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Abstract

A direct-reading thermal comparator was used to measure the

thermal conductivities of several thin solid films. This new

application of the thermal comparator was based on heat flow

modelling using the thermal constriction resistance, generalized here

for the case of a film on the surface of an infinite half-space.

Four dielectric optical coating materials were tested, and found

to have thermal conductivities significantly lower than those for the

same material in bulk form.

The finite element method was used to estimate the minimum

sample dimensions required for accurate results, and the variation of

the thermal constriction resistance with the assumed mode of heat

flow between the comparator probe tip and the test specimen.
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1.0 INTRODUCTION

1.1 The importance of thin film thermal conductivity

In 1984, it was shown that the thermal conductivity ofmany thin film optical

materials may be much lower than corresponding bulk materials [7]. This has

important implications in thermal transport modelling, prediction of the growth and

nucleation of thin films, and in their thermal aging and deterioration characteristics.

Gross inaccuraciesmay occur if bulk conductivity data is used to predict conduction

through the film. This is especially important in film applications involving a high

heat load, such as microelectronics and laser optics. The build up of heat may

cause catastrophic failure of the coated device.

Optical coatings, used to enhance the transmissivity or reflectivity of the optic,

are susceptible to damage in high power laser applications. Often, sufficient energy

is absorbed to burn a hole through the coating. Many people in the optics industry

have postulated that there may be a connection between the thermal conductivity

and the damage threshold of optical coatings [24]. Low thermal conductivity may

cause localized hot spots, and eventual coating destruction. At this point in time,

the thermal conductivity of only a few thin film coating materials are known.

Further study in this area may result in coatings more suited to high power laser

applications.

1.2 Previous experimental work.

Over the past two decades, many experiments have been developed in an effort

to accurately measure the thermal conductivity of thin films, ie those ranging in

thickness from 100 Angstroms to 10 microns. For the most part, they have been

limited to a specific type of film (metallic, etc.), or have required special fabrication

techniques. At this time, there is no single accepted method of measuring the

thermal conductivity of thin films.

The earliest reportedmethods ofmeasuring thin film thermal conductivity were

done in the U.S. in the 1960's and early 1970's [1,2]. They required specialized

film preparation, such as a film on a wire, and were limited to films well over a

micron thick.



In 1973, Indian physicists Nath and Chopra [3] reported two new techniques.

These methods, one transient, and one steady state, were used to measure the

thermal conductivity of thermally evaporated copper films over a range of

temperatures. They found the thermal conductivity to be strongly dependent upon

the film thickness below a certain value, about five microns. Above this thickness,

the results by both techniques approximate bulk data. They attribute the thickness

dependence of the thinner films to the scattering of electrons at the grain boundaries

and surfaces. The temperature dependence they deduced agrees qualitatively with

data for bulkmaterials. The techniques developed by Nath and Chopra are useful

for measurements on films greater than 500 Angstroms thick. The methods

described are cumbersome, however, and ofquestionable accuracy [7].

Several other methods were developed during the 1970's [4-6], but they were

used to study only metallic films, generally those of gold, bismuth, and copper.

None were applied to dielectric thin filmmaterials.

To date, several groups are known to have studied the thermal conductivity of

optical thin film materials. The first was done in 1984 by Decker, et.al [7], at

Naval Weapons Center, China Lake, California. They used a micro-differential

calorimetry technique to study two dielectric materials, silica and alumina, deposited

by electron beam evaporation and ion beam sputtering. Their measurement was

made over a relatively large surface area (one square centimeter) of the film. They

showed the first evidence that the thermal conductivity of optical thin filmmaterials

may be as much as two orders of magnitude lower than the same material in

amorphous, bulk form. This difference is attributed to a large degree of structural

disorder, and a corresponding reduction in the phonon mean free path. The

technique described was relatively difficult to implement, requiring the placement of

a thermocouple between the film and substrate, and was susceptible to large

amounts of error if extreme care was not taken to minimize radial conduction and

barrier resistances.

Work done in West Germany by Ristau and Ebert [8] in 1986 generally

supports Decker's findings. They used an AC calorimetric technique to measure

the optical absorbance and thermal conductivity of five dielectric films. All the

thermal conductivity values obtained are orders of magnitude lower than the

corresponding bulk data. They made measurements over a spot size of 300

microns (diameter). The AC calorimetric method described incorporates a laser to



heat the sample, and an infrared sensor to measure the resulting temperature

distribution. Several parameters, including heat flow to the specimen mount,

specimen size, and radiation, must be carefully monitored to achieve accurate

results with this technique.

1.3 Overview of the use of a thermal comparator tomeasure the thermal conductivity

of films.

The thermal comparator is useful formeasurement of the thermal conductivity

of films greater than a tenth of a micron thick (1000 Angstroms). The measurement

is made over a circular area approximately 360microns in diameter. This technique

is relatively rapid, non-destructive, and can be made on standard (film on substrate

geometry) test samples. The method works most efficiently when the film and

substrate materials havemuch different thermal conductivities, although this is often

difficult to establish beforehand. For the study of optical materials with low

thermal conductivity, the film is generally deposited on a highly conductive

substrate, such as single crystal silicon or sapphire.

The technique consists of bringing a heated probe into contact with a cooler test

specimen. Once contact is established, the temperature of the probe tip decreases.

The magnitude of the temperature drop depends upon the thermal conductivity of

the specimen. Heat flow modelling yields the thermal conductivity of a film on the

surface of the test specimen.



2.0 THE THERMAL COMPARATOR TECHNIQUE

2.1 The two-ball thermal comparator

2.1.1 Early development of the technique.

The thermal comparator technique was developed in 1957 by R.W. Powell [9],

a physicist who worked at The National Physical Laboratory in Great Britain. He

continued to work on the technique at The Thermophysical Properties Research

Center, Purdue University, until about 1969 [10,1 1]. The method was a result of

Powell's observation of a common phenomenon: the apparent temperature of an

object when touched by the hand. For example, when touching two cups, one

metal, the other ceramic, each filled with a cool liquid at the same temperature, one

feels different apparent temperatures. The metal cup, being highly conductive,

appears to be cooler than the ceramic cup. Powell extended this phenomenon to the

two-ball thermal comparator, an experiment capable of measuring thermal

conductivity of bulkmaterials.

THERMOCOUPLE

LEADS

BALSA WOOD

PHOSPHER-BRONZE

BALLS

Figure 2.1

Two-ball Thermal Comparator



Powell's two-ball thermal comparator is shown schematically in Figure 2.1. It

consisted of a balsa wood block, with two phosphor-bronze balls inserted into

cylindrical holes. The balls were positioned such that one protruded slightly from

the block, while the other was buried a small amount Two wires, one constantan,

one chromel, were attached to each ball, creating a pair of thermocouples. These

wires were then connected to a potentiometer which could measure the differential

voltage generated by the thermocouples. The bored holes were stuffed with

insulatingwool to minimize heat loss.

The experimental procedure was rather time consuming. The whole assembly

was placed in an oven, and allowed to reach an equilibrium temperature above

ambient. The potentiometer measuring the differential voltage generated by the

thermocouples was adjusted to a null condition. Removing the assembly from the

oven and bringing it into contact with a specimen caused the temperature of the

protruding ball to drop. After a short period of time, a differential voltage was

generated by the thermocouples. The magnitude of the differential voltage

(temperature) depends upon the thermal conductivity of the specimen. A highly

conductive specimen generated a large voltage, while one with low thermal

conductivity generated a smaller signal. Samples with a range of known thermal

conductivities were measured, and a plot of the conductivity as a function of the

generated voltage was made. Measurements made on specimens of unknown

conductivity were then compared to the plot to determine their thermal conductivity,

hence the name "thermal
comparator."

Taking data required a substantial amount of time and careful consideration of

many parameters. The apparatus had to reach equilibrium in the oven, at a carefully

controlled temperature, between each measurement. The elapsed time between the

establishment of contact and the collection of the voltage reading had to be held

constant throughout a test run, requiring careful timing.
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Thermal conductivity as a function ofdifferential voltage

The plot of thermal conductivity as a function of output voltage, shown in Figure

2.2, indicates that the heat flow process may be governed by a power-law or

exponential relationship. In his early work, Powell plotted the square root of the

thermal conductivity versus voltage, and made two linear fits to the data, one for

the low end, the other for the high end of the plot. Later, he switched to a semi-

logarithmic plot, and fit a single straight line.

2.1.2 Special considerations and effects

Between 1957 and 1969, a considerable effort was made by Powell and others

to determine both the accuracy and applicability of the technique. The technique

proved useful for measuring the thermal conductivity of a wide range ofmaterials,

but several parameters had to be considered to ensure accurate results. They

included: matching the contact resistance between the test samples and the

standards, maintaining a constant temperature differential for each test, and the use

of high quality standards (of known thermal conductivity).

The thermal contact resistance depends strongly upon the actual area in physical

contact between the comparator and test specimen. Several factors have an effect

upon this contact area. Most notably, these are the hardness of the materials, the

force exerted on the parts, and their surface finishes. In order to match the contact

resistance, the standards and the samples must be physically similar. If, for

example, the standards are much softer than the samples, the contact area will be



greater for the standards, resulting in a larger temperature drop. This leads to low

estimates of thermal conductivity for the test samples. In a similar manner, if the

test samples have a better surface finish than the standards, better contact will be

made, resulting in high estimates of thermal conductivity. Increasing the applied

force increases the deformation of the parts (deformation is directly proportional to

the cube root of the applied load [12]), and therefore the contact area and the

estimated conductivity. Consequently, the applied force must kept constant

throughout a test run.

Using the same initial temperature is absolutely essential for a valid comparison.

Each curve made for a set of standards is only valid for the temperature and force at

which the readings were taken. Because the generated voltage depends upon the

temperature differential established, slight differences in initial temperature can

have a profound effect upon the results. In addition, all samples must be of

sufficient size that their temperature doesn't rise significantly during the test.

Powell made an effort to determine the niinimum size of test specimens to ensure

accurate results. However, his work in this area cannot be applied to the present

comparator design, due to the large difference in probe radii between the two

designs.

The comparator technique is based on comparing samples of unknown

conductivity to those ofknown conductivity. This comparison is only valid if the

thermal conductivities of the standards are known to be accurate. In addition, the

quality of the standards must be maintained. Many materials, especially high

conductivity metals, develop a surface finish (oxidize) over time. This can lead to

error if care is not exercised to maintain them.

Ginnings [14], of the National Bureau of Standards, analyzed the two-ball

thermal comparator in 1962. He considered the effects of diffusion (time

dependence), radiation, gaseous conduction, and solid conduction. He found the

transient effects involving thermal diffusion to be of relatively short duration, less

than a second. The maximum radiation near room temperature was found to be

roughly an order of magnitude smaller than conduction through air. For low

conductivity specimens, heat transfer due to gaseous conduction was found to be

significant. This could be minimized by increasing the contact area. Formoderate

to high conductivity specimens, heat transfer was attributed primarily to conduction

through solids. In addition, Ginnings recommended that future comparators be



designed to produce constant deformation, rather than apply constant load. This

wouldmaintain a constant contact area for all test specimens, and a higher degree

of accuracy. Unfortunately, this recommendation was not implemented on later

designs. Ginnings attempted to determine an overall relationship between the

voltage generated and the specimen thermal conductivity. This relationship was

found to be very complex, being a function of many heat transfer processes.

Neither a power-law nor an exponential function adequately describes the heat flow

process.

2.1.3 Applications.

During the 1960's the two-ball comparator was used to measure the thermal

conductivity of a wide range ofmaterials, including a variety of solids, liquids and

gases [11]. Nearly thirty papers were published worldwide, noting new

applications of the technique. Some of the more interesting were in vivo

measurements made on animal bones at Auburn University, and measurements

made on fruits and fruits and vegetables, with the use of a plastic membrane. The

method was also used extensively in Australia to rapidly identify various gemstones

in their natural environment

The determination of the thermal conductivity of liquids and gases was

accomplished by using a shallow dish to contain the fluid. The dish was covered

by a tightly stretched plastic material, such as Melinex. The comparator was then

brought in contact with the surface of the membrane, and readings were taken in the

usual way. In this case, fluids such as water, glycerin, and carbon tetrachloride

were used to generate a calibration curve.

2.1.4 Previous theoretical modelling

W. T. Clark, an associate of Powell at the National Physical Laboratory in

Great Britain, theoretically considered conduction through the contact area [15].

As the diameter of the spherical ball was approximately two orders ofmagnitude

larger than the contact diameter, he assumed the sphere to be a semi-infinite solid.

He used the center of the contact circle as the origin of the cylindrical coordinate

system. The domain is shown in Figure 2.3. It consists of two infinite half-planes.

The region z>0 corresponds to the ball; the region z<0 to the specimen. Both

regions extend to infinity.

8



Figure 2.3

Domain ofClark's problem

Considering the comparator to be a steady state device, and assuming axial

symmetry, the problem is reduced to two dimensional heat flow in two infinite half-

planes with different thermal conductivities. The temperature in each region is

governed by Laplace's equation (in cylindrical coordinates).

a^r 1 3T d^
n

+ -=r + = 0
2 r dr -.2

9r dz

The boundary conditions were prescribed as matched temperature and heat flux

over the contact surface (z=0, r<a), zero heat flux at z=0 outside the radius of

contact 'a', zero temperature as
'r'

goes to infinity in each region, T=Tn as
'z'

goes

to plus infinity, and T=0 as
'z'

goes to minus infinity . The two boundary value

problems (one for each region) were then solved with the use of the Hankel

transform.

Clark found the temperature of the contact to be independent of the contact

radius, and constant over the contact area. This may not hold true if the effect of

gaseous conduction in the proximity of the contact is considered as well. The

thermal constriction resistance, or resistance to heat flow, was shown to be:



kl+k2
R=

1 ^

4k1k2a 4kxa 41^

The thermal constriction resistance for a single infinite half-plane is discussed

further in Section 2.2.4 and Appendix V.

The effect of a transient term was considered by including a time dependent

term in Laplace's equation. It corifirmed the fact that the contribution of a transient

term is generally small, much less than ten percent of the steady state term after

only ten seconds.

Assuming the film thickness
't'

to be much less than the contact radius, Clark

considered the effect of an interfacial insulating film on heat flow by adding its

contribution to the thermal resistance. If the thermal conductivity of the film is

small compared to the specimen conductivity, the dissipation of heat along the film

can be ignored, and the thermal constriction resistance becomes:

1 1 t
+ -r. +

*T
~

4^a 4kja
_,.

rckga

where the subscript
'3'

denotes the film conductivity.

Although he estimated that films as thin as 585 Angstroms could have a

measurable effect on the output voltage, there is no literature indicating that Clark's

modelling was implemented to measure either the thickness or the thermal

conductivity of surface films.

2.2 The direct-reading thermal comparator.

2.2. 1 Commercial apparatus.

Although useful, the two-ball thermal comparator suffered several

shortcomings. Among the most serious was the long period of time required for

the re-establishment of equilibrium temperatures between tests. In 1962, Clark and

Powell proposed an alternate, direct reading design [15]. They suggested that it

would eliminate the need for accurate timing, and would be less dependent upon

surface finish and the elastic properties of the testmaterial. It wasn't until the early

1970's that a direct-reading model was actually built

10



Lafayette Instrument Company made a direct-reading thermal comparator

available in the mid-1970's [13]. This model, based on Clark and Powell's design,

is shown in Figure 2.4. Although still sensitive to material hardness and surface

finish, it is capable of taking rapid readings. With the probe maintained at a

constant temperature twenty degrees Celsius above ambient , readingsmay be taken

at the rate of about one every thirty seconds, without a measurable drop in the

reservoir temperature.

Probe

Substrate ~*^ _^^*-

Sample

Film Layer
-A*///////////////.

Sensing Tip

(0.67-mm diam)
Conslanlan Tubing

Constantan Block

Copper Heating
Block

Heater

Sample Stage Assembly

dash t
sample stage -i r- probe assembly

Control
'

Thermo- Chromel

Couple Wire*

counterweight A base plate a L balance arm L arm trip lever

Counterweight adjustment of probe load, 0-15 grams

Motion damped by dashpot

Figure 2.4

The direct-reading thermal comparator

The direct-reading design utilizes a single probe in place of the two phosphor-

bronze balls. The probe tip extends from a thermal reservoir made of copper,

which is held at a constant temperature above ambient by an electrical resistance

heater, connected to a proportional band controller. When the probe tip is brought

in contact with a specimen at ambient temperature, the temperature of the tip quickly

drops to a steady intermediate value, depending on the thermal conductivity of the

specimen. This temperature drop is explicitly given by the equation:

(TrT) =
(Vk2)

The subscript T refers to probe tip temperature and thermal conductivity,
'2'

to

specimen temperature and thermal conductivity,
'c'

to the temperature of the

contact. If the temperature of the contact area could be accurately measured, the

11



thermal conductivity of the specimen could be determined directly. Unfortunately,

the only way to accomplish this would be to have the specimen and probe form a

thermocouple junction. Except in special circumstances, this is not feasible.

Instead, the tip of the commercial unit contains a constantan-chromel thermocouple

located within 0.01 inch of the surface, referenced to a similar thermocouple

imbedded in the thermal reservoir. The measured temperature difference

approximates that of the contact, but a calibration curve of measurements from

standards of known conductivity must be used to find the unknown thermal

conductivity of a specimen being tested.

The probe tip is shrouded in insulation to minimize heat loss, andmounted on a

counter balanced arm supported by bearings, similar to a beam balance. The force

exerted by the probe tip on the specimen can be set by adjusting a counterweight.

The balance arm is normally held in the down position by a spring loaded trip lever,

with the probe tip not in contact with a sample. Pushing the trip lever down allows

the balance arm to move upward, its motion damped by a dashpot, until the probe

comes in contactwith a specimen, oriented face down on a sample stage. A reading

is thenmade. Releasing the trip lever returns the balance arm to the down position.

The differential voltage generated by the thermocouples is sent through a

shielded cable to a control and readout module, which contains two subsystems.

The first is a voltage amplifier, set at a thousand-to-one gain. This boosts the

thermocouple differential voltage frommicrovolts to millivolts. This signal is then

displayed on a digital voltmeter, and sent out of the module for further processing.

The other subsystem controls the operation of the heater in the thermal reservoir. A

proportional band controller maintains the temperature of the copper reservoir at a

value preset by the operator, via an external control knob on the readout module.

The heater is capable ofmaintaining a reservoir temperature thirty degrees Celsius

above ambient, but fluctuations in the reservoir temperature produce experimental

error. If the temperature is kept about twenty degrees above ambient, the heater and

controller are capable ofmaintaining the reservoir temperature constant to within a

tenth of a degree Celsius.

12



2.2.2 Additional experimental apparatus.

The commercial comparator and control module purchased were designed to test

the thermal conductivity of bulk solids and liquids. In an effort to increase the

accuracy of the measurements, and the rate at which data could be collected and

reduced, several additional items were used. They include a sample enclosure with

its own temperature controller, heater and fan, and a personal computerwith an on

board analog-to-digital signal converter. A schematic of the apparatus is shown in

Figure 2.5.

Sample Chamber

Samples

O O O

o o o

o o o

o o o

Sample

Stage

o

. Sealed environment

Temperature control

to I 0.1"C

. Air circulation Io

minimize hot/cold spots

TPRC-1000

Thermal

Comparator

Control and Readout

Module

Personal

Computer with

Onboard A - D

Converter

Data processing with

signal averaging

Figure 2.5

Apparatus

The sample enclosure consists of a box, with outer dimensions of

approximately 3'x3'x2'. Its walls are constructed of half inch thick plexi-glass,

with foam insulation over the outer surfaces. The operator accesses the comparator

and test specimens through "glove
box"

holes on its side. The sample enclosure

serves several purposes. First and foremost, it controls the temperature the test

specimens. In addition, it helps maintain the cleanliness and quality of the test

specimens.

The enclosure was built in 1984, as part of an early effort at The Laboratory for

Laser Energetics (LLE) to determine the feasibility of using the thermal comparator

to measure thin film thermal conductivity. At that time, the temperature of the

samples was controlled by placing them on a heated brass plate inside the

enclosure. Two temperature controllers were used, one to maintain the temperature

of the brass plate, the other to maintain the temperature of the air enclosed. Each

controller had its own strip heater. One heater was located inside the top of the

13



enclosure, the other under the brass plate. The only temperature readout available

was from the comparator control module, which measured the ambient air

temperature of the enclosure. The temperature of the brass plate, maintained by its

own controller, was not monitored. At that time, the air in the enclosure was not

circulated, resulting in large temperature gradients. The air near the top surface was

much warmer than the brass plate, located on the bottom of the enclosure. With the

set point of the two controllers adjusted to the same temperature, the heater and

sensor located under the brass plate effectively controlled the temperature of the

whole enclosure, as the warm air near the air temperature sensor prevented that

system from engaging.

During the Summer of 1987, the enclosure temperature system was switched to

forced air convection, in an effort to more closely monitor and maintain the

temperature of the specimens. A single 480 Watt strip heater was mounted on

standoffs against the back wall of the enclosure. A fan was installed to eliminate

hot spots, and circulate the air past a thermistor probe, which was used by a single

temperature controller (located outside the enclosure) tomaintain the air temperature

in the enclosure to within a tenth of a degree Celsius.

In addition to providing a means of temperature control, the enclosure also

helps maintain the quality and cleanliness of the test specimens. Desiccant packs

line the box to reduce the humidity of the air enclosed, thus slowing degradation of

the metal standards. Operators wear surgical gloves while taking data to minimize

the transfer of perspiration and other contaminants to the enclosure and test

specimens. The temperature inside the enclosure is maintained at near that of the

human body (35 degrees Celsius) to prevent the operators arms and hands from

heating the air.

All specimens are cleaned thoroughly before they are placed in the enclosure.

To prevent damage to their surfaces, surgical gloves are worn while handling them,

and all surfaces within the enclosure that may come in contact with the specimens

are coated with Teflon, chosen for its softness and stability. Often, items placed in

contact with Teflon have a tendency to develop a static charge. In an effort to

reduce this, all items in the enclosure, including the operator's arms, are grounded.

Computer averaging of the output voltage signal was implemented in an effort

to increase the accuracy and repeatability of the measurements. When the probe tip

14



is brought in contact with a specimen, the voltage reading reaches a relatively steady

value, but still may fluctuate by one to two percent. Initially, a waveform analyzer

was installed to convert the analog voltage to a digital value, and average the output

voltage over a period of ten seconds. The average value was then sent to a personal

computer for storage in a data file. Later, an onboard analog-to-digital converter

was installed on the computer, freeing the waveform analyzer for use on another

experiment The personal computer takes two readings per second, over a period

of ten seconds, and computes the mean and standard deviation of the values. If the

standard deviation is less than two percent of the mean value, the mean value is

placed in a data file determined by the operator.

At the end of a data run (3-5 readings per specimen), the computer is used to

calculate and print the average and standard deviation of the readings in each file.

The standard deviation is an indication of how repeatable the readings were during

the run, and sometimes varies considerably frommaterial to material.

A concerted effort was made to increase the repeatability of measurements.

Many parameters were investigated. Several were found to have a significant

effect, including: the cleanliness of the enclosure, the force exerted by the probe on

the sample while a reading is taken, the location of the control module (outside the

enclosure), and the temperature of the probe (above ambient).

The cleanliness of the enclosure, as mentioned earlier, must be maintained.

Although the operators wear surgical gloves, often their forearms are exposed.

Chafing of the access covers has a tendency to remove a considerable amount of

skin and hair. Two courses of action can be taken to control the problem: either the

enclosure must be cleaned on a regular basis, or the operator's must wear longer

gloves, which cover their forearms.

Increasing the probe force on the sample tends to enhance the quality of the

contact, and reduce the standard deviation of the readings taken. Unfortunately, it

also increases the deformation of the samples (discussed further in Section 2.2.6).

Caution must be exercised in increasing the probe force to increase accuracy and

repeatability.

The location of the comparator control module can have a significant effect on

the repeatability of results. It seems that it is susceptible to electromagnetic
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interference. At the present time, it is kept on top of the enclosure, distant from the

temperature controller and fan transformer.

During early work at LLE, the thermal reservoir in the probe tip was kept at as

high a temperature possible above ambient (about 30 degrees Celsius), to get the

widest possible spread of voltage readings. The probe heater and controller were

not capable ofmaintaining this temperature difference throughout a data run, and

the temperature of the thermal reservoir often dropped. The reservoir is now kept

about twenty degrees Celsius above ambient, so that its temperature can be held

constant throughout a test run, increasing repeatability.

Taking these considerations, the voltage readings taken seldom fluctuate by

more than five percent. Higher fluctuations may be partially attributable to local

variations in the thermal conductivity of the test samples. An (optical type) iris has

occasionally been used to center the test samples, in an effort to check for local

variations, but the result of these efforts have been inconclusive to date.

2.2.3 Curvefitting

Once data is taken on a set of standards and test specimens, curvefitting is

required to find the thermal conductivity of the test specimens. The particular

commercial comparator that was used came with a calibration curve for a probe

twenty degrees Celsius above ambient. As small changes in the probe temperature

can result in substantial shifts in the calibration curve, the manufacturer

recommends that a calibration curve be generated for each test run. Initially, this

was done by hand, using a trench curve to fit the standard data plotted on semi-

logarithmic paper. In an effort to make the process more systematic, the process is

now done numerically, using a VAX 11-750 computer. Several methods were

tested, and compared to manual plots in an attempt to determine their relative merits.

The first numerical technique tried was a least squares fit [26], using a linear

sum of four functions. In fitting the curve, the computer determines a coefficient,

or scale factor, for each function. Various combinations of polynomial and

exponential functions were tried; none met with success. The magnitude of the

coefficients varied widely, and alternated in sign, resulting in tremendous computer

error when the difference of two functions was taken. This technique was judged

unacceptable, at least for these functional forms.
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A linear least squares fit was then made to the exponential of the known

conductivity as a function of the voltage, emulating the semi-logarithmic plot used

by the manufacturer. This fit the data reasonably well, but over a period of time, a

trend was observed. The data for each standard always seemed to fall at a particular

location with respect to the curve, on one side or the other. As there is no

theoretical basis for the purely exponential relationship (and linear fit), a cubic

spline interpolation routine was written. A visual comparison of k vs. V and the

exponential of k vs. V was made, the latter resulting in what seemed to be a better

fit This is themethod used at present. The FORTRAN program written is shown

in Appendix L

The cubic spline interpolation technique has one significant limitation. It cannot

be used to extrapolate values outside the conductivity range established by the

standards. This has caused some problems in testing films of relatively high

thermal conductivity on similar substrates. The voltage value obtained, higher than

our highest standard, cannot be compared to determine its apparent conductivity.

Berilco copper was used for several years as a high conductivity standard, but it

had a tendency to oxidize very quickly, requiring frequent repolishing. Both gold

and synthetic diamond have been considered as stable, high conductivity standards.

A finite element program was implemented in an effort to numerically estimate the

minimum size required for accurate measurements. Section 3.2.2 contains the

results of this effort, and a discussion. To date, no high conductivity standard has

been purchased to replace copper.

2.2.4 Heat flow modelling

The thermal comparator technique is useful for making thermal conductivity

measurements on bulkmaterials. When a highly conductive specimen, coated with

an insulating film is tested, the comparator indicates a reduction in the apparent

conductivity of the specimen. Modelling is required to extract the film conductivity

from the apparent conductivity measured by the apparatus.

As an initial approximation, a one-dimensional heat flow model was developed

by the Mechanical Engineering Department of the University of Rochester [25].

Several assumptions were made, including one-dimensional heat flow from the

probe tip through both the film and the substrate (considered to be of finite
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thickness), with no time dependence. These assumptions severely limited the

accuracy of the model. In an effort to rectify this, a two-dimensional model is

developed here.

The model developed is similar in some respects to Clark's model, discussed in

Section 2.1.4. Heat flow is assumed to be axially symmetric, with no time

dependence, into an infinite half-plane. Several important differences exist,

however. The probe tip is not included, reducing the domain to a single infinite

half plane. In addition, no assumptions are made about the relative sizes of the heat

flow radius and film thickness.

The model consists of relating two definitions of the thermal constriction

resistance, one developed for the case of no film, the other for the presence of a

film.

Carslaw and Jaeger were the first to define the thermal constriction resistance.

It is defined as "the thermal resistance to steady heat flow from a circle of radius
'a'

into a half space", or the ratio of the average surface temperature to the rate of flow

of heat [16]. The domain of their problem is shown in Figure 2.6(a).

(a) (b)

Figure 2.6

2-D heat flow model domain
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The heat flux, q(r), assumed to be such that the surface temperature over the

heat flow radius
'a'

is constant, is given by [17]:

3T O

q(r) = -k
=.

dr / o 2
27ta
fi 2

V a -r

where Q is power (rate of energy transfer). The z=0 surface outside the heat flow

radius is assumed to be insulated (q=0). The assumption of axial symmetry

requires that the radial flux across the
'z'

axis be zero. The temperature is assumed

to go to zero as both
'r'

and
'z'

go to infinity. If the material has thermal

conductivity 'k', the thermal constriction resistance is then defined as [16]:

R=
1

4ka

In 1983, Dryden [17] defined the thermal constriction resistance for the case of

a film of thickness Y on the surface of the specimen, as shown in Figure 2.6(b).

The heat flow in each region was assumed to be steady state, governed by

Laplace's equation. The boundary conditions were identical to those used by

Carslaw and Jaeger, with the addition ofmatched temperature and heat flux at the

film-substrate interface. This formulation resulted in one boundary value problem

for heat flow in the film, and one for heat flow in the substrate. These problems

were then solved with the use of the Hankel transform. The thermal constriction

resistance was shown to be:

|"eji(a)
4^a Tt^a j=i

L
R =
-i-

+
^

where:

0 =

kl +k2
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Knowing the heat flow radius 'a', and the apparent thermal conductivity of a film

and substrate combination measured by the thermal comparator, we can define the

apparent thermal constriction resistance as:

R =

1

4k a
app

This resistance must be equivalent to the form defined by Dryden. Equating the

two, and setting the result to zero, gives a function of the substrate conductivity, the

apparent conductivity, and the ratio of film thickness to heat flow radius:

1

4k, Ttk,

2* Ka.)
1

4k
= 0

app

If the film thickness, heat flow radius, and substrate conductivity are known, the

equation becomes a function of one variable: the film conductivity. Finding the

solution manually is difficult. Therefore, a numerical rootfinding technique is

implemented. Summation is stopped when the last term summed is a hundred

millionth the first term. If the summation exceeds amillion terms without satisfying

this criterion, the process is terminated.

Initially, a secant method subroutine was chosen for its rapid convergence

characteristics. This method did not meet with success, however, as the function

becomes unbounded for low film conductivities (See Appendix II). The method

has a tendency to diverge in this area. A less efficient, but more stable technique,

the bisection method, was then tested. A special driving program was written

specifically to find the root of a monotonically decreasing function. If the solution

is not in the initial search range (generally a specified order of magnitude), the

program automatically shifts the search range an order ofmagnitude in the direction

of the root. If the solution is not found within a specified number of shifts, the

program is terminated. The function converges slowly, especially for small ratios

of film thickness to heat flow radius. As many as several thousand summation

20



terms may be required to meet the convergence criteria specified above. The

FORTRAN program, bisection subroutine, and a table of typical film conductivity

values are shown in Appendix n.

As the table in Appendix II shows, the model becomes very sensitive when the

apparent conductivity measured by the comparator approaches the substrate

conductivity. In this range, the presence of noise in the system tends to produce

large changes in the output film conductivity values, resulting in potentially large

error. The results are most reliable when the film has a much lower conductivity

than the substrate. The apparent conductivity is thenmeasurably reduced due to the

presence of the film, and potential error due to system noise is minimized.

It should be noted that both forms of the thermal constriction resistance that are

used were based on an isothermal flux profile. In reality, the contact spot is almost

certainly not isothermal. This may result in experimental error. Section 3.2.3

investigates the effect of the form of the heat flux used on the thermal constriction

resistance.

Appendix V shows how the thermal constriction resistance could be defined for

the case ofmultiple films on the surface of an infinite half-plane.

2.2.5 Determination of the film thickness, the substrate conductivity, and the heat

flow radius.

The equation relating the apparent constriction resistance to the actual

constriction resistance (for a film/substrate combination) is a function of the

apparent conductivity (as measured by the comparator), the substrate conductivity,

the film conductivity, and the ratio of film thickness to heat flow radius. To solve

for the film thermal conductivity, the substrate conductivity, film thickness, and

heat flow radius must be specified.

Single crystal silicon or sapphire, with known crystal orientation, are desirable

substrate materials. The apparent conductivity of both materials is reduced

significantly due to the presence of most optical coatings. In addition, tabulated

thermal conductivity values for both materials are readily available for use in the

model.
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The thickness of the deposited film is generally given by the group who

prepared it. They know, that for a given deposition rate, a certain period of time is

required to deposit a film of a certain thickness. As an additional measure, the

thickness is generally checked using optical or physical techniques.

The radius of the heat flow area between the probe tip and the sample depends

upon the geometry of the probe tip, and the probe force used. An associate at LLE

used an optical imaging system in an effort to analyze the contact made by our

probe. A Helium-Neon laser beam was directed at the contact our probe made with

a special aluminum jig, using a probe force equivalent to five grams mass. The jig

was designed such that the probe contact was at the same elevation as the bottom of

a test sample, duplicating test conditions. The image (silhouette) was focused on a

digital image analyzer, and shown on a non-distortion video monitor. The non-

contact image of the probe is shown in Figure 2.7(a), the contact image with the jig

in 2.7(b). An estimate of the radius through which heat flows was made by

comparing the contact diameter to the maximum diameter of the probe (measured

with a commercial optical comparator).

noncontact contact with test specimen

(a)
Figure 2.7

Photograph of the probe tip

(b)

The actual radius of physical contact, calculated by contact stress analysis and

shown in Appendix Ul, was found to be about one order ofmagnitude lower, about

20 microns. However, the domed shape of the probe tip brings a large area of its

top surface in the proximity of the sample. There is a substantial area in which the

probe and sample are separated by a small distance, perhaps one to ten microns.
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Convection is occurring in this region. The use of the physical contact radius in the

model would be correct only if measurements were taken in a vacuum, with no

gaseous conduction. For measurements taken in air, the heat flow radius is

assumed to be about 180 microns.

2.2.6 Specimen hardness considerations

An effort was made to determine the effect of increasing the probe force on the

output millivoltage readings. A series of measurements were taken on our

standards, varying the load from 1.1 to 15 grams. The results of this testing are

shown in Figure 2.8.
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Figure 2.8

Outputmillivoltage as a function of applied load

P^VTaJMS)

Below five grams, the output millivoltage varies with the applied load. This is

probably due to variation in the nature of the contact, and therefore the contact

resistance. The millivoltage readings are relatively constant above five grams. This

indicates that, for fairly hardmaterials, such as our standards, the contact resistance

between the probe tip and specimen is essentially constant, as long as at least five

grams are applied.

Testing at or above five grams presents no problems with hard films. In fact,

the higher load seems to reduce the noise in the readings taken. There are potential

problems, however, in testing softer films at this load. Five grams may be enough

to significantly deform the film. For this reason, it may be wise to test softer films

at a lower load, perhaps 3.5 grams. This would reduce the film deformation. It
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must be recognized that, due to differences in the contact resistance, there is a

potential for error when soft film data is fit to a calibration curve generated by

harder standards, even though all are tested at the same load Appendix HI contains

deformation and indentation calculations formaterials in the range of interest.

One of the most significant results of the variable load testing is the non-zero

intercept on all the curves. If the heat were flowing only through the area of

physical contact between the probe and sample, all the plots would have zero

intercepts. As the load is reduced to zero, the contact area becomes a point, with

zero heat flow. The non-zero intercept on the plots verifies the fact that convection

is occurring outside the region of physical contact

2.3 Results

Table 2.1 shows the results of testing through December 1987. All the data

shown is for films deposited on single crystal silicon with a crystal orientation of

(111).
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TABLE 2.1

Thermal Conductivity ofOptical Thin FilmMaterials (W/mK)*

0.5

t rpml

1.0 1.5 2.0 4.0 Ristau8 Decker7 Bulk

Test

Load0 Notes

ros .21

EBE .14

.18

.18

.21

.24

.39

.40
.10(t=lum)

1.218
-
10.719

.28 (t=.5um)

.17(t=lum) 5g

5g, 10 g
a

Ti02t

IBS .16

EBE -.07

.20

.12 -.15

.29

.21

.37

.018(t=lum)

7.4-10.420

5g, 10 g

5g a

MgFi1-

IBS .12

EBE -.31

.33

-.26

.52

14.618
-
3021

3.5 g

3.5 g b

AI203tt

EBE -.16 -.27 -.34

207
-
4620

.25(fc=lum) 5g

*

t

tt

a

b

c

Estimated uncertainty + 10% except those indicated (-), which may vary 20-50%.

Samples provided by Optical Coating Laboratory, Inc., SantaRosa, CA.

Samples provided by the Thin Film Coating Facility of the Institute ofOptics, University of
Rochester.

Some samples crazed, no distinct difference between crazed and uncrazedmeasurements.

All samples crazed.

Results relatively independent of load for hard films. For soft films, data for lowest load is

Figure 2.9 shows the thermal conductivity of titania films as a function of their

thickness. The standard deviation of six data runs are represented by error

bars.The thinner films, supplied by Air Force Weapons Lab (Kirtland Air Force

Base, Albuquerque, NM), were deposited on sapphire substrates. The thicker

films, prepared by Optical Coating Laboratory, Inc. (Santa Rosa, CA), were

prepared on silicon substrates.
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Figure 2.9

Thermal Conductivity of Ti02 Films

2.4 Discussion of results

In Figure 2.9, the two curves representing electron beam evaporated films are

slightly misaligned. This may be due to differences in film deposition parameters

(for example, the temperature of the substrate during deposition). In light of the

large difference in apparent conductivities measured by the comparator, the curves

seem to verify the validity of the heat flow model used to extract the film data. A

single curve could be fit to all the points corresponding to evaporated films, and lie

within the error bars.

The data represented in Figure 2.9 also indicates that titania films deposited by

sputtering have a higher thermal conductivity than those deposited by evaporation.

This difference is not apparent for other materials, such as silica and magnesium

fluoride.

Virtually all the results to date indicate that the thermal conductivity of dielectric

thin films increases with increasing film thickness. There are several plausible

explanations for this phenomenon. The most obvious is that the percentage

crystallinity of the films may be changing with thickness as the film is grown. The

material in close contact with the substrate may be more disordered than the material

further away from the interface. The change in crystallinity could be the result of

substrate heating as material
"condenses"

on the surface during deposition. The

variation in conductivity with distance from the interface would result in higher net

thermal conductivities for thicker films than thin ones.
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Another possible explanation is localized dislocation between the film and

substrate at the interface. This would create a thin layer of air between the film and

substrate, a barrier to heat flow. The effect of this localized peeling would be more

apparent for thinner films than thick ones. This explanation seems particularly valid

for evaporated films, known to have high levels of tensile stress and a propensity

for crazing. It should be noted that the thermal conductivity of evaporated titania

films approaches that of air as the films become very thin.

It should be noted that the variation in thermal conductivity with thin film

thickness was noted in the past. In their studies of copper films in 1976, Nath and

Chopra [3] noted that the thermal conductivity of copper films varied with thickness

below five microns.
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3.0 FINITE ELEMENT ANALYSIS

3.1 Motivation and formulation

Finite element analysis was performed with several goals inmind. Initially, it

seemed to be amethod of extracting the thermal conductivity of a single film in a

multilayer stack from the apparent conductivity read by the thermal comparator. It

also promised to provide information about sample size requirements, and the

accuracy of the analytical model used to reduce single film data.

q=0

z=Z-

q(r]

1 t

q=0
r=

1

u

T=0

-*? r

T=0

Figure 3.1

FEA domain

The problem formulation is based on the domain and boundary conditions

shown in Figure 3.1. The domain is very similar to that of Figure 2.6, with one

significant exception: it doesn't extend to infinity in the
'r'

and
'z'

directions.

Using cylindrical coordinates, symmetry about the z-axis reduces a three

dimensional region to two dimensions. Heat flow is assumed to be steady,

governed by Laplace's equation. The temperature is specified on two boundaries,

the heat flux is specified on the other two.
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Four noded, rectangular shape functions were used in the derivation of the

equations. The thermal conductivity was assumed to be constant over each

element, but allowed to vary between elements, as specified by the user. The
r'

and
'z'

coordinates of the element boundaries, and the heat flux function q(r) are

user specified. The complete formulation and program package are shown in

Appendix IV.

Given the heat flux function q(r), and the thermal conductivity of each

element, the program package solves for the temperature at each node. A contour

plotting package developed by The National Center for Atmospheric Research

(NCAR) is used to plot isotherms in the region.

The model has three key parameters: the power input (specified in the heat

flux function), the thermal conductivity of each element, and the temperature of

the contact at z=0. Given any two of the three, the program is capable of finding

the third. The temperature of the contact can be found with one program

execution. Solving for the power input or thermal conductivity requires multiple

program executions, with suitable parametermodifications between iterations.

Although successful in otherways, the finite element model developed is not

useful for reducing the results of tests on multilayer stacks. The comparator

apparatus provides too little information. Solving for an unknown conductivity

would require the power input and contact temperature to be known. The power

can be found from the apparent conductivity, contact temperature, and heat flow

radius
'a'

using the equation [16]:

Q = 4k Ta
^-

app c

The problem lies with estimating the contact temperature. Because it is

located approximately 0.030 inch from the surface, the thermocouple located in

the comparator probe tip does notmeasure the temperature of the contact, but the

temperature of a location near the contact. The temperature gradient in this region

is steep. Using the temperature registered by the thermocouple in the model could

potentially result in large error.
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3.2 Results

3.2.1 Axisymmetric heat flow problem.

As a test of the analysis package and plotting routine, a simple problem was

examined. The problem consisted of heat flow into a
'square'

domain (actually a

cylinder with radius equal to thickness). A constant temperature flux profile was

assumed, with heat flowing into the z=0 surface. Several runs were executed,

varying the number of nodes in each direction, and varying the thermal

conductivity.

.15

,5

Figure 3-2

Axisymmetric temperature distributions

Isotherm contour plots for two cases are shown in Figure 3.2. Case 1 shows

the isotherms for amaterial of constant thermal conductivity, while Case 2 shows

the effect of an insulating layer on the surface.

As expected, the number of nodes (elements used) had no effect on the

solution. The temperature was found to be fairly constant over the flux surface,

and the isotherms are normal to the surface at the zero flux borders.

3.2.2 Effect of domain size on contact temperature

The thermal comparator technique requires that the samples tested be fairly

large compared to the contact radius. It the dimensions of the sample are too
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small, the exposed back or side surfaces of the sample will heat up, resulting in

convective heat transfer, and invalid comparisons.

The analysis package was used to try to estimate the minimum dimensions

required for our samples. Heat flow was assumed to be into a
'square'

region,

with thickness equal to radius. Three sets of program executions were made,

varying the ratio of contact radius to outside radius from 0.001 to 1.0:

1) Gold:

2) Gold:

3) Sapphire:

k = 318W/m*K

= 1000W

k = 318W/m*K

Q=100W

k = 35 W/m*K

Q=1000W

Themaximum contact temperature was achieved as the ratio of radii tends to

zero. The contact temperature was normalized by dividing it by this maximum

temperature. A plot of the normalized temperature as a function of the ratio of

radii, shown in Figure 3.3, revealed that the normalized temperature is

independent of both the materials thermal conductivity and the power input

1.0

in / rv..
0 0.2 0.4 0.(o 0.6 t.O

Figure 3.3

Temperature as a function of sample dimensions

Figure 3.3 indicates that to be within one percent of the maximum temperature

attainable, the outside radius (and thickness) of the sample must be at least forty
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times the contact radius. For our experimental apparatus, this corresponds to

about seven millimeters.

It should be noted that this formulation considers heat flow into a finite

medium, at equilibrium for a long period of time. In using the thermal

comparator, steady heat flow into an effectively infinite medium is established,

but a steady state temperature distribution throughout the sample is not

established. We are probably safe using samples as much as thirty percent

smaller than this, provided that the samples have a fairly high specific heat, and

their temperature increase during testing is minimal.

3.2.3 Heat flux profile analysis

As mentioned at the end of Section 2.2.4, the thermal constriction resistance

definitions used in the analytical modelling were derived assuming an isothermal

contact spot, ie a temperature gradient over the surface of the form:

This assumption may introduce error in the film conductivity values found from

the model, as the contact spot is almost certainly not isothermal.

The finite element model was used to gain a better understanding of the

relationship between the assumed flux profile and the resulting thermal

constriction resistance.

Two flux profiles were compared to the isothermal profile. The first, constant

over the radius of the spot, was:

dz ,
2

7tka
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The second, which decreases with 'r', is:

3z 2itka2

r

4

1-

a
(3)

The three flux profiles, when integrated over the contact spot, all result in the

same power input, 'Q'.

Finite element modelling yielded discrete temperature values for each node on

the contact surface. The mean temperature over the surface was found using the

relation:

n

T = T T.r.Ar

a i=i

where
'a'

is the radius of the contact spot,
'n'

is the number of nodes,
'T'

and V

are the temperature and radial location of the node, and Ar is the radial node

spacing.

Using a contact radius of0.25, an input power of 1000, a bulk material with a

thermal conductivity of 50, and nine equally spaced nodes over the contact radius,

the following results were obtained:

Profile T
R-T

R_Q

(1) 15.314 0.015314

(2) 16.712 0.016712

(3) 17.700

Table 3.1

0.017700

Variation of the thermal constriction resistance with the heat flux profile
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It can be seen that as the distribution of power shifts inward, the mean

temperature of the contact surface increases. This increases the thermal

constriction resistance about 15 percent

Relating this change in the thermal constriction resistance to possible

modelling error is not straightforward. The two resistance definitions equated

(one with, the other without a film) assume the same profile. Although this

profile is probably not accurate, the effects would tend to cancel.

3.3 Summary

The finite element model developed was useful for investigating various

aspects of heat flow in a sample, including the estimation ofminimum sample

dimensions required for accurate results, and the effect of the assumed flux

profile on the thermal constriction resistance.

Future modelling should include the probe tip. This may lead to a method of

finding the thermal conductivity of a single film in a multilayer stack, and an

estimate of the error associated with the analytical modelling.
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4.0 CONCLUSION

Considerable progress has been made in using the thermal comparator to

measure the thermal conductivity of thin solid films. The experimental apparatus

has been improved and expanded to increase the accuracy of data and the speed of

data collection. A two dimensional heat flow model was developed to extract the

film thermal conductivity from the net film/substrate value read by the thermal

comparator. Four dielectric thin filmmaterials and two deposition techniques have

been studied, and thermal finite element analysis has been performed.

Experimental work should continue in the future. A library of thin film thermal

conductivities should be developed as a means of determining methods by which

the thermal conductivity of optical coatingsmay be enhanced. The effect of the use

of ion beam assist while depositing evaporated films should be examined. The

thermal conductivity of films deposited by chemical vapor deposition should be

examined.

At the present time, multilayer coatings can only be studied in an indirect

manner. The nature of interfacial barriers can be investigated by depositing

alternate layers of two or more coating materials. If the total number of films per

sample is varied between samples, this could provide information concerning the

insulative or conductive nature of the interfaces.

One area of particular interest is the study of highly conductive films such as

diamond or metals. This could be accomplished using substrates of low thermal

conductivity, such as silica. The 2-D heat flow model developed should be capable

of extracting the thermal conductivity of highly conductive films as well as

insulating films.

The nature of the physical contact and heat flow radius between the probe tip

and specimen should be further investigated, by finite element analysis and mfrared

thermography. This could verify the heat flow radius used at the present, as well as

provide information about the deformation of soft films. Development of a

"correction
factor"

to estimate the contact temperature from the output millivoltage

would enable the use finite element analysis in extracting the thermal conductivity of

a single film from a multilayer stack.
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A recent paper suggests that the thermal constriction resistance has been defined

for the case of a film of variable thermal conductivity on the surface of a bulk

material [23]. This may lead to a more accurate spatial description of the thermal

conductivity of dielectric films, and should be investigated.

As a final note, it may be possible (although difficult) to numerically or

analytically define the thermal constriction resistance formultiple coatings. If this

can be accomplished, it would provide a direct, accurate means of determining the

conductivity of a single film in a multilayer stack. Appendix V shows how the

thermal constriction resistance could be defined for the case ofmultiple films on the

surface of and infinite half-space.
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APPENDK I - CURVEFITTING

This cubic spline curvefitting program package was written to fit a curve to data

taken from standards with the thermal comparator apparatus. A cubic polynomial is

fit between each pair of data points, matching first and second derivatives between

each curve. The exponential of the input thermal conductivities are considered to be

a function of the inputmillivoltages.

The endpoints of the outer splines are considered free, ie locations of zero

second derivative. Cubic spline fits, in general, require that all the data points to be

fit fall between points used to generate the curves.

A total of four subroutines are called by themain program CFTT. CUBIC is the

routine which calculates the derivative data for each spline, using the simultaneous

equation solver GAUSS, and its accompanying routine SCPIVOT. Once the spline

data is generated, the subroutine INTERP fits data from the specimens of unknown

thermal conductivity to the curves. The subroutines GAUSS and SCPIVOT are

also used in finite element analysis, and appear in Appendix IV.

Two sets of data are read by CFTT: the number of points to fit curves to,

followed by the data points themselves, and the number of unknown data points,

followed by theirmillivoltage values.
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**************************************************************************

PROGRAM

PROGRAMMER

DATE WRITTEN

CFIT

C. AMSDEN

7-87

OBJECTIVE:

THE PURPOSE OF THIS PROGRAM IS TO FIT A CUBIC 'NATURAL
SPLINE'

POLYNOMIAL TO A SET OF INPUT DATA, AND EVALUATE

THE RESULTING FUNCTION AT DESIRED POINTS ENCLOSED IN THE

DATA DOMAIN. AS THE TERM 'NATURAL
SPLINE"

INDICATES,

THE ENDPOINTS ARE CONSIDERED FREE, IE INFLECTION POINTS.

LOGARITHMIC SCALING IS PERFORMED TO INCREASE ACCURACY.

THEREFORE, ALL INPUT Y VALUES MUST BE GREATER THAN ZERO.

SUBPROGRAMS REFERENCED:

CUB IC ( MAXM ,M,X,Y,H,A,B,ICOL , YDP )

SUBROUTINE WHICH PERFORMS THE CUBIC POLYNOMIAL

APPROXIMATION. IT RETURNS THE SECOND DERIVATIVE

VALUES AT THE INTERIOR NODES, WHICH ARE USED TO

EVALUATE THE FUNCTION.

GAUSS (MAXN,N,A,B,X,ICOL, SUCCESS)

SUBROUTINE TO PERFORM GAUSSIAN ELIMINATION.

CALLED THROUGH CUBIC.

SCPIVOT (MAXN,N,A, B,X,ICOL, SUCCESS)

SUBROUTINE TO SCALE AND COLUMN PIVOT AN

AUGMENTED MATRIX. CALLED THROUGH GAUSS.

INTERP ( MAXM ,M ,MAXNF ,NF ,X , Y , YDP , Z , FZ )

SUBROUTINE TO EVALUATE THE CUBIC POLYNOMIAL

APPROXIMATION AT DESIRED LOCATIONS.

ARRAYS USED:

X

Y

YDP

A

B

H

Z

FZ

VARIABLES USED:

MAXM

MAXNF

M

NF

X VALUES, INPUT DATA TO FIT CURVE TO

Y VALUES, INPUT DATA TO FIT CURVE TO

SECOND DERIVATIVE VALUES AT INTERIOR

NODES (DATA POINTS)

COEFFICIENT MATRIX USED BY CUBIC

RESIDUAL VECTOR USED BY CUBIC

DIFFERENCE IN X VALUES OF NEIGHBORING

NODES (DATA POINTS)

X VALUES WHOSE FUNCTION VALUE IS SOUGHT

FUNCTION VALUE SOUGHT

PARAMETER - MAX NUMBER OF DATA POINTS

PARAMETER - MAX NUMBER OF FUNCTION VALUES

SOUGHT

ACTUAL NUMBER OF DATA VALUES USED

ACTUAL NUMBER OF FUNCTION VALUES SOUGHT

************************************************************************

*

PROGRAM CFIT

*

INTEGER*

4 MAXM,MAXNF

PARAMETER ( MAXM=50 ,MAXNF=50 )

INTEGER*4 M ,NF , ICOL(MAXM-2 )

REAL*4 X(MAXM) ,Y(MAXM) ,YDP(MAXM) ,A(MAXM-2 ,MAXM-2 ) ,B(MAXM-2) ,
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+ H( MAXM-2) ,Z (MAXNF) ,FZ(MAXNF)
*

READ(5,*)M
*

DO 100 1=1, M

READ(5,*) X(I),Y(I)

IF (Y(I) .LE.0.0) THEN

WRITE (6,*) 'INPUT NON-POSITIVE Y
VALUE'

STOP

ENDIF

Y(I)=LOG(Y(D)

100 CONTINUE
*

CALL CUB IC ( MAXM ,M,X,Y,H,A,B,ICOL, YDP )
*

READ(5,*) NF

*

DO 200 1=1, NF

READ (5,*) Z(I)

200 CONTINUE
*

CALL INTERP( MAXM,M, MAXNF, NF,X,Y, YDP, Z,FZ)
*

WRITE(6,5)

5 FORMAT (
'0'

,11X, 'V ,16X,

'
KAPP

'

,/ ,5X, <31>(
'
-

'

) )
*

DO 300 1=1,NF

FZ(I)=EXP(FZ(I) )

WRITE(6,15) Z(I),FZ(I)

15 FORMAT(
'0'

, 5X , E13 . 7 , 5X ,E13 . 7 )

300 CONTINUE
*

STOP

END
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************************************************************************

SUBROUTINE CUBIC

PROGRAMMER AMSDEN

DATE WRITTEN 87

OBJECTIVE:

GIVEN A SET OF INPUT DATA POINTS, THIS SUBROUTINE WILL

DO A CUBIC 'NATURAL
SPLINE'

POLYNOMIAL APPROXIMATION OVER

EACH INTERVAL BETWEEN DATA POINTS. THIS SUBROUTINE RETURNS

A SECOND DERIVATIVE VALUE FOR EACH INTERIOR POINT. AS THE

TERM 'NATURAL
SPLINE*

IMPLIES, THE ENDPOINTS OF THE RANGE

ARE ASSUMED INFLECTION POINTS.

.SUBPROGRAMS REFERENCED:

GAUSS (MAXN , N , A , B , X , SUCCESS , ICOL )

SUBROUTINE TO PERFORM GAUSSIAN ELIMINATION

SCPIVOT( MAXN, N,A, B,K, ICOL, SUCCESS)

SUBROUTINE TO SCALE AND COLUMN PIVOT AN AUGMENTED

MATRIX BEFORE GAUSSIAN ELIMINATION IS PERFORMED.

CALLED THROUGH GAUSS

ARRAYS USED:

X

Y

H

A

B

YDP

ICOL

INPUT X VALUES OF DATA POINTS

INPUT Y VALUES OF DATA POINTS

DIFFERENCE IN ADJACENT X VALUES

COEFFIEIENT MATRIX

RESIDUAL MATRIX

SECOND DERIVATIVE VALUES SOUGHT

REORDER MATRIX USED BY GAUSS

VARIABLES USED:

MAXM

M

N

SUCCESS

PARAMETER - MAX NUMBER OF INPUT

DATA POINTS

ACTUAL NUMBER OF DATA POINTS

NUMBER OF SPLINES (N=M-1)

LOGICAL VARIABLE - GAUSS SUCCESSFUL

**********************************************************************

*

SUBROUTINE CUBIC ( MAXM ,M ,X, Y,H , A ,B , ICOL , YDP)

*

INTEGER*4 MAXM ,M ,N , ICOL (MAXM-2 )

REAL*4 X(MAXM) ,Y(MAXM) ,H(MAXM-1) , A ( MAXM- 2 ,
MAXM- 2 ) ,

+ B ( MAXM-2 ), YDP (MAXM-2)
LOGICAL*

1 SUCCESS

*

N=M-1

100

DO 100 1=1, N

H(I)=X(I+1)-X(I)

CONTINUE

! DETERMINE H VALUES

A(1,1)=2.0*(H(1)+H(2))

A(1,2)=H(2) 1FILL COEFFIEIENT MATRIX

DO 200 1=2,N-2

A(I,I-1)=H(I)
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A(I,I)=2.0*(H(I)+H(I+1))

A(I,I+1)=H(I+1)

200 CONTINUE
*

A(N-1,N-2)=H(N-1)

A(N-1,N-1)=2.0*(H(N-1)+H(N) )
*

'FILL RESIDUAL VECTOR

DO 300 1=1,N-l

B(I)=6.0*((Y(I+2)-Y(I+l))/H(I+l)-(Y(I+l)-Y(I))/H(D)
300 CONTINUE
*

CALL GAUSS ( MAXM-2,M-2,A,B, YDP, SUCCESS, ICOL)

IF ( .NOT. SUCCESS) THEN

WRITE(6,*) 'GAUSS ELIMINATION FAILED DUE TO ',
+ 'DIVISION BY ZERO, PROGRAM

ABORTED.'

STOP

ENDIF
*

RETURN

END
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**************************************************************************

SUBROUTINE INTERP

PROGRAMMER C. AMSDEN

DATE WRITTEN 7-87

OBJECTIVE:

THE PURPOSE OF THIS SUBROUTINE IS TO SUPPLY FUNCTION

VALUES FOR CORRESPONDING INPUT DATA. THE FUNCTION USED

IS A CUBIC 'NATURAL
SPLINE*

POLYNOMIAL APPROXIMATION

MADE TO A SET OF DATA POINTS BY THE SUBROUTINE CUBIC.

THE DRIVER PROGRAM SUPPLIES THE SECOND DERIVATIVE VALUES,

FOUND BY CUBIC,WHICH THIS SUBROUTINE USES TO FIND THE

DESIRED FUNCTION VALUES. IT SHOULD BE NOTED THAT THE

SECOND DERIVATIVE VALUES ARE DISTINGUISHED BY INTERIOR

NODE INDICES, AND THAT CORRECTION IS MADE IN THIS

SUBROUTINE TO INCLUDE THE TWO RANGE ENDPOINTS.

ARRAYS USED:

X

Y

YDP

Z

FZ

X VALUES CURVE FIT TO

Y VALUES CURVE FIT TO

SECOND DERIVATIVE OF FUNCTION AT NODES

X VALUE WHOSE Y VALUE IS SOUGHT

FUNCTION EVALUATED AT X

VARIABLES USED:

MAXM

MAXNF

M

NF

I

J

S

H

Dl

D2

PARAMETER - MAX NUMBER OF DATA POINTS USED

IN FITTING CURVE

PARAMETER - MAX NUMBER OF FUNCTION

VALUES SOUGHT

ACTUAL NUMBER OF DATA POINTS USED

ACTUAL NUMBER OF FUNCTION VALUES SOUGHT

INTERVAL, OR SPLINE INDEX

COUNTER

SPLINE CONTAINING Z VALUE

WORKING VARIABLE - DIFFERENCE IN X VALUES

AT SPLINE ENDPOINTS

WORKING VARIABLE - DIFFERENCE BETWEEN Z AND

SMALL SPLINE X VALUE

WORKING VARIABLE - DIFFERENCE BETWEEN LARGE

SPLINE X VALUE AND Z

*******
********************************************************************

SUBROUTINE INTERP ( MAXM , M , MAXNF , NF , X , Y , YDP , Z , F Z )

INTEGER*

4 MAXM , MAXNF ,M ,NF , I , J ,S

REAL*4 X(MAXM) ,Y(MAXM) ,YDP(MAXM) ,Z(MAXNF) ,FZ(MAXNF) ,H,DI,D2

100

YDP(M)=0.0

DO 100 J=M-1,2,-1

YDP(J)=YDP(J-1)

CONTINUE

YDP(1)=0.0

! CORRECT SECOND DERIVATIVE

! INDICES TO INCLUDE ENDPOINTS

DO 200 J=1,NF

S= 0

DO 400 1=1,M-l

'FIND INTERVAL Z CONTAINED IN
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IF ( (Z(J) .GE.X(I)) ,AND.(Z(J) .LE.X(I+1)) ) S=I

400 CONTINUE
*

IF (S.EQ.O) THEN

WRITE (6, 5) Z(J)

5
FORMAT(* '

,5X,E13.7,2X,'OUT OF
RANGE'

)

ELSE

H=X(S+1)-X(S)

D1=X(S+1)-Z(J) 'FIND FZ

D2=Z(J)-X(S)

FZ(J)=(YDP(S)/6.0)*(D1**3/H-H*D1)

+ +(YDP(S+1)/6.0)*(D2**3/H-H*D2)

+ +Y(S)*D1/H+Y(S+1)*D2/H

ENDIF

200 CONTINUE
*

RETURN

END
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APPENDK H - ROOTFINDING

This rootfinding program package was written to find the zero intercept of the

function generated by equating two definitions of the thermal constriction

resistance. The zero intercept corresponds to the thin film thermal conductivity.

Two subprograms are used by the main program GETK1: BISECT, which

finds the root of the input function, and F, the function whose root is sought.

The subroutine BISECT was modified specifically for use with monotonically

decreasing functions. If the solution is not found within the initial estimated range,

the program searches orders ofmagnitude in the correct direction until the solution

is found, or search the criterion is exceeded.

Nine parameters are input into the program. The first three are used in

evaluating the function: the ratio of film thickness to contact radius, the substrate

conductivity, and the apparent conductivity. The fourth refers to the maximum

number of summations to be performed in evaluating the function, the fifth to

summation convergence criterion (the ratio of last to first terms). The sixth term is

the relative convergence criteria used by BISECT to determine if the solution has

been found to the desired accuracy. The seventh and eighth are the lower and upper

bounds of the range to be searched, which should span one order of magnitude,

and the ninth is the maximum number of orders ofmagnitude to search.

Figure n.l shows the general form of the function. Table II. 1 shows the

results of program execution for a variety of film thickness to heat flow radius

ratios, and apparent to substrate conductivity ratios.

It should be noted that forward summation (large to small) of a slowly

converging series can potentially result in computer roundoff error. Later terms,

being orders ofmagnitude smaller than the initial ones, are dropped. The effect of

several thousand small terms, however, may significantly alter the solution.

Forward and reverse (small to large) summation techniques were compared for this

function, and found to be virtually identical.
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kapp/k2

Figure nTl

2-D model function

ki values, taken for k2 = 150.0

t/a

I 0.001 0.01 0.1 1.0 10.0

5.0 1168100 116830 11733 1518.3 805.25

1.0 150.0 150.0 150.0 150.0 150.0

0.95 3.5691 32.568 113.77 139.68 142.26

0.90 1.6921 16.112 86.904 129.64 134.55

0.70 0.43743 4.2443 34.343 92.457 103.89

0.50 0.18569 1.8221 15.772 60.122 73.599

0.30 0.079613 0.78121 6.9118 32.649 43.750

0.10 0.02047 0.20261 1.8098 -, 9.8121 14.427

0.05 0.0091476 0.095863 0.85866 4.7791 7.1922

0.01 0.0018796 0.018068 0.16498 0.93583 1.4352

0.005 - 0.0090782 0.081980 0.46670 0.71741

TableHI

Film conductivity as a function of

normalized film thickness and conductivity
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**************************************************************************

PROGRAM GETK1

PROGRAMMER

DATE WRITTEN

OBJECTIVE:

THE

AMSDEN

87

NOTE:

PURPOSE OF THIS PROGRAM IS TO FIND THE THERMAL

CONDUCTIVITY OF A THIN FILM. THIS IS ACCOMPLISHED

BY IMPLEMENTING THE MODIFIED BISECTION METHOD, AND

SOLVING THE 2-D HEAT FLOW EQUATION.

THE BISECTION ROUTINE USED HAS BEEN MODIFIED SO THAT

IF THERE IS ZERO OR AN EVEN NUMBER OF ROOTS IN THE

GIVEN RANGE, THE RANGE CAN BE MODIFIED AND THE METHOD

RE-EXECUTED. FOR THIS REASON, K1MIN AND K1MAX DO NOT

NECESSARILY HAVE TO ENCLOSE THE ROOT. THIS PROGRAM

WILL MODIFY THE RANGE AN ORDER OF MAGNITUDE IN THE

CORRECT DIRECTION UNTIL THE ROOT IS ENCLOSED. THIS

PROGRAM WILL ONLY WORK FOR MONOTONICALLY DECREASING

FUNCTIONS.

SUBPROGRAMS REFERENCED:

BISECT (F,K1MIN,K1MAX,EPSR,C0NV,CONDI, COND2,Kl, IT)

MODIFIED BISECTION SUBROUTINE TO FIND Kl

F(K1) FUNCTION TO BE SOLVED.

VARIABLES USED:

TR

Kl

K2

KAPP

VR

K1MIN

K1MAX

EPSR

N

J

IT

ORDERS

MAXORD

CONV

CONDI

COND2

RATIO OF FILM THICKNESS TO PROBE

CONTACT RADIUS

FILM CONDUCTIVITY

SUBSTRATE CONDUCTIVITY

APPARENT CONDUCTIVITY - AS MEASURED

BY THE THERMAL COMPARATOR

RATIO OF LAST TO FIRST TERM SUMMED

IN FUNCTION (TELLS WHEN TO STOP SUMMING)

LOW INITIAL GUESS

HIGH INITIAL GUESS

RELATIVE ERROR IN SOLUTION - NEGATIVE

EXPONENT VALUE IS NUMBER OF SIGNIFICANT

DIGITS IN SOLUTION.

MAXIMUM NUMBER OF SUMMATIONS FOR FUNCTION

TO PERFORM

SUMMATIONS ACTUALLY PERFORMED

ITERATIONS PERFORMED BY BISECT

NUMBER OF ORDERS OF MAGNITUDE SEARCHED

MAXIMUM NUMBER OF ORDERS TO SEARCH

LOGICAL VARIABLE - METHOD CONVERGED

LOGICAL VARIABLE - SEARCH RANGE LOW

LOGICAL VARIABLE - SEARCH RANGE HIGH

*************************************************************************

*

PROGRAM GETK1

*

REAL*4 TR,K1,K2, KAPP,VR,F ,K1MIN , K1MAX, EPSR

INTEGER*4 N , J , IT , ORDERS , MAXORD

LOGICAL*! CONV, CONDI,COND2
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COMMON TR,K2,KAPP,N,J,VR

EXTERNAL F
*

READ(5,*) TR,K2,KAPP,N,VR,EPSR,K1MIN,K1MAX,MAXORD

*

ORDERS=0
*

DO 100 WHILE (ORDERS. LT.MAXORD) ISEARCH VARIOUS ORDERS

ORDERS=ORDERS+l !OF MAGNITUDE

*

CALL BISECT(F, K1MIN,K1MAX, EPSR, CONV,CONDI ,COND2,Kl, IT)
*

IF (CONV) THEN

WRITE(6,5) Kl,ORDERS, IT, J

5 FORMAT(
'0'

,5X,'THE SOLUTION IS Kl =
'
,E10 .5 ,//,7X,

+ 'THE SOLUTION WAS FOUND AFTER SEARCHING ', 12 ,/

+ 7X,'ORDER(S) OF MAGNITUDE, WITH
',12,'

ITERATION

+ /,7X,'OF THE BISECTION METHOD. THE LAST TERM',

+
/,7X'INCLUDED'

,16,

'

SUMMATIONS.',//)

STOP

ELSEIF (CONDI) THEN ! RANGE LOW,

K1MIN=K1MAX 'INCREASE IT

K1MAX=10.0*K1MAX !ONE ORDER

ELSE

K1MAX=K1MIN ! RANGE HIGH,

K1MIN=0.1*K1MIN [DECREASE IT

ENDIF !ONE ORDER

*

100 CONTINUE

* !TOO MANY ORDERS SEARCHED

WRITE (6, 15) ORDERS

15 FORMATt
'0'

ORDER(S) OF MAGNITUDE SEARCHED, THE',

+
'

SOLUTION WAS NOT FOUND.',//)
*

STOP

END
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*************************************************************************

*

*
SUBROUTINE : BISECT

*

*
PROGRAMMER : C. AMSDEN

*

*
DATE WRITTEN : 7-87

*

*
OBJECTIVE:

*
THE PURPOSE OF THIS SUBROUTINE IS TO DETERMINE WHETHER

*
THERE IS A ROOT ENCLOSED IN A SPECIFIED RANGE, AND IF

*
SO FIND IT. AN EVEN NUMBER OF ROOTS APPEARS THE SAME

*
AS NO ROOTS. IF IT APPEARS NO ROOTS ARE ENCLOSED, THIS

*
SUBROUTINE RETURNS INFORMATION THAT MAY BE USED BY THE

*
DRIVER PROGRAM TO MODIFY THE RANGE. ONCE IT APPEARS

*
A ROOT IS ENCLOSED, THE RANGE IS BISECTED UNTIL THE

*
ERROR CRITERION IS MET.

*

*
SUBPROGRAMS REFERENCED:

*
F(X) FUNCTION WHOSE ROOT IS SOUGHT

VARIABLES USED:

XI

X2

XMID

Fl

F2

FMID

EPSR

LOW END OF RANGE

HIGH END OF RANGE

MIDPOINT OF RANGE

F(X1)

F(X2)

F(XMID)

RELATIVE ERROR CRITERION - THE

* VALUE OF THE NEGATIVE EXPONENT

* IS EQUAL TO. THE NUMBER OF SIGNIFICANT

* DIGITS IN THE SOLUTION.

* ERROR : ERROR IN PRESENT SOLUTION

* IT : ITERATIONS (BISECTIONS) PERFORMED

* CONV : LOGICAL VARIABLE - METHOD CONVERGED

*
CONDI : LOGICAL VARIABLE - BOTH FUNCTION VALUES

* POSITIVE

* COND2 : LOGICAL VARIABLE - BOTH FUNCTION VALUES

* NEGATIVE

*

************************************************************************

*

SUBROUTINE BISECT ( F ,X1 ,X2 , EPSR , CONV,CONDI ,COND2 ,X, IT)

*

REAL*4 X,XI,X2,XMID, F,F1,F2, FMID, EPSR, ERROR

INTEGER*4 IT

LOGICAL*l CONV, CONDI, COND2

*

EXTERNAL F

*

IT=0

CONV=. FALSE. UNITIALIZE

CONDl=. FALSE. ! PARAMETERS

COND2=. FALSE.

*

F1=F(X1)
UNITIALIZE

F2=F(X2) ! FUNCTION VALUES

*

IF (F1.EQ.0.0) THEN

X=X1
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CONV=.TRUE.

RETURN ! CHECK FOR INSTANT

ELSEIF (F2.EQ.0.0) THEN -.CONVERGENCE AND

X=X2 'POSSIBLE PRESENCE

CONV=.TRUE. !OF ROOTS

RETURN

ELSEIF ( (F1.GT.0.0) .AND. ( F2 .GT.O .0 ) ) THEN

CONDl=.TRUE.

RETURN

ELSEIF ( (F1.LT.0.0) . AND. ( F2 .LT. 0 . 0 ) ) THEN

COND2=.TRUE.

RETURN

ELSE

ERROR= ( X2-X1 ) / (X2+X1 )

ENDIF
*

DO 100 WHILE (ABS(ERROR) .GT.ABS ( EPSR) )

IT=IT+1
*

XMID=(Xl+X2)/2.0 'BISECT UNTIL A

FMID=F(XMID) 'SOLUTION IS

IF ( FMID. EQ.0.0) THEN ! FOUND WHICH

X=XMID ! SATISFIES ERROR

CONV=.TRUE. 'CRITERION

RETURN

ELSEIF ( (F1*FMID) .LT.0.0JTHEN

X2=XMID

F2=FMID

ELSE

X1=XMID

F1=FMID

ENDIF
*

ERROR= (X2-X1 ) / (X2+X1 )

100 CONTINUE
*

X=(Xl+X2)/2.0

CONV=.TRUE.

*

RETURN

END
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***************************************************************************

*

*
FUNCTION : F

PROGRAMMER AMSDEN

DATE WRITTEN 6-87

OBJECTIVE/BACKGROUND :

THE PURPOSE OF THIS FUNCTION IS TO SUPPLY VALUES OF THE

2-D THERMAL COMPARATOR HEAT FLOW EQUATION (ONE FILM), FOR

A GIVEN FILM CONDUCTIVITY. THIS FUNCTION IS INTENDED TO BE

USED WITH (ZERO) ROOT FINDING METHODS. THE EQUATION WAS

DERIVED BY METHODS OF OPERATIONAL CALCULUS.

VARIABLES USED:

Kl

K2

KAPP

TR

V

VI

VR

N

J

AJ

D

I

TH

FILM CONDUCTIVITY

SUBSTRATE CONDUCTIVITY

APPARENT CONDUCTIVITY

RATIO OF FILM THICKNESS TO PROBE CONTACT

RADIUS.

TRANSIENT VALUE TO BE SUMMED

FIRST VALUE SUMMED

RATIO OF FINAL TO FIRST VALUE SUMMED

(TELLS WHEN TO STOP SUMMING)

MAXIMUM NUMBER OF SUMS TO BE PERFORMED

ACTUAL NUMBER OF SUMS PERFORMED

WORKING VARIABLE - ALPHA J
rn n

- INTEGRAL

- THETA

***************************************************************************

*

REAL*4 FUNCTION F(K1)
*

INTEGER*4 J,N

REAL*4 K1,K2,KAPP,TR,V,V1,VR,AJ,D,I,TH

*

COMMON. TR,K2,KAPP,N,J,VR

*

J=0

S=0.0

V=0.0

V1=0.0

TH=(K1-K2)/(K1+K2)

DO 100 WHILE (A8S(V) .GE . ABS (V1*VR) )

J=J+1

AJ=2.0*TR*J

D=AJ/2.0+SQRT( . 25*AJ**2+1 . 0 )

I=-AJ+(D-1.0/(2.0*D) )*SQRT(1.0-(1.0/(D**2) ) )

+ +.5*ASIN(1.0/D)

V=(TH**J)*I

*

IF (J.EQ.l) V1=V

S=S+V

*

IF (J.GT.N) THEN

WRITE (6,*) 'FUNCTION SUMMATION CRITERION
EXCEEDED.'
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STOP

ENDIF

100 CONTINUE
*

F=1.0/(4.0*K1)+2.0*S/(3.14159*K1)-1.0/(4.0*KAPP)

RETURN

END
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APPENDDCm - CONTACT STRESS ANALYSIS

ProblemFormulation

-H 2a h-

probe

sample

H

Figure ITI. 1

Contact stress local geometry

Estimate:

1) The contact radius
'a'

2) The indentation made into the sample
'd'

Assumptions:

1) All deformation elastic

2) Probe tip made of pure constantan

3) Ri = D = 670microns (measuredwith an optical comparator)

4) Homogeneous materials
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Governing Equations [12], for two spheres in contact:

where:

subscript definition:

a =

3jc P(K1+K2)R1R2
4 Ri+R2

d =

2 -2_ . x. x2,

9jr/ P"(K1+K2r(R1+R2)

16 R1R2

1-v2

Ki
=

>i=1'2

1 7tE.

P : compressive force

E : elastic modulus

v : Poisson's ratio

R : radius

1 : probe

2 : sample

As the substrate is flat, it has an infinite radius. The governing equations become:

-,3

a =

3tc
P (Kj + Kj) R,

d =

2 2
9u P

mr
<*?*>
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The contact radii and probe penetrations were calculated assuming the modulus

of elasticity and Poisson's ratio of constantan are 165.48 GPa and 0.25,

respectively, and the Poisson's ratio of dielectric materials is 0.25. Film data was

taken from Scott [18]. As there is considerable unceratainty involved with thin film

properties, a 'worst
case'

calculations were made for a material ten times as soft as

the softest film, Magnesium Fluoride. It should be noted that these calculations

consider contact with a bulk material with thin film properties, not a film on

substrate combination. In reality, the presense of a rigid substrate beneath the film

will reduce deformation.

Figures IU.2 and IH.3 show the contact radius and indentation as a function of

applied load.

50

40

30

to-

ID-

2.5 5.0

Figure UI.2

Probe contact radius

?.5

T6M3Fz,

10.10 W

dU*)

4.0

3.0

2.0

&M3fz

Mgfi

10.0

Figure ITJ.3

Prohe indentation
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APPENDIX IV - FINITE ELEMENTMODELLING

Problem Formulation

q=0

z=Z-

q(r]1

f
i r

q=0
r=

1

u

T= 0

>> r

T=0

Figure IV. 1

FEA domain

Given: Axially symmetric steady state heat flow into a cylindrical region ofvariable

thermal conductivity.

Governing Equation:

Boundary conditions:

V (kVT) = 0

,..,..

{
dT

q= < 'kai
r<S

0 r>&

T (r = R) = T (z = Z) = 0
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Weak formulation over an element:

0 = J [ V (kVT) ] y dG
n.

J[kVT.Vv]dn=Jjv
"e an.

dS

q =n*kVT heat flux

in cylindrical coordinates:

J [kVTVv]dT2 = Jk

due to axial symmetry:

3r r
r 90

e 3z z

or r
r 30

9 3z z

ae ae

do.

therefore:

and:

r r n f f f 3T 3v 3T
3v"

J[kVT.VvJdQ = 27tJJk[-9r-^+3F^ rdrdz

n.

27CJJk
3r 9r

+

9z 3z Ifr
r z

r drdz = | q_v dS

or:

B(v,T) = l(v)
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Interpolation functions for a four noded-rectangular element:

I

substitute:

to get:

global

coordinates

Figure IV.2

Shape functions

V1 (r,z) =
1--

r-
r, z -

z.
1-

Y,(r,z) =

r-
r,

z-
z.

\|/,(r,z) =

r- r.

1--

z -

z,

V4(r,z) =
1-

r-
rn z -

z.

4

T(r,z) = XTjVj(r,z)

v (r,z) = Vj (r,z)

4

^TBdi/^^KVi)
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rth.

Kr2n\lk

Ml

rdrdz

d\|/. d\\f. d\\f. 3\j/.

3r 3r 9z 3z

To simplify integration, the following transformation is implemented:

Te: r =
^
+ a % z =

zl
+ b r|

-1
r "

ri
T : =

L
z-

z.

n
=

I
1

Figure IV.3

Coordinate transformation

The transformed interpolation functions are:

0i=(l $)(1-Tl)

<p2=^(i-n)
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The element stiffness matrix terms are redefined as:

KT.= 27tk

1 l

w
00 L

b a^ a^ a a$i^
a
as as

b
an an

(r: + a) d^dn

After integration, the element stiffness matrix is found to be symmetric about both

diagonals. The individual terms are:

Kll =K44
= 27lk

3a 3b
+

6
+

12b

K12
~

K21
= ^4 = ^3 =2l

K13
= ^4 = ^1 =

K42
= 2Kk

^+ b
_a^_

3a
+

3b 6
+

12b

rib ria

6a 6b 12 12b

K]4
= ^41=2Kk

K22
= ^3 = 2Kk

rib ria b

6a

"

3b
+

12

'

12b

3a
+

3b
+

6
+

4b

In calculating the element force vector terms, it is convenient to classify the

elements according to their boundaries. For this problem, three types of elements

are present:

A) Internal element or external element with prescribed zero heat flux over a

surface.

B) External element with prescribed non-zero heat flux over a surface.

C) External element with prescribed temperature and unknown heat flux on a

surface.
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q-q(r)

2L(r-0)-0
ar

r u u

=0

B B A C

A A A C

C C C C

I
T=0

T=0

Figure IV.4

Element classification

The force vector terms for type A elements are zero, requiring no calculations.

Type B elements must have the prescribed heat flux integrated against each shape

function, resulting in non-zero terms. Zero temperature nodes are dropped from

the global system of equations prior to their simultaneous solution for

temperature. Therefore, type C elements require no force vector calculations. If

need be, the heat flux from these elements can be found after the internal

temperature distribution is established (not done in this case). The only force

vector terms that need to be found are those of type B elements.

For this problem, the (non-zero) flux is prescribed over the z=0 surface,

connecting nodes 1 and 2 of each element on this surface.

e i 3TF*

= - 27tkJ> 1-

r

a

'1

i-Wa^
M

r-r.

rdr

rdr
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The remaining two terms, 3 and 4, of each type B element force vector are zero

floecause the shape functions are zero at z=0).

For a bulk material, the flux profile resulting in a constant temperature over

the surface of an element is [17]:

-Q3T

27tki(t2-r2)2

where Q is the power (rate of flow of heat) through the surface. The negative

sign indicates heat is flowing into the region. The element force vector terms

resulting from this heat flux profile are:

F? =
1
(r2-ri)

*2
=

y^ + l2 2 y^-i
r, r,

. -l _. .
. -i_L

sin sin

^Vr!>
li 2 7^47^4

-lr2 -1T1

sin - sin

Once all the element force and stiffness terms are calculated, the global force

vector and stiffness matrix are assembled using a connectivity matrix [22]. The

zero temperature terms are dropped, and the temperature at each element is found

by Gaussian Elimination.
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DRIVER2.IN

X

DRIVER2.COM DRIVER2.0UT

DRIVER2.F0R CPLOT.IN CPLOT.FOR

CONRAN

I
IOP020.OUT

Figure IV.4

Finite element programmap

The program package, shown graphically in Figure IV.4, is driven by a

command file, and consists of two programs, four subroutines, and three

function subprograms. The command file DRiVER2.COM directs the program

DRTVER2.F0R to read the input data contained in DRTVER2.IN. FEM2.F0R is

the main subroutine used for analysis. It calls the other other subroutines and

functions in order to solve for the temperature distribution in the plate. The nodal

coordiantes and temperatures are put into the output file CPLOT.IN. The

command file then directs the program CPLOT.FOR to read this data as input.

This program writes the temperature distribution along the flux surface,

outputting it as DRTVER2.0UT, and calls the subroutine CONRAN from the

library of subroutines accessible at RIT. CONRAN finds temperature contours,

and creates a data plotting file IOP020.DAT.

The input data file consists of two sets of numbers: The number of

coordinates in the
'r'

direction, followed by the V coordinates of the nodes, and

the number of
'z'

coordinates, followed by their values. The subroutine FEM2

automatically generates a grid
of rectangular elements from these coordinates.

The thermal conductivity, a function of both
'r'

and Y, is set in the function

C.FOR. The input power, heat flow radius, and flux function are set in the

function FNF.FOR.
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Execution of the program package is straightforward. After logging on the

VAX cluster, access must be gained to the NCAR plotting routine libraries. This

is done by typing
"@USER:[ENGLIB.VAXV]NCARDEFS.COM"

at the dollar

sign prompt. At this point, the two programs and their subprograms must be

compiled and linked (no compilation is necessary for the NCAR routines). To

execute the program, type "@DRTVER2". The temperature distribution along the

z=0 surface will be output in the DRTVER2.0UT file, and the data for the contour

plotwill be stored in the IOP020.DAT file.

Tektronix mode is required to view the temperature contour plot. After

logging on the VAX cluster, and accessing the NCAR library, type "PLOT". The

cue "Meta
option:"

should appear on the monitor screen. At this point, type "Dev

tt: 4010", followed by "read IOP020", and "plot". The screen should clear, and

the plot should appear.

With some domain geometries, a plotting file is not created. For example, if

the outer dimensions of the specimen are much larger than the flux circle, all the

isotherms will be concentrated to a point, and no plot file will be created.
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$ ASSIGN DRIVER2.IN FOROOS 
$ ASSIGN CPLOT.IN FOR006 
$ RUN DRIVER2 
$ ASSIGN CPLOT.IN FOROOS 
$ ASSIGN DRIVER2.0UT FOR006 
$ RUN CPLOT 
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************************************************************************

PROGRAM DRIVER2

PROGRAMMER C. AMSDEN

DATE WRITTEN 11 87

OBJECTIVE :

THIS PROGRAM IS INTENDED TO DRIVE THE SUBROUTINE

FEM2, WHICH USES THE FINITE ELEMENT METHOD TO SOLVE

FOR THE TEMPERATURE DISTRIBUTION IN A 2-D PLATE.

SUBPROGRAMS REFERENCED:

FEM2 (MAXNR , MAXNZ , MAXN , MAXE , NR , NZ , NCR , NCZ , CONNECT ,

ICOL,EK,EF,GK,GF,T)
SUBROUTINE WHICH SOLVES PROBLEM

C(R,Z)

FUNCTION WHICH SUPPLIES THERMAL CONDUCTIVITY

CALLED THROUGH FEM2

FNK(EI,EJ,A,B)

FUNCTION WHICH SUPPLIES ELEMENT STIFFNESS VALUES

CALLED THROUGH FEM2

FNF(I,R1,R2)

FUNCTION WHICH SUPPLIES FORCE VECTOR VALUES

GAUSS (MAXN, N,A, B,X, SUCCESS, ICOL)

SUBROUTINE WHICH USES GAUSSIAN ELIMINATION TO SOLVE

A SYSTEM OF EQUATIONS. CALLED THROUGH FEM2

SCPIVOT ( MAXN , N , A , B , K , ICOL , SUCCESS )

SUBROUTINE TO SCALE AND COLUMN PIVOT AN AUGMENTED

MATRIX. CALLED THROUGH GAUSS

ARRAYS USED:

NCR

NCZ

T

EK

EF

GK

GF

CONNECT

ICOL

VECTOR OF R COORDINATES

VECTOR OF Z COORDINATES

VECTOR OF NODE TEMPERATURES

3-D MATRIX OF ELEMENT STIFFNESS VALUES

2-D MATRIX OF ELEMENT FORCES

2-D MATRIX OF GLOBAL STIFFNESS VALUES

VECTOR OF GLOBAL FORCES

2-D CONNECTIVITY MATRIX

NODE RE-ORDER VECTOR

VARIABLES USED:

MAXNR

MAXNZ

MAXN

MAXE

N

NR

NZ

MAXIMUM R COORDINATES TO BE INPUT

MAXIMUM Z COORDINATES TO BE INPUT

MAXIMUM NODES - MAXNR * MAXNZ

MAXIMUM ELEMENTS - (MAXNR-1) * (MAXNZ-1)

NUMBER OF NODES - NR * NZ

NUMBER OF R COORDINATES

NUMBER OF Z COORDIATES

**************************************************************************

*

PROGRAM DRIVER2

*

INTEGER MAXNR, MAXNZ,MAXN,MAXE

PARAMETER ( MAXNR=30 ,
MAXNZ-30 ,

MAXN=900 ,
MAXE=841 )

INTEGER N,NR,NZ, CONNECT (MAXE, 4) ,ICOL(MAXN)

REAL NCR(MAXNR) ,NCZ(MAXNZ) ,T(MAXN) , EK( MAXE , 4 , 4 ) ,EF(MAXE,4) ,
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+ GK ( MAXN,MAXN ),GF( MAXN)
*

READ(5,*) NR

DO 100 J-1,NR

READ(5,*) NCR(J)

100 CONTINUE

*

READ(5,*) NZ

DO 200 I-l.NZ

READ(5,*) NCZ(I)

200 CONTINUE

*

CALL FEM2 ( MAXNR , MAXNZ , MAXN , MAXE , NR , NZ , NCR , NCZ ,

+ CONNECT, ICOL, EK,EF,GK,GF,T)
*

N-NR*NZ

WRITE(6,10) NR,NZ

10
FORMAT)' '

,14,

'

,

'

,14,

'

,

*
)

*

DO 300 I=1,NZ-1

DO 400 J-1,NR-1

K-(NR-1)*(I-1)+J

WRITE(6,20) NCR(J),NCZ(I),T(K)

20 FORMATC
'

, F12.6 ,

'

,

'

, F12.6 ,

'

,

*

, F12.6 ,

'

,

'

)

400 CONTINUE

WRITE (6, 30) NCR(NR) ,NCZ(I) ,

'00000.00000'

30 FORMATC
',F12.6,',',F12.6,'

)

300 CONTINUE

*

DO 500 J-1,NR

WRITE(6,30) NCR(J) ,NCZ(NZ) ,

'00000.00000'

500 CONTINUE

*

STOP

END
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***************************************************************************

SUBROUTINE

PROGRAMMER

DATE WRITTEN

FEM2

C. AMSDEN

11 - 87

OBJECTIVE:

THIS SUBROUTINE USES THE FINITE ELEMENT METHOD TO

SOLVE FOR THE TEMPERATURE DISTRIBUTION T(R,Z) IN A PLATE.

4-NODED RECTANGULAR ELEMENTS, AND LINEAR SHAPE FUNCTIONS

ARE USED. THE HEAT FLUX AT Z-0 IS SPECIFIED AS A FUNCTION

OF R. THE HEAT FLUX AT R=0 IS ZERO. THE REMAINING TWO

BOUNDARIES HAVE ZERO TEMPERATURE. THE THERMAL CONDUCTIVITY

IS CONSTANT OVER EACH ELEMENT, BUT MAY VARY GLOBALLY AS A

FUNCTION OF BOTH R AND Z.

SUBPROGRAMS REFERENCED:

C(R,Z)

THERMAL CONDUCTIVITY OF AN ELEMENT WITH LOCAL NODE 1

AT (R,Z) .

FNK(EI,EJ,A,B,R1)

FUNCTION WHICH SUPPLIES ELEMENT STIFFNESS VALUES.

FNF(I,Rl,R2)

FUNCTION WHICH SUPPLIES FORCE VECTOR VALUES

GAUSS ( MAXN,N,A, B,X, SUCCESS, ICOL)

SUBROUTINE WHICH SOLVES A SYSTEM OF SIMULTANEOUS

ALGEBRAIC EQUATIONS USING GAUSSIAN ELIMINATION

SCPIVOT (MAXN,N,A,B,K, ICOL, SUCCESS)

SUBROUTINE WHICH SCALES AND COLUMN PIVOTS AN

AUGMENTED MATRIX. CALLED THROUGH GAUSS.

ARRAYS USED:

NCR

NCZ

T

EK

EF

GK

GF

CONNECT

ICOL

VARIABLES USED:

MAXNR

MAXNZ

MAXN

MAXE

NR

NZ

N

E

EI

EJ

COND

A

B

Rl

R2

VECTOR OF R COORDINATES

VECTOR OF Z COORDINATES

VECTOR OF NODAL TEMPERATURES

3-D MATRIX OF ELEMENT STIFFNESS VALUES

2-D MATRIX OF ELEMENT FORCES

2-D MATRIX OF GLOBAL STIFFNESS VALUES

VECTOR OF GLOBAL FORCES

2-D CONNECTIVITY MATRIX

NODE REORDER VECTOR

MAX NUMBER OF R COORDINATES

MAX NUMBER OF Z COORDINATES

MAX NUMBER OF NODES - MAXNR * MAXNZ

MAX NUMBER OF ELEMENTS- ( MAXNR-1 ) * ( MAXNZ-1 )

NUMBER OF R COORDIANTES

NUMBER OF Z COORDINATES

NUMBER OF NODES

NUMBER OF ELEMENTS

COUNTER

COUNTER

ELEMENT THERMAL CONDUCTIVITY

ELEMENT LENGTH IN R DIRECTION

ELEMENT LENGTH IN Z DIRECTION

R COORDINATE OF LOCAL NODE 1 OF ELEMENT

R COORDINATE OF LOCAL NODE 2 OF ELEMENT
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SUCCESS LOGICAL VARIABLE, PIVOTING SUCCESSFUL

*************************************************************************

SUBROUTINE FEM2 (MAXNR,MAXNZ ,MAXN,MAXE,NR,NZ , NCR,NCZ ,

CONNECT, ICOL, EK,EF,GK,GF,T)

INTEGER MAXNR, MAXNZ, MAXN,MAXE,NR,NZ,N,E, EI, EJ,

CONNECT! MAXE, 4) ,ICOL(MAXN)

REAL NCR(MAXNR) ,NCZ(MAXNZ) ,T(MAXN) , COND, EK(MAXE, 4 , 4 ) ,EF(MAXE,4) ,

GK( MAXN,MAXN) ,GF(MAXN) ,A,B,R1,R2

LOGICAL*! SUCCESS

EXTERNAL C,FNK,FNF

100

N-NR*NZ

E-(NR-1)*(NZ-1)

DO 100 I-1,N

GF(I)-0.0

DO 100 J-l.N

GK(I,J)-0.0

CONTINUE

[CLEAR MATRICES

150

DO 150 K-1,E

DO 150 1-1,4

EF(K,I)-0.0

DO 150 J-1,4

EK(K,I,J)-0.0

CONTINUE

[FILL ELEMENT

! STIFFNESS MATRIX

200

DO 200 I-1,NZ-1

B-NCZ(I+1)-NCZ(I)

DO 200 J-1,NR-1

A-NCR(J+1)-NCR(J)

Rl-NCR(J)

COND-C(NCR( J) ,NCZ(I) )
K-(NR-1)*(I-1)+J

DO 200 EI-1,4

DO 200 EJ-1,4

EK(K,EI,EJ)-COND*FNK(EI,EJ,A,B,Rl)

CONTINUE

DO 300 J-l.NR-1

R1=NCR(J)

R2-NCR( J+l)
*

EF(J,l)=FNF(l,Rl,R2)

EF(J,2)-FNF(2,Rl,R2)

300 CONTINUE

*

DO 400 I-l.NZ-1

DO 400 J-l.NR-1

K-(NR-1)*(I-1)+J

CONNECT ( K , 1 ) =NR* ( 1-1 ) +J

CONNECT! K, 2
)=NR* ( 1-1 ) +J+1

CONNECT! K, 3 )=NR*I+J+1

CONNECT) K, 4 )=NR*I+J

400 CONTINUE

!FILL ELEMENT FORCE MATRIX

!FIND CONNECTIVITY

!MATRIX
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1ASSEMBLE GLOBAL

I STIFFNESS MATRIX

500

DO 500 I-1,N

DO 500 J-1,N

DO 500 K-l.E

DO 500 L=l,4

DO 500 M-1,4

IF ( (CONNECT) K,L) .EQ. I) .AND.

(CONNECT(K,M) .EQ.J) ) THEN

GK(I,J)-GK(I,J)+EK(K,L,M)
ENDIF

CONTINUE

550

DO 550 1=1, N

DO 550 K-1,E

DO 550 L-l, 4

IF (CONNECT(K,L) .EQ.I) THEN

GF(I)-GF(I)+EF(K,L)
ENDIF

CONTINUE

iASSEMBLE GLOBAL

! FORCE VECTOR

DO 600 I-N,NR,-NR

DO 625 J-I,N-1

DO 650 K-l ,1-1

GK(J,K)-GK(J+1,K)

GK(K,J)-GK(K,J+1)
650 CONTINUE

DO 675 K-I,N-1

GK(J,K)-GK(J+1,K+1)

675 CONTINUE

GF(J)-GF(J+1)

625 CONTINUE

N-N-l

600 CONTINUE

N-N-(NR-l)

! ELIMINATE ZERO

! TEMPERATURE

! NODES FROM SYSTEM

CALL GAUSS ( MAXN , N , GK , GF , T , SUCCESS , I COL )

IF ( .NOT. SUCCESS) THEN ! SOLVE FOR T

WRITE) 6, 10)
10 FORMATf

'0'

,
'GAUSSIAN ELIMINATION UNSUCCESSFUL, ZERO ROW,

'

+ 'EXECUTION TERMINATED')

STOP

ENDIF

*

RETURN

END
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***************************************************************************

*

cFUNCTION

PROGRAMMER

DATE WRITTEN

PURPOSE:

C. AMSDEN

11 - 87

* THIS FUNCTION SUPPLIES THERMAL CONDUCTIVITES , WHICH

* MAY VARY WITH R AND Z

*

*************************************************************************

*

REAL FUNCTION C(R,Z)
*

REAL R,Z

*

* IF (Z.LT..125) THEN

* C-5.0

* RETURN

* ENDIF

*

C-35.0

*

RETURN

END
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**************************************************************************

*

* FUNCTION : FNF

*

* PROGRAMMER : C. AMSDEN

*

* DATE WRITTEN : 11-87
*

* PURPOSE:

* THIS FUNCTION SUPPLIES PRE-INTEGRATED EQUATIONS REPRESENTING

* A CONSTANT TEMPERATURE HEAT FLUX INTEGRATED AGAINST LINEAR,
* FOUR-NODED INTERPOLATION FUNCTIONS.

VARIABLES USED:

Rl

R2

AG

Q
I

LOCAL NODE 1 GLOBAL COORDINATE

LOCAL NODE 2 GLOBAL COORDINATE

BOUNDARY LOCATION - FLUX DISCONTINUOUS

POWER (IN - POSITIVE, OUT - NEGATIVE)

SHAPE FUNCTION USED

*********************************************************************

*

REAL FUNCTION FNF(I,R1,R2)
*

INTEGER I

REAL R1,R2,AG,Q
*

Q-100.0

AG-. 00018
*

IF (R2.LE.AG) THEN

GOTO ( 1 , 2 ) , I

1 FNF-Q*( (-.5*R2*SQRT(AG**2-R2**2) )

+ +( (R2-.5*R1)*SQRT(AG**2-R1**2) )

+ -( ( .5*AG**2)*(ASIN(R2/AG)-ASIN(Rl/AG) ) ) )

+ /(AG*(R2-R1) )
RETURN

2 FNF-QM (-.5*R1*SQRT(AG**2-R1**2) )

+ +( (R1-.5*R2)*SQRT(AG**2-R2**2))

+ -( ( .5*AG**2)*(ASIN(R1/AG)-ASIN(R2/AG) ) ) )

+ /(AGMR2-R1) )

RETURN

ENDIF

*

FN-0 . 0

*

RETURN

END
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********************************************************************************

*

* FUNCTION : FNK

*

* PROGRAMMER : C. AMSDEN

*

* DATE WRITTEN : 11-87
*

* PURPOSE :

* THIS FUNCTION SUPPLIES ELEMENT STIFFNESS VALUES FOR 4-NODED

* RECTANGULAR ELEMENTS, USING LINEAR SHAPE FUNCTIONS

*

**************************************************************************

*

REAL FUNCTION FNK( EI ,EJ,A,B,R1 )
?

INTEGER EI,EJ,P

REAL A,B,Rl

*

P-10*EI+EJ

*

IF ( (P.EQ.ll) .OR.(P.EQ.44) ) THEN

FNK-(R1*B/(3.0*A) )+(Rl*A/(3.0*B))+(B/6.0)+(A**2/(12.0*B))

ELSEIF ( (P.EQ.12) .OR. ( P. EQ. 21 ) .OR. ( P .EQ. 34 ) .OR. ( P .EQ. 43 ) ) THEN

FNK (R1*B/(3.0*A) ) + (Rl*A/( 6 . 0*B ) )-( B/6 . 0 ) + (A**2/( 12 . 0*B ) )

ELSEIF ( (P.EQ.13) .OR. ( P . EQ. 31 ) .OR. (P. EQ. 24 ) .OR. ( P . EQ. 42 ) ) THEN

FNK (Rl*B/(6.0*A))-(Rl*A/(6.0*B))-(B/12.0)-(A**2/(12.0*B))

ELSEIF ( (P.EQ.14) .OR. ( P. EQ. 41 ) ) THEN

FNK-(R1*B/(6.0*A))-(R1*A/(3.0*B))+(B/12.0)-(A**2/(12.0*B))

ELSEIF ( (P.EQ.22).OR.(P.EQ.33)) THEN

FNK-(R1*B/(3.0*A) )+(Rl*A/(3.0*B))+(B/6.0)+(A**2/(4.0*B) )

ELSEIF ((P.EQ.32).OR.(P.EQ.23)) THEN

FNK-(R1*B/(6.0*A))-(R1*A/(3.0*B) )+(B/12 . 0 )-(A**2/( 4 . 0*B ) )

ENDIF

*

FNK-FNK*6. 28318

*

RETURN

END
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************************************************************************

*

* SUBROUTINE : GAUSS
*

* PROGRAMMER : C. AMSDEN

*

* DATE WRITTEN : 7-86
*

* OBJECTIVE:

* THE OBJECTIVE OF THIS SUBROUTINE IS TO PERFORM GAUSSIAN

* ELIMINATION ON A SYSTEM OF NON-HOMOGENEOUS LINEAR

* ALGEBRAIC EQUATIONS. SCALING AND COLUMN PIVOTING ARE

* DONE PRIOR TO THE ELIMINATON PROCESS.

USAGE :

GAUSS ( MAXN, N,A, B,X, SUCCESS, ICOL)

SUBPROGRAMS REFERENCED:

SCPIVOT(MAXN,N,A,B,K, ICOL, SUCCESS)

SUBPROGRAM TO SCALE AND COLUMN PIVOT A GIVEN ROW

VARIABLES USED:

MAXN

I

J

K

M

SUM

SUCCESS

ARRAYS USED:

ICOL

A

B

X

ARRAY BOUND

ROW INDICATOR

COLUMN INDICATOR

WORKING VARIABLE

MULTIPLIER

CUMULATIVE TOTAL

FLAG TO DENOTE SUCCESSFUL COMPLETION

RECORDS COLUMN PIVOTS

EQUATION COEFFICIENTS

RESIDUALS

SOLUTIONS

SUBROUTINE GAUSS ( MAXN,N,A, B ,X, SUCCESS , ICOL)

INTEGER* 4 ICOL (.MAXN) , I , J, K

REAL*4 A(MAXN,MAXN) , B( MAXN ) ,X( MAXN) ,M, SUM

LOGICAL* 1 SUCCESS

SUCCESS-. FALSE.

DO 100 K-1,N-1

CALL SCPIVOT( MAXN ,N ,A, B , K , ICOL , SUCCESS )

IF (A(K,K) .EQ.O) THEN ! PIVOT EACH ROW

SUCCESS-. FALSE. [FALSE INDICATES

ENDIF [UNSUCCESSFUL PIVOTING

IF ( SUCCESS. EQ. .FALSE. ) THEN

RETURN

ENDIF

DO 200 I=K+1,N

M=A(I,K)/A(K,K)

DO 300 J=K,N [GAUSSIAN
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A(I,J)-A(I,J)-M*A(K,J) [ELIMINATION ON

300 CONTINUE [EACH ROW
*

B(I)-B(I)-M*B(K)
200 CONTINUE
*

100 CONTINUE

*

DO 400 I=N,1,-1

SUM-0.0

* [BACK SUBSTITUTE

DO 500 K-I+1,N [AND REORDER TO

SUM-SUM+A(I,K)*X(ICOL(K) ) [OBTAIN SOLUTIONS

500 CONTINUE
*

X(ICOL(I))=(B(I)-SUM)/A(I,I)
400 CONTINUE
*

SUCCESS-. TRUE.

*

RETURN

END
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************************************************************************

SUBROUTINE

PROGRAMMER

DATE WRITTEN

SCPIVOT

C. AMSDEN

7-86

OBJECTIVE:

THE OBJECTIVE OF THIS SUBROUTINE IS TO SCALE AND COLUMN

PIVOT A GIVEN ROW OF AN ARRAY

USAGE :

SCPIVOT( MAXN,N,A, B,K, ICOL, SUCCESS)

SUBROUTINES REFERENCED:

NONE

VARIABLES USED:

MAXN

I SWITCH

I

J

K

SCALE

JMAX

SWITCH

SUCCESS

ARRAY BOUND

SWICHING VARIABLE

ROW INDICATOR

COLUMN INDICATOR

ROW BEING WORKED ON

SCALE FACTOR

COLUMN WITH LARGEST VALUE

SWITCHING VARIABLE

FLAG TO DENOTE SUCCESSFUL COMPLETION

ARRAYS USED:

ICOL

A

B

RECORDS COLUMN EXCHANGES

EQUATION COEFFICINTS

RESIDUALS

100

200

SUBROUTINE SCPIVOT! MAXN,N ,A, B , K, ICOL , SUCCESS )

INTEGER*4 ICOL! MAXN) , ISWITCH, I , J, K

REAL*4 A(MAXN,MAXN) , B( MAXN) , SCALE, JMAX, SWITCH

LOGICAL*! SUCCESS

IF (K.EQ.l) THEN

DO 100 I-1,N

ICOL(I)-I

CONTINUE

ENDIF

JMAX-K

[INITIALIZE ICOL VALUES

[ASSUME DIAGONAL LARGEST

DO 200 J=K+1,N

IF (ABS(A(K,J) ) .GT.ABS(A(K,JMAX) ) ) THEN

JMAX-J

ENDIF [DENOTE LARGER VALUE

CONTINUE

IF (A(K,JMAX) .EQ.0) THEN

SUCCESS-. FALSE.

RETURN

ENDIF

[RETURN IF ALL COEFFICIENTS ZERO
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SCALE-A(K.JMAX) [DEFINE SCALE FACTOR

*

DO 300 J-K,N

A(K,J)-A(K,J)/SCALE [SCALE COEFFICIENTS

300 CONTINUE

*

B(K)-B(K)/SCALE [SCALE RESIDUALS
*

IF (JMAX.NE.K) THEN

DO 400 I-1,N

SWITCH-A(I,K)

A(I,K)-A(I,JMAX) [PERFORM PIVOTING

A(I,JMAX)-SWITCH

400 CONTINUE
*

'ISWITCH-ICOL(JMAX)

ICOL(JMAX)-ICOL(K) [RECORD PIVOTING

ICOL(K)-ISWITCH

ENDIF

*

SUCCESS-. TRUE.

*

RETURN

END
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*******************************************************************

PROGRAM

PROGRAMMER

DATE WRITTEN

CPLOT

C. AMSDEN

1-88

OBJECTIVE:

THIS PROGRAM PLOTS THE OUTPUT DATA OF A 2-D FINITE ELEMENT

PROGRAM, WHICH SOLVES FOR THE TEMPERATURE DISTRIBUTION IN A

CYLINDRICAL DOMAIN. CONTOUR PLOTTING IS PERFORMED BY

SUBROUTINES WRITTEN BY THE NATIONAL CENTER FOR ATMOSPHERIC

RESEARCH (NCAR). PLOTS MUST BE VIEWED ON A TEKTRONIX 4010

TERMINAL. FOR MORE INFORMATION, CONSULT THE NCAR MANUAL.

SUBROUTINES REFERENCED:

CONRAN ( NCR , NCZ , T , N , WK , IWK , SCRARR )
NCAR CONTOUR PLOT SUBROUTINE

ARRAYS USED:

NCR

NCZ

T

WK

IWK

SCRARR /

DATA COORDINATE

DATA COORDINATE

TEMPERATURE

WORK ARRAYS

VARIABLES USED:

MAXN

NCP

RESOLUTION

N

NR

NZ

MAXIMUM DATA POINTS (PARAMETER)

WORK ARRAY PARAMETER

VIEW PARAMETER

NUMBER OF DATA POINTS - NR*NZ

NUMBER OF R COORDINATES

NUMBER OF Z COORDINATES

************************************************************************

?

PROGRAM CPLOT

*

INTEGER MAXN,NCP, RESOLUTION

PARAMETER ( MAXN-900 ,NCP-4 ,RESOLUTION=40 )

REAL NCR ( MAXN ), NCZ! MAXN ),T( MAXN) ,WK(13*MAXN)

INTEGER N,NR,NZ,IWK( ( 27+NCP) *MAXN) ,
SCRARR(RESOLUTION**2 )

*

READ(5,*) NR,NZ

*

N=NR*NZ

DO 100 I-1,N

READ(5,*) NCR(I),NCZ(I),T(I)

100 CONTINUE

*

WRITE! 6, 10)

10 FORMAT!
'0'

,10X,
'TEMPERATURE OVER THE FLUX SURFACE',//,

11X,'R',16X,'Z',15X,'T',/,10X,<37>(
'-'

))

20

200

DO 200 1=1,NR

WRITE(6,20) NCR(I),NCZ(I) ,T(I)

FORMAT)
' ',7X,F8.5,8X,F8.5,7X,F9.4)

CONTINUE
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CALL CONRAN (NCR,NCZ, T,N,WK, IWK, SCRARR)

STOP

END
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APPENDDC V - DERIVATION OF THE THERMAL CONSTRICTION

RESISTANCE

q()-K(z-o)

q=0

-*>r

1 ^ (r,z)

2 T2 (r>z)

K-
ki

k2 tgI
Ti <r'2>

| ki \\

n Tp (r,z)

n+1 T (r,z)
n+1

kn lnI
kn+1

Figure V.l

TCR derivation domain

Given: Axially symmetric heat flow through a circular spot of radius
'a'

into an

infinite half-space with
'n'

surface coatings of thickness ti, and thermal conductivity

ki (i = l,2,3,...,n).
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Governing equations:

a^r. i aT. a^r.
1

i
>

.
i

-2

'

r 3r
'

TT
= 0' zi-i<z<zi' [ = ^-.n

or oz

3T
, i 3T ,

a^
n+1 1 n+1 n

Boundary conditions:

-2SL + -1JEL + 2iL = 0) z>z
ar2 r * az2

n

aTl
.

- k. -^ (z = 0) r < a

q(r)= <
l &{ 0 r>a

3T
_<r = 0) = 0

T. = T. .

i i+l

}3T. 3T.
, f z = Zj, i = l,2,3,...,n

k._L = k "
1 az i+i az

T = 0 as
'r'

and
'z'

go to infinity

This formulation consists of
'n+1'

boundary value problems, coupled through

the boundary conditions. The equations can be solved for the temperature in each

region by implementing the Hankel transform of order zero [15,17,27]. The

transformed variables are:

T &z) = A.(Q + B.(0

T;+1(C,z) = C(Q
e*

Ai, Bi, and C are found by applying the boundary conditions. This allows the

determination of Ti*. Taking the inverse transform:
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Tl (r,z)
= J

;t*

(,z) Jq (Cr) d

The average temperature over the flux surface is:

a

Tm
=4jTl(r'0)rdr
a o

Thus, the thermal constriction resistance can be defined:

r=.
m

T
n

Q

where
'Q'

is the rate of heat flow (power) through the circular spot.

This thermal constriction resistance could be used to determine the thermal

conductivity of a single film in a multilayer stack of
'n'

films. All the film thermal

conductivities but one must be known. Caution must be exercised, however. If

there is error in the assumed film conductivities, it would propagate as error in the

film conductivity solved for.
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