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Abstract

Voltage response of an active CID pixel is analyzed in detail theoretically. The lin

earity of the photo-response is assessed in destructive and non-destructive read-out

modes of operation. The theoretical findings are illustrated by experimental data

obtained from a test chip fabricated in 0.18 fim process. The test chip contained over

2400 active CID pixel structures with different geometries. The analysis is shown to

be in good agreement with the experimental results.

The charge injection device, CID25, is presented. CID25 is a color video sensor

compliant with the NTSC TV standard. It has 484 by 710 displayable pixels and

is capable of producing 30 frames-per-second color video. CID25 is equipped with

the active pixel technology combined with parallel row processing to achieve high

conversion gain and low noise bandwidth. The on-chip correlated double sampling

circuitry serves to reduce the low frequency noise components.

CID25 is operated by the camera system, ColoRAD, consisting of two parts, the

head assembly and the camera control unit. These two parts are separated by a

cable that can be up to 150 meter long. The CID25 imager and the head portion of

the camera are radiation hardened. They can produce color video with insignificant

signal-to-noise ratio degradation out to at least 4 Mrad of total dose of 60Co 7-

radiation. Detailed results of ColoRAD system testing before, during, and after

irradiation are presented and discussed. In summary, ColoRAD is the first radiation

hardened color video system, based on a semiconductor photo-detector that has an

adequate sensitivity for operation in room lighting environments.

IV
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Introduction and Literature

Overview

Charge Injection Devices (CID) form a class of semiconductor imaging devices al

ternative to CCDs and photodiode-based CMOS imagers. The main advantages of

CIDs include random-access for read-out and clear, non-destructive read capability,

high dynamic range, UV sensitivity, and radiation hardness. The combination of

these properties makes a CID imager an excellent choice for scientific, industrial,

machine-vision, and medical applications.

It is the goal of this work to advance the state of the art in the field of the CID

photo-sensors by creating a radiation hardened low noise color video sensor. The main

driving force behind this project is the desire to make nuclear power plant operation

safer as color imaging allows one to discern rust and other products of undesired

chemical reactions more readily.

The thesis is organized as follows. Chapter 1 provides a brief introduction into the

field of semiconductors. Starting with the question of why the majority of semicon

ductor devices are made of silicon, the reader is guided through the most important

building blocks ofmicroelectronics, MOS transistor and MOS capacitor, to the charge

transfer phenomenon and to the imaging devices based on it, CCD and CID. We then

compare and contrast the properties of these devices and discuss the difference be

tween passive and active pixel CIDs. Chapter 2 presents a theoretical study of the

linearity of the response curve of an active CID pixel. We analyze both destructive

and non-destructive types of read-out and provide some insight into the strength of



gate coupling in proximity-coupled structures. The theoretical analysis is extensively

illustrated by experimental data. Chapter 3 presents the CID25 active pixel CID

video sensor and the color camera ColoRAD based on this sensor. We describe in

detail the architecture of the sensor and the camera and delineate the results of pre-

irradiation performance evaluation of the camera in monochrome and color modes.

Finally, Chapter 4 attempts to show that the main goal of this work is indeed ac

complished. Starting with a history of radiation hardened products developed at

CIDTEC, we then proceed to a description of space and terrestrial radiation environ

ments that these cameras typically endure. The following section discusses radiation

damage to MOS devices with implications for advanced technology node processes.

We conclude by giving a detailed account of the results of 3 highly successful radiation

tests of the ColoRAD video camera.

Extensive literature exists covering many topics discussed in this work. Detailed

introduction into the field of semiconductors can be found in [1]. Theory of MOS

devices is developed e.g. in [2]. Mam principles of MOS device usage in digital and

analog circuits are described in [3] and [4], respectively, whereas a comprehensive text

on MOS layout is written by authors of [5]. A thorough exposition of charge transfer

phenomena and CCDs is given in [6]. The basic description of passive CIDs is given

in [7]-[9]. A comparison of performance characteristics of passive CIDs with those of

CCDs can be found e.g. in [10] and references therein. Various types of read-out used

in the case of passive pixel CIDs are discussed in [11][16].

The work on active pixel CIDs is deeply related to active pixel CMOS imaging.

Active CMOS structures at early stages of their development are analyzed e.g. in

[17] [19]. A more modern outlook is presented e.g. in [20]. Active CID pixels were

suggested in early 90's at CIDTEC. The first prototype active CID was actually

built at RIT. This effort is described in [21]. Linearity of active CID pixel is studied

theoretically and experimentally in [22]. Commercially successful active pixel charge

injection devices, CID820 and CID25, are reported in [23] and [24], respectively. They



were being developed at about the same time but addressed different imaging needs,

CID820 being a scientific imager and CID25 being a radiation hardened real-time

video imager.

Book [25] serves as a broad scope reference text on the multitude of issues asso

ciated with the interaction of semiconductor components with radiation. Irradiation

effects on solid-state photo-sensors are addressed more specifically e.g. in [26]. Some

of the previously constructed radiation hardened (passive) CID imagers are described

in [27]-[29], whereas detailed studies of the irradiation effects on the CID imagers

were conducted e.g. in [30]-[32].



Chapter 1

Introduction into Semiconductors

1.1 Why Silicon?

Majority of semiconductor devices are built on silicon (Si). There are several reasons

for silicon to be so popular. First of all, it is readily available and relatively cheap.

Electrical conductivity of silicon can be varied by more than 10 orders of magnitude

by introducing impurities of other elements, the process called doping. Silicon dioxide

(Si02), glass, is an excellent insulator. Silicon and silicon dioxide form a high quality

interface with a fairly small number of defects. Finally, the property that will be

extremely important for the purpose of this thesis, silicon absorbs electro-magnetic

radiation at wavelengths A < 1100 nm through creation of electron-hole pairs.

1.2 Silicon of TV- and P-Types

If one introduces (implants) into silicon ions from the
5th

group of the Mendeleev's

periodic table of elements, such as arsenic (As) or phosphorus (P), one obtains silicon

with surplus concentration of electrons or n-type silicon, Fig. 1.1. If, on the other

hand, ions from the
3rd

group are implanted, such as boron (B), p-type silicon is

obtained that has surplus concentration of holes, Fig. 1.1. By varying the dose and

the energy of the implanted ions as well as by masking out certain areas, one can

extensively vary geometry and conductivity of the implanted regions of silicon.
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hole boron

Figure 1.1: Silicon of n- and p-types.

1.3 PiV-Junction

The crucial phenomenon occurs when regions of n- and p-type silicon are brought to

gether to form apn-junction. In this case, diffusion ofmobile charge carriers (electrons

from n-region to p-region and holes in the opposite direction) results in a formation

of the space region with uncompensated charge of impurity ions (depleted region).

This, in turn, results in the formation of a potential barrier that prevents any further

diffusion from happening, Fig. 1.2.

1.4 MOS Transistor

The information in Sect. 1.3 allows one to understand the principles underlying the

operation of an MOS transistor, the most important building block of modern mi

croelectronics. For the purpose of this discussion we restrict ourselves to n-channel

MOS transistors. P-channel MOS transistors can be treated in a similar fashion.

TV-channel MOS (nMOS) transistor is built starting with weakly doped p-type

silicon forming substrate. Two shallow regions are heavily implanted with n-type
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Figure 1.2: A potential barrier forms at a pn-junction.

impurities to form transistor source and drain. A very thin layer of high quality

oxide is grown on top of the region between source and drain. Highly conductive

polysilicon is deposited on top of the oxide to form the transistor gate, Fig. 1.3. (For

technological reasons, in real life the sequence of steps is opposite: gate oxide growth,

followed by polysilicon deposition and etch to form the gate electrode, followed by

source/drain implant.)

The basic idea of transistor operation is as follows. The pn-junctions between the

source and the substrate and between the drain and the substrate provide potential

barriers for majority carriers, Figs. 1.3 and 1.2. This means that electrons cannot

get from the source and the drain to the substrate while holes cannot flow in the

opposite direction. Because of this, regardless of how positive the drain voltage Vd

is, the electrons cannot get from the source to the drain. Hence, there is no current

flowing between the source and the drain. The transistor is said to be in the
"off"

state.

As the gate voltage starts to increase, since the gate oxide is very thin and the

gate itself is highly conductive, the potential of the gate strongly affects the potential

of silicon right below Si/Si02 interface (known as the surface potential). Thus the

6



surface potential increases, whereas the potential of the source remains constant due

to its very high conductivity. Eventually, when the gate voltage reaches the threshold

voltage Vt, the potential barrier between the source and the substrate at the Si/Si02

interface is fully suppressed. At this point, electrons from the source enter the sub

strate and fill the entire area underneath the gate. This condition is known as channel

formation. These electrons are swept by the drain-substrate junction into the drain

(the potential barrier at the drain-substrate junction prevents electrons from going

in the opposite direction) and, hence, the electrical current is flowing. The transistor

is said to be in the
"on"

state.

contact to

substrate

V<VT

q
9 thin oxide

o+v
d

.

n+ source

p-substrate

+vd

potential barrier

at V<VT

\_

Figure 1.3: NMOS transistor. The graph shows the electrical potential along the

Si/Si02 interface in the
"off''

state.

1.5 CMOS Inverter

The discussion above illustrates that an nMOS transistor can be used as a voltage

controlled switch. If the gate-source voltage is below VT, the switch is off, if the
gate-

source voltage is above VT, the switch is on. Similar situation takes place in the case

of a pMOS transistor. The only difference is that the threshold voltage for pMOS is

negative, and, in order to turn it on, one needs to apply gate-source voltage, which

is more negative than the negative threshold voltage.



A combination of nMOS and pMOS transistors, operating in the switch regime

allows one to create a CMOS inverter, the most important digital circuit used exten

sively in all modern digital designs, Fig. 1.4.

+V("1")
-r-

input

I
>
pMOS

output

1
1 nMOS

ground ("0").

Figure 1.4: CMOS inverter.

In this case gates of the two transistors are connected to form the input, drains are

connected to form the output. The source of the nMOS is connected to the ground

(logic "0"), while the source of the pMOS is connected to the upper rail (logic "1").

If the input of the inverter is at 0, pMOS is on, and nMOS is off. Output is connected

to the upper rail and produces logic "1". In the opposite case, where the input is at

"1", nMOS is on, and the output is connected to the ground.

Using series and parallel combinations of nMOS and pMOS transistors, one can

obtain various logical expressions at the output. For instance, if one have 2 nMOS

transistors in series and 2 pMOS transistors in parallel, with gates of an nMOS and a

pMOS connected to form input A, and gates of the other nMOS and pMOS connected

to form input B, the output will represent logical expression NAND(A, B).

In order to implement the inverter in silicon its layout has to be created. Essen

tially, layout is the top view that shows all the device internal structure as a series

of semi-transparent overlays, Fig. 1.5. Based on the layout a set of masks is created

which will be used in silicon processing for selective etch, deposition, or implant. In
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Figure 1.5: Layout of the CMOS inverter.

this case, it is assumed that the starting material is p-silicon. In order to form the

substrate for the p-channel transistor, weak n-type doping is applied. The gates of the

transistors are formed as the crossover of 2 layers: oxide and poly-Si. They determine

the area of the high quality thin gate oxide and the position of the gate electrode with

associated interconnects, respectively. Finally, source and drain of nMOS (pMOS)

transistors are created via heavy n+(p+) doping.

The shortest distance from source to drain is called the gate length L. The

minimum value of this parameter achievable at a given semiconductor plant represents

the "technology
node"

of that plant. The smaller is the technology node, the faster

transistor can be built, and the more advanced is the technology. The size of the

gate in the perpendicular to the length direction is called the width W of the gate.

The bigger is the width, the smaller is the resistance of the switch, and the larger is

the transistor transconductance, when it operates as an amplifier (see next section).

A transistor with smaller channel resistance (higher transconductance) sometimes is

called
"stronger"

. Due to lower mobility of holes, pMOS transistors in inverters are



often made wider than their nMOS counterparts to achieve better balance of channel

resistances and of rise and fall times at the output of the inverter.

1.6 MOS Transistor as an Amplifier

MOS transistor can operate not only as a switch but also as an active device, such as

an amplifier. The main principles of its operation in this regime can be derived from

the equation

/ = K(VGS -

VTf , (1.1)

which relates transistor drain current / with the gate-source voltage Ugs- In this

case K is a proportionality coefficient, which, among other things, contains the factor

W/L. The derivative gm
= di/dVcs is called transconductance.

Consider 2 most popular active circuits involving an nMOS transistor. The circuit

on the left-hand side of Fig. 1.6 is called common source amplifier. In this case, a

small variable voltage U-m is applied to the gate (it is understood that there is also

a DC voltage applied between gate and source to establish the working point of the

amplifier, i.e. to make sure that it is biased into the desired regime of operation).

The variable voltage causes change of transistor current dl = gmU-m. The change of

transistor current causes the change of the output voltage by Rdl. Hence, we have

an inverting amplifier with the gain of gmR.

The circuit on the right-hand side of Fig. 1.6 represents a buffer also known as

source follower. In this case, the variable input voltage Um causes the change of

transistor current, which, in turns, causes the change of the source voltage: dl =

9m(Um Rdl). The change of the output voltage is equal to Rdl and is given in the

box below the circuit in Fig. 1.6.

As one notices, the parameter gmR determines both the gain of the amplifier and

the precision of the buffer (the proximity of its gain coefficient to 1). Thus, it is

desirable to make this parameter as large as possible. This can be accomplished by

10



I

U>n(~)

U uou

r

common source:

Uout= - gmR*Uin

HBu.

source follower:

Current

source is the

best in place

of R

(D

Uout= gmR/(1+gmR)*Uin

Figure 1.6: NMOS transistor as an active device: common source amplifier (left) and

source follower (right).

using a
"stronger"

transistor, and by replacing R with a current source, a circuit that

in theory has an infinite differential resistance (in practice it is never infinite but can

be very high).

1.7 MOS Capacitor and Photogate

Another important device that can be built using the same principles is an MOS

capacitor. As will be shown below this device is especially important for imaging

applications, because it can be used to accumulate and store the photo-generated

charge.

The MOS capacitor is composed of silicon substrate (assume p-type for the sake of

the argument), thin insulating layer of oxide, and highly conductive polysilicon gate,

Fig. 1.7. Suppose that back plate of the substrate is grounded. If negative voltage

is applied to the gate, majority carriers (holes) will readily accumulate under the

gate. This regime is called accumulation. The capacitance in this regime is frequency

independent and equal to the gate oxide capacitance.

If positive voltage is applied to the gate, the holes are easily pushed away, while

electrons slowly accumulate under the gate. This configuration is called inversion,

and electrons are said to form the inversion layer. Electrons are created in the p-

11
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Figure 1.7: MOS capacitor in accumulation (left), inversion (middle) and deep de

pletion (right). The inset shows the low-frequency capacitance of the device as a

function of the gate voltage.

substrate by relatively slow thermal generation process. Therefore, the capacitance

in this regime depends on the frequency of the signal: at low frequency the capacitance

is again equal to the gate oxide capacitance, whereas at high frequencies it is much

lower. An MOS transistor in the
"off"

state is in the accumulation mode, while in

the
"on"

state it is in the inversion mode. In the latter case the electrons are readily

available from the source.

In both, accumulation and inversion, the thermodynamic equilibrium is reached.

This means that various physical parameters, such as particle densities, do not de

pend on time, provided external conditions, such as voltages, do not change. For

imaging applications, nonequilibrium (transient, kinetic) regime of operation called

deep depletion is of primary importance. In this case voltage of the gate is rapidly

increased. Holes are pushed away but there are no electrons in the substrate. Hence,

a depletion region without mobile carriers forms underneath the gate. For typical

doping densities of the substrate the depletion region can extend over several microns

in all directions. If silicon is illuminated, the photo-generated electrons will accumu

late under the gate, which will lead to the shrinkage of the deep depletion region.

This process of
"integration"

of the photo-generated charge forms the basis of imag-

12



ing applications. If there is no light, the electrons will be slowly generated through

thermal processes and will eventually fill the potential well created by the positive

voltage of the gate. The deep depletion regime will thus equilibrate into inversion.

This process, called "dark
current"

build-up, is parasitic for imaging applications. It

can be minimized by cooling the imager.

1.8 Charge Transfer and Charge Coupled Devices

Placing 2 photogates in close proximity to each other and operating them in the deep

depletion regime with independent voltages, one obtains the ability to transfer charge

between them and thus to move charge in space. This principle is realized in Charge

Coupled Devices (CCDs), the first semiconductor-based imaging devices.

o
_

1
o

f__
o

__

)
o

(__
o

integration

transfer

0*\
*
*

read

Figure 1.8: Integration, charge transfer and read-out in a CCD.

In a CCD (Fig. 1.8) there are 2 types of polysilicon gates deposited in such a way

that the 2 types interlace, overlap, but do not touch each other. The voltages of these

gates are controlled by 3 phases connected one to gates 1, 4, . . .

,
3n + 1, . . .

,
another

to gates 2, 5, . . .

,
3n + 2, . . .

,
and the

3rd
one to gates 3, 6, . . .

, 3n, During the

integration every gate, connected, say, to phase 1, is biased into deep depletion and

13



collects photo-charge. At transfer stage, phase 2 is biased into deep depletion, while

voltage of phase 1 is reduced. Consequently, charge flows from gates connected to

phase 1 to neighboring gates connected to phase 2. At the next step, phase 3 is biased

into deep depletion, voltage of phase 2 is reduced, voltage of phase 1 brought to zero.

Hence, photo-carriers move to the potential wells created under gates connected to

phase 3. The process continues till a packet of charge reaches the end of the column.

At the end of each column the charge is transferred to a floating drain. Assuming

p-type substrate the read-out drain will be a heavily doped
n+

region, so that electrons

from the substrate readily enter the drain in agreement with the electrical potential

structure of Fig. 1.2. The drain is connected to the gate of a source follower and is reset

to a positive voltage shortly before the charge transfer (cf. Fig. 1.8). The capacitance

of the read-out node is fairly small, and the addition of the photo-charge to it results

in a significant voltage change at the gate of the source follower. The voltage change

plays the role of U-m in the circuit on the right-hand side of Fig. 1.6. The source

follower acts as a buffer or a charge amplifier. It charges the input capacitance of the

following stage, which can be substantial, by approximately the same voltage as it

sees at its input, which, obviously, requires much more charge than the photo-charge

available initially. This scheme of operation results in excellent noise performance.

1.9 Charge Injection Devices

Despite the tremendous success of CCDs some of their inherent properties can be

disadvantageous for certain applications. First of all, charge transfer efficiency must

be extremely high as read-out of charge from some pixels involves several hundreds

of transfers. This requirement is hard to meet when exposed to radiation, where

charge transfer efficiency rapidly degrades due to damage created by highly energetic

particles bombarding the imager. Another drawback is the necessity to transfer and

read the entire frame every time data from any pixel is needed. In other words, there

is no access to a random pixel for read-out or clear. This can be disadvantageous for

14



applications that require fine time resolution and cannot afford to wait till the entire

array is serviced. Finally, the whole surface of the CCD is covered by polysilicon

gates. This makes them unresponsive to light at shorter wavelength (soft UV and

below) as these photons are absorbed by gates instead of the underlying substrate.

This is obviously unacceptable for application targeting broader spectral range than

just visible light. The way around this difficulty recently has been to illuminate

CCDs form the backside. However, this approach requires back-thinning of the CCD

substrate to a thickness of few tens of microns. This process proved to be rather

expensive and is not readily available.

In an attempt to circumvent the problems outlined above Charge Injection Devices

(CIDs) were invented. The basic description of CIDs is given in [7]-[9] and references

therein. Typical CID pixel structure is shown in Fig. 1.9.

COLUMN

ROW i

Typical "Crossed
cell"

CID pixel structure

Figure 1.9: Typical configuration of a passive CID pixel.

In this structure polysilicon gates of the first type are deposited along columns of

the imager, whereas those of the second type are deposited along rows of the imager.

At every intersection the two poly layers overlap but do not touch each other. The

areawith thin oxide is limited to a certain region around each intersection (red contour

in Fig. 1.9) and defines two photogates crossing each other.
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At the read-out stage (discussed in detail below) all that needs to be done is the

transfer of charge from one photogate to the other within a single pixel. Consequently,

the requirement of high transfer efficiency no longer applies. The pixel is selected for

read-out by its row and column address. Hence, full frame read is not necessary

and pixels can be randomly accessed as required by an application. Finally, the

greater part of the pixel area is not covered by polysilicon electrodes, which makes

this device sensitive to UV. One concludes that CIDs eliminate all 3 main problems

plaguing CCDs.

The CID gets rid of the photo-charge by injecting it into the substrate, where the

charge recombines (CID derives its name from this process). The injection is achieved

by biasing both photogates into accumulation, which pushes out minority carriers.

As one can easily realize the injection can be also done selectively in a single pixel,

in a rectangular region of interest, or in the entire array.

1.10 Passive Pixel CID Read-out

Let us describe the read-out in the "crossed
cell"

CID pixel in some detail. For reasons

to be explained later pixels of this type are also called passive pixels.

During the integration stage both photogates are biased into deep depletion with

the column gate biased stronger, Fig. 1.10. The photo-charge accumulates under the

column gate. At the readout stage the row gate is floated and its voltage sampled and

stored. Then the column gate is biased into accumulation which results in minority

carriers flowing to the row gate. The new voltage of the row is sampled and stored

again. The difference of the 2 samples is proportional to the amount of the photo-

charge. If the row gate is also biased into accumulation the photo-carriers get injected

into the substrate. If instead the column gate is brought back to its integration voltage

the photo-charge falls back into the column gate and the integration may continue.

This regime of operation is known as nondestructive read-out (NDRO). It is clear

that CCDs are not capable of NDRO.
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Figure 1.10: Passive CID pixel timing.

1.11 Passive and Active Pixels

The main disadvantage of the configuration described above is that the observed

photo-signal is the result of the addition of a relatively small photo-charge, accumu

lated in a given pixel, to a fairly large capacitance of the whole row, i.e. of all the row

photogates and the bus connecting them. As a result, the photo-signal turns out to

be very small. The following stages of the circuit introduce fixed noise and it becomes

impossible to achieve good signal-to-noise ratio (SNR). One of the solutions to this

problem is to use multiple NDROs of the same charge in the given pixel. In this way

the read noise decreases as a square root of the number of NDROs. However, this

solution is not always acceptable, especially in applications that require fast update

of the data, such as video applications. The charge transfer efficiency also becomes

important.

Another way to improve SNR is to place a buffer, such as a source follower, in

each pixel. In this configuration the read-out node is contained inside each pixel and

its capacitance is small. Hence, the photo-charge develops a large voltage signal at



the gate of the pixel source follower, which results in much higher SNR. In this, active

pixel, approach one can preserve such useful characteristics of traditional passive CID

imager as random access for read and clear, NDRO, and UV sensitivity. High transfer

efficiency is also not required.

Next chapter discusses the theory of active CID pixel in considerable detail fol

lowing [22]. That chapter is written in a much more formal way than the Chapter

1. Readers not inclined to follow a fair amount of algebraic derivations can read the

introduction (Sect. 2.1) and the conclusion (Sect. 2.5) to the Chapter 2 and skip to

the Chapter 3.
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Chapter 2

Device Physics of Active CID Pixel

2.1 Introduction

A CID pixel is built on low-doped epitaxial (epi) material, which resides on top of

heavily doped substrate. Each pixel typically has 2 photogates and a means of trans

ferring charge between them. During the integration stage the photons are absorbed

by the epi layer in the areas free of photogates. The photo-generated minority carriers

diffuse through the epi and are collected by the photogates biased into deep depletion.

The read-out of the photo-charge can be accomplished in several ways. For instance,

all the photo-charge can be transferred to one of the photogates (sense gate), which

is then reset, left floating, and sampled. After that, by manipulating voltage of the

second gate, the mobile charge is removed from the floating gate. Its voltage changes

and is again sampled. The difference between the 2 samples is proportional to the

transferred charge.

The charge clear can also be acomplished in various ways. Traditionally, both

photogates are brought to the epi potential and the minoriy carriers are pushed out

(injected) into the epi layer, where they can recombine or be absorbed by the epi-

substrate junction. In this case the epi and the substrate must have different type of

doping. Another approach consists of removing the photo-charge into a heavily-doped

drain located at the front surface of the imager. The channel between this drain and

the photogates is controlled by another gate. This approach is also suitable for device
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back-thinnig.

Traditionally, CIDs had a passive pixel structure (cf. Sect. 1.9 and Fig. 1.9), where

all the floating gates in a row were connected to a common bus and the photo-signal to

be sensed developed across a large
"row"'

capacitance. Various types of read-out used

in this case were discussed in [11] [16]. In general, passive pixel structure resulted in

a rather high read-out noise. However, recently active pixel CIDs were introduced,

e.g. [23]. In this case the floating gate is connected only to the gate of a source

follower placed in each pixel. Along with the source follower each pixel contains reset

and select switches. These three transistors are placed in a well of the same doping

type as the epi layer. This configuration results in a significant reduction of the CID

read-out noise. The aim of the present chapter is to analyze the voltage response of

such an active CID pixel.

reset drain VDD

reset

LD LDG

! C

storage

n+
sense gate

select
-

out

Figure 2.1: Typical configuration of an active CID pixel.

The models for destructive and non-destructive active CID pixel read-out are

developed in Sects. 2.2 and 2.3, respectively. The theoretical findings are illustrated

by raw experimental data obtained from a test chip fabricated in 0.18 /*m process.
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The test chip contained over 2400 active pixel structures with different geometries.

Section 2.4 discusses certain problems for non-destructive read-out stemming from

inadequate coupling of the photogates.

2.2 Destructive Read-out

The typical configuration of an active CID pixel is shown in Fig. 2.1. For the sake of

discussion let us assume that the epitaxial layer is of p-type. The polysilicon sense

photogate is connected to the gate of a source follower (SF) and to the source of a

reset switch. The source of the SF is connected to the output bus through a select

switch. Another polysilicon gate (storage gate) is located in close proximity to the

sense gate (in a single poly process) and is driven by a pulsed source. The
n+ diffusion

(lateral drain or LD), connected to a fixed positive DC voltage, provides means of

removing photo-generated electrons from the sense gate. Finally, another gate (called

a lateral drain gate or LDG) controls the channel between the sense gate and the LD.

The capacitance C represents a lumped linear capacitance that acts as if it was

placed between the sense node and a DC power supply. In particular, it includes

various parasitic capacitors (such as gate-drain capacitance of the SF) as well as the

gate-source capacitance of the SF multiplied by 1 7, where 7 is the gain of the SF.

Consider the simplest operation of a CID pixel with the storage gate set to 0

(same as epi) at all times. This mode of operation is known as Destructive Read-Out

or DRO. During the integration the LDG is at Kkim = 0, while the sense gate is kept

at a positive voltage V^. For simplicity of notation, from here on we assume that

the gate flat-band voltage is 0. It is straightforward to include a realistic flat-band

voltage in the equations below.

During the read-out stage the select switch is turned on, the reset switch is turned

off, and the first sample is taken on the output bus. Then the LDG is brought to

a positive voltage Vjnject, photo-generated electrons are drained into the LD, and the

LDG is brought back to Vskim. After that the second sample is taken on the output
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bus. The difference between the two samples represents the photo-signal, Vs.

When the charge drains from the sense gate the depletion region underneath it

widens, and the surface potential becomes more positive. For any given VJnject, there

exists such a value of the sense surface potential </>.,, at which no more charge can

be drained out. Depending on the initial amount of the photo-charge, the electrons

can either be drained out completely before 4>j is reached, or the potential reaches <\)3

while some fraction of charge is left under the sense gate. Both these cases can occur

before the sense gate saturates.

Here we analyse the two cases, described above, quantitatively. In the deep de

pletion regime of operation the gate voltage V, the surface potential <p, the absolute

amount of the mobile charge under the gate Q, and the depletion width w are related

to each other by the following equations:

eNAw2

t
tm ( .. Q\ ....

^si

where S is the gate area, tox is the gate oxide thickness, NA is the substrate doping

density, e is the elementary charge, while esi and eox are dielectric constants of silicon

and silicon oxide, respectively. At the end of the integration stage V = Vt, Q = Ql,

and the depletion width wl can be found as a solution of the quadratic Eq. (2.1).

If the electrons were removed completely, the final sense gate voltage Vj and the

depletion width w; can be found from Eq. (2.1) with Q set to 0, complemented by

the charge conservation at the sense node:

eNAw} tox
Vf =

- + eNAwf , (2.3)
^si ox

eNAwfS + CVf = eNAwtS + CVZ + Qt . (2.4)

In the other case, Wf
=

Wj = yj2eol-l(f)j/(eNA). The two unknowns become Vf and

the final charge under the sense gate Qf. Hence, we obtain

Vf = 4>J + tf (eNAWj + ^j , (2.5)
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Figure 2.2: Experimental signal voltage of a CID (in ADUs) as a function of a number

of red LED flashes during the integration. Solid curve corresponds to V{ = 2 V,

Vinject 5 V, S = 13 fira
,
and Vsski] 0. Long-dashed, dot-dashed, dotted, and

short-dashed curves correspond to Vt 2.5 V, Vjnject

Kkim = 1-1 V, respectively.

4 V, S = 18 jim2, and

eNAWjS + CVf + Qf = eNAwtS + CVt + Q% . (2.6)

Consider the slope of the response curve in these two cases. Let us denote deriva

tives with respect to Qx by a prime. We need to find Vi at Qi = 0 and V, at Qf = 0 in

the first and second regime, respectively. First of all, we note that according to (2.1),

eNAw[S ~ (Cd|[C'ox)/Cox, where Cox = emS/tox is the sense gate oxide capacitance,

and Cn = es^S/wi is its initial depletion capacitance1. Differentiating Eqs. (2.3) and

(2.4) and substituting uif
=

u>i we arrive at

l-(CD||Cox)/Cox 1

vf{Q'~0)
c + cD\\cox 'c + cy

where the last simplification is based on the fact that typically Cq <S C0.

second case an analogous derivation yields:

1-(CD||C0X)/C0
V'f(Qf = 0)

c + co:

i

(2.7)

In the

(2.8)

la\\b = ab/(a + b)
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Therefore, the response curve of the CID pixel (i.e. dependence of the voltage signal

on the photo-charge) has a dual-slope characteristic with the knee point determined

by the simultaneous solution of Eqs. (2.1), (2.5), and (2.6) with Qf = 0.

Now consider what happens when the sense gate saturates. From Eq. (2.1) it

follows that the saturation occurs at Wi = 0 and Qi = CoxVi. Using Eq. (2.4) we can

see that

V =

z\(CoxV1-eNAwfS) . (2.9)

The second term in the parenthesis is a small correction that can be expressed via Vt.

More important is that in this case the saturated signal is proportional to the initial

voltage Vi.

In the second case Eq. (2.6) can be rewritten as

(C + Cox)V{
-

Cm<f>j = eNAwzS + CV, + Ql , (2.10)

and hence at saturation

*=& (2-u)

Therefore, in the latter case the saturated signal is completely determined by the

LDG voltage, but not by the amount of charge at saturation nor the initial sense gate

voltage.

Figure 2.2 shows the experimental signal voltage of a CID operated in the regime

described above as a function of a number of red LED flashes during the integration

(proportional to the amount of photo-generated electrons collected by the sense gate).

The solid curve corresponds to V = 2 V, Vin-Jeci = 5 V, S 13 /im2, and Uskim = 0.

One can clearly observe the dual-slope characteristic. The saturation occurs at 60

000 Analog-to-Digital converter Units (ADUs) of signal for 26 LED flashes. The long-

dashed curve corresponds to the same parameters except for V, 2.5 V. In this case

the saturation occurs at 31 LED flashes for the same signal level in agreement with

Eq. (2.11). The difference in the first slope between the solid and the long-dashed

curves is most likely to be attributed to the quantum efficiency effect: higher V
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improves charge collection at the integration stage. The dot-dashed curve corresponds

to V[nject = 4 V, which reduces <pj and the respective saturation signal [cf. Eq. (2.11)]

but not the saturation charge as compared to the solid curve. The dotted curve

corresponds to increased sense gate area 5 = 18
(im2

and illustrates dependence (2.8)

of the second slope on Cox. It also saturates at higher photo-charge corresponding to

36 LED flashes. Finally, short dashes illustrate the dependence on Vskim. The LDG

voltage is kept at 1.1 V at the integration stage. In this way the excess photo-charge

is skimmed off by the LD and the second slope disappears.

2.3 Non-Destructive Read-out

One of the big advantages of CIDs is a possibility to add the second (storage) photo-

gate. Then the photo-charge can be transferred between the sense and storage gates

and thus read out multiple times (non-destructive read-out). The Non-Destructive

Read-Out (NDRO) allows one to (i) improve sensitivity in the regime of weak signal

(e.g., N NDROs result in \fN times reduction in read-out noise); and (li) extend

the upper boundary of the dynamic range by being able to selectively read and drain

pixels that receive higher photon flux
("hot"

pixels) instead of servicing the entire

array. The latter might take considerably more time and result in the saturation of

the
"hot"

pixels.

In the NDRO regime the pixel is operated as follows. During the integration the

storage gate is kept at 0. At the read-out stage the first sample is taken as described

in Sect. 2.2, then storage gate is brought up to a positive voltage Vt, photo-charge

transfers from sense to storage and then the second sample is taken. The photo-signal

is again given by the
difference2

of the two samples.

The pixel response depends on whether or not the charge is transferred to the

storage gate completely. As the electrons move from sense to storage, the surface

2In what follows we neglect direct capacitive coupling between storage and sense. It can be taken

out by dark frame subtraction or by having a transfer gate beween storage and sense.
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potential of the sense increases while that of the storage decreases. If the amount of

photo-charge is relatively large the surface potentials of the two gates become equal

and the charge transfer stops.
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Figure 2.3: Experimental voltage response of a CID operated in the NDRO regime.

Solid curve corresponds to St = 8.6
/im2

and Vt = 5 V. Dash-dotted and dotted

curves show responses for St = 2.3
fim2

and Vt = 4 V, respectively. Dashed curve

corresponds to the original pixel with S and Vx adjusted according to Eq. (2.15).

In the case of full charge transfer the pixel response is described by the same set

of Eqs. (2.3) and (2.4). In the other case, Eqs. (2.5) and (2.6) must be complemented

by a self-consistent expression for <pj:

r>x / W,i ^c f
V ---

( eNAw3 +
- (2.12)

where St is the area of the storage gate. This equation is based on the fact that in

this case storage and sense surface potentials and depletion widths must be equal.

The slope of the response in the case of the full charge transfer is given by Eq.

(2.7). In the second case the situation is now more complex. The slope in question
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reads:

l-dIIc-ox Cox(Gox||G(
V'f{Qs = 0) =

Cox C((Cox + Cdj)_

n i n \\n <
Cox(Cox\\Ct

O
-f-

OdjUC^ox t (2.13)
Cox + Cqj

In this case C\ = eoxSt/tox is the storage gate oxide capacitance, and C^j = t^S/vjj

is the final depletion capacitance of the sense gate.

If Ct -? oo, (2.13) reduces to (2.8). If CD,CDj <C Cox, Eq. (2.13) simplifies to

^(Q/-0)^

cyc + cDj)
(2'14)

The important property of Eqs. (2.13) and (2.14) is the dependence of the slope on Ct-

In the case of the complete charge transfer (initial slope regime) such a dependence

is absent.

Let us determine the point of the onset of the second slope (i.e. find maximum

Qi at which Qf is still 0) and provide practical guidelines for the dual gate CID pixel

design. From Eqs. (2.5) and (2.12) we see that at Qf = 0, Vt Vf = Qi/Ct. Based on

(2.7) and assuming that CD <SC C, Vf can be approximated as V, + Q,/C. Therefore,

the knee point of the response curve occurs approximately at Qi = (C\\Ct)(Vt K)-

For a practical design this condition should occur simultaneously with the sense gate

saturation Qt = CoxVt. Combining these expressions we arrive at the final result:

Cox Vt
~

V
/0 , ,-x

cwr^r-(2-15)

Given Vt and Vt, Eq. (2.15) allows one to size the gates in such a way that incomplete

charge transfer never takes place.

The NDRO regime of CID operation is illustrated in Fig. 2.3. The solid curve

corresponds to the baseline pixel with St 8.6
fim2

operated at Vt - 5 V. One

can observe a pronounced second slope indicating incomplete charge transfer. The

dash-dotted curve shows response for a similar pixel with a smaller storage gate oxide

capacitance, St = 2.3 ^m2. The onset of the second slope requires less photo-charge.
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In accordance with Eq. (2.14) the second slope is less steep. This is in contrast with

the behavior that one would expect from direct charge sharing between the sense and

storage gates. In the latter case the slope would decrease as Ct increases approaching

0 in the limit of infinite Ct- The dotted curve corresponds to the baseline pixel

operated at Vt = 4 V. In this case the incomplete charge transfer starts occuring at

an earlier stage than for Vt = 5 V. The second slope is the same as at Vt = 5 V

(solid curve), and so is the saturation charge. Finally, the dashed curve shows the

original pixel adjusted according to the guidelines put forward by Eq. (2.15). The

sense gate area is decreased by about 25% and initial voltage Vr is slightly reduced.

The resulting response curve is optimised for maximum linear range and shows no

dual-slope behavior.

2.4 The Importance of the Potential Barrier Be

tween Storage and Sense Gates

In the previous section we assumed that the storage and sense gate surface potentials

were the only factors governing the charge transfer. The real situation is more complex

because the coupling between the surface layers under the gates is not ideal. The

simplest approach to this problem is to locate the gates as close to each other as

possible for a given process. In this proximity-coupled structure the charge transfer

relies on the fringing fields provided by the poly gates. Let us note that for any

modern process the minimum allowed spacing is still much larger than the gate oxide

thickness. Extrapolating from the case of very large spacing, one can easily see, that

if the gates have the same voltage and no charge under them, there will be a potential

barrier between the gates. The properties of similar barriers were studied in [33]. The

height of this barrier depends critically on the width of the spacing.

When the storage gate is at a somewhat higher voltage than the sense, as is the

case during the charge transfer, the barrier disappears. However, as charge transfers,

the potential of the sense gate rapidly increases (being determined by a relatively
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Figure 2.4: Experimental voltage response for the NDRO (Sect. 2.3) type of CID

operation for proximiy-coupled (dashed) and n-coupled (solid) structures.

small value of C), and the barrier appears again. If by this point not all of the charge

is transferred the dual-slope scenario takes place again.

The coupling can be enhanced (the barrier removed) by introducing a transfer gate

made of the second poly layer that is located in the spacing and overlaps the sense

and storage gates. Another way to remove the barrier is to introduce n-type doping

in the spacing. In Fig. 2.4 we compare proximity-coupled and n-coupled structures.

The solid and dashed curves correspond to pixels with doped and undoped spacings,

respectively. The pixels are identical in all other respects. One can clearly see the

influence of the barrier on the response curves.

2.5 Summary of the Results

We have considered the linearity of active pixel CIDs. It was shown that the response

curve can exhibit a dual-slope characteristic. The dual slope is an indication of

incomplete removal of the photo-charge from the sense gate due to the voltage increase

of the latter. The dual slope can occur when the charge is transferred to either the
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lateral drain (DRO) or the storage gate (for the NDRO purpose). In the latter case

the second slope increases with increase of the storage gate size in contrast with

the charge sharing scenraio. In the limit of very big storage gate the second slope

approaches that for the DRO regime.

The second slope can be removed by careful gate sizing, capacitor C sizing, adjust

ment of the gate voltages, or by skimming off the excess charge during the integration.

However, some applications may find the dual slopes useful in that a steep first slope

provides low light level sensitivity while the second slope can accomodate highlights.

The linearity curve of CID in NDRO regime is very sensitive to the srength of the

coupling between the sense and storage gates. A potential barrier between the two

gates can give rise to the second slope even if all the other parameters related to the

pixel and its operation are fixed. This makes a CID pixel with two photogates an

excellent tool to study the charge transfer phenomena.
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Chapter 3

Color Video Camera ColoRAD

3.1 Radiation Hardened Cameras at CIDTEC

As discussed in Sect. 1.9, up until recently all CID designs employed passive pixels.

This meant that the photo-sensitive nodes of all pixels in a row or a column of an

imager were connected together. Accordingly, the photo-charge generated in each

pixel developed voltage across a very large capacitance of the entire row or column.

This resulted in a rather low conversion gain and fairly high pixel-referred read noise

(cf. Sect. 1.11). Multiple NDROs could not be used to minimize noise in real-time

applications such as video. Thus the only means of improving the signal-to-noise

ratio in this architecture was to increase the signal or, equivalently, the amount of

charge corresponding to 700 mV, the full-level video signal. Naturally, this reduced

the imager sensitivity as more light was needed to produce useful level of video.

In the context of the radiation hardened video systems, discussed in this work, the

sensitivity was still adequate for CID21 and CID22 sensors, designed for monochrome

video imaging supporting RS170 and CCIR formats, respectively. The first attempt

to design a radiation hardened color video imager, CID23, failed due to a deficiency of

the column selection technique. This error was corrected in CID24, which was the first

radiation hardened semiconductor-based imager to produce color video. However, the

sensitivity issue for this device proved to be severe. Compared to CID21 and CID22

the conversion gain problem described above was further exacerbated by decreased
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quantum efficiency due to reduction of the pixel open area and deposition of the color

filters.

At about the same time as active CID pixel was introduced for scientific appli

cations [23], it was decided to employ this concept for a design of a new radiation

hardened color video imager. The main character of this thesis, the CID25 imager, is

the result of this effort.

3.2 ColoRAD System Description

The CID25-based camera system, ColoRAD, consists of 3 main parts: the CID25

image sensor, head mechanicals mated to the set of printed circuit boards (head

boards), and the Camera Control Unit (CCU), Fig. 3.1. There is also a power supply.

*
jrfilishi,.

Figure 3.1: CID25-based video camera, ColoRAD, comprising radiation hardened

head assembly (including the imager, the head mechanicals and the set of head

boards), CCU, and power supply for operating at ambient temperatures up to 65C.

The CID25 image sensor produces color NTSC-video. The pixel array has a total

of 512 rows by 730 columns. The displayed (active) area is 484 rows by 710 columns.

The ratio of the width of the active area to its height is 1.3365. The imager has

the active pixel structure. As a result, the photo-generated charge develops voltage

across a relatively small capacitance. All pixels in a row are read into the on-chip

32



memory in parallel for low noise bandwidth operation. The imager has the capability

of reading 2 rows simultaneously, necessary for
Cyan-Magenta-Yellow-Green (CMYG)

color imaging or progressive scan. It can also scan only odd (even) rows one by one

to implement the RS170 standard. First 16 rows are covered with metal light shield

to provide the black reference to the camera. The CID25 imager contains on-chip

Correlated Double Sampling (CDS) circuitry to reduce the imager Fixed-Pattern

Noise (FPN), kTC noise, and the low frequency temporal noise.

The CID25 imager is located in a sealed head which incorporates a 1-stage thermo

electric (TE) cooler and a thermistor. The TE cooler maintains the imager at 25C

even if the ambient temperature is as high as 70C. The set of head boards attaches

to the sealed head to form the head assembly. The head boards contain the circuitry

that drives the CID25 imager and preprocesses the analog video generated by the

imager. Both the imager and the circuitry of the head boards are radiation hardened.

The CCU features an FPGA to generate imager timing, an analog video processing

chain and a digital color processor. The CCU is not radiation hardened and must be

located outside the area exposed to radiation. The head assembly and the CCU are

connected via a cable. The length of the cable can be up to 150 meters.

3.3 CID25 Imager Description

3.3.1 Pixel Design

The CID25 imager is built with the preamplifier-per-pixel technology using 0.8 micron

process. The pixel size is 18 by 16.4 microns. The pixel schematic is shown in Fig. 3.2.

Each pixel contains a photogate (cf. Sect. 1.7) connected to the source of the reset

switch and to the gate of the source follower pMOS. The source of the source follower

is connected to the pixel output bus through the row-select switch controlled by its

gate voltage
"Select''

. The source follower is biased by a current source for optimum

operation as explained in Sect. 1.6. There are 2 pixel output buses, odd and even,
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connected to pixels in odd and even rows, respectively (Fig. 3.4). The reset switch is

controlled by its gate voltage
"Reset"

. The drain of the reset switch is at a global DC

voltage "Reset/Inject". This node serves 3 main purposes: (i) it is used to establish

the voltage of the photogate (when the reset switch is "on"); (n) it is the drain of the

pixel source follower; and (Hi) it acts as a lateral drain for the photo-charge injection.

Select

Reset/Inject drain

Figure 3.2: Schematic of the CID25 active pixel.

The pixel can be run with several possible timing sequences. The following details

one of them. The pixel integrates the photo-charge for the duration of the frame.

After a given row is selected, the reset switch is turned
"on"

and
"off"

to establish

the voltage of the photogate (sense gate). After that, the first sample is stored on

a capacitor. The integrated charge is then injected into the lateral drain by turning

the transfer gate (controlled by the
"Inject"

signal)
"on"

and "off". Following that,

the second sample is recorded on another capacitor.

The main purpose of the CID25 image sensor is to serve as a color NTSC video

imager utilizing CMYG color matrix. An image of the sensor with CMYG color filters

deposited over the pixel array is shown in Fig. 3.3.
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Figure 3.3: CID25 imager with CMYG color filters deposited.

3.3.2 Correlated Double Sampling Circuitry

The CID25 image sensor is equipped with on-chip CDS circuitry, Fig. 3.4. CDS

generates 2 samples proportional to pixel outputs before and after charge injection.

The photo-signal is the difference of these 2 samples. Since the pixel sense node

capacitance is small, the photo-signal is relatively large, which results in the imager

having fairly high SNR. Properties of a CDS circuitry, such as the one used here, are

analyzed in detail in [34]. The purpose of double sampling is to reduce the 1// noise

from the pixel source follower, kTC noise due to the pixel reset switch, and FPN

associated with various offsets (e.g., the variation of the threshold voltage of the pixel

source followers across the array). It is important to note that the transfer gate moves

bidirectionally between the 2 samples, which greatly reduces any FPN components,

associated with the capacitive coupling to the transfer gate that, otherwise, wouldn't

be removed by CDS.

The CDS circuitry of the CID25 imager produces current-mode signal for both

pixel samples simultaneously (using 2 imager output buses). The current-mode oper

ation contributes to imager's low noise performance, as well as makes it suitable for
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Figure 3.4: Schematic of the on-chip CDS circuitry of the CID25 imager.

integration with the CIDTEC's standard camera type. In the CMYG color mode of

operation, 2 samples for 2 rows are generated simultaneously using 4 imager output

buses (see Fig. 3.4). They are combined with appropriate signs outside the imager to

generate a CMYG color line with subtracted noise signature.

3.3.3 Selection Circuitry

The imager uses proved radiation hardened shift register design for column and row

selection (horizontal and vertical scanners, respectively). However, for CID25 the

design was optimized for reduced current consumption, increased radiation tolerance

and speed.

The horizontal scanner sequentially selects columns of the imager for read-out.

Each column has 4 memory cells (cf. Fig. 3.4:
"H-scan"

signal is the output of the

horizontal scanner) . As soon as a column is selected the charges from its memory cells

are dumped onto 4 imager output buses. The horizontal scanner is a continuously

running circuit, which is driven by 2 clock phases. The phases are used to propagate

the selection from column to column. There are also 2 additional reset phases to

deselect the previously selected column. Additional data phase serves as horizontal
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synchronization, i.e. it determines the moment when the first column is selected.

The vertical scanner sequentially selects rows of the imager for read-out and CDS

processing. There are 2 independent vertical scanners, one for odd and the other for

even rows. For optimum response each row is driven from both left and right sides.

Vertical scanners have essentially the same architecture as the horizontal one. Two

clock phases are used to propagate selection from row to row. Two reset phases are

used to deselect previously selected rows. These phases are shared between odd and

even scanners. By contrast, odd and even data signals are independent and serve for

independent synchronization of odd and even rows.

The architecture with odd and even vertical scanners allows one to easily im

plement CMYG color and interlaced monochrome imaging. In the color mode of

operation there are 2 types of frames. In one of them the displayed lines are combi

nations of rows 1+2, 3+4 etc. In the other frame the combinations are 2+3, 4+5 etc.

These 2 frames alternate to produce the 30 fps video. In the interlaced monochrome

(RS170) mode, there are odd and even frames, which are alternated. In the odd frame

only odd rows are displayed and vice versa.

In the progressive scan and RGB color modes all frames are identical and are

comprised of all the existing lines. This type of operation on the imager side is also

possible as the imager can generate data from 2 rows independently (but simultane

ously). However, this mode of operation would require significant modification of the

camera, which would have to process 2 streams of data instead of combining them

into one.

3.4 Head Description

The head portion of the system consists of several parts. The imager resides in a

hermetically sealed, evacuated enclosure (on the left-hand side of Fig. 3.5) on top of a

TE cooler. The cooler keeps imager at a temperature of 25C for ambient temperatures

up to 70G The purpose of the cooler is to reduce imager dark current.

37



Figure 3.5: The CID25 head assembly. Imager hermetic enclosure with TE cooler on

the left. The set of 4 printed circuit boards with head electronics attaches to it.

On top of the imager enclosure there is a BG38 filter (bluish square in Fig. 3.1)

that cuts off infrared portion of the light spectrum. This is necessary for color repro

duction. The lens mounts on top of the enclosure. The key requirement for the lens

is that it does not brown in radiation (regular glass lenses do brown in radiation).

On the back of the imager enclosure a head board assembly is attached. The head

board assembly consists of 4 PCBs with electronics. It provides drivers for imager

control signals and video preprocessor that amplifies the video signal coming from

the imager, subtracts low frequency noise component and converts to differential

signalling. There are also powerful buffers that send the video down the cable to

CCU.

In standard configuration (shown in Fig. 3.5) the cable connecting radiation hard

ened head and non rad-hard CCU can be up to 50 meters long. An add-on radiation

hardened timing generation board (that extends the head board assembly by ~ 5 cm)

allows one to increase the length of the cable to 150 meters.

3.5 Camera Control Unit Description

The Camera Control Unit serves several purposes. It contains all the components

essential for camera operation that are not radiation hardened. First of all, there is

a Xilinx FPGA that controls imaging timing. Secondly, there is an extensive ana

log block, which amplifies (equalizes) and filters analog video coming from the head.
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Thirdly, there is a color processor used to synthesize RGB color from CMYG pixel

information, as well as to adjust white balance, gamma etc. The color processor is

based on 3 chips by Cirrus Logic. These chips are CCD Imager Analog Processor

(basically, an A/D converter), Digital Color-Space Processor, and Digital Video En

coder. The CCU produces NTSC color video or monochrome video complying with

RS170 standard at 30 frames per second.

CCU also realizes Automatic Gain Control (AGC) up to 12X. This feature is

especially important if lighting is low. Under these circumstances the camera will

boost the gain to produce full level video, 700 mV. The low read noise or high initial

SNR of the imager are essential for meaningful AGC. Otherwise the noise will also get

boosted and the SNR will drop to an objectionable level. The imager was also tested

with a prototype CCU add-on dark frame subtraction board, which led to a significant

improvement of the SNR. This result was very encouraging as it showed that it would

be possible to run the imager with higher camera gain. At this point 24X AGC is

being contemplated. Needless to say, that this will boost overall camera sensitivity

and will enable one to operate at extremely low light conditions still producing useful

video.

Finally, CCU also realizes the proprietary algorithm of timing modification in

radiation.

3.6 Pre-irradition Performance

The camera was characterized before during and after irradiation. The results of the

studies associated with radiation will be discussed in Chapter 4. In this section we

describe some of the results of pre-irradiation tests.

The sensitivity and noise of the camera system were analyzed using the Davidson

Optronics TV Optoliner with a broad band light source and the Rohde-Schwarz 40

Hz-10 MHz noise meter. The saturation of the monochrome imager (without IR cutoff

and color filters) operated at pixel full well in the RS170 mode was observed at 0.35
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ft-c of light. The gain of the camera was adjusted so that at pixel saturation the

camera video output was equal to 700 mV. The camera system was set up using the

most favorable configuration a 2 meter cable separating the head assembly and

the CCU. The resulting SNR was 59 dB. The main contributions to the noise were

the temporal noise from the CCU and the fixed pattern noise from the imager. The

SNR dropped to 58 dB with a 40 meter cable.

Using the test slides it was established that the system resolved at least 450 TV

lines.

Related to the resolution is the Modulation Transfer Function (MTF). MTF is

critical for color imaging as poor MTF is one of the principal sources of color cross-

contamination. For CID25 the MTF was characterized by the camera response to the

step-like target and was proven to have single pixel resolution. This result is further

examplified by Fig. 3.6. The image in the figure can be divided into 2 regions. The

first region, the synthesized color area, includes color bars, central white area, and 2

grey-scale strips between the color bars and the white area. The second region, the

monochrome area, includes 4 sets of black-and-white bars (on each side of the image)

and 2 grey-scale strips adjacent to the color bars but located closer to the edges of

the image.

In this imager an additional layer of metal was deposited on top of the sensor

active area. There were holes etched in the metal partially uncovering active area of

each pixel. In the synthesized color area, the fraction of the uncovered active area for

each hole was derived from the transmission of the color filter that would be deposited

on top of the corresponding pixel in the final product. For instance, the central white

area corresponds to white light seen through the color filters. In this area 100% of the

active area was uncovered for pixels that were supposed to have Yellow color filter,

78.6% for pixels that would have Cyan color filter, 66.3% for Green pixels, and 46.1%:

for Magenta pixels. The grey-scale bars adjacent to the white area correspond to

white light of decreasing intensity seen through the color filters. This is implemented
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via additional coverage of the pixels starting from the open area fractions cited above

and proceeding to complete opaqueness in 7 evenly spaced increments.

The colored bars correspond to white, yellow, cyan, green, magenta, red, blue, and

no light seen through the color filters. For instance, cyan light is emulated by having

78.6% of the active area uncovered for pixels that are supposed to have Cyan color

filter, 66.3% for pixels that would have Yellow and Green color filters, and 12.4% for

Magenta pixels. The fact that color bars look so good (in fact, using vector-scope one

can prove that the color bars are nearly perfect) proves that there is no appreciable

color cross-contamination, or, equivalently, that single-pixel resolution is achieved.

In the monochrome area, black and white bars correspond to 100% covered or

100% open pixel active areas. The grey scale represents white light of decreasing

intensity seen through pixels with 100% open active area. Interlaced black and white

bars on all 4 sides of the image illustrate MTF. When this imager was run in the

monochrome mode alternating black and white bars were easily discernible proving,

once again, single-pixel resolution in both vertical and horizontal directions. How

ever, after color processing (the way the slide in Fig. 3.6 was prepared) interlaced

bars, showing resolution in vertical direction merged to produce uniform grey (color

processing adds lines). Interlaced bars showing resolution in horizontal direction after

color processing turned into blue and read areas seen in the top-left and bottom-right

corners of the image.

The real color video was readily produced, once the actual color filter array was

deposited (cf. Fig. 3.3). The saturation of the color imager (with IR cutoff and color

filters) operated at pixel full well required 3 ft-c of light. The SNR in the color channel

was measured for a sample of 6 cameras with 150 meter cable and on average was

equal to 40.6 dB [minimum was 37.7 dB, maximum was 45.7 dB, camera-to-camera

variation of 8 dB, data courtesy of the Nuclear Fuel Industries, Ltd, Osaka, Japan

(NFI)]. With the color subcarrier trap filter "on", the average SNR increased to 47

dB. If, additionally, the weighting filter was turned
"on"

the average SNR rose to 58
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Figure 3.6: Modulation transfer function structures and synthesized colors obtained

by depositing an extra metal mask, such that the area of a hole above any given pixel

is related to transparency of the color filter that would normally be deposited on top

of that pixel.

dB.

Since the SNR of the monochrome camera is more than adequate for video appli

cations, the camera can be run with higher gain. As already mentioned in Sect. 3.5,

the full-level video output is then achieved at a fraction of the pixel full well, which

translates into better sensitivity. The camera was demonstrated to work adequately

with 12X gain which reduced the light level necessary to produce the full-level video

output to 0.03 ft-c. The SNR at 12X gain was 37 dB.
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Chapter 4

Radiation Environments and

Performance of the ColoRAD

Camera in Radiation

4.1 CID Cameras and Radiation

Numerous imaging applications require the photo-sensor and the attendant camera

to have a certain degree of radiation tolerance. By radiation tolerance we understand

tolerance to irradiation by highly energetic massive particles (e.g., electrons, protons,

ions, neutrons) as well as by photons in the X-ray and 7 ranges.

Tube-based cameras have long been accepted as the industry standard radiation

resistant detectors. CIDs were the first solid-state detectors to seriously challenge this

position, first in the 1980's through the development of special purpose star tracking

devices and, during the 1990's, by the development and introduction of monochrome-

version video cameras (cf. Sect. 3.1).

The performance of a device in radiation is typically characterized as a function of

Total Ionizing Dose (TID) and flux of ionizing radiation. The total dose corresponds

to certain amount of energy absorbed and is different for different materials. The

unit of 1 rad (Si) is often used. It corresponds to 100 ergs/g 1.6 x
108

MeV/g of

absorbed energy per unit weight. Lethal dose for humans is about 400 rad. The flux

is measured in rad/hour.
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Although there are several possible scenarios where cameras can be exposed to

radiation (examples are provided in the following section), for tests, it is customary

to use 60Co 7-radiation. 60Co 7-cells can be accessed at a number of university and

military facilities in USA. During these tests, one typically monitors the signal-to-

noise ratio and a few other parameters of an operating camera exposed to a high flux

of radiation for certain period of time. The general picture quality is also assessed to

verify that the camera continues to generate usable video throughout the test.

4.2 Examples of Radiation Environments

In this section we will provide several examples of radiation environments, that
CID-

based photo-detectors have been exposed to or may be exposed to in the future. In

doing so we try to accomplish 2 goals: (i) to underline the importance of work on

radiation hardened imaging equipment, that is needed for a wide variety of applica

tions, and (11) to elucidate the challenges, that are being dealt with in the course of

this work, associated with the extremely hostile conditions, that our cameras have

to endure. Space applications provide several good examples of the environments

with significant fluxes of energetic particles. We will consider a number of them in

some detail in Subsects. 4.2.1, 4.2.2, 4.2.3. Subsection 4.2.4 provides some terrestrial

examples of radiation environments.

4.2.1 Van Allen Belts

The first example is given by the so-called Van Allen belts. All space missions

from simple communication satellites to the most elaborate scientific instruments

and manned missions have to deal with this phenomenon and the damage that it

causes.

The Earth has an approximately dipole magnetic field that is strong enough to

trap charged particles through the Lorentz force, thus protecting the surface of the

planet from bombardment by energetic particles. The particles spiral around the
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magnetic field lines and are
"reflected"

at the mirror points, where they encounter

stronger magnetic fields (close to North and South poles). There is also a net drift

around the Earth protons drift clockwise when viewed from the north and electrons

drift counterclockwise, which has the effect of creating a net electrical current around

the Earth. In general, the particle fluxes are treated as isotropic, although very low

in the South Atlantic Anomaly (see below), < 500 km, the proton fluxes from the

west are about 100 times higher than the fluxes from the east.

Belts consist of high energy protons (E < 400 MeV) and electrons (E < 10

MeV). Some heavy ions exist, but not in large quantities. Electrons regions can be

characterized as two belts. The inner belt spans the heights from 400 km to 12,000

km and is composed of particles generated by energetic solar particles and reactions

with cosmic rays. The outer belt spans the region between 12,000 km and 60,000 km

of height and is composed of particles coming from solar wind and the ionosphere.

The "slot
region"

between the belts has fluxes about 1-2 orders of magnitude lower

than the belt regions, however even that is still rather high. Protons form a single

belt centered at about 4000 km above the equator. Additionally, solar events (cf.

Sect. 4.2.2) can create new belts of very high intensity.

The South Atlantic Anomaly (SAA) is a region of the Van Allen belts, where

the magnetic field lines are closer to the surface of the Earth and allow particles to

get closer. Its existence can be explained by the tilt and the offset in the Earth's

magnetic field. The size of SAA increases as the altitude increases, but at 500 km

it ranges from to
+40

longitude and to
0

in latitude, Fig. 4.1. The

anomaly exists all the way down to the sensible atmosphere. For low Earth orbits

(< 1200 km), virtually all of the exposure of spacecrafts to trapped protons is due to

passage through SAA.

The radiation belts can be very dynamic during periods of solar activity, such as

coronal mass ejections and solar flares, as well as during coronal hole passage. There

is also a long-term correlation with the 11-year solar cycle: there are more electrons
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Figure 4.1: The passage of spacecrafts through Van Allen belts causes major degra

dation to the photo-detecting equipment. For instance, in the part of the belt called

the South Atlantic Anomaly the density of highly energetic protons (16-70 MeV) can

reach 1000 counts/sec.

and fewer protons during solar maximums. Solar events can also create additional

quasi-stable belts by injecting particles into the magnetosphere. For instance, on

March 21, 1991 a solar event created a new belt that was measured for 7 months and

may still persist today.

4.2.2 Solar Coronal Mass Ejections

The Solar Coronal Mass Ejections (CME) are the biggest explosions in our solar

system. There can be as much explosive power as produced by 1 billion megatons

nuclear yield. The explosions can result in emissions of up to 100 billion kg of matter

as plasma from the Sun. The speed of the emissions can reach 1000 km/s (~ 2

million mph). Besides severe damage to spacecraft equipment these events can cause

geomagnetic storming on Earth by coupling to the Earth's magnetic field. The exact

process of these releases is not entirely known. They can occur at any time, but are

more frequent during periods of high sunspot activity. Sometimes, but not always,

they are accompanied by the traditional X-ray solar flares.

The CMEs result in harsh radiation environments. They produce large fluxes of
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protons and heavy ions that can last for days to weeks. Figure 4.2 shows proton flux

from the so-called "Bastille Day
Event"

that happened on July 14, 2000. As one can

see, significant flux of 10 MeV protons lasted for a very long time.

E 10 MeV

- E = 50 MeV

-E> 100 MeV

>~M

\\ UVV. ;. *

13 14 15 16 17 18 19 20 21

July 2000

Figure 4.2: High energy proton flux from the Bastille Day event as a function of time.

Although low altitude, low inclination orbits are mostly shielded by the Earth's

magnetic field, some shuttle extravehicle operations have been moved due to CMEs.

The exposure over the poles, where magnetic field screening does not work very well,

can be significant even for high-altitude aircrafts. Other measured effects of CMEs

included complete shutdown of Hydro-Quebec power grid due to an event on March

13, 1989 (8 million people without power); a satellite loss by Inmarsat; many reports

of single event effects from various satellites; operational problems with LORAN

network and worldwide HF communications; and even astronauts onboard Atlantis

reported "irritating
flashes"

in their eyes due to energetic protons penetrating the

optic nerve.
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4.2.3 Other Examples of Radiation Environments in Space

There are several other mechanism that can produce radiation environments affecting

missions in space. First of all, there are Cosmic Rays (CRs). These are energetic

particles generated by supernova. The composition of CRs is dominated by protons

(83%), alphas (13%), electrons (3%), and heavier ions (1%) through to uranium.

These are extremely relativistic particles. The highest energy ever measured was

3.2 x
1020

eV or 50 Joules (from a single particle!). Proton energy distribution peaks

at ~ 0.3 GeV. Cumulative effects due to CRs are not significant, but individual

particles can cause single event damage in electronics. Space missions are partially

shielded by the Earth's magnetic field, depending on their specific orbits. When

CRs strike the upper atmosphere they create a
"shower"

of highly energetic particles.

These particles were measured on the surface of the Earth and are known to produce

undesirable effects in electronics on the ground and in airplane avionics systems.

Missions to other planets must take into account ionizing dose due to Van Allen

belts of those planets. This is especially critical for Jupiter and Saturn. Jupiter's mag

netic field is significantly stronger than the Earth's, which translates into a radiation

environment, that is about 1000 times worse than the Earth's. The belt primarily

consists of high-energy electrons (up to 100s of MeVs). Io's
"disk"

may also contain

high-energy sulfur and oxygen. The total dose for a mission to Europa is estimated

as ~ 4 Mrad (Si) for 100 mils of aluminum shielding. Inside Jupiter missions expect

radiation environment of 250 krad (Si).

Nuclear weapons can create both prompt (short time duration) and long-lasting

radiation environments in space. The prompt environments for space systems consist

of X-rays, 7-rays, neutrons, and ionized debris. The long term environment is a

result of
"pumping"

the radiation belts with additional electrons that stick around

for years. The Starfish nuclear event in 1962 is blamed for the death of 7 satellites

within 7 months, of which Telstar was lost due to TID damage to the command
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decoder, while other losses were due to radiation damage to solar arrays shortening

the satellite lifetime. Current estimates suggest that a 10 kT explosion at 150 km

over Japan would kill virtually all low Earth orbit satellites within 1-2 months.

Figure 4.3: Nuclear fuel inspection setup.

4.2.4 Radiation Environments on Earth

Examples of extremely hostile radiation environment can also be found on Earth,

for instance, in medicine, specifically, in oncology treatment systems. In this case,

one has a linear accelerator producing ultrarelativistic electrons, which bombard a

metal target and emit bremsstrahlung 7-radiation. The latter irradiates the tumor

area, whereas the healthy tissue is protected by a tungsten shield. The position of

the shield needs to be monitored in real time to verify that the healthy tissue is not

exposed to 7-rays due to some accidental movement of the system or a patient. The

camera observing the shield has to be radiation hardened as it is constantly exposed

to highly energetic recoil particles including X-rays.

Not surprisingly, radiation hardened cameras can find a number of applications in

nuclear power plants. The cameras can be used in those locations of the power plant

that have life threatening levels of radiation flux during reactor operation, to monitor
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various gauges and verify the integrity of the facility (promptly detect leaks, fire etc.).

Nuclear fuel inspection (Fig. 4.3) as well as detection of structural faults (such as rust

and cracks) in those elements of the plant, that are subject to irradiation even during

the outage cycles, also require radiation hardened imaging equipment.

4.3 Radiation Damage to Semiconductor Devices

It is generally perceived that semiconductor based devices (e.g., photo-sensors) can

not be used in radiation environments due to fast and severe degradation. There are

important exceptions from this rule. CIDs has long been used in radiation environ

ments (cf. Sect. 3.1) and proved to be extremely useful in all the applications described

above. Advances of semiconductor technology further improve radiation tolerance of

CID devices as higher quality gate oxide usually results in better radiation tolerance.
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Figure 4.4: Interaction of an energetic particle with an MOS device.

The typical process resulting in a damage to an MOS device is shown in Fig. 4.4.

Most of the energy of highly energetic particles incident on a chip is dissipated through

ionization processes (creation of electron-hole pairs). Electrons and holes that are

born in silicon manifest themselves as additional
"signal"

,
the so-called scintillation

(or radiation-induced shot) noise. Electrons that are born in the oxide get swept

out of it, while holes that are born in the oxide get stuck there and migrate towards

the Si/Si02 interface. These holes result in increased leakage current and also in the

change of transistor threshold voltage.

Certain interaction events, especially involving fast protons, may result in silicon
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crystal lattice damage. CCDs and solar cells are particularly sensitive to this effect.

As a result of an especially unfortunate hit, when a highly energetic particle strikes

a sensitive node of a chip, its elements can be completely destroyed (for instance, if

gate oxide of a transistor is ruptured and broken-down). This effect becomes more

significant as critical dimensions of chip elements become smaller.

Furthermore, ionization processes in optical elements (lenses, mirrors, beam split

ters etc.) lead to their browning and parasitic light attenuation. This emphasizes

photo-detector sensitivity and noise requirements.

4.4 ColoRAD Radiation Tests

The results of a radiation test of a commercially available CCD camera are presented

in Fig. 4.5. On the left-hand side of Fig. 4.5 color CCD image of a test chart is shown

in the beginning of irradiation by 7-quanta. Incident radiation flux is 30 krad/hr and

the accumulated dose is 0. The picture on the right-hand side is taken 1 hour later,

i.e. the camera accumulated about 30 krad of ionizing dose. It is clear that at this

point the degradation of the CCD is severe and the image it produces is no longer

useful. It was precisely this kind of CCD camera behavior in radiation that motivated

attempts to design radiation hardened cameras based on CID technology.

/:'.+
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Figure 4.5: Radiation test of a CCD camera: TID=0 and 7-flux=30 krad/hr on the

left panel; TID=30 krad (1 hour later) on the right panel.
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The ColoRAD video cameras were subject to several radiation tests. Let us de

scribe some results observed in those tests.

4.4.1 First Radiation Test

The first test was performed at the University of Maryland in April of 2005. The

maximum radiation flux achievable at this facility was 35 krad/hr. Six cameras

subject to the test received an accumulated dose of 1 Mrad. At the end of the test all

cameras were fully operational while producing satisfactory video. The still frames

captured in this test are shown in Fig. 4.6 and should be contrasted with those in

Fig. 4.5. In this case we have an imager with synthesized colors and MTF structures

as described in Sect. 3.6. The left-hand side panel of Fig. 4.6 was captured before the

beginning of the test (at TID=0 and 7-flux=0), while the slide on the right was taken

in the end of the test (at TID=1 Mrad) with sources still present and producing 7-flux

of 22 krad/hr. In spite of the bad row that developed as a result of the radiation-

induced stress, the camera still produced good quality video. It should be noted that

an initial defect of this row is visible faintly on the left-hand side of Fig. 4.6.

Figure 4.6: Radiation test of a CID camera with MTF/Synthesized colors mask

imager. TID=0, 7-flux=0 on the left-hand side. TID=1 Mrad, 7-flux=22 krad/hr on

the righ-hand side.

Signal-to-noise ratio was measured in the color channel with color subcarrier trap
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filter and weighting filter turned
"on"

as a function of dose at 7-flux=22 krad/hr,

and as a function of 7-flux at TID=0. These results are shown in Tab. 4.1. Several

important observations have to be made. First, there is a big drop in SNR (58 to 41

dB) as soon as 7-radiation is turned
"on"

(flux rises above zero). This means that

already at 7-flux=6.7 krad/hr the scintillation noise dominates all the noise sources

inherent to the camera. Second, the dependence of SNR on the accumulated dose is

flat. There is no degradation of SNR (at least at flux=22 krad/hr) with dose. On the

contrary, a small improvement of SNR (from 38 to 40 dB) is observed. This behavior

is spurious and is due to the fact that the camera gain decreases with dose, which

reduces noise, while numbers in Tab. 4.1 are obtained under assumption that the

full-level signal is always 700 mV. This point will be further illustrated by test results

below. Third, the dependence of SNR on the 7-flux also appears to be much more

flat than one would expect given that the random noise due to radiation events is the

dominating noise source. For instance, for the square root dependence the difference

in SNR at 7-flux=6.7 krad/hr and 35 krad/hr must be 7.2 dB, while we observe only

4.5 dB. The possible reason for this effect will be discussed after the results of the

following radiation test are described.

TID (krad) 0 420 500 840 1000

SNR (dB) 38 39.5 39.5 40 40

7-flux (krad/hr) 0 6.7 13.3 22 35

SNR (dB) 58 41 41 38 36.5

Table 4.1: SNR data from the first University of Maryland test. Top 2 rows are at

7-flux=22 krad/hr. Bottom 2 rows are at TID=0.

4.4.2 Second Radiation Test

The second radiation test was performed at the Osaka Prefecture University in July

of 2005. In this case, 2 cameras were subject to irradiation and the total dose of 2.85

Mrad was achieved. The results of the SNR measurements (in dB) for one of the
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cameras are presented in Tab. 4.2.

0 510 1070 1730 2360 2850

0 62.6 57.5 55.6 55.7 56.8 56.4

10 45.3 43.9 46.3 48.5 50.5

20 43.2 42.1 45.3 47.2 49.6

50 41 40.1 43.6 46.2 49.1

100 40.5 39.6 42.3 44.9 48.2

Table 4.2: SNR data (in dB) from the second radiation test performed at the Osaka

Prefecture University. Top row shows TID in krad. Left column shows 7-flux in

krad/hr.

Once again the measurements were obtained from the color channel with both

color subcarrier trap and weighting filters activated. The data in Tab. 4.2 show

essentially the same trends as observed in the first test. The dependence of the SNR

on TID at 7-flux>0 has an upward trend that likely has to do with the decrease of the

overall system gain. The magnitude of this effect for TID<1070 krad is consistent with

the data in Tab. 4.1 (about 2 dB by TID^l Mrad measured at 7-flux20 krad/hr).

At 7-flux=0 the dependence on TID is reverted and SNR drops by 6 dB by the end

of the test.

The dependence of SNR on the flux is also similar to the first test: there is a

significant drop when 7-flux is increased from 0 to 10 krad/hr. This indicates that

the scintillation noise becomes dominant as soon as it appears. Then the dependence

flattens out more than the square root model would predict (in the square-root model

a 10 dB differences in SNR should be observed for 10-times difference of 7-fluxes).

Our interpretation of this effect is as follows. Camera noise measurements are

normally done in the dark. Hence, if the dark current is small, the average video level

is zero and noise corresponds to relatively small random excursions up and down from

zero. In the case of the scintillation noise the situation is different. Minority carriers

generated by the ionizing 7-radiation compete with the photo-generated carriers and

may account for a
significant fraction of the full well. Scintillation noise rides on top
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of this average scintillation signal coming from each pixel. Under these conditions

the noisemeters may simply produce erroneous results (e.g., by failing to properly

subtract the average video level). Alternatively, when the 7-flux is especially high

the scintillation signal may be close to the pixel saturation level, which will clip off

the shot noise associated with the 7-flux (if the imager is fully saturated the shot

noise is zero).

TID=510krad,yflux=0

TID=520 krad, y-flux=30 krad/hr

&

i..i^-

' . . IT. ^*f\ aie- *"i' 1

TID=2.85 Mrad, Y-flux=0

TID=2.85 Mrad, Y-flux=30 krad/hr

Figure 4.7: Still frame captures taken during the second radiation test.

In Fig. 4.7 we present still frame captures taken at the beginning and in the end

of the test: left and right columns correspond to ~ 500 krad and 2.85 Mrad total

dose, respectively; and also at 2 values of 7-flux: top and bottom rows correspond to

0 and 30 krad/hr 7-flux, respectively. As one compares the slides taken at different

values of flux but at the same accumulated dose, the immediate conclusion is that at

30 krad/hr the degradation of picture quality is insignificant and the color video the
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camera generates is useful (cf. Fig. 4.6). In the end of the test, at TID=2.85 Mrad, the

camera was still fully functional and was producing color video of reasonable quality.

Unfortunately, the lens suffered significant browning after 2.85 Mrad of TID, while

the light level was never adjusted to compensate for that. That is why pictures in

the right column of Fig. 4.7 look darker than they should.

4.4.3 Third Radiation Test

The third radiation test was performed again at the University ofMaryland in Febru

ary of 2006. Three cameras were subject to the test. In this case full level video

output was studied as a function of TID to get a better understanding of the camera

gain decrease observed in the first and second radiation tests. The data on camera

output level variation are presented in Fig. 4.8. The video level in mV is plotted ver

sus accumulated ionizing dose in rad. Cameras A and B had MTF masks deposited

on top of their imagers. They used no lenses or mirrors. Hence, the blue and pink

curve behavior reflects true camera gain degradation with radiation. Camera C had

certain elements in the optical path that browned as a result of irradiation (in a sim

ilar fashion as the 2.85 Mrad slides in Fig. 4.7). Hence, video output level decrease

of camera C is bigger, but not all of it should be attributed to the gain degradation.

The results of the SNR measurements in the third radiation test could be summa

rized as follows. Brand new ColoRAD cameras in the absence of radiation show SNR

of about 60 dB in monochrome and about 50 dB in color channel. As soon as the

radiation flux of about 35 krad/hr is applied, SNR drops in the monochrome channel

to about 40 dB and in the color channel to about 36 dB. As long as the radiation

flux is present there is very little dependence of SNR on the total dose (by TID=4

Mrad SNR increases by about 5%). The small increase of SNR with the dose should

be attributed to camera gain degradation (see above). After the radiation flux is

removed SNR increases to about 52 dB in the monochrome and to about 46 dB in

the color channel. The fact that these numbers are about. 4-S dB smaller than the
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Cam ABC Video Level with TID

OOOErOO ; K;.-. i '.:* 2 OK 2 z:$<s 3 oo=toe

Figure 4.8: Camera, video output level in mV as a function of TID in rad. Cameras

A and B had MTF/Synthesized colors imagers. Camera C had a lens and a special

light source, both of which browned in radiation.

corresponding numbers in the beginning of the test is likely due to increased FPN of

the irradiated imagers and a deficiency of CDS control algorithm that precludes CDS

from removing FPN as effectively as it does before irradiation (e.g., source follower

runs out of headroom, becomes unable to fully charge CDS capacitors, and is also

responsible for reduced camera gain discussed above).

Summarizing the above, all 3 cameras successfully survived till the end of the test

while producing color video of excellent quality. Camera B reached TID of 4 Mrad.

The AGC circuit in CCU (Sects. 3.5, 3.6) was disabled in all 3 radiation tests. Had

it been enabled, the camera gain degradation and optics browning, discussed above,

would not have been noticeable to the end user. The camera would have to slightly

boost the gain to compensate for these deficiencies. Furthermore, the dark frame

cancellation block in CCU (Sect. 3.5) was also not enabled. When this block comes

on-line, the problems, associated with the extra FPN after irradiation, are expected

to go away. At this point we are unaware of any other possible imager and camera



failure mechanisms in radiation.
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Conclusion

We have studied theoretically the linearity of an active CID pixel. It is shown that the

response curve can exhibit a dual-slope characteristic. The dual slope is an indication

of incomplete removal of the photo-charge from the sense gate due to the voltage

increase of the latter. The dual slope can occur when the charge is transferred from

the sense gate to either the lateral drain (DRO) or to the storage gate (for NDRO

purposes). In the latter case the second slope increases with increase of the storage

gate size in contrast with the charge sharing scenraio. In the limit of very big storage

gate the second slope approaches that for the DRO regime. The theoretical findings

were illustrated by and shown to be in good agreement with the experimental data

The second slope can be removed by careful gate sizing, parasitic capacitor sizing,

adjustment of the gate voltages, or by skimming off the excess charge during the

integration.

We have presented the color video sensor CID25 and the color video camera Colo

RAD based on it. The sensor is equipped with the preamplifier-per-pixel technology,

on-chip CDS circuitry and parallel row processing to achieve high conversion gain and

low noise. The saturation of the monochrome imager (without. IR cutoff and color

filters) operated at pixel full well in the RS170 mode was observed at 0.35 ft-c of light

with SNR of 59 dB. The saturation of the monochrome imager operated at
l/12th

of

the pixel full well in the RS170 mode was observed at 0.03 ft-c of light with SNR of

37 dB. The second set of numbers indicated that the imager was capable of operating

at very low light levels while producing a picture of fully adequate quality.

Using the test slides it was established that the system had single pixel resolution
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and resolved at least 450 TV lines. Consequently, color was easily produced once the

color filters were deposited. The saturation of the color imager (with IR cutoff and

color filters) operated at pixel full well required 3 ft-c of light with SNR of 41 dB. With

the color subcarrier trap filter "on", the SNR increased to 47 dB. If, additionally, the

weighting filter was turned
"on"

the SNR rose to 58 dB.

The CID25 video imager and the head part of the camera were shown to be

radiation hardened. In one radiation test the ColoRAD camera produced adequate

color video out to 4 Mrad of total dose of 60Co 7-radiation with insignificant SNR

degradation. The picture quality was shown to be acceptable in the presence of 7-flux

of up to 35 krad/hr.
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