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Abstract

Using Least Variance for Robust Extraction of Systolic Time Intervals

Cody R Cziesler

Supervising Professor: Dr. David A. Borkholder

Systolic time intervals (STI) are clinically used as non-invasive predictor of cardiovascu-

lar disease. However, algorithm accuracy generally suffers across subjects and physiological

states, requiring parameter tuning for robust STI extraction. To address this challenge,

an automated methodology of processing with varying tuning parameters was explored. In

this work, two STIs were examined: the R-wave pulse transit time to the PPG foot at the

ear (rPTT) and the left ventricular ejection time (LVET).

Historic feature detection algorithms were used with a range of tuning parameters over

a 60 second interval, with least variance used to select the optimal parameter for robust

extraction. These least variance algorithms were quantitatively compared to historic, single

parameter algorithms using a positive predictive value metric. In order to decrease the

runtime of the algorithms, the least variance algorithms were written such that they could

run on a GPU using CUDA.

Overall, the least variance algorithms were able to extract the features better than the

historic algorithms, without sacrificing runtime. In addition to providing this robust and

reliable STI extraction, the least variance algorithms can be adapted to extract features

from any period data stream.
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Chapter 1

Introduction

Cardiovascular disease is the leading cause of death in the United States [1], and accurate

extraction of systolic time intervals is key to early detection [2, 3]. The ECG waveform, for

example, can provide information about the presence, extent, and severity of myocardial

ischemia [4]. An elevated heart rate is associated with an increased risk of heart failure in

asymptomatic patients [5]. By extracting non-invasive ventricular performance information,

doctors will have better tools to diagnose and treat patients. This work examined two of

the more prominent STIs: the rPTT and the LVET.

1.1 Biological Background

1.1.1 The Heart and Circulatory System

The Heart

The human heart is the central organ in the circulatory system; it is necessary for the

body to function. Its main purpose is to pump blood throughout the body. The blood

carries essential oxygen and nutrients throughout the blood vessels to the cells via periodic,

rhythmic pumps from the heart. Furthermore, it carries waste, such as carbon dioxide,

away from the cells to the excretory system.

The heart lies between the lungs in the chest cavity. It is separated vertically into

two halves, and then again subdivided horizontally into two cavities; the upper cavities are

known as the atria, and the lower are called the ventricles. Thus, the heart is separated into
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Figure 1.1: The human heart (published with permission from Eric Pierce) [6].

four total chambers: the left and right atria, and the left and right ventricles. Figure 1.1

shows an illustration of the heart with the four chambers labeled.

In essence, the heart acts as a double pump. The right side of the heart collects the

de-oxygenated blood from the veins and pumps it into the lungs for the carbon dioxide to

be dropped off and the oxygen to be picked up. The left side collects the oxygenated blood

from the lungs and pumps it out to the body through the arteries [7].
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The Heart Beat

The contractions of the heart will pump blood through the arteries to all parts of the body.

These contractions are periodic in nature, occurring approximately sixty times per minute

(the heart rate). The start of a heart contraction originates from the sinoatrial node (SA);

the SA sends an electrical impulse, starting the act of the heart beating. From there, the

heart will go through three phases: atrial systole, ventricular systole, and diastole [8].

The atrial systole is a short contraction of both the left and right atria, occurring

simultaneously. On the right side of the heart, this causes oxygen-depleted blood from

the veins that had flowed into the right atrium to be pushed through the atrio-ventricular

openings into the right ventricle. On the left side of the heart, atrial systole causes oxygen-

rich blood from the lungs to be forced into the left ventricle.

Ventricular systole is a simultaneous, more prolonged contraction of both the left and

right ventricles. On the right side, this causes the oxygen-depleted blood to be pumped out

of the right ventricle, through the pulmonary valve, and into the lungs. On the left side,

ventricular systole increases the pressure within the left ventricle until the pressure exceeds

that within the aorta. At that time, the oxygen-rich blood is pumped through the aortic

valve into the aorta. When the moment of ventricular systole ends, the pressure from the

aorta exceeds that from the left ventricle, causing the aortic valve to close.

During diastole, the valves to the heart are relaxed, allowing blood to flow from either

the veins or the lungs into the atria. This duration is also known as the period of rest [7].

1.1.2 Biological Signals

The two biological signals that will be noninvasively measured in this thesis are the elec-

trocardiogram (ECG) and the photoplethysmogram (PPG). Figure 1.2 shows a summary

of the extracted features overlaid onto a graph of the ECG and PPG signals.
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Figure 1.2: Graph of ECG and PPG Signals

Electrocardiogram (ECG)

An electrocardiogram, or ECG, is a measurement of electrical activity of the heart over a

period of time. It is captured by attaching electrodes across the heart that detects and

amplifies a small electric field caused by the heart dipole.

There are five major features in an ECG waveform, which are historically called P, Q,

R, S, and T waves. The QRS complex is made up of the Q, R, and S inflections and

represents the depolarization of the ventricles. The QRS complex is also important in this

work because its peak can be used as the start of the R-wave pulse transit time (rPTT). The

QRS complex can be found by using algorithms such as the Pan-Tompkins QRS Detection

Algorithm [9].

Figure 1.3 shows a typical ECG signal. One of the QRS complex time intervals is labeled,

as well as one of the R-wave peaks. The P, Q, R, S, and T complexes are also labeled.
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Photoplethysmogram (PPG)

A photoplethysmogram, or PPG, is an optical measurement that detects the change of

blood volume in the microvascular tissue bed. In other words, PPG measures blood flows

through the capillaries. The PPG is taken by using a light source, usually a light emitting

diode (LED), to illuminate an area of skin. In the case of a reflective PPG sensor, a certain

amount of light is reflected back by the blood and tissue. That reflected light is measured

by a photo diode on the same side of the skin as the LED. In the case of a transmissive

PPG sensor, only a part of the light is able to pass through the blood and tissue, and that

light is measured with a photo diode on the opposite side of the skin than the LED. The

LED and photo diode usually pair together with a few other electrical components, such as

an amplifier and passive elements, to form a PPG sensor to measure the change of blood

volume [10].

A typical PPG signal consists of two waveforms superimposed together: an AC com-

ponent and a quasi-DC component. The AC component has a fundamental frequency of

around 1 Hz, which corresponds to the heart rate. The quasi-DC component is based on

the amount of blood in the capillaries, and will vary slowly with respiration [11].

The maximas of the PPG are known as peaks, and the minimas are called feet. The

dicrotic notch is a temporal feature of the photoplethysmogram waveform. It is a small

downward deflection that occurs following the PPG peak. The dicrotic notch is attributed

to the reflected wave caused by the closure of the aortic valve at the end of ventricular

systole [10, 12]. It has also been shown that the dicrotic notch is a reflected wave caused by

the aortic valve closure [10]. Older patients and people with less compliant arteries have a
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less pronounced dicrotic notch due to reduced magnitudes of the PPG harmonics, making

the dicrotic notch more difficult to detect [13].

Figure 1.4 shows a typical PPG waveform. This plot shows two periods of the PPG.

One foot, and one dicrotic notch are labeled on the graph.

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

Graph of PPG

Time (s)

P
P

G
 (

V
)

 PPG Foot  PPG Dicrotic Notch

Figure 1.4: Graph of PPG Signal

1.1.3 Systolic Time Intervals

ECG R-Wave Pulse Transit Time (rPTT)

The rPTT is the ECG R-wave pulse transit time, which is the time elapsed between the

ECG R-wave peak and a location on the PPG waveform. For this work, the PPG foot will

be used since it is the location that is most robustly extracted from the PPG waveform.

Equation 1.1 shows this relationship, where ECGr−wave is the ECG R-wave peak, and

PPGfoot is the PPG foot [11, 15].

rPTT = ECGr−wave − PPGfoot (1.1)

Figure 1.5 shows how the rPTT is found from the ECG, and PPG signals.
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Left Ventricular Ejection Time (LVET)

The left ventricular ejection time is the amount of time between the aortic valve opening to

the aortic valve closing. LVET can be directly measured by the time difference between the

first and second heart sounds, and can be estimated from the time difference between the

PPG foot (valve opening) and the PPG dicrotic notch (valve closing). Since heart sound is

not used in this thesis, the LVET will be captured from the PPG waveform. Equation 1.2

below shows this relationship [15, 16].

LV ET = PPGdicrotic−notch − PPGfoot (1.2)

Figure 1.6 shows where the LVET occurs in relation to a PPG waveform.
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1.2 Systolic Time Interval Extraction

1.2.1 PPG Foot Detection

Absolute Minimum

One method for finding the PPG foot is by taking the minimum value of the PPG waveform

before the PPG peak. This may work well for some waveforms, but most photoplethysmo-

grams have a very shallow slope near the foot. This causes small amounts of noise to be

picked up as the smallest value, resulting in incorrect feet.

Second Derivative Maxima

Another method for finding the PPG foot is to find the maximum value of the second

derivative. Chiu et al. described a method in which a 7-point central difference formula

was used over the region stretching 10 milliseconds before and 100 milliseconds after the

minimum point of the PPG waveform. The maxima of that region was used as the PPG

foot. Chiu et al. found that the second derivative method gave very consistent and reliable

results [17].
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Third Derivative Peak

Chan et al. discovered that a rapid change from thick to thin on the first derivative PPG

waveform corresponded with maximum acceleration, or a peak in the third derivative PPG

[18]. This method, however, is very prone to noisy signal errors. Since the derivative must

be taken three times on the original signal, it is very possible that a small error will result

in very large errors in the higher derivatives.

Intersecting Tangent

The intersecting tangent method is an algorithm to find the photoplethysmogram foot. The

foot of the waveform is found by the intersection of the tangent to the maximum systolic

upstroke with the horizontal line through the minima of the waveform [19]. It has been

shown that the intersecting tangent method is one of the more reliable methods of finding

the PPG foot [17].

1.2.2 PPG Dicrotic Notch Detection

Slope Extrapolation

Chirife et al. first found the PPG dicrotic notch in an effort to determine the LVET empiri-

cally from the features of a photoplethysmogram. In their experiment, the authors captured

ECG, PPG, and carotid pressure waves in a group of subjects. These signals were inspected

and correlated together to determine the best landmarks of the PPG to correspond with

the known LVET landmarks of the carotid pressure wave.

The authors determined that the best places on the PPG to find the LVET were the

rapid ascent of the curve (the PPG foot), and the most rapid descent before the point of

inflection. This point found is called the dicrotic notch. The method used to find this point

is known as the slope extrapolation method in literature [12].
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First Derivative

Quarry-Pigott et al. improved on the slope extrapolation method by making the observation

that the first derivative of the PPG waveform gave ejection times that correlate more closely

to the ejection times measured in the carotid artery [16].

The authors held a study to capture the ear densitogram (which is now known as

the ear photoplethysmogram, or ear PPG), the first derivative of the ear PPG, the ECG,

and carotid pressure waves. As with the previous slope extrapolation study, the authors

empirically determined the best locations to extrapolate the LVET on the first derivative of

the ear PPG. They discovered that rapid change from thick to thin for a starting point, and

the nadir for the ending point. Of course, the authors were using a photographic recorder

to extract the first derivative of the ear PPG from the ear PPG itself, so the rapid change

from thick to thin is an artifact of the data collection. This method can still be useful by

modifying it slightly. By using statistical analysis, the paper proves that the first derivative

method of extracting LVET is more accurate than using the slope extrapolation method.

Thus, the zero of the first derivative is used as the dicrotic notch in the first derivative

method.

Third/Forth Derivative

Chan et al. further improved upon the first derivative method of extracting LVET by

examining the second, third, and fourth derivatives of the PPG waveform. The authors

saw that a more accurate dicrotic notch point for the LVET measurement was the diastolic

peak of the third derivative PPG. However, due to the noisiness of the waveforms due to

wave reflections, the authors used the other derivatives as guides to determine which peaks

were the correct start and end points of the LVET [18].

The authors state that their algorithm showed high correlation with the LVET extracted

from aortic flow, but was not robust enough for clinical evaluation of LVET. However, their

method of extracting LVET was compared to flow, not pressure, meaning their method

could still be accurate to the LVET extracted from the carotid pressure wave.
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1.3 Graphics Cards

In order to speedup the execution time of the algorithms, CUDA was explored. CUDA is

parallel computing platform and programming model designed by NVIDIA. It involves run-

ning parallel code on graphics processing units (GPUs) to parallelize algorithms. Because

of the periodic nature of biological signals, and the parallel nature of the algorithms, it was

thought that CUDA would prove to be a useful tool in decreasing the runtime.

1.4 Thesis Overview

The remainder of this thesis is broken up into several chapters. The Algorithms chapter

will explore the historic algorithms and least variance adaptations. The CUDA chapter

explains the CUDA programming model and how it was used to decrease the runtime. The

Methods section explains exactly what and how this work was completed. The Results

and Discussion section explores the meaningful results from this work, and quantitatively

compares the historic and least variance results. The Conclusion concludes this work, and

gives future work ideas. The MATLAB Files appendix contains all of the source code from

this work.
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Chapter 2

Algorithms

A new class of algorithms was designed to better extract the waveform characteristics that

mark the start and end of the STIs by modifying historic algorithms to be run multiple

times with different tuning parameters. These tuning parameters are variables within the

algorithm that, when changed, slightly alters the feature extracted. Because a single pa-

rameter is not ideal for every waveform, the tuning parameter can be used to better extract

the features across people and physiological states.

The two STIs found in this work are the rPTT and the LVET. Each algorithm to

extract the start and end points of the STIs can be separated into two parts: pre-processing

and processing. The pre-processing step contains filtering, differentiation, squaring, and

segmentation, while the processing step is where the main feature detection occurs, and

is the part of the historic algorithm that is replaced for the least variance algorithms.

Figure 2.1 contains the generic model for the least variance adaptation of the processing

step.
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Figure 2.1: The least variance adaptations of the historic algorithms follow similar flows:
choose the number of iterations, run the algorithm with different tuning parameters, find
the standard deviation of the STI, then choose the systolic time interval with the least
variance.

2.1 ECG R-Wave Pulse Transit Time (rPTT)

The R-wave pulse transit time is the time duration between the ECG R-wave peak and the

PPG foot, where the R-wave peak is extracted by a simple peak detection algorithm and the

PPG foot is historically found by using the percent height algorithm found in commercial

systems such as the SphygmoCor health monitoring system [20] (Figure 2.2).

2.1.1 Percent Height PPG Foot Detection

The algorithm for the percent height PPG foot detection starts by low pass filtering the raw

PPG signal, then segmenting it by using the robustly extracted ECG R-wave as the start of

each beat. The time value that is located at 5 percent of the total amplitude for that beat

is extracted, and the final rPTT value is found by using Equation 2.1, where PPGfoot is the

time that the PPG foot occurs, and ECGr−wave is the time that the R-wave peak occurs.

Note that the 5 percent value is chosen based on the default value of the SphygmoCor health

monitoring system [20].

rPTT = PPGfoot − ECGr−wave (2.1)

This algorithm fails when the noise level surrounding the foot is larger than the 5 percent
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Figure 2.2: The PPG foot detection is shown, with the percent height algorithm on the
upper path, and the least variance adaptation on the lower, darker path.

thresholding level, since the noise will be extracted rather than the true PPG foot.

2.1.2 Least Variance PPG Foot Detection

Rather than thresholding at a fixed percentage, the threshold parameter was varied in the

least variance algorithms (Figure 2.1). The least variance PPG foot detection algorithm

thresholds across N percent heights, with the thresholded value containing the smallest

variance of rPTT values extracted as the PPG foot (Figure 2.2. The rPTT is then found

by Equation 2.1.

2.2 Left Ventricular Ejection Time (LVET)

The left ventricular ejection time is the time duration from the PPG foot to the PPG

dicrotic notch, where the PPG foot is found by using the percent height algorithm explained

previously and the PPG dicrotic notch is historically found by using the algorithm described
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by Quarry-Pigott [16] (Figure 2.3).
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Figure 2.3: The PPG dicrotic notch detection is shown, with the Quarry-Pigott algorithm
on the upper path, and the least variance adaptation on the lower, darker path.

2.2.1 Quarry-Pigott PPG Dicrotic Notch Detection

The duration between the PPG foot and the PPG derivative nadir (dicrotic notch) after

the peak was identified as providing an accurate estimate of LVET [16]. To find the di-

crotic notch, the PPG signal is low-pass filtered, differentiated, low-pass filtered again, and

segmented into beats based on the ECG R-peaks. The nadir after the peak is taken as the

dicrotic notch, and the final LVET is found by using Equation 2.2, where dPPGnadir is the

nadir of the PPG derivative signal, and the PPGfoot is the foot of the PPG signal.

LV ET = dPPGnadir − PPGfoot (2.2)

The algorithm accuracy suffers when noise induces multiple zero-slope locations in the

PPG derivative signal.
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2.2.2 Least Variance PPG Dicrotic Notch Detection

The nadir detection of the Quarry-Pigott algorithm was replaced with a thresholding algo-

rithm that varies on the upslope and downslope surrounding the nadir (Figure 2.1). The

least variance algorithm extracts N/2 percent heights on the downslope to the nadir, and

N/2 additional percent heights on the upslope after the nadir and the thresholded value

with the least variance of LVET values is extracted as the PPG dicrotic notch. The LVET

is found using Equation 2.2.
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Chapter 3

CUDA

3.1 Graphics Card Background

A GPU, or graphics processing unit, is essentially a coprocessor that is able to perform

operations on pixel values, and can be either discrete or integrated. An integrated GPU

typically uses a portion of the memory on the host, and is usually slower than its discrete

counterparts. A discrete GPU is one that is mounted on a graphics card, which is a printed

circuit board containing the GPU, some amount of discrete memory, and an interface to

the computer’s motherboard.

Graphics cards were first produced for the public market in 1982, with Intel’s iSBX

275 Video Graphics Control Multimodule board [21]. This graphics card was able to draw

simple lines, rectangles, arcs, and text. It contained an onboard memory module, called

a frame buffer. This frame buffer was able to read and write to the host system memory

via DMA, or direct memory access. The processor would write the graphics card through

a custom API, or application programming interface. The graphics card would take those

commands, perform the corresponding logic to the pixels in the frame buffer, and output

the necessary signals to the monitor.

In the 1990s, graphics card producers, such as NVIDIA, ATI, and 3dfx, started releasing

abstractions to allow application developers to take advantage of the GPU through standard

programming languages. A few of these standard APIs include OpenGL, Glide API, and

DirectX. These APIs allowed programmers to code for any compatible graphics card, rather

than having to write different code for each card.



18

A typical graphics card produced in the mid to late 1990s contained a massively parallel

pixel pipeline. A single pixel pipeline had several stages in which the pixels were processed

through to render an image. These pixel pipelines were instantiated many times in the

GPU, in order to process many pixels together at the same time, in parallel. Figure 3.1

shows a fixed-function graphics pipeline from an early NVIDIA GeForce GPU. Commands

are sent from an application running on the host through a standard API. The host interface

received the commands and data from the CPU. It also contained hardware to perform direct

memory access (DMA) to transfer data in bulk from the main host memory to the graphics

pipeline. The other stages of the pipeline were essentially to perform transformations on

the final rendered image.

The NVIDIA GeForce 3, released in 2001, was the first graphics card to allow the

pixel pipeline to be programmable, meaning that the functionality of some of the stages

could be changed to produce different rendered pixels [22]. In particular, the floating-point

vertex engine (VS/T&L stage) was given programmability by publicly releasing the private

instruction set. This allowed for more control over how the final outputted image was

manipulated, but also gave a means of using this new architecture to perform calculations

on non-pixel data. This lead to a new way of GPU computing, now known as general-

purpose computing on a graphics processing unit, or GPGPU.
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Figure 3.1: A Fixed-Function NVIDIA GeForce Graphics Pipeline

Computing data using the GPGPU architecture had its problems. For one, there were

no user-defined data types, meaning the programmer needed to store data within the vector

arrays on the GPU. Secondly, the primitive operations, such as addition, division, etc., were

not IEEE compliant. This meant that computations on a GPU were not necessarily the

same as that on a CPU, or even another GPU. Finally, the GPGPU pipeline did not provide

an easy way to write to the main memory; the computation needed to be converted to a

pixel color and saved to the frame buffer memory before it could be written to main memory.

These deficiencies of the GPGPU programming model led the way towards more powerful

GPU architectures.
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3.2 NVIDIA’s CUDA

In 2007, NVIDIA released a set of graphics cards with an entirely new architecture. This

programming model and hardware was dubbed CUDA. Originally, CUDA stood for com-

pute unified device architecture. Like the GPGPU, it allowed for advanced programmability

of the graphics pipeline. However, instead of providing the APIs to program certain stages,

CUDA replaced the pipeline with fully programmable processors with instruction memory,

instruction cache, and instruction sequencing control logic. NVIDIA also added an abstract

parallel programming model with a hierarchy of parallel threads, as well as barrier synchro-

nization and atomic operations. To go along with this new architecture, the CUDA C/C++

compiler, library, and runtime software were developed to enable programmers to easily use

the new CUDA GPU architecture [23].

In 2010, NVIDIA released its newest version of the CUDA architecture called Fermi.

Fermi introduced several new features to increase parallel performance. This included new

streaming multiprocessors, an improved memory subsystem, and new application switching

logic. This work will use the Fermi-based CUDA architecture [24].

3.2.1 CUDA Threads

A typical CUDA program has two main parts: the sequential part that runs on the host

(CPU), and the parallel part that runs on the device (GPU). These two components work

together to perform some task. Usually, the sequential part will setup the GPU, load and

access the GPU’s memory, and start the parallel code. The parallel part, also known as a

kernel, will execute some small task that will run in parallel on many small processors within

the GPU. Each small task, which is also called a thread, is exactly the same. However, the

threads execute on different data. This programming model is known as “same program,

multiple data,” or SPMD, because the same program is processing multiple data values. For

CUDA, the SPMD programming model is identical to SIMD, or “same instruction, multiple

data,” since the same instruction is run in multiple threads on multiple data values.

CUDA also introduced abstract concepts known as blocks and grids. When a kernel is

launched, it creates a grid of thousands to millions of threads. In Figure 3.2, Kernel 0 on

the host launches Grid 0 on the device. Later on in the code, Kernel 1 launches Grid 1.



21

When running a large number of threads in a grid, it is necessary to create a large amount

of data parallelism (more on parallelism is in a later section).

The grids are split up into a two-dimensional array of blocks. These blocks are further

organized into three-dimensional arrays of threads. Figure 3.2 shows an example of this

thread hierarchy. In this figure, each grid is split up into a 2 by 3 matrix of blocks. Each

block is then arranged into 2 by 4 by 2 matrices of threads. The number of threads shown

is very small compared to what would normally run on a GPU, but were kept small for ease

of describing the CUDA thread organization [23].
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Figure 3.2: CUDA Thread Organization, adapted from [23]
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Arranging threads into grids, blocks, and grids is the responsibility of the programmer.

It is their job to assign the threads correctly to assure the hardware resources of the graph-

ics card are fully utilized. In addition, there is a concept called warps that is an implied

responsibility of the programmer. Warps are not assigned by the programmer, but are

automatically created. Implied responsibility means that the programmer should under-

stand how these warps are created in order to choose the thread hierarchy to best use the

hardware on the CUDA card. Each block is assigned to a streaming multiprocessor (SM).

Multiple blocks may be assigned to a single SM if there are enough resources available.

These threads running on the SM are broken up into groups of 32 threads, called warps.

Within SMs, warps are the unit of thread scheduling.

As mentioned earlier, each warp contains up to 32 threads from the same block that

contain the same program counter. Because all 32 threads in a warp share the same program

counter, they all execute the same instructions simultaneously. However, even though each

thread shares a program counter, it is still possible for divergence within a warp. For

example, if a warp contains a branching instruction, such as an if-else construct, certain

threads may execute some instructions while others do not. In this case, the warp will

maintain an active mask to keep track of which threads in the warp will execute the next

instruction. This active mask can be used to disable threads that are not part of the current

branch path. Hence, the threads do not diverge, but instead do not execute until the control

path converges again.

Figure 3.3 shows an example of how a streaming multiprocessor warp scheduler might

schedule warps. Note that only 16 instructions are shown for simplicity. In this example, all

threads in Warp 8 will execute instruction 22. Then, only 7 threads in Warp 1 will execute

instruction 63. This shows the warp divergence explained earlier. Warp 5 will then have all

threads execute instruction 12. The warps are scheduled based on which are ready to run,

and which are currently waiting. If, for example, one warp needed to access high-latency

global memory, it would be taken out of the priority schedule until it received its data from

memory. During this time, other warps are scheduled, effectively hiding the memory access.
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Figure 3.3: CUDA Warp Scheduling Example, adapted from [24]
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3.2.2 CUDA Architecture

Figure 3.4 shows the block diagram of a typical Fermi based CUDA-capable GPU. In essence,

the CUDA architecture contains hundreds of streaming processors, known as CUDA cores.

The CUDA cores are then grouped into streaming multiprocessors (SMs). The SMs are

positioned around a common L2 cache, with each SM having access to read and write to

both L2 cache and global DRAM memory.

In regards to the Fermi architecture, there are up to 512 streaming multiprocessors,

organized into groups of 16 SMs with 32 streaming processors each. The GigaThread warp

scheduler is in charge of assigning work to each of the SMs. Furthermore, there can be up

to 6 GB of GDDR5 DRAM memory, arranged into six partitions [24].
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Figure 3.4: Architecture of a CUDA-Capable GPU, adapted from [23]
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Streaming Multiprocessor

The streaming multiprocessors (SMs) are the main processing center for CUDA-capable

GPUs. Each SM is made up of several streaming processors (SP), warp schedulers, dis-

patch units, a register file, load and store units (LD/ST), special function units (SFU), an

interconnection network, shared memory, level one instruction cache, level one data cache,

and level two uniform data cache. Figure 3.5 shows the typical block diagram for the

streaming multiprocessor.

In the Fermi architecture, there are up to 512 streaming multiprocessors. Within each

SM will be 32 streaming processors, 16 load and store units, four special function units, two

warp schedulers, two dispatch units, a 32K x 32-bit register file, and a 64K memory that is

shared between shared memory and level one cache [24].



26

L1 Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

Register File (32 KB x 32-bit)

Interconnection Network

Shared Memory and L1 Cache (64 KB)

L2 (Uniform) Cache

LD/ST

SFU

SFU

SP

SP

SP

SP

Dispatch Port

Operand Collector

Result Queue

FPU ALU

SP SP

SP SP

SP SP

SP SP

SP

SP

SP

SP SP

SP

SP

SP

SP SP

SP SP

SP SP

SP SP

SP

SP

SP

SP SP

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

Figure 3.5: Architecture of a Fermi Streaming Multiprocessor, adapted from [24]

Streaming Processor Each streaming processor (SP), or CUDA core as they are typ-

ically called, is essentially a low-speed processor. However, where a CPU runs between

one and sixteen threads simultaneously, a GPU can run upwards of thousands of threads

in parallel. Thus, a GPU is said to have “strength in numbers,” meaning the GPU can

break up a task into many small computations in order to obtain better performance than

a high-powered CPU.

The streaming processor contains a few components: the dispatch port for receiving
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instructions, the operand collector for receiving the operands, the floating point unit (FPU)

that uses the IEEE 754-2008 floating point standard, the fully pipelined 32-bit integer

arithmetic logic unit (ALU), and the result queue for sharing its results with the other

parts of the SP [24].

Register File A register file is contained within each streaming multiprocessor. Each

thread contains its own set of local registers within the register file. The amount of registers

each thread owns depends on how many registers each thread requires. In this sense, the

registers are dynamically allocated. Once the registers have been allocated to a specific

thread within a SM, those registers cannot be accessed by another thread.

By allowing the registers to be dynamically allocated, it allows more flexibility to both

the compilers and the programmers. The compilers have more freedom to tradeoff between

instruction-level parallelism and thread-level parallelism. Instruction-level parallelism is the

parallelism that exists between instructions within a thread. Thread-level parallelism is the

parallelism between multiple threads. The compiler can choose whether the best speedup

will occur when instruction-level parallelism or thread-level parallelism is exploited. The

programmer can choose how many registers each thread should have, allowing more or less

threads running on each SM. By giving the programmer control over the number of threads

on each SM, it gives the opportunity for better execution times [23].

The Fermi-based register file is 32 KB long by 32-bits wide. By making the width 32

bits, it allows for floating-point numbers to be easily stored in a single register [24].

Warp Scheduler The dual warp schedulers within the streaming multiprocessors are

used to schedule which warps should execute next. Warps are added to the scheduler when

all of its operands are ready for consumption for the next execution cycle. Eligible warps

are selected based on a prioritized scheduling policy. In other words, the warp scheduler has

logic to decide which warp is of higher priority. This logic is a combination of round-robin

scheduling, and age of warp scheduling [23].

Round-robin scheduling is a scheduling algorithm where time slices are assigned to each

task in a cyclic pattern. In this algorithm, the tasks do not have priority, meaning each

task has the same chance of executing next as the other tasks. Age of warp scheduling is
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another scheduling algorithm where tasks are assigned based on the age of the task. With

this algorithm, older tasks will have a greater chance of running next than younger tasks.

By combining these two scheduling algorithms, the Fermi CUDA architecture will perform

round-robin scheduling for each age group. For example, the oldest tasks will execute in

round-robin, then the next oldest tasks will run in round-robin, and so on.

As stated earlier, each thread in a warp executes the same instruction. To keep track

of which threads should be active during a specific instruction, the warp scheduler contains

active masks for each warp in the streaming multiprocessor. When a thread should not be

active on a certain program counter, the bit in the active mask for that thread is cleared,

telling the dispatch unit to skip dispatching that thread for the current instruction [23]

Unlike other scheduling systems, the warp scheduler does not introduce any latency

when switching warps. This concept is called zero-overhead thread scheduling. The only

time that warp switching causes an overhead is when there are no warps available to run

because the operands to every warp are not available. To remedy this, simply introduce

more threads in each block to create more warps. This way, there are more warps, allowing

other warps to execute while others are waiting for long-latency memory operations to

complete [24].

In the Fermi-based CUDA cards, there are two warp schedulers. Each scheduler chooses

a separate warp to be issued and executed concurrently. The schedulers then issues one

instruction from each warp to either the groups of SPs, the load and store units, or the

SFUs. Because the two warp schedulers operate on separate warps, there is no need to check

for dependencies between them. This allows for excellent, near-peak hardware performance

when executing [24].

Dispatch Unit The dispatch unit is used to fetch instructions from L1 instruction cache,

and dispatch those instructions to the correct streaming processors according to the warp

schedulers. The dispatch unit is tightly coupled with the warp scheduler, in that it is the

interface between scheduling the warps and the streaming processors. As previously men-

tioned, there are two warp schedulers and two dispatch units in Fermi-based architectures

[24].
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Load and Store Control The load and store control units within the streaming multi-

processors are used as the interface between the threads and the memories. These memories

include the register file, the shared memory and L1 cache, the local L2 cache, the global L2

cache, and the global DRAM memory [24].

Special Function Units The special function units (SFUs) are specialized arithmetic

units that are able to perform mathematical functions such as sine, cosine, reciprocal, and

square root. The SFUs are decoupled from the execution pipeline, meaning other warps

may be dispatched to the streaming processors while the SFUs are occupied. In Fermi-based

CUDA cards, there are four SFUs per SM, double that of previous CUDA architectures [24].

Shared Memory and L1 Data Cache Shared memory is a chunk of memory that can

be accessed by every thread executing on a single streaming multiprocessor. This is useful

for programs that require knowledge of the data around the data point it is currently working

on, such as matrix calculations. Shared memory is ideal to use in these situations because

accessing shared memory takes a very short amount of time compared to accessing global

DRAM. Once shared memory is loaded, it is significantly faster than accessing DRAM, and

can be accessed by multiple threads [24].

Level one (L1) cache is a new feature on Fermi-based CUDA cards. It is used to hold

global memory references, to decrease DRAM access times. This type of cache is very

useful when the kernel may not be accessing data locations that can be shared between

other threads [25].

In Fermi architectures, there is 64 KB of configurable memory in each streaming mul-

tiprocessor. This memory can be configured as 48 KB of shared memory and 16 KB of

L1 cache, or 16 KB of shared memory and 48 KB of L1 cache. The choice is that of the

programmer and depends on two factors: how much shared memory is needed, and how

predictable are the kernel’s accesses to global memory likely to be [25].

L2 Data Cache (Local) The Fermi architecture added L2 cache to each streaming

multiprocessor. This cache allows for faster accesses to DRAM. An important feature of

L2 cache are the atomic read-modify-write operations. Atomic operations are those that
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are uninterruptible. These atomic operations are ideal for accessing shared data locations;

this includes data shared between blocks, or kernels. By implementing atomic operations

in hardware, it allows the ALU to perform the operation without having to us semaphores

[25].

GigaThread Scheduler

The GigaThread scheduler is in charge of distributing thread blocks to the SMs. The input

assembler on the host will compile the input code into an instruction set that the scheduler

can understand. Said scheduler will take the instructions and split up the work based

on the kernels already running on the GPU. Thus, multiple kernels can run on the same

CUDA card, with near-instantaneous kernel switching (under 25 microseconds), due to the

capabilities of the GigaThread scheduler [24].

L2 Cache and DRAM

The level 2 cache (L2) and dynamic random access memory (DRAM) memories are known

as the global memories on the Fermi GPU. These memories, unlike the local memories, can

be accessed by every SP within the GPU. Thus, the global memories make it useful for inter-

thread communication on a per-application basis. However, as explained earlier, accessing

global memory is typically slower than accessing local memory. Using global memory is a

tradeoff between communicating between processors and speed.

As seen from its name, L2 cache is used to cache accesses to DRAM. When memory is

accessed in DRAM, those values are transfered to L2 cache for future reference. This is im-

portant for memory coalescing. Memory coalescing is when memory is accessed sequentially.

For example, a warp may access memory locations M0,0,M1,0,M2,0,M3,0 in that order. This

will have a far greater access time than if the warp accessed M0,0,M10,3,M4,2,M0,20. This

is because DRAM cells are essentially weak capacitors. When these cells are accessed, the

small charge on the capacitor must be shared with a sensor to set off a comparator circuit

to determine if that cell had a zero or a one present on it. Since this is a slow process due to

the small charges on the capacitors, most modern DRAMs use a parallel process to increase

the access speed. This parallel process will read from consecutive memory locations at the
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same time, and compare each of the charges in parallel. The DRAM then transfers the

data from each location at high speed to the cache [23]. Thus, reading consecutive global

memory locations will give a much higher bandwidth than reading random data locations.

3.3 Data Parallelism

Data processing on graphics cards is used primarily when there are a large number of

computations that have low data dependencies. For example, Listing 3.1 would be a good

candidate for implementing on a graphics card. In this C-like example, two arrays, b and c,

are added together and placed in array a. These arrays are added by looping through each

value of b and c and adding the values at that location together, putting the sum in the

corresponding location in a. This is a good candidate for parallelizing with a GPU since

there is no data dependencies between iterations of the for loop.

Listing 3.1: Typical GPU Algorithm: Vector Addition

1 // - N is the size of arrays b and c

2 // - Array a is already pre -allocated

3 // - Arrays b and c contain numbers

4 for (int i = 0; i < N; i++) {

5 a[i] = b[i] + c[i];

6 }

In order to write code that will execute quickly and correctly in parallel on a GPU, it is

important to understand the data dependencies between computations. The sections that

follow will explain the three types of data dependencies in more detail.

3.3.1 Flow Dependency

Flow dependency occurs when a task depends on the result of a previous task. Listing 3.2

shows an example of something that has a flow dependency. When the loop is on a given

iteration (i), array a requires the value of a from the previous iteration (i−1). Thus, the

value of a[i] is dependent on the value of a[i−1] from the previous iteration.
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Listing 3.2: Flow Dependency Example

1 for (int i = 1; i < N; i++) {

2 a[i] = a[i-1] + b[i];

3 }

3.3.2 Anti-dependency

Anti-dependency occurs when a task depends on a value that is later changed. Listing 3.3

shows an example of something that has an anti-dependency. In this example, array a uses

the value at a of the next loop iteration. On the next value of i, a[i+1] will be overwritten,

meaning the a[i] is anti-dependent on a[i+1].

Listing 3.3: Anti-dependency Example

1 for (int i = 0; i < N; i++) {

2 a[i] = a[i+1]; + b[i]

3 }

3.3.3 Output Dependency

Output dependency occurs when the ordering of the tasks affect the result. Listing 3.4

shows an example of something that has an output dependency. Array a is the sum of

arrays b and c. However, array c is also assigned the sum of arrays d and e. If lines 2

and 3 were swapped, the value of array a would change, meaning that there is an output

dependency of array c.
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Listing 3.4: Output Dependency Example

1 for (int i = 0; i < N; i++) {

2 a[i] = b[i] + c[i];

3 c[i] = d[i] + e[i];

4 }

3.4 CUDA Programming Structure

CUDA is the hardware and software architecture that allows NVIDIA GPUs to execute

programs written in high-level languages, such as C, C++, Fortran, and more. A typical

CUDA program will have code that executes on the CPU, or the host, as well as on the

GPU, or the device. The code that runs on the device is known as a kernel. A kernel will

execute in parallel across many threads simultaneously. These threads may be organized in

grids of blocks of threads by the programmer or the compiler.

Usually, a CUDA program will consist of phases, where the code with little data paral-

lelism is executed on the host, and those with a lot of data parallelism is executed on the

device. Figure 3.6 shows this phenomenon. In this figure, the CUDA program starts out

executing the code serially on the CPU. Then, a kernel is called to run in parallel on many

threads. The CPU then runs some code in serial, until another kernel is called to run more

parallel threads [23].
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Figure 3.6: Execution of a Typical CUDA Program, adapted from [23]

Listing 3.5 shows an example CUDA program that will add two arrays element-wise.

This code follows the programming pattern shown in Figure 3.6; the CPU code (int ...

main()) will first run in serial. The serial code will setup the device kernels, and start

executing those kernels (add dev(...)). This example was adapted from Sanders and

Kandrot [26].
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Listing 3.5: Example CUDA Code

1 #define N = 64

2 /* Code that runs on the device (GPU) */

3 __global__ void add_dev(int *a, int *b, int *c) {

4 int threadId = blockIdx.x; // The index of the thread executing

5 // Add the elements corresponding to the index of the current thread

6 if (threadId < N) {

7 c[threadId] = a[threadId] + b[threadId ];

8 }

9 }

10 /* Code that runs on the host (CPU) */

11 int main() {

12 int a[N], b[N], c[N]; // Host (CPU) arrays

13 int *a_dev , *b_dev , *c_dev; // Device (GPU) pointers

14 // Allocate memory on the device

15 cudaMalloc( (void **) a_dev , N * sizeof(int) );

16 cudaMalloc( (void **) b_dev , N * sizeof(int) );

17 cudaMalloc( (void **) c_dev , N * sizeof(int) );

18 // Fill host arrays a and b with data here

19 /*

20 */

21 // Copy a and b to the device

22 cudaMemcpy( a_dev , a, N * sizeof(int), cudaMemcpyHostToDevice );

23 cudaMemcpy( b_dev , b, N * sizeof(int), cudaMemcpyHostToDevice );

24 // Execute add_dev on the device

25 add_dev <<N,1>>( a_dev , b_dev , c_dev );

26 // Copy c_dev from the device back to the host

27 cudaMemcpy( c, c_dev , N * sizeof(int), cudaMemcpyDeviceToHost );

28 // Free the memory on the device

29 cudaFree( a_dev );

30 cudaFree( b_dev );

31 cudaFree( c_dev );

32 }
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3.5 MATLAB to CUDA Compilation

With the advent of MATLAB’s Parallel Computing Toolbox, it is now possible to write

MATLAB programs to take advantage of NVIDIA’s CUDA graphics cards. There are

several ways to write MATLAB code to speed up computations on a GPU. One of which is

to use overloaded built-in function calls. Another is to write a kernel in MATLAB to run

on each element of a large matrix. A final way is to write CUDA code that can be called

from MATLAB [27].

For each of the methods of writing parallel code to be used with MATLAB, it is im-

portant to keep a few things in mind. First, it is important to understand the hardware

inside the graphics card. Without a good knowledge of how many streaming processors, how

much memory, and the limitations of GPU, it is very difficult to receive optimal performance

from the code. Second, it is important to understand the data dependencies between com-

putations, When these dependencies are violated, stalls will appear in the CUDA pipeline,

causing enormous slow-downs in the program. Finally, it is important to understand the

pros and cons of the three ways of writing CUDA code for MATLAB. The three sections

below will explain the methods, as well as detail when each should be used.

3.5.1 MATLAB Function Overloading

MATLAB has support for overloading function calls with GPU function calls. Instead of

calling a function on a CPU array, it would be called on a GPU array. For example, in

Listing 3.6, a fast Fourier transform (FFT) is performed on two random arrays. The A array

is located on the CPU, and the GA array is located on the GPU. The same function call is

used for both arrays: fft(). However, since GA is located on the graphics card, the fft()

function is executed as a CUDA kernel on the GPU and since A is located on the CPU, the

fft() function is executed on the CPU [27].
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Listing 3.6: MATLAB Overloaded Functions

1 % Serial

2 A = rand (2^12 ,1);

3 B = fft(A);

4 % Parallel

5 GA = gpuArray(rand (2^12 ,1));

6 GB = fft(GA);

7 GC = gather(GB);

With all MATLAB code that runs on a GPU, it is important to note that GPU arrays

must be copied back to the CPU before they can be used by a CPU function. In Listing 3.6,

the gather() function is used to copy the GB array back to the CPU.

MATLAB function overloading is the easiest to implement in existing MATLAB code

because it requires the fewest code changes. As long as the existing serial code uses sup-

ported overloaded functions, the changes to convert it to parallel code is minimal; simply

use gpuArray() to send the arrays to the GPU, and gather() to bring the arrays back

to the CPU. In Tordoff’s Mandelbrot experiment, using overloaded functions resulted in a

speedup of around 16 times that of the CPU code [28].

3.5.2 MATLAB Kernels

In MATLAB, it is possible to write a function that will perform a task on a single element

of an array. By running this MATLAB function on the GPU, it becomes very similar to

running a CUDA kernel, except is is written in MATLAB.

Listing 3.7 shows an example of using the arrayfun function to execute gpuPlus()

on each element of Ga and Gb. In this example, gpuPlus() will add elements of the same

index from both of the input arrays. Since Ga and Gb are both GPU arrays, gpuPlus()

will execute on the GPU [28].
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Listing 3.7: MATLAB Kernels

1 % Function

2 function [o] = gpuPlus(a,b);

3 o = a + b;

4 end

5

6 % Code

7 Ga = gpuArray(rand (200));

8 Gb = gpuArray(rand (200));

9 Go = arrayfun(@gpuPlus , a, b);

10 o = gather(Go);

MATLAB kernels are more in depth to implement than using overloaded functions. It

is necessary to create the element-wise function, and call it using arrayfun(). In Tordoff’s

Mandelbrot experiment, using element-wise MATLAB kernels provided a speedup of 164

times that of the serial CPU code [28].

3.5.3 MATLAB CUDA Kernels

The final way to execute MATLAB code on a CUDA-capable graphics card is to write a

custom CUDA kernel, then execute the pre-compiled code with existing MATLAB bindings.

Listing 3.8 shows the CUDA code. This code is then compiled into the ptx file, which is

essentially the binary that runs on the CUDA card. Listing 3.9 is the MATLAB code that

will initialize the GPU arrays, create the kernel in MATLAB, run the kernel, and save the

results to the CPU.
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Listing 3.8: CUDA Kernel Example

1 // CUDA Code (must be compiled)

2 __global__ void add_dev(const double *a, const double *b, double ...

*c) {

3 int threadId = blockIdx.x; // The index of the thread executing

4 // Add the elements corresponding to the index of the current thread

5 if (threadId < N) {

6 c[threadId] = a[threadId] + b[threadId ];

7 }

8 }

Listing 3.9: MATLAB CUDA Kernels

1 %% Matlab code

2 % Initialize the GPU arrays

3 Ga = gpuArray(rand (200 ,1));

4 Gb = gpuArray(rand (200 ,1));

5 % Create the kernel in MATLAB

6 k = parallel.gpu.CUDAKernel('add_dev.ptx','add_dev.cu' );

7 k.ThreadBlockSize = 200;

8 % Run the kernel and copy the result to the CPU

9 Go = feval(k, Ga, Gb);

10 o = gather(Go);

MATLAB CUDA kernels require the most effort to run with MATLAB. It is necessary

to understand the subset of CUDA that is available to use with MATLAB. It is also required

to format the input parameters in such a way that MATLAB is able to create the kernel

and its inputs and outputs correctly. CUDA code must also be compiled first before it

can be used, unlike typical MATLAB code. Although this is more difficult to execute, it

does provide the most flexibility and has the largest potential for speedup. In Tordoff’s

Mandelbrot experiment, using CUDA kernels gave a speedup of approximately 340 times

that of the serial implementation [28].
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3.6 Potential Speedup

A simple script was written in MATLAB to examine the potential speedup of using over-

loaded functions. The hypothesis was that running with the GPU will provide a speedup

over running with a CPU for larger datasets. For smaller datasets, the time to load the

GPU arrays would be too large for the speedup of the actual function to overcome.

The function chosen was the fft() function. This was chosen because it was expected

that the fft would need to be run multiple times in the least variance algorithms. The

code is shown below in section 3.10.

Listing 3.10: gpu test.m

1 clear all;

2

3 N = 23;

4 N2 = 15;

5

6 disp('CPU')

7 t = zeros(1,N);

8

9 for n = 1:N %#ok<FORPF>

10 tic

11 A = rand(2ˆn, 1);

12 B = fft(A); %#ok<SNASGU>

13 t(n) = toc;

14 end

15

16 disp('GPU')

17 t gpu = zeros(1,N);

18

19 for n = 1:N %#ok<FORPF>

20 tic

21 A gpu = gpuArray(rand(2ˆn, 1));

22 B gpu = fft(A gpu); %#ok<SNASGU>

23 t gpu(n) = toc;

24 end

25

26 fig = figure('Name', 'Array Size Plot', 'NumberTitle', 'off');

27

28 set(fig, 'Color', 'w');

29
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30 hold on;

31 plot(1:N,t, 'b', 'LineWidth', 1);

32 plot(1:N,t gpu, 'r', 'LineWidth', 1);

33 hold off;

34 title('FFT of Random Arrays')

35 xlabel('Array Size (2ˆN)')

36 ylabel('Time (s)');

37 box on;

38 legend('CPU', 'GPU', 'Location', 'SouthWest');

39

40 % Graph Insert

41 set(fig,'DefaultAxesFontSize', 8);

42 axes('Position', [.2,.65,.2,.2]);

43 hold on;

44 plot(1:N2,t(1:N2), 'b', 'LineWidth', 1);

45 plot(1:N2,t gpu(1:N2), 'r', 'LineWidth', 1);

46 hold off;

47 xlabel('Array Size (2ˆN)');

48 ylabel('Time (s)')

49 box on;

50

51 export fig(fig, 'gpu timing.pdf');

52

53 close(fig);

54

55 clear all;

The results from this test showed that the GPU executed the fft faster than the CPU

for arrays larger than 215 elements. For arrays smaller than that, the CPU performed faster.

This is expected, since the GPU must first copy the elements to the graphics card before

performing the fft. Figure 3.7 shows a plot of the execution time versus the size of the

array. The inset shows the time between arrays of 21 to 215 elements. This was added since

the execution time was very low compared to that for the larger arrays.
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Figure 3.7: The GPU performed better than the CPU for arrays larger than 215 elements.
For arrays smaller than that, the CPU performed better since the time for the GPU to
transfer the array was larger than speedup of using the parallel function.
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Chapter 4

Methods

4.1 Data Collection

The physiological datasets used to verify the least variance algorithms were obtained un-

der informed consent using protocols approved by the Rochester Institute of Technology

Institutional Review Board for Protection of Human Subjects. The Biopac MP36 (Biopac

Systems, Inc., Goleta, CA) captured synchronized three-lead ECG and infrared ear PPG

from 15 subjects (60/40 male-to-female ratio) at a sampling rate of 50 kHz.

To vary the physiological states of the subjects, one minute measurements were captured

after pedalling four minutes at different activity levels, varied via the Life Fitness 95R1

Recumbent Bike. Measurements were taken at five levels of increasing resistance (L1, L2, L3,

L5, L7), then two levels of decreasing resistance (L3, L1), and a final recovery measurement

was taken after resting four minutes (REC). Repeat measurements were obtained on three

occasions, separated by 1-2 days.

4.2 Processing

Figure 4.1 contains the block diagram of the run_files.m script. All of the code can be

found in the Appendices.
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Figure 4.1: The run files.m block diagram.

To process the physiological datasets, scripts were written using MATLAB (MathWorks,

Inc., Natick, MA). Datasets were downsampled to 500 Hz to approximate a clinical sampling

frequency [29] and reduce processing time. The PPG was low-pass filtered at 20 Hz with a

501-tap finite impulse response filter (FIR), then differentiated (9-tap differentiation filter),

and low-pass filtered at 20 Hz again (501-tap FIR). The ECG was bandpass filtered between

0.05 Hz and 150Hz (501-tap FIR), then notch filtered between 55 Hz and 65 Hz (500-

tap FIR) for line noise suppression. Filter types were selected based on prior algorithm

implementations [9, 16, 18, 30].

The signals were segmented into beats based on the R-wave peaks. PPG feet were

obtained from the 5-percent historic percent height method as well as the least variance

algorithm (N = 50, thresholds evenly spaced between 0 and 50 percent), and the PPG

dicrotic notches were captured with the historic Quarry-Pigott algorithm as well as the

least variance algorithm (N = 50, thresholds evenly spaced from 0 to 50 percent).

Figure 4.2 graphically shows how the beats were segmented with more detail. The chop

points for the peaks were shifted backwards in time 15 percent of the estimated beat length

from the ECG R-wave peaks. Each beat was then averaged with the next 10 beats in a

moving average algorithm, which assumes that the ECG and PPG signals are stable and

reproducible on a beat-to-beat basis. This was done to increase the signal-to-noise ratio of

the signals [31, 32].
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Figure 4.2: The waveforms of the 60 second dataset were segmented into beats, based on
the ECG R-Peaks (red). The chop points (green) were found by shifting the R-peaks back
15 percent of the beat length. The end result is shown by the light blue arrows beneath the
waveforms on the left, and is shown by the stack of beats on the right.

4.3 Accuracy

To compare the least variance and historic feature detection algorithms, the positive pre-

dictive value (PPV) was used. This statistic shows the proportion of beats where the

feature was correctly extracted within an acceptance interval to the ECG R-wave to the

total number of beats [33]. If for a given beat, the difference between the R-wave and

the detected feature was within that acceptance interval, the feature was considered to be

correctly extracted (a true positive). Otherwise, the feature was not correctly extracted (a

false positive).

The positive predictive value is calculated with Equation 4.1, where TP is the number

of true positives, and FP is the number of false positives.
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PPV =
TP

TP + FP
(4.1)

The acceptance interval for all extracted points was chosen to be 6 ms, or 3 samples at a

sampling frequency of 500 Hz, in accordance with several other studies extracting biological

features [34, 35, 36, 37].

While sensitivity (Se) can also be used to quantitatively compare feature extraction

performance [33, 34], this calculation requires false negatives, which were not present in

this work.
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Chapter 5

Results and Discussion

The positive predictive value and standard deviation were examined in this work to quan-

titatively compare the performance of the historic and least variance algorithms.

5.1 Positive Predictive Value (PPV)

Table 5.1 compares the historic and least variance feature extraction PPVs for all subjects

across all physiological states and repeat measures. The highlighted values are explored in

more detail with the waveform analysis in Figure 5.1. In general, the PPVs of the least

variance algorithms were higher than those of the historic algorithms.

To determine if the differences in PPV for historic and least variance feature detection

methodologies were statistically significant, a two-sample t-test was performed for each

extracted feature. A p-value less than 0.05 was considered significant. The PPG foot and

dicrotic notch extractions were both highly significant (p � 0.0001).

Although some of the extracted features show no improvement from using the least

variance algorithms over the historic algorithms, it is important to see that some of the

historic features were extracted very poorly, such as the foot extraction of Subject 6 (green

in Table 5.1) and the notch extraction of Subject 12 (blue in Table 5.1). The following

explores two examples of historic failures and how the least variance algorithms were able

to correctly extract those features.

Figure 5.1 shows two sets of plots and histograms depicting datasets with particularly

low historic PPV values. The graphs on the left show the relevant signals, after being
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Table 5.1: Positive Predictive Values of Extracted Features
for Historic and Least Variance Algorithms

Subjects
Foot Notch

H1 LV2 H1 LV2

Subject 1 100.00% 100.00% 96.77% 96.97%

Subject 2 100.00% 100.00% 92.75% 94.91%

Subject 3 100.00% 100.00% 78.82% 79.41%

Subject 4 94.48% 96.99% 94.09% 97.29%

Subject 5 100.00% 100.00% 94.67% 97.28%

Subject 6 99.21% 99.86% 93.34% 94.13%

Subject 7 99.75% 100.00% 94.39% 95.52%

Subject 8 100.00% 100.00% 97.34% 98.43%

Subject 9 100.00% 100.00% 89.48% 88.52%

Subject 10 100.00% 100.00% 99.21% 99.76%

Subject 11 97.85% 98.14% 91.92% 99.56%

Subject 12 90.93% 100.00% 89.62% 94.63%

Subject 13 98.91% 99.26% 99.18% 98.93%

Subject 14 99.33% 100.00% 83.21% 90.14%

Subject 15 100.00% 100.00% 98.86% 98.99%

Average 98.26% 99.46% 93.74% 96.28%

1 Historic algorithms.
2 Least variance algorithms.

segmented into beats and normalized with the extracted features drawn for each beat,

while the two plots on the right show the histograms of the corresponding systolic time

intervals.

The first row (a) of Figure 5.1 contains the ECG and PPG waveforms, as well as the

R-wave peaks and PPG foot results from subject 6 (green highlight, Table 5.1), REC level,

trial 1. The historic algorithm contains notably more variation in the PPG foot extraction

due to a very noisy, shallow minima without a clear 5-percent point that is handled better

by the least variance algorithm. The least variance algorithms extracted better than the

historic algorithms with an acceptance interval of 6 ms. The rPTT histogram (Figure 5.1)

shows another representation on how far the spread of the extracted values were. Because
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Figure 5.1: The systolic time intervals extracted by the least variance algorithms (lower
graphs) had a much lower spread than those extracted from the historic algorithms (upper
graphs). These specific examples demonstrate the failure of the historic algorithms to
correctly extract the features. The graphs on the left represent an overlay of captured
waveforms for a 60 second interval, with extracted temporal features identified with vertical
lines. The right plots have the corresponding histograms of the extracted STIs, with the
historic extractions having larger standard deviation.

the R-wave was stable, this plot essentially shows the variance of the rPTT STI, and the

least variance (orange) has a lower variance than the historic (purple). Thus, the least

variance algorithms can accurately extract the rPTT better than the historic algorithms.

The second row (b) of Figure 5.1 contains the PPG and PPG derivative waveforms

with the extracted PPG foot and PPG dicrotic notch from subject 12 (blue highlight,

Table 5.1), REC level, trial 2. The PPG derivative has multiple zero-derivative minimas

caused waveform characteristics and noise surrounding the nadir that the historic algorithm

incorrectly extracts, whereas the least variance algorithm correctly handles it. With an

acceptance interval of 6 ms, the least variance algorithms extracted well, whereas the historic

algorithms did not. The LVET histogram (Figure 5.1) shows that the spread of the historic
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STI extraction (purple) had a larger spread than the least variance STI extraction (orange).

This shows a strength of the least variance algorithms in its ability to correct for different

waveform noise and characteristics surrounding the dicrotic notch.

5.2 Standard Deviation

Analysis of the standard deviations of the extracted systolic time intervals reveals greater

variance in the historic algorithms. Figure 5.2 shows two bar graphs, where the top plot

shows the rPTT and the bottom plot shows the LVET. Each of these plots show the differ-

ence in the standard deviation between the historic algorithm STIs and the least variance

algorithm STIs for each 60 second run. In other words, the plots are of Equation 5.1, where

SDH(x) is the historic standard deviation of a given 60 second dataset, and SDLV (x) is

the least variance standard deviation of that same 60 second dataset.

SDdiff (x) = SDH(x) − SDLV (x) (5.1)

Because consistency is expected in these STI measurements over a one minute period

under steady state [40, 41, 42], the algorithm with the lowest standard deviation has the

most consistent extraction. As can be seen by Figure 5.2, the least variance algorithms

generally had lower standard deviations.

Determination of rPTT demonstrates where the least variance algorithm excelled. These

plots contain no negative values, meaning the historic algorithms had a higher standard

deviation across all subjects and all physiological states. Notice that there are several

outliers in the positive direction, showing that the historic algorithms occasionally failed

more pronouncedly.

As with the rPTT difference plot, the LVET plot shows that the historic algorithms

had an overall higher standard deviation than the least variance algorithms. The intervals

that did have higher least variance standard deviations were scattered across the subjects

and physiological states, with no noticeable pattern. Again, there are several outliers in the

positive direction where the historic algorithms had more difficulty extracting the LVET.

The few datasets with higher least variance standard deviation were much closer to zero,
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Figure 5.2: The standard deviation of the historic algorithms (H) was predominantly larger
than that from the least variance (LV) algorithms. The bars that are positive (green) show
the one minute intervals where the historic extraction had larger standard deviation than
the least variance extraction, whereas the negative bars (magenta) show the opposite, where
the least variance had larger standard deviation.

showing a more consistent extraction.

These difference plots show that overall, the least variance algorithms are able to more

robustly extract the features than the standard deviation algorithms. Additionally, these

plots highlight that the historic algorithms are more prone to fail with a very large standard

deviation since all waveforms are not ideal; different subjects and different physiological

states cause different waveform characteristics causing the historic algorithms to fail. The

least variance algorithms are able to compensate for this and correctly identify the features.
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5.3 CUDA Runtime Results

The processing scripts were written such that the historic or least variance algorithms could

be run on a CPU, or with parallel processing on a GPU using CUDA. In order to determine if

the GPU provided a speedup, both the historic and the least variance scripts were run three

times with and without using the GPU over all subjects, physiological states, and trials.

The execution times were averaged, and arranged in the bar graph shown in Figure 5.3. As

can be seen, there was no improvement when using the graphics card in either the historic

or the least variance algorithms. In fact, the four results were within 30 seconds of each

other.

The historic algorithm showed a delta of approximately 3.8 s between processing com-

pletely serially versus running partially in parallel on the GPU (1.3% decrease). The least

variance algorithm showed a similar trend, with the serial processing completing around 8.9

s faster than the parallel processing (3.0% decrease).
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Figure 5.3: Because the sampling frequency was reduced to 500 Hz, there was no improve-
ment of using the GPU over performing all of the calculations on a CPU for either the
historic (H ) or least variance (LV ) algorithms.

The reason that the GPU did not speed up the algorithms is likely due to the low

sampling frequency. In the beginning of this work, the sampling frequency was kept at 50

kHz; this was a faster sampling frequency with 100 times more data per biological signal

than the downsampled 500 Hz frequency. Because there is less data with the downsampled
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signals, the speedup from running in parallel was not enough to overcome the overhead

from copying the data, resulting in slower GPU runtimes. Sure enough, when the sampling

frequency was left at 50 kHz, running the algorithms on the GPU did provide a speedup

(Figure 5.4).

For the 50 kHz sampling frequency, the historic algorithm completed 11.58 min faster

when running partially on the GPU (2.8% increase), and the least variance processing

finished 37.8 min faster with the parallel processing (8.9% increase). Interestingly enough,

the historic algorithms had a smaller speedup than the least variance algorithms. This is

expected since the least variance algorithms were better optimized to run in parallel on the

GPU than the historic algorithms.
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Figure 5.4: When the sampling frequency was left at 50 kHz, running the historic (H )
and least variance (LV ) algorithms performed better when run with some of the processing
offloaded to the GPU.

The theoretical fft example from the CUDA section was compared to the speedup

obtained by running the processing on the GPU. Figure 5.5 contains the runtimes from the

fft example with the array sizes of the two sampling frequencies drawn with vertical bars.

The 500 Hz sampling frequency (array size of around 214) correlated very well to the

theoretical results. Both the theoretical example and the real-world algorithms showed no

improvement of using the GPU to run some of the processing in parallel.

The 50 kHz sampling frequency (array size of around 222) also correlated in that both
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examples showed improvements in speedup when using the GPU. However, it showed a

much higher speedup with the theoretical example than the real-world algorithms. Almost

all of the theoretical example is run in parallel on the GPU, leading to a speedup of 95%.

The real-world example only ran on the GPU a third of the time, decreasing the estimated

speedup to about 32%. However, the true speedup of the least variance algorithms was

only 8.9%, with the additional drop in speedup likely due to the computational time spent

copying data to and from the GPU.

Figure 5.5: The results from the FFT example is drawn with the least variance runtime
results of the 500 Hz and 50 kHz sampling frequencies shown.
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Chapter 6

Conclusion

Using least variance to improve existing feature detection algorithms better extracted sys-

tolic time intervals by improving on robustness and accuracy across subjects and across

physiological states. The PPG foot and dicrotic notch least variance algorithms had higher

positive predictive values than the historic algorithms, showing that the least variance al-

gorithms more accurately extracted the features. The standard deviation of the extracted

STIs in each one minute run was smaller in the least variance extraction, demonstrating the

improved robustness. These improvements obtained by using the least variance algorithms

can also be applied to other periodic feature detection algorithms, providing more accurate

and robust extractions in a multitude of other applications.

The research and development from this thesis has raised a few interesting questions that

can be later pursued. Firstly, while the dataset was large, it would be great to have even

more samples to prove the robustness of the extraction algorithms; it would be beneficial

to this research to verify the extraction against existing datasets, such as PhysioBank [43],

or the MIT/BIH arrhythmia database [44].

Secondly, the features extracted were from the electrocardiogram and photoplethysmo-

gram. The phonocardiogram (PCG) is another non-invasive signal that is easily accessible.

From this, the pre-ejection period can be captured, providing more diagnostic tools. It

would be beneficial to adapt the least variance algorithms to extract the heart sounds from

the PCG.

Finally, it would be interesting to adapt this work of least variance to additional disci-

plines. Some of these topics include sound signal processing, optics, mechanics, astrophysics,
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and much more. Essentially, this work can provide usefulness to any discipline that inves-

tigates extracting features from periodic waveforms.
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