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ABSTRACT

Many tasks in imaging science are image-dependent. While a particular dependency
might simply be a function of certain physical attributes of an image, often it is closely

related to the perceived semantic category. Therefore, a thorough understanding of image

semantics would be of substantial practical value. The primary goal of this research was

to determine the fundamental semantic categories for typical consumer imagery. Two

psychophysical experiments were performed. Experiment I was a Free Sorting
Experiment where observers were asked to sort 32 1 images into piles of similar images.

Experiment II was a Distributed Experiment conducted over the internet which used the

method of triads to collect similarity and dissimilarity data from 321 images. Due to the

large number of images included in the experiment, the method of non-repeating random

paths was employed to reduce the number of required responses. Both experiments were

analyzed using multidimensional scaling and hierarchical cluster analysis. The Free

Sorting Experiment was also analyzed using dual scaling. The results from all three

methods were compiled and a set of 34 categories that proved to be stable across multiple

methods of analysis was formed. A multidimensional perceptual image semantic space

has been suggested and advantages to utilizing such a structure have been outlined. The

34 fundamental categories were represented by 10 perceptual dimensions that described

the underlying perceptions leading to categorical assignments. The 10 perceptual

dimensions were humanness, artificialness, perceived proximity, candidness, wetness,

architecture, terrain, activeness, lightness, and relative age.
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semantics, si-man'tiks, The study ofmeanings. The term is

derived through Greek
"semainein"

("to
signify"

or "to

mean"). It is concerned with the relation between words

or other symbols and the objects or concepts to which

they refer, as well as with the history of meanings and

the changes they undergo. (Semantics, 2001)

1. INTRODUCTION

The term semantics refers to the aspects of meaning that are expressed in a

language. Photographic images tend to be perceived as belonging to broad categories of

images such as human portraits, landscapes, sports, animals, etc. These categorical

identifiers are referred to as image semantics language that is used to describe the

meaning of pictorial content.

Many tasks in imaging science are image-dependent. While a particular

dependency might simply be a function of certain physical attributes of an image, often it

is closely related to the perceived semantic category. Therefore, a thorough

understanding of image semantics would be of substantial practical value. For example,

there are many imaging tasks where image dependencies can influence the results of a

certain processing task. Gamut mapping, halftoning, contrast adjustment, and

compression are all dependant on the type of image being processed. Additionally, image

quality judgments have been shown to exhibit image dependencies (Montag and

Kasahara, 2001). If one could determine in advance what type of image was being

processed, then an appropriate set of processing parameters could be selected so that the

best possible result could be obtained.
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Before one can identify which fundamental image category a particular image

belongs to, it is necessary to determine what those categories are. There has been a lot

work in the area of automatic image classification (Wardhani, 2003; Lee, et al., 2005;

Le Borgne, et al., 2003). However, most of these methods rely on finding image

descriptors that a machine can discriminate. Unfortunately these same descriptors are not

necessarily perceptually significant. The difficulty lies in the fact that low-level image

descriptors such as color and contrast fail to capture important semantic information, lack

fine discrimination, and do not tend to match human perception (Mojsilovie, Hu, &

Soljanin, 2002). Another concern is related to the basic goal of automatic image

classification. "Classification pertains to a known number of groups, and the operational

objective is to assign new observations to one of these
groups."

(Johnson and Wichern,

2002, p. 668). The problem here is that the fundamental groups, or categories, are not

known and are simply selected by researchers based on a wide range of inconsistent

criteria.

There is a body of work that addresses the problem of correlating image

semantics with machine discernable image descriptors (Depalov, et al, 2006; Iqbal and

Aggarwal, 2002; Le Borgne, et al., 2003; Lee, et al., 2005; Mojsilovic and Gomes, 2002;

Mojsilovic and Hu, 2000; Mojsilovic, Hu, & Soljanin, 2002; Mojsilovic and Rogowitz,

2001a; Serrano, et al., 2002) but work in this area is not extensive. Further, just as there

are image dependencies, it has been shown that any set of fundamental semantic

categories that are determined will be influenced by the image genre (Laine-Hernandez

and Westman, 2006). In other words, the categories that are identified will be directly
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dependent on what images were used in the study and images from different areas of

photography will exhibit different fundamental categories.

Besides using semantic categories to optimize image processing algorithms, there

are other ways this information can be utilized. Image retrieval from large databases of

images is a significant problem and techniques that can help the user identify the image

they are looking for more quickly can greatly improve the process. Much of the image

classification research has been oriented toward solving this problem (Chen, et al., 2005)

(Cox, et al., 2000; Chen, et al., 2003). Unfortunately, much of this work does not directly

address the problem of first identifying the semantic categories that the images should be

divided into. Instead, categories are selected based on either intuition or the ease of

relating the image to low-level descriptors. Little or no regard for the perceptual

significance of the categories is considered.

Another use for semantic image categories is image quality research in which the

results can be shown to be image dependent. Because the image quality resulting from an

image processing algorithm or an imaging system will depend on the image being

evaluated, it would be very useful to know in advance what the fundamental image

categories are. Although this issue is not unknown to researchers, most often the solution

is to pick a variety of images arbitrarily to include in an experiment or study. There are

two potential problems with this approach. First, it is possible that there are whole image

classes that have been inadvertently left out of the study thereby making the results less

comprehensive than desired. The second problem involves including multiple images that

represent the same category which can result in unnecessarily duplicating effort. This
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could result in extra work (particularly in collecting the data) which would not produce

any additional information. Therefore, by knowing in advance the fundamental image

categories for a particular application, one can be sure that they are testing the full range

ofpossible image types without unnecessary duplication of effort.

By identifying the fundamental image categories for a particular application, one

can apply this knowledge to develop optimized image processing algorithms, better

image retrieval systems, and design more targeted image research studies.

1-4



2. EXPERIMENTAL

The primary goal of this research was to identify the fundamental image

categories for typical consumer imagery (snapshots). To achieve this goal, two

psychophysical experiments were conducted. Experiment I was a Free Sorting

Experiment and Experiment II was a Distributed Experiment which was conducted over

the internet.

2.1 IMAGE SELECTIONPROCESS

The design of both psychophysical experiments began with image selection.

Because the same set of images was used for both experiments and because the

usefulness of the experimental results is dependent on the images selected for inclusion in

the studies, a great deal of care was taken to ensure that the images were representative of

the intended application and that they spanned a wide gamut across potential image

categories. There is an inherent difficulty in this process because it is necessary to first

make categorical judgments in order to select a range of images for the studies, but

determining categorical judgments is precisely the objective of the research. Therefore it

was necessary to approach image selection with the most objective methods possible.

2.1.1 Category Selection

Without knowing the image categories in advance, how does one determine that

the widest range of categories are properly represented and how does one avoid

introducing bias by pre-filtering according to a personal observation? The solution was to
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make use of results from prior studies as a starting point. An extensive list of semantic

categories was compiled from many sources (Mojsilovic and Rogowitz, 2001b;

Wardhani, 2003; Wardhani and Thomson, 2004; Oldfield, 2005; Rogowitz, et al., 1998)

and is listed in Table 2-1. There were many studies investigated that are not included in

Table 2-1, however the categories that were identified in those studies were already

represented and therefore, there was no need to report redundant information. Categories

that had been previously identified by other researchers but were not considered semantic

categories such as shape dominant and geometric objects were not included in the

final category selection. This is justified because the categories that were excluded were

originally identified to represent objects described by various low-level image descriptors

that were calculated from the test images rather than to represent image semantics. Also

excluded were any categories that could not be considered typical consumer imagery

such as product photography and artificial scenes (i.e. graphics). The final list of

categories that were used in the image selection process are listed in Table 2-2.
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TABLE 2-1: Categories from previous studies.

STUDY 1 STUDY 2 STUDY 3 STUDY 4 STUDY 5 STUDY 6 STUDY 7

Portraits Landscape Natural Scene Manmade People

High-

Frequency
Animals

People

Outdoors
People People Natural Non-People

Low-

Frequency
People

People Indoors
Shape

Dominant

Geometric

Shapes

More Human

like
General Occasion Color Indoor Scenes

Outdoor Scenes

with People

Color

Dominant
Single Object

Less Human

like
Vacation High Key Nature

Crowds of

People

Texture

Dominant

Multiple

Objects

Special Days

(Birthdays,

Celebrations)

Low Key Buildings

Cityscapes
Structure

Dominant Mainly Smooth Weddings Textures

Outdoor

Architecture
Mainly
Textural

Holidays Manmade

Technoscenes Recreation,

Sporting Events

Objects Indoors
Subject Distance

<10ft.

Waterscapes

with Human

Influence

Subject Distance

10-30 ft.

Waterscapes
Subject Distance

>30ft.

Landscapes

with Mountains
Outdoors

Sky/Clouds Indoors

Winter/Snow Electronic Flash

Green

Landscapes
Sunlight/Daylight

Landscapes

with Fields and

Foliage
Cloudy Day

Plants,

Flowers, Fruits,
and Vegetables

Dawn/Dusk

Animals
Indoor Natural

Lighting

Textures,

Patterns, and

Close-ups

Indoor Tungsten

Indoor

Fluorescent

IndoorMixed

Lighting

Backlit

Low Light
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TABLE 2-2: Final categories used as a criteria in the image selection

process.

Categories for Image Selection Process

Portraits

People Outdoors

People Indoors

Outdoor Scenes with People

Crowds of People

Cityscapes

Outdoor Architecture

Objects Indoors

Objects Outdoors

Waterscapes

Waterscapes with Human Influence

Landscapes with Mountains

Landscapes with Fields and Foliage

Green Landscapes

Landscapes withWater

Sky/Clouds

Winter/Snow

Plants, Flowers, Fruits, and Vegetables

Animals

Textures, Patterns, and Close-ups

General Occasion

Vacation

Special Days (Birthdays, Celebrations, etc.)

Weddings

Holidays

Recreation

Sporting Events

Nature
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2.1.2 Image Selection

There were four criteria used in the image selection process. These were based on

criteria identified from prior work and were determined to be a reasonable guide for

image selection. They four criteria used were:

1) Wide range ofcategories For each category listed in Table 2-2, images were

selected such that each category was represented by a minimum of four images.

Naturally, there was an inherent overlap and some images could be considered to

fill the requirements for more than one category. For example, if one category is

people outdoors and another is nature scenes, then an image of a person in nature

could fulfill the requirement for both categories. Many categories were

represented by far greater than four images.

2) Camera zoom For each category, a range ofwide-angle, normal, and close-up

images were included.

3) Image orientation A distribution of landscape and portrait orientation was

included for each of the categories.

4) Color A broad range of color and lightness levels was included. These were

determined by examining average CIELAB values for each image, which was

calculated as a simple average of every pixel color. Care was taken to include an

even distribution in all three dimensions L*, a*, and b*.

The images were obtained from a variety of sources. Most of the images in the

final selection were supplied by Lexmark International, Inc. A library of nearly 1,000

images were initially provided. Despite this large number of images, there was not

enough variety among them to satisfy all four selection criteria. After pre-editing the

images to determine what additional images were required to satisfy all of the criteria, the

2-5



remaining images were obtained from the Corel Image Database and from the Munsell

Color Science Laboratory. For example, after an analysis of average CIELAB values for

the selected images, it was determined that there were no very light images which was an

indication that pictures with snow were missing. Therefore, a variety of snow images

were added from the Corel Image Database.

A total of 321 images were included in the final selection. The complete set of

321 images can be found in Appendix A. To the experienced scientist, this may seem

alarming since the typical number of images included in this type of study is usually

closer to 100 or fewer. The reason for using a smaller number of images is because, for

many experimental designs, as the number of samples (images) increases, the number of

required observations increases rapidly. This generally makes a sample size of 321

infeasible to work with. The experimental design for the Distributed Experiment (which

would be more sensitive to sample size than the Free Sorting Experiment) was taken into

consideration while deciding on the number of images to include. The details of how the

experimental design would effect selection of a sample size is described in section 2.4.1.

2.2 IMAGE PREPARATION

The 321 test images were obtained from a variety of sources. Some of the images

were tagged with an ICC profile, but many were not. For this reason, the images needed

to be adjusted in order to present a consistent appearance to the observers. Experiment I

required printed output of the images and Experiment II required the images to be viewed

over the internet. A typical strategy for preparing images for the internet is to use the
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sRGB color space. Therefore, all test images were adjusted so that they produced a

pleasing image while viewed in the sRGB color space.

The first task was to characterize the monitor on which they would be evaluated.

This was accomplished using industry standard calibration hardware and software. An

Apple LCD display was calibrated using a GretagMacbeth EyeOne Pro

spectrophotometer and GretagMacbeth ProfileMaker Pro software version 5.0. Images

were viewed in Adobe Photoshop. A Lexmark inkjet printer was used to make prints. The

printer was characterized using ProfileMaker Pro and a GretagMacbeth Spectrolino

Spectroscan spectrophotometer.

If an image was untagged, it was assigned the sRGB profile. If the image was

tagged with something other than sRGB, then it was converted to sRGB. All images were

then adjusted, when necessary, so that they produced a pleasing appearance while viewed

under the conditions specified by sRGB. Since the objective of this study was not

dependent on specific colors in the images, it was not necessary to ensure exact color

reproduction. The purpose for setting up color management and performing color

adjustments was simply to normalize the appearance of images from a variety of sources.

Once all images were adjusted, they were scaled to a common size appropriate for

the internet (200 pixels on the short dimension and 300 pixels on the long dimension) and

saved in the JPEG format using low compression (Photoshop level 1 0) which yielded file

sizes ranging from 52KB to 120 KB. Some images were a different dimension and were

cropped to match the 2 x 3 aspect ratio. Next they were printed on the calibrated Lexmark
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printer at a size of 4 x 6 inches. Finally, the images were trimmed and numbered with bar

codes on the back to aid the data collection process.

2.3 EXPERIMENTI FREE SORTING EXPERIMENT

The first experiment was a tabletop sorting experiment. Observers were asked to

sort the 321 test images into piles that represented categories. They were free to create as

few or as many piles as they felt necessary to properly represent the categories. They

were also free to change their mind and rearrange images in the piles as needed. Exact

instructions as to how to categorize the images were not provided. The instructions

provided to the observers read as follows:

You will be given a stack of 321 4x6 photographic

prints. Your task is to sort these into piles that represent

different categories of image types. You may decide by what

criteria to separate the images into categories and you may

create as many piles (categories) as you feel are necessary.

If a particular image seems appropriate for more than

one category that you have defined, then use whichever

identifying feature you feel is the primary feature, or create a

new category. If you create a new category, remember to go

through the images that have already been sorted to see if any

of those belong to the new category.

After you are finished, you will be asked to complete

one additional small task.

Thank you!!Ill
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After the observers completed the task of separating the images into piles, they

were asked to write down what criteria they used to separate the images into categories.

Finally, the observers were asked to name the categories that represented each pile that

they made.

2.3.1 Observer Statistics

Thirty (30) observers participated in the sorting experiment of which there were

19 males and 11 females with an average age of 38 years old. Twenty-four observers

were considered expert observers. Seventeen observers were from the United States of

America, eight observers were from China, two observers were from Japan, two

observers were from Iran, and one observer was from India.

2.4 EXPERIMENT II DISTRIBUTED EXPERIMENT

The second experiment was a distributed experiment conducted over the internet.

Because of the nature of the experiment, it was necessary to first obtain Institutional

Review Board approval from Rochester Institute of Technology's Human Subjects

Research Office.

2.4.1 ExperimentalDesign

The method of triads was used to collect similarity and dissimilarity data. Because

n(n-l)(n-2)
the method of triads requires observations per observer where n is the

6
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number of images in the experiment, for 321 images and 30 observers this would require

163,838,400 individual observations. This is clearly unreasonable and is also the main

reason most other studies limit the number of images to an average of one hundred or

fewer. Therefore, alternate methods were explored that could help reduce the number of

total required observations.

By limiting the number of samples that are to be compared with one another, the

incomplete block design can greatly reduce the work that needs to done in an experiment.

However, for 321 images there would be approximately 1.3 million total observations

required and even this would still result in an intractable experimental design.

The method selected for this experiment was Non-Repeating Random Paths

(Moroney and Tastl, 2005) which only requires n observations per observer where n is

the number of images in the experiment. However, because this method generates a

sparse matrix, the number of observers must be increased by an order of magnitude.

Therefore, the total number of observations required becomes 300 which is equal to

96,300 observations for =321 images. With a distributed experiment intended to reach a

large number of people over the internet, it is assumed that not many people would

choose to participate if the experiment was not quick to complete. One cannot expect to

find observers willing to make 321 judgments. Therefore, the total number of

observations was divided such that each observer would only be responsible for 10

judgments. In other words, the experiment must reach 9,630 people who will each judge

10 sets of triads per session. This is now an attainable goal.

2-10



One might question the validity of dividing each set of 32 1 observations intended

for a single observer into smaller sets intended for 32 observers. The decision to do this is

justified because spreading the observations over a greater number of observers will have

the effect of removing any bias that might have been introduced by a single observer.

Moroney (2003) describes a "distributed experiment in which the time requirements for

each observer is reduced to a minimum by having a large number of observers, none of

which complete the entire experiment. This reduces the impact of any given participant

and provides a means to reduce the effect of multiple submissions and disruptive

observers."

Because observers in the present study were encouraged to repeat the

experiment as many times as they desired, it is possible that some amount of observer

bias is re-introduced, but this is considered a reasonable risk when evaluated against the

total number of observations.

A comparison of the total number observations required for each of the three

experimental designs is given in Table 2-3. This table was useful in helping to decide

how many images to include in the experiments, as discussed in section 2.1.2.

TABLE 2-3: Total number of required observations for n samples.

n 100 200 300 400 500 600

Method of 4,851,000 39,402,000 133,653,000 317,604,000 621,255,000 1,074,606,000

Triads

Incomplete 151,500 603,000 1,354,500 2,406,000 3,757,500 5,409,000

Block Design

Non-Repeating 30000 60 000 90 000 120,000 150,000 180 000
Random Paths
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Non-Repeating Random Paths (Moroney and Tastl, 2005) is a technique that

reduces the burden for each observer by only requiring a random path to be evaluated. A

random path is defined by taking each of the n samples and randomizing them. For the

method of triads, the first set of three consecutive samples is evaluated. Utilizing a

moving window that is three samples wide, the window is then stepped down the path by

one sample and the next three samples within the window are evaluated. This continues

32 1 times until all sets of three consecutive samples have been viewed. Samples at the

ends of the path are wrapped around to complete the path.

2.4.2 Experiment Interface

Observers were first presented with a welcome screen and an instruction screen

that described how to perform the experiment. To entice people to take the experiment, a

drawing for a free Apple iPod was held where each time the experiment was completed

successfully, the participant would receive one entry into the drawing. Observers were

encouraged to take the experiment multiple times. Figures 2-1 and 2-2 show the welcome

screen and instruction screen respectively.

Observers were presented with three images at a time and were asked to pick

which two images were the most similar and which two images were the most dissimilar.

A sample experiment page demonstrating the interface is shown within Figure 2-2. After

making the selections, the next set of three images was presented and this continued until

all 10 triads had been viewed. At the end of the experiment, the observers had the option

to enter comments and to repeat the experiment with a different set of images.
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The interface was first prototyped in Matlab to validate the experimental design.

The final implementation was created using basic HTML pages that were generated and

customized by use of PHP. The data was collected into aMySQL database. In addition to

the similarity and dissimilarity judgments, additional information about each session was

recorded and is reported in Table 2-4.

fton
Image Category txpenmeni

Rochester Institute of Technology

Munsell Color Science Laboratory
Created in 1983 through m gUt horn theMunsell Foundation.

letermination of Image Categories for Typical Consumer Imagery

MS Color Science Thesis Kenneth N. Fleisher

INTRODUCTION

Welcome lo my internet experiment! My name is Ken Fleisher and I am an MS Color Science candidate at the Munsell

Color Science Laboratory at Rochester Institute ofTechnology . The purpose of my research is to determine the fundamental
image categories for typical consumer imagery. The results of this research will benefit imaging and color scientists who arc
investigating issues whose results exhibit image dependencies. Please direct any questions/comments to
knf8803@cis.rit.edu and I will reply at the first opportunity.

EXPERIMENT INSTRUCTIONS

You will be presented with three images at a lime. Your task is to select which two images are the most similar and which

two are the most dissimilar. It is important to remember thai you are free to decide on your own criteria forjudging images
as being similar or dissimilar. Some choices will be more obvious than others. Although this experiment is being conducted
as part of a color science research project, your decisions do nol have to involve color.

For more detailed instructioni, an example, and to lcam how you can in in iflod simply by participating, click here. Every
time you complete the experiment, you automatically receive another entry in the drawing. You are encouraged to take the

experiment and enter as many times as you like!

BEGIN

Please provide the following information which will only be used for demographic analysis.
// is not required, but will be (Appreciated!

O No Response
E-mail (only requiityd ifyou wish to eluer'ilie drawingfor a free iPod)

FIGURE 2-1: Distributed Experiment welcome screen.
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Image Category experiment

Rochester Institute of Technology

Munsell Color Science Laboratory
Created in 1983 through gift from theMunsell Foundation.

Determination of Image Categories for Typical Consumer Imagery

MS Color Science Thesis Kenneth N. Fleisher

EXPERIMENT INSTRUCTIONS

This experiment is very simple. You will be presented with three images at a time. Your task is to select which two images

are the most similar and which two are the most dissimilar. To do this, simply check the box that is between the two images

and whose arrows point to the two images you wish to select. (See the example below.) After you have made your

selections, click the
"Next"

button to view the next set of three images. In total, you w ill be presented with 10 sets of images

and the entire task should only take a few minutes of your time. You arc encouraged to take the experiment as many times

as you like!

EXAMPLE

In this example, one possible response might be to select the top image and the bottom right image as the most similar

because they are both primarily landscapes that include large areas of rock (the mountain and canyon). The two bottom

images might be selected as the most dissimilar because the top image and the bottom left image both have identifiable trees

which might make them somewhat more similar than the two bottom images. It is important to remember that you are free to

decide on your own criteria forjudging images as being similar or dissimilar. Some choices will be more obvious than

others.

Rk>cBs*hkroolml^mtSKJST\lMn>l<iidhlloie.til;MOSTr*iln*r

Mol Similar

MoI Dissimilar

3JHE2
:"

?.
"

Z.Mok! Similar

Mwt Duiimilar

Motf
Similn-

mMost DiuimiUr

FIGURE 2-2: Distributed Experiment instruction screen.
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TABLE 2-4: Metadata collected during Distributed Experiment.

Data Collected Automatically Data Collected Voluntarily

Session ID Gender

Session Start Time Age

Session End Time Comments

Session IP Address

Session Agent ID (Browser)

The session ID, IP Address, and Agent ID information was used to troubleshoot

potential problems with internet connections and with the execution of the experiment.

The session start and end times were used to help determine valid responses as discussed

in section 2.4.4.

2.4.3 Observer Statistics

A total of approximately 9,152 people participated in the experiment which began

data collection on March 13, 2006 and ended on May 17, 2006. A total of 98,364

individual trials were collected. An individual trial included one similarity judgment and

one dissimilarity judgment. Because participation over the internet introduces a decreased

level of control over the experiment versus an experiment conducted in a lab setting, the

trials were pre-filtered for valid results to reduce the amount of noise in the data.

If a participant entered any of the voluntary information, then they were counted

as an observer. Participants who included their e-mail address were only counted once

even if they revisited the experiment at a later time. The goal was to count how many

different people participated in the experiment. However, participants who did not enter

their e-mail address remained anonymous and it was not possible to determine if they

2-15



returned to the experiment at a later time. Therefore, the actual number of observers may

be somewhat lower than what is reported. Additionally, participants who did supply any

of the voluntary information were not counted as observers with respect to observer

statistics. Table 2-5 list the observer statistics that were collected for the Distributed

Experiment. There were 5,195 participants who provided voluntary information.

TABLE 2-5: Observer statistics for the Distributed Experiment.

Gender Age (years)

# Responded 5,108

Male 3,257

Female 1,851

Responded 4,905

Average 30.8

Median 24

Maximum 85

Minimum 8

2.4.4 Pre-Filtering Observer Responses

To pre-filter the 98,364 trials and identify invalid responses, it was necessary to

make certain assumptions. The first assumption was that most observers would be

participating in order to try and win the drawing for a free iPod. Therefore, the primary

reason to provide invalid responses would be to complete as many sessions as possible (a

session consisted of 10 individual trials) in order to increase the odds of winning the

drawing. For this reason, only users who completed 1 0 or more sessions were evaluated

for invalid responses. If there were users with fewer than 10 completed sessions who

provided invalid responses, then the impact on the results should be small. In order to be

entered into the drawing, the observer was required to include their e-mail address. It is
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possible that someone did not include their e-mail address and still had greater than 10

sessions, but there was no mechanism to identify such a case. It is also unlikely that

someone would go to the trouble of disrupting the experiment without the possibility of

winning the drawing, so this case was not considered. Of the 4,155 participants who

entered their e-mail address, only 84 participants completed 10 or more sessions. The

sessions corresponding to the 84 participants were evaluated based on five possible

situations:

1) Scripted responses If a script were created to complete many sessions without

the need to actually participate, then the sessions would have been completed very

quickly. On average, it took between 2 and 3 minutes for a participant to complete

the experiment honestly but a script would likely complete each session very

quickly. Therefore, a conservative cutoff was to remove any sessions that were

completed in less than 60 seconds. There were 3,222 trials from 323 sessions

completed in less than 60 seconds that were removed. (The number of trials was

not equal to 10 times the number ofsessions due to some PHP code errors which

caused some incomplete sessions to be recorded. The problem was identified and

fixed within the first few days of the experiment. Individual trials that were

recorded during this time are valid even though the sessions were incomplete.)

2) Same response A fast way to enter responses and increase the number of

completed sessions would be to blindly select the same response for every trial. It

is statistically unlikely that these would be valid responses and therefore a series

of sessions from a single user with all same responses would be a candidate for

exclusion.

3) Patterned response An approach similar to the same response approach would

be to enter a patterned response to all trials, such as A, B, C, A, B, C, ... Patterned

responses were excluded from the analysis.
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4) Random response This was the most difficult to identify because it required

the author's judgment as to whether the response was random or sincere. For all

84 users with greater than 10 sessions, a random viewing of their responses was

conducted. Sometimes it was undeniable that the response was not sincere. For

example, if image 1 was a dog, image 2 was also a dog, and image 3 was a house

and the observer selected images 1 and 3 as the most similar, then this can be

considered an invalid response. However, a very conservative approach was taken

so as not to inadvertently exclude valid responses where the judgment was simply

different from the author's. Only after many invalid trials were identified for a

particular observer were that observer's responses excluded.

Based on same response, patterned response, and random response criteria, 510

trials were excluded from the analysis.

5) Negative comments There was an option at the end of the experiment to

include comments. While most comments were either positive or inquisitive, there

were four sessions where the participant simply stated that they did not even look

at the images and that they simply responded randomly. Naturally, these sessions

were excluded from the analysis.

To summarize, there were 98,364 individual trials collected. 3,222 trials were

excluded due to a total session time of less than 60 seconds. 510 trials were excluded due

to same, patterned, or random responses. 40 trials were excluded based on user

comments. The remaining 94,592 individual trails were included in the data analysis.

2-18



3. METHODS OF ANALYSIS

To analyze the experimental data, several methods of analysis were used.

Although a complete description of each method is beyond the scope of this report, each

method is briefly described and key features are explained. For a full treatment of these

techniques, please refer to the relevant references.

3.1 MULTIDIMENSIONAL SCALING

"The problem of multidimensional scaling, broadly stated, is to find n points

whose interpoint distances match in some sense the experimental dissimilarities of n

objects"

(Kruskal, 1964a). Another way to express this is to say that multidimensional

scaling "enables us to represent the similarities of objects spatially as in a
map."

(Schiffman, et al., 1981, p. 3) Thus the primary output of multidimensional scaling is a

low-dimensional, spatial representation of points where each point corresponds to an

object in the original data. This configuration, or ordination of the data (Johnson and

Wichern, 2002, Ch. 12), is then interpreted in an effort to uncover the organizing

concepts and underlying dimensions that are being investigated. This last statement is of

particular importance because it implies that dimensionality and significant

characteristics of the objects need not be known apriori and are discovered as a result of

interpretation of the configuration.

As input, multidimensional scaling requires only similarity (or dissimilarity) data.

When the data is defined by an interval or ratio level of measurement, the algorithm is

called metric multidimensional scaling. When the data is defined by only an ordinal level
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of measurement, the method is called nonmetric multidimensional scaling (Young and

Hamer, 1987, Ch. 2).

Multidimensional scaling is a family of algorithms that operate on the principle of

minimizing the error between similarities (or dissimilarities) in the experimental

measurements and distances in the configuration. There are different measures available

to minimize in the objective function. One of the most common measures is a quantity

called stress and is given in Equation (1). Stress is "essentially the root-mean-square

residual
departure"

from the hypothesis that "the observed dissimilarities differ from the

true dissimilarities only because of random
fluctuation."

(Kruskal, 1964b)

stress = S =
^<j

(1)

]

where d are the dissimilarities and d are the "numbers which minimize S subject to the

constraint"

of monotonicity (Kruskal, 1 964a). A variation of stress known as sstress, or

squared stress, is given in Equation (2). Sstress is another common measure of how well

the configuration fits the data (while some authors use the sum of the disparities to the
4th

power for normalization, the implementation ofMatlab used in this analysis normalizes

with the sum of the distances to the
4th

power).

?(4X
sstress =

,
-. (2)

i
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3.1.1 Goodness-of-Fit

Stress and sstress are essentially measures of the goodness-of-fit for the

configuration. A perfect fit will have a stress of zero, but this is unlikely to ever happen

with experimental data. As the fit worsens, the stress score increases. Therefore, it is

more proper to think of this as a measure of badness-of-fit. However, because of the

general acceptance of the term goodness-of-fit, we will continue to use this expression.

Table 3-1 enumerates a general "rule of
thumb"

for interpreting the stress value as it

relates to the goodness-of-fit (Kruskal, 1964a).

TABLE 3-1: Goodness-of-Fit "rule of
thumb"

for stress values.

Stress Goodness-of-Fit

20% Poor

10% Fair

5% Good

2.5% Excellent

0% Perfect

Another technique for investigating the goodness-of-fit is to examine a scatter

diagram, also known as a Sheppard diagram. A scatter diagram is "a plot comparing the

distances derived by [multidimensional scaling] and the transformed data (disparities)

with the original data values or
proximities."

(Schiffman, et al., 1981, p. 17). What the

scatter diagram can tell us is whether the stress value is reliable, if there is degeneracy,

and whether the method of computing the configuration is appropriate.
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One thing to look for in a scatter diagram of a metric solution is how clearly the

points fit some curve. When the points seem to fit some function other than the function/

assumed in the model (such as a linear function), then the stress value will be magnified

due to an incorrect assumption about the function/ This may be an indication that the

data needs to be reanalyzed. For a non-metric solution, one can only check to see if the

function is monotonic. If it is non-monotonic then it may be necessary to try a different

starting position. The general shape of a smooth curve drawn through the points can

sometimes provide information about the data, such as artifacts due to a particular data

collection method. Lastly, if the data points on a scatter diagram are strongly clumped,

this is a good indication of degeneracy. "If degeneracy occurs, the clustering it springs

from should be noted and considered, but no other conclusions should be drawn. In

particular, the very small stress should not be taken as indicating good fit in a substantive

sense, since it is obtained by violating two tacit assumptions: that the true relationship

between distance and proximity is smooth, and that points should only lie in the same

position if the corresponding objects function as virtually
identical."

(Kruskal and Wish,

1978, pp. 29-30).
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3.1.2Dimensionality

It is possible to estimate the underlying dimensionality of the data. One way to

approach this is to compute the stress (or sstress) value for each of several configurations

representing a range of dimensions. By examining a plot of dimension versus stress, it

may be possible to find some clues about dimensionality. As the number of dimensions

increases, the stress value should decrease. In many cases, there will be an elbow in the

curve at the dimension that represents the true dimensionality. Figure 3-1 illustrates this

concept where the true dimensionality of the data is three dimensions. However, not all

data will produce such a clear indication of dimensionality. When that happens, it may be

possible to interpret a range of possible dimensions or it may not be possible to interpret

dimensionality at all.

(A

12 14

Dimension

FIGURE 3-1: Example of Dimension vs. Stress plot suggesting
3-

dimensional data.
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3.1.3 Configuration

The primary output of multidimensional scaling is a low-dimensional

configuration of points that graphically represents similarities in the data. By examining

the configuration, it is possible to look for clues that help to interpret the organizing

concepts inherent in the data. Although the configuration will attempt to produce the best

spatial representation of the data, the orientation of the configuration is arbitrary. Take

for example Figure 3-2 which demonstrates the two-dimensional configuration resulting

from multidimensional scaling of the distances between ten cities. It is clear that the

dimensions north/south and east/west are not in alignment with the axes. The

configuration is still correct because the distances between the points would remain the

same if the plot were rotated so that the dimensions did align with the axes (Kruskal and

Wish, 1978, Ch. 2). It is also possible that the dimensions are not orthogonal to one

another and that there may be only one dimension, or potentially more than two

dimensions that are interpretable on a particular 2-dimensional configuration.

A configuration can exhibit local structure as well as global structure. By

selecting a cluster of points within the global configuration and performing

multidimensional scaling on just these objects, the new configuration may reveal

additional structure that was previously obscured. This type of neighborhood

interpretation can lead to further understanding of the organizing concepts and underlying

dimensions.
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FIGURE 3-2: Example of a 2-dimensional multidimensional scaling

configuration of distances between 10 cities. The orientation is arbitrary.

3.2 DUAL SCALING

Dual scaling is often referred to as principal component analysis for categorical

data (Maraun, et al., 2005). Principal component analysis operates by maximizing the

variance for a set of variables, or principle components, which are linear combinations of

the original variables. The principal components are orthogonal to one another which

minimizes redundancy of information. Dual scaling accomplishes the same goal except

that it operates on categorical data to produce multidimensional decomposition of the

data as explained by Nishisato & Nishisato (1994, p. 8):

When the optimal solution does not explain the data in an exhaustive way,

dual scaling determines a second set of scores and weights that maximally
explains the portion of data unexplained by the first optimal solution. If

the data cannot be perfectly reproduced by the first two sets of optimal
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scores and weights, dual scaling looks for the third optimal set of scores

and weights that maximally explains the portion of the data left

unexplained by the first two solutions. This process continues until the

original data can be perfectly reproduced by the solutions obtained so far,
that is, until the data are exhaustively analyzed. This process is called

multidimensional decomposition of data.

This type of decomposition identifies the solution that provides the most

information first, followed by the solution that provides the next largest amount of

information, and so on. This process makes it possible to represent the most information

with the fewest number of solutions. The usefulness of the solutions can be determined

by the amount of variability of the original data that is included in the solutions and by

the researcher's ability to interpret the solutions.

There are many aspects of dual scaling that differentiate it from other types of

analysis. Some of the key characteristics of dual scaling are listed by Nishisato (1994,

Ch. 2) and are summarized here:

1) Dual scaling provides a simpler, often clearer, description ofdata, thus serving
as a technique to form a useful summary of otherwise complex data.

2) It derives a numeric (quantitative) description from non-numeric (qualitative)
data. . .

3) It handles analysis of a variety of so-called categorical data. . .

4) It offers an exhaustive analysis of information in the data, often through

multidimensional analysis. . .

5) It serves as a technique for discriminant analysis of categorical data.

6) It extracts information from data in optimal ways (e.g., derives test scores

which have maximal reliability).
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7) It uses individual differences in judgment to explore the data, rather than

averaging them out as in most statistical analyses. Individual differences are

often more interesting than average responses.

8) It can quantify qualitative information so that traditional analysis (e.g.,
analysis of variance) for quantitative data may be carried out.

There are numerous techniques for analyzing the results of dual scaling. One very

useful outcome is the ability to visualize high-dimensional data. Humans normally have

difficulty visualizing greater than three dimensions. Multidimensional scaling provides a

way to represent high-dimensional data in a low-dimensional configuration as described

in section 3.1.3. However, there is ultimately a loss of information when performing

dimensional reduction. The dimensions that result from multidimensional scaling are not

orthogonal and therefore may contain redundancy of information. This is where dual

scaling can provide some insight where multidimensional scaling cannot. Because the

solutions of dual scaling are orthogonal, each successive solution can be considered an

added dimension with new information. Although it is still not possible to create a high-

dimensional graphical representation of this information, it is still possible to evaluate

dimensions greater than three.

By examining the objects at either end of a particular dimension, it is possible to

develop an interpretation about certain characteristics of the objects which may lead to

clues about the nature of the variance contained in that dimension. In other words, if the

objects at opposing ends are significantly different in some way, identifying what that

difference is will provide some information about the underlying structure in the data. For

example, Figure 3-3 shows eight images at either extreme of the fourth dimension from a
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dual scaling analysis of image categorization. The eight images from the one extreme are

all historic buildings. The eight images from the opposite extreme are comprised of land,

water, and air vehicles. In other words, several modes of transportation vehicles are

represented.

''.

, ,
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FIGURE 3-3: Example of evaluating the nature of variance in the fourth

dimension of a dual scaling analysis. Even without a spatial configuration,

it is possible to interpret characteristics of this dimension.

This example illustrates an important point about performing this type of

analysis the characteristics at the extremes of a particular dimension do not have be
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related to each other nor do they have to be opposites of one another (such as light and

dark). Transportation vehicles are not the opposite of historic buildings. These two

categories of images simply provided the greatest amount of variance for this particular

dimension using this particular dataset. When the dimensionality becomes high enough

that the amount of variance represented by that dimension is very small, then it will no

longer be possible to derive a reasonable interpretation for the objects at the extremes.

"The chief aim of a dual scaling analysis is not statistical inference but rather the

description of the high-dimensional categorical data structures that often arise in

psychological research. The researcher who believes he or she has found an interesting

relationship through the employment of dual scaling should, as per sound scientific

practice in general, attempt to replicate the finding at a later
date."

(Maraun, et al., 2005)

In the current study, this is accomplished through simultaneous analysis through

multidimensional scaling and hierarchical cluster analysis.

A general description of dual scaling and some its uses have been presented.

Although a thorough treatment of the mathematics of dual scaling is beyond the scope of

this paper, an excellent source for the mathematical details can be found in Chapter 6 of

Nishisato (1994).

3.3 HIERARCHICAL CLUSTER ANALYSIS

The basic objective of any cluster analysis algorithm is to discover natural

groupings of the objects. Because it is not generally possible to explore all object

groupings, it is necessary to use other methods that can find sensible clusters without the

3-11



need to examine every cluster. Many clustering algorithms will group n objects into a

fixed number of k clusters which must be specified in advance. Hierarchical cluster

analysis does not have such a requirement and instead builds a tree-like structure, or

hierarchy, which represents all values of k. This is achieved by using one of two general

approaches agglomerative hierarchical methods or divisive hierarchical methods.

(Kaufman and Rousseeuw, 1990, Ch. 5).

3.3.1 AgglomerativeHierarchicalMethods

Agglomerative hierarchical methods begin with computation of a similarity

matrix between the objects. The initial clustering is defined as a single object per cluster

so that there are the same number of clusters as objects. Groups containing objects with

the greatest similarities are merged to form the first distance level of the hierarchy (the

initial grouping of individual objects is considered the zero distance level). This process

continues iteratively until all objects are merged into a single cluster (Johnson and

Wichern, 2002, Ch. 12). Most implementations of hierarchical cluster analysis, including

the Matlab implementation used in this study, are agglomerative hierarchical methods.

3.3.2 DivisiveHierarchicalMethods

Divisive hierarchical methods operate in reverse of agglomerative methods. After

computing a dissimilarity matrix between the objects, all objects are grouped into a single

cluster. The initial cluster is then divided into two clusters such that the dissimilarity

between the two groups is maximized. In other words, the objects in one group have the
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greatest distance from the objects in the second group or are the most dissimilar. The

process of dividing groups into subgroups continues until each group contains only a

single object (Johnson andWichern, 2002, Ch. 12).

Most software implementations of hierarchical cluster analysis do not include

divisive methods due to the high computational overhead required. While an

i i j n(n-l) . . .

agglomerative method contains possible combinations to evaluate, a divisive

method will have
2""1

- 1 possible combinations. Note that the agglomerative methods

will grow quadratically as n increases while the divisive methods will grow

exponentially. The number of possible combinations to evaluate for a divisive method

can quickly "exceed the current estimate of the number of atoms in the
universe"

(Kaufman and Rousseeuw, 1990, pp. 253-254). Therefore, few implementations of

divisive methods exist.

3.3.3 LinkageMethods

For the agglomerative hierarchical methods, the main difference between them is

the manner in which linkage distance is calculated. Linkage describes the process by

which groups are merged. There are seven distance measures, also called linkage

methods, implemented in Matlab single, complete, average, weighted, centroid,

median, and Ward's. Everitt (1974, Ch. 2) provides a good description of how each

linkage method is calculated (except for weighted linkage which is described in the

Matlab documentation (The Mathworks, Inc., 2004)) which is summarized here:
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1) SINGLE - This method, also known as the nearest neighbor method, uses

the smallest distance between objects. For groups with more than one

object, distance is defined as the distance between their closest objects.

2) COMPLETE - This method, also known as the furthest neighbor method,

is the same as single linkage for the initial grouping. After the initial

step, for groups with more than one object, distance is defined as the

distance between their most remote pair of objects.

3) AVERAGE - This method defines distance as the unweighted average

distance between all pairs of objects in the two groups being

compared.

4) WEIGHTED - This method defines distance as the weighted average

distance between all pairs of objects in the two groups being

compared.

5) CENTROID - This method defines distance as the distance between the

centroid of all objects in one group and the centroid of all objects in a

second group. A disadvantage of this method becomes evident when

the size of two groups being merged are very different because the

centroid of the new group will be very close to that of the larger group.

Characteristics of the smaller group are therefore potentially lost.

Another potential problem is that the resulting cluster-tree might not

be monotonic. For the centroid linkage method to be meaningful, the

similarity matrix must contain Euclidean distances.

6) MEDIAN - To overcome the potential disadvantage of the centroid

linkage method, the median method defines distance as the Euclidean

distance between the weighted centroids of the two groups being

merged. The potential of the resulting cluster-tree not being monotonic
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remains. For the median linkage method to be meaningful, the

similarity matrix must contain Euclidean distances.

7) WARD'S - "Ward proposes that at any stage of analysis the loss of

information which results from the grouping of individuals into

clusters can be measured by the total sum of squared deviations of

every point from the mean of the cluster to which it belongs. At each

step in the analysis, union of every possible pair of clusters is

considered and the two clusters whose fusion results in the minimum

increase in the error sum of squares are
combined."

(Everitt, 1974,

p. 15) For the Ward's linkage method to be meaningful, the similarity

matrix must contain Euclidean distances.

3.3.4 Interpretation ofthe Cluster Tree

Once the hierarchical cluster tree is calculated, there are numerous ways to

interpret the results. Some of these analysis techniques involve quantitative measures.

However, as is the case with multidimensional scaling and dual scaling, some of the most

useful techniques involve qualitative interpretation.

3.3.4.1 Cophenetic Correlation Coefficient

The cophenetic correlation coefficient is a measure of correlation between the

distance information, Z, generated by the linkage step and the distance information, Y,

generated from the similaritymatrix as the pairwise distances between observations in the

original proximity data. In other words, it "measures the distortion of [the hierarchical

cluster tree], indicating how readily the data fits into the structure suggested by the
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classification."

(The Mathworks, Inc., 2004) A cophenetic correlation coefficient of 1

indicates a perfect representation of the data. As the coefficient decreases, the quality of

the clustering decreases.

3.3.4.2Dendrogram

A dendrogram, or tree diagram, is a graphical display of the binary cluster tree

hierarchy. Clusters are represented as branches in the tree structure. Nodes at which the

branches merge are positioned along a distance (or similarity) axis indicating the level of

the fusion. The dendrogram can be used to identify natural cluster divisions in the data.

This is accomplished by comparing the relative height of links in the tree with the heights

of neighboring links that occur below it in the tree structure. For example, in Figure 3-4

the topmost links are a large distance from the links below indicating that there is

inconsistency in the linkage at those levels. However, good consistency can be observed

beginning at approximately the 0.6 level suggesting that there are three natural groupings

in this data. In other words, inconsistent links can indicate a boundary between natural

cluster divisions in the data. Interpretations such as this can lead to an understanding

about the nature of the underlying structure. It should be noted that the "intermediate

results where the objects are sorted into a moderate number of clusters are of chief

interest"

as long as the clustering makes sense (Johnson andWichern, 2002, p. 683).
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FIGURE 3-4: Example of a dendrogram. The large distance of the

topmost links from the links below indicates inconsistency at those levels.

3.3.4.3 Silhouette Plot

A silhouette plot provides an alternate means for determining the natural grouping

of objects and the underlying dimensionality. Although the silhouette plot is typically

used with hard-clustering methods such as k-means and k-medoid which divide the

objects into a fixed number of clusters, it is also possible to examine a silhouette plot for

hierarchical methods by dividing the cluster tree into arbitrary clusters. The silhouette

plot is a graphical display indicating how close each object of a cluster is with objects in

neighboring clusters with values on the interval (-1,1). Values close to 1 are very

distant from neighboring clusters indicating a very good clustering. Values close to zero

indicate objects that are not distinctly in one cluster versus another. Finally, values close

to -1 are indicative of objects that have likely been classified to the wrong cluster.
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For example, Figure 3-5 shows a silhouette plot of data that is known to have

three natural groupings. The three clusters show excellent separation with most silhouette

values near 0.9. In contrast, Figure 3-6 shows the silhouette plot where the same data has

been divided into four clusters. Note how cluster two has a steeper slope with many

silhouette values closer to zero. In addition, there are many negative values indicating

that a four-cluster division is probably not the optimal division for this data. In practice,

the distinction between a good and poor clustering may not be as easy to identify as in

this simple example.

0.2 0.4 0.6 0.8

Silhouette Value

FIGURE 3-5: Example of a silhouette plot indicating three natural

groupings.
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FIGURE 3-6: Silhouette plot showing 3-dimensional data in 4 groupings.

3.3.5 Cluster Interpretation

Visual examination of the individual objects that belong to each cluster identified

by the methods described above can lead to an understanding of the structure of the data.

If the basic objective of a cluster analysis algorithm is to discover natural groupings of

the objects, then these groupings must be evaluated and interpreted. "For a particular

problem, it is a good idea to try several clustering methods and, within a given method, a

couple of different ways of assigning distances (similarities). If the outcomes from the

several methods are (roughly) consistent with one another, perhaps a case for natural

groupings can be
advanced."

(Johnson and Wichern, 2002, p. 693) For the present study,

hierarchical cluster analysis was the only clustering method used, but the results were
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compared with the results of multidimensional scaling and dual scaling before making

judgments about the natural groupings of the data.

Calculating the cluster tree using the seven distance measures described in

section 3.3.3 and dividing the cluster tree into several sets of fixed clusters makes it

possible to perform visual inspection ofmany possible configurations. For example, first

compare the clusters from all seven distance measures for a fixed number of three

clusters. If there are similarities between the resulting clusters from a majority of the

methods, then those methods which exhibit the similarity can be considered stable for

solutions for that fixed number of clusters. This comparison is repeated for four clusters,

five clusters, etc., until the resulting groupings no longer make sense and cannot be

interpreted. After the stable configurations are identified, then the individual objects

contained in these clusters can be evaluated. Some questions to ask while examining the

objects are "Do the groupings become more clear or less clear as the number of clusters

increases?"

and "Can any conclusions be drawn about the nature of the
groupings?"
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4. DATA PREPARATION

Before data analysis could begin, the raw data from the two experiments required

some pre-processing. This was necessary because each method of analysis requires data

to be in a particular format.

4.1 EXPERIMENTI FREE SORTINGEXPERIMENT

Data from the Free Sorting Experiment was formed into a dissimilarity matrix.

Observers placed 321 images into piles according to similarity judgments. Each observer

was free to make as many or as few piles as desired. A 321 x 321 zero-filled matrix M

was formed. Each image was assigned a unique index ranging from 1-321 which was

used as row and column indices into matrix M. For each observer, every time a pair of

images was placed into the same pile, a value of 1 was added to matrix M at the

coordinates corresponding to the indices of the two images. After all observations were

tallied for all observers, the resulting entries were scaled by dividing by 30. Thirty

observers represents the maximum number of times a pair of images could be sorted into

the same pile. This scaled the results on the interval (0,1) and now represents a

similarity matrix Msim. To form the dissimilarity matrix Mdis, it was only necessary to

subtract from 1 such that Mdis = 1 -

Msim .
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4.2 EXPERIMENTII DISTRIBUTED EXPERIMENT

After pre-filtering of the data as described in section 2.4.4, the observations were

formed into a dissimilarity matrix. Experiment II collected both similarity judgments and

dissimilarity judgments based on non-repeating random paths. A result of this method of

data collection is that not every pair of images was evaluated the same number of times.

Therefore, to form the dissimilarity matrix, first the results were tallied in the same

manner as the Free Sorting Experiment. Every time a pair of images were judged as the

most similar, the value at the coordinates corresponding to the indices of the two images

was incremented by 1 . The same procedure was followed for every pair of images that

was judged as the most dissimilar to form a separate dissimilarity matrix. Because every

pair was not observed the same number of times, it was necessary to keep a count c for

each pair of images of how many times they were judged together. The similarity matrix

was then subtracted from c, the maximum number of times that pair could have been

judged as the most similar, on a pair-by-pair basis to obtain a dissimilarity matrix. The

two dissimilarity matrices were then averaged to obtain a mean dissimilarity matrix. The

mean dissimilarity matrix was then divided by the count c on a pair-by-pair basis to

obtain the final frequency matrix (dissimilarity matrix).

4-2



5. DATA ANALYSIS

The Free Sorting Experiment and the Distributed Experiment both produced data

representing similarity judgments. Once the data from each experiment was properly

prepared, analysis proceeded using the same techniques for both experiments. The only

exception was dual scaling which was only applied to the Free Sorting Experiment. This

was because the nature of the data collected from the Distributed Experiment was not

appropriate for dual scaling.

5.1MULTIDIMENSIONAL SCALING

Analysis using multidimensional scaling was conducted. Because the data

collected from both experiments was represented by an ordinal scale, non-metric

multidimensional scaling was selected. The Matlab function mdscale was used to perform

the calculations. Due to the large dataset, the time required for processing the higher

dimensional configurations was unrealistic. Therefore, certain termination criteria were

set. The function tolerance was set to TolFun = 0.001 and the maximum number of

iterations was set to Maxlter = 600. The criterion selected for the objective function was

the sstress function because it tends to produce a smoother solution than the stress

function (Kearsley, et al., 1995) and given the nature of the data collected from the

Distributed Experiment (a certain amount of noise is expected), it was believed sstress

would give a better result. The Free Sorting Experiment also used sstress to be consistent

with the Distributed Experiment.
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To verify that there were no adverse effects by selecting these criteria, several

dimensions were calculated using a greater number of iterations and a smaller function

tolerance. The results were compared from the two sets of criteria. Although the absolute

value of sstress was very slightly shifted to lower values (Figure 5-1) ,
the trend was

identical and nearly the same values were obtained indicating that the criteria that were

used were valid. If the function criteria were harmful to the processing, then the stress

values for the two conditions would be very different.

0.06

W 0.05

k.

0.04

0.03

-

TolFun=1e-3, Maxlter=600

- TolFun=1e-6, Maxlter=2000

FIGURE 5-1: Validation of function criteria for multidimensional

scaling.
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5.2 DUAL SCALING

Analysis using dual scaling was conducted. Due to the nature of the data

collection methods, only data from the Free Sorting Experiment was appropriate for this

type of analysis and the Distributed Experiment was not analyzed with dual scaling.

Dual scaling accepts a similarity matrix as input. However, depending on the

method of data collection the analysis must be conducted slightly differently. For the Free

Sorting Experiment, the difficulty lies in the fact that each observer was permitted to

make as many piles as determined necessary. The number of piles that one observer

makes could be different from the number of piles that another observer makes. This is

handled in dual scaling as a special case ofmultiple-choice data (Nishisato and Nishisato,

1994, Ch. 3). With multiple-choice data, there are a fixed number of options from which

each observer selects a response. "In sorting data, the number ofpiles each respondent

uses corresponds to the number of options of each item in multiple-choice
data..."

(Nishisato and Nishisato, 1994, p. 53). Except for this variation for the special case of

sorting data, dual scaling proceeds normally.

One reason for the different treatment of sorting data is explained as follows:

"... in sorting data, individual differences are revealed through
subjects'

unrestricted or

free choices of piles, rather than the researcher's imposing decision on the number of

piles. This distinction appears to explain the fact that dual scaling of sorting data often

yields too many solutions to interpret. Therefore, the problem of how many solutions to

adopt becomes more difficult with sorting data than with multiple-choice data or

contingency
tables."

(Nishisato, 1994, p. 172).
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Dual scaling was computed for the first 50 dimensions. For each dimension, the

first eight and the last eight images were output for visual interpretation as described in

section 3.2.

5.3 HIERARCHICAL CLUSTER ANALYSIS

Analysis using hierarchical cluster analysis was conducted. All functions used are

part ofMatlab's Statistic's Toolbox of which all are agglomerative hierarchical methods.

Beginning with the original dissimilarity matrix of observations, the function pdist was

used to obtain a dissimilarity matrix using the Euclidean distance metric. Each of the

seven linkage methods described in section 3.3.3 single, complete, average, weighted,

centroid, median, and Ward's were then calculated using the function linkage. The

cophenetic correlation coefficient was calculated for each of the seven resulting

hierarchical cluster trees using the cophenet function.

Analysis of multidimensional data is often easiest to understand using graphical

representations of the data. Each of the seven hierarchical cluster trees was formed into a

dendrogram using the dendrogram function. When there are more than thirty data

points in the original data set, a complete dendrogram can become very dense and

difficult to interpret. When this occurs, as it does in the present study with 321 data

points, the default behavior of the Matlab function dendrogram is to collapse some of

the lower branches as necessary such that some leaves in the
plot will correspond to more

than one data point. This default behavior was applied to the dendrograms presented in

this study.

5-4



Another graphical representation is the silhouette plot. As input to the function

silhouette, it was necessary to first divide the data into a fixed number of clusters

using the function cluster. It is useful to examine the silhouette plots for several

linkage methods across several fixed cluster sizes. Therefore, the data was divided into a

fixed number of clusters ranging from 2-15. Seven silhouette plots (one for each linkage

method) for each of the resulting 14 groupings were then created.

Finally, clusters were calculated for 133 groupings (seven linkage methods for

each of 2-20 fixed clusters). The resulting clusters were output as individual images for

visual interpretation as described in section 3.3.5.
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6. GOODNESS-OF-FIT

Before beginning interpretation of the results, it is useful to examine the

goodness-of-fit. This enables one to determine how well the data is represented by the

various results and provides a measure of confidence.

6.1 MULTIDIMENSIONAL SCALING

By examining a series of Sheppard diagrams, it is possible to obtain some idea of

the goodness-of-fit for multidimensional scaling configurations. Sheppard diagrams for

the 2-dimensional, 3-dimensional, 9-dimensional, and 52-dimensional configurations

from the Free Sorting Experiment are shown in Figure 6-1 (Sheppard diagrams from the

Distributed Experiment are given in Appendix B). The first thing to look for is data that

is clumped which would indicate degeneracy. Since the data does not appear clumped, it

is possible to rule out any effects of degeneracy. Next we look at whether the function is

monotonic. This is necessary for a non-metric solution to be considered to have a good

fit. Figure 6-1 demonstrates monotonic functions for all dimensions so the solutions are

considered valid. An observation is that as the number of dimensions increases, the

scatter of the data reduces. This is closely related to the sstress vs. dimension plots of

Figure 7-1 which indicates an improved representation with increased dimensionality.

The interpretation of these two observations is that the data is well represented by high-

dimensional configurations, but in the low-dimensional configurations where there is a

large scatter the solutions will contain some inaccuracies.
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FIGURE 6-1: Sheppard diagrams for the (a) 2-dimensional, (b) 3-

dimensional, (c) 9-dimensional, and (d) 52-dimensional multidimensional

scaling configurations.

Naturally, we cannot visually examine a 52-dimensional representation of the data

so we are limited to evaluating the
2- and 3-dimensional configurations. Figure 6-1 shows

us that the goodness-of-fit for these configurations is not very good. This does not mean

that we cannot use them at all. Instead, we should simply be aware that the data are not

perfectly represented by the configuration and we should expect to see anomalies. In

other words, we can look for general trends in the configuration of images but there will
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be some images that will not fit these trends. While it is possible to use these results to

draw general conclusions, we must be careful that we do not interpret too much from the

finer details.

6.2HIERARCHICAL CLUSTER ANALYSIS

The cophenetic correlation coefficient is a logical first step in examining the

goodness-of-fit for hierarchical cluster analysis. Table 6-1 lists the cophenetic correlation

coefficient for each of the seven linkage methods. Values closer to one indicate a better

fit than values closer to zero. We see from Table 6-1 that the Free Sorting Experiment

produced very stable solutions using all but the single linkage method. The Distributed

Experiment also performed poorly with the single linkage method, but also did not

produce solutions that represent the data well for the centroid and median linkage

methods. Although the remaining linkage methods indicate reasonable results, it is clear

that the Free Sorting Experiment produced cluster trees that better represent the data than

the Distributed Experiment.

These results are easily explained. The single linkage method is often susceptible

to an effect called chaining "which refers to the tendency of the method to cluster

together at a relatively low level objects linked by chains of intermediates. . . . Because of

the chaining effect single linkage may
fail to resolve relatively distinct clusters if a small

number of intermediate points are present between the
clusters."

(Everitt, 1974, p. 61)

There is evidence that chaining occurred for the single linkage method because numerous

levels produced clusters containing only a single image with all remaining images
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lumped into the last remaining cluster. The centroid and median linkage methods for the

Distributed Experiment both produced warnings that the resulting cluster tree was non

monotonic. It is therefore not surprising that the cophenetic correlation coefficient for

these methods is poor.

The goodness-of-fit for the Free Sorting Experiment appears to be generally better

than that for the Distributed Experiment. Given that the Distributed Experiment was

conducted over the internet, that the experiment only produced a sparse matrix, and that

an exaggerated amount of noise in the data is expected due to the nature of an internet

experiment, the results in Table 6-1 are very reasonable.

TABLE 6-1: Cophenetic correlation coefficient for the seven linkage

methods.

Single Complete Average Weighted Centroid Median Ward's

Free 0.3817 0.8141 0.8309 0.8394 0.8320 0.8096 0.7872

Sorting

Distributed 0.2276 0.6334 0.6822 0.5233 0.2892 0.0260 0.6477

Due to the poor cophenetic correlation coefficients, the single linkage results for

both experiments will be discarded. The centroid and median linkage methods will also

be discarded for both experiments because they produced non-monotonic cluster trees.

Although all linkage methods were used during analysis, no further results will be

reported for the single, centroid, and median linkage methods.
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7. DIMENSIONALITY

Once the goodness-of-fit has been evaluated, the first task was to try and

determine how many dimensions are inherent in the data. Multidimensional scaling

provides a technique for investigating dimensionality by looking at a graph of stress

versus dimension. A detailed explanation of this technique is included in section 3.1.2.

In multidimensional scaling, the quantity called stress can be defined as a

"measure of the extent to which a geometrical representation falls short of a perfect

match."

(Johnson and Wichern, 2002, p. 701) As with many statistical quantities, there

are many different ways to calculate stress. For the current study, the quantity known as

sstress was used. Figure 7-1 shows the sstress vs. dimension plot for both experiments.

To interpret the results, one must examine the reduction in sstress as a function of the

number of dimensions. The value for sstress will necessarily decrease as the number of

dimensions increases. Determination of the final dimensionality of the configuration must

be made based on principles of interpretability and certain rules-of-thumb. For example,

when the value for sstress is plotted against the number of dimensions, there will often be

an elbow in the curve. The number of dimensions at which the elbow occurs represents

the number of dimensions inherent in the data. Normally, existence of a sharp elbow in

the curve will indicate a candidate dimensionality for the data. If no sharp elbow exists,

then often there will be a soft elbow which might be used for analysis. Unfortunately, no

such elbow can be observed in Figure 7-1 . The curve from both experiments decreases so

smoothly that no concrete conclusions can be made regarding the dimensionality of the
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data based on Figure 7-1 alone. However, the complete absence of an elbow might still

provide some insight.

Free Sorting Experiment

Distributed Experiment

FIGURE 7-1: Dimension vs. SStress plots. There is no clear elbow in

either curve to indicate the underlying dimensionality in the data.

It is not surprising that the absolute sstress values are higher for the Distributed

Experiment than for the Free Sorting Experiment. Given the nature of the Distributed

Experiment, the results are expected to be somewhat less accurate than the results from

the Free Sorting Experiment. However, it
is noteworthy that the trend that is observed in

Figure 7-1 is nearly identical for both
experiments.

Another way to explore dimensionality
in the data is through cluster analysis. For

this task, hierarchical cluster analysis was applied to the data. By examining the

silhouette plot for increasing numbers of clusters,
it is possible to make some conclusions

about dimensionality. Figure 7-2 shows the silhouette plots for 2-5 clusters for the
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average linkage method (Free Sorting Experiment) which has a result typical ofmost of

the linkage methods (silhouette plots from the remaining linkage methods are found in

Appendix C). One interpretation of Figure 7-2 indicates that there is something

significant occurring at either two or three dimensions. On one hand, the two-cluster

silhouette plot exhibits fairly good unity for both clusters with only a handful of objects

having negative values and both clusters showing fairly high silhouette values. On the

other hand, the three-cluster silhouette plot shows more objects with negative values but

better separation between the clusters (i.e. steeper slopes). The mean value for both

groupings is approximately the same, indicating that a valid case could be made for either

the two- or three-cluster groupings. Similar findings are evident in the silhouette plots

resulting from many of the other linkage methods.

A third method for examining dimensionality is to examine the dendrograms of

the cluster trees resulting from hierarchical cluster analysis. The dendrogram is normally

used to identify natural cluster divisions in the data. Although this is not exactly the same

as dimensionality, if one is able to determine the optimum number of interpretable

clusters divisions then this may provide some clues to the true dimensionality. Figures

7-3 and 7-4 show the dendrograms for the Free Sorting Experiment and the Distributed

Experiment respectively.
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FIGURE 7-2: Silhouette plots for 2-5 clusters of the Average Linkage

method from the Free Sorting Experiment.

As we have seen with the other analyses of dimensionality, there is not a clear

interpretation of where the natural cluster breaks occur. Figure 7-3 shows cluster

divisions that suggest three clusters for each linkage
method. A case could easily be made

to make the divisions at a lower level such that four, five, or more clusters are formed.

Ideally there would be a certain level at which the distances are clearly much further

away than
the links below, but just as with the SStress vs. Dimension plot (Figure 7-1),
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the distances gradually taper toward shorter distances. Figure 7-4 displays slightly better

division between the clusters suggesting between 4-6 cluster divisions are optimal. Given

the results from both experiments, the interpretation of the dendrograms is that between

3-6 cluster divisions provide the most natural cluster divisions. It is important to keep in

mind that these divisions are interpretations and other interpretations are possible.
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FIGURE 7-4: Dendrograms from the Distributed Experiment.

However, we know intuitively that there cannot be only two, three, or even six

fundamental image categories. We also have evidence from the MDS analysis that the

dimensionality may be inconclusive. Although it would be best to first identify the

dimensionality so that we have some clues about how many categories to seek, we are

unable to do this definitively. Perhaps the best interpretation of fundamental

dimensionality is that there is no fundamental dimensionality. Instead, what is
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fundamental about image semantics is their hierarchical nature where each new category

division will add some amount ofnew information about the semantics.
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8. CLUSTER INTERPRETATION

8.1 2-DIMENSIONALMULTIDIMENSIONAL SCALING

By looking at the configuration of the stimuli at solutions with a small number of

dimensions, one can interpret the results by looking for trends or finding clusters of

stimuli within the configuration that represent similar items. This type of neighborhood

interpretation can lead to the discovery of the underlying image categories. Even if we

could first determine the true dimensionality of the data, because the primary output of

multidimensional scaling is a graphical representation we are still limited to evaluating it

using low-dimensional representations even when the data is determined to be of a

higher dimensionality. Therefore the two- and three-dimensional configurations are the

only ones that can be easily visually interpreted.

The two-dimensional configuration from the Free Sorting Experiment is shown in

Figure 8-1. Although it is impossible to view all images simultaneously due to

overlapping, it is nevertheless easy to identify certain trends (careful analysis of all

obscured images did not reveal any deviations from the trends that are observable in

Figure 8-1). The most obvious trend can be seen by looking at images along dimension 1.

Images to the right all have people in them while images to the left have no people. This

trend holds very well for the obscured images as
well. It is reasonable then to identify our

first category as Images with People and
our second category as Images without People.

It is important to note that unlike with principle component analysis where the first

dimension represents the most important information, the second dimension represents

the next most important information, etc. no conclusions can be made about the
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importance of the order of the dimensions. Additionally, recall that the orientation of the

configuration is arbitrary and only the inter-relationship between the samples has

significance. In other words, we cannot conclude from interpretation ofmultidimensional

scaling that Images with People and Images without People are the most important

dimensions nor are we restricted to interpreting along the coordinate axes, though in this

case there appears to be good correlation with the coordinate axes.

-10
0 5

Dimension 1

20

FIGURE 8-1: Free Sorting Experiment multidimensional scaling

2-dimensional configuration.
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Further examination of Figure 8-1 reveals another trend. In general, the majority

of images with negative values for dimension 2 (images near the bottom of the figure)

include natural scenes, landscapes, etc., while the majority of images with positive values

for dimension 2 (images near the top of the figure) display varying degrees ofman-made

objects such as tables, sculptures, buildings, etc. A transition from natural images to

images featuring man-made objects is clearly the primary characteristic of dimension 2.

This observation is emphasized by considering the first two categories. Images at the

extreme of dimension 1 appear to be primarily images with people filling the frame

without much reference to their surrounding environment. As one moves toward the other

end of the dimension, it can be seen that images of people in natural/rural scenes appear

in the lower portion of the configuration and images with people in city scenes (i.e.
man-

made environment) seem to occupy the upper portion of the configuration. Therefore, our

third category is Natural Images and our fourth category is Images with Man-Made

Objects.

The two-dimensional configuration from the Distributed Experiment is shown in

Figure 8-2. It is immediately obvious that the overall shape of the configuration is very

different from the one obtained from the Free Sorting Experiment. In three dimensions,

the circular shape is expanded into a spherical configuration. The same circular

configuration was observed in a previous study (Rogowitz, et al., 1998). It is unclear

exactly why the computer experiments are producing such geometrically symmetric

results, but it is very likely nothing more than an
artifact of the experimental design. This

seems particularly likely since it occurred identically in both separate studies. Both
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computer experiments produced a sparse data set which might account for the

circular/spherical configuration. In contrast, the tabletop sorting experiment in

(Rogowitz, et al, 1998) also produced a circular configuration. Rogowitz speculated that

this was perhaps due to the use of metric multidimensional scaling and that using
non-

metric multidimensional scaling instead might produce a more natural configuration. In

the present study, non-metric multidimensional scaling was used and the configuration is

indeed non-circular.

If the circular shape is ignored, it becomes clear that the same trends observed in

Figure 8-1 are also present in Figure 8-2. Not only are the same trends observed, but a

detailed examination of individual images in both figures reveals that most of the images

are located in similar regions of the plot and are similarly oriented with respect to nearby

images. This provides good initial confirmation that results of both Experiment I and

Experiment II are reliable and that both experiments have measured the same

psychological process.
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FIGURE 8-2: Distributed Experiment multidimensional scaling

2-dimensional configuration.

8.2 3-DIMENSIONALMULTIDIMENSIONAL SCALING

Looking at the 3-dimensional configuration is a little more difficult. Because the

three-dimensional configuration is impossible to view on a printed page in three
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dimensions, it is presented in slices with each slice representing 10% of the third

dimension. By viewing these in sequence, one can get some idea of the three-dimensional

nature of the configuration. Figure D-l in Appendix D shows the ten slices for the

Sorting Experiment and Figure D-2 shows the ten slices for the Distributed Experiment.

Before continuing with the interpretation of the third dimension, it is necessary to

address the issue of orientation. Recall that the dimensions of a multidimensional scaling

configuration are not orthogonal nor is the orientation of the configuration necessarily

aligned with the coordinate axes. Evidence of this can be seen in Figure D-l and Figure

D-2. Notice how the second dimension has reversed its orientation with respect to the

two-dimensional configuration (Figure 8-1). Although the first two dimensions were well

aligned with the coordinate axes in the two-dimensional configuration, this may not hold

true with the third dimension. In fact, it is possible that a valid dimension cuts diagonally

through the three dimensions making it difficult to identify.

While not as obvious as the first two dimensions, there is a definite trend that is

discernable along the third dimension and it also happens to align fairly well with the

coordinate axis. A relationship can be observed between an image's position along the

third dimension and the perceived proximity of the primary subject of the photograph.

Perceivedproximity is defined as the distance from the observer's perceived position in

the scene to the focal point of the image. In other words, it can be thought of as the

degree to which a subject fills the frame relative to its physical size. For example, the

three images in Figure 8-3 all fill approximately the same amount of area in the image

frame, but one has the perception that one is physically
much closer to the flower than to

8-6



the building or mountain. This is because we know that a flower is much smaller than the

other objects and therefore the distance to the flower must be much shorter in order to

achieve the relative perspectives. It is also assumed that the observer has some experience

and knowledge of the effect of the focal length of a camera lens. In other words, to

achieve the three images in Figure 8-3, lenses of different focal lengths are required and

this is intuitively taken into account by the observer. The physical proximity of the

photographer may be different than the perceived proximity of the observer due to a

reduction or enlargement of the image within the camera system. It is the perceived

proximity that is relevant to the image semantics.

#
i_g,

(a)

FIGURE 8-3: Examples of perceived proximity. The observer has the

perception ofbeing physically closer to the flower (a)
than the building (b)

or the mountain (c) even though they all fill approximately the same

amount of the image frame.

To explore the idea of perceived proximity, it will help to identify some

examples. The observed trend can be stated as the transition from a perceived proximity

of very close at one end of the dimension to a perceived proximity of very far at the
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opposite end. This appears to hold true for images that are similar, however the position

along the third dimension does not remain constant for images of different categories.

Nevertheless, the trend appears to be stable. Figure 8-4 demonstrates this transition using

images taken from the same region (based on the first two dimensions) of the three

dimensional configuration from the Sorting Experiment. Each image is labeled with the

region of the third dimension that the image occupies. Notice how at the lower end of the

third dimension we see only a single flower. As we move along the dimension we can see

an entire flower bed. Move further still and we begin to see a greater part of the

surrounding scene. Continue along the dimension and we begin to see a full landscape.

FIGURE 8-4: Example of perceived proximity from the 3-dimensional

configuration of the Sorting Experiment. Images along the third dimension

are found at (a) 20-30%, (b) 30-40%, (c) 40-50%, and (d) 50-60%.

This trend of beginning with a very close perceived proximity and slowly moving

farther away can be observed in numerous regions of the
same configuration. Figures 8-5

and 8-6 show two more examples of this trend. Although not all images conform this

observation, the majority of images do appear to conform and the evidence for it is too

strong to ignore.
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FIGURE 8-5: Example of perceived proximity from the 3-dimensional

configuration of the Sorting Experiment. Images along the third dimension

are found at (a) 10-20%, (b) 20-30%, (c) 30-40%, (d) 40-50%, (e) 50-

60%, and (f) 60-70%.

(d)

FIGURE 8-6: Example of perceived proximity from the 3-dimensional

configuration of the Sorting Experiment. Images along the third dimension

are found at (a) 30-40%, (b) 40-50%, (c) 50-60%, and (d) 60-70%.

Note that the images in Figure 8-4, Figure 8-5, and Figure 8-6 do not remain in

the exact same region with respect to the first two dimensions. That is, as one moves up

along the third dimension, the coordinates
for the other two dimensions tend to drift. This

was explained earlier by the fact that a dimensional axis can have any orientation and in

this case, the axis is not in complete alignment
with the coordinate axis.
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8.3 DUAL SCALING

Although it is not feasible with multidimensional scaling to examine
high-

dimensional configurations, the higher dimensions can be analyzed using dual scaling.

By looking at the objects at the extremes of the various dimensions, some characteristics

about that dimension may be inferred. To facilitate this, the first and last eight images

from each dimension were explored. Figure 8-7 shows the extremes of the first two

dimensions from the Free Sorting Experiment. The top eight images represent one

extreme and the bottom eight images represent the opposite extreme. The extremes for

dimensions 3-10 of the Free Sorting Experiment and dimensions 1-10 of the Distributed

Experiment are found in Appendix E. Although the first 50 dimensions were examined,

due to space limitations only the first 1 0 are included in this thesis.

(a) (b)

FIGURE 8-7: Images at the extremes of (a) dimension 1 and

(b) dimension 2 from dual scaling analysis for the Free Sorting
Experiment.
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Figure 8-7 (a) shows a very clear division between the images at the extremes. At

one end there are images containing rocky landscapes that include mountains. At the

other end are images of people. More specifically, there are primarily close-up images of

young children. Figure 8-7 (b) has interior images of ornate, historical buildings which

includes the sculpture/art that is often found in these locations. The opposing extreme

contains all images of animals. Analysis continued in this manner through the first 50

dimensions and the results were compiled. When a group of images at the extreme of a

dimension had an interpretable characteristic, that characteristic was considered one of

the potential categories inherent in the underlying data structure.

Some categories that were identified were related to categories from other

dimensions but revealed a finer resolution of detail. For example in one dimension there

was a mixture of different types of images with people, but another dimension exhibited

only close-up images of children. In such cases, the categories are combined and only

those at the finest resolution are reported. Due to this condensation of categories, it is no

longer possible to report them in any particular order with respect to the dual scaling

dimensions. The list of categories resulting from this analysis is given in Table 8-1.
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TABLE 8-1: Categories resulting from dual scaling analysis of the images

at the extremes of the dimensions.

Dual Scaling Categories

people (posing)
people (candid -

inactive)
people (candid -

active)

children (close-up)
animals

floral

rocky landscapes / mountains

waterscapes

water sports

cityscapes w/water

bridges

modern architecture

food / dining
vacation

night

8.4HIERARCHICAL CLUSTER ANALYSIS

Data from both the Free Sorting Experiment and the Distributed Experiment were

divided into clusters using the complete, average, weighted, and Ward's linkage methods.

This was repeated for 2-20 fixed clusters for each of the four linkage methods. The

images that belonged to each resulting cluster were examined and prominent identifying

characteristics, if any, were compiled.

For example, Figure F-l in Appendix F shows the image clusters resulting from

the 5-cluster division of the Free Sorting Experiment using the average linkage method.

Cluster 1 is clearly all images of animals. It would not be appropriate to identify this as

animals outdoors because all but two images in the experiment that have animals are
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images of animals outdoors. Cluster 5 contains all images with people. Note that with few

exceptions, there are no images in the other categories that have people at all, the

exception being city scenes that show a crowd of people from a distance. Cluster 3

appears to be composed of images of natural scenes such as landscapes, waterscapes, and

mountains. The remaining two clusters are not quite as easy to interpret. Cluster 2

appears to also have images that are primarily of natural scenes. However, unlike

cluster 3, there is a definite presence of human influence. For example, Mount Rushmore

is certainly an image of a mountain, but the four faces indicate a clear human influence.

Also notice how the waterscapes of cluster 2 all contain either boats or buildings along

the coastline while the waterscapes of cluster 3 are purely natural. Ifwe relate this to the

multidimensional scaling configuration in Figure 8-1 we will see that the images of

cluster 3 will be found towards the bottom of the second dimension while the images of

cluster 2 will be found somewhere between the top (images with man-made objects) and

bottom (natural images). Finally, cluster 4 seems to have primarily images of man-made

objects. In particular, the images are mostly of architecture. Although this cluster has the

weakest cohesion of the five, as more cluster divisions are introduced and the clusters

become more refined, the divisions become more cohesive.

Figure F-2 shows the first two image clusters resulting from the 6-cluster division

of the Free Sorting Experiment using the average linkage method. The remaining clusters

were unchanged from the 5-cluster groupings. Notice how in the previous stage all

images with people were clumped together into a single grouping (cluster 5) and now

they have divided into two separate clusters. Close examination of the two clusters
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reveals that in cluster 1 all of the people appear to be posing for the camera or are
aware

of the picture taking process in the majority of the images. On the other hand, cluster 2

images have a tendency to be candid photographs. Thus we have an identifiable division

of a previous cluster. Later divisions will reveal the candid photographs dividing into one

group where the people are inactive (i.e. sitting, standing) and another gTOup where the

people are engaged in some activity (i.e. swimming, riding horses). This is an example of

the hierarchical nature of the method and of the hierarchical structure of image semantics.

Interpretation of the cluster divisions continued until the cluster divisions no

longer made logical sense and no identifiable characteristic between the clusters could be

determined. Cluster divisions for each linkage method for both experiments were cross-

referenced and those that appeared in a majority of the linkage methods were considered

stable and were accepted. However, some cluster divisions either appeared in only one

method or were weakly identifiable and were therefore discarded.

Note that when more than one linkage method produced the same cluster

divisions, such as candid and posed images of people branching out from a single cluster

of all people, this usually did not occur at the same level. For example, the 4-cluster

divisions of the complete linkage contained a single grouping ofpeople images, but the

5-cluster groupings included the posing and candid
branches of the people category. This

occurred at a different level than with the average linkage method. What is important is

not the level at which it occurred, but that the divisions
occurred in most linkage methods

and followed the same trends.
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All identifiable image groupings were compiled into a hierarchical tree (Figure

8-8). Although Figure 8-8 looks somewhat like a dendrogram, it is important to

understand that it is not a dendrogram. Figure 8-8 is a summary of the cluster

interpretations described above. It is presented in a tree-like structure to emphasize the

parent/child relationship between the various branches in the hierarchy. There were four

main groupings from which all others branched out people, natural, manmade, and a

fourth grouping containing a non-descript combination of images of both natural and

manmade scenes (indicated by the small square). These categories, along with the

categories identified in the dual scaling results (Table 8-1), will be used as an aid in

interpreting possible characteristics in the local multidimensional scaling configurations.
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FIGURE 8-8: Cluster interpretations from hierarchical cluster analysis.
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8.5 LOCALMULTIDIMENSIONAL SCALING CONFIGURATIONS

Sometimes it is possible to detect additional structure in data by re-applying

multidimensional scaling to data from local regions of the configuration. This process

will often produce configurations that make is easy to identify characteristics in the data

that were obscured in the original configuration. There are several ways to determine

which objects to include in the local processing. In one method, the global configuration

can be divided into a regular grid and all objects falling within a particular division are

selected. In another method, clusters of points from the global configuration can be

selected based on visual interpretation.

For this study, clusters from the hierarchical cluster analysis were utilized to help

determine the regions for local multidimensional scaling. To determine which cluster

divisions to select, the global configuration was plotted with the points colored based on

the cluster divisions. Figure 8-9 shows an example of this type of plot for the 6-cluster

division of the weighted linkage method for the Sorting Experiment. Plots similar to

Figure 8-9 were made for 3-20 clusters for each of the 4 linkage methods and repeated for

each of the two experiments. Each plot was examined to see which had the maximum

number of clusters with the minimum amount of spatial overlap between clusters. The

6-cluster weighted linkage clusters seemed to have a good balance of these two

properties. For the Distributed Experiment, the 6-cluster Ward's linkage clusters were

selected (Figure 8-10). The regions were not selected based on any strict rules. Instead

the decision of which cluster arrangement to select was based on interpretation and

practicality.
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Next the centroid for each of the six clusters was calculated for the configuration.

Each centroid was used as the center of a local region and points were selected based on a

fixed radius from the center. For the Sorting Experiment, all points within a radius of 5

were included and for the Distributed Experiment, all points within a radius of 0.17 were

included (Figures 8-11 and 8-12 respectively). Finally, the selection of local clusters of

points was processed with multidimensional scaling using the same procedure for the

global configuration described in section 5.1.
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FIGURE 8-9: Multidimensional scaling 2-dimensional configuration for

the Free Sorting Experiment. Images are colored based on the 6-cluster

grouping using the weighted linkage method of hierarchical cluster

analysis.
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FIGURE 8-10: Multidimensional scaling 2-dimensional configuration for

the Distributed Experiment. Images are colored based on the 6-cluster

grouping using theWard's linkage method of hierarchical cluster analysis.
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FIGURE 8-11: Multidimensional scaling 2-dimensional configuration for

the Free Sorting Experiment. Images are colored based on the 6-cluster

grouping using the weighted linkage method of hierarchical cluster

analysis. Local multidimensional scaling was applied to image groupings

within each circle. The circle centers are the centroids from the

corresponding hierarchical cluster analysis clusters.
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FIGURE 8-12: Multidimensional scaling 2-dimensional configuration for

the Distributed Experiment. Images are colored based on the 6-cluster

grouping using the Ward's linkage method of hierarchical cluster analysis.

Local multidimensional scaling was applied to image groupings within

each circle. The circle centers are the centroids from the corresponding

hierarchical cluster analysis clusters.

Interpretation for the local configurations proceeded in the same manner as for the

global configurations. Figures 8-13 and 8-14 show two of the local configurations from

the Sorting Experiment. The remaining local configurations from both experiments are

found in Appendix G. Figure 8-13 shows the local configuration for cluster 2. The images

8-20



near the bottom all have foliage and floral themes. This characteristic was already evident

in the global structure. However, notice how all of the images near the top-right are

waterscapes or have water themes. This is a new characteristic that was previously

obscured in the global configuration and provides good support for the various
water-

related categories identified in dual scaling and hierarchical cluster analysis.

Cluster #2

-20 -15 -10 -5 0

Dimension 1

FIGURE 8-13: Local multidimensional scaling 2-dimensional

configuration for the Free Sorting Experiment using images from within

circle #2 (green) in Figure 8-10.
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FIGURE 8-14: Local multidimensional scaling 2-dimensional

configuration for the Free Sorting Experiment using images from within

circle #3 (blue) in Figure 8-10.

Figure 8-14 also reveals some new characteristics that were not evident in the

global configuration. The most striking feature is the clear division down the center of the

configuration. Although the global configuration clearly showed the presence of people

as an important characteristic, it was not clear if there were further divisions. In

Figure 8-14 we see that all of the images on the left side are images of people posing for

the camera and the images on the right side consist of candid photographs of people. This
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is very good confirmation of this characteristic which was also detected in both dual

scaling and hierarchical cluster analysis.

Interpretation of all 12 local configurations (six from each experiment) continued

in the same manner. The categories that were identified through dual scaling and

hierarchical cluster analysis were used as an aid in interpreting the local configurations

by suggesting certain groupings to look for. Table 8-2 lists all of the identifiable

characteristics that resulted from interpretation of the local configurations.

TABLE 8-2: Categories resulting from interpretation of 2-dimensional

local multidimensional scaling configurations.

Local Multidimensional Scaling Characteristics

modern architecture

historical architecture

art / sculpture

bridges

waterscapes

floral

foliage

people (posing)

people (candid - inactive)
people (candid -

active)

children

animals

natural landscapes

rocky landscapes

water

natural images with human influence
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8.6 FINAL FUNDAMENTAL CATEGORIES

By compiling the identifiable categories resulting from all thee methods of

analysis global and local configurations ofmultidimensional scaling, dual scaling, and

hierarchical cluster analysis a new list of the final fundamental categories is formed

(Table 8-3). These 34 categories are the ones that have proven to be stable across at least

two of the methods of analysis.
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TABLE 8-3: Final list of fundamental categories resulting from both

experiments and all methods of analysis.

FINAL FUNDAMENTAL CATEGORIES

people

people
-

posing

people -

posing (distant)
people -

posing (close)
people -

candid

people -

candid (inactive)
people -

candid (active)
natural

animals

landscape

manmade

sculpture/art

vehicles

vehicles - land/air

vehicles -

water

architecture

cityscape

cityscape w/water

cityscape w/out water

architectural detail

architectural detail -

window flowers

historical architecture

modern architecture

perceived proximity

waterscape

waterscape sand/beach

waterscape green/foliage

floral/foliage

food/dining
bridges

landscapes -

rocky/mountainous

landscapes -

green

day
night
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9. DISCUSSION

Having identified a set of fundamental categories, one may be tempted to

conclude the study here. However, it may be worthwhile to consider the results further.

Perhaps there is a deeper understanding that can be gained by considering the

composition of the categories themselves. Before continuing, it is helpful to briefly

review a different human perception color.

9.1 COLOR PERCEPTION

It is easy to divide the full range of perceived colors into a set of distinct

categories. Among other important contributions, Berlin and Kay (1969) discovered

extraordinary similarities in color vocabulary across 20 languages and introduced the

concept of basic color terms of which there are 1 1 in English (black, white, red, green,

yellow, blue, brown, pink, orange, purple, and gray). The National Bureau of Standards

introduced the ISCC-NBS color names dictionary and the universal color language

which defined color names for 267 regions in Munsell color space using a combination of

basic hue names (red, orange, yellow, green, etc. ) and a variety ofmodifiers including as

dark, medium, light, grayish, vivid, brilliant, andpale (Mojsilovic, 2002). In the first case

we can think of dividing all colors into 1 1 categories. In the second case we are dividing

all colors into 267 categories.

While the first color system divides colors into broad, fundamental categories, the

second defines a finer resolution which allows a greater degree of discrimination.

Imagine if systems of color categories such as these were the only way in which we
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defined color. It would extremely difficult, if not impossible, to design and engineer the

multitude of color technologies that exist today ifwe were restricted to using a finite set

of categories to describe color. Picture the challenge of developing color broadcast

television using only categorical color descriptions!

There are better ways to model color than mere categorical descriptions. Color

appearance only requires five perceptual dimensions (lightness, chroma, hue, brightness,

and colorfulness) to unambiguously describe the appearance of a color (Fairchild, 2005,

Ch. 4). In other words, using these five perceptual dimensions, all 267 categories of the

ISCC-NBS color naming system, and many more, can be identified.

9.2 PERCEPTUAL IMAGE SEMANTICDIMENSIONS

Image semantics are usually modeled using basic categorical descriptions (Cox,

et al., 2000; Greisdorf and O'Connor, 2002; Chan, et al., 2006). Sometimes a more

comprehensive approach is employed that accounts for a hierarchical structure of the

semantics under investigation (Boutell, et al., 2003; Tian, et al., 2005; Rorissa and

Hastings, 2004). Nevertheless the descriptions are still categorical by nature. There have

been no attempts known to the author to model image semantics according to their

underlying perceptual dimensions. Just as color is better modeled using the perceptual

dimensions, image semantics could benefit greatly by a similar approach.

In the color naming example, basic color names are used in combination with

various modifiers such as light green and dark blue. Notice how the modifiers of light

and dark are direct correlates of the lightness dimension of color appearance. By
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analyzing the final fundamental categories in Table 8-3, it is possible to construct a

perceptual semantic model based on similar principles. For example, there are seven

categories that are connected with the presence or absence ofwater. Ifwater were used as

a modifier, similar to light and dark, then we could define a wetness dimension that can

be used to indicate the presence of water in an image. Similarly, there are seven

categories indicating the presence of people. If one disregards the differences between

these categories, then the modifiers with people and without people can indicate another

perceptual semantic dimension. In fact, a case can be made to include the animal

category in this dimension as well. A closer examination of Figure 8-1 reveals that all

images of people are at one end of the first dimension and all images without people are

at the other end while images with animals appear to be positioned somewhere in

between. This is interpreted to mean that the scale is not only representing the presence of

people but rather the presence of any living creature where people are considered the

most important followed by animals and finally the absence of all living creatures. We

can call this the humanness dimension to describe the degree to which a living creature is

similar to a human.

Following these principles, it is possible to represent the 34 final categories using

only 10 perceptual semantic dimensions (Table 9-1). These 10 dimensions represent the

underlying perceptions that are responsible for making categorical assignments. In

forming the 10 dimensions, a few of the categories, such as sculpture/art, vehicles, and

food/dining were omitted because they were not perceived to be fundamental in nature. In

other words, they are special cases of other categories and only appeared as independent
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groupings in this experiment because there happened to be enough images that contained

them included in the test images. Had there been at least 10 images of soccer balls,

footballs, baseballs, etc. then a new category of sports balls would have likely appeared

but that would not mean that sports balls is a fundamental category. Rather, it is just a

special case ofmanmade objects. Therefore, the interpretation is to omit these categories.

TABLE 9-1: Proposed perceptual image semantic dimensions.

Perceptual Image Semantic Dimensions

Humanness

Artificialness

Perceived Proximity
Candidness

Wetness

Architecture

Terrain

Activeness

Lightness

Relative Age

A multidimensional perceptual semantic space provides a convenient mechanism

for describing image semantics. If each dimension were properly scaled (the current

study is only suggesting the concept of a semantic space to fully implement it would

require psychophysical experiments to scale each dimension) then similar images would

be located within the same sub-region of the space. This accomplishes numerous

objectives as outlined in the introduction.

One use of image semantics is to aid in image-dependent processing such as

gamut mapping and contrast adjustment. If the descriptors for an image are pre-
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computed, then it is only necessary to identify the coordinates in semantic space to

determine what type of image it is. If they are not pre-computed, then the processing

required to classify the image is greatly reduced since it is only necessary to identify 10

image descriptors instead of a nearly endless list of possible categories. Of course, it may

be required to calculate several quantities before the image can be rated for any one

dimension, but the result will be an image description that is likely more complete than if

every category were to be rated individually.

Image retrieval from large databases is another active area of research that utilizes

image semantics. By using a multidimensional semantic space rather than categorical

descriptions it is possible to create a much more flexible search engine. Because similar

images are located in the same sub-region of the space, a search engine would be able to

simply pick a semantic center and collect all images within a certain radius. The larger

the radius is the more broad the search results will be. As the radius decreases, it is easy

to converge on a desired result. This structure also solves the problem where images do

not belong to a fixed number of semantic categories images can be belong to many

categories simultaneously. It is a nearly impossible task to pre-judge every category that

an image might belong to but this is not necessary with a semantic space.

If a particular type of image is determined to be of importance, then it is still

possible to provide more detailed information without adding additional dimensions. For

example, if a database is to store images of wildlife and it is necessary to distinguish

between images of tigers, lions, leopards, antelope, bears, wolves, whales, dolphins, tuna,

squid, etc., then performing a scaling experiment on these animals will help determine
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their coordinates. Recall that animals are defined along the humanness dimension.

Scaling the above creatures by rating each species according to the degree to which it has

human characteristics, the various species will naturally align themselves along this

single dimension. Most people will probably see more human qualities in a wolf than in a

squid which would place the wolf closer to the human end of the scale. All of the big cats

will probably be rated nearly the same, but further scaling can be performed to divide the

big cats according to species. In other words, any resolution of detail can be defined

without the need to add additional dimensions or extra categories. The semantic space

simply becomes defined by the various sub-regions. If an image of a big cat that has not

been previously scaled (such as a cougar) needs to be included in the database, the

classification algorithm will likely be able to identify it as a big cat even if it does not

know how to distinguish a cougar. This will place the cougar's humanness coordinate

somewhere within the big cat range and the image will still be successfully retrieved if

looking for big cats, wildlife, nature, or any other category associated with that general

region of the space.

Designing experiments for testing image quality can sometimes be difficult due to

the nature of image-dependencies. Using the 10 perceptual semantic dimensions as a

guide in image selection can help to reduce wasted research efforts. By identifying

images to include in image quality experiments according to the perceptual semantic

dimensions rather than intuition, the selected images will vary in the ways that are

psychologically most important. This helps remove the guesswork from experimental

design.
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9.3 PERCEPTUAL DIMENSIONDEFINITIONS

Ten perceptual semantic dimensions have been named that can account for all 34

fundamental categories, however these dimensions have not been formally defined.

Following are definitions for each of the 10 perceptual dimensions.

Humanness

Artificialness

PerceivedProximity

Candidness

Wetness

Architecture

Terrain

Activeness

Lightness

Relative Age

The degree to which living creatures in an image, if any, exhibit

human characteristics.

The degree to which objects in an image are manmade.

The distance from the observer's perceived position in the scene to

the focal point of the image.

The degree to which subjects in the image are aware of the picture

taking process. When the humanness dimension is zero (no living

creatures), then candidness is undefined. This is similar to the way

hue does not have meaning when chroma is zero.

The degree to which the presence of water in an image is

considered a significant image element.

The degree to which architecture or architectural elements are

considered a significant image element.

The primary type of terrain in a scene such asfloral, greenfoliage,

dirt, sandy, rocky, and snowy. If a scene contains more than one

type of terrain, then the most significant terrain is used.

The degree of physical activity in a scene. Activeness does not

need to apply only to living creatures. Concepts such as weather

can create activity as well so an image of a tornado, for example,

would have a high level of activeness.

The degree to which an image is naturally light as in night vs. day.

The age of a person or object relative to its typical lifespan. For

people, a child would have a low relative age and an person in

their 80's would have a high relative age. For objects such as

architecture, a modern building would have a low relative age, a

building from the late
19th

century might have a mid-range relative

age, and ancient ruins would
have a high relative age.
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10. SUMMARY

Two psychophysical experiments were conducted to identify the fundamental

image categories for typical consumer imagery. Both experiments used a carefully

selected set of 321 images. Experiment I was a Free Sorting Experiment where observers

were asked to sort the 321 images into piles of similar images. Thirty observers

participated in the Free Sorting Experiment. Piles from all thirty observers were compiled

to form a similarity matrix. Experiment II was a Distributed Experiment conducted over

the internet which used the method of triads to collect similarity and dissimilarity data

from the 321 images. Due to the large number of images included in the experiment, the

method of non-repeating random paths was employed to reduce the number of required

responses. Approximately 9,152 observers participated in the Distributed Experiment.

Both experiments were analyzed using multidimensional scaling and hierarchical

cluster analysis. The Free Sorting Experiment was also analyzed with dual scaling. The

two-dimensional and three-dimensional global configurations from the multidimensional

scaling were examined and semantic trends were observed in these configurations that led

to the identification of the first set of candidate categories. The dimensions that resulted

from dual scaling were also examined for semantic trends by inspecting the images that

appeared at either extreme of each dimension. This process yielded the next set of

candidate categories.

Hierarchical cluster trees were calculated through hierarchical cluster analysis.

Each hierarchical cluster tree was forced into a fixed number of clusters ranging from two

through twenty clusters. Each cluster was examined for semantic cohesion and if a cluster
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appeared to contain primarily a single semantic theme and also appeared to be stable

across multiple linkage methods, then it was added to a list of candidate categories. This

process continued as the number of fixed clusters increased until the results were no

longer interpretable. The result of this analysis was a third set of candidate categories.

Six-cluster groupings were selected from the hierarchical cluster analysis to form

local groupings in the multidimensional scaling configurations. The centroid for each of

the six clusters were calculated and a fixed radius from each centroid was defined.

Multidimensional scaling was recalculated for each of the six local regions using all

images contained within each of the six circular boundaries. This process yielded six new

two-dimensional configurations for each experiment. These local configurations were

examined for additional semantic trends that were previously obscured in the global

configuration and a fourth set of candidate categories was formed.

The four sets of candidate categories were compiled and a set of 34 categories that

proved to be stable across multiple methods of analysis was formed. These categories are

the proposed final set of fundamental semantic categories for typical consumer imagery.

10.1 CONCLUSIONS

A multidimensional perceptual image semantic space has been suggested and

advantages to utilizing such a structure have been outlined. The 34 fundamental

categories that have been identified can be represented by 10 perceptual dimensions

which describe the underlying perceptions that lead to categorical assignments. The 10
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perceptual dimensions are humanness, artificialness, perceived proximity, candidness,

wetness, architecture, terrain, activeness, lightness, and relative age.

The proposed semantic space could enable imaging scientists to solve some of the

imaging problems described in the introduction. It could simplify the problem of
image-

dependent image processing algorithms by providing a simple way to communicate

image semantics without the need for making finite categorical assignments. Coordinates

in the perceptual semantic space are all that are needed to identify the multitude of

categories to which an image may belong. A perceptual semantic space also has the

potential to greatly simplify the task of image retrieval since any one point in the

multidimensional semantic space can represent several categories simultaneously.

Depending on the search parameters, it would only be necessary to find all images

contained within a sub-region of the space. To search for a new category not originally

defined for the database, it would only be necessary to determine which sub-region would

best represent that category. Finally, designing experiments in which the results can be

shown to be image dependent can be streamlined by utilizing the 10 perceptual semantic

dimensions.

10.2 FUTURE WORK

A perceptual image semantic space has been suggested and a set of 10

fundamental dimensions has been identified. However, before such a space could be

utilized, it will be necessary to conduct additional experiments to scale each of the

dimensions in order to quantify them so that an image's coordinates can be calculated.
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This will require a separate psychophysical experiment for each dimension that needs to

be scaled. It will also be necessary to find image descriptors which can be correlated
with

each of the dimensions and calculated automatically.

An exciting aspect of the proposed semantic space is that it could potentially

evolve into a universal image semantic description that is not application dependent. For

example, consumer imagery and photojournalism are distinctly different types of

photography. However, all 10 of the perceptual dimensions could also apply to

photojournalism. Perhaps additional dimensions could be uncovered that will distinguish

between these types of images. In other words, perhaps there are image type perceptions

that could provide one or more new dimensions that will identify what type of image it is.

There is no doubt that determination of an image type will often be context dependent.

Perhaps context itself is another perceptual dimension.

It was stated earlier that image semantics are application dependent. The

universal framework would not only enable encoding ofmultiple, hierarchical semantic

categories through the use of perceptual dimensions, but would also enable definition of

multiple semantic meanings for a single image depending on the context (the image type

perceptions) while still only requiring a small number of coordinates to be stored.

Ultimately, through cooperative effort between researchers in multiple disciplines, a more

complete semantic space could be constructed.
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APPENDIX A

Final 321 Images Selected for Psychophysical Experiments
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FIGURE A-l: Final 321 images selected for use in the psychophysical experiments.
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FIGURE A-l (cont): Final 321 images selected for use in the

psychophysical experiments.
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FIGURE A-l (cont.): Final 321 images selected for use in the

psychophysical experiments.
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APPENDIX B

Sheppard Diagrams for the Distributed Experiment
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APPENDIX C

Silhouette Plots

Silhouette plots were computed for 2-15 clusters for each of the linkage methods

although only clusters 2-5 are reported. All silhouette plots for groupings greater than 5

clusters continued to degenerate gradually, as can be seen by the difference between the
two cluster groupings and the 5 cluster groupings for each linkage method.

Free Sorting Experiment

Complete Linkage 2 Clusters Mean = 0.567 Complete Linkage 3 Clusters Mean = 0.552
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FIGURE C-l: Silhouette plots for 2-5 clusters for the Free Sorting Experiment.

C-l



Ward's Linkage 2 Clusters Mean = 0.547 Ward's Linkage 3 Clusters Mean = 0.538

06 08-0.2 0 0 2 0 4

Silhouette Value
-06 -04 -02 0 02 04 06 08

Silhouette Value

Ward's Linkage 4 Clusters - - Mean = 0.506

1 |^J^J w

2

o ^^F
4 ^^kw

Ward's Linkage 5 Clusters - - Mean = 0.499

^^^

2

3

"in
3

^

w^

5

_05 _04 -02 0 0.2 04 06 08

Silhouette Value

-08 -04 -02 0 02 04 06 06

Silhouette Value

FIGURE C-l (cont): Silhouette plots for 2-5 clusters for the Free Sorting

Experiment.
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FIGURE C-l (cont): Silhouette plots for 2-5 clusters for the Free Sorting
Experiment.
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Distributed Experiment
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FIGURE C-2: Silhouette plots for 2-5 clusters for the Distributed

Experiment.
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FIGURE C-2 (cont.): Silhouette plots for 2-5 clusters for the Distributed

Experiment.
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FIGURE C-2 (cont.): Silhouette plots for 2-5 clusters for the Distributed

Experiment.
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FIGURE C-2 (cont.): Silhouette plots for 2-5 clusters for the Distributed

Experiment.
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APPENDIX D

Three-Dimensional Multidimensional Scaling Configurations

Free Sorting Experiment
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FIGURE D-l: Three-dimensional multidimensional scaling
configuration

for the Free Sorting Experiment.

D-l



10

CM

c

o

'co
c

a>

E

-5

-10

Dim 3 = 10 -20%

A'

-10 -5 0 5

Dimension 1

10 15

FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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Dim 3 = 40 - 50%
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FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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Dim 3 = 60 - 70%
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FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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Dim 3 = 70 -80%
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FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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Dim 3 = 80 -90%

0 5

Dimension 1

FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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FIGURE D-l (cont.): Three-dimensional multidimensional scaling

configuration for the Free Sorting Experiment.
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for the Distributed Experiment.
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configuration for the Distributed Experiment.
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FIGURE D-2 (cont.): Three-dimensional multidimensional scaling

configuration for the Distributed Experiment.
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FIGURE D-2 (cont.): Three-dimensional multidimensional scaling

configuration for the Distributed Experiment.
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FIGURE D-2 (cont.): Three-dimensional multidimensional scaling

configuration for the Distributed Experiment.
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FIGURE D-2 (cont.): Three-dimensional multidimensional scaling

configuration for the Distributed Experiment.
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FIGURE D-2 (cont.): Three-dimensional multidimensional scaling

configuration for the Distributed Experiment.
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FIGURE D-2 (cont.): Three-dimensional multidimensional scaling

configuration for the Distributed Experiment.
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FIGURE D-2 (cont.): Three-dimensional multidimensional scaling

configuration for the Distributed Experiment.
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APPENDIX E

Dual Scaling Dimension Extremes

Free Sorting Experiment
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FIGURE E-l Images at the extremes of (a) dimension 3, (b) dimension 4,

(c) dimension 5, and (d) dimension 6 for the Free Sorting Experiment.
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Sorting Experiment.
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FIGURE E-2: Images at the extremes of (a) dimension 1, (b) dimension

2, (c) dimension 3, and (d) dimension 4 for the Distributed Experiment.
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FIGURE E-2 (cont.): Images at the extremes of (e) dimension 5,

(f) dimension 6, (g) dimension 7, and (h) dimension 8 for the Distributed

Experiment.

E-4



\7$$

J&mm
.*...,

3EE?1

'JL

0

FIGURE E-2 (cont): Images at the extremes of (i) dimension 9 and

(j) dimension 6 for the Distributed Experiment.
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APPENDIX F

Hierarchical Cluster Analysis Free Sorting Experiment

5-Cluster Division for the Average Linkage Method

CLUSTER 1

:ita.*jitX**

FIGURE F-l: Hierarchical Cluster Analysis 5-Cluster division using the

average linkage method for the Free Sorting Experiment.
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FIGURE F-l (cont.): Hierarchical Cluster Analysis 5-Cluster division

using the average linkage
method for the Free Sorting Experiment.
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CLUSTER 3

FIGURE F-l (cont.): Hierarchical Cluster Analysis 5-Cluster division

using the average linkage method for the Free Sorting Experiment.
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CLUSTER 4

FIGURE F-l (cont.): Hierarchical Cluster Analysis 5-Cluster division

using the average linkage method for the Free Sorting Experiment.
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FIGURE F-l (cont.): Hierarchical Cluster Analysis 5-Cluster division

using the average linkage method for the Free Sorting Experiment.
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FIGURE F-l (cont.): Hierarchical Cluster Analysis 5-Cluster division

using the average linkage
method for the Free Sorting Experiment.
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CLUSTER 5

FIGURE F-l (cont.): Hierarchical Cluster Analysis 5-Cluster division

using the average linkage method for the Free Sorting Experiment.
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6-Cluster Division for the Average Linkage Method
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FIGURE F-2: Hierarchical Cluster Analysis 6-Cluster division using the

average linkage method for the Free Sorting Experiment.
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FIGURE F-2 (cont.): Hierarchical Cluster Analysis 6-Cluster division

using the average linkage method
for the Free Sorting Experiment.
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APPENDIX G

Local Multidimensional Scaling Free Sorting Experiment

Cluster #1
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Dimension 1

FIGURE G-l: Local multidimensional scaling 2-dimensional

configuration for the Free Sorting Experiment using images from within

circle #1 (red) in Figure 8-10.
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FIGURE G-l (cont.): Local multidimensional scaling 2-dimensional

configuration for the Free Sorting Experiment using images from within

circle #4 (cyan) in Figure 8-10.
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FIGURE G-l (cont.): Local multidimensional scaling 2-dimensional

configuration for the Free Sorting Experiment using images from within

circle #5 (magenta) in Figure 8-10.
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Cluster #6
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FIGURE G-l (cont.): Local multidimensional scaling 2-dimensional

configuration for the Free Sorting Experiment using images from within

circle #6 (black) in Figure 8-10.
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LocalMultidimensional Scaling Distributed Experiment
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FIGURE G-2: Local multidimensional scaling 2-dimensional

configuration for the Distributed Experiment using images from within

circle #1 (red) in Figure 8-11.
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FIGURE G-2 (cont.): Local multidimensional scaling 2-dimensional

configuration for the Distributed Experiment using images from within

circle #2 (green) in Figure 8-11.
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FIGURE G-2 (cont.): Local multidimensional scaling 2-dimensional

configuration for the Distributed Experiment using images from within

circle #3 (blue) in Figure 8-11.
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FIGURE G-2 (cont.): Local multidimensional scaling 2-dimensional

configuration for the Distributed Experiment using images from within

circle #4 (cyan) in Figure 8-11.
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FIGURE G-2 (cont.): Local multidimensional scaling 2-dimensional

configuration for the Distributed Experiment using images from within

circle #5 (magenta) in Figure 8-11.
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FIGURE G-2 (cont.): Local multidimensional scaling 2-dimensional

configuration for the Distributed Experiment using images from within

circle #6 (black) in Figure 8-11.
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