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ABSTRACT

The prediction of a single observable time series has been achieved with

varying degrees of success. The quality and duration of the prediction is

dependent on many factors, the two most important being the reconstruction

technique and the quantity of data. The goal of this work is to reduce the

computational effort required to achieve satisfactory predictions. Without new

methods, which are beyond the scope of this work, this requires a reduction in

the size of the data set.

This thesis expands on earlier works using the delay vector space method

and the autocorrelation function for reconstruction and applies this analysis

technique to a well known non-linear dynamic system. The embedding delay and

the sampling rate were varied while keeping the number of points the same in

order to study the effects of varying the sampling rate. The results of this

experimentation show the importance of the sampling rate and duration of the

sample in the reconstruction and prediction. It is shown that the sampling

duration may be more important than the number of points. It is apparent from

this characteristic that a time series sampled over a longer duration may contain

more information in fewer points.
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INTRODUCTION

This thesis is based upon the concept that it is possible to reconstruct the

geometric structure of nonlinear dynamical systems from the measurement of a

single variable, an idea proposed as early as 1979. This reconstruction then

allows the short term prediction of that variable. The underlying theorem

indicates that reconstruction is possible when an infinite amount of data is

available for a single state variable of the system.

While the proof of the theorem requires an infinite volume of continuous,

noise free data, application has shown that a set of
104

to
105

discrete points is

usually sufficient for good reconstruction and prediction capabilities. With the

present level of computing power that is available, it is not difficult to reconstruct

systems with two or three degrees of freedom with a data set of 10,000 points or

more. It becomes very time consuming when the data set or the dimension of the

system is larger, with the dimension ultimately playing a larger part in the

computational effort. Compounding the problems of computational effort is the

restrictions that a finite data set place on the analysis. The finite data set means

that the choice of reconstruction variable values is no longer arbitrary. This

primarily effects the embedding delay and sampling rate. The embedding delay

effects the extraction of information from the attractor while the sampling rate

determines how much information per point is contained in the data.

VI



This work analyzed the feasibility of reducing the computational effort by

reducing the data set size by the choice of more optimal reconstruction

parameters. It is possible to greatly reduce the data set size for low dimensional

mildly nonlinear systems by careful selection of the data set. However, in most

cases it is not possible to carefully select the data set unless there is knowledge

of the system already. Since it is desired for the methods to be widely applicable

to unknown systems, another method is necessary. The ability of a very small

data set, ~100 points, to give good reconstruction however is the event which

led to the more important discovery, which is widely applicable.

It was discovered from the geometry of the small set, that if the data is

sampled over a longer time period a better geometric reconstruction and

prediction was possible. The sample is taken over a longer time period, with the

possibility of decreasing the actual number of points. This method allows the

system to visit more of the attractor's space and giving a better statistical picture

of the attractor.

The delay vector space method is applied to the first state variable of the

Lorenz attractor in order to demonstrate the effects of the sampling method. The

permutations of the embedding delay and sampling rate are studied to evaluate

their impact on the estimation of the fractal dimension of the system which is well

known. This provides a strategy for reducing the computational effort when

investigating signals from systems which are not well known.

VII
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CHAPTER 1

DYNAMICAL SYSTEMS

The following material is meant to be a brief review of dynamic systems. The

systems are introduced in an order which shows the increasing complexity of

systems which leads eventually to stochastic systems. Chaos is
defined'

as:

1 . confusion, or confused mass, of formless matter and infinite space,

supposed to have existed before the ordered universe.

2. any mixed mass, without due form or order; confusion.

3. an empty, immeasurable space; an abyss.

If these definitions were used in the description of chaotic dynamics it would

seem foolish to have pursued this work. There is a much more complex

relationship which needs to be understood. Chaos is a subset of a much larger

area of study called nonlinear dynamics.

It has been
discovered"

by many investigators that very simple deterministic

systems with a few elements can generate apparently random behavior. The

randomness in their behavior is a fundamental property. It was once thought if

enough data could be collected and processed that any system was predictable.

Webster's New Twentieth Century Dictionary - Unabridged, 2nd Edition (1960)

Crutchfield, J.P., et al, Chaos, Scientific American, December 1986, 46



The randomness associated with these deterministic systems is called chaos.

The bulk of this work is to develop analysis methods for nonlinear studies which

may in the future be extended to chaotic dynamics.

Periodic systems

Periodic systems are characterized by simple repeated motions at regular

intervals. This regular interval is defined as the period, T. From the definition

of the period follows the relationship:

x(t)
= x(t + T) (1)

It then becomes very simple to predict any future state of x by using

equation (1). The periodic system is the simplest of dynamic systems.

Quasi-periodic systems

Quasi-periodic systems may appear much more complex than periodic

systems. Although more complex, the quasi-periodic system may be

represented as the linear combination of periodic modes. The mathematical

combination is the finite summation of periodic modes:

*(')
= 2XW (2)

m=]

A system becomes increasingly complex as the number of excited

modes, n, needed to represent the system increases. Once all individual
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Figure 4. Quasi-periodic system, linear combination of periodic modes.



modes, ym(t), have been determined, the summation, x(t), may be evaluated

at any t. While quasi-periodic systems are more complex than periodic

systems, the determination of predictive equations remains elementary.

For an example y-|(t) is sin(t) as shown in Figure 1, y2(t) is sin(4t) as

shown in Figure 2, and y3(t) is sin(16t) as shown in Figure 3. The summation

of the three periodic modes results in a much more complex system, shown

in Figure 4.

The summation of the three periodic modes yields a simple quasi-periodic

system. As the number of modes increases, the complexity of the system

increases until it is not obvious by inspection that the system is made up of

multiple modes. The system represented in Figure 4 is fairly simple, yet when

a small piece is shown or if there were more exited modes, the periodic basis

is not evident.

Nonlinear systems

Nonlinear systems cannot be represented by the linear combination of a

finite number of periodic modes. Instead the equations governing evolution of

the system contain nonlinear elements or are nonlinear combinations of the

state variables. If all the state variables are known and measurable, it is a

simple process to determine the system of equations that govern system

evolution.



A more troublesome and customary case occurs when all state variables

can not either be identified or measured. Mathematicians first hypothesized

that the measurement of a single state variable in a nonlinear system is

sufficient to reconstruct the dynamics of the system. As a consequence of the

system's nonlinearity, every state variable carries all the information

necessary to reconstruct the geometry. Since all the necessary information is

present in each variable, and the computational tools have been developed

to extract it, a set of governing equations can be obtained with some work.

The set of equations contains a single equation which predicts the evolution

of the state variable that was originally sampled. Since in theory each state

variable contains the information, it is not important which one is used. In

practice there are small (but significant) variations in the reconstruction from

one variable to another.

These small variations become significant when the character of non

linear systems is considered. The trajectories within non-linear systems are

highly dependent on initial conditions. Consider then that any instantaneous

position, based on the reconstruction, is the initial condition for the rest of the

evolution. Slight variations in the position at any given instance result in

trajectories which will differ greatly as the system evolves giving rise to

considerably different results. This sensitivity to initial conditions provides

one of the greatest challenges in the implementation of reconstruction



techniques, the small errors associated with numerical differentiation and

integration give rise to large errors in the prediction.

x=100t +
10t2

+ t3/10
x10

Figure 5. Non-linear function (cubic).

Stochastic systems

The trajectories in stochastic systems are governed primarily by external

random noise. The intrinsic properties of the system are either insignificant or

indiscernible from the stochastic signal's influence. Analytical methods are

not applicable to stochastic systems since the collection of additional data

does not contribute additional information.

It is important to test data that appears random for underlying periodic,

quasi-periodic, and nonlinear systems. One must be careful not to dismiss a

system as stochastic if there is structure within the signal. Often It is possible



to remove stochastic noise from a deterministic signal using standard signal

processing techniques.

a=rand(size(t))

0 20 40 60 80 100

t

Figure 6. Random function generated using MATLAB's RAND function.



CHAPTER 2

PHASE SPACE

The phase space is the geometrical domain required to describe the

instantaneous state of a system. Each orthogonal coordinate of the phase space

corresponds to a system variable. Orthoganality is not a requirement, but it

eliminates coordinate dependence. Normally the phase space consists of

familiar quantities such as position, velocity, and higher order derivatives for

each dimension in the occupied space. To fully describe three dimensional

motion, a minimum of six coordinates is necessary x(t), dx/dt, y(t), dydi, z(t) and

dz dt. Usually a phase plot uses only two coordinates hence the designation of

phase planes.

Construction of phase portrait

The phase portrait is constructed in an artificial phase space for use in

system identification. The geometry exhibited by the system may be

compared to other systems allowing identification of similar characteristics.

This may be done without a priori knowledge of the phase space in which the

data originated. The artificial phase portrait may or may not look like the



dt2

dx

dt

x(t)

Figure 7. A 3-D normal phase space created using derivatives for coordinates.

actual phase portrait for the system. Lack of similarity is due to the nonlinear

combinations of phases inherent in the delay coordinates of the artificial

phase space.

Phase trajectory

The path taken on a phase plane is the phase trajectory. Trajectories that

correspond to similar energies pass closely but do not cross. If the

trajectories crossed at time t the system would be rendered indeterminate by

the ambiguity of past and future states. Figure 8 shows the phase trajectory

from a simple harmonic oscillator, the position x(t) corresponds to a sin

function, while dx/dt corresponds to the cosine derivative. The trajectory

forms a unit circle. Figure 9 shows the same system, but with three different

10



initial conditions. The trajectories do not cross since they correspond to

similar energies.

Phase plot

0.5-

dx/dt

-0.5-

Figure 8. Phase plot generated from Figure 1.

Phase areas

Phase areas are bounded by a set of points in a given area of the phase

space. For conservative systems, the trajectories are area preserving. The

area preserving quality means that the area of the phase space bounded by

a fixed set of points is constant for all times past and future. Dissipative

systems have convergent trajectories that decrease the phase area as time

progresses. Figures 10 and 1 1 are examples of conservative and dissapative

systems respectively. The energy in the dissapative system tends to zero

with time as does the area.

11
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Figure 10. Conservative system, area preserving such that A1=A2.
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Phase plot

dx/dt 0 -

-0.5

Figure 11. Non-conservative (dissapative) system, area diminishes to zero.

Artificial phase space
^

"~
'

A phase space is considered artificial when the coordinates of the space

do not have the usual temporal significance. For the purposes of embedding

sampled data, an artificial phase space is generated by creating phase

coordinates based on a set of time delays xn yielding:

y(n)
= [x(?), x(t + r,), x(t+ r,), ...,x(t+

r((M))] (3)

Although each time delay may be at least in principle picked arbitrarily'".
IV

it is easier to pick a single value of x and use multiples of t for the embedding

coordinates. This yields artificial phase space vectors of the form:

"'

Takens, F., Dynamical Systems and Turbulence, Lecture Notes in Mathematics, 898,

366,(1981)

13



y(n)
= [x(t),x(t + t),x(t + 2T),..,x(t + (c/-l)r)] (4)

This substitution for the usual phase coordinates is
acceptable"

since the

time lagged coordinate elements of y(n) are nonlinear combinations of the

local time derivatives.

X(t+2T )

X(t+T )

X(t)

Figure 12. A 3-D artificial phase space created using delay parameters for the coordinates.

IV

R. Mane, Dynamical Systems and Turbulence, Lecture Notes in Mathematics, 898, 230

(1981)
v

Eckrnann J.-P., Ruelle, D., Ergodic theory of chaos and strange attractors, Reviews of

Modern Physics, 57, 617 (1985)

14



CHAPTER 3

ATTRACTORS
.

An attractor is a phase space entity that attracts phase trajectories lying

within its basin of attraction. It is a set or sub-space on which analytic or

experimental data accumulates. The phase trajectory asymptotically approaches

the attractor as t-oo. Transients are the resuit of an initial condition that is within

the basin of attraction, but that is not on the attractor. The attractor may be a

map, a set of discrete points, or a flow, a continuous sub-space region.

Phase space maps

Maps are the result of data from discrete systems. In discrete systems

each future set of coordinates is mapped directly from the preceding set. The

system exists only at discrete states, the set of which is predetermined by the

initial conditions. The Henon attractor is an example of a discrete mapping.

The Henon attractor is generated by the following set of iterative relations:

|x1(W + l) = x:() + l-14x1():|
1x2( + l) = 0.3x,() J

15



Henon attractor

0.4

0.3

0.2

0.1

y o

-0.1

-0.2

-0.3

-0.4

"*****.
:-V*:^-

""'*x,
""*"

*

-V* V*: ..

_

's. \
:* tx.

.

1

1
-\

I

-

.'

/

y

__rf

*

-1.5 -0.5 0

x

0.5 1.5

Figure 13. Henon attractor, an example of a mapping. Two initial transient points may be

seen at [0,0] and [1 ,0].

Initial values are selected for xtfn), after which any number of points may

be calculated. The choice of initial conditions depends on the interest in the

system. If the only interest is in the geometry of the system the initial

conditions are unimportant as long as they are within its basin of attraction.

The trajectory will approach the attractor given enough iterations for

transients to disappear. If a future or exact state of the system is of interest,

then the current state of the system must be known.

Phase space flows

Flows are the result of continuous systems. In continuous systems, the

trajectory is the result of a continuously differentiate system. The state of

16



the system can be determined for any time and set of initial conditions. The

Rossler attractor is an example of a flow mapping. The Rossler attractor is

constructed using the following set of differential equations:

'i = -(y + z)

y
= x + ay

z-b + xz+cz

(6)

Typically for the Rossler attractor a=0.2, b=0.2, and c=-5.7, although these

are not the only possible values. As with the phase space maps, if the only

interest is the geometry of the system, the choice of initial conditions is

unimportant assuming that they lie within the basin of attraction. If a future

state of the system at a given time is of interest, then the initial state

becomes important.

Normal attractors

Normal attractors are not sensitive to initial conditions. Small changes in

the initial conditions have little effect on the trajectory as t-*.

Point attractor

The trajectory of the point attractor is invariant with time after the

transients in the system have vanished. The choice of initial conditions

must place the trajectory within the attractors basin of attraction. The

basin of attraction is the set of initial states that will converge to the

attractor. A good example of a point attractor is a bowl. If a marble is

17



placed in anywhere within the bowl it will come to rest in the center every

time. The center is the point attractor and the volume of the bowl is the

basin of attraction. This is shown in Figure 1 1 of Chapter 2.

Rossler attractor

-10 -10

Figure 14. Rossler attractor, an example of a flow. Integrated with a time step of 0.1

seconds from an initial condition of [1 1 1].

Periodic (circle)

The trajectory of the periodic attractor forms a circle. After the

transients have vanished the state of the system continues to repeat with

period T such that x(t)=x(t+T). The trajectories from initial conditions

within the circle spiral outward, asymptotically approaching the circle. The

trajectories from initial conditions which lie outside the circle spiral inward

approaching the attractor with time.

18



Other Attractors

As with dynamical systems there are corresponding increasingly

complex attractors. The torus is the attractor analogous to the quasi-

periodic system. It has greater complexity than the circle while

maintaining linearity. The complexity of quasi-periodic attractors

increases until nonlinear elements are present.

Chaotic (Strange) attractors

The trajectories of strange attractors are sensitive to variation or

uncertainty in the initial conditions. Variation in the initial conditions should

be thought of as a different initial state, whereas uncertainty could be

uncertainty in measurement or computational error. Trajectories within the

strange attractor are exponentially divergent, that is points which are very

close initially will have greatly different evolutions. Therefore the uncertainty

associated with determining the state of a system has direct bearing on the

validity of prediction of future states

19



CHAPTER 4

EMBEDDING DELAY CALCULATION

The first efforts in the analysis involved estimating either the embedding

delay or the embedding dimension. Early methods were prone to errors from

noisy data or an improper choice of time delay. Subsequent methods have

offered some promise in correcting these shortfalls, but no method has been

shown to work well for every system.

Autocorrelation function (ACF)

The first attempt to determine an optimal embedding delay used the

autocorrelation function. Although the autocorrelation function is suitable for

large and small data sets, the embedding delay t is usually selected using an

autocorrelation function if N(jat is less than 10,000. The application to smaller

data sets is possible because the autocorrelation process picks a smaller x

than would mutual information theory. The autocorrelation is performed to

determine the first local minimum or decorrelation time. The decorrelation

time is the time at which the autocorrelation function reaches its first zero

20



value. The embedding delay is then selected such that t is 1/10 to 1/20 of the

first local
minimum1"

or zero. This is an arbitrary choice that may work well in

practice. The sampling rate should correspond to approximately the same

value as t. For dynamical time series resulting from mappings, such as the

Henon set, the first local minimum of the autocorrelation occurs at the first

point. With no other intermediate points available, the first point is selected.

The first zero or local minimum of the autocorrelation was thought to ensure

linearly independent coordinates. In application to higher order systems the

ACF can yield incorrect
results7"

due to correlations between other

coordinates and may lead to a collapse of the attractor in one or more

coordinates.

Mutual information theory

Mutual information, /, theory is usually applied to larger data sets. The

mutual information theory approach looks at the general dependence of two

variables, overcoming the autocorrelation's limitation to measuring linear

dependence. For the creation of phase portraits, the first local minimum of /

is used. The mutual information theory generally picks x significantly larger

than autocorrelation would and is therefore not suitable for use with small

Vl

Abarbanel, H.D., Brown, R., Kadtke, J.B., Prediction in chaotic nonlinear systems:

Methods for time series with broadband Fourier spectra, Physical Review A, 41, 1 782 (1 990)
v"

Buzug, Th., Pfister, G., Optimal delay time and embedding dimension for delay-time

coordinates by analysis of the global static and local dynamical behavior of strange attractors,

Physical Review A, 45, 7073 (1992)

21



data sets. Fraser and Swinney applied mutual information
theory71"

to the

Roux and Rossler equations in 1986. The embedding delay x may be

selected using mutual information theory for

Ndat> 10,000. (7)

The theory works well for low embedding dimensions but becomes

impractical above an embedding dimension of four. In addition to the

embedding dimension limitation the algorithm to calculate the mutual

information is recursive and not easily coded using MATLAB, so it is not

employed in this work.

Other methods

Other methods employ different techniques such as
pseudocycle1"

based

time delays and the first minimum logarithm of a generalized correlation

integral."

All the methods work to a greater or lesser degree, but none supply

information about an optimal embedding dimension.

Shortfalls

The largest shortfall with all methods is the failure to pick the best

embedding delay. All of the methods in general pick the delay, x, arbitrarily.

In theory, with an infinite supply of noise free data, the choice of delay may in

Vl"

Fraser, A.M., Swinney, H.L., Independent coordinates for strange attractors from mutual

information, Physical Review A, 33, 1134 (1986)

Destexte, A., et al, Physics Letters A, 132, 101 (1988)

Schuster, H.G., Liebert, W., Physics Letters A, 142, 107 (1988)
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fact be almost arbitrary. If the delay picked is to short, the attractor lies along

the diagonal of the artificial space and its characteristics are difficult to

distinguish. This problem is even more evident in low dimensional systems

where noise is present. If the delay picked is too long then the points are not

strongly correlated due to the sensitivity of the trajectory as explained in

Chapter 1. In practice all methods give a delay which may be used to

qualitatively reproduce the system. The effects of the delay selection on

reconstruction are illustrated below using 2000 points of Lorenz-x data.

Phase plot of time series

150

Figure 15. Actual phase plot using centered difference derivative. The embedding in the

artificial phase space should look as much like this as possible.

23



Artificial phase, delay 0

Figure 16. Artificial phase plot with a delay of zero causes the complete collapse onto the

hyper-diagonal with the consequent loss of information.

Artificial phase, delay 4

Figure 17. The delay of 4,
l^o"1

of the decorrelation causes expansion into the artificial

phase space and allows information to be extracted. The embedded time series is still

largely collapsed upon the hyper-diagonal. There is also a general rotation from the

actual phase which will be visible at every delay.

24



Artificial phase, delay 8

Figure 18. Delay of 8, 1/10 the decorrelation value, gives a reasonable expansion. Notice

as the loops expand away from the diagonal, they contract along it.

Artificial phase, delay 16

Figure 19. The continued expansion in one direction is associated by a contraction in the

other direction at
1/5*

of the decorrelation value. It is not possible to tell graphically what

the optimum delay is.

25



Artificial phase, delay 40

Figure 20. At a delay of 40, one half the decorrelation value, the embedding shows

symmetrical folding and information is being lost. The reconstruction has lost most of its

geometrical similarity to the phase plot.

Artificial phase, delay 80

Figure 21. At the decorrelation delay, the folding due to periodicity is so severe that very

little information would be gained from analysis. The geometrical character is no longer

comparable to the actual phase plot for the time series.

26



EMBEDDING DIMENSION DETERMINATION

For problems with N large enough, dA(N,d) will become independent of d

when the attractor is properly embedded in Rd- Formal analytical
results'"

dictate

the embedding dimension d>2dA+l to ensure that all of the geometric

information about the attractor is exposed in the embedding space. Usually in

practice however, d>d/^ is sufficient. Operationally, d^ is increased until d/\

becomes a constant. The first value of dg for which d/\ becomes constant then

becomes the embedding dimension that is used.

One of the first
methods""

was suggested by Packard et al. in 1980. The

method consisted of embedding data into a phase space using the time series

and its successive derivatives for coordinates. The state vectors in the d^-

dimensional embedding space are given by

('.)
=

dt

</''-'#,)
dta

(8)

xi Takens, F., Dynamical Systems and Turbulence, Lecture Notes in

Mathematics, 898, 366, (1981)

xii Packard, N.H., et al., Geometry from a time series, Physical Review

Letters, 45, 712(1980)
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The derivative based method worked, but was computationally intensive, very

sensitive to noise and not necessarily optimal.

Takens published a very promising theorem in 1980 which is the basis for

most analysis today. His method employs time delay coordinates which may be

chosen arbitrarily at least in theory. The attractor is reconstructed from a scalar

time series {^(t^)}, where keKrj and

K0={*GN0;A:<iVdat}. (9)

\ is the observed quantity and N<jat is the number of data points. The state

vectors for a dE-dimensional embedding space are given by

<*.) =

ft.)

4{t, + t)

(10)

j{ts + <dE -

1))_

where ts=sTa and seSn for

S0 ={sc-N0-s<N^-(r/Ta)(dE-l)} (11)

with sampling time Ta and delay time x.

Strict theorem requirements necessitate an infinite number of noise free data

points with infinite resolution. The theorem also requires dE>2n+1 (where n is

the dimension of the flow in original space) for there to be a topological mapping

from the original phase space to the embedding space. In application, an infinite

amount of noise free data is not required and d^>n is usually sufficient. The
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method is computationally intensive and does not indicate an optimal embedding

dimension.

Broomhead and King used singular value decomposition in
1986,XI"

Using

SVD on the trajectory matrix they were able to obtain the number of non zero

singular values corresponding to an optimal embedding dimension.

Several
others"'

have mentioned methods based on the requirement of n

initial conditions to uniquely solve a set of n ordinary differential equations. The

method determines the minimum number of conditions necessary to set up the

attractor trajectory.

All of the methods above are capable of embedding the time series into a

phase space. Some of the methods yield an optimal dimension for embeddings,

but ail are computationally intensive.

xiii Broomhead, D.S., King, J.P., Physica D, 20, 271 (1986)

xiv Bumeliene, S., et al., Liet Fiz. Rinkinys, 28, 569 (1988)

xv Censys, A., Pyragas, K, Physics Letters A, 129, (1988)
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CHAPTER 5

HARDWARE & SOFTWARE

Hardware

The twenty six cases which ran to a normal termination required a total of

123 billion floating point operations (flops) for an average of 4.7 billion flops

per case. Two computers were used to perform the analyses, a Gateway

486/25 DX and a Gateway 486/66 DX2. The 486/25 performed calculations

at an average rate of ~77 kflops/s while the 486/66 performed the

calculations at an average rate of -189 kflops/s. The combination of

computers used over 290 hours of processing time to run the 26 cases.

Software

The first version of MATLAB was written at the University of New Mexico

and Stanford University in the late 1 970's. MATLAB was intended to be used

for courses in matrix theory, linear algebra, and numerical analysis. The

developers had been involved with LINPACK and EISPACK, Fortran
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subroutine packages for matrix manipulation, but wanted a tool that did not

require the user to write programs in Fortran. The programming syntax still

has the look and feel of Fortran but does not require any knowledge of

Fortran or programming in general.

The program has now returned to its origins with the publication of

an inexpensive Student Edition of MATLAB. There are also other versions of

MATLAB which are available on a variety of platforms. The software which

has been developed here is meant to be run using a Pro-MATLAB version.

The Student Edition has all the necessary functions to perform the analysis,

but was never meant to handle the large data sets.

Many different programs were written to accomplish this work. Some of

the original programs no longer exist or are not necessary, while new

programs have been written and others have been adapted. All of the current

programs run properly under MATLAB v4.2b for Windows. They have been

adapted to utilize some of the graphical abilities of Windows, but by no

means do they accomplish this fully. The Windows version is a major

improvement over the DOS based Student versions capabilities, although I

have not had time to explore all of the new features. Due to changes in the

MATLAB software some of the programs may not run on older versions of

MATLAB due to the elimination of certain commands. I do not know how the

graphical commands will be interpreted on older versions.
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Most of the programs are documented to an extent. A brief statement is

included to give the basic purpose of each function or program. Within each

function or program, in the code, comments have been included specifically

where important user configurable parameters are. Additionally, there are

description below for each module to provide greater insight.

ACM

The ACM function performs an autocorrelation on the sampled data and

returns the decorrelation index for use in selecting the embedding delay. The

autocorrelation for continuous data looks like the following:

AC(T)
=
-\x(t)-x(t + r)dt 0<r<T (12)

This form however is not very useful for a discrete time series. Instead the

following discretized form is used, where x is an index rather than a time as

above:

^C(r)
=

-^-|>.-*.+r
0<r<Ar

(13)
1= 1

ACM is a shorter, faster, slightly less precise version of AUTOCORR.M.

To reduce the computational effort, ACM only processes the first 1000

points. Experiments with data sets of different sizes showed that the

reduction in size to 1000 points did not significantly affect the decorrelation

index that the function returns. ACM uses the Hankel matrix function,

HANKEL.M available in MATLAB. For this work ACM was used, although it
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is a simple matter to change MAIN.M so that AUTOCORR.M is called instead

since both functions use the same arguments.

% ACM

% MATLAB function that performs an autocorrelation on the input vector

% The index of the first zero or local minimum is returned. ACM is a shorter

% version ofAUTOCORR.M, using only the first 1000 points to reduce the

% computational effort. Reduction to 1000 points also allows use ofHANKEL.M

% which speeds calculation.

%

% function decorr = ac(a)

% Copyright (c) 1 992- 1994 William Robertson

function decorr = ac(a)

% Take first 1000 points for autocorrelation

ifmax(size(a)) > 1000; a=a(l:1000); end

ac=a*hankel(a);

x=max(size(a)):- 1 : 1 ;

ac=ac./x;

plot(ac); title('Autocorrelation Plot'); xlabel('Index');

% Find first zero or local minimum

N=max(size(ac));

fori=l:N

ifac(i)<=0

decorr=i;

disp(['Autocorrelation zero at lag ',int2str(i), '.'])
return

elseif (ac(i)-ac(i+l)) <0

decorr=i;
disp(['

Autocorrelation local minimum at lag ',int2str(i),
'

'])
return

end

end

ARTSPACE.M

The ARTSPACE.M program was written to create artificial phase spaces

with sequential delays. This allows the user to visualize the effect of the

33



embedding delay on the embedded time series. ARTSPACE.M was used to

generate Figures 16-21 in Chapter 4. The program calls NDIFF.M to

calculate the first time derivative of the series. This is used to generate a

phase plot so that subsequent artificial phase plots using different

embedding delays may be compared to the real phase plot.

% ARTSPACEM

% MATLAB program that creates artificial phase spaces based on
Takens'

delay
% vectors. One phase space is created for each delay below the decorrelation

% index. This program calls the functions NDIFF.M and ACM.

% Copyright (c) 1992- 1 994 William Robertson

clc

clear all

flops(O);

tic;

% load the data from a .mat file, alternatively the data could be calculated

load lorenzx

x(:,l)=time;

x(.,2)=value;

clear time value;

N=max(size(x));

disp(['Read
',int2str(max(size(x))),'

points from time series.'])

% the following loop reduces the number of points to 2000, it is not necessary to do

this

ifN>2000

disp('Using last 2,000 points of time series')

y(l:2000,:)=x(N-1999:N,:);

end

disp('Calculating first phase for time series.')

dt=abs(y(l,l)-y(2,l)); % assumes a uniform time step

x=y(:,2);

clear y

[x,dx]=ndiff(2,4,x,dt);

N=max(size(x));

figure; plot(x,dx,'g'); % phase plot from derivative calculation

title('Phase plot');

xlabel('x');

ylabel('dx');

disp('Calculating autocorrelation function.')
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[r c]=size(x); if r>c; x=x'; end

decorr=ac(x);

% generates all artificial phases from delay 1 to decorrelation delay this may cause

problems if

% decorr is large, second argument in for loop is increment, increase to reduce

number of plots

for i=l:l:decorr

y=x(l:N-i);z=x(l+i:N);

figure; plot(y,z,'g');
title(['

Artificial phase, delay ',num2str(i)])

xlabel('x(i),);ylabel('x(i+j)');

end

disp(['Elapsed time
',num2str(toc),'

seconds.'])

disp(['Floating point operations
= ', num2str(flops),'.'])

disp('Normal termination ofARTSPACE')

AUTOCORR.M

The AUTOCORR.M function performs an autocorrelation on the input

vector and returns the decorrelation index. Unlike ACM which is based upon

it, AUTOCORR.M uses the entire input vector, ultimately yielding a better

estimate of the decorrelation index. This causes a higher computational effort

due to the larger size. The larger size further requires the use of a less

efficient algorithm, increasing the computational effort.

% AUTOCORR.M

% MATLAB Function that performs an autocorrelation on the input vector

% The decorrelation index is returned indicating the first local minimum or zero of

% the autocorrelation function.

%

% function decorr = autocorr(a)

% Copyright (c) 1992- 1994 William Robertson

function decorr = autocorr(a)

disp('Calculating autocorrelation function')

a=a(:);

N=max(size(a));

decorr=[];
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acorr=[l 1];

acorr( 1 )=sum(a. *a)/N;

% because of the possibility of a very large time series the HANKEL function cannot

be used,

% it requires N squared elements and storage requirements become prohibitive. The

loop method

% employed below is however very inefficient in MATLAB, so with a better

estimate, comes the

% price ofgreater time

forj=0:N

i=l:N-j;

acorr(2)=sum(a(i).*a(i+j))/(N+l-j);

% check for first zero

ifacorr(2)<=0

decorr=j;
disp(['

Autocorrelation zero at lag ',int2str(j)])
return

% check for first local minimum

elseif (acorr(l)-acorr(2)) <0

decorr=j;
disp(['

Autocorrelation local minimum at lag ',int2str(j)])
return

end

acorr(l)=acorr(2);

end

CORRINT.M

The CORRINT.M function calculates the correlation integral for use in

estimating the limit of the attractor dimension. As the embedding dimension

increases the estimate of the attractor dimension asymptotically approaches

the fractal dimension of the attractor. The method was first proposed by

Grassberger and Procaccia after which it is named. The Grassberger-

Procaccia algorithm has the form:

^r^d')=N{^tt^r~M~^ (14)
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where 0(x) is the Heaviside function. The operation of the Heaviside

evaluation is given by the following:

. f0 r < S

<*-*)-{, r>s

d5)

Theiler modified the algorithm to reduce the nearest neighbor effects on the

correlation integral which may cause errors in the estimation of the attractor

dimension. A term, W, was introduced, changing the form to:

The term W is calculated by the following:

r = ()"+l (17)

where N is the number of points in the time series, and m is the embedding

dimension. W must be rounded up to the next integer value since it is to be

used in the summation as an index.

The function of the correlation integral is to sum all of the inter-point

distances, S, greater than or equal to r for each r. CORRINT.M evaluates the

correlation integral at each r defined by the parameters rmin, rmax, and

numbin. The parameter rmin determines the lower scaling region and rmax

determines the upper scaling region. The parameter numbin determines how

many points including rmin and rmax there will be. The choice of rmax and

numbin are not critical. The choice of rmin is of great importance. If rmin is
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set too large part or all of the linear scaling region will be lost. Conversely if

rmin is set too small, statistical aberrations at the lower points may affect the

dimension estimate.

% CORRINT.M

%

% MATLAB function that calculates correlation integral function for plotting
% log C(N,r) vs. log r. The correlation integral is used to approximate the

% dimension of a non-linear or chaotic time series.

%

% function [r,CNr]=corrint(xn,W)

% Copyright (c) 1992- 1994 William Robertson

function [r,CNr]=corrint(xn,W)
if nargin==l; W=0; end;

[R,C]=size(xn);

ifC>R; xn=xn'; [R,C]=size(xn); end;

% The following two lines are used to set the scaling region for the interpoint

% distance calculations. The lower and upper limits of 5% and 60% respectively

Vo have worked well, but there is no analytical significance. The expression

% in parenthesis is a quick (& dirty) way to approximate the hypersphere radius

Vo of the embedded time series. It is much faster than calculating the Euclidean or

% taxicab diameter.

rmin=0.05*sqrt((max(xn(:,l))A2)*C);

rmax=0.60*sqrt((max(xn(:,l))A2)*C);

% the following set the number of evenly spaced radii for the correlation integral

% based upon rmin and rmax

numbin=25;

r=linspace(rmin,rmax,numbin);

xn2=xn;

CNr=zeros(size(numbin));

fori=l:R-l;

b=xn2(l,:); xn2(l, :)=[]; xn2(R,:)=b;

d=sqrt(sum(((xn-xn2). *(xn-xn2))'));

for k=l:numbin; C(k)=sum(d
<=

r(k)); end

CNr=CNr+C;

end

r=log(r);

CNr=log(CNr/RA2);
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EMBED.M

EMBED.M is a MATLAB function that maps the sampled time series into

an n-dimensional space. The embedding is performed using a delay,

associated with the decorrelation index. The function checks to make sure

there are enough points after embedding. If the number of points after

embedding would be less than half of the number of points in the original

time series, then the function terminates. The embedding is accomplished by

indexing a column vector by the delay and inserting it sequentially into

columns of the artificial space array.

% EMBED.M

%

% MATLAB function that maps x vector into n dimensions using delay specified at

% the function calling. If the vector is too small for the number ofdimensions

% an error is generated and the function terminates.

%

% function [xn]=embed(x,n,delay)

% Copyright (c) 1992- 1994 William Robertson

function [xn]=embed(x,n,delay)

% Calculate number ofpoints for embedding

[N,c]=size(x);

if c>N; x=x'; N=c; end

npts=N-(n-l)*delay;

ifnpts<N/2

fprintf('Insufficient number of points for embedding in %3.0f

dimensions. ',n)
return

end

% Embed data into column coordinate vectors

forj=l:n

xn=[xnx(0-l)*delay+l:N-(n-j)*delay)];

end

disp(fNumber of embedded points
=

',num2str(npts)])

return
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LINREG.M

LINREG.M is a MATLAB function that computes the coefficients for a

linear function in the least squares sense on a preselected range of the

correlation integral results. The correlation integral, (CORRINT.M), yields

log(r) vs. log(CNr) data. The lower region of this data, corresponding to

smaller inter-point distances, has a slope which scales with the attractor

dimension.

The range selection is made in the line that says xsub=x(1:6). The

contents of x are predetermined by CORRINT.M. The coefficients of the fit

are calculated without regard for the quality of fit. It is assumed that the user

has had some experience with the time series and has set up CORRINT.M

properly. If this is not the case then ULINREG.M should be substituted for

LINREG.M in MAIN.M.

The least squares formulation for a linear fit starts with the following:

(18)

Sy is the sum of the squares of the residuals. This function can be minimized

with respect to a,-

by taking the appropriate partial derivatives. The most

common form of this is usually shown as:

a\
=

7 Vs

5>H2>.) (19)

_2>

2>.
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Or the result of the process can be expressed in matrix form as:

[[^]]w=^rm (2o)

Close inspection of the function's coding reveals the simplicity of calculating

the linear least squares using the matrix method.

% LINREG.M

%

% MATLAB function that computes least squares linear fit to the region ofdata

% preselected by the user, usually the first few points of the correlation

% integral. The slopefa] and intercept[b] are returned to the calling program.

% Linear equation [y]=a[x]+b. xs and ys are used to draw a line through the

% fitted data points. Similar to ULINREG.M but not interactive.

%

% function [xs,ys,a,b]=linreg(x,y)

% Copyright (c) 1992- 1 994 William Robertson

function [xs,ys,a,b]=linreg(x,y)

x=x(:);

y=yO);

figure

plot(x,y,'+g')

title('Correlation integral plot')

xsub=x(l:6);

ysub=y(l:6);

xsub=[xsub,ones(size(xsub))] ;

A=xsub'*xsub;

B=xsub'*ysub;

ifdet(A)~=0;a=A\B;end

b=a(2); % intercept

a=a(l); % slope

xs=[xsub( 1 );xsub(max(size(xsub)))] ;

ys=a*xs+b;

clg

plot(x,y,'+g',xs,ys,'~r')

title(['Attractor dimension approximated to be ',num2str(a)])
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LORENZ.M

dt

= -ax + ay

dy

dt

= -xz + bx- y

dz

dt

= xy-cz

VO

%

%

%

%

%

%

%

%

%

%

%

%

LORENZ.M calculates the time derivatives which define the Lorenz

attractor. The velocities are calculated from position using the following set of

coupled differential equations:

lax
= -ax + ay

(21)

where typically a=10, b=8/3, and c=28 although the coefficients may be

different.

LORENZ.M is called by an integrator such as RUNGE.M for evaluation.

The data generated by LORENZ.M was used for most of the work on this

thesis. A total of 300,001 points were calculated using a time step of 0.01

seconds and the initial position [1 1 1]. The Lorenz attractor has a fractal

dimension of 2.067.

LORENZM

This MATLAB program calculates the derivatives of the Lorenz attractor.

The derivatives are used by a numerical integration routine such

as Runge-Kutta.

Lorenz attractor set ofdifferential equations

dx/dt=
-ax + ay

dy/dt=
-xz + bx -

y
dz/dt=

xy
- cz

[xdot]=lorenz(t,x) t in input is a dummy argument for integrator

Copyright (c) 1992-1994 William Robertson
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function [xdot]=lorenz(t,x)

a=10;

b=8/3;

c=28;

dx=-a*x(0 + a*x(2);

dy=-x(l)*x(3) + c*x(l)-x(2);

dz=x(l)*x(2)-b*x(3);

xdot=[dx dy dz];

MAIN.M

The MAIN.M routine provides the basic control structure for the collection

of programs and functions that perform the analysis for the time series. The

MAIN.M program also has some configurable parameters such as the

embedding delay and the z factor which determines the secondary sampling

of the time series. A diary file is opened and all screen output is also written

to a text file. The text file can be saved as a record of how the data was

processed and what the various parameters were set to.

% MAIN.M

%

% Main control routine for system identification programs using

% MATLAB.

% Copyright (c) 1992-1994 William Robertson

%

% A single time series (t, F(t)) is read from a data file or created

% using aMATLAB function.

%

% An autocorrelation is performed on the data to determine

% the decorrelation time for use in embedding the data.

%

% The dimension of the system is estimated by embedding the data in

% higher dimensional spaces until convergance of the correlation

% function slopes is obtained. (Slope of lnC(r) vs. ln(r) converges

% with increasing embedding dimension N)
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%

% The file DATA.MAT was created before the execution ofMAIN.M . In the

% file DATA.MAT two vectors were created, TIME and VALUE such that indexed

% pairs represent a state.

%

clc

clear all

flops(O);

diary session.txt

tic;

disp('Time series analysis program by William Robertson.')

disp([date])

tl=clock;disp([num2str(tl(4)),':',num2str(tl(5)),':',num2str(tl(6))])

disp('Loading time series')
disp('Data being loaded from DATA.MAT.')
load data

dt=time(2)-time(l);

N=max(size(value));

disp(['Read
',int2str(N),'

points from time series.'])

% z# selects every zth point

ifN>5000

z=l;

disp(['Using 5,000 points of time series, every
',num2str(z),'

point(s).'])

i=l:5000;

j=i*z;

x(i)=value(N-j);

end

clear value;

disp('Calculating first phase for time series.')

% See NDIFF.M for explanation of calling parameters

[x,dx]=ndiff(2,4,x,dt);

plot(x,dx,'g')

title('Phase plot of time series')

xlabel('x(t)')

ylabel('dx/dt')

drawnow

% An autocorrelation is performed to determine the decorrelation time

% which is used in determining the delay increment associated with the embedding

% process.

%

disp('Calculating autocorrelation function.')

decorr=ac(x);

tl=clock;disp([num2str(tl(4)),':',num2str(tl(5)),':',num2str(tl(6))])
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disp(['Elapsed time
',num2str(toc),'

seconds'])

%

% Embed the time series into successively higher dimensions. The
embed-

% ing stops when the embedding dimension n is greater than 2a+l, where

% a is an approximation of the attractor dimension.

m=l;

a=0;

while m<=(2*a+l);

m=m+l;
disp('

')
disp([num2str(m),'-Dimensional embedding.'])

delay=ceil(decorr/2);

disp(['Using embedding delay of ',int2str(delay), '.'])

[xm]=embed(x,m,delay) ;

% W is Theiler modification to Grassberger-Procaccia algorithm, set W=l to

eliminate effect

W=ceil(decorr*(2/max(size(x)))A(2/m))+l;

dispensing W factor of ',int2str(W), '.'])

[r,CNr]=corrint(xm,W);

disp('Finished correlation integral.')

[rsub,CNrsub,a,b]=linreg(r,CNr);

disp('Finished LINREG.')

R=[Rr];

CNR=[CNR CNr];

rs=[rs rsub];

CNrs=[CNrs CNrsub];

A=[A a];

tl=clock;disp([num2str(tl(4)),':',num2str(tl(5)),':',num2str(tl(6))])

disp(['Elapsed time
',num2str(toc),'

seconds.'])

end

disp('Embedding procedure complete.')

% Show results of embeddings.

figure; plot(R,CNR,'+g',rs,CNrs,'--r')

text(.80,.15+.05*(m-l),'De Da','sc')

xlabel('ln(r)')

ylabel('ln(CNr)')

title('Correlation integral results, attractor dimension')

for i=2:l:m
msg=([int2str(i),'

',num2str(A(i-l))]);

text(.8,.15+((m-i)*.05),msg,'sc');

end

disp('

')

disp('Embedding Attractor')

disp('Dimension Dimension')
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for i=2:m
disp([' \int2str(i),'

\num2str(A(i-l))])

end

drawnow
disp('

')

tl=clock;disp([num2str(tl(4)),':',num2str(tl(5)),':',num2str(tl(6))])

disp(['Elapsed time
',num2str(toc),'

seconds.'])

disp( ['Floating point operations
= ', num2str(flops),'.'])

disp('Normal termination ofMAIN.M')

diary off

NDIFF.M

NDIFF.M is a numerical differentiation function that was originally written

to provide real phase plots. It can perform backward, centered, and forward

differences on equi-spaced data. Forward and backward differences are

performed using 2 or 3 point formulas, while the centered difference can be

performed using 2, 4, or 6 points. NDIFF.M returns two vectors, a subset of

the original time series and the time derivatives that correspond to the

subset. The usage of multiple point differentiation formulas means that not all

the derivatives can be evaluated, thereby reducing the useable number of

points. The two point backward difference formula is based upon the

following finite divided difference:

f(x,) = f(X,)~f(X-iKoh (22)
h

The three point backward difference is:

/(x>3/(x,)-4/(x,)
+ /(x3)+o/;2

^

The two point centered difference is based upon:
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f(x)=f^-f^-(W
2/7

The four point centered difference is based upon;

(24)

/(r|) =
/M-8/(x.,) +8/(xJ-/(xrt)

v '
12/7

v ;

The six point centered difference is based upon:

f {x ) =
-/(*-)

+9/(^)
~

45/(,.,) + 4S/(x,)
-

9/(x,+2) + /(x,.3)
+
Qh&

(26)
60//

The two point forward difference is based upon

w^u/MiW.^ (27)

The three point forward difference is based upon:

/(x)=-3/(x,)
+ 4/(x,+1)-/(x,+2)_o;;2

^

% NDIFF.M

%

% This program uses backward, centered, or forward divided difference tech

no niques to numerically estimate derivatives, dx/dt. The input arguments are:

%

% type -one character string giving type of divided difference to perform

% npts -number ofdata points to use in calculating the divided difference

% x -vector with x values

% dt -dt value

%

% Examples of valid combinations

% dx=ndiff(l,2,x,dt) dx=ndiff(l,3,x,dt)

% dx=ndiff(2,2,x,dt) dx=ndiff(2,4,x,dt) dx=ndiff(2,6,x,dt)

% dx=ndiff(3,2,x,dt) dx=ndiff(3,3,x,dt)

%

% function [xs,dxs]=ndiff(type,npts,x,dt)

% Copyright (c) 1 992- 1994 William Robertson
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function [xs,dx]=ndiff(type,npts,x,dt)

np=max(size(x));

if type==l % backward differenc

if npts==2

dx=(x(2:np)-x(l:np-l))/dt;

xs=x(2:np);

elseif npts==3

dx=(x(3:np)-4*x(2:np-l)+3*x(l:np-2))/(2*dt);
" -

xs=x(3:np);

end

end

if type=2 % centered difference

ifnpts=2

dx=(x(3 :np)-x(l :np-2))/(2*dt);

xs=x(2:np-l);

elseifnpts==4

dx=(-x(5:np)+8*x(4:np-l)-8*x(2:np-3)+x(l:np-4))/(12*dt);

xs=x(3:np-2);

elseif npts==6

dx=+x(7:np)-9*x(6:np-l)+45*x(5:np-2)-45*x(3:np-4)+9*x(2:np-

5)-x(l:np-6);

dx=dx/(60*dt);

xs=x(4:np-3);

end

end

if type=3 % forward difference

ifnpts=2

dx=(x(2:np)-x(l:np-l))/dt;

xs=x(l:np-l);

elseifnpts==3

dx=(-x(3 :np)+4*x(2:np- 1)-3 *x( 1 :np-2))/(2*dt);

xs=x(l:np-2);

end

end

ROSSLER.M

ROSSLER.M is a function much like LORENZ.M. It is called by an

integrator for evaluation. The Rossler velocity equations are:
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[dx

dt

cfy

dl

di

-y.

- =

x+ay

dt

= b + xz

(29)

%

%

%

%

%

%

%

%

%

%

%

%

%

%

where typically a=0.2, b=0.2, and c=4.6.

ROSSLER.M

MATLAB function that calculates the derivatives of the Rossler attractor.

The derivatives are used by a numerical integration routine such

as RUNGE.M.

[xdot]=rossler(t,x)

Copyright (c) 1992-1994 William Robertson

Rossler attractor

dx/dt=
-(x + z)

dy/dt=
x + ay

dz/dt= b + xz - cz

[xdot]=rossler(t,x) t in input is a dummy argument for integrator

function [xdot]=rossler(t,x)

a=0.2;

b=0.2;

c=4.6;

dx=
-x(2)

-

x(3);

dy=x(l) + a*x(2);

dz=b + x(l).*x(3)-c*x(3);

xdot=[dx dy dz];

RUNGE.M

RUNGE.M is the MATLAB implementation of a classical 4th order Runge

Kutta integration routine. A set of parameters, /c, are calculated based on the

current function value and the integration step size. It uses a fixed time step
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selected by the dt argument in the calling function. The next value of the

function is calculated by:

jvi =y,+ -(k]+2k2+2L+k4) dt (30)

where the k, are calculated by:

A*,y.)

,
,. dt

,
dt

(31)

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

k^f(t,+dt,y, +k3dt)

A fixed time step is used to simplify the analysis. RUNGE.M was used to

integrate both the Lorenz and Rossler differential equations. A higher order

integrator could be used, but it is probably not worth the additional

computational effort. The integration tends to smooth out any noise in the

data where as the differentiation function will exaggerate noise and cause

further propagation.

RUNGE.M

MATLAB function that implements the 4th order Runge-Kutta routine for

numerical integration. Performs integration on polynomials passed from

a main control program. Returns the integrated functions to the main program.

F

ti

dt

tf

yO

t

y

-function file used to evaluate the function

-initial time

-integration step size

-final time

-initial value vector of state variables

-returned time vector

-returned solution, one column per state variable

function [t,y]=runge(F,ti,dt,tf,yO)
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% Copyright (c) 1992-1994 William Robertson

function [t,y]=runge(F,ti,dt,tf,yO)
t=(ti:dt:tf)';

y=zeros(length(t),length(yO));

y(i,:)=yo;

fori=l:l:length(t)-l

kl=feval(F,t(i),y(i,:));

k2=feval(F,t(i)+dt/2,y(i,:)+dt*kl/2);

k3=feval(F,t(i)+dt/2,y(i,:)+dt*k2/2);

k4=feval(F,t(i)+dt,y(i,:)+dt*k3);

y(i+l,:)=y(i,:)+dt*(kl+2*k2+2*k3+k4)/6;

end

ULINREG.M

ULINREG.M is a MATLAB function that computes the linear least squares

fit to data from the correlation integral. The data from the correlation integral

is plotted and the user interactively selects the region of data to curve fit.

After the range is selected, the slope is calculated. The figure is re-plotted

showing the slope and the best fit line. The user can then accept or reject the

selection. If the selection is rejected, the user is prompted to re-select.

% ULINREG.M

%

% MATLAB function computes least squares linear fit to the region of data

% selected graphically by the user. The user may accept or reject the selection

% before proceeding. The slope[a] and interceptfb] are returned to the calling

% program, xs and ys are subsets represent the best fit line for the selection.

% Linear equation [y]=a[x]+b.

%

% function [xs,ys,a,b]=ulinreg(x,y)

% Copyright (c) 1992- 1994 William Robertson

function [xs,ys,a,b]=ulinreg(x,y)

x=x(:);

y=y(0;
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button=0;

% Select region of data to curve fit.

while button~=2

figure

plot(x,y,'+g')

title('Correlation integral plot')

xlabel('Pick two points in linear region ofgraph')

[xloc,yloc,button]=ginput(2);

index=find(x >= min(xloc) & x
<=

max(xloc));

xsub=x(index);

ysub=y(index);

xsub=[xsub,ones(size(xsub))];

A=xsub'*xsub;

B=xsub'*ysub;

if det(A)~=0;a=A\B;end

b=a(2); % intercept

a=a(l); % slope

xs=[xsub(l);xsub(max(size(xsub)))];

ys=a*xs+b;

clg

plot(x,y,'+g',xs,ys,'~r')
title(['

Attractor dimension approximated to be ',num2str(a)])
xlabel('Left button to try again, Right button to continue')

[xloc,yloc,button]=ginput( 1 ),

end
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CHAPTER 6

EXPERIMENTAL PROCEDURE

The original plan was to perform the battery of experiments on both Rossler

and Lorenz data. This would have doubled the run time of the computers and

there were some inherent difficulties in using the Rossler attractor.

Data generation

The Rossler equations were integrated using the function RUNGE.M for

60 seconds with a dt=0.01 seconds from an initial condition of [0 0 0]. The

initial integration was to remove the transients caused by an initial condition

within the basin of attraction, but not on the attractor. A second integration

was performed using a larger time step of 0.05 seconds to provide a working

data set of 60,001 points spanning a total of 3000 seconds.

The Lorenz data was similarly generated using RUNGE.M from an initial

condition of [111], with dt=0.01 seconds. Inspection of the equations show a

point attractor for the initial condition of [0 0 0]. The Lorenz data also

spanned 3000 seconds, but had to be integrated with a smaller time step,

and therefore yielded a very large data set of 300,001 points.
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To speed up the programs, the data for each attractor was written to a

.MAT file. This allowed MATLAB to read the data from the file rather than

recreate it for each case. Although the investigations used very large data

sets, this method yields significant time savings even for small data sets.

Abandonment of Rossler

The Rossler attractor was only used briefly in this investigation due to its

weak non-linearity. The fractal dimension of the Rossler attractor is, only

2.027, a result of the weak non-linearity. The correlation integral estimate of

the attractor dimension from this analysis should approach the fractal

dimension asymptotically from below. For the Rossler attractor this requires

that the estimation be 99% of the actual dimension in order to accurately

indicate the need for three coordinates to describe the attractor. Most

combinations of embedding delay and secondary sampling yielded

convergence to a dimension estimate just less than two.

Secondary sampling

To further reduce the effects of any transients, all points used for the

analysis were taken from the end of each data set. Seven secondary

sampling schemes were used, every point, every second point, every third

point, every fifth point, every tenth point, every
25th

point, and every
50th
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point. Even at every
50th

point, this left more than 50,000 points for transients

to settle out in the Lorenz data.

Embedding delays

Four different embedding delay fractions were used at each secondary

sampling rate. The embedding delay fractions were one, one half, one fifth,

and one tenth of either the first local minimum or zero. In two cases this led

to non-convergence, and in one case, the duplication of results. In the 28

cases which were run, 26 resulted in normal termination. The duplication

caused by the embedding delay selection resulted in there being only 25

unique cases in the study.

Configuration of MAIN.M

For each case, several parameters had to be set. The first parameter set

the number of points for the data set that would be used for the analysis. The

second parameter was the secondary sampling rate. The secondary

sampling rate, Z, affects how the data is sampled from the storage file. The

storage file is read from the disk and then the program would take every
Zth

point from the end of the file until it has the specified number of points. The

delay parameter controls the embedding delay selection based upon the

decorrelation time as returned from ACM or AUTOCORR.M to the MAIN.M
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program. The delay parameter divided the decorrelation value by 1
, 2, 5, or

10 depending on the value it was set to.

RESULTS

The matrix of delay and secondary sampling values yielded 25 unique cases

out of a possible 28. The results of the different parameters were wide spread in

their affect on the maximum embedding dimension and tne maximum estimate of

the attractor dimension. The tables below summarize important characteristics of

the cases that were investigated.

Case number matrix

delay/1 delay/2 delay/5 delay/10

z=1 1 2 3 4

z=2 5 6 7 8

z=3 9 10 11 12

z=5 13 14 15 16

2=10 17 18 19 20

z=25 21 22 23
24*

z=50
25* 26

27 28

r
Case 24 yielded the same results as case 23 due to duplication of the delay parameter.

*
Case 25 was terminated by the author.

Case 26 was terminated by the author.
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The case number matrix shows the two parameters for each case, the delay

values across the top and the secondary sampling rates down the first column.

This is provided as a reference for comparison of the results presented in the

figures from the analysis.

The termination matrix shows the position of the two cases which were

terminated by the author. Both cases exceeded an embedding dimension of

eight, and did not show any signs of impending convergence.

Highest embedding dimension matrix

delay/1 delay/2 delay/5 delay/10

z=1 5 5 5 5

z=2 8 6 5 5

z=3 7 6 5 5

z=5 7 6 6 5

z=10 7 6 5 5

z=25 7 5 5 5

z=50 N/A N/A 7 6

The highest embedding dimension matrix shows the highest dimension that

each case was embedded in. Highlighted cells indicate an embedding dimension

of six or greater, in order to achieve an attractor dimension estimate greater than

two, based on the criteria established earlier. The cases which terminated with
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an embedding dimension of five, all have an attractor estimate of less than two

which will be shown in the following.

Highest attractor dimension estimate matrix

delay/1 delay/2 delay/5 delay/10

z=1 1.917 1.915 1.843 1.702

z=2 3.406 1.937 1.773

z=3 2.752 2.109 1.983 1.808

z=5 2.955 2.086 2.018 1.847

2=10 2.760 2.038 1,983 1.841

z=25 2.974 1.998
1.950n

1.950

z=50 N/A N/A 2.918 2.044

The highest attractor dimension estimate matrix shows the maximum

estimate for the attractor dimension in each case. For most cases, as would be

expected the maximum estimate occurs at the highest embedding dimension. In

two instances this was not the case, with the peak estimate occurring at one less

than the maximum embedding dimension. In both cases there was a slight

decrease in the estimate in the final embedding dimension.

Highlighted cells correspond to values within 5% of the actual attractor

dimension. This is meant to include cases which were still approaching from

below or which may have slightly over
estimated the attractor dimension.

"At De=5, 2.013 at De=6, the final embedding dimension.
n
At De=4, 1.947 at De=5, the final embedding

dimension. Also case 24.
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Attractor dimension estimate at De=5 matrix

delay/1 delay/2 delay/5 delay/10

z=1 1.857 1.915 1.843 1.702

z=2 2.886 2.055 1.937 1.773

z=3 2.502 2.062 1.983 1.808

z=5 2.518 2.066 2.008 1.847

z=10 2.399 2.025 1.983 1.841

z=25 2.528 1.998 1.947 1.947

z=50 N/A N/A 2.531 2.033

The table above shows the estimate of the attractor dimension at an

embedding dimension of five. This allows inspection of the progress of the

estimate at one dimension less than the minimum. This time the shaded cells

correspond to estimates of the attractor dimension which are within zero to five

percent below the attractor dimension. The highlighted cells are the same in

both tables. For the highlighted cases, very little information is gained by the

successive embeddings. This result validates the stopping criteria used for the

embedding dimension.
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Da vs De for all Z using delay/1

<

4 5 6

Embedding dimension, De

-z=1
-z=2- -z=3- -z=5- -z=10-

-z=25 -z=50:

Figure 22. Plot of the attractor dimension estimate as a function of the embedding

dimension and the secondary sampling rate for the embedding delay equal to the

decorrelation time. Only z=1 and z=2 show convergent behavior, neither to the correct

value. The choice of delay is poor.

Da vs De for all Z using delay/2

4 5 6

Embedding dimension, De

-z=1
-z=2- -z=3- -Z=5- -Z=10-

-z=25 -Z=50

Figure 23. Plot of the attractor dimension estimate as a function of the embedding

dimension and the secondary sampling rate for the embedding delay equal to one half

the decorrelation time. All Z's converge, but Z=1 underestimates the attractor dimension.

The delay is good, and the choice of secondary sampling rate is virtually unimportant.
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Da vs De for all Z using delay/5

<

4 5 6

Embedding dimension, De

-z=1
-Z=2- -Z=3- -z=5- -Z=10-

-Z=25 -z=50

Figure 24. Plot of the attractor dimension estimate as a function of the embedding

dimension and the secondary sampling rate for the embedding delay equal to one fifth

the decorrelation time. For Z<50 the estimates all still are approaching the correct value

albeit slowly. Again the delay is probably acceptable, and the choice of secondary

sampling is almost unimportant.

Da vs De for all Z using delay/10

1.5

4 5 6

Embedding dimension, De

-z=1
-Z=2-

-Z=3- -z=5- -z=10-

-z=25 -z=50

Figure 25. Plot of the attractor dimension estimate as a function of the embedding

dimension and the secondary sampling rate for the embedding delay equal to one tenth

the decorrelation time. Only Z=50 approaches the correct value. The choice of delay is

poor, almost no choice of secondary sampling
rate estimates the attractor dimension
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ANALYSIS OUTPUT

Each figure in the following section corresponds to a single case. They allow

the visual comparison of each embedding dimension to the others for the

selection of secondary sampling and delay parameters. The caption below each

figure gives the pertinent details of the analysis that generated the figure. In

addition Appendix A contains the full output from each analysis. The caption also

references the appropriate pages of the Appendix should further information be

required.
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Figure 26. Case 1. Last 5000 points, every point, embedding delay equal to first local

minimum. Appendix pages A-1 to A-3.
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Figure 27. Case 2. Using last 5000 points, every point, embedding delay at one half of first

local minimum. Appendix pages A-4 to A-6.
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Figure 28. Case 3. Using last 5000 points, every point, embedding delay at one fifth of first

local minimum. Appendix pages A-7 to A-9.
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Figure 29. Case 4. Using last 5000 points, every point, embedding delay at one tenth of

first local minimum. Appendix pages A-10 to A-12.
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Figure 30. Case 5. Using 5000 points, every other point, embedding delay of first zero.

Appendix pages A-13 to A-17.
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Figure 31. Case 6. Using 5000 points, every other point, embedding delay of one half of

the first zero. Appendix pages A-18 to A-21.
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Figure 32. Case 7. Using 5000 points, every other point, embedding delay of one fifth of

the first zero. Appendix pages A-22 to A-24.
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Figure 33. Case 8. Using 5000 points, every other point, embedding delay of one tenth of

the first zero. Appendix pages A-25 to A-27.
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Figure 34. Case 9. Using 5000 points, every third point, embedding delay of the first local

minimum. Appendix pages A-28 to A-32.
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Figure 35. Case 10. Using 5000 points, every third point, embedding delay of one half the

first local minimum. Appendix pages A-33 to A-36.
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Figure 36. Case 11. Using 5000 points, every third point, embedding delay of one fifth the

first local minimum. Appendix pages A-37 to A-39.
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Figure 37. Case 12. Using 5000 points, every third point, embedding delay of one tenth

the first local minimum. Appendix pages A-40 to A-42.
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Figure 38. Case 13. Using 5000 points, every fifth point, embedding delay of the first local

minimum. Appendix pages A-43 to A-47.

68



In(CNr)

0

-1

-2

-3

-4

-5

-6

-7

-8

Correlation integral results, attractor dimension

''

'

#
ywy y y

*
# y y

a y yy

,
. V

y y

De Da

2 1.75

3 1.954

4 2.044

5 2.066

6 2.086

2

ln(r)

Figure 39. Case 14. Using 5000 points, every fifth point, embedding delay of one half the
first local minimum. Appendix pages A-44 to A-51.
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Figure 40. Case 15. Using 5000 points, every fifth point, embedding delay of one fifth the

first local minimum. Appendix pages A-52 to A-55.
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Figure 41. Case 16. Using 5000 points, every fifth point, embedding delay of one tenth the

first local minimum. Appendix pages A-56 to A-58.
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Figure 42. Case 17. Using 5000 points, every tenth point, embedding delay of the first

zero. Appendix pages A-59 to A-63.
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Figure 43. Case 18. Using 5000 points, every tenth point, embedding delay of one half of

the first zero. Appendix pages A-64 to A-67.
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Figure 44. Case 19. Using 5000 points, every tenth point, embedding delay of one fifth of

the first zero. Appendix pages A-68 to A-70.
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Correlation integral results, attractor dimension

In(CNr)
-3-

a^aW
A+y+A+A+

y4

y/yy

A+>+

4

'
t

s*y
y y

S

4 *

4

De Da

2 1.561

3 1.696

4 1.781

5 1.841

0 12 3 4

ln(r)

Figure 45. Case 20. Using 5000 points, every tenth point, embedding delay of one tenth of
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CHAPTER 7

CONCLUSIONS

The most important result of this work was the discovery that the secondary

sampling technique may be effectively used to reduce the size of the data set for

analysis. The data set size can be reduced without losing information. The

results show an increase in the estimation accuracy as the secondary sampling

becomes sparser. This is followed by a decrease in estimation accuracy as the

secondary sampling became very sparse.

The analysis is however very sensitive to the embedding delay. For

embedding delays corresponding to 1/2 and 1/5 of the decorrelation time, the

attractor dimension estimates were good, typically falling within 5% of the correct

value. At these embedding delays, a very wide range of secondary sampling

rates yield acceptable results. The choice of a good embedding delay allows the

investigation of the sampling rate's effect on the attractor dimension estimation.

For the embedding delays corresponding to 1 and 1/10 of the decorrelation

time only one case provided a reasonable estimate of the attractor dimension.

The other cases were very poor estimates indicating that the embedding delay

selection was poor.
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RECOMMENDATIONS

Throughout this investigation a great many things became clear. First,

without the computers and software none of this work would have been possible.

Secondly, the present software level (both analysis and word processing) does

not match the present hardware level. Lastly, when they have hardware and

software that is capable of doing real-time analysis and prediction of complex

non-linear systems it will be a truly impressive day.

Probably the most frustrating discovery was that although it was very easy to

use, MATLAB was not meant to solve problems this large or so many times. The

language is intuitive because it uses matrix notation and because the syntax is

very simple. The MATLAB environment has two fundamental problems. The first

problem is that it is an interpreted language, that is the commands in the script

file must be interpreted each time which takes up valuable time. The second

problem is the structure which allows very fast execution of matrix operations is

crippled when it is forced to perform a looping operation that can not be

vectorized. The suggestion then is to use a language which will create

executable files which eliminates both shortcomings. The use of an executable

requires more work in the programming department, but should result in greatly

reduced run time.

Due to time constraints only one attractor was investigated. With a faster

combination of hardware and software it would be desirable to investigate other
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attractors to see how widely the secondary sampling technique is applicable.

While there is nothing to suggest that the method is not extensible, neither is

there anything to prove that it is extensible to other systems.

Additional reading

A great deal of information has been published in the last two years since

this work was begun. The amount of information in print may even have doubled

in this time with so many people working on different aspects of system analysis.

The following list is from research on the subject beginning two years ago. Some

of the entries are references in published works, while others are the result of

specific subject searches.

No attempt has been made to update the list from two years ago, it is merely

provided as a starting point for someone with further interest. The items on the

list cover a wide variety of topics associated with non-linear dynamics, some

which are applicable to this work and some which are not.

Abarbanel, H.D.I., Brown, R., Kadtke, J.B., Prediction in chaotic nonlinear

systems: Methods for time series with broadband Fourier spectra,

Physical Review A, 41, 1782 (1990)

Aleksik, Z., Estimating the embedding dimension, Physica D, 52, 362 (1991)

Asano, A., Itoh, K., Ichioka, Y ,
The nearest-neighbor median filter; deterministic

properties and implementations, Pattern recognition, 23, 10, 1059

(1990)

Atmanspacher, H., Scheingraber, H., Voges, W., Global scaling properties of a

chaotic attractor reconstructed from experimental data, Physical

Review A, 1988, 37, 1314 (1988)

Badii, R., Politi, A., Title unknown, Journal of Statistical Physics, 40, 725

Ben-Mizrachi, A., Procaccia, I., Grassberger, P., Characterization of

experimental (noisy) strange attractors, Physical Review A, 29, 975

(1984)
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Broomhead, D.S., Indik, R., Newell, A.C., Local adaptive Galerkin bases for

large-dimensional dynamical systems, Nonlinearity, 4, 159

Broomhead, D.S., Jones, R., Time series analysis, Proceedings of the Royal

Society ofLondon, 423, 1864, 103

Broomhead, D.S., King, G.P., Title unknown, Physica D, 20, 217

Buzug, Th., Pfister, G., Optimal delay time and embedding dimension for delay-

time coordinates by analysis of the global static and local dynamic

behavior of strange attractors, Physical Review A, 45, 7073 (1 992)

Casdagli, M., Chaos and Deterministic versus Stochastic Non-linear Modelling,
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Casdagli, M., Nonlinear prediction of chaotic time series, Physica D, 35, 335

(1989)

Cawley, R., Hsu, G.H., SNR performance of a noise reduction algorith applied to

coarsely sampled chaotic data, Physics Letters A, 166, 188 (1992)
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generalized dimension of a filtered chaotic time series, Journal of

Statistical Physics, 59, 1311 (1990)

Chennaoui, A., Pawelzik, K., Liebert, W., Attractor reconstruction from filtered

chaotic time series, Physical Review A, 41, 4151 (1990)

Corless, R.M., Essex, C, Nerenberg, M.A.H., Numerical methods can suppress

chaos, Physics Letters A, 157, 27
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(1989)
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Physics Letters A, 145, 225 ( 1 990)

Eckmann, J. -P., Procaccia, I., Fluctuation of dynamical scaling indices in non-

Linear systems, Physical Review A, 34, 659 (1 986)
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Reviews ofModern Physics, 57 ,
6 1 7 ( 1 985)
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Eisner, J.B., Predicting time series using a neural network as a method of

distinguishing chaos from noise, Journal of Physics A, 25, 843
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Appendix A -- Experimental Documentation

Time series analysis program by William Robertson.

18-Jun-94

12:20:47.79

Loading time series.

Read 300001 points from time series.

Using last 5.000 points of time series.

Calculating first phase for time series.

Calculating autocorrelation function.
Autocorrelation local minimum at lag 53.

12:21:43.71

Elapsed time 56.52 seconds

2-Dimensional embedding.

Using embedding delay of 53.
Number of embedded points = 4943

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

15:35:41.76

Elapsed time 1. 169e+O04 seconds.

Attractor dimension approximated to be 1 .731
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3 -Dimensional embedding.

Using embedding delay of 53.

Number of embedded points = 4890

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

18:52:6.35

Elapsed time 2.348e+004 seconds.
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Attractor dimension approximated to be 1 .876

0 0.5

4-Dimensional embedding.

Using embedding delay of 53.

Number of embedded points = 4837

Using W factor of 3.

Finished correlation integral.

Fimshed LINREG.

22:11:26.93

Elapsed time 3.544e+004 seconds.

Attractor dimension approximated to be 1 .91 7
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Using W factor of 4.

Finished correlation integral.
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1.5 2.5 3.5

A-2



Elapsed time 4.752e+004 seconds.

Attractor dimension approximated to be 1 .857
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Elapsed time 4.752e+004 seconds.

Floating point operations
= 3.681e+009.

normal termination
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Time series analysis program by William Robertson.

19-Jun-94

7:32:21.48

Loading time series.

Read 300001 points from time series.

Using last 5.000 points of time series.

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 53.

7:33:14.76

Elapsed time 53.61 seconds

2-Dimensional embedding.

Using embedding delay of 27.

Number of embedded points = 4969

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

10:47:35.33

Elapsed time 1.171e4O04 seconds.

Attractor dimension approximated to be 1 .525

-0.5

0 0.5

3-Dimensional embedding.

Using embedding delay of 27.

Number of embedded points = 4942

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

14:7:39.63

Elapsed time 2.372e+004 seconds.
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Attractor dimension approximated to be 1 .81 1
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4-Dimensional embedding.

Using embedding delay of 27.

Number Of embedded points = 4915

Using W factor of 3.

Finished correlation integral.

Finished LINREG.

17:32:56.18

Elapsed time 3.603e+004 seconds.

Attractor dimension approximated to be 1 .912
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5-Dimensional embedding.
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Number of embedded points
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Finished correlation integral.

Finished LINREG.
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Elapsed time 4.857e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1 .915

0
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Embedding Attractor

Dimension Dimension

2 1.525

3 1.811
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4 1.912

5 1.915

21:1:58.36

Elapsed time 4.858e+004 seconds.

Floating point operations
= 3.785e+009.

normal termination
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Time series analysis program by William Robertson.

19-Jun-94

21:57:25.74

Loading time series.
Read 300001 points from time series.

Using last 5.000 points of time series.

Calculating first phase for time series.

Calculating autocorrelation function.
Autocorrelation local minimum at lag 53.

21:58:6.33

Elapsed time 41.03 seconds

2-Dimensional embedding.

Using embedding delay of 1 1 .

Number of embedded points = 4985

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

1:14:39.72

Elapsed time 1. 183e+004 seconds.

Attractor dimension approximated to be 1 .58

Or

0 0.5

3 -Dimensional embedding.

Using embedding delay of 1 1 .

Number of embedded points = 4974

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

4:37:10.17

Elapsed time 2.398e4-004 seconds.
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Attractor dimension approximated to be 1 .699

0 0.5

4-Dimensional embedding.

Using embedding delay of 1 1 .

Number of embedded points = 4963

Using W factor of 3.

Finished correlation integral.

Finished LINREG.

8:5:33.68

Elapsed time 3.649e+O04 seconds.

Attractor dimension approximated to be 1 .786

0

0.5 1

5-Dimensional embedding.

Using embedding delay of 1 1.

Number of embedded points
= 4952

Using W factor of 4.

Finished correlation integral.

Finished LINREG.

11:42:34.82
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Elapsed time 4.951e+004 seconds.

Attractor dimension approximated to be 1 843
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Embedding procedure complete.

Embedding Attractor

Dimension Dimension
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5 1.843

Correlation integral results, attractor dimension
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normal termination
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Time series analysis program by William Robertson.

2()-Jun-94

12:17:29.02

Loading time series.

Read 300001 points from time series.

Using last 5.000 points of time series.

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 53.

12:18:18.39

Elapsed time 49.93 seconds

2-Dimensional embedding.

Using embedding delay of 6.

Number of embedded points = 4990

Using W factor of 2.

Finished correlation integral.

Finished LINREG

15:33:34.66

Elapsed time 1. 177e+004 seconds.

Attractor dimension approximated to be 1 .453

0 0.5

3 -Dimensional embedding.

Using embedding delay of 6.

Number of embedded points
= 4984

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

18:56:58.83

Elapsed time 2.397&+O04 seconds.
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Attractor dimension approximated to be 1 .568

0 0.5

4-Dimensional embedding.

Using embedding delay of 6.

Number of embedded points = 4978

UsingW factor of 3.

Finished correlation integral.

Finished LINREG.

22:37:27.03

Elapsed time 3.72e4O04 seconds.

Attractor dimension approximated to be 1 .643
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0.5 1

5 -Dimensional embedding.

Using embedding delay of 6.

Number of embedded points = 4972

UsingW factor of 4.

Finished correlation integral.

Finished LINREG.

1.5 2.5 3.5
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2:11:12.85

Elapsed time 5.002e+004 seconds.

Attractor dimension approximated to be 1 .702

-1

i i i 1

-2

4-

+

y

y
-3

4*

y

V

-4

y

y

c

0.5 1

Embedding procedure complete.

Embedding Attractor

Dimension Dimension

2 1.453

3 1.568

4 1.643

5 1.702

1.5 2.5 3.5

0

-1

-2

Correlation integral results, attractor dimension

In(CNr)
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Da

1.453
' '

4 S/ 3 1.568

S
4

4 1.643

5 1.702

0

2:11:17.02

Elapsed time 5.003e4-004 seconds.

Floating point operations
= 3.87e+009.

normal termination

2

ln(r)
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Time series analysis program by William Robertson.

29-Jun-94

19:45:3.63

Loading time series.
Read 300001 points from time series.

Using 5,000 points of time series, every 2 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.
Autocorrelation zero at lag 38.

19:45:41.69

Elapsed time 38.51 seconds

2-Dimensional embedding.

Using embedding delay of 38.
Number of embedded points = 4958

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

23:0:14.62

Elapsed time 1.171e+004 seconds.

Attractor dimension approximated to be 1 684
-0.5 1 . ,

, __

-4.5

0 0.5

3 -Dimensional embedding.

Using embedding delay of 38.

Number of embedded points = 4920

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

2:17:22.17

Elapsed time 2.354e4-004 seconds.
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-1
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-4

-5

Attractor dimension approximated to be 2.171

-

y
, +

y+

A

y

s

y
.

1 1.5 2.50 0.5

4-Dimensional embedding.

Using embedding delay of 38.

Number of embedded points = 4882

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

5:38:4.03

Elapsed time 3.558e+004 seconds.

Attractor dimension approximated to be 2.55

0

0.5

5-Dimensional embedding.

Using embedding delay of 38.

Number of embedded points
= 4844

Using W factor of 3.

Finished correlation integral.

Finished LINREG.
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94:56.7

Elapsed time 4.799e+004 seconds.

Attractor dimension approximated to be 2.886

0

0.5 1

6-Dimensional embedding.

Using embedding delay of 38.

Number of embedded points = 4806

Using W factor of 4.

Finished correlation integral.

Finished LINREG.

12:33:0.72

Elapsed time 6.048e+004 seconds.

Attractor dimension approximated to be 3.152

0

0.5

7-Dimensional embedding.

Using embedding delay of 38.

Number of embedded points
= 4768

UsingW factor of 6.
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Finished correlation integral.

Finished LINREG

16:5:6.9

Elapsed time 7.32e+004 seconds.

Attractor dimension approximated to be 3.328

0

0.5

8-Dimensional embedding.

Using embedding delay of 38.

Number of embedded points = 4730

Using W factor of 7.

Finished correlation integral.

Finished LINREG.

19:39:37.7

Elapsed time 8.607e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 3.406

0

0.5

Embedding Attractor
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Dimension Dimension

2 1.684

3 2.171

4 2.55

5 2.886

6 3 152

7 3.328

8 3 406

Correlation integral results, attractor dimension

In(CNr)

-1

-2

-3

-4

5

-6

-7

-8

19:39:42.97

Elapsed time 8.608e+004 seconds.

Floating point operations
= 7.352e+009.

normal termination

2

ln(r)
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Time series analysis program by William Robertson.

29-Jun-94

19:38:33.22

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 2 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation zero at lag 38.

19:38:53.1

Elapsed time 20.15 seconds

2-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points = 4977

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

20:59:15.89

Elapsed time 4843 seconds.

Attractor dimension approximated to be 1 .625
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0 0.5 1.5 2.5

3 -Dimensional embedding.

Using embedding delay of 19.

Number of embedded points
= 4958

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

22:22:46.52

Elapsed time 9853 seconds.
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Attractor dimension approximated to be 1.954
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y

y

y
y

y

1 1.5 2.50 0.5

4-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points = 4939

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

23:49:18.85

Elapsed time 1.505e+004 seconds.

Attractor dimension approximated to be 2.014
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5-Dimensional embedding,

Using embedding delay of 19.

Number of embedded points
= 4920

Using W factor of 3.

Finished correlation integral.

Finished LINREG.

1.5 2.5 3.5

A-19



1:19:18.25

Elapsed time 2.045e+004 seconds.

Attractor dimension approximated to be 2 055
0

0.5

6-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points = 4901

Using W factor of 4.

Finished correlation integral.

Finished LINREG.

2:52:1.76

Elapsed time 2.601e4-004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.018

0

0.5

Embedding Attractor

Dimension Dimension

2 1.625
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3 1.954

4 2.014

5 2.055

6 2.018

In(CNr)

Correlation integral results, attractor dimension
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2:52:3.9

Elapsed time 2.601e4-004 seconds.

Floating point operations
= 4.994e+009.

normal termination

2

ln(r)

De Da

2 1.625

3 1.954

4 2.014

5 2.055

6 2.018
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Time series analysis program by William Robertson.

30-Jun-94

6:29:35.74

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 2 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.
Autocorrelation zero at lag 38.

6:29:57.71

Elapsed time 22. 19 seconds

2-Dimensional embedding.

Using embedding delay of 8.

Number of embedded points = 4988

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

7:50:31.09

Elapsed time 4855 seconds.

Attractor dimension approximated to be 1 .608

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 8.

Number of embedded points = 4980

Using W factor of 2.

Finished correlation integral.

Finished LINREG

9:15:47.9

Elapsed time 9972 seconds.
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Attractor dimension approximated to be 1 .756

0
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1 1.5 2.50 0.5

4-Dimensional embedding.

Using embedding delay of 8.

Number of embedded points = 4972

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

10:42:36.7

Elapsed time 1.518e+004 seconds.

Attractor dimension approximated to be 1.846

0

0.5 1

5-Dimensional embedding.

Using embedding delay of 8.

Number of embedded points
= 4964

Using W factor of 3.

Finished correlation integral.

Finished LINREG
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12:13:29.21

Elapsed time 2.063e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1 .937

0

0.5

Embedding Attractor

Dimension Dimension

2 1.608

3 1.756

4 1.846

5 1.937

Correlation integral results, attractor dimension

In(CNr)
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2 1.608

3 1.756

4 1.846

5 1.937

2

ln(r)

12:13:31.13

Elapsed time 2.064e4O04 seconds.

Floating point operations
= 3.862e+009.

normal termination
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Time series analysis program by William Robertson.

30-Jun-94

16:45:57.67

Loading time series.

Read 30000 1 points from time series.

Using 5.000 points of time series, every 2 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation zero at lag 38.

16:462D.03

Elapsed time 22.57 seconds

2-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4992

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

18:6:35.4

Elapsed time 4838 seconds.

Attractor dimension approximated to be 1 .498

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4988

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

19:32:42.79

Elapsed time l.OOle+004 seconds.
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Attractor dimension approximated to be 1.621

0 0.5 1 1.5 2 2.5

4-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4984

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

20:59:46.48

Elapsed time 1.523e4O04 seconds.

Attractor dimension approximated to be 1 .707

0

0.5

5-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points
= 4980

Using W factor of 3.

Finished correlation integral.

Finished LINREG.
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i lme senes'cnrayrsra-prrugram b\ William Robertson.

30-Jun-94

21:24:38.81

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 3 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 29.

21:25:9.51

Elapsed time 3 1.2 seconds

2-Dimensional embedding.

Using embedding delay of 29.

Number of embedded points = 4967

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

0:40:3.7

Elapsed time -2.58e+006 seconds.

Attractor dimension approximated to be 1.714

0 0.5

3 -Dimensional embedding.

Using embedding delay of 29.

Number of embedded points
= 4938

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

3:59:5.27

Elapsed time -2.568e4-006 seconds.
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Attractor dimension approximated to be 2.142
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1 1.5 2.50 0.5

4-Dimensional embedding.

Using embedding delay of 29.

Number of embedded points = 4909

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

7:22:45.7

Elapsed time -2.556e+006 seconds.

Attractor dimension approximated to be 2.344

0

0.5

5-Dimensional embedding.

Using embedding delay of 29.

Number of embedded points
= 4880

Using W factor of 3.

Finished correlation integral.

Finished LINREG
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10:51:31.07

Elapsed time -2.544e+006 seconds.

Attractor dimension approximated to be 2.502

0

0.5 1 1.5 2
v
2.5

6-Dimensional embedding.

Using embedding delay of 29.

Number of embedded points = 4851

Using W factor of 4.

Finished correlation integral.

Finished LINREG

14:25:39.41

Elapsed time -2.531e4-006 seconds.

Attractor dimension approximated to be 2.643

0

0.5 1

7-Dimensional embedding.

Using embedding delay of 29.

Number of embedded points
= 4822

Using W factor of 5.
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Finished correlation integral.

Finished LINREG.

184:48.08

Elapsed time -2.518e+006 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.752
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Embedding Attractor

Dimension Dimension

2 1.714

3 2.142

4 2.344

5 2.502

6 2.643

7 2.752

-4

In(CNr)
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Correlation integral results, attractor dimension

2
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18:4:52.58

Elapsed time -2.518e+006 seconds.

Floating point operations
= 6. 162e+009.

normal termination
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Time series analysis program by William Robertson.

30-Jun-94

22:38:37.28

Loading time series.

Read 300001 points from time series.

Using 5,000 points of time series, every 3 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 29.

22:38:57.88

Elapsed time 24.88 seconds

2-Dimensional embedding.

Using embedding delay of 15.

Number of embedded points = 498 1

Using W factor of 2.

Finished correlation integral.

Fin.shed LINREG

23:59:32.86

Elapsed time 4856 seconds.

Attractor dimension approximated to be 1.706

-0.5

0 0.5

3-Dimensional embedding.

Using embedding delay of 15.

Number of embedded points
= 4966

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

1:24:47.52

Elapsed time -2.582e+006 seconds.
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Attractor dimension approximated to be 1.986

+
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S
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y

y

1.5 2.50 0.5 1

4-Dimensional embedding.

Using embedding delay of 15.

Number of embedded points = 495 1

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

2:52:51.03

Elapsed time -2.577e+006 seconds.

Attractor dimension approximated to be 2.018

0

0.5

5-Dimensional embedding.

Using embedding delay of 15.

Number of embedded points
= 4936

Using W factor of 3.

Finished correlation integral.

Finished LINREG
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4:22:49.76

Elapsed time -2.571e+006 seconds.

Attractor dimension approximated to be 2.062

0

0.5

6-Dimensional embedding.

Using embedding delay of 15.

Number of embedded points = 492 1

UsingW factor of 4.

Finished correlation integral.

Finished LINREG.

5:57:7.25

Elapsed time -2.566e4O06 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.109

0

-8

0.5

Embedding Attractor

Dimension Dimension

2 1.706
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In(CNr)
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Correlation integral results, attractor dimension
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5:57:9.34

Elapsed time -2.566e+O06 seconds.

Floating point operations
= 5.02e4-009.

normal termination

2

ln(r)
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Time series analysis program by William Robertson.

l-Jul-94

6:26:35.42

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 3 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 29.

6:26:55.74

Elapsed time 20.59 seconds

2-Dimensional embedding.

Using embedding delay of 6.

Number of embedded points = 4990

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

7:47:29.02

Elapsed time 4854 seconds.

Attractor dimension approximated to be 1.589

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 6.

Number of embedded points
= 4984

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

9:11:25.35

Elapsed time 9890 seconds.
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Attractor dimension approximated to be 1 .76

y
-2 A

,

y
-3

V

y

-4
y

y

c 1 1 1 1 .

1 1.5 2.50 0.5

4-Dimensional embedding.

Using embedding delay of 6.

Number of embedded points = 4978

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

10:39:58.46

Elapsed time 1.52e4O04 seconds.

Attractor dimension approximated to be 1.874

0

0.5

5-Dimensional embedding.

Using embedding delay of 6.

Number of embedded points
= 4972

Using W factor of 3.

Finished correlation integral.

Finished LINREG.
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12:11:13.22

Elapsed time 2.068e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1 983

0

0.5

Embedding Attractor

Dimension Dimension

2 1.589

3 1.76

4 1.874

5 1.983

Correlation integral results, attractor dimension

In(CNr)
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3 1.76

4 1.874

5 1.983

2
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12:11:15.03

Elapsed time 2.068e+004 seconds.

Floating point operations
= 3.87e+O09.

normal termination
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Time series analysis program by William Robertson.

l-Jul-94

19:54:59.84

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 3 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 29.

19:55:40.32

Elapsed time 40.97 seconds

2-Dimensional embedding.

Using embedding delay of 3.

Number of embedded points = 4993

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

23:12:4.53

Elapsed time 1.182e+004 seconds.

Attractor dimension approximated to be 1.516

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 3.

Number of embedded points
= 4990

UsingW factor of 2.

Finished correlation integral.

Finished LINREG

2:34:23.78

Elapsed time 2.396e+004 seconds.
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Attractor dimension approximated to be 1 .646
n
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4-Dimensional embedding.

Using embedding delay of 3.

Number of embedded points = 4987

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

6:3:11.19

Elapsed time 3.649e+004 seconds.

Attractor dimension approximated to be 1 .737

0

0.5

5-Dimensional embedding.

Using embedding delay of 3.

Number of embedded points
= 4984

Using W factor of 3.

Finished correlation integral.

Finished LINREG.
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9:39:35.63

Elapsed time 4.948e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1 .808

0

0.5

Embedding Attractor

Dimension Dimension

2 1516

3 1.646

4 1.737

5 1.808

In(CNr)

Correlation integral results, attractor dimension
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9:39:39.48

Elapsed time 4.948e+004 seconds.

Floating point operations
= 3.883e+009.

normal termination
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Time series analysis program by William Robertson.

2-Jul-94

17:12:30.73

Loading time series.

Read 30000 1 points from time series.

Using 5.000 points of time series, every 5 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 19.

17:12:51.17

Elapsed time 20.71 seconds

2-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points = 4977

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

18:32:50.61

Elapsed time 4820 seconds.

Attractor dimension approximated to be 1.684

0

0 0.5

3-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points
= 4958

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

19:56:17.01

Elapsed time 9826 seconds.
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Attractor dimension approximated to be 2.029
n
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4-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points = 4939

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

21:22:39.07

Elapsed time 1.501e4-004 seconds.

Attractor dimension approximated to be 2.258

0

0.5

5-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points
= 4920

Using W factor of 2.

Finished correlation integral.

Finished LINREG
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22:54:33.75

Elapsed time 2.052e+004 seconds.
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Attractor d imension approximated to be 2.518
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1 1.5 2.50.5

6-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points = 490 1

Using W factor of 3.

Finished correlation integral.

Finished LINREG.

0:27:28.14

Elapsed time 2.61e+O04 seconds.

Attractor dimension approximated to be 2.746

0

3.5

0.5

7-Dimensional embedding.

Using embedding delay of 19.

Number of embedded points
= 4882

Using W factor of 4.

Finished correlation integral.
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Finished LINREG.

2.3:2.64

Elapsed time 3 183e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.955
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Correlation integral results, attractor dimension
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Elapsed time 3. 183e+004 seconds.

Floating point operations
= 6.257e4-009.

normal termination
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Time series analysis program by William Robertson.

3-M-94

9:39:48.21

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 5 point(s)

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 19.

9:40:8.59

Elapsed time 20.6 seconds

2-Dimensional embedding.

Using embedding delay of 10.

Number of embedded points = 4986

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

11:0:35.11

Elapsed time 4847 seconds.

Attractor dimension approximated to be 1 75

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 10.

Number of embedded points = 4976

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

12:24:36.72

Elapsed time 9889 seconds.

A-48



Attractor dimension approximated to be 1 .954
n
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4-Dimensional embedding.

Using embedding delay of 10.

Number of embedded points = 4966

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

13:51:52.38

Elapsed time 1.512e+004 seconds.

Attractor dimension approximated to be 2.044

0

0.5

5-Dimensional embedding.

Using embedding delay of 10.

Number of embedded points
= 4956

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

15:24:52.1
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Elapsed time 2.07e+004 seconds.

Attractor dimension approximated to be 2.066

0

0.5

6-Dimensional embedding.

Using embedding delay of 10.

Number of embedded points = 4946

Using W factor of 3.

Finished correlation integral.

Finished LINREG.

16:59:39.14

Elapsed time 2.639e4-004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.086

0

-8

0.5

Embedding Attractor

Dimension Dimension

2 1.75

3 1.954

4 2.044
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5 2.066

6 2.086

In(CNr)
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Correlation integral results, attractor dimension

1

16:59:41.23

Elapsed time 2.639e+004 seconds.

Floating point operations
= 5.053e+009.

normal termination

2

ln(r)

De Da

2 1.75

3 1.954

4 2.044

5 2.066

6 2.086

A-51



Time series analysis program by William Robertson.

2-Jul-94

9:41:53.11

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 5 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 19.

9:42:13.71

Elapsed time 20.87 seconds

2-Dimensional embedding.

Using embedding delay of 4

Number of embedded points = 4992

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

11:2:37.04

Elapsed time 4844 seconds.

Attractor dimension approximated to be 1.577

-0.5

0 0.5

3 -Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4988

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

12:26:50.85

Elapsed time 9898 seconds.
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Attractor dimension approximated to be 1.778

0 0.5

4-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4984

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

13:54:29.14

Elapsed time 1.516e+004 seconds.

Attractor dimension approximated to be 1 .922

0

0.5

5-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points
= 4980

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

15:27:56.48
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Elapsed time 2.076e+004 seconds.

Attractor dimension approximated to be 2.008

0

0.5 1 1.5

6-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4976

Using W factor of 3.

Finished correlation integral.

Finished LINREG.

17:3:27.41

Elapsed time 2.649e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.018

0

3.5

0.5

Embedding Attractor

Dimension Dimension

2 1.577

3 1.778

4 1.922
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5 2.008

6 2.018

In(CNr)

Correlation integral results, attractor dimension
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17:3:29.44

Elapsed time 2.65e+004 seconds.

Floating point operations
= 5.092e+009.

normal termination
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De Da

2 1.577

3 1.778

4 1.922

5 2.008

6 2.018
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Time series analysis program by William Robertson.

2-Jul-94

10:12:26.08

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series,
every' 5 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 19.

10:12:56.51

Elapsed time 30.87 seconds

2-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4994

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

13:29:24.24

Elapsed time 1.182e4O04 seconds.

Attractor dimension approximated to be 1 .556

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 2.

Number of embedded points
= 4992

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

16:52:11.99

Elapsed time 2.399e4-004 seconds.
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Attractor dimension approximated to be 1 .691
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4-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4990

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

20:21:17.14

Elapsed time 3.653e+004 seconds.

Attractor dimension approximated to be 1.784

0

0.5 1

5-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points
= 4988

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

23:58:13.99
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Elapsed time 4.955e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1 847

0

0.5

Embedding Attractor

Dimension Dimension

2 1.556

3 1.691

4 1.784

5 1.847

Correlation integral results, attractor dimension
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2 1.556

3 1.691

4 1.784
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23:58:17.89

Elapsed time 4.955e+004 seconds.

Floating point operations
= 3.887e+009,

normal termination
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Time series analysis program by William Robertson.

3-Jul-94

17:55:48.6

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 10 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation zero at lag 9.

17:56:8.92

Elapsed time 20.6 seconds

2-Dimensional embedding.

Using embedding delay of 9.

Number of embedded points = 4987

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

19:16:33.41

Elapsed time 4845 seconds.

Attractor dimension approximated to be 1 .7

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 9.

Number of embedded points
= 4978

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

2040:39.86

Elapsed time 9891 seconds.
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Attractor dimension approximated to be 2.057
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4-Dimensional embedding.

Using embedding delay of 9.

Number of embedded points = 4969

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

22:8:3.98

Elapsed time 1.514e+004 seconds.

Attractor dimension approximated to be 2.253

0

-1

-2

-3

-4

-5

-6

-

y
"

A

A
A

-

'

y

A

-

y

y
y

>

0.5 1

5-Dimensional embedding.

Using embedding delay of 9.

Number of embedded points
= 4960

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

23:41:12.26

1.5 2.5 3.5
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Elapsed time 2.072e+004 seconds.

Attractor dimension approximated to be 2.399

0

0.5 1 1.5

6-Dimensional embedding.

Using embedding delay of 9.

Number of embedded points = 495 1

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

1:16:21.61

Elapsed time 2.643e+004 seconds.

Attractor dimension approximated to be 2.568

0.5

7-Dimensional embedding.

Using embedding delay of 9.

Number of embedded points
= 4942

Using W factor of 2.

Finished correlation integral.

Finished LINREG.
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2:54:15.23

Elapsed time 3.2.3 le+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.76
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Elapsed time 3.231e4-004 seconds.
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Floating point operations
= 6.353e+009.

normal termination
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Time series analysis program bv William Robertson.

4-M-94

8:47:1.15

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 10 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.
Autocorrelation zero at lag 9.

8:47:21.53

Elapsed time 20.59 seconds

2-Dimensional embedding.

Using embedding delay of 5.

Number of embedded points = 4991

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

10:7:47.67

Elapsed time 4847 seconds.

Attractor dimension approximated to be 1 .745

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 5.

Number of embedded points = 4986

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

11:32:9.22

Elapsed time 9908 seconds.
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Attractor dimension approximated to be 1 .936

0 0.5

4-Dimensional embedding.

Using embedding delay of 5.

Number of embedded points = 498 1

Using W factor of 2.

Finished correlation integral.

Finished LINREG

12:59:56.41

Elapsed time 1.518e4-004 seconds.

Attractor dimension approximated to be 2.01
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5-Dimensional embedding.

Using embedding delay of 5.

Number of embedded points
= 4976

Using W factor of 2.

Finished correlation integral.

Finished LiNREG.

14:33:27.65

1.5 2.5 3.5
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Elapsed time 2.079e+004 seconds.

Attractor dimension approximated to be 2.025

0

0.5

6-Dimensional embedding.

Using embedding delay of 5.

Number of embedded points = 4971

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

16:9:36.03

Elapsed time 2.655e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.038

0

-8

0.5

Embedding Attractor
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Correlation integral results, attractor dimension
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Elapsed time 2.656e+004 seconds.

Floating point operations
= 5.085e+009.

normal termination
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Time series analysis program by William Robertson.

4-Jul-94

16:49:10.35

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 10 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation zero at lag 9.

16:49:30.73

Elapsed time 20.66 seconds

2-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4994

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

18:9:55.22

Elapsed time 4845 seconds.

Attractor dimension approximated to be 1.58

0

0 0.5

3-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4992

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

19:34:16.55

Elapsed time 9906 seconds.
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Attractor dimension approximated to be 1.771

0 0.5

4-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4990

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

21:2:11.54

Elapsed time 1.518e+004 seconds.

Attractor dimension approximated to be 1 .904

0

0.5

5-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points
= 4988

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

22:35:56.46
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Elapsed time 2.081e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1.983

0

0.5

Embedding Attractor

Dimension Dimension

2 1.58

3 1.771

4 1.904

5 1.983

Correlation integral results, attractor dimension
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Elapsed time 2.081e+004 seconds.

Floating point operations
= 3.887e+009.

normal termination
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Time series analysis program by William Robertson.

3-Jul-94

9:13:12.84

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 10 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation zero at lag 9.

9:13 43.38

Elapsed time 3 1 .03 seconds

2-Dimensional embedding.

Using embedding delay of 1 .

Number of embedded points = 4995

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

12:29:55.07

Elapsed time 1.18e+004 seconds.

Attractor dimension approximated to be 1 561

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 1.

Number of embedded points = 4994

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

15:52:39.2

Elapsed time 2.397e4-004 seconds.
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Attractor dimension approximated to be 1 .696
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4-Dimensional embedding.

Using embedding delay of 1 .

Number of embedded points = 4993

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

19:21:59.12

Elapsed time 3.653e+004 seconds.

Attractor dimension approximated to be 1.781

0

0.5

5-Dimensional embedding.

Using embedding delay of 1.

Number of embedded points = 4992

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

22:58:19.06
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Elapsed time 4.951e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1.841

0

0.5

Embedding Attractor

Dimension Dimension

2 1.561

3 1.696

4 1.781

5 1.841

Correlation integral results, attractor dimension

In(CNr)

22:58:22.85

Elapsed time 4.951e+004 seconds.

Floating point operations
= 3.891e+009.

normal termination
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Time series analysis program by William Robertson.

4-Jul-94

22:45-51.03

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, even 25 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 4.

22:46:11.68

Elapsed time 20.87 seconds

2-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4992

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

0:6:58.53

Elapsed time 4868 seconds.

Attractor dimension approximated to be 1 618

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4988

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

1:31:40.34

Elapsed time 9949 seconds.

1.5 2.5
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Attractor dimension approximated to be 1 .97
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4-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4984

Using W factor of 2.

Finished correlation integral.

Finished LINREG

2:59:54.56

Elapsed time 1.524e+004 seconds.

Attractor dimension approximated to be 2.276

0

0.5

5-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4980

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

4:31:52.43
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Elapsed time 2.076e+004 seconds.

Attractor dimension approximated to be 2.528
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6-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points = 4976

Using W factor of 2

Finished correlation integral.

Finished LINREG.

6:7:15.11

Elapsed time 2.648e+004 seconds.

Attractor dimension approximated to be 2.756
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7-Dimensional embedding.

Using embedding delay of 4.

Number of embedded points
= 4972

Using W factor of 2.

Finished correlation integral.

Finished LINREG.
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7:46:15.69

Elapsed time 3.242e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.974
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Elapsed time 3.243e+004 seconds.
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Floating point operations
= 6.402e+009.

normal termination
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Time series analysis program by William Robertson.

5-Jul-94

820:19.03

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 25 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 4.

8:20:39.3

Elapsed time 20.54 seconds

2-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4994

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

9:41:22.19

Elapsed time 4863 seconds.

Attractor dimension approximated to be 1 .743

0 0.5

3 -Dimensional embedding.

Using embedding delay of 2.

Number of embedded points
= 4992

Using W factor of 2.

Finished correlation integral.

Finished LINREG

11:6:11.53

Elapsed time 9953 seconds.
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Attractor dimensior approximated to be 1.905
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4-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4990

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

12:34:35.41

Elapsed time 1.526e+004 seconds.

Attractor dimension approximated to be 1 .98

0

0.5

5-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points
= 4988

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

14:6:4943
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Elapsed time 2,079e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1 .998
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Floating point operations
== 3.887e+009.

normal termination
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Time series analysis program by William Robertson.

5-M-94

14 11:2.03

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 25 point(s)

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 4.

14:11:22.63

Elapsed time 20.87 seconds

2-Dimensional embedding.

Using embedding delay of 1.

Number of embedded points = 4995

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

15:32:7.6

Elapsed time 4866 seconds.

Attractor dimension approximated to be 1 .534

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 1.

Number of embedded points = 4994

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

16:56:57.44

Elapsed time 9956 seconds.
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Attractor dimension approximated to be 1 .81

0.5 1

4-Dimensional embedding.

Using embedding delay of 1.

Number of embedded points = 4993

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

18:25:23.9

Elapsed time 1.526e4O04 seconds.

Attractor dimension approximated to be 1 .95
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5-Dimensional embedding.

Using embedding delay of 1.

Number of embedded points
= 4992

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

19:57:39.73
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Elapsed time 2.08e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1 .947
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Correlation integral results, attractor dimension

2

ln(r)
19:57:41.54

Elapsed time 2.08e+004 seconds.

Floating point operations
= 3.891e+009.

normal termination
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Time series analysis program by William Robertson.

4-Jul-94

8:46:18.91

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 25 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation local minimum at lag 4.

8:46:49.45

Elapsed time 30.93 seconds

2-Dimensional embedding.

Using embedding delay of 1 .

Number of embedded points = 4995

Using W factor of 2.

Finished correlation integral.

Finished LiNREG.

12:3:28.49

Elapsed time 1.183e4-004 seconds.

Attractor dimension approximated to be 1 534

0

0 0.5

3 -Dimensional embedding.

Using embedding delay of 1.

Number of embedded points = 4994

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

15:26:39.86

Elapsed time 2.402e+004 seconds.
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Attractor dimension approximated to be 1 .81
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4-Dimensional embedding.

Using embedding delay of 1 .

Number of embedded points = 4993

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

18:56:25.16

Elapsed time 3.661e4-004 seconds.

Attractor dimension approximated to be 1 .95

Or

0.5 1

5-Dimensional embedding.

Using embedding delay of 1 .

Number of embedded points
= 4992

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

22:34:7.98
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Elapsed time 4.967e4-004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 1 947
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Correlation integral results, attractor dimension
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22:34:11.88

Elapsed time 4.967e+004 seconds.

Floating point operations
= 3.891e+009.

normal termination
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Time series analysis program by William Robertson.

5-Jul-94

21:34:16.95

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 50 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation zero at lag 6.

21:34:47.49

Elapsed time 30.98 seconds

2-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4994

Using W factor of 2.

Finished correlation integral.

Finished LINREG

0:51:49.55

Elapsed time 1.185e+004 seconds.

Attractor dimension approximated to be 1 .634

0

0 0.5

3-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points
= 4992

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

4:15:33.11

Elapsed time 2.408e4-004 seconds.
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Attractor dimension approximated to be 1.999

4-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4990

UsingW factor of 2.

Finished correlation integral.

Finished LINREG.

7:45:58.44

Elapsed time 3.67e+004 seconds.

Attractor dimension approximated to be 2.291

0

0.5

5-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points
= 4988

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

11:23:27.86
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Elapsed time 4 975e+004 seconds.

Attractor dimension approximated to be 2 531

Or

0.5

6-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points = 4986

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

15:9:28.58

Elapsed time 6.33 le+004 seconds.

Attractor dimension approximated to be 2.738
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7-Dimensional embedding.

Using embedding delay of 2.

Number of embedded points
= 4984

Using W factor of 2.

Finished correlation integral.

Finished LINREG.
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19:1:54.82

Elapsed time 7.726e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2 918
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ln(r)
19:1:59.49

Elapsed time 7.726e+004 seconds.
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Floating point operations
= 6.421e+009.

normal termination
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Time series analysis program bv William Robertson.

4-Jul-94

22:55:35.98

Loading time series.

Read 300001 points from time series.

Using 5.000 points of time series, every 50 point(s).

Calculating first phase for time series.

Calculating autocorrelation function.

Autocorrelation zero at lag 6.

22:56:6.41

Elapsed time 30.82 seconds

2-Dimensional embedding.

Using embedding delay of 1 .

Number of embedded points = 4995

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

2:13:6.99

Elapsed time 1.185e+004 seconds.

Attractor dimension approximated to be 1.76

0

0 0.5

3-Dimensional embedding.

Using embedding delay of 1.

Number of embedded points = 4994

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

5:36:58.62

Elapsed time 2.408e4O04 seconds.
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Attractor dimension approximated to be 1.942
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4-Dimensional embedding.

Using embedding delay of 1.

Number of embedded points = 4993

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

9:7:35.77

Elapsed time 3.672e+004 seconds.

Attractor dimension approximated to be 2.01 1

0

-1

-2

-3

-4

-5

-6

-7

-

/
A

A
Ay

-

y

y

y

"

y

V'

i i i

10.5

5-Dimensional embedding.

Using embedding delay of 1.

Number of embedded points
= 4992

Using W factor of 2.

Finished correlation integral.

Finished LINREG

12:45:12.65
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Elapsed time 4 978e+004 seconds.

Attractor dimension approximated to be 2.033
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6-Dimensional embedding.

Using embedding delay of 1 .

Number of embedded points = 4991

Using W factor of 2.

Finished correlation integral.

Finished LINREG.

16:34:2.65

Elapsed time 6.351e+004 seconds.

Embedding procedure complete.

Attractor dimension approximated to be 2.044
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Correlation integral results, attractor dimension
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16:34:7.21

Elapsed time 6.351e4-004 seconds.

Floating point operations
= 5.11 le+009.

normal termination
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