, 𝑦, 𝑡) is defined as:

𝐸𝜏(𝑥, 𝑦, 𝑡) =⋃𝐷

𝜏−1

𝑖=0

(𝑥, 𝑦, 𝑡 − 𝑖) (5)

where τ is the temporal extent of the action. This equation captures motion across τ. An example

of MEI’s is shown in the second row of Figure 2-10.

MHI’s capture how motion changes over time in addition to where motion changes over

time. The MHI descriptor 𝐻𝜏(𝑥, 𝑦, 𝑡)is defined as:

𝐻𝜏(𝑥, 𝑦, 𝑡) = {
𝜏𝑖𝑓𝜓(𝑥, 𝑦, 𝑡) = 1

max(0, 𝐻𝜏(𝑥, 𝑦, 𝑡 − 1) − 𝛼)𝑜. 𝑤.
 (6)

where 𝜏 describes the initial motion response, the decay operator is regulated by 𝛼, and 𝜓(𝑥, 𝑦, 𝑡)

is an update function. There are many variants of update functions [8] including background

subtraction, image differencing, and optical flow. Sample motion history images in Figure 2-10

are shown using a background subtraction update function. The MHI shows more recent motion

appearing brighter than older motion. A main advantage of MHI is that the results represent the

direction of motion.

26 | P a g e

Figure 2-10: A subject from the i3DPost Multi-View dataset walking across a scene and

then sitting. The second row shows the corresponding Motion Energy Images and the

third row shows the corresponding Motion History Images with 𝝉 = 𝟕.

2.4.2 Motion History Surfaces

The MHI descriptor is useful in identifying spatial and temporal structuring of actions, however,

the MHI representations in their current form do not easily allow for comparisons between

various actions. Actions vary in terms of the time of execution making it difficult to formulate

an action classification method. Furthermore, human subjects executing such actions can vary in

size and their style in performing actions. It is desired to formulate an action template as one

large representation of an action of a fixed size that can be invariant to scale, position in a scene,

and action execution time.

To do so, spatio-temporal action surfaces are composed from MHI primitives that can

account for these factors. Regions of interest (ROI) of a scene are identified where the motion

occurs eliminating the issue of localization. To preserve invariance to human sizes each ROI is

27 | P a g e

resized using bicubic interpolation. Figure 2-11 demonstrates an example frame of a subject

walking and the resulting fixed size representation of that frame.

Figure 2-11: An instance of time of an i3DPost multi-view scene of an individual walking in

MHI form. The top row shows the original frame. The second row shows the bounding

boxes around the region of interest. The bottom row shows a fixed size representation of

that same subject.

These fixed size action primitives offer spatial representations but do not identify any

temporal structuring beyond the MHI representation of each action primitive at one instance of

time. To formulate spatio-temporal action templates, we collect entire action sequences and

concatenate the MHI descriptors to form motion history surfaces. In this formulation, the motion

history surfaces become spatio-temporal action templates. These surfaces are normalized using

Equation (7) to encourage minimum scale variations while preserving relative frame information.

Action surfaces can vary due to the execution time of an action by an individual. To account for

time invariance, these surfaces are resized using bicubic interpolation. Azary and Savakis

propose motion history surfaces in [50] for multi-view action classification systems. Radial

distance surfaces combined with skeletal tracking are considered for 3D action classification

28 | P a g e

systems in [48]. Spatio-temporal action surfaces for an individual walking across multiple views

are shown in Figure 2-12.

𝐻𝜏′ =
𝐻𝜏

𝑚𝑎𝑥𝑥,𝑦,𝑡(𝐻𝜏)
 (7)

Figure 2-12: Spatio-temporal motion history surfaces for eight views of an individual

walking from the i3DPost dataset.

29 | P a g e

2.4.3 Motion Depth Surfaces

For 3D video sequences, we use Motion Depth Surfaces (MDS’s) by incorporating the additional

dimension of depth. Assuming 𝐼(𝑥, 𝑦, 𝑡) represents a depth value at pixel (𝑥, 𝑦) for time 𝑡, we

define a motion depth image (MDI) as follows:

𝑀𝐷𝐼𝜏(𝑥, 𝑦, 𝑡) = {
𝐼(𝑥, 𝑦)𝑖𝑓𝐷(𝑥, 𝑦, 𝑡) = 1

max(0,𝑀𝐷𝐼𝜏(𝑥, 𝑦, 𝑡 − 1) − 𝛼)
 (8)

This formulation permits us to capture motion activity in the depth direction as well as

within a frame. We concatenate each MDI to create a motion depth surface (MDS) that

represents spatio-temporal motion with built-in depth motion. As was done with MHS, these

surfaces were scaled to a fixed size to account for variations in the timing of actions and to

ensure that the number of dimensions of each action descriptor remains consistent and its size is

manageable.

Examples of subjects executing a horizontal arm wave and a forward punch from the

MSRAction3D dataset shows how the direction of depth is incorporated into the MDS descriptor

as shown in Figure 2-13. Similarly, Figure 2-14 shows a comparison of an MHS and an MDS

description of the ASL gesture for Green from the MSRGesture3D dataset.

Horizontal Arm Wave

30 | P a g e

Forward Punch

Figure 2-13: A comparison of MHI (top rows) with MDI (bottom rows) for subjects

performing a horizontal arm wave action and a forward punch from the MSRAction3D

dataset.

a)

b)

Figure 2-14: (a) Sample frames of the ASL sign for Green from the MSRGesture3D

dataset. The top row frames show MHI’s and the bottom row frames show MDI’s. (b) The

corresponding MHS and MDS.

31 | P a g e

3 Dimensionality Reduction Methodologies

The high dimensional data that represent an action or a face can become overwhelming when

dealing with a large number of data samples. A common challenge for real-world classification

and recognition systems is the computational performance associated with processing high-

dimensional data. Subspace learning dimensionality reduction addresses the issue of high

dimensional data by finding an efficient low-dimensional representation. The following sections

focus on dimensionality reduction methods including principal component analysis (PCA),

metric multidimensional scaling (MDS), local linear embedding (LLE), and linear extensions of

graph embedding (LGE).

3.1 Principal Component Analysis

Principle Component Analysis (PCA) is a widely used methodology for reducing the dimensions

of complex and/or noisy data sets to extract relevant information that can be beneficial in

describing the data. It is a linear technique that projects data along the directions of maximal

variance. PCA has been employed for action classification systems in several works including

[51] and [52]. In this section, PCA is overviewed, including its benefits and limitations, as

outlined in [53] and [54]. For data sets with large number of samples n the information can be

computationally expensive to process. PCA aims to reduce noise and redundancy while

preserving the global structure of the high dimensional data [55] by preserving the maximal

variance. Given 𝑛-samples of data 𝑿, each of 𝑚-dimensions, PCA provides a way to calculate

a lower dimensional representation 𝒀 of the higher dimensional data through a transformation

𝒀′ = 𝑷′𝑿. To solve for this transformation, PCA calculates a square covariance matrix. PCA

solves for the principal components of all samples by calculating the eigenvectors of the

32 | P a g e

covariance matrix to identify principal components of maximal variance. An alternative

approach to finding the eigenvectors involves Singular Value Decomposition (SVD).

PCA is a linear method for extracting linear features based on maximal variance. When the

data set is a representation of non-linear features, the principal components may not be effective

in simplifying the data set successfully. For an illustrative example, four 3D shapes are

presented in Figure 3-1. The first row shows the original 3D representations: swiss roll,

Gaussian, twin peaks, and intersect. The colors identify classes associated with each sample.

The 2D representations after applying principal component analysis are shown in the second

row. PCA performs well in representing the swiss roll and Gaussian surfaces, but the other more

complex shapes do not show a consistent pattern of within class clustering.

Figure 3-1: PCA dimensionality reduction examples including the swiss roll, Gaussian, twin

peak, and intersection.

33 | P a g e

Given 𝑛 as the number of data samples and 𝑝 as the number of classes, the covariance matrix

computation of PCA has a time complexity of 𝑂(𝑝2𝑛). The eigenvalue decomposition has a

time complexity of 𝑂(𝑝3). Therefore, PCA has a time complexity of 𝑂(𝑝2𝑛 + 𝑝3) [56].

3.2 Metric Multidimensional Scaling

Metric Multidimensional Scaling (MDS) is a linear technique for dimensionality reduction based

on proximity data analysis. MDS attempts to define a distance measure between data in the high

dimensional space that would be preserved in a lower dimensional space and is a good identifier

of clustering patterns. MDS has been used for a wide variety of applications including stock

market analysis [57], wireless sensor network localizations [58], and protein binding predictions

[59].

Given a data set 𝑿 = {𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏} for which each element in the data set resides in a high

dimensional space 𝐵 such that 𝑿𝑖 ∈ ℝ𝐵, MDS will solve for a lower dimensional representation

set 𝒀 = {𝒀1, 𝒀2, … , 𝒀𝑛} in space 𝑏 such that 𝒀𝑖 ∈ ℝ𝑏 and 𝑏 ≪ 𝐵. This mapping is approximated

by the distances between samples following ‖𝑿𝑖 − 𝑿𝑗‖ [60]. A square dissimilarity matrix is

created which measures the distance between each pair of elements in the high dimensional

space as demonstrated in Equation (9) with 𝐷𝑖𝑖 = 0 and 𝐷𝑖𝑗 > 0.

𝑫 = [

𝐷11 ⋯ 𝐷1𝑗
⋮ ⋱ ⋮
𝐷𝑖1 ⋯ 𝐷𝑖𝑗

] (9)

The Minkowski distance metric [61] shown in Equation (10) is a general distance measure

between elements where n is the number of data samples. This equation is transformed to the

City-Block metric [62] and the Euclidean distance metric when 𝑟 = 1 and 𝑟 = 2 respectively.

34 | P a g e

Such distance measures can be used as proximity measures in the high dimensional space

depending on the application.

𝐷𝑖𝑗 = [∑|𝑿𝑖𝑘 − 𝑿𝑗𝑘|
𝑟

𝑛

𝑘=1

]

1
𝑟

 (10)

Given the dissimilarity matrix 𝑫, the MDS problem becomes a minimization problem for

which we desire a transformation that will minimize the error of the distances in a lower

dimensional space. To do this we use the following stress function as a least squares criterion.

The stress function 𝑆𝐷(𝑿1, 𝑿2, … , 𝑿𝑛) in Equation (11) measures the deviation between the

distance 𝐷𝑖𝑗 and the target distance ‖𝑿𝑖 − 𝑿𝑗‖.

𝑆𝐷(𝑿1, 𝑿2, … , 𝑿𝑛) = √∑∑(𝐷𝑖𝑗 − ‖𝑿𝑖 −𝑿𝑗‖)
2

𝑛

𝑗=1

𝑛

𝑖=1

 (11)

Equation (12) shows the minimization function that minimizes the stress over all points

while finding the transformation that will reduce the number of dimension from 𝐵 to 𝑏 such that

𝑏 ≪ 𝐵 [63].

min
𝑌

∑∑(‖𝑿𝑖 − 𝑿𝑗‖
2
− ‖𝒀𝑖 − 𝒀𝑗‖

2
)
2

𝑛

𝑗=1

𝑛

𝑖=1

min
𝑌

∑∑(𝐷𝑖𝑗
𝑋 − 𝐷𝑖𝑗

𝑌)
2

𝑛

𝑗=1

𝑛

𝑖=1

(12)

The method of minimization with metric multidimensional scaling is an eigenvalue problem.

The distance matrix 𝑫𝑋 is converted to a matrix of inner products 𝑿′𝑿 which reduces Equation

(12) to Equation (13).

min
𝑌

∑∑(𝑿𝑖
′𝑿𝑗 − 𝒀𝑖′𝒀𝑗)

2
𝑛

𝑗=1

𝑛

𝑖=1

 (13)

35 | P a g e

The eigenvectors 𝑽 of 𝑿′𝑿 are used to solve for the top 𝑚 eigenvalues, 𝝀. The coordinates

are transformed from high dimensional space 𝐵 with 𝑿𝑖 ∈ ℝ𝐵 to lower dimensional space 𝑏 with

𝒀𝑖 ∈ ℝ𝑏 following Equation (14). Figure 3-2 shows the 2D representations of 3D shapes that

were reduced through MDS using a Euclidean distance metric (𝑟 = 2).

𝒀 = 𝝀1/2𝑽′ (14)

Figure 3-2: MDS dimensionality reduction examples including the swiss roll, Gaussian,

twin peak, and intersection.

The lower dimensional representation of the training data only represents the original high

dimensional training data and it is unclear how to map new testing data samples. For this reason,

MDS is ideal for proximity and cluster analysis, but is not ideal for systems requiring the

classification of new data samples. The computational complexity of MDS is 𝑂(𝑛3) [64].

3.3 Locally Linear Embedding

Locally Linear Embedding (LLE) is an unsupervised eigenvector method for dimensionality

reduction that preserves the embedding of high dimensional data through maximal

discrimination in the lower dimensional space. The result is a preservation of the underlying

36 | P a g e

structure of the manifold. LLE has been used for a wide variety of applications including the

mapping of DNA gene expressions [65] and super resolution [66].

Given a data set 𝑿 = {𝑿1, 𝑿2, … , 𝑿𝑛} for which each element in the data set resides in a high

dimensional space 𝐷 such that 𝑿𝑖 ∈ ℝ𝐷, LLE maps 𝑿 to a lower dimensional representation

new data set 𝒀 = {𝒀1, 𝒀2, … , 𝒀𝑛} for which each element in 𝒀 resides in a lower dimensional

space 𝑑 such that 𝒀𝑖 ∈ ℝ𝑑 and 𝑑 ≪ 𝐷. LLE uses multiple stages for this mapping. First, it

computes the nearest neighbors of each data point 𝑿𝑖. Then, it constructs a weight matrix 𝑾𝑖𝑗

between all data points 𝑿𝑖 that represent the local linear geometry. Weights are assigned a value

of zero for the pairs that are not considered nearest neighbors. Nearest neighbor weights are

computed in a manner that can best reconstruct each data point from its neighbors in the lower

dimensional space. This is accomplished by establishing measurement of reconstruction errors

based on the cost function of Equation (15). This cost function identifies how well each 𝑿𝑖 can

be linearly constructed from its nearest neighbors 𝑿𝑁(1)…𝑿𝑁(𝑘) [67].

𝜀(𝑊) =∑|𝑿𝑖 −∑𝑾𝑗
(𝑖)𝑿𝑁(𝑗)

𝑘

𝑗=1

|

2
𝑛

𝑖=1

 (15)

This cost function is designed to ensure invariance to rotation and scale [68]. The constraint

∑ 𝑾𝑗
(𝑖)𝑘

𝑗=1 = 1 ensures the sum of the weights between 𝑿𝑖 and all selected neighbors will sum to

1 and be invariant to translation. The cost function can then be treated as a constrained least

squares problem to solve for the optimal weights. These weights represent the local linear

geometry of the patches since they were determined by assigning weights of the nearest

neighbors of 𝑿𝑖. Given the optimal weights, the final step of the LLE algorithm is to compute

the lower dimensional neighborhood-preserving mapping 𝒀 based on the selected weights using

the following cost function.

37 | P a g e

Φ(𝑌) =∑|𝒀𝑖 −∑𝑊𝑗
(𝑖)𝒀𝑁(𝑗)

𝑘

𝑗=1

|

2
𝑛

𝑖=1

 (16)

Constraining ∑ 𝒀𝑖 = 0𝑖 and 1 𝑁⁄ ∑ 𝒀𝑖′𝒀𝑖 = 𝐼𝑖 results in the following cost function.

Φ(𝑌) =∑|(𝑰 −𝑾)𝒀𝑖|
2 = 𝑡𝑟(𝒀′𝑴𝒀)

𝑛

𝑖=1

 (17)

where 𝑴 ∈ 𝑅𝑁×𝑁 and 𝑴 = (𝑰 −𝑾)′(𝑰 −𝑾). The final step of LLE is to compute the bottom

non-zero eigenvalues of matrix 𝑴.

Similar to MDS, the lower dimensional representation of the training data only represents

the original high dimensional training data and it is unclear how to map new testing data

samples. For this reason, LLE is ideal for preserving the embedding of high dimensional data

through maximal discrimination and analyzing clustering patterns, but not ideal as a method for

learning and classifying new test data. Figure 3-3 illustrates the 2D mappings of 3D shapes.

Notice how the shapes are clustered in patches. The time complexity of LLE is a sum of

searching the nearest neighbors 𝑂(𝐷𝑛3), computing the reconstruction weights 𝑂(𝐷𝑛𝑘3), and

computing the eigenvalues 𝑂(𝑘𝐷𝑛3) [69], where 𝑛 is the number of data samples, 𝐷 is the

number of dimensions in the high dimensional space, and 𝑘 is the number of nearest neighbors.

38 | P a g e

Figure 3-3: LLE dimensionality reduction examples including the swiss roll, Gaussian, twin

peak, and intersection.

3.4 Linear Extensions of Graph Embedding

Linear Extensions of Graph Embedding (LGE) methods are eigen-based linearized techniques to

solve linear approximations of non-linear systems through dimensionality reduction. They

include linear discriminant analysis (LDA) [70], locality preserving projections (LPP) [71], and

neighborhood preserving embedding (NPE) [72]. Manifold learning by Locality Preserving

Projections (LPP) preserves local neighborhood information and was first reported for action

classification systems in the work of Wang and Suter [73]. Linear Discriminant Analysis (LDA)

was applied to action classification in [74].

The LGE family of linear dimensionality reduction algorithms computes a lower

dimensional representation of data from a high dimensional space, while preserving the local

structure of the input data [55]. LGE solves transformations from a high dimensional space to a

lower dimensional space which preserve local neighborhood information. LPP is a linear

approximation of the nonlinear Laplacian Eigenmap [71] [75] and a generalization of LDA. An

39 | P a g e

action represented in a lower dimensional space is spatially close to other actions in the same

manner as in the higher dimensional space.

Nonlinear methods such as LLE, Isomap, and Laplacian Eigenmaps reveal the relationship

of training data samples along a manifold by learning the global structure of such manifolds and

finding mutual relationships among the training data samples [76]. However, since these

methods model data with nonlinear approaches, the lower dimensional representation of the

training data only represents the original high dimensional training data and it is unclear how to

map new testing data samples, as explained by He and Niyogi [71]. LGE methods are linear

algorithms and can map new test data making these algorithms more effective and faster than the

previously mentioned techniques [71] [76].

Suppose we are given a set of training data with 𝑛 points such as 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑛} in

space ℝ𝐷 where ℝ𝐷 is the high-dimensional space of the original data set of 𝐷 dimensions. The

objective is to find a transformation matrix 𝑨 that can map 𝒙𝑖 to 𝒚𝑖 with {𝒚1, … , 𝒚𝑛} in space ℝ𝑑

for which 𝑑 ≪ 𝐷, as shown in Equation (18), while preserving local neighborhood information.

The representation 𝒚𝑖 of data in 𝑑-dimensional space is obtained by a transformation of higher

dimensional data 𝒙𝑖 in 𝐷 dimensional space. LGE solves for this transformation through a graph

embedding framework.

𝒚′𝒊 = 𝑨′𝒙𝒊

𝑨 ∈ ℝ𝐷×𝑑

(18)

The first step of the LGE algorithm is to form the adjacency graph between nodes. Given 𝑮

as a graph with 𝑛 nodes, an edge is assigned between nodes 𝑖 and 𝑗 if 𝒙𝑖 and 𝒙𝑗 are close to each

other. Two variations of determining the closeness between nodes are the k-nearest neighbor and

40 | P a g e

ε-ball [77]. The k-nearest neighbor approach is to select the k closest points to 𝒙𝑖. The ε-ball

approach is to find points that satisfy Equation (19) given a parameter ε.

‖𝒙𝒊 − 𝒙𝒋‖
2
< 𝜀 (19)

Given the adjacency graph 𝑮 weights are assigned to detected edges on a separate weight

matrix 𝑾 = (𝑤𝑖𝑗)𝑛×𝑛. For unconnected nodes, a weight of zero is assigned while for connected

nodes, weights can be determined using two variations. The first is the Simple-Minded approach

for which a weight is automatically assigned a unitary value if two nodes are connected as shown

in Equation (20).

𝑤𝑖𝑗 = {
1𝑖𝑓𝒙𝑖𝑎𝑛𝑑𝒙𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑡𝑜𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑐𝑙𝑎𝑠𝑠

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20)

The second variation is based on similar, but distinguishable weight matrices that are

specific to LDA, LPP, and NPE as discussed by Cai et al. [78]. For example, the LDA weight

matrix is defined by Equation (21) where 𝑛 is the number of samples associated with classes 𝒙𝑖

and 𝒙𝑗. By doing so, LDA accounts for within-class scattering.

𝑤𝑖𝑗 = {
1/𝑛𝑖𝑓𝒙𝒊𝑎𝑛𝑑𝒙𝒋𝑏𝑒𝑙𝑜𝑛𝑔𝑡𝑜𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑐𝑙𝑎𝑠𝑠

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21)

LPP utilizes the heat kernel approach as shown in Equation (22) for which a weight can be

calculated given a parameter of t [71] [75]. This weight matrix allows for linear projective

mappings which preserve the neighborhood structure of a data set. The equation comes from the

studies of heat dispersion of solids and liquids.

𝑤𝑖𝑗 = 𝑒
‖𝒙𝒊−𝒙𝒋‖

2

𝑡
(22)

NPE conststructs a weight matrix based on k-nearest neighbors. The weight matrix is

estimated by finding weights that minimize the residual sum of squares for reconstructing each

41 | P a g e

𝒙𝑖 from its 𝑘 nearest within-class neighbors given the objective function and constraint of

Equation (23) [72].

argmin
𝑤𝑖𝑗

∑‖𝒙𝒊 −∑𝑤𝑖𝑗𝒙𝒋
𝑗

‖

𝑖

2

subject to ∑ 𝑤𝑖𝑗 = 1𝑗 ,𝑗 = 1,2, … , 𝑘

𝑘 = #𝑜𝑓𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

(23)

Given the weight matrix, the diagonal degree matrix D whose elements are the sums of the

columns of 𝑾 is solved in Equation (24). The diagonal degree matrix is a diagonal matrix where

each diagonal value identifies how many edges each vertex has. This means that higher values

of 𝑫𝑖𝑖 are more connected to other vertices and therefore more significant.

𝑫𝑖𝑖 =∑ 𝑤𝑖𝑗
𝑗

 (24)

The Laplacian Matrix 𝑳 is also solved by subtracting the adjacency weight matrix from the

diagonal degree matrix as shown in Equation (25).

𝑳 = 𝑫 −𝑾 (25)

An objective function used to solve for the optimal map 𝒚 from the graph is defined in

Equation (26). This objective function preserves local neighborhood structuring by ensuring that

if 𝑖 and 𝑗 are close, than 𝒚𝑖 and 𝒚𝑗 are also close.

argmin
𝑨

∑(𝒚′𝒊 − 𝒚′𝒋)
2

𝑖𝑗

𝑤𝑖𝑗 (26)

Given the linear relationship 𝒚′𝒊 = 𝑨′𝒙𝒊, the objective function is reduced to that of

Equation (27) through algebraic formulation.

1

2
∑(𝒚′𝒊 − 𝒚′𝒋)

2

𝑖𝑗

𝑤𝑖𝑗 =
1

2
∑(𝑨′𝒙𝑖 − 𝑨′𝒙𝑗)

2

𝑖𝑗

𝑤𝑖𝑗 (27)

42 | P a g e

𝒀′(𝑫 −𝑾)𝒀 = 𝑨′𝑿(𝑫 −𝑾)𝑿′𝑨

𝒀′𝑳𝒀 = 𝑨′𝑿𝑳𝑿′𝑨

The objective functions are transformed into the minimization problems of Equation (28).

Constraining 𝒀′𝑫𝒀 = 1 and 𝑨′𝑿𝑫𝑿′𝑨 = 1 removes arbitrary scaling, promotes a unique

solution, and reduced the minimization problems to:

min
𝒀

𝒀′𝑳𝒀

𝒀′𝑫𝒀
→ min

𝒀
𝒀′𝑫𝒀=𝟏

𝒀′𝑳𝒀

min
𝑨

𝑨′𝑿𝑳𝑿′𝑨

𝑨′𝑿𝑫𝑿′𝑨
→ min

𝑨
𝑨′𝑿𝑫𝑿′𝑨=1

𝑨′𝑿𝑳𝑿′𝑨

(28)

The final stage of the LGE algorithm is to form the Eigenmaps. This is done by solving for

the eigenvectors and eigenvalues in Equation (28). For min
𝒀

𝒀′𝑳𝒀, 𝒀 is a column of vectors

which are the solutions of the equation ordered according to their eigenvalues λ0<λ1<…<λl-1.

The optimal 𝒀 is given by the minimum eigenvalue solution to the generalized eigenvalue

problem in Equation (29).

𝑳𝒀 = 𝝀𝑫𝒀 (29)

Similarly, 𝑨 is a column of vectors which are the solutions of the equation ordered according to

their eigenvalues λ0<λ1<…<λl-1 [71]. The optimal 𝑨 is given by the minimum eigenvalue

solution to the following generalized eigenvalue problem in Equation (30).

𝑿𝑳𝑿′𝑨 = 𝝀𝑿𝑫𝑿′𝑨 (30)

Note that these are two separate generalized eigenvalue problems for which the eigenvalues

are not the same. The optimal transformation matrix 𝑨 is then used to map high dimensional

data into a lower dimensional space following the linear relationship 𝒚′𝒊 = 𝑨′𝒙𝒊. Figure 3-4

43 | P a g e

demonstrates improvements over PCA for the previous clustering example and illustrates how

LGE methods preserve neighborhood information.

Figure 3-4: LDA, LPP, and NPE dimensionality reduction examples including the swiss

roll, Gaussian, twin peak, and intersection.

All 2D embeddings show a preservation of neighborhood classes as their corresponding 3D

shapes. LDA, LPP, and NPE mappings vary based on the constructed weight matrix and NPE is

not as effective as LDA or LPP for class separation and clustering for the swiss roll and intersect

surfaces. This is because NPE relies on a weight matrix based on k-nearest neighbors and the

weight matrix cannot account for the intersection of multiple classes. LGE has a cubic

44 | P a g e

complexity of order 𝑂 (
3

2
𝑛2𝐷 +

9

2
𝑛3) where 𝑛 is the number of data samples and 𝐷 is the

number of dimensions for each feature, where 𝐷 > 𝑛 [78].

45 | P a g e

4 Grassmann Learning

Another approach for deriving meaningful information from high dimensional data is to find

low-dimensional representations through linear subspaces using Riemann and Grassmann

manifolds. A manifold is a topological space embedded in a high dimensional Euclidean space

ℝ𝐷, such that each manifold point has a neighborhood homeomorphic to a Euclidean space of

dimension 𝑚 < 𝐷 [79]. A Riemannian manifold 𝑅(𝑀, 𝑔), is a differentiable manifold 𝑀 with a

smoothly varying inner product 𝑔 on a tangent space at each point, 𝑝. Each point on a

Riemannian manifold is essentially a vector space composed of tangent vectors of all possible

curves passing through each point 𝑝 [80]. This property makes a Riemannian manifold a

naturally smooth and curved surface where geodesic metrics can be applied. Riemannian

manifolds are an alternative over traditional manifolds where high dimensional feature

representations do not typically lie on a Euclidean space. Harandi et al. [81] demonstrated

improvements in discrimination accuracy by embedding data onto Riemannian manifolds and

applying LPP on Riemannian pseudo kernels for the applications of gesture recognition, person

re-identification, and texture classification.

Grassmann manifolds 𝐺(𝑚,𝐷), a subset of Riemannian manifolds, are manifolds where

distances between subspaces can be measured by principal angles. They are the set of 𝑚-

dimensional linear subspaces of 𝑅𝐷 [82]. Grassmann manifolds offer a computation advantage

by allowing subspaces to be represented as individual points, they promote high class

discrimination by their geometrical structuring, and they account for missing data through

subspace spanning. Shigenaka et al. [83] present the Grassmann Distance Mutual Subspace

Method (GD-MSM) and Grassmann Kernel Support Vector Machines (GK-SVM) for improved

face recognition in comparison to MSM and SVM alone. Park and Savvides [84] adopted

46 | P a g e

Grassmann kernels into Kernel Principal Component Analysis (KPCA) for face recognition.

Turaga et al. [85] embedded representations on Grassmann manifolds and used probability

density functions to estimate classes on noisy data with applications on face recognition, shape

matching, shape retrieval, and multi-view systems. Hamm and Lee [82] proposed Grassmann

kernelized linear discriminant analysis (GDA) for face recognition and object categorization.

Similarly, Harandi et al. [79] proposed a Grassmann based graph embedding framework for

action analysis.

4.1 Grassmann Framework

Given 𝑛 training samples in 𝑪 ∈ ℝ𝐷, solve for 𝑚 unit vector representations of each class where

𝑚 is the number of samples of each class. Unit vector representations are determined through

singular value decomposition (SVD), such that:

𝑪𝐷×𝑚 = 𝑼𝐷×𝐷𝑺𝐷×𝑚𝑽
′
𝑚×𝑚

𝑼′𝑼 = 𝑰, 𝑽′𝑽 = 𝑰

(31)

where 𝑼𝐷×𝐷 is an orthogonal matrix whose columns are the eigenvectors of 𝑪𝑪′ and 𝑽𝑚×𝑚 is the

transpose of an orthogonal matrix whose columns are the eigenvectors of 𝑪′𝑪. The diagonal

matrix 𝑺𝐷×𝑚 contains the singular values in descending order. With the orthogonal matrix 𝑼𝐷×𝐷

define a unit vector 𝒖1×𝐷 representation of each sample with an imposed orthogonal constraint.

The unit vectors of each 𝑘-class are grouped into an orthonormal matrix 𝒀𝐷×𝑚. The span of the

orthonormal matrix 𝒀𝐷×𝑚 represents a subspace of a class on a Grassmann manifold. If the

columns of 𝒀 span a vector 𝒖, then 𝒖 can be classified to that subspace. The distances between

47 | P a g e

subspaces can be measured by their principal angles. A visual overview of the Grassmann

framework is shown in Figure 4-1.

Figure 4-1: This figure demonstrates the mapping of three classes from a Euclidean space

onto a Grassmann manifold. The span of the orthonormal matrix 𝒀 represents a subspace

as a single point on a Grassmann manifold. The geodesic distance between subspaces,

𝒅(𝒀𝒊, 𝒀𝒋) = ∑ 𝜽𝒊
𝟐𝒎

𝒊=𝟏 , is a function of principal angles.

There are many benefits to using Grassmann manifolds. The span of orthonormal matrices

embedded as single points promotes high between-class discrimination and promotes within-

class clustering. It also allows for directly comparing two subspaces, which is computationally

cheaper than measuring all distances between individual elements [82]. Embedding points on a

Grassmann manifold has a complexity of 𝑂(𝐷𝑚2) where 𝐷 is the number of dimensions and 𝑚

48 | P a g e

is the number of subspaces [86]. Additionally, Grassmann manifolds fill in missing information

through linear spans of subspaces.

For an illustrative example, Figure 4-2 shows original 3D shapes and their corresponding

orthogonal embedding where each class is plotted separately. The classes in each example are

clustered and are separable by their principal angles from other classes, and capable of being

compared to other subspaces by geodesic metrics. In all examples, classes are clustered into

planes that cross through the origin at different angles. The amount of separation is identifiable

by the difference of principal angles between classes.

Figure 4-2: The transformation of data from a 3D Euclidean space to their orthogonal

embedding. Each class clusters into planes that cross through the origin and classes are

separated from each other based on their principal angles.

4.2 Grassmannian Metrics

Given the span of two subspaces 𝒀𝟏 and 𝒀𝟐, a similarity measure between them is a measure

based on principal angles 𝜽 = [𝜃1, … , 𝜃𝑚]. The principal angle between two orthonormal

matrices is determined by:

49 | P a g e

𝑐𝑜𝑠𝜃𝑏 = max
𝒖𝑏∈𝑠𝑝𝑎𝑛(𝒀1)

𝒗𝑏∈𝑠𝑝𝑎𝑛(𝑌2)

(𝒖𝑏
′ 𝒗𝑏)

𝑠. 𝑡.𝒖𝑏
′ 𝒖𝑏 = 1, 𝒗𝑏

′ 𝒗𝑏 = 1

𝒖𝑏
′ 𝒖𝑖 = 0,𝒗𝑏

′ 𝒗𝑖 = 0

(𝑖 = 1,… , 𝑏 − 1)

(32)

This is equivalent to solving for the principal angles using SVD such that:

𝒀𝟏′𝒀𝟐 = 𝑼𝑺𝑽′

𝑑𝑖𝑎𝑔(𝑺) = (𝑐𝑜𝑠𝜃1, … , 𝑐𝑜𝑠𝜃𝑚)

(33)

Shigenaka et al. [83] and Hamm and Lee [82] define similarity metrics based on principal

angles as shown in Equations (34) through (39). Each similarity measure has their benefits and

drawbacks. For example, any measure based on all principal angles will balance class

discrimination and robustness to noise. Measures based on the smallest principal angle 𝜃1 tend

to be more robust to noise and less discriminative. Measures based on the largest principal angle

𝜃𝑚 tend to be discriminative and less robust to noise.

Projection: 𝑑(𝒀𝑖, 𝒀𝑗) = (𝑚 − ∑ 𝑐𝑜𝑠2𝜃𝑖
𝑚
𝑖=1)1/2 (34)

Binet-Cauchy: 𝑑(𝒀𝑖 , 𝒀𝑗) = (1 − ∏ 𝑐𝑜𝑠2𝜃𝑖𝑖)1/2 (35)

Max Correlation: 𝑑(𝒀𝑖 , 𝒀𝑗) = (1 − 𝑐𝑜𝑠2𝜃1)
1/2 (36)

Min Correlation: 𝑑(𝒀𝑖 , 𝒀𝑗) = (1 − 𝑐𝑜𝑠2𝜃𝑚)
1/2 (37)

Procrustes: 𝑑(𝒀𝑖 , 𝒀𝑗) = 2 (∑ 𝑠𝑖𝑛2
𝜃𝑖

2

𝑚
𝑖=1)

1/2

 (38)

Geodesic: 𝑑(𝒀𝑖, 𝒀𝑗) = ∑ 𝜃𝑖
2𝑚

𝑖=1 (39)

Mean Distance: 𝑑(𝒀𝑖 , 𝒀𝑗) =
1

𝑚
∑ 𝑠𝑖𝑛2𝜃𝑖
𝑚
𝑖=1 (40)

50 | P a g e

4.3 Grassmannian Kernels

Grassmann manifolds are naturally smooth and curved surfaces. The geometrical characteristics

and structuring of Grassmann manifolds are discussed in [87], [88]. With this smooth

characteristic, the distance between two subspaces is geodesic. Grassmann kernels provide a

means to simplify subspace metrics so that geodesic computations are avoided. Three common

Grassmann kernels are projection kernels, canonical correlation kernels, and Binet-Cauchy

kernels. In this dissertation, projection kernels are used since they have proven to be the most

effective.

4.3.1 Grassmann Projection Kernels

A projection kernel 𝒌𝑝 maps an isometric embedding from the Grassmannian space to a

projection space. A projection metric is used to calculate the distance between subspaces by

measuring the principal angles, 𝜽 = [𝜃1, … , 𝜃𝑚]. The principal angle between two orthonormal

matrices is determined by:

𝑐𝑜𝑠𝜃𝑏 = max
𝒖𝑏∈𝑠𝑝𝑎𝑛(𝒀1)

𝒗𝑏∈𝑠𝑝𝑎𝑛(𝑌2)

(𝒖𝑏
′ 𝒗𝑏)

𝑠. 𝑡.𝒖𝑏
′ 𝒖𝑏 = 1, 𝒗𝑏

′ 𝒗𝑏 = 1,𝒖𝑏
′ 𝒖𝑖 = 0,𝒗𝑏

′ 𝒗𝑖 = 0

(𝑖 = 1,… , 𝑏 − 1)

(41)

The principal angle is related to the projection metric by:

𝑑𝑝(𝒀1, 𝒀2) = (∑𝑠𝑖𝑛2𝜃𝑖

𝑘

𝑖=1

)

1
2

= (𝑚 −∑𝑐𝑜𝑠2𝜃𝑖

𝑘

𝑖=1

)

1
2

 (42)

This allows for Euclidean distance metrics between two subspaces from isometric

embeddings. The projection of two matrices 𝒀1 and 𝒀2 as defined by proposition 1 of Hamm

and Lee [82]:

51 | P a g e

𝐾𝑝(𝒀1, 𝒀2) = 𝑡𝑟[(𝒀1𝒀1
′)(𝒀2𝒀2

′)] = ‖𝒀1′𝒀2‖𝐹
2 (43)

The projection kernel can be calculated as the Frobenius norm which is ‖𝒀1′𝒀2‖𝐹
2 , the

square root of the sum of the absolute squares of 𝒀1′𝒀2. Grassmann kernels require kernel-based

methods for classification such as PCA, LDA, etc., as reported in Turaga et al. [89]. Grassmann

learning with projection kernels have a time complexity of 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2)).

4.4 Grassmannian Principal Component Analysis

A major challenge associated with feature representations, such as motion history surfaces or

histograms of local ternary patterns, is high dimensional data representations. The volume of

data can be difficult to handle, especially as the number of samples and classes are large. Such

data representations can be filled with outliers, noise, redundant data, and are extremely

expensive to process in their current high dimensional format. For this reason, subspace learning

methods are explored to reduce these action representations to a form that can be processed and

analyzed. The motivation for using Grassmann learning is because of its unique characteristics

to promote high class discrimination through smooth and curved surfaced, and its ability to

improve performance by embedding spans of orthonormal matrices as individual points. A

general overview of Grassmann learning is illustrated in Figure 4-3 for face recognition. Local

ternary pattern histograms of face image are embedded onto a Grassmann space where projection

kernels are created for training and testing as a function of the principal angles between

subspaces. The kernels are used for manifold learning of lower dimensional representations. In

this section, we consider PCA in combination with Grassmann learning and define Grassmann

kernel principal component analysis (GPCA).

52 | P a g e

Figure 4-3: An overview of Grassmannian based classifiers for face recognition. For face

recognition, local ternary pattern histograms are derived from face images and mapped

onto a Grassmann space. Training and testing Grassmann kernels are constructed and

processed through manifold learning or sparse representations.

As discussed in Section 3.1, PCA is a linear method for extracting linear features. When

processing non-linear features the principal components determined by maximal variance are

typically not effective in simplifying the data set successfully. Kernel PCA (KPCA) [90] has

proven to be more effective at extracting non-linear structures from data and is well suited for

non-linear features. Mika et al. [91] utilize KPCA using Gaussian kernels for denoising and

53 | P a g e

reconstruction of hand writing characters. Liu [92] used a Gabor based kernel in KPCA for facial

expression recognition.

Park and Savvides [84] proposed Multifactor Grassmann Manifolds (MGM) which are a

combination of Grassmann manifolds with multi-linear subspace methods included GPCA. PCA

identifies principal components of maximal variance by calculating the eigenvectors of the

covariance matrix. GPCA identifies non-linear features of high dimensional data by forming the

covariance matrix of a Grassmann kernel, and then calculating the eigenvectors of the covariance

matrix to identify principal components of maximal variance. The benefit to using Grassmann

kernels is due to representations that map an isometric embedding from the Grassmannian space

to a projection space while promoting high discrimination. The principal components

determined from a Grassmann kernel covariance matrix respect non-linear feature subspaces and

high between-class separability. Figure 4-4 shows the 2D embedding of 3D shapes after

applying GPCA including a variation in subspace sizes of a single point.

As the subspace sizes increase we see a more clear separation of classes. However, the class

separation does not appear to be discriminative enough for classification and recognition

systems. Even the three class twin peak shape shows difficulty in distinguishing between the

maroon and blue class although there is a clear separation with the green class.

Given that Grassmann learning has a complexity of 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2)) with projection

kernels and that PCA has a complexity is 𝑂(𝑝2𝑛 + 𝑝3), the GPCA time complexity is expected

to be 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2 + 𝑝2𝑚 + 𝑝3)) where 𝑛 is the number of data samples, 𝐷 is the number of

dimensions, 𝑚 is the number of Grassmann subspaces, and 𝑝 is the number of classes.

54 | P a g e

Figure 4-4: The 2D embedding of 3D shapes after applying GPCA. The first row shows the

original 3D shapes. The remaining rows show the embedding when each sub space is

composed of 5, 15, 20, and 100 data samples per subspace respectively.

55 | P a g e

5 Grassmannian Sparse Representations

In this chapter, the sparse representations framework and its applications towards classification is

presented. Sparse representations are followed up with the formal definition of Grassmannian

Sparse Representations (GSR), a subspace learning algorithm that combines the benefits of

Grassmann manifolds with sparse representations using least squares loss ℓ1-norm minimization

for improved classification. GSR is another major contribution in this dissertation. This section

begins with a background on sparse representations and concludes with a formal definition of

GSR.

5.1 Sparse Representations

Another recent development for finding lower dimensional representations is sparse

representations. The term sparse is a measurable property of a vector associated with the

number of non-zero entries contained in that vector. In many real-world systems, data is often

sparsely represented, which means that a small portion of a data representation can describe the

entire system, and would be beneficial in reducing high-dimensional data. The theory stems

from the Pareto Principle, a phenomenon that in any population contributing to some common

effect only a few members of the population actually contributes to the majority of the effect

[93]. This phenomenon can be observed in a wide variety of applications including economics

[94], biology [95], and social networks [96]. Sparse representations are a method for finding

sparse solutions for underdetermined systems. In computer vision applications, images or video

sequences can be encoded using sparse representations to be more easily interpretable and much

faster to process. Sparse representations have been used for face recognition [97], super-

resolution [98], denoising [99], and image classification [100].

56 | P a g e

Sparse representation methods have also been utilized for action classification frameworks.

Zhang et al. [101] use sparse representations and Bag of Words of spatio-temporal feature

descriptors which are projected into a lower dimensional space using PCA and apply ℓ1-

minimization to classify actions. Liu et al. [102] use motion context descriptors to represent

frame description and motion context and find sparse representations.

Another recent trend showing success is the interaction of dimensionality reduction methods

with sparse representations for improved classification and recognition. Ptucha and Savakis

[103] defined a framework for facial expression recognition that combined LGE with K-SVD, an

iterative sparse coding technique utilizing singular value decomposition similar to k-means

clustering. Lu et al. [104] propose a framework for super-resolution which combines sparse

coding with spectral graph processing to learn the geometrical structure of training data. Zheng

et al. [105] proposed a sparse coding objective function method that imposes a graph Laplacian

regularizer to solve for sparse representations while also accounting for geometrical structures.

Experiments were applied for clustering analysis for facial expressions and object classification

with a higher rate of success than sparse coding alone. A major drawback with sparse

representation classification methods is the issue of run-time performance and memory

utilization. The theoretical complexity is difficult to analyze although studies suggest that ℓ1-

norm minimization in the Lasso formulation has an exponential worse case complexity [106]

[107]. For this reason, sparse representation classification for high dimensional recognition and

classification systems are not ideal.

Given a matrix 𝑫𝑚×𝑛 = [𝑫1, 𝑫2, … , 𝑫𝑝] representing an over-complete dictionary of 𝑛-

action samples, each of 𝑚-dimensions, with 𝑝 separate action classes and a test sample 𝒙, a

linear representation is defined as:

57 | P a g e

𝒙 = 𝑫𝒂 (44)

where 𝒂0 = [0,… , 0, 𝑎′𝑝, 0, … ,0] ∈ 𝑅𝑛 is a sparse coefficient vector whose entries are all zero

except for those associated with the pth action class. Corruption and occlusions can complicate

the action classification process affecting the coefficient vector representation [108] by either

providing no unique solution or allowing many solutions. Least squares minimization

approaches can be used to address the issue. If there is a large number of action classes 𝑝, the

coefficient representation is naturally sparse [101] and ideally we can find the sparsest solution

using ℓ0-norm minimization:

�̂� = arg𝑚𝑖𝑛 ‖𝒂‖0𝑠. 𝑡.𝒙 = 𝑫𝒂 (45)

where ‖𝒂‖0 counts the number of non-zeros in vector 𝒂. However, the system is

underdetermined and finding the sparsest solution is NP-hard. ℓ2-norm minimization or

Euclidean norm is a least squares minimization approach based on:

�̂� = arg𝑚𝑖𝑛 ‖𝒂‖2
2𝑠. 𝑡.𝒙 = 𝑫𝒂 (46)

where ‖𝒂‖2
2 = ∑ 𝒂𝑖

2
𝑖 . ℓ2-norm minimization assumes that the best-fit curve has a minimal sum

of squared deviations from a dataset [109]. Advantages of ℓ2-norm minimization are that the

solution to the problem is performed easily and the result is always unique. However, an issue

with ℓ2-norm minimization is that the approach assumes a normal distribution which may not be

the case for collected data due to noise and errors in the dataset resulting in outliers [110]. ℓ2-

norm minimization utilizes all available examples in order to identify the solution. If the

solution �̂� is sparse enough, ℓ0-norm minimization is equal to that of ℓ1-norm minimization [101]

[111]:

�̂� = arg𝑚𝑖𝑛 ‖𝒂‖1𝑠. 𝑡.𝒙 = 𝑫𝒂 (47)

58 | P a g e

where ‖𝒂‖1 = ∑ |𝒂|𝑖 . ℓ1-norm minimization promotes sparse solutions and can be reformed as a

convex linear programming optimization method. Furthermore, ℓ1-norm minimization is an

effective technique for solving underdetermined systems of linear equations [112] and

concentrates on few non-zero coefficients making the approach robust with built-in outlier

detection.

There are many methods for ℓ1-norm minimization, and in this paper we focus on the least

squares loss method with regularization:

�̂� = arg𝑚𝑖𝑛 ‖𝑫𝒂 − 𝒙‖
2
2
+ 𝜆‖𝒂‖1𝑠. 𝑡.𝒙 = 𝑫𝒂 (48)

where 𝜆 is ℓ1-norm regularization parameter which is used to achieve sparser solutions. When a

problem solution is known to be sparse, an applied penalty through regularization provides low

variance feature selection, improved approximations, and more interpretable solutions [113].

This is apparent in Figure 5-1 showing the reconstruction coefficients when 𝜆 = 0 and 𝜆 = 300.

When 𝜆 = 0, the problem is reduced to an ℓ2-norm minimization problem.

Figure 5-1: These plots show the reconstruction coefficients from the LFW dataset using

least squares loss method with regularization following Equation (48). The left plot shows

the coefficients when 𝝀 = 𝟎, an ℓ2-norm minimization problem. The right plot shows the

coefficients when 𝝀 = 𝟑𝟎𝟎.

59 | P a g e

Given the sparse coefficient vector �̂�, minimum reconstruction error can be used to classify

a test sample to class 𝑝. Minimum reconstruction is a preferred classification heuristic because it

preserves the linear structure of face and action representations by utilizing all non-zero

coefficients [97] for reconstruction. Minimum reconstruction is done by reconstructing a sample

from each class and comparing them against the reconstructed sample from all classes using

Equation (49) to minimize the residuals. The smallest residual identifies the class 𝑝.

𝑝∗ =
arg𝑚𝑖𝑛
𝑖 = 1: 𝑝

‖𝑫�̂�𝒊 − 𝒙‖
2
 (49)

5.2 3D Action Classification Using Sparse Spatio-Temporal Feature

Representations

In this section we present the incorporation of sparse representations for 3D action classification

as presented in [114]. Our goal is to define feature descriptors which represent an over-complete

dictionary of human actions from depth data, meaning that the dimension of the feature vector is

larger than the dimension of the input. We selected two distinct feature descriptors for

comparison and evaluation, kinematic 3D joint surfaces (Section 2.3.3) and raw depth data. For

raw depth surfaces, we utilized features extracted from raw depth data by determining the largest

connected object in the scene and defining a bounding box around that region of interest. The

raw data is read from the scene, scaled to a constant feature size, and normalized to obtain a

feature descriptor that is invariant to scale and localization. As was done for 3D joint surfaces,

to account for variance in action execution time the raw depth surface features were resized to a

fixed length using bicubic interpolation. Figure 5-2 shows the resulting descriptor plot for raw

60 | P a g e

depth data for one instance of time of a subject executing a waving action. Figure 5-3 shows the

resulting raw 3D action surface for that same action.

Figure 5-2: Example frame of a test subject performing a waving action in 3D space with

kinematic coordinates from the MSRAction3D dataset. The plot shows the depth surface

descriptor for that frame instance.

Figure 5-3: The action surface plot for raw 3D depth information of 768 features across 40

frames of a subject executing a waving action from the MSRAction3D dataset.

The MSRAction3D dataset (Section 7.2.4) was used for our experiment with the same

experimental setup described in Section 2.3.4. Twenty actions were divided into three subsets

consisting of eight actions each as presented in Table 2. Additionally, we test against the entire

set of. The subsets 1 and 2 were designed to group activities with similar movements while

subset 3 was designed to group actions that are more dissimilar, and therefore more suitable for

sparser solutions. 2-fold cross validation (2FCV) was used where we randomly select half the

subjects for testing and half the subjects for training, and additionally we train and test on both

sets allowing for each action sample to be used for either training or validation on each fold. To

0 100 200 300 400 500 600 700

0

0.2

0.4

0.6

0.8

1

of Features

M
a
g
n
it
u
d
e

61 | P a g e

ensure large and over-complete dictionaries, we also experiment with leave one out cross

validation (LOOCV) where each test subject is validated against the remaining subjects and

repeated for all subjects until all subjects have been used for training and testing. The results of

our approach are presented in Table 4 and Table 5 for the kinematic joint feature descriptor and

the raw depth data extrapolated from the 3D video sequences using ℓ1-norm minimization and

ℓ2-norm nearest neighbor.

Subset
Cross Validation

Approach

ℓ1-norm

Minimization

ℓ2-norm

Nearest Neighbor

Subset 1
LOOCV 80.73% 80.21%

2FCV 77.66% 76.60%

Subset 2
LOOCV 77.11% 78.78%

2FCV 73.17% 75.61%

Subset 3
LOOCV 93.89% 89.29%

2FCV 91.58% 89.47%

Subset 4
LOOCV 72.11% 72.32%

2FCV 63.23% 73.54%

Table 4: Results from the MSRAction3D dataset using kinematic joint feature descriptors

and cross validation methods, ℓ1-norm minimization and nearest neighbor.

Subset
Cross Validation

Approach

ℓ1-norm

Minimization

ℓ2-norm

Nearest Neighbor

Subset 1
LOOCV 67.79% 61.76%

2FCV 74.47% 69.15%

Subset 2
LOOCV 84.50% 71.50%

2FCV 84.15% 67.07%

Subset 3
LOOCV 82.37% 74.99%

2FCV 88.42% 86.32%

Subset 4
LOOCV 71.05% 58.82%

2FCV 76.23% 71.75%

Table 5: Results from the MSRAction3D dataset using raw depth feature descriptors and

cross validation methods against ℓ1-norm minimization and nearest neighbor.

As suspected, the best action classification accuracies came from subset 3 because the

dissimilarity between the grouped actions naturally encourages sparser solutions. We also find

that with kinematic joint descriptors, ℓ1-norm minimization does not drastically outperform ℓ2-

norm minimization. This indicates that the normal distribution and utilization of all available

62 | P a g e

training examples is sufficient and that the kinematic descriptor is not sparse enough to

accurately classify actions. However, the kinematic joint descriptor is very powerful descriptor

for accurate action classification.

When examining the raw depth data feature descriptor, we begin to see that the natural

sparse representation of each action sequence results in an improvement over nearest neighbor

classification. We obtain an accuracy of 76.23% on all 20 3D video actions using 2FCV which

performs 5.18% better than LOOCV, indicating that the training dictionaries are over-complete

without training a majority of the action samples. This is even more apparent when noticing that

in almost all cases 2FCV’s outperform LOOCV for both ℓ2-norm minimization and ℓ1-norm

minimization.

5.3 Grassmann Learning with Sparse Representations

Grassmannian Sparse Representations (GSR) is proposed in this dissertation as a framework

which combines Grassmannian kernels and sparse representations using least squares loss. The

benefits of GSR include improved computational efficiency by reducing the coefficient

reconstruction vector size, high with-in class integration along with high between-class

separability promoted by Grassmann manifolds, and efficient representations promoted by ℓ1-

norm minimization. The motivation is to combine computational efficiency and high class

discrimination, promoted by the structure of Grassmann manifolds, with efficient data

representation promoted by ℓ1-norm minimization.

We construct a training projection kernel𝑲𝑡𝑟𝑎𝑖𝑛 of size 𝑚𝑡𝑟𝑎𝑖𝑛 ×𝑚𝑡𝑟𝑎𝑖𝑛, as a kernel

mapping of all data elements between each other, where 𝑚𝑡𝑟𝑎𝑖𝑛 is the number of training

subspaces. Similarly we construct a testing projection kernel 𝑲𝑡𝑒𝑠𝑡 of size 𝑚𝑡𝑟𝑎𝑖𝑛 ×𝑚𝑡𝑒𝑠𝑡,

which maps training subspaces to testing subspaces, where 𝑚𝑡𝑒𝑠𝑡 is the number of testing

63 | P a g e

subspaces. With this configuration, kernels can be introduced into the least squares loss function

with regularization of Equation (50) such that:

�̂� = arg𝑚𝑖𝑛 ‖𝑲𝑡𝑟𝑎𝑖𝑛𝒂 − 𝑲𝑡𝑒𝑠𝑡(𝑖)‖
2
2
+ 𝜆‖𝒂‖1

𝑠. 𝑡. 𝑲𝑡𝑒𝑠𝑡 = 𝑲𝑡𝑟𝑎𝑖𝑛𝒂, 𝑖 = [1,… ,𝑚𝑡𝑒𝑠𝑡]

(50)

where 𝑲𝑡𝑟𝑎𝑖𝑛 is the training projection kernel, 𝑲𝑡𝑒𝑠𝑡 is the testing kernel, 𝒂 is the coefficient

vector, and 𝑚𝑡𝑒𝑠𝑡 is number of test elements which is equal to the number of testing subspaces.

The objective function above promotes sparse solutions through ℓ1-norm minimization, an

effective technique for solving underdetermined systems of linear equations with outlier

detection, and promotes class discrimination through Grassmannian manifolds. It should also be

noted that either individual elements or a group of elements may be treated as a single subspace

through Grassmann learning depending on the application.

With the reduction from a high dimensional space to training and testing kernels,

classification can be carried out using minimum reconstruction to identify which Grassmann

embedded subspace class is most associated with a new Grassmann embedded test sample.

Given the coefficient vector �̂� determined from Grassmann kernels, minimum reconstruction can

be used to classify a test sample by reconstructing a sample from each class from projected

Grassmann points and comparing them against the reconstructed sample from all classes of

projected Grassmann points using:

𝑝∗ =
arg𝑚𝑖𝑛
𝑗 = 1: 𝑝

‖𝑲𝑡𝑟𝑎𝑖𝑛�̂�
𝒋 −𝑲𝑡𝑒𝑠𝑡(𝑖)‖2

𝑠. 𝑡. 𝑖 = [1, … ,𝑚𝑡𝑒𝑠𝑡]

(51)

There are many benefits of the GSR framework. Fast high dimensional data reduction is

achieved through linear derivations of weighted isometric embeddings from a Grassmann space

to a Euclidean space. The Grassmannian component of the algorithm supports high between

64 | P a g e

class discrimination because these manifolds have smooth structure and can fill in missing data

through linear spanning.

The sparse representation component of the algorithm is representing a linear combination

of basis vectors from Grassmann kernels rather than high dimensional data input. This

automatically incorporates the benefits of Grassmann learning in a sparse coding framework.

Additionally, regularization can easily be incorporated to solve for the sparse reconstruction

coefficients. Grassmann subspaces can represent an entire class and the number of sparse

reconstruction coefficients can reduce to the number of classes in the classification system. For

multi-view action systems, a single action class, independent of the viewpoint, can be

represented as a single point on a Grasssmann space. Multiple trials of the same 3D action class

can also be represented as single points. Face images of one subject of varying illuminations and

expressions can be represented as a single point. These reductions simplify reconstruction and

will reduce the computation load.

Grassmann learning has a squared time complexity of 𝑂(𝑛2𝐷𝑚2) with projection kernels

[79] where 𝑛 is the number of samples, 𝑚 is the number of subspaces in the Grassmann space,

and 𝐷 is the number of dimensions of each input sample. Sparse representation classification has

a theoretical exponential complexity. However, in the GSR framework the time complexity

would be exponential on a Grassmann kernel and can therefore perform the fastest when an

entire class is represented as a single point on a Grassmann space.

65 | P a g e

6 Grassmannian Spectral Regression

In this chapter spectral regression and its applications towards classification is presented.

Spectral regression is followed up with the formal definition of Grassmannian Spectral

Regression (GRASP), a subspace learning algorithm which leverages the benefits of Grassmann

manifolds and Spectral Regression in a framework that supports high discrimination between

classes and achieves computational benefits by using manifold modeling and avoiding eigen-

decomposition. GRASP is the next major contribution in this dissertation.

6.1 Spectral Regression

While eigen-based linear subspace approaches are effective at learning linear and non-linear

representations of data, recent efforts have emerged towards least squares frameworks because of

drawbacks associated with eigen-formulations. DelaTorre [115] suggests that eigen-

decomposition results in normalization factors and inaccuracies with rank deficient matrices, and

proposes a least-squares weighted kernel reduced rank regression (LS-WKRRR). Cai et al. [78]

encourage the avoidance of eigen-decomposition because of computational inefficiencies and

introduces Spectral Regression for regularized subspace learning. Based on regression and

spectral graph analysis, this approach enables regularization which is not as simple to do with

eigen-decomposition.

Spectral Regression (SR) [78] is a regularized subspace learning approach that overcomes

the disadvantages of eigen-based approaches in terms of inefficiencies in execution time

performance, memory allocation, and regularization. With the LGE framework the minimization

problem for 𝒀 is min
𝒀

𝒀′𝑳𝒀

𝒀′𝑫𝒀
 and the minimization problem for 𝑨 is min

𝑨

𝑨′𝑿𝑳𝑿′𝑨

𝑨′𝑿𝑫𝑿′𝑨
. Constraining

66 | P a g e

𝒀′𝑫𝒀 = 1 and 𝑨′𝑿𝑫𝑿′𝑨 = 1 allows for the problems to be generalized to the minimization

problems min
𝑨

𝒀′𝑳𝒀 and min
𝑨

𝑨′𝑿𝑳𝑿′𝑨 respectively. These are also equivalent to the

maximization problems max
𝒀

𝒀′𝑾𝒀 and max
𝑨

𝑨′𝑿𝑾𝑿′𝑨 corresponding to their maximum

eigenvalues:

𝑾𝒀 = 𝝀𝑫𝒀 (52)

𝑿𝑾𝑿′𝑨 = 𝝀𝑿𝑫𝑿′𝑨 (53)

The eigenvalues 𝝀 for Equation (52) and the eigenvalues 𝝀 for Equation (53) are distinct.

Given the linear relationship 𝒀′ = 𝑨′𝑿 and that 𝑨 is the eigenvectors of Equation (53), the

Spectral Regression framework redefines 𝒀 to be the eigenvectors of Equation (52) so that the

eigenvalues 𝝀 of both eigen-problems are the same. To solve for the eigenvectors 𝑨∗ efficiently

the spectral regression approach follows a two-step iterative process outlined below:

(1) Solve for 𝒀 in Equation (52).

(2) Solve for the eigenvectors 𝑨∗ corresponding to the maximum eigenvalue of Equation (53)

that satisfies 𝒀′ = 𝑨′𝑿, using least squares regression and the equation below where 𝒚𝒊 is

the 𝑖𝑡ℎ element of 𝒀.

𝑨∗ = argmin
𝑨

∑(𝑨′𝒙𝒊 − 𝒚′𝒊)
2

𝑛

𝑖=1

 (54)

The minimization problem could be underdetermined with many possible solutions. To

account for this, regularization can be used with parameter 𝛼 regulating the amount of shrinkage,

and an applied penalty on the norm of 𝑨, where ‖𝑨‖2 is an ℓ2 norm:

𝑨∗ = argmin
𝑨

(∑(𝑨′𝒙𝒊 − 𝒚𝒊)
2

𝑛

𝑖=1

+ 𝛼‖𝑨‖2) (55)

67 | P a g e

A class value is assigned by performing classification in the lower dimensional space using

k-Nearest Neighbor (k-NN) or another classifier. Other types of regularizers can be

incorporated, which demonstrates the flexibility of regularized subspace learning for adaptation

to various applications.

Spectral Regression is known to be more effective for smaller class problems [78]. Figure

6-1 shows spectral regression dimensionality reduction on the same four shapes in our example

with a varying regularization parameter, 𝛼.

Figure 6-1: Spectral regression dimensionality reduction examples including the swiss roll,

Gaussian, twin peak, and intersection with a varying regularization parameter, 𝜶.

68 | P a g e

With Spectral Regression, the Gaussian surface is embedded in a different yet separable

manner compared to PCA and LPP when 𝛼 is small. As the 𝛼 increases the 2D embedding of

the Gaussian shape takes form and appears more separable. Meanwhile, the intersect shape

appears more separable when 𝛼 is small. Regularization appears to have minimal impact on the

swiss roll and twin peaks shapes. The twin peaks class separation is closely clustered in

comparison to PCA and LPP. The swiss roll and intersect shapes class discrimination is

degraded in comparison to LPP because of the larger number of classes involved.

While LGE has a cubic complexity, analysis of computation complexities finds that Spectral

Regression has a linear complexity of 𝑂(2𝑐𝑠𝑛𝐷) where 𝑛 is the number of data samples, 𝐷 is the

number of dimensions for each feature such that 𝐷 > 𝑛, 𝑐 is the number of classes, and 𝑠 is the

number of iterations in the least squares framework [78].

6.2 Grassmann Learning with Spectral Regression

Grassmannian Spectral Regression (GRASP) combines Grassmann manifolds with Spectral

Regression in a framework that is computationally efficient, offers improved class separability,

supports regularization, and does not require eigen-decomposition. The important benefit of

GRASP is improved classification performance due to high within class integration along with

high between-class separability promoted by Grassmann manifolds, along with a drastic

improvement in computational performance achieved by manifold modeling and avoiding eigen-

decomposition. There are two problems with eigen-decomposition subspace learning. First they

add a level of computational complexity as suggested by DelaTorre [115]. Secondly, such

algorithms do not easily incorporate regularization.

69 | P a g e

To begin, we construct training projection kernels 𝑲𝑡𝑟𝑎𝑖𝑛 of size 𝑚𝑡𝑟𝑎𝑖𝑛 ×𝑚𝑡𝑟𝑎𝑖𝑛, as a

kernel mapping of all data elements, where 𝑚𝑡𝑟𝑎𝑖𝑛 is the number of training subspaces.

Similarly we construct testing projection kernels 𝑲𝑡𝑒𝑠𝑡 of size 𝑚𝑡𝑟𝑎𝑖𝑛 ×𝑚𝑡𝑒𝑠𝑡, which map

training subspaces to testing subspaces, where 𝑚𝑡𝑒𝑠𝑡 is the number of testing subspaces. These

kernels map the Grassmannian space to a projective space. The objective is to find a

transformation matrix 𝑨 that maintains the linear relationship and preserves neighborhood

information between the training Grassmannian kernel 𝑲 and the lower dimensional

representation 𝒀:

𝒀′ = 𝑨′𝑲 (56)

This can be accomplished through the spectral regression framework. Given the eigen-

problems 𝑾𝒀 = 𝝀𝑫𝒀 and 𝑲𝑾𝑲′𝑨 = 𝝀𝑲𝑫𝑲′𝑨, redefine 𝒀 to be the eigenvectors so that the

eigenvalues 𝝀 of both eigen-problems are the same. The eigenvectors 𝑨∗ can be solved by the

following two step process:

(1) Solve for 𝒀 in 𝑾𝒀 = 𝝀𝑫𝒀

(2) Solve for the eigenvectors 𝑨∗ corresponding to the maximum eigenvalue of 𝑲𝑾𝑲′𝑨 =

𝝀𝑲𝑫𝑲′𝑨 that satisfies 𝒀′ = 𝑨′𝑲.

We use least squares regression by introducing Grassmann kernels into the least squares loss

function with regularization to promote a unique solution such that:

𝑨∗ = argmin
𝑨

(∑(𝑨′𝑘𝑖 − 𝒚𝑖)
2

𝑃

𝑖=1

+ 𝜆‖𝑨‖2)

𝑲 = [𝑘1, … , 𝑘𝑃], 𝒀 = [𝒚1, … , 𝒚𝑃]
′

(57)

70 | P a g e

where P is the number of subspaces on the Grassmann manifold, {𝑘𝑖}𝑖=1
𝑃 ∈ 𝐺(𝑚,𝐷). This

formulation [116] allows for least squares regularization of an isometric embedding in

Grassmann space instead of a high dimensional Euclidean space.

𝑲 can be any type of kernel and in this dissertation projection kernels are used. A weighted

representation of the projection kernels and canonical correlation kernels was proposed in [82],

such that 𝑲 = 𝛼𝑲𝑝 + 𝛽𝑲𝑐𝑐, where 𝛼 regulates the projection kernel and 𝛽 regulates the

canonical correlation kernel. The eigenvectors 𝑨∗ gives a linear method of reducing the kernel

data such that 𝒀′ = 𝑨′𝑲. It is then possible reduce the dimensions of the training and testing

kernels following:

𝒀𝑡𝑟𝑎𝑖𝑛 = 𝑨′𝑲𝑡𝑟𝑎𝑖𝑛

𝒀𝑡𝑒𝑠𝑡 = 𝑨′𝑲𝑡𝑒𝑠𝑡

(58)

With the reduced training and testing kernels, classification can be carried out using k-NN to

classify a test subspace. Since each training subspace represents an entire class, only one nearest

neighbor (1-NN) classification is required because each training class is represented as a single

point on a Grassmann space. There are many benefits of the GRASP framework. The spectral

regression component of the algorithm allows for regularization to quickly converge to a unique

solution while avoiding the computational burden of eigen-based approaches. Fast high

dimensional data reduction is achieved through linear derivations of weighted isometric

embeddings from a Grassmann space to a Euclidean space. The Grassmannian component of the

algorithm supports high between class discrimination because these manifolds have smooth

structure and can fill in missing data through linear spanning.

Figure 6-2 demonstrates the 2D embedding of 3D shapes with various subspace sizes. This

example illustrates how the number of samples decreases and class clustering improves as the

71 | P a g e

number of samples per subspace increase. When compared to GPCA there is a more clear class

separation as the subspace sizes become larger.

Grassmann learning has a complexity of 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2)) with projection kernels. Given

that Spectral Regression has a linear computational complexity of 𝑂(2𝑐𝑠𝑛𝐷), GRASP would

require 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2 + 2𝑐2𝑠)) or 𝑂(𝑛2𝐷𝑚2) operations. This is because spectral regression

is applied on Grassmann projection kernels where the number of data samples 𝑛 is equal to the

number of classes 𝑐, and the number of dimensions 𝐷 of each class is a scalar. This is equal to

the graph embedding discriminant analysis squared complexity of 𝑂 (
𝑛(𝑛−1)

2
(𝐷𝑚2 +𝑚3)) or

𝑂(𝑛2𝐷𝑚2) operations [79] when 𝑚 ≪ 𝐷 and 𝑛 ≪ 𝐷. The difference is minimal for small input

action classification systems. However, as the number of samples 𝑛 increases, so does the

number of inputs 𝑛 in each subspace 𝑚. As the inputs get larger, GRASP would maintain its

performance while Grassmann graph embedding techniques would require more operations.

72 | P a g e

Figure 6-2: The 2D embedding of 3D shapes after applying GRASP. The first row shows

the original 3D shapes. The remaining rows show the embedding when each sub space is

composed of 5, 15, 20, and 100 data samples per subspace respectively.

73 | P a g e

7 Experimental Setup and Analysis

In this section the experimental setup of GSR and GRASP is presented. The focus is on multi-

view action classification, 3D action classification, and face recognition. Motion history surface

(MHS) descriptors [116] were used for multi-view datasets and motion depth surface (MDS)

descriptors [117] were used for 3D datasets. Local Ternary Pattern descriptors [43] were used

for facial recognition datasets.

7.1 Evaluation Assumptions

A few assumptions are presumed for the work presented in this dissertation. It is assumed that

all actions provided in the action datasets have segmented silhouettes obtained through an

existing approach. All action and face datasets provide images without major occlusions. This

means that actors are visible in a scene throughout most of the time that an action is being

conducted without purposely being blocked from the view of the camera. For face images,

actors with glasses and under extreme illumination variations are expected. For action

classification, the most complex scenes performed in all the datasets are interactions between

individuals which are provided by the i3DPost dataset. It is also assumed that the action

classification systems being evaluated are segmented in time, i.e. we are given the starting and

ending time of an action. In other words the systems used do not automatically apply temporal

segmentation.

74 | P a g e

7.2 Datasets

The datasets used for experimentation are (a) multi-view action datasets using the i3DPost Multi-

View dataset, the IXMAS Multi-View dataset, and the WVU Multi-View dataset; (b) 3D action

datasets using the MSRAction3D dataset and MSRGesture3D dataset; and (c) face image

datasets using the ATT dataset, LFW dataset, and Yale Extended Face dataset.

7.2.1 i3DPost Multi-View Human Action Dataset (i3DPost)

The i3DPost multi-view human action dataset [27] provides synchronized multiple views of

individuals performing action sequences. The dataset consists of synchronized high definition

images of 8 views performed by 8 people executing 12 actions.

Figure 7-1: These are sample frames from the i3DPost multi-view dataset. The top group

of images show a sample of all 12 actions from one view. The bottom group of images show

multiple views of one instance of time of a wave action.

Each action is performed over 125 frames. The actions include individual actions such as

walk, run, jump, bend, hand-wave, and jump in place. The dataset also includes action

combinations where multiple actions are executed in the same sequence, which are sit-stand up,

run-fall, walk-sit, and run-jump-walk. Finally, the dataset also include interactions between two

75 | P a g e

individuals, which are handshake and pull. The images are provided in a high-resolution color

format in PNG files and also include background images for image differencing, camera

calibration parameters for 3D reconstruction, and 3D mesh models.

7.2.2 INRIA Xmas Motion Acquisition Sequences (IXMAS)

The INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset was presented by Weinland

et al. [118] and was created in 2005 including extracted silhouettes. The dataset offers 390x291

pixels resolution images in PNG/BPM formats. There are five synchronized views captured at

50FPS of ten subjects executing 14 actions between 2 and 3 trials each. The fifth view is a top

view and was ignored in the experiments. The actions include Check Watch, Cross Arms,

Scratch Head, Sit Down, Get Up, Turn Around, Walk, Wave, Punch, Kick, Point, Pick Up, Throw

(overhand), and Throw (underhand). Underhand throwing was excluded from the experiments

because there were 75% less underhand throwing samples than all other action samples.

Figure 7-2: Samples from the IXMAS dataset. The top images show four views of an

individual executing Scratch Head, Pick Up, and Wave. The bottom images show one view

of one subject performing a Punch.

76 | P a g e

7.2.3 West Virginia University Multi-View Action Dataset (WVU)

The West Virginia University (WVU) multi-view dataset [119] provides 8 views of 5 subjects

performing 12 actions executed at 20FPS and a resolution of 640x480 pixels. The actions

include Standing Still, Nodding head, Clapping, Waving 1 hand, Waving 2 hands, Punching,

Jogging, Jumping Jack, Kicking, Picking, Throwing, and Bowling. The standing still action was

excluded because the motion history surface descriptors expect motion. The action sequences

are not consistently synchronized over all views as can be seen in Figure 7-3 and extracting the

silhouettes from this dataset were challenging because of variations in lighting in various images.

Figure 7-3: Sample frames from the WVU dataset. The top group of images show multiple

views of one instance of time of a subject performing a two handed wave. The bottom group

shows a subject performing jumping jacks.

7.2.4 Microsoft Research Action 3D Dataset (MSRAction3D)

The Microsoft Research Action 3D (MSRAction3D) Dataset [36] consists of depth map

sequences recorded with a depth sensor at 15 FPS and 320×240 pixel resolution. There are ten

subjects performing twenty actions two to three times for a total of 567 depth map sequences.

The dataset actions are: high arm wave, horizontal arm wave, hammer, catch, tennis swing,

forward punch, high throw, draw X, draw tick, tennis serve, draw circle, hand clap, two hand

77 | P a g e

wave, side boxing, golf swing, side boxing bend, forward kick, side kick, jogging, and pick up

and throw. No corresponding RGB information is available, however 3D joint positions are

available. All silhouettes have been segmented as demonstrated in the sample action frames of

Figure 7-4. Figure 7-5 illustrates sample depth frames with kinematic joint identifiers.

Figure 7-4: Sample depth frames from the MSRAction3D dataset showing a forward punch

action.

Figure 7-5: Sample frames from the MSRAction3D dataset with plotted kinematic joints of

a high arm wave, horizontal arm wave, golf swing, draw X, two-hand wave, side boxing,

side kick, and a tennis serve.

7.2.5 Microsoft Research Gesture3D Dataset (MSRGesture3D)

In the Microsoft Research Gesture3D (MSRGesture3D) dataset [120] there are ten people

performing 12 American Sign Language (ASL) gestures which represent Z, J, Where, Store, Pig,

Past, Hungary, Green, Finish, Blue, Bathroom, and Milk. There are between two and three

78 | P a g e

gesture trials for each subject with a total of 336 image files. The dataset consists of depth map

sequences recorded with a depth sensor at 10 FPS and resolution of 106×160 pixels. The dataset

contains some dead frames and we applied interpolation to correct for the dead frames when

applicable. The sample frames for the ASL for the letters J and Z are shown in Figure 7-6.

Figure 7-6: Sample depth frames from the MSRGesture3D dataset showing the ASL for J

(top) and ASL for Z (bottom).

7.2.6 Database of Faces from AT&T Laboratories (ATT)

The database of faces from AT&T laboratories (ATT) [121] is a collection of faces images from

40 subjects with 10 face images per subject. There are a total of 400 face images in PGM file

format. Each face image is 92x112 pixels and all images are grayscale. The face images of each

subject can vary by pose, lighting, facial expressions, and facial details such as glasses as

demonstrated in Figure 7-7. Figure 7-8 shows a sample face image of each of the 40 subjects.

All subjects and all faces images are used in our experiments.

79 | P a g e

Figure 7-7: Face images for two subjects from the database of faces from AT&T

laboratories. The face images of the first subject contain images with and without glasses.

The second subject face images vary by expression.

Figure 7-8: Sample face images from each of the 40 subjects from the database of faces

from AT&T laboratories.

7.2.7 Labeled Faces in the Wild (LFW)

The Labeled Faces in the Wild (LFW) dataset [122] is a face database with 5749 individuals and

13,233 total face images collected from the web. The images are cropped and are in PGM file

format. The subjects vary by many parameters including pose, lighting, expression, background,

race, ethnicity, age, gender, clothing, hairstyles, camera quality, color saturation, and focus. In

80 | P a g e

our experiments, we used all subjects who have at least 20 face images. We did not exceed the

use of 30 face images per subject. Therefore, 62 subjects were used for face recognition with a

total of 1,673 total face images. Figure 7-9 shows multiple face image samples of two subjects.

These samples illustrate face images that vary in terms of expressions, pose, and illumination.

Figure 7-10 shows a sample image from each of the 62 subjects used for evaluation.

Figure 7-9: Face images for Donald Rumsfeld (top) and Hans Blix (bottom) from the

labeled faces in the wild database.

Figure 7-10: One face image sample of each of the 62 subjects from the labeled faces in the

wild database.

81 | P a g e

7.2.8 Extended Yale Face Database B (YALE)

The Yale Face Database and Extended Yale Face Database B (YALE) [123] were combined for

a collection of 38 individuals and 2,424 total face images in PGM file format. Each subject has

approximately 9 poses and 64 illumination conditions. None of the subjects wear glasses but

subjects do vary by race, ethnicity, and gender. Figure 7-11 shows 65 sample faces images of

one subject that vary by illumination. Notice how the subjects eyes changes as the illumination

is varied. Figure 7-12 shows one face image sample of each of the 38 subjects used for

evaluation.

Figure 7-11: 65 face images for one subject which vary by illumination.

82 | P a g e

Figure 7-12: One face image sample of each of the 38 subjects used from the Yale Extended

B dataset.

7.3 Grassmann Similarity Measure Analysis

The next major contribution is the evaluation of Grassmann measures on all datasets to compare

against Grassmann learning methods including GPCA, GLDA, GLPP, GSR, and GRASP. The

purpose of this section is to identify the various Grassmann metrics that measure distances

between Grassmann points and to identify the benefits and drawbacks.

Large Grassmann subspaces are expected to reduce the processing time since the span of

these subspaces are represented as individual points on a Grassmann manifold. This

characteristic is demonstrated in Figure 7-13 which shows the separation by principal angles

between each action class for the i3DPost, IXMAS, WVU, and MSRAction3D datasets in a

Grassmann space using the geodesic metric 𝑑(𝒀𝑖 , 𝒀𝑗) = ‖𝜽‖2.

83 | P a g e

Figure 7-13: The principal angles in a Grassmann space between action classes for the

i3DPost, IXMAS, WVU, and MSRAction3D datasets.

84 | P a g e

For all datasets, similar actions are correlated through Grassmann learning. For the i3DPost

dataset relative to the Run-fall action, Grassmann learning identifies the actions Walk, Walk-sit,

Run-jump-walk, and Run to be clustered and closest to Run-fall. Run-fall is farthest from Bend.

Grassmann learning also promotes between class discrimination. It is apparent that mobility

actions (those that involve movement across a scene) group together in the first quadrant while

immobile actions group together in the second quadrant. For the IXMAS dataset relative to the

Check Watch action, the actions Scratch Head, Cross Arms, and Wave are closest and are actions

where the actor uses their arms. Actions Punch and Point are also closely correlated in a

Grassmann space. The Walk action is clearly dissimilar from all the other actions. For the WVU

dataset the action Throwing is closest to Bowling and Punching which are conceptually similar

and farthest from Waving 2 Hands. For the MSRAction3D dataset Hammer is closest to

Forward Punch and High Throw which are also very similar and farthest from Two Handed

Wave.

Constraints of identifying closeness relationships through orthogonal mappings can also

enforce unwanted relationships. For the i3DPost example, a Hand wave is considered closest to

Sit-stand up and Jump in place which is not naturally correlated but is learned that way due to

orthogonal constraints imposed on a Grassmann space for all actions relative to each other.

Overall, Grassmann learning using the span of orthonormal matrices embedded as single points

do show effort to promote high between-class discrimination and promote within-class

clustering. This demonstrates the advantage of Grassmann learning in the GSR and GRASP

frameworks for increasing the between class separability while decreasing the with-in class

separability.

85 | P a g e

 Grassmann

Measures
i3DPost IXMAS WVU

MSR

Action3D

MSR

Gesture3D
ATT LFW

Yale

Extended B
S

in
g

le

Projection 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89%

Binet-Cauchy 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89%

Max Correlation 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89%

Min Correlation 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89%

Procrustes 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89%

Geodesic 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89%

Mean Distance 91.28% 80.71% 62.86% 73.79% 88.10% 99.00% 55.42% 98.89%

A
ll

Projection 94.79% 98.46% 78.18% 74.23% 87.50% 100.00% 70.16% 100.00%

Binet-Cauchy 93.75% 97.69% 78.18% 62.56% 77.50% 72.50% 67.74% 100.00%

Max Correlation 84.38% 90.00% 67.27% 44.31% 67.50% 26.25% 39.52% 100.00%

Min Correlation 94.79% 89.23% 72.72% 78.06% 92.50% 100.00% 97.58% 100.00%

Procrustes 94.79% 98.46% 80.00% 70.25% 80.00% 100.00% 69.35% 100.00%

Geodesic 93.75% 98.46% 80.00% 69.63% 78.33% 100.00% 97.58% 100.00%

Mean Distance 94.79% 98.46% 78.18% 74.23% 87.50% 100.00% 68.55% 100.00%

Table 6: The Grassmann similarity measures between subspaces on a Grassmann

manifold. The first group shows similarity measures where each test action sample is a

unique point on a Grassmann manifold and there is one principal angle between each

subspace. The second group shows the similarity measures when test samples of the same

class are grouped and represented as a single point on a Grassmann space. There are

multiple principal angles between subspaces for the second group.

Table 6 shows the Grassmann similarity measures using the techniques outlined in

Equations (34) through (40). All training inputs of the same action class represent a single point

on a Grassmann space. This means that the number of training subspaces 𝑚𝑡𝑟𝑎𝑖𝑛 is equal to the

number of action classes 𝑝. For testing, two separate experiments were run. In the first case,

each test sample is treated as a single point on a Grassmann space and labelled as “Single”. This

means that the number of testing subspaces 𝑚𝑡𝑒𝑠𝑡 is equal to the number of test samples 𝑛,

(𝑚𝑡𝑒𝑠𝑡 = 𝑛). In the second experiment, all test inputs of the same class were grouped into one

subspace and labelled as “All” (𝑚𝑡𝑒𝑠𝑡 ≪ 𝑛). This is ideal for systems where multiple test

samples are classified simultaneously, such as multiple views, multiple trials of an unknown

action, or multiple face images of a single unknown subject.

Given Equations (34) through (40) for all experiments in the “Single” setup, there is exactly

one principal angle since each subspace 𝒀𝐷×𝑞 has only one test sample (𝑞 = 1). With exactly

86 | P a g e

one principal angle between subspaces, all Grassmann measures will have equivalent

classification results. The ATT and Yale Extended B dataset have the highest classification

accuracies. The ATT dataset is fairly clean with 10 similar face images per subject for 40

subjects. The Yale Extended B dataset has a high amount of face images per subject and only 38

subjects. The LTP descriptor for face recognition is clearly capable of representing face images

in a discriminative manner. The LFW dataset is more challenging because of the uncontrolled

environment for capturing the face images off of the web with a larger amount of test subjects.

The WVU dataset has the lowest classification accuracies for the action datasets which is

attributed to the high levels of noise due to lighting inconsistencies and multi-view

synchronization issues.

For the “All” setup, classification accuracies increase in comparison to the “Single” setup.

This indicates that Grassmann learning does fill in missing data through linear spanning and is

more robust when the number of points on a Grassmann manifold is small and the number of

samples representing those points is large. Metrics that classify well on the i3DPost dataset

utilize all principal angles and a similar pattern emerges with the IXMAS and WVU datasets

indicating that the metrics have a good balance of robustness to noise and class clustering. The

minimum correlation metric performs best on the MSRAction3D, MSRGesture3D, and LFW

datasets indicating that the largest principal angle is the most effective for classification. This

means that the input data of these datasets are highly clustered. The Yale Extended B dataset

classifies perfectly independent of the Grassmann measure being evaluated. This is attributed to

the large Grassmann subspaces that represent a single point on a Grassmann space. The larger

the subspaces become, the more discriminative the distances between other classes. The ATT

87 | P a g e

dataset classifies the worse for the max correlation metric. This indicates that the distribution of

LTP image data are highly discriminative.

This evaluation identifies that not one specific Grassmann measure is ideal for all datasets.

For example, the minimum correlation measure is ideal for the i3DPost, MSRAction3D,

MSRGesture3D, and LFW datasets. However, the minimum correlation measure is also the

worse classifier for the IXMAS dataset. Grassmann measures are dependent on the distribution

of the high dimensional data [82]. Kernels can be standardized and therefore kernelization

provides a way of avoiding functions based on principal angles that are dependent on data

distributions and can be processed using kernel-based methods [89]. This is a motivation to

apply kernelization and evaluate GSR and GRASP.

7.4 Grassmann Kernel Standardization

As previously mentions, data distributions affect the classification accuracies of geodesic metrics

in a Grassmann space. The next contribution in this dissertation is the proposal and justification

Grassmann kernel standardization to ignore variations between individual Grassmann points

when subspace sizes vary. Assume Grassmann kernels follow a Gaussian distribution 𝑓(𝒙) =

1

𝜎√2𝜋
𝑒
−
(𝒙−𝜇)2

2𝜎2 as shown in the red curve of Table 7. A kernel would have a non-zero mean𝜇 and

a non-unitary standard deviation 𝜎. If a kernel follows a standard normal distribution 𝑓(𝒙) =

1

√2𝜋
𝑒−

𝒙2

2 as shown in the blue curve, data would be centered with 𝜇 = 0 and 𝜎 = 1.

88 | P a g e

No Normalization 𝑓(𝒌) = 𝒌

Zero mean 𝑓(𝒌) = 𝒌 − 𝜇

Zero mean and unit variance 𝑓(𝒌) =
𝒌 − 𝜇

𝜎

Table 7: Centered and Standard Normal Distributions

In Figure 7-14 the 3D embeddings of four 3D shapes with corresponding 2D embeddings of

zero mean is shown. The result is the centered distribution of the data.

Figure 7-14: GRASP embeddings after normalizing the Grassmann kernels (𝝁 = 𝟎)

89 | P a g e

In the Figure 7-15 the identical distribution after centering the Grassmann kernels and

dividing by the standard deviation to standardize the kernel are shown. The embedding look

identical except the embedding are centered and scaled.

Figure 7-15: GRASP embedding after normalizing the Grassmann kernels and (𝝁 = 𝟎, 𝝈 =
𝟏)

Kernel standardization on GRASP and GSR allows for learning algorithms such as spectral

regression and sparse representations to be effective while ignoring Grassmann point distribution

variations. Figure 7-16 and Figure 7-17 presents results on the impact of kernel normalization on

GRASP and GSR and the classification accuracies when varying training and testing subspace

sizes evaluated on the multi-view datasets. The patterns for GRASP and GSR are consistent for

all evaluated datasets. When centering the Grassmann kernels without dividing by the standard

deviation, the best classification accuracy is achieved when maintaining a consistent subspace

90 | P a g e

size for the training and testing kernels. Meanwhile, as the subspace sizes vary between the

training and testing kernels, a significant drop in classification accuracy is observed. For

example, the IXMAS dataset has a classification accuracy of 90.85% when the subspace sizes

are equal to 3. However, when the training subspace size is set to 110 and testing subspace size

is set to 3, the classification accuracy drops down to 7.69%. This setup is suitable for

applications such as multi-view surveillance systems or systems where there are identical

subspace sizes for training and testing. When centering the Grassmann kernels while dividing by

the standard deviation, the best classification accuracies are obtained when the training subspace

sizes are large. Results for the i3DPost dataset show an 86.72% classification accuracy when

training subspace sizes are 56 samples per subspace while testing subspace sizes are one sample

per subspace.

𝑓(𝑘) = 𝑘 − 𝜇 𝑓(𝑘) =
𝑘−𝜇

𝜎

Figure 7-16: i3DPost GRASP (top row) and GSR (bottom row) classification accuracies

without (left) and with (right) kernel standardization.

91 | P a g e

𝑓(𝑘) = 𝑘 − 𝜇 𝑓(𝑘) =
𝑘−𝜇

𝜎

Figure 7-17: IXMAS GRASP (top row) and GSR (bottom row) classification accuracies

without (left) and with (right) kernel standardization.

This interesting observation suggests that Grassmann methods do not need to be restricted to

fixed subspace sizes if Grassmann kernels are standardized. This also supports the motivation

for using Grassmann kernel based manifold learning over Grassmann metrics in a Grassmann

space. Equations (34) through (39) presented Grassmann metrics and each metric has their

benefits and drawbacks based on the level of noise and the data distribution. The utilization of

Grassmann kernels which can be standardized overcomes the Grassmann metric dependencies on

noise and distributions. The manipulation of Grassmann kernels in this manner would be ideal

for applications where test samples can vary such as single view surveillance systems or 3D

action classification while maintaining very large training subspace sizes.

92 | P a g e

7.5 Sparse Representation Analysis

Figure 7-18 shows the sparse coefficients and corresponding residuals determined through sparse

representations on the i3DPost, MSRAction3D, and LFW datasets for the classification of one

test sample.

Figure 7-18: The coefficient vectors and corresponding residuals determined through

Sparse Representations for one test sample from the i3DPost, MSRAction3D, and LFW

datasets. The test samples were Walk for i3DPost, Wave 1 for MSRAction3D, and Subject 1

for LFW.

93 | P a g e

The non-zero coefficients from the sparse coefficient vector were used to reconstruct a

sample from each class in the dictionary. The residuals are calculated using Equation (49) . For

each evaluation the first action class or face image was used for testing. This means the smallest

residual is expected to be the first class from each dataset.

Figure 7-18 shows that all classes were correctly classified since the smallest residual from

each bar chart is the first class. For i3DPost, Walk has the smallest residual from all the action

classes with Walk/Sit trailing as the second smallest. We also observe that the largest residual is

Sit/Stand which can identify the most orthogonal class to the Walk action. Similar patterns can

be observed with the MSRAction3D dataset. Wave 1 which is a high arm wave was correctly

classified and the second trailing action is Wave 2 which is a horizontal arm wave. Sparse

representations identify that the most orthogonal action to the high arm wave is Punch 1 which is

a forward punch. For the LFW dataset, the residuals identify subject 1 to be correctly classified.

The trailing subject was subject 43 and the most orthogonal subject was subject 62. Figure 7-19

shows the face images corresponding to the subject identifiers. The face on the left is the test

image. The face image in green to the right shows that the test image was correctly classified to

the right subject. Subject 43 is the second most similar subject to subject 1. Subject 62 in red is

the most different subject to the test subject.

Figure 7-19: The face image test sample is shown on the left. Sparse representations

identify subject 1 to be the most similar, subject 43 to be the second most similar and

subject 62 to be the most different.

94 | P a g e

The residuals for each evaluation are very good at identifying classes and orthogonal

classes. However, the processing times needed to obtain the coefficient vectors and apply

minimum reconstruction are extremely slow as indicated by Figure 7-18. This is because the

coefficient vector sizes are equal to the number of test inputs for each experiment and with

exponential time complexities the processing time is extremely high.

7.6 Grassmannian Sparse Representation Analysis

Figure 7-20 shows the sparse coefficients and corresponding classification times for one subject

in the same datasets of Section 7.5 using GSR. All samples of a single class are represented as a

single point on a Grassmann space, resulting in coefficient vectors of a size equal to the number

of classes. GSR eliminates the need for additional mapping between a large coefficient vector to

its corresponding action class and as a result the minimum reconstruction method is simplified.

Although still not ideal for real-time performance, the performance and classification accuracies

have considerably improved when comparing to sparse representations on high dimensional data.

We see that the i3DPost evaluation took 1822.55 seconds to process using sparse representations

and only 0.56 seconds to process through GSR. Similar speed ups can be observed on the

remaining datasets.

Another observation is the residuals determined through GSR. The residuals for each

evaluation are more apparent for identifying a class and are stronger indicators of the most

suitable class. The remaining classes have similar and higher residuals. This is because the

Grassmann learning component of GSR has managed to find orthonormal mappings that promote

within class clustering and between-class discrimination. This demonstrates that GSR is capable

of reducing coefficient vectors while maintaining high classification accuracy.

95 | P a g e

Figure 7-20: The calculated coefficient vector representations and classification times

through GSR for one subject of each action dataset and one fold of the LFW face dataset.

The coefficient vector sizes have reduced down to the number of classes in comparison to

sparse representation classification. The datasets analyzed are the i3DPost, MSRAction3D,

and LFW datasets.

7.7 Classification and Performance Results and Analysis

Experiments based on Euclidean ℓ-2 norm, PCA, LDA, LPP, NPE, and Spectral Regression were

classified using k-NN with k=3. Combinations of Grassmann kernel methods including GPCA

96 | P a g e

[84], GLDA [82], GLPP [79] [81], and GRASP [116] were classified using k-NN with k=1,

since each Grassmann point represents a single class. Sparse representations and GSR [117]

were classified using minimum reconstruction. Computational processing times for each

algorithm were also captured. All action experiments were based on leave one subject out cross

validation (LOOCV). All face recognition experiments were evaluated using 2-fold cross

validation (2FCV). In all experiments, all inputs from each database were used unless otherwise

noted in the descriptions of the datasets.

The classification accuracy results shown in Table 8 and Figure 7-21 show experimental

classification results using various algorithms on the three multi-view datasets, two 3D datasets,

and three face datasets. The “Single” and “All” references identify whether test samples for

𝑚𝑡𝑒𝑠𝑡 were treated as single subspaces (𝑚𝑡𝑒𝑠𝑡 = 1) or subspaces composed of all available test

samples associated with a class. The latter is ideal for systems where multiple test samples are

classified simultaneously, such as multiple views or multiple trials of an unknown action, or

multiple samples of the sane unknown face.

Method i3DPost IXMAS WVU

MSR

Action3D

MSR

Gesture3D
ATT LFW

Yale

Extended B

k-NN (k=3) 79.30% 63.22% 40.87% 65.93% 74.11% 92.00% 31.54% 94.16%

PCA 79.30% 66.17% 42.94% 66.12% 74.11% 92.00% 31.54% 94.16%

LDA 78.78% 57.91% 38.54% 76.00% 82.14% 99.50% 43.20% 92.98%

LPP 80.73% 64.72% 41.67% 76.91% 78.87% 99.50% 38.65% 99.14%

NPE 73.96% 63.76% 42.10% 77.03% 81.55% 99.00% 21.78% 96.63%

Sparse Rep. 79.56% 74.28% 48.41% 79.54% 83.33% 99.25% 69.53% 99.35%

Spectral Reg. 77.99% 57.71% 38.82% 77.00% 80.06% 99.00% 43.97% 99.02%

S
in

g
le

GPCA 90.36% 44.94% 63.14% 76.07% 87.50% 99.00% 55.09% 98.85%

GLDA 90.76% 78.01% 62.66% 53.70% 86.90% 99.00% 31.93% 98.76%

GLPP 90.36% 79.38% 63.14% 76.07% 87.80% 99.00% 55.09% 98.85%

GSR 91.41% 79.19% 60.29% 76.17% 87.20% 99.00% 53.92% 98.85%

GRASP 90.49% 80.76% 63.76% 75.04% 88.39% 99.00% 57.53% 98.89%

A
ll

GPCA 92.71% 77.69% 80.00% 72.54% 85.83% 100.00% 66.94% 100.00%

GLDA 90.63% 90.77% 80.00% 57.70% 85.83% 100.00% 58.87% 100.00%

GLPP 92.71% 93.08% 80.00% 72.54% 85.83% 100.00% 67.74% 100.00%

GSR 95.83% 96.92% 90.91% 77.17% 87.50% 100.00% 96.77% 100.00%

GRASP 94.79% 97.69% 81.82% 75.13% 87.50% 100.00% 83.87% 100.00%

Table 8: The classification accuracies for various algorithms evaluated on multi-view action datasets, 3D

action datasets, and face recognition datasets.

97 | P a g e

Figure 7-21: Classification charts for standard learning, Grassmann learning with single test inputs, and

Grassmann learning with all test inputs of one class.

In Table 8, the best classification accuracies for each dataset are highlighted in bold for test

subspaces representing a single action input (labeled Single) and for an entire set of actions

(labeled All). Visualization of these results is shown in Figure 7-21. The IXMAS, WVU, and

LFW datasets are clearly the most challenging datasets to evaluate. The IXMAS dataset is

challenging because there are more classes than subjects. The WVU dataset is challenging for

the same reason and because of high levels of noise due to lighting inconsistencies and multi-

view synchronization issues. The LFW dataset is challenging because of the high amount of

unconstrained face images collected from different sources off the web. The results from non-

Grassmann based methods show that sparse representations are the most effective for high

98 | P a g e

classification results with GSR accurately classifying 96.77% on the LFW dataset. This is a

12.9% lead over GRASP and a 29.03% leaver over GLPP.

The Grassmann based algorithms are much better at classifying actions and recognizing

faces than the non-Grassmann algorithms, with GRASP and GSR performing at or near the top

for the single and all cases. All Grassmann based methods have very similar classification

accuracies when test subspaces are represented as single inputs but there are cases when certain

methods classify poorly. GPCA is a poor learning method for the IXMAS dataset while GLDA

is a poor learning method for the MSRAction3D and LFW datasets. When test subspaces

represent an entire class as a point on a Grassmann space, GRASP and GSR have an advantage

over GPCA and the graph embedding frameworks. For the less challenging datasets including

ATT and Yale Extended B, all standard learning and Grassmann methods classify extremely

well. GRASP has a slight edge over GSR on the IXMAS dataset. GRASP and GSR classify the

same on the MSRGesture3D dataset. However, GSR has shown to have the best classification

accuracy for the most challenging datasets including WVU and LFW.

Figure 7-22 and Figure 7-23 shows the confusion matrices with single test subspaces and all

test samples of one class in a subspace. The GSR classification results are shown on the i3DPost

dataset and the GRASP classification results are shown on the IXMAS dataset. The confusion

matrices identify high within-class clustering and high between class discrimination. For the

GSR results in the “single” case, we see acceptable levels of errors. For example, Walk is

misclassified 11 times with Walk-sit. Run-jump-walk is misclassified 8 times with Walk. When

a Grassmann point represents an entire test class in the “all” case, classification errors are

minimal. Factoring in that this system is classifying actions from multiple views proves that

GSR is robust, efficient, and accurate. Similar patterns are noticeable on the i3DPost dataset

99 | P a g e

using GRASP. In the “single” case, Scratch Head is confused 19 times with Wave. Punch is

confused 15 times with Point. In the “all” case classification errors are minimized.

Figure 7-22: Confusion matrices that show the classifications made through GSR on the

i3DPost dataset. The classifications were made with single test subspaces (top) and all test

elements of one class in one single subspace (bottom).

100 | P a g e

Figure 7-23: Confusion matrices that show the classifications made through GRASP on the

XIMAS dataset. The classifications were made with single test subspaces (top) and all test

elements of one class in one single subspace (bottom).

Table 9 shows the execution performance times for all algorithms on all datasets. The

processing times in green identify the fastest processing times for each group of evaluations.

The processing times in red identify the slowest processing times for each group of evaluations.

Although sparse representations with minimum reconstruction are very good for classification

101 | P a g e

they are also the slowest performance with estimated exponential complexities. When sparse

representations are applied in a Grassmann framework through GSR, classification times were

drastically improved to exceed standard classification methods. The drastic classification

improvement can be attributed to the sizes of the sparse coefficient vectors. Sparse

representations on individual test samples mean larger sparse coefficient vectors. The larger the

coefficient vectors, the more likely classification errors can be made due to the extreme high

dimensions of input samples and variability between inputs. Through Grassmann learning entire

classes can be embedded as single points in a Grassmann space. This promotes within class

clustering and between class discrimination. When combined with the sparse representation

framework, classification accuracy and performance is improved.

Classification results through GSR are still not fast enough for real-time applications.

Figure 7-24 shows the performance charts for various Grassmann learning methods where GSR

is clearly slower. GRASP was proposed as a fast performing classification framework to

overcome the performance drawbacks of GSR. Spectral regression frameworks tend to be the

fastest by avoiding eigen-decomposition. Manifold learning with Grassmann frameworks show

considerable improved processing times compared to standard methods. This is because the

points embedded on a Grassmann manifold represent trained action subspaces rather than

individual training samples. In both the single element subspaces and all element subspaces,

GRASP has a slight edge for computational performance over graph embedding frameworks.

However, because graph based learning and spectral regression are being applied on Grassmann

kernels which have already reduced the high dimensional data of the original inputs, the

computational advantage of GRASP is relatively small. A more significant improvement in

performance can be observed as the number of classes increase.

102 | P a g e

Method
i3DPost

(sec)

IXMAS

(SEC)

WVU

(sec)

MSR

Action3D

(sec)

MSR

Gesture3D

(sec)

ATT

(sec)

LFW

(sec)

Yale

Extended B

(sec)

k-NN (k=3) 407.59 1440.09 3585.82 216.88 78.45 3.63 603.41 448.02

PCA 93.13 266.71 133.05 37.39 25.58 0.53 245.48 393.30

LDA 20.61 49.05 27.09 10.83 6.21 0.29 6.34 22.91

LPP 21.65 50.28 26.38 9.99 6.83 0.33 5.95 24.55

NPE 23.29 52.66 19.07 8.66 6.48 0.38 6.19 21.89

Sparse Rep. 20015.38 22573.86 22336.66 4024.79 2300.78 70.57 5188.19 2313.62

Spectral Reg. 11.62 19.22 16.74 6.17 4.03 0.25 4.12 17.54

S
in

g
le

GPCA 0.14 0.29 0.41 0.16 0.17 0.31 0.90 1.11

GLDA 0.13 0.35 0.31 0.16 0.09 0.08 0.69 1.24

GLPP 0.13 0.33 0.32 0.16 0.09 0.08 0.54 1.57

GSR 10.33 60.95 17.86 26.52 3.74 3.94 103.47 52.96

GRASP 0.13 0.24 0.30 0.09 0.06 0.08 0.88 1.22

A
ll

GPCA 0.03 0.07 0.02 0.07 0.04 0.06 0.10 0.06

GLDA 0.03 0.06 0.04 0.09 0.04 0.02 0.07 0.03

GLPP 0.03 0.05 0.06 0.10 0.04 0.02 0.05 0.13

GSR 3.01 8.64 3.05 10.27 1.51 2.24 15.24 4.83

GRASP 0.02 0.03 0.01 0.04 0.03 0.02 0.07 0.05

Table 9: The classification performance in seconds for various algorithms evaluated on

multi-view action datasets, 3D action datasets, and face datasets.

Figure 7-24: Performance charts for Grassmann learning with single test inputs, and

Grassmann learning with all test inputs of one class.

103 | P a g e

When comparing GSR and GRASP against each Grassmann metric in Table 6, we see that

GSR and GRASP are consistent in meeting classification accuracies depending on the

distribution of the data in the datasets. For example, when comparing the minimum correlation

metric results against GSR, we see that IXMAS classification through GSR has improved by

7.69% while meeting or slightly trailing in the other datasets. Meanwhile metrics that classify

well on the IXMAS dataset classify extremely poor on the LFW dataset. Kernelization through

GSR and GRASP eliminate the dependency on the data distributions by projecting Grassmann

points onto a projective space where kernel standardization can be applied. Overall, Grassmann

measures are ideal when data distribution and noise levels are known while GSR is ideal when

data distribution and noise levels are unknown.

7.8 Comparison to State-Of-The-Art Methods

In this section we compare the classification accuracies of GSR and GRASP against state-of-the-

art methods on the i3DPost, IXMAS, MSRAction3D, MSRGesture3D, ATT, and YALE

datasets. The WVU dataset has not been thoroughly evaluated by many state-of-the-art methods

and the few papers that have evaluated this dataset have not provided sufficient information

regarding experimental setup to allow for a direct comparison. The intended use of LFW, as

presented by Huang et al. [122], is for evaluating the matching of face pairs. Given a pair of face

images, methods which use LFW output match probabilities rather than hard decisions. GSR

and GRASP require training sets and could not be accurately compared to the LFW

methodology.

GSR and GRASP results are presented in the “Single” and “All” Grassmann subspace

configurations. The most comparable configuration to the state-of-the-art methods is the

“Single” Grassmann subspace configuration because individual test samples are compared

104 | P a g e

against a trained set rather than groups of unknown test samples of the same class being

compared against a trained set. All results identified in bold indicate the top performing methods

excluding results presented for the “All” Grassmann subspace configurations which are expected

to classify better than the “Single” Grassmann subspace configuration.

7.8.1 i3DPost Multi-View Human Action Dataset (i3DPost)

For the i3DPost dataset, all comparisons are based on LOOCV. Gkalelis et al. [27] introduced

the i3DPost dataset and applied fuzzy vector quantization with linear discriminant analysis for

human movement recognition and report their results when classifying five actions. Iosifidis et

al. [30] used fuzzy vector quantization with artificial neural networks and fuzzy vector

quantization with linear discriminant analysis [29] for action recognition evaluated on eight

actions. Azary and Savakis [50] used sparse representations on motion history surfaces with a

minimum reconstruction residual classifier and ran experiments on variations of action subsets.

Holte et al. [33] used view-invariant 3D motion based vector fields from 3D Motion Context

(3D-MC) and the Harmonic Motion Context (HMC) as action representations. Karali and

ElHelw [124] combine motion history of skeleton volumes and temporal change in bounding

volume utilizing logistic model trees, Mahalanobis distances, and linear discriminant analysis.

Action Subset

Label
Action List

All Actions
Walk, Run, Jump, Bend, Hand-wave, Jump in place, Sit-stand up, Run-fall, Walk-sit, Run-jump-

walk, Handshake, Pull

11 Actions
Walk, Run, Jump, Bend, Hand-wave, Jump in place, Sit-stand up, Run-fall, Walk-sit, Run-jump-

walk, Handshake

10 Actions
Walk, Run, Jump, Bend, Hand-wave, Jump in place, Sit-stand up, Run-fall, Walk-sit, Run-jump-

walk

8 Actions Walk, Run, Jump, Bend, Hand-wave, Jump in place, Sit-stand up, Run-fall

6 Actions Walk, Run, Jump, Bend, Hand-wave, Jump in place

5 Actions (E1) Walk, Run, Jump, Bend, Jump in place

5 Actions (E2) Walk, Jump, Bend, Hand-wave, Jump in place

Table 10: Action subsets for the i3DPost dataset as reported in the works of [27], [29], [30], [33], [50], and

[124].

105 | P a g e

Method All

Actions

11

Actions

10

Actions
8

Actions

6

Actions

5

Actions

(E1)

5

Actions

(E2)

GSR (Single) 91.41% 88.92% 87.50% 91.60% 92.71% 92.50% 97.19%

GRASP (Single) 90.49% 90.06% 90.47% 92.97% 93.49% 93.13% 96.25%

GSR (All) 95.83% 89.77% 88.75% 92.19% 95.83% 95.00% 100%

GRASP (All) 94.79% 96.59% 96.25% 90.63% 95.83% 97.50% 100%

Gkalelis et al. [27] 90.00%

Iosifidis et al. [30] 95.50%

Azary and Savakis [50] 87.37% 86.72% 93.16% 92.97% 89.06%

Holte et al. [33] 80.00% 89.58% 97.50%

Karali and ElHelw [124] 89.00%

Iosifidis et al. [29] 90.88%

Table 11: The classification results of state-of-the-art approaches in the i3DPost dataset.

The subset action list is shown in Table 10 and the corresponding classification results are

shown in Table 11. The comparison shows that Grassmann based methods classify better except

for the eight action experimental setup and the five action experimental setup (E2). For the eight

action experimental setup, Iosifidis et al. [30] outperformed GSR and GRASP with fuzzy vector

quantization and artificial neural networks. Holte et al.’s [33] 3D-MC and HMC methods

outperformed GSR and GRASP by 0.31% and 1.25% respectively.

7.8.2 INRIA Xmas Motion Acquisition Sequences (IXMAS)

For the IXMAS dataset, all comparisons are assumed to be based on LOOCV. Wu et al. [125]

uses multiple kernel learning with augmented features (AFKML) to fuse spatio-temporal and

local appearance features. Liu and Shah [126] used maximization of mutual information (MMI)

clustering with support vector machines. Yan et al. [127] build 4D action feature models to

encode shapes of actors from multiple views. Orrite et al. [128] used histograms of normalized

optical flow. Karali and ElHelw’s [124] method classifies best when comparing against “Single”

Grassmann subspace configurations. However, their results exclude an entire action set of

“throw”.

106 | P a g e

Method Number of

Views

Excluded Actions Classification

Results

GSR (Single) 4 Excludes under hand throw 79.19%

GRASP (Single) 4 Excludes under hand throw 80.76%

GSR (All) 4 Excludes under hand throw 96.92%

GRASP (All) 4 Excludes under hand throw 97.69%

Wu et al. [125] 4 Excludes all throw 88.20%

Liu and Shah [126] 4 Excludes underhand throw 82.80%

Yan et al. [127] 4 Excludes throw and point 78.00%

Karali and ElHelw [124] Unknown Excludes all throw 88.48%

Orrite et al. [128] Unknown Unknown 73.30%

Table 12: The classification results of state-of-the-art approaches in the IXMAS dataset.

7.8.3 Microsoft Research Action 3D Dataset (MSRAction3D)

For the MSRAction3D dataset, the list of action subsets used in the experiments are presented in

Table 13. These subsets have been consistently used as baselines in existing literature. Subset 1

and Subset 2 group actions with similar characteristics. Subset 3 groups actions that are

dissimilar. The full set is introduced in this dissertation as a new baseline and includes all

actions.

Subset 1 Subset 2 Subset 3 Full Set
Hor. Arm Wave

Hammer

Forward Punch

High Throw

Hand Clap

Bend

Tennis Serve

Pickup & Throw

High Arm Wave

Hand Catch

Draw X

Draw Tick

Draw Circle

Two Hand Wave

Forward Kick

Side Boxing

High Throw

Forward Kick

Side Kick

Jogging

Tennis Swing

Tennis Serve

Golf Swing

Pickup & Throw

All Actions

Table 13: Action subsets for the MSRAction3D dataset.

To compare against state-of-the-art results, the same experimental setup is carried out,

where twenty actions were divided into three subsets consisting of eight actions. The Subsets 1

and 2 were designed to group activities with similar movements while Subset 3 was designed to

group actions that are more dissimilar. As in the work of Li et al. [36] and many existing

publications, three types of tests were conducted as follows: training with 1/3 of the training

samples and testing with 2/3 of the samples, training with 2/3 of the samples and testing against

107 | P a g e

1/3, and training with half of the samples and testing against the other half. Cross validation was

not used, and without knowing which samples were used for testing and training for each test, we

compare against the same experimental setup with random samples selected for training and

testing. However, LOOCV results are also presented where each test subject is validated against

the remaining subjects and repeated for all subjects until all subjects have been used for training

and testing. Since the average classification results over the three subsets are commonly

presented, the average results are also presented for GSR and GRASP.

The work of Li et al. [36] use action graphs to model the dynamics of the actions and a Bag

of Features (BoF) to encode the action and classify test samples against a training set. Yang et

al. [129] extracted histograms of oriented gradients (HOG) from depth motion maps. Yang and

Tian [130] propose applying PCA and normalization computed channels of depth data which

they call Eigenjoints. Wang et al. [131] present a pose estimation algorithm and exploit spatio-

temporal pose structures.

Table 14 presents classification results when 1/3 of the data samples were trained and 2/3 of

the data samples were tested. The results indicate that the method proposed by Xia et al. [132] is

the most effective. Their approach uses histograms of kinematic joint positions which are

projected into a lower dimensional space using linear discriminant analysis and classified based

on visual word clustering.

Subset Subset 1 Subset 2 Subset 3
Average of

Subsets[1 2 3]
Full Set

GSR (Single) 96.12% 91.03% 93.65% 93.60% 86.36%

GRASP (Single) 93.75% 92.57% 92.84% 93.05% 87.52%

GSR (All) 100% 100% 100% 100% 100%

GRASP (All) 100% 100% 100% 100% 100%

Li et al. [36] 89.50% 89.00% 96.30% 91.60% N/A

Yang and Tian [130] 94.70% 95.40% 97.30% 92.47% N/A

Yang et al. [129] 97.30% 92.20% 98.00% 95.83% N/A

Xia et al. [132] 98.47% 96.67% 93.47% 96.20% N/A

Table 14: The classification results of state-of-the-art approaches on the MSRAction3D dataset with 1/3

randomly trained samples, 2/3 randomly tested samples.

108 | P a g e

Table 15 presents classification results when 2/3 of the data samples were trained and1/3 of

the data samples were tested. GRASP classified with a 100% accuracy on Subset 1 while Xia et

al. [132] classifies the best for Subset 2 and Yang et al. [129] classifies the best on Subset 3.

Yang and Tian [130] maintain the best balance of classification results on all three subsets with

an average of 97.77%. When comparing the average results for this experimental setup, GRASP

and GSR slightly trail the leading methods by 0.51% and 0.65% respectively.

Subset Subset 1 Subset 2 Subset 3
Average of

Subsets[1 2 3]
Full Set

GSR (Single) 97.92% 95.42% 98.44% 97.26% 94.00%

GRASP (Single) 100% 92.92% 98.44% 97.12% 93.54%

GSR (All) 100% 100% 100% 100% 100%

GRASP (All) 100% 100% 100% 100% 100%

Li et al. [36] 93.40% 92.90% 96.30% 94.20% N/A

Yang and Tian [130] 97.30% 98.70% 97.30% 97.77% N/A

Yang et al. [129] 98.70% 94.70% 98.70% 97.37% N/A

Xia et al. [132] 98.61% 97.92% 94.93% 97.15% N/A

Table 15: The classification results of state-of-the-art approaches on the MSRAction3D dataset with 2/3

randomly trained samples, 1/3 randomly tested samples.

Table 16 presents classification results when 1/2 of the data samples were trained and1/2 of

the data samples were tested. It is observed that for this configuration GRASP and GSR classify

the best with 95.63% and 95.13% respectively.

Subset Subset 1 Subset 2 Subset 3
Average of

Subsets[1 2 3]
Full Set

GSR (Single) 96.58% 95.31% 93.49% 95.13% 92.72%

GRASP (Single) 97.72% 94.35% 94.62% 95.63% 91.23%

GSR (All) 100% 100% 100% 100% 100%

GRASP (All) 100% 100% 100% 100% 100%

Li et al. [36] 72.90% 71.90% 79.20% 74.67% N/A

Yang and Tian [130] 74.50% 76.10% 96.40% 82.33% N/A

Yang et al. [129] 96.20% 84.10% 94.60% 91.63% N/A

Wang et al. [131] Not Provided Not Provided Not Provided 90.22% N/A

Ellis et al. [133] Not Provided Not Provided Not Provided 65.70% N/A

Xia et al. [132] 87.98% 85.48% 63.46% 78.97% N/A

Table 16: The classification results of state-of-the-art approaches on the MSRAction3D dataset with 1/2

randomly trained samples, 1/2 randomly tested samples.

Table 17 presents classification results using LOOCV and only comparing GSR and

GRASP. This is because the cross validation method is not presented in any existing literature

109 | P a g e

on the MSRAction3D dataset. However, the results are important because they identify that

action recognition is more challenging when the same subjects are excluded from the training

set. Table 14 through Table 16 show average classification results in the 90th percentile.

However, LOOCV proves to be more challenging with Grassmann based classification results in

the 80th percentile range. GSR proves to be more effective than GRASP for the subsets and

when evaluating the full set of all actions.

Subset Subset 1 Subset 2 Subset 3
Average of

Subsets[1 2 3]
Full Set

GSR (Single) 81.67% 81.15% 87.88% 83.57% 76.17%

GRASP (Single) 80.53% 80.35% 86.74% 82.54% 75.04%

GSR (All) 78.45% 80.72% 89.50% 82.89% 77.17%

GRASP (All) 76.44% 82.81% 88.96% 82.74% 75.13%

Table 17: The classification results of state-of-the-art approaches on the MSRAction3D dataset using leave one

subject out cross validation.

7.8.4 Microsoft Research Gesture3D Dataset (MSRGesture3D)

For the MSRGesture3D dataset, all ASL gestures are evaluated using LOOCV and reported in

Table 18. The results indicate that Grassmann learning in the “Single” and “All” Grassmann

subspace configurations trail state-of-the-art approaches between 0.5% to 3.33%. The second

leading method is by Zhang and Tian [134] who present edge enhanced depth motion maps that

can be classified with kernelized support vector machines. The leading method is presented by

Oreifej and Liu [135] who present a 4D descriptor based on depth, time, and spatial coordinates

using histograms of normal orientations.

110 | P a g e

Subset All Gestures

GSR (Single) 87.20%

GRASP (Single) 87.50%

GSR (All) 87.20%

GRASP (All) 87.50%

Kurakin et al. [120] 87.70%

Wang et al. [136] 88.50%

Oreifej and Liu [135] 92.45%

Yang et al. [129] 89.20%

Zhang and Tian [134] 90.53%

Table 18: The classification results of state-of-the-art approaches on the MSRGesture3D dataset using leave

one subject out cross validation.

7.8.5 Database of Faces from AT&T Laboratories (ATT)

For the ATT dataset, 2FCV results are reported for GSR and GRASP and compared against the

state-of-the-art methods listed in Table 19. The “Single” Grassmann subspace configuration of

GSR and GRASP outperform all methods by a range of 12.36% to 0.13%. The closest

competitive method is presented by Faraji and Qi [137] who present neutrosophic set

preprocessing for noise removal and facial feature enhancement along with kernel Fisher linear

discriminant analysis (KFLDA) and Tan and Triggs (TT) discriminant method. The next closest

competitive method is reported at 98.53% by Liu et al. [138] using a method called spherical

marginal Fisher analysis. This method is an extension of marginal Fisher analysis.

Subset
Classification

Results

GSR (Single) 99.00%

GRASP (Single) 99.00%

GSR (All) 100%

GRASP (All) 100%

Yang et al. [139] 96.00%

Cai et al. [140] 96.35%

Faraji and Qi [137] 98.87%

Xu et al. [141] 96.50%

Gumus et al. [142] 95.30%

Choi et al. [143] 86.64%

Fernandes and Bala [144] 96.00%

Liu et al. [138] 98.53%

Table 19: The classification results of state-of-the-art approaches on the ATT dataset using 2-fold cross

validation.

111 | P a g e

7.8.6 Extended Yale Face Database B (YALE)

For the YALE dataset, 2FCV results are reported for GSR and GRASP and compared against the

state-of-the-art methods listed in Table 20. The results indicate that GRASP is the top performer

with GSR trailing by only 0.04%. The closest competitive method is presented by Fernandes

and Bala [144] with a classification accuracy of 97.50% using regularized linear discriminant

analysis with probabilistic reasoning models. Cai et al. [140] report classification results of

95.17% using orthogonal Laplacian-faces (OLF).

Subset
Classification

Results

GSR (Single) 98.85%

GRASP (Single) 98.89%

GSR (All) 100%

GRASP (All) 100%

Yang et al. [139] 84.24%

Cai et al. [140] 95.17%

Choi et al. [143] 82.13%

Fernandes and Bala [144] 97.50%

Liu et al. [138] 86.13%

Table 20: The classification results of state-of-the-art approaches on the YALE dataset using 2-fold cross

validation.

7.9 Benefits and Limitations of Grassmann Learning

As previously explained, there are many benefits to using Grassmann manifolds including

promoting high between-class discrimination and within-class clustering, computational

advantages, and accounting for missing information through linear spans of subspaces.

Grassmann learning can be used for various classification and recognition problems including

action, face, and object classification. Grassmann learning has proven to be effective when large

amounts of training information is available and subspaces are well represented by large amounts

of data samples on a Grassmann manifold. Grassmann learning is difficult to use in an

unsupervised framework without class labeling. A better understanding of data clustering on

112 | P a g e

Grassmann manifolds is necessary to explore and implement unsupervised Grassmann learning

methods. Grassmann learning has also shown to be less discriminative for large class systems

with subspaces represented by a small number of data samples.

113 | P a g e

8 Conclusions

The benefits of Grassmann learning for processing high dimensional data and easing

computation loads were explored. This dissertation began by discussing high dimensional

representations and radial distance surfaces were proposed. Such surfaces were found to be scale

invariant, localization invariant, and time invariant for multi-view action classification. This was

justified through manifold learning with LPP. However, the results indicate that the approach is

not robust in terms of promoting high between-class discrimination and requires an exhaustive

dictionary of action representations across multiple views. The next contribution in this

dissertation is the definition of motion history surfaces (MHS) and motion depth surfaces (MDS)

based on spatio-temporal considerations. These high dimensional surfaces were evaluated with

dimensionality reduction algorithms including PCA, LGE, Spectral Regression, Grassmann

learning, and Sparse Representations.

For sparse representations, we presented a novel approach to action classification of 3D

video sequences using sparse representations of spatio-temporal kinematic joint features and raw

depth features which are invariant to scale and localization. We created over-complete

dictionaries and took advantage of the sparse nature of the feature descriptors to classify actions

using least squares loss ℓ1-norm minimization with parameter regularization. We found that the

representations of raw depth features are naturally sparser than kinematic joint features as a

result of comparing ℓ1-norm minimization with ℓ2-norm nearest neighbor classification.

Understanding the benefits and drawbacks of these various learning techniques allowed for

the next major contribution of this dissertation with the GSR and GRASP frameworks. These

methods are intended to improve classification accuracies and improved run-time performance.

An extensive evaluation of GSR and GRASP was made for the applications of action

114 | P a g e

classification and face recognition. Beyond the GSR and GRASP framework, another major

contribution is the observation of standardizing Grassmann kernel distributions and its impact on

classification accuracies using GSR and GRASP. We discovered that standardization allows for

the best results when there is variation in subspace sizes between Grassmann points.

8.1 Future Work

There are many research opportunities to explore within the framework of GSR and GRASP

methodologies and beyond. Applications such as object recognition and super-resolution can be

explored through GSR and GRASP. However, GSR and GRASP are supervised learning

algorithms and are not suited for clustering analysis. Gruber and Theis [145] have found

improved clustering patterns when applying k-means clustering on Grassmann manifolds.

Similar and more recent work using k-means clustering on Grassmann manifolds was also

observed by Shirazi et al. [146] with a potential to improve action classification accuracies. The

understanding of clustering patterns on a Grassmann manifold can give rise to unsupervised

learning algorithms that can also account for high between class discrimination and high within-

class clustering. Grassmann learning can be incorporated into clustering methods such as MDS,

LLE, and Isomap for improved clustering and it would be interesting to see the benefits and

drawbacks of such Grassmann clustering approaches. Beyond Grassmann clustering, Grassmann

classifiers for face sequence recognition using SVM’s are presented in the work of Shigenaka et

al. [147]. Similarly, Vemulapalli et al. [148] present a general framework for SVM classifiers on

Riemannian manifolds using kernel learning approaches. There is opportunity to explore the

effectiveness of SVM classifiers on Grassmann manifolds.

115 | P a g e

9 References

[1] D. Weinland, R. Ronfard and E. Boyer, "A survey of vision-based methods for action

representation, segmentation and recognition," Computer Vision and Image

Understanding, 2011.

[2] H. Ghasemzadeh, V. Loseu and R. Jafari, "Collaborative Signal Processing for Action

Recognition in Body Sensor Networks: A Distributed Classification Algorithm Using

Motion Transcripts," in In Proc. 9th ACM/IEEE Int. Conf. Inf. Process., 2010.

[3] K. Raja, I. Laptev, P. Perez and L. Oisel, "Joint pose estimation and action recognition in

image graphs," in 18th IEEE International Conference on International Conference on

Image Processing (ICIP), 2011.

[4] D. Weinland, E. Boyer and R. Ronfard, "Action Recognition from Arbitrary Views using

3D Exemplars," in IEEE ICCV, 2007.

[5] S. Maji, L. Bourdev and J. Malik, "Action recognition from a distributed representation of

pose and appearance," in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2011.

[6] Y. Wang and Z. Zhang, "View-invariant action recognition in surveillance videos," in First

Asian Conference on Pattern Recognition (ACPR), 2011.

[7] H. Imtiaz, U. Mahbub and M. A. R. Ahad, "Action recognition algorithm based on optical

flow and RANSAC in frequency domain," in Proceedings of SICE Annual Conference

(SICE), 2011.

[8] M. A. R. Ahad, J. Tan, H. Kim and S. Ishikawa, "Action recognition by employing

combined directional motion history and energy images," in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2010.

[9] C. Harris and M. Stephens, "A combined corner and edge detector," in Alvey Vision

Conference, 1988.

[10] A. P. B. Lopes, R. S. Oliveira, J. M. d. Almeida and A. d. A. Araujo, "Comparing

alternatives for capturing dynamic information in Bag-of-Visual-Features approaches

applied to human actions recognition," in IEEE International Workshop on Multimedia

Signal Processing (MMSP), 2009.

[11] J. Liu, J. Yang, Y. Zhang and X. He, "Action Recognition by Multiple Features and Hyper-

Sphere Multi-class SVM," in 20th International Conference on Pattern Recognition

(ICPR), 2010.

[12] Y. Ke and R. Sukthankar, "PCA-SIFT: A more distinctive representation for local image

descriptors," in Computer Vision and Pattern Recognition, 2004.

[13] S. Azary and A. Savakis, "View Invariant Activity Recognition with Manifold Learning,"

in Advances in Visual Computing, Lecture Notes in Computer Science, Las Vegas, Nevada,

2010.

[14] M. S. Ryoo and J. K. Aggarwal, "Recognition of composite human activities through

context-free grammar based representation," in Computer Vision and Pattern Recognition,

2006.

[15] B. Yao and S.-C. Zhu, "Learning deformable action templates from cluttered videos," in

IEEE 12th International Conference on Computer Vision, 2009.

116 | P a g e

[16] A. F. Bobick and J. W. Davis, "The recognition of human movement using temporal

templates," Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 257-267, 2001.

[17] V. Krüger and D. Grest, "Using Hidden Markov Models for Recognizing Action

Primitives in Complex Actions," in Image Analysis, Springer Berlin Heidelberg, 2007, pp.

203-212.

[18] B. Chakraborty, O. Rudovic and J. Gonzalez, "View-Invariant Human-Body Detection

with Extension to Human Action Recognition using Component-Wise HMM of Body

Parts," in Automatic Face & Gesture Recognition, 2008.

[19] I. N. Junejo, E. Dexter, I. Laptev and P. Perez, "View-Independent Action Recognition

from Temporal Self-Similarities," in IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2011.

[20] B. Yao, Z. Liu, X. Nie and S.-C. Zhu, "Animated Pose Templates for Modelling and

Detecting Human Actions," in IEEE Pattern Recognition and Machine Intelligence, 2013.

[21] I. Laptev and T. Lindeberg, "Space-time interest points," in ICCV, Nice, France, 2003.

[22] J. Gall, A. Yao, N. Razavi, L. V. Gool and V. Lempitsky, "Hough Forests for Object

Detection, Tracking, and Action Recognition," in IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2011.

[23] I. Laptev, "On Space-Time Interest Points," in International Journal of Computer Vision,

2005.

[24] G. Willems, T. Tuytelaars and L. V. Gool, "An Efficient Dense and Scale-Invariant Spatio-

Temporal Interest Point Detector," in IEEE International Conference on ECCV, 2008.

[25] K. Vili, Z. Guoying and P. Matti, "Texture based description of movements for activity

analysis," in VISAPP, 2008.

[26] R. Souvenir and K. Parrigan, "Viewpoint Manifolds for Action Recognition," in EURASIP

Journal on Image and Video Processing, 2009.

[27] N. Gkalelis, H. Kim, A. Hilton, N. Nikolaidis and I. Pitas, "The i3DPost multi-view and

3D human action/interaction Database," in Conference for Visual Media Production, 2009.

[28] L. Ding, X. Ding and C. Fang, "Continuous Pose Normalization for Pose-Robust Face

Recognition," in IEEE Signal Processing Letters, 2012.

[29] A. Iosifidis, N. Nikolaidis and I. Pitas, "Movement Recognition Exploiting Multi-View

Information," in IEEE Conference on Multi Media Signal Processing (MMSP), 2010.

[30] A. Iosifidis, A. Tefas, N. Nikolaidis and I. Pitas, "Multi-view human movement

recognition based on fuzzy distances and linear discriminant analysis," in Computer Vision

and Image Understanding, 2012.

[31] R. Bodor, A. Drenner, D. Fehr, O. Masoud and N. Papanikolopoulos, "View-independent

human motion classification using image-based reconstruction," Image and Vision

Computing, vol. 27, no. 8, pp. 1194-1206, 2009.

[32] K. Huang, Y. Zhang and T. Tan, "A Discriminative Model of Motion and Cross Ratio for

View-Invariant Action Recognition," in IEEE Transactions on Image Processing, 2012.

[33] M. B. Holte, T. B. Moeslund, N. Nikolaidis and I. Pitas, "3D Human Action Recognition

for Multi-View Camera Systems," in International Conference of 3D Imaging, Modeling,

Processing, Visualization and Transmission, 2011.

117 | P a g e

[34] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman and A.

Blake, "Real-Time Human Pose Recognition in Parts from Single Depth Images," in

CVPR, 2011.

[35] L. A. Schwarz, A. Mkhitaryan, D. Mateus and N. Navab, "Estimating human 3D pose from

Time-of-Flight images based on geodesic distances and optical flow," in FG, 2011.

[36] W. Li, Z. Zhang and Z. Liu, "Action recognition based on a bag of 3D points," in CVPRW,

2010.

[37] J. Wang, Z. Liu, Y. Wu and J. Yuan, "Mining Actionlet Ensemble for Action Recognition

with Depth Cameras," in Computer Vision and Pattern Recognition (CVPR), 2012.

[38] E.-J. Weng and L.-C. Fu, "On-Line Human Action Recognition by Combining Joint

Tracking and Key Pose Recognition," in Intelligent Robots and Systems (IROS), 2012.

[39] A. Mansur, Y. Makihara and Y. Yagi, "Inverse Dynamics for Action Recognition," in

Computer Vision and Pattern Recognition Workshops (CVPRW), 2012.

[40] M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of cognitive neuroscience,

vol. 3, no. 1, pp. 71-86, 1991.

[41] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, "Eigenfaces vs. Fisherfaces:

Recognition Using Class Specific Linear Projection," Pattern Analysis and Machine

Intelligence, vol. 19, no. 7, pp. 711-720, 1997.

[42] X. He, S. Yan, Y. Hu, P. Niyogi and H.-J. Zhang, "Face Recognition Using

Laplacianfaces," Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328-340,

2005.

[43] X. Tan and B. Triggs, "Enhanced Local Texture Feature Sets for Face Recognition Under

Difficult Lighting Conditions," Image Processing, vol. 19, no. 6, pp. 1635-1650, 2010.

[44] T. Ahonen, A. Hadid and M. Pietikainen, "Face description with local binary patterns:

Application to face recognition," Pattern Analysis and Machine Intelligence, vol. 28, no.

12, pp. 2037-2041, 2006.

[45] G. Zhang, X. Huang, S. Z. Li, Y. Wang and X. Wu, "Boosting local binary pattern (LBP)-

based face recognition," in Advances in biometric person authentication, 2005.

[46] T. Ojala, M. Pietikainen and T. Maenpaa, "Multiresolution Gray-Scale and Rotation

Invariant Texture Classification with Local Binary Patterns," Pattern Analysis and

Machine Intelligence, vol. 24, no. 7, pp. 971-987, 2002.

[47] L. Wolf, T. Hassner and Y. Taigman, "Descriptor based methods in the wild," in Workshop

on Faces in'Real-Life'Images: Detection, Alignment, and Recognition, 2008.

[48] S. Azary and A. Savakis, "A spatiotemporal descriptor based on radial distances and 3D

joint tracking for action classification," in 19th IEEE International Conference on Image

Processing (ICIP), Orlando, Florida, 2012.

[49] J. W. Davis and A. F. Bobick, "The Representation and Recognition of Action Using

Temporal Templates," in IEEE Conference on Computer Vision and Pattern Recognition,

1997.

[50] S. Azary and A. Savakis, "Multi-view action classification using sparse representations on

Motion History Images," in IEEE Western New York Image Processing Workshops

(WNYIPW), Rochester, NY, 2012.

[51] S. Ali and M. Shah, "Human action recognition in videos using kinematic features and

118 | P a g e

multiple instance learning," Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp.

288-303, 2010.

[52] H. J. Seo and P. Milanfar, "Action Recognition from One Example," Pattern Analysis and

Machine Intelligence, vol. 33, no. 5, pp. 867-882, 2011.

[53] J. Shlens, "A Tutorial on Principal Component Analysis," Salk Institute for Biological

Studies, La Jolla, CA, 2005.

[54] L. I. Smith, "A Tutorial on Principal Components Analysis," 2002. [Online]. Available:

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf.

[55] L. Qiaoa, S. Chen and X. Tan, "Sparsity Preserving Projections with Applications to Face

Recognition," Pattern Recognition, vol. 43, no. 1, pp. 331-341, 2010.

[56] D. Fradkin and D. Madigan, "Experiments with random projections for machine learning,"

in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

2003.

[57] M. A. A. Cox, "Analysis of stock market indices through multidimensional scaling,"

Journal of Statistical Computation and Simulation, vol. 83, no. 11, pp. 2015-2029, 2013.

[58] Y. Ding, D. Yang and G. Han, "Multidimensional Scaling-Based Localization Algorithm

for Wireless Sensor Network with Geometric Correction," Journal of Networks, vol. 9, no.

3, pp. 582-587, 2014.

[59] H. Mogi and Y. Taguchi, "Protein binding prediction using non-metric multidimensional

scaling method," in Bioinformatics and Biomedicine Workshops (BIBMW), 2011.

[60] A. Buja, D. F. Swayne, M. L. Littman, N. Dean and H. Hofmann, "Interactive Data

Visualization with Multidimensional Scaling," 2004.

[61] M. Steyvers, "Multidimensional Scaling," Encyclopedia of Cognitive Science, 2002.

[62] J. B. Kruskal, "Nonmetric multidimensional scaling: a numerical method," Psychometrika,

vol. 29, no. 2, pp. 115-129, 1964.

[63] A. Ghodsi, "Dimensionality Reduction A Short Tutorial," Department of Statistics and

Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada, 2006.

[64] T. Yang, J. Liu, L. McMillan and W. Wang, "A fast approximation to multidimensional

scaling," in ECCV Workshop on Computation Intensive Methods for Computer Vision

(CIMCV), 2006.

[65] B. Li, C.-H. Zheng, D.-S. Huang, L. Zhang and K. Han, "Gene expression data

classification using locally linear discriminant embedding," Computers in Biology and

Medicine, vol. 40, no. 10, pp. 802-810, 2010.

[66] H. Chang, D.-Y. Yeung and Y. Xiong, "Super-resolution through neighbor embedding," in

Computer Vision and Pattern Recognition, 2004.

[67] D. d. Ridder and R. P. Duin, "Locally Linear Embedding for Classification," in Pattern

Recognition Group, The Netherlands, 2002.

[68] L. K. Saul and S. T. Roweis, "An Introduction to Locally Linear Embedding," 2001.

[Online]. Available: https://www.cs.nyu.edu/~roweis/lle/papers/lleintro.pdf. [Accessed 4

February 2012].

[69] J. Yin, D. Hu and Z. Zhou, "Growing locally linear embedding for manifold learning,"

Journal of Pattern Recognition, vol. 2, no. 1, pp. 1-16, 2007.

119 | P a g e

[70] S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K.-R. Muller, "Fisher Discriminant

Analysis with Kernels," in IEEE Signal Processing Society Workshop , 1999.

[71] X. He and P. Niyogi, "Locality Preserving Projections," in Advances in Neural Information

Processing Systems, 2003.

[72] X. He, D. Cai, S. Yan and H.-J. Zhang, "Neighborhood Preserving Embedding," in IEEE

ICCV, 2005.

[73] L. Wang and D. Suter, "Learning and Matching of Dynamic Shape Manifolds for Human

Action Recognition," in IEEE Transactions on Image Processing, 2007.

[74] P. Liu, J. Wang, M. She and H. Liu, "Human action recognition based on 3D SIFT and

LDA model," in IEEE Robotic Intelligence In Informationally Structured Space (RiiSS),

2011.

[75] M. Belkin and P. Niyogi, "Laplacian Eigenmaps and Spectral Techniques for Embedding

and Clustering," in Advances in Neural Information Processing Systems, Vancouver,

British Columbia, Canada, 2002.

[76] Y. Tang and R. Rose, "A study of using locality preserving projections for feature

extraction in speech recognition," in IEEE International Conference on Acoustics, Speech

and Signal Processing, 2008.

[77] R. Pless and R. Souvenir, "A Survey of Manifold Learning for Images," in IPJS

Transactions on Computer Vision And Applications, 2009.

[78] D. Cai, X. He and J. Han, "Spectral Regression for Efficient Regularized Subspace

Learning," in IEEE International Conference on Computer Vision (ICCV), 2007.

[79] M. T. Harandi, C. Sanderson, S. Shirazi and B. C. Lovell, "Graph Embedding Discriminant

Analysis on Grassmannian Manifolds for Improved Image Set Matching," in IEEE CVPR,

2011.

[80] S. Jayasumana, R. Hartley, M. Salzmann, H. Li and M. Harandi, "Kernel Methods on the

Riemannian Manifold of Symmetric Positive Definite Matrices," in Computer Vision and

Pattern Recognition, 2013.

[81] M. T. Harandi, C. Sanderson, A. Wiliem and B. C. Lovell, "Kernel Analysis over

Riemannian Manifolds for Visual Recognition of Actions, Pedestrians and Textures," in

IEEE Workshop on Applications of Computer Vision (WACV), 2012.

[82] J. Hamm and D. D. Lee, "Grassmann Discriminant Analysis: a Unifying View on

Subspace-Based Learning," in Int. Conf. Machine Learning (ICML), 2008.

[83] R. Shigenaka, B. Raytchev, T. Tamaki and K. Kaneda, "Face Sequence Recognition Using

Grassmann Distances and Grassmann Kernels," in World Congress on Computational

Intelligence, 2012.

[84] S. W. Park and M. Savvides, "The Multifactor Extension of Grassmann Manifolds for Face

Recognition," in IEEE Automatic Face & Gesture Recognition, 2011.

[85] P. Turaga and A. Veeraraghavan, "Statistical analysis on Stiefel and Grassmann manifolds

with applications in computer vision," in IEEE Computer Vision and Pattern Recognition

(CVPR), 2008.

[86] Q. Rentmeesters, P. A. Absil and P. V. Dooren, "An efficient particle filtering technique

on the Grassmann manifold," in Acoustics Speech and Signal Processing (ICASSP), 2010.

[87] J. M. Lee, "Introduction to smooth manifolds," in Springer, 2002.

120 | P a g e

[88] P.-A. Absil, R. Mahony and R. Sepulchre, "Riemannian geometry of Grassmann manifolds

with a view on algorithmic computation," Acta Applicandae Mathematicae, vol. 80, no. 2,

pp. 199-220, 2004.

[89] P. Turaga, A. Veeraraghavan and R. Chellappa, "Statistical analysis on Stiefel and

Grassmann manifolds with applications in computer vision," in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2008.

[90] B. Schölkopf, A. Smola and K.-R. Müller, "Kernel principal component analysis," in

Artificial Neural Networks, 1997.

[91] S. Mika, B. Scholkopf, A. Smola, K.-R. Müller, M. Scholz and G. Rätsch, "Kernel PCA

and De-Noising in Feature Spaces," in NIPS, 1998.

[92] C. Liu, "Gabor-based kernel PCA with fractional power polynomial models for face

recognition," in Pattern Analysis and Machine Intelligence, 2004.

[93] J. M. Juran, "The non-Pareto Principle: Mea culpa," Quality Progress, pp. 8-9, May 1975.

[94] J. D. Farmer and J. Geanakoplos, "Power laws in economics and elsewhere," Santa Fe

Institute, Santa Fe, NM, 2008.

[95] G. B. West, "The Origin of Universal Scaling Laws in Biology," New York, Oxford

University Press, 1999.

[96] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel and B. Bhattacharjee, "Measurement

and analysis of online social networks," in IMC '07 Proceedings of the 7th ACM

SIGCOMM conference on Internet measurement, New York, NY, 2007.

[97] J. Wright, A. Yang, A. Ganesh, S. Sastry and Y. Ma, "Robust Face Recognition via Sparse

Representation," in IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 2009.

[98] F. Qiu, Y. Xu, C. Wang and Y. Yang, "Noisy image super-resolution with sparse mixing

estimators," in 4th International Congress on Image and Signal Processing (CISP), 2011.

[99] L. Bao, W. Liu, Y. Zhu, Z. Pu and Magnin, "Sparse representation based MRI denoising

with total variation," in 9th International Conference on Signal Processing (ICSP), 2008.

[100] Y. Zuo and B. Zhang, "General image classification based on sparse representation," in 9th

IEEE International Conference on Cognitive Informatics (ICCI), 2010.

[101] J. Zhang, Y. Wang, J. Chen and Q. Li, "Sparse Representation for Action Recognition," in

3rd International Congress on Image and Signal Processing (CISP2010), 2010.

[102] C. Liu, Y. Yang and Y. Chen, "Human Action Recognition using Sparse Representation,"

in IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS),

2009.

[103] R. Ptucha and A. Savakis, "Joint Optimization of Manifold Learning and Sparse," in 10th

IEEE International Conference and Workshops on Automatic Face and Gesture

Recognition (FG), 2013.

[104] X. Lu, Y. Yuan and P. Yan, "Alternatively Constrained Dictionary Learning for Image

Superresolution," in Computer Vision and Pattern Recognition (CVPR), 2012.

[105] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu and D. Cai, "Graph Regularized

Sparse Coding for Image Representation," IEEE Transactions on Image Processing, vol.

20, no. 5, pp. 1327-1336, 2011.

121 | P a g e

[106] J. Mairal and B. Yu, "Complexity Analysis of the Lasso Regularization Path," in arXiv,

2012.

[107] B. Gaartner, M. Jaggi and C. Maria, "An exponential lower bound on the complexity of

regularization paths," arXiv, vol. 0903, no. 4817, 2009.

[108] J. Wright, Y. Ma, J. Maira, G. Sapiro, T. S. Huang and S. Yan, "Sparse Representation for

Computer Vision and Pattern Recognition," Proceedings of the IEEE, vol. 98, no. 6, pp.

1031 - 1044, 2010.

[109] S. J. Miller, "The Method of Least Squares," Mathematics Department Brown University,

Providence, RI, 2006.

[110] S. Bektaş and Y. Şişman, "The comparison of L1 and L2-norm minimization methods," in

International Journal of the Physical Sciences (IJPS), 2010.

[111] D. L. Donoho, M. Elad and V. Temlyakov, "Stable recovery of sparse overcomplete

representations," in IEEE Transactions on Information Theory, 2005.

[112] D. L. Donoho and Y. Tsaig, "Fast Solution of L1-norm Minimization Problems When the

Solution May Be Sparse," Stanford CA, 94305, Department of Statistics, Stanford

University, 2006.

[113] M. Schmidt, "Least Squares Optimization with L1-Norm Regularization," University of

British Columbia, 2005.

[114] S. Azary and A. Savakis, "3D Action Classification Using Sparse Spatio-temporal Feature

Representations," in Advances in Visual Computing, 2012.

[115] F. D. l. Torre, "A Least-Squares Framework for Component Analysis," in IEEE Trans. on

Pattern Analysis and Machine Intelligence, 2012.

[116] S. Azary and A. Savakis, "Grassmannian Spectral Regression for Action Recognition," in

Advances in Visual Computing, Lecture Notes in Computer Science, Rethymnon, Crete,

Greece, 2013.

[117] S. Azary and A. Savakis, "Grassmannian Sparse Representations and Motion Depth

Surfaces for 3D Action Recognition," in CVPR Workshop on Human Activity

Understanding from 3D Data, 2013.

[118] D. Weinland, R. Ronfard and E. Boyer, "Free Viewpoint Action Recognition using Motion

History Volumes," in Computer Vision and Image Understanding, 2006.

[119] S. Ramagiri, R. Kavi and V. Kulathumani, "Real-time multi-view human action

recognition using a wireless camera network," in Distributed Smart Cameras (ICDSC),

2011.

[120] A. Kurakin, Z. Zhang and Z. Liu, "A Real Time System for Dynamic Hand Gesture

Recognition with a Depth Sensor," in European Signal Processing Conference, 2012.

[121] F. S. Samaria and A. C. Harter, "Parameterisation of a stochastic model for human face

identification," in Applications of Computer Vision, 1994.

[122] G. B. Huang, M. Ramesh, T. Berg and E. Learned-Miller, "Labeled faces in the wild: A

database for studying face recognition in unconstrained environments," University of

Massachusetts, Amherst, 2007.

[123] K.-C. Lee, J. Ho and D. Kriegman, "Acquiring linear subspaces for face recognition under

variable lighting," Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp. 684-698,

2005.

122 | P a g e

[124] A. Karali and M. ElHelw, "Motion history of skeletal volumes and temporal change in

bounding volume fusion for human action recognition," in Multimodal Pattern

Recognition of Social Signals in Human-Computer-Interaction. Springer Berlin

Heidelberg, 2013.

[125] X. Wu, D. Xu, L. Duan and J. Luo, "Action recognition using context and appearance

distribution features," in Computer Vision and Pattern Recognition, 2011.

[126] J. Liu and M. Shah, "Learning human actions via information maximization," in Computer

Vision and Pattern Recognition, 2008.

[127] P. Yan, S. M. Khan and M. Shah, "Learning 4d action feature models for arbitrary view

action recognition," in Computer Vision and Pattern Recognition, 2008.

[128] C. Orrite, P. Monforte, M. Rodriguez and E. Herrero, "Human Action Recognition under

Partial Occlusions," in Pattern Recognition and Image Analysis, 2013.

[129] X. Yang, C. Zhang and Y. Tian, "Recognizing actions using depth motion maps-based

histograms of oriented gradients," in Proceedings of the 20th ACM international

conference on Multimedia, 2012.

[130] X. Yang and Y. Tian, "Eigenjoints-based action recognition using naive-bayes-nearest-

neighbor," in Computer Vision and Pattern Recognition Workshops, 2012.

[131] C. Wang, Y. Wang and A. L. Yuille, "An approach to pose-based action recognition," in

Computer Vision and Pattern Recognition, 2013.

[132] L. Xia, C.-C. Chen and J. K. Aggarwal, "View invariant human action recognition using

histograms of 3d joints," in Computer Vision and Pattern Recognition Workshops, 2012.

[133] C. Ellis, S. Z. Masood, M. F. Tappen, J. J. L. Jr and R. Sukthankar, "Exploring the trade-

off between accuracy and observational latency in action recognition," International

Journal of Computer Vision, vol. 101, no. 3, pp. 420-436, 2013.

[134] C. Zhang and Y. Tian, "Edge Enhanced Depth Motion Map for Dynamic Hand Gesture

Recognition," in Computer Vision and Pattern Recognition Workshops, 2013.

[135] O. Oreifej and Z. Liu, "Hon4d: Histogram of oriented 4d normals for activity recognition

from depth sequences," in Computer Vision and Pattern Recognition, 2013.

[136] J. Wang, Z. Liu, J. Chorowski, Z. Chen and Y. Wu, "Robust 3d action recognition with

random occupancy patterns," in Computer Vision–ECCV, 2012.

[137] M. R. Faraji and X. Qi, "An effective neutrosophic set-based preprocessing method for

face recognition," in Multimedia and Expo Workshops, 2013.

[138] R. Liu, C. Jia, E. Pang, M. Qu, S. Pang and Z. Yu, "Global and Local Information Based

Spherical Marginal Fisher Analysis for Face Recognition," Journal of Information and

Computational Science, vol. 10, no. 4, p. 1025–1034, 2013.

[139] J. Yang, D. Zhang, A. F. Frangi and J.-y. Yang, "Two-dimensional PCA: a new approach

to appearance-based face representation and recognition," Pattern Analysis and Machine

Intelligence, vol. 26, no. 1, pp. 131-137, 2004.

[140] D. Cai, X. He, J. Han and H.-J. Zhang, "Orthogonal laplacianfaces for face recognition,"

Image Processing, vol. 15, no. 11, pp. 3608-3614, 2006.

[141] Y. Xu, D. Zhang, J. Yang and J.-Y. Yang, "A two-phase test sample sparse representation

method for use with face recognition," Circuits and Systems for Video Technology, vol. 21,

no. 9, pp. 1255-1262, 2011.

123 | P a g e

[142] E. Gumus, N. Kilic, A. Sertbas and O. N. Ucan, "Evaluation of face recognition techniques

using PCA, wavelets and SVM," Expert Systems with Applications, vol. 37, no. 9, pp.

6404-6408, 2010.

[143] Y. Choi, T. Tokumoto, M. Lee and S. Ozawa, "Incremental two-dimensional two-

directional principal component analysis (I (2D) 2 PCA) for face recognition," in

Acoustics, Speech and Signal Processing , 2011.

[144] S. Fernandes and J. Bala, "Performance Analysis of PCA-based and LDA-based

Algorithms for Face Recognition," nternational Journal of Signal Processing Systems, vol.

1, no. 1, pp. 1-6, 2013.

[145] P. Gruber and F. J. Theis, "Grassmann Clustering," in European Signal Processing

Conference, 2006.

[146] S. Shirazi, M. T. Harandi, C. Sanderson, A. Alavi and B. C. Lovell, "Clustering on

Grassmann Manifolds Via Kernel Embedding With Application to Action Analysis," in

Internation Conference on Image Processing (ICIP), 2012.

[147] R. Shigenaka, B. Raytchev, T. Tamaki and K. Kaneda, "Face Sequence Recognition Using

Grassmann Distances and Grassmann Kernels," in World Congress on Computational

Intelligence, 2012.

[148] R. Vemulapalli, J. K. Pillai and R. Chellappa, "Kernel Learning for Extrinsic Classification

of Manifold Features," in Computer Vision and Pattern Recognition, 2013.

	Grassmann Learning for Recognition and Classification
	Recommended Citation

	tmp.1412947785.pdf.Xr3u3

