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ABSTRACT

Given a three dimensional solid element in a state of plane stress or plane strain with conservative body

forces, the stress components are equal to the appropriate second order partial derivatives of a bi-harmonic function,

4>
,
called an Airy Stress Function. It follows that the stress components automatically satisfy the equilibrium

conditions.

The function </> depends on both the geometry of the body and the loading, which leaves infinite possible

stress functions to be developed. As thesis work, I have researched and collected currently existing Airy Stress

Functions, made plots of thier stress fields in order to gain a better understanding of how they are developed, and

attempted to take the Finite Element Analysis of a real world example support structure for a door under the

loading ofa gas shock and compare to results obtained from the use ofAiry Stress Functions.
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GENERAL OVERVIEW

Current Events

In doingmy research, I felt it was a good idea to take some time to talk about what is currently happening

with Airy Stress Functions in the field ofmechancial engineering.

In 1999 the paper entitled "ANew Analytical Solution for Diaphragm Deflection and its Application to

Surface-Micromachined Pressure
Sensors"

was released. In this analytical solution they used the govoming

differential equations for the bending ofa circular plate

_4
P h 6</>62w

V4w= 1 ^ (1)
D Dr 8r 6r2

(2)
4

_

E 6w 62w

r 6r 6r2

In which <j> is the Airy stress function. The assumptions that were made were azimuthal symmetry, clamped

boundary conditions, and the amount of stretch, u, at the edge of the diaphragm is zero. After carrying out the

differential equation and obtaining equations for both stress and strain, plots were made comparing the analytical

results to the output characteristics ofa piezoresistive pressure sensor. Both solutions were quite similar. [1]

Fundamental Information Needed forAiry Stress Function Development

In order to develop Airy Stress Functions, some basic mechanical concepts such Stress, Strain,

Displacment, and Equilibrium and Compatability are needed. These will be used during the development ofour

Airy Stress Functions as well as some of the assumptions that need to be made for the use ofAiry Stress Functions.

Stress and Strain [3]

There are two types of forces, surface forces and body forces. Surface forces are distributed over a surface,

body forces act over the entire body. An example of a surface force is the pressure between two contacting bodies,

an example of a body force is gravity. These forces produce stress, which is an internally distributed force within a

body. Stresses that act normal to a surface are referred to as normal stresses, and stresses that act tangential to a

surface are referred to as shear stresses. Normal stresses cause the element to grow or shrink while shear stresses

cause the element to deform and change shape. The dimensionless rate ofelongation from normal stress is refered to

as normal strain, and is defined by Hooke's Law.

e=| (3)

E is the Modulus of Elasticity and this equation is only valid for a linear isotropic material in simple tension. An

isotropic material is one for which the material properties are independent ofdirection.

If you strain the element in one direction, it creates strain in all three directions due to the fact you can't

create or destroy matter. Ifyou stretch it in one direction, it must shrink in the other two and vice versa. For a linear
isotropic material, the strains can be related to each other by Poisson's Ratio,!/, a proportionality constant that relates
the contraction to the primary strain. For an element undergoing normal stress in a single direction, the following
equations can be used



ey
= ez -vtx= i>~ (4)

x = z= ~VEy= - V-jt (5)

ex
ey= -vez=

-

v~^ (6)
"

E

For a linear, homogeneous, isotropic element undergoing more than one normal stress, linear superposition of

Hooke's Law and equations (3) can be used, resulting in the following equations

1_
l = "^(O-I

-

"fay + Oz)) (7)

ey
=

givy

~

"(v* + <?*)) (8)

1

U -^{o-z
-

v(ox + ay)) (9)

Using algebra to solve these equations in terms of stress, we find

" =

(1-2,K1 +

"

u)* + v{ + 6z)1 (10)

g'=

(i-2,Ki +
^)[(1"t/K

+ 'y(ei + e2)] (U)

(1 - 2^)(l + i/)
'CT* =

,1 O..U1 t .a

K1 ~

")* + "(e* + es)l (12)

Ifwe take a problem ofplane stress, using x and y as the coordinates for the plane and az = 0, then equations (46)

reduce to

ex=g{ox-vay) (13)

ev
=

givy

~

v<Tx) (14)

ez= -

g(crx + o-y) (15)

and the equations for stress reduce down to just the o^and ay equations of
(79).

Looking now at the shear stress and shear strain on an element by looking at the effect of rxy alone, as shown in

figure 1



J X

(a)
(b)

Figure 1: An ElementUndergoing Shear Stress and Shear Strain [3]

The shear strain is a measure of the deviation of the stressed element from a rectangular parallelpiped, denoted by

7iy, and defined by
7xy= - A/BAD = /.BAD -

ZB'A'D'

(16)

where 7^ is in dimensionless radians. If the material is linear, homogeneous, and isotropic, we can relate the shear

strain to the shear stress directly through the following equation

7zy
p (17)

where G is the Shear Modulus of Elasticity. For plane problems with x and y defining the coordinate system

txz ryz = 0, 7Izand 7yzwill both be zero. We can also relate the ShearModulus, G, to the Modulus ofelasticity, E

for a linear, homogeneous, isotropic material by

E

(18)2(1 + v)

Substituting this relationship into equation (17) we get

7ii/

2(l + i/)

E

'

(19)



We have now defined all of our stresses and strains that occur on an element undergoing a state of plane stress,

however we have neglected on important assumption. We are limiting ourselves to small deflection theory, where

two dimensional analysis in each of the three planes is valid.

Displacements and Strain Displacement Relationships [3]

The cumulative effect of the strains caused by the varying stresses throughout a structural member cause

deflections of the points within the member which allow the deflections to be directly related to the strains

Fi|spre 1.5-1 Rigid body and elastic deflections of an

infinitesimal rectangular element.

Figure 2: Rigid Body and Elastic Deflections ofan Infinitesimal Element [3]

Consider the point Q in a member where the position of the point Q before loading of the member is located by the

coordinates x, y, z with respect to an arbitrary origin as shown in figure 2. An element of infinitesimal dimensions

Ax, Ay, Az originating from the point Q can be constructed where the corners of the initially undeformed element

are indicated by QBCD. Stresses, which in turn cause strains, cause point Q to deflect and the element to change

geometrically. The deflections of point Q in the x and y directions are denoted by u and v, respectively. The

corresponding deflections of points B, C, and D would be identical if the element were rigid and did not rotate and

change shape geometrically.

The deflection of point Q can be described by continious functions ofx and y. Considering deflections in

the x and y plane

u = u(x, y) v = v(x, y) (20)

Taking Taylor expansions of the functions u and v about point Q, the deflection ofpoint D in the x direction will be



du . ld2u . .

,,
,,,,..

uD
=u+-Ax+

(Ax)*

+ .... (21)

and in the y direction

^
= ,+ + .... (22)

The derivatives are still in terms of x since point D is Ax from Q, and ifAx is taken to be very small, then we can

neglect the terms
(Ax)2

or higher, giving us

uo
= u + Ax (23)

ox

dv ,,.

vD = v+Ax (24)
ox

The deflections of point B can be determined in a similar fashion by taking a Taylor Series expansion for B about

point Q, and assuming Ay to be very small, which yields

du
uB = u+Ay (25)

oy

dv .

vB = v+Ay (26)
oy

For small deflection theory, the derivative terms are considered small. Thus if (^)Ax is considered small compared

with Ax + (|^)Ax, then
Q'D'

w Ax + (|^)Ax and the rate ofelongation ofQD is

_

Q'D1
- QD

_

[Ax + (|g)Ax]
- Ax

_

du
Ex~

QD
~

Ax ~o~x
(27)

And the strain in the y direction ofpoint Q is the rate ofelongation ofQB,

=

Q'B'

-QB

=

[Ay + (%)Ay\
-

Ay dv
y

~

QB Ay
~

dy
(28)

The reduction in angle BQD is defined as the shear strain at the point Q and is ^xy
= a + /?. From figure 2 it can be

seen that

. . (dv/dx)Ax dv
tan(a) =

^
= -

(29)

tanW =

Ay
= -

(30)



However, if the strains are small, then tan(a) ss a, and tan(/3) /?. We can now represent the shear strain in terms

ofdisplacement by

dv du

lxy=dx~+dy
(31)

This definition of shear strain is refered to as the engineering shear strain, which is defined differently than the

elasticity shear strain.

Equilibrium & Compatability

We are now going to consider the equilibrium and compatability equations in Cartesian coordinates.

>'?

Figure 3: An Element Under Stress[3]

In figure 3, all of the stresses on the element and the body forces Fx, Fy, Fzaie shown. In order for equilibrium, the

sum of the forces in each directionmust be equal to zero. Taking the sum of the forces in the x direction

r\ r\

(-ax + ax + ^Ax)AyAz + (~rxy + rxy + -~Ay)AxAz +

dr

(
-

txz + txz + -^Az)AxAy + Fx = 0 (32)



Combining terms and dividing by AxAyAz, equation (32)

o^ + d^1+d^ + Fx = 0 (33)
ox oy oz

The equilibrium equations for the y and z directions can be arrived at in the same fashion

d^1 + da1 + d^ +
dx dy dz

d^z
+ d^1 + da1 + fz = o (35)

dx dy dz

Taking a state ofplane stress, where azz = tzx = rzy 0

^ + ^+FI = 0 (36)
ox oy

If the body is in equilibrium, any segment of the body together with its corresponding internal-force

distribution must maintain the segment in static equilibrium. At any given section it is possible to find many stress

distributions which will ensure equilibrium. An acceptable stress distribution is one which ensures a piecewise-

continious-deformation distribution of the body. This is the essential characteristic of compatability; i.e. the stress

distribution and the resulting deflection distribution must be comparable with the boundary conditions and a

continious distribution ofdeformations so that no
"holes"

or overlapping of specific points in the body occur [3].

Looking at the xy plane only, we can define compatability by looking back at our strain equations

du
*=dx-

(38)

dv

y=dy

dv du

(39)

^
=

di
+

d~y
(40)

Differentiating ~fxy with respect to x and then with respect to y yields

d2lxy
_

d3u dsv

dxdy
dxdy2

dx2dy

Noting that

<33u d2t

f4rr*Z J-t/it V /

dxdy2 dy2 (42)



we have

d3"
=
^% (43)

dx2dy
dx2

Pftrv P)2C PP-C
u

rxy
_

u e*
,

u eg
(44)

dxdy
dy2 dx2

Equation (44) is called the compatability equation, and neglecting z dependence provides a check on

whether a given strain field is comparable in the xy plane [3]

AIRY STRESS FUNCTION DEVELOPMENT

Using the fundamentals, we will develop the general Airy Stress Function in cartesian coordinates. We will

then take our Cartesian Development amd transform it into Polar Coordinates. Doing this transformation is easier

than going through the whole stress function development starting way back at stress, strain, and equilibrium and

compatability again in polar coordinates.

CartesianCoordinates

In order to develop the Airy Stress Function for a state of plane stress, we first start by assuming the z

surface is stress free, which gives us the following.

ffjz
= Txz = Tyz=0 (45)

Next we look at the Compatability Equation (44)

and our strain equations (79) and (19)

d27*y
=

dh,
+
d\

dxdy
dy2 dx2

ex=

-jjAPx-vOy) (47)

ey
=

-^X~y-Vx) (48)

e*
=
-g(~x + <ry) (49)

2(l + z/)
Try

=

^ rxy (50)

Plugging our strain equations into the compatability equations and multiplying through by E



(.,-W,)+(,,-^ = 2(1 +^ (5D

Looking now at our equilibrium equations for a state ofplane stress (36) and (37)

^ + ^+F, = 0 (52)
dx dy

d^y
+ ^y+fy = 0 (53)

dx dy

taking Jj of the first, and 4- of the second to get

dxz

dxdy dx

d2rxl + d2ay
+ dF=0

dxdy
dy2

dy

Assuming rxy is continious in x and y, which means that t^
=

grg*, and then adding the two equations together

2d2rxy d2ax d2ay dFx dF
~dx^y- + {~dxT +W'*^

~dH]~ ( }

Plugging (56) into (51)

*<.-
.H^K

J- -<1 +
)(^

+ |i)-(l +
,)<||

+ ^) (57)

Canceling terms

aV* av a2ax av9 af, sf.

a2y a2x 5x2 dy2 dx dy

Rearranging the equation results in

d2ay d2ax d2ay d2ax
_

dFx dF

d2x dx2 dy2
d2y

{ K
dx

dy'

Combining terms

(59)

d2 d2
dF dF

Wx(ax + ay) + ^y(ax + oy)
= - (1 +

u)(-^
+ _) (60)



Using the definition of the Leplacian

V2
=( +) (61){dx2 + dy2>

The equation reduces to

V2(a* + ay)
= - (1 + i/)V(F, + F,) (62)

Making the assumption that there is a function 3>(x,y), such that the following relationships hold

_

a2$

ay2

a2*
"=

a^2

a2$

Txy
~

dxdy

(63)

(64)

(65)

and using the fact that

a2$ a2$
2jR

*- +
*'==^f+&?

= v^ (66)

Equation (62) becomes

VJV2$ = - (1 + v)V(Fx + Fp) (67)

This differential equation is called the biharmonic equation, and the function 3>(x,y) is called the Airy Stress

Function. It is developed from our compatability equation, so if the stress function $ satisfies the equation, then

compatability is assured. However, we still need to prove that equilibrium is also satisfied in order to derive stresses

from the Airy Stress Function substitution.

In order to prove that equilibrium is still satisfied, we will take our equations for stress in terms of $,

equations (6365) and plug them into our plane stress equilibrium equations (3637) resulting in

(68)
a3$

dy2dx

^
+F

-

dy2dx
= 0

a3$

dydx2

d*$

dydx2
+

y
' = 0 (69)

If we let the body forces go to zero, Fx Fy = 0, then the above equations are valid and equilibrium is indeed

satisfied. [3]

10



Polar Coordinates

It is sometimes easier to define problems in polar coordinates. In order to do this we will use a

transformation of coordinates. Assuming that <f> is defined in terms of r and 0 and applying the chain rule to get the

following equations

ty
= 6l6L +

tyM
(70)

6x 6r 6x 66 6x

6l = 6l6r + 6Ji6l
6y 6r 6y 60 6y

Using the following equations to relate cartesian coordinates to polar coordinates

r2

=
x2+y2

(72)

and taking thier derivatives

x = rcos(0) (73)

y
= r sin(6) (74)

tf = tan-1(i) (75)
x

yx
=
\(x2

+ y2y\2x)=*r=cos(6) (76)

fy =
\(x2

+ y2y\2y)=y- = sin(e) (77)

6x l +
(a)21

x2
;

r2

r
[,ii)

60
_

1 x
_
cos(0)

fy
~

1 +
(x)2

x
'~r2

~
~T~

(79)
r

Rewriting f^and t& using equations (76) through (79) to get

6<f> 84> 64>sin(0)
Tx

=

TrCOS{e)-T0~r (0)

11



=

sm(6) + -
^ (81)

oy 6r 60 r

Applying the chain rule again to get the second derivatives

^ = iA = lA*[ + iA^ (82)
6x2 6xK6x' 6rK 6x'

6x
66K 8x'

6x
K

^ = i.A =

iAfr
+LM ,83)

5y2 <5y^(5yJ6rK 8y'

8y
69K 6y'

6y

f = 1A =AA*:+1(M (84)
<5x5y 6y 5x 6r 6y 5x 60 6y 6x

subsituting in the values for || and |^

520 5.50 ,n. 6<j> sin(0) . 5r 5,50 ,, 50 sin(0) , 50

520 5.50 .

.,
6(j>cos(0).6r 6

,50 . ,,
6<f> cos(0) .66

4
=

fr^
+

5^^
+
*<"<*>

+
5? , }5y (86)

520 5
,50 .

... 6<t>cos(6).6r 6
.50 . .,

6<j>cos(6)88

(^sm(0) + ^_J^) + -(-^n(9)+-|-ii)- (87)

Expanding out

5x5y 5r 5r 50 r 5x 50 5r 50 r 5x

6^_62$ 520 sin(0) 50 gjn(g) 5r

5x2

~ ( 5r2S( j
505r r

+
50 r2 }5x

,520
,. 50 . ,, 520sin(0) 50cos(0)N50

62<j>
_

6?$ .
824> cos(6) 6<pcos(6)6r

Ik/2
~ {6r2Sm{) +

6~08r~~r '66~r2~%

,62<b

,, 50 ., 62<j>cos(6) 6(j> sin(6) .66 , N

520 520 .
62<j> cos(6) 6(j>cos{6) 6r

~ ( 5^"Sm( } +
5r50 r 5r r2 }5x

,520 //n 50 ,, 624>cos{6) 6<j> sin(6) s66

susbtituting in the values for g , f , g ,
and g

12



Multiplying through

62<t>
i^* ia\ ^V sin(0) 6<j>sin(6), ,.

-

(^cos(,) _ SJLsin{9) _g^ _

^cos(0) in(0)
v5r50

w
5r

w 5(92
r 60 r

'
r

^ r-5^
,/iw ^ (*) 64>cos(0). .n.

5x5y
5r2 5r50 r 60 r2

K '

, <520 . 50 62<j>cos(0) 6<j>sin(0),sin(0)
~

(T~T7smW + -^cos(0) + -~r
r ) (93)

v5r50
K '

6r
x ' 862

r 60 r
'

r
K '

^_^ 2. 520 sin(0)cos(0) 50 sm(0)cos(0)
5x2"5r2CS(j

505r r

+
50 r2

^sin{6)cos(^l 6(f> sin2{6) 520sin2(0) 50 cos(6)sin(0)
6r66 r +6r r

+
W r2

+
50 r2

'94'

5V
_

*V -

2fm 520 cos(8)sin{8) 50 cos(9)sin(6)
6y2

~~

6r2
S%U ( ' +

666r r 50 r2

520 cos(0)sin(0) 50^(0) 520 cos2(0) 50 sin(6)cos(6)
+
6r66 r

+
6r r

+
W ~~r2 50 r2

^

520 520 .

,,
,. 520 cos2(0) 50 cos2(0)

=

-^-sm(0)cos(0) +

5x5y
6r2 6r66 r 86 r2

520 sin2(0) 50 eos(0)sin(0) 520 sin(0)cos{0) 6<j> sin2(0)

~6r60 r 6r r

~

W r2

+
50 ^T2

Using 2 sin(0)cos(0) sin(26) and cos2(8) sin2(6)
=

cos(20) to reduce the equations to

624>_6^ 2 520 sin(20) 50 sm(20)
5x2

~ ^2"cos ( )
"

+ ~60^^~

50 sin2(0) 520 sin2(0)
+-

5r r
502 r2

520
5y2

=

*V 2/^ *V sin(20) 50 sira(20)

50 r2

(96)

+
/Jfl2 ,.2 (97)

13



|
50

cos2

(6) 624> cos2 (8)
+
"_JL" K)

(98)

6x6y
~

6r2 smWC0SW +
6r66~~r fr r

_

5V sin(6)cos(6) 50 cos (20)
502 r2

~~

r2
(99)

Applying equations (97) and (98) to the following equation

v!* =
S

+S Coo,

resulting in

n2j
520.

,,, .
,,,. 520 sin(20) 520 sm(20)

v20 = ^(COS2(0) +W(0)) - ^1-i-J

+^^+

50 sm(20) 50 sin(20) 6<t> sin2(8)
cos2

(8). 520.sin2(0) cos2(0).
,

^^2- ^-72+^-T- + } +
^(~3-

+ -^) (101)

Canceling terms and reducing

2
_

520 501 520 1

r2 r r 02 r2
-1

Polar Components ofStress in Terms ofAiry's Stress Function [4]

Expressions can be obtained which relate the polar stress components crrr, agg, and rTg to the cartesian stress

components oxx, ayy and rxy

o~rr
=

axxcos2(8) + cryysin2(8) + Txysin(28) (103)

egg
=

ayycos2(8) + axxsin2(8)
-

Txysin(26) (104)

t>0
= (o-j,,,

-

axx)sin(8)cos(8) + rxycos(28) (105)

If equations (63) to (65) are inserted into the above equations, which is equivelant to setting Fx and Fy equal to zero,
then

*2<A 2,^
P<t>

2,x <520
<>"

=

^os2(8) + ^szn2(6)
- ^n(26>) (106)

14



520 ,, , 520 ,

=
-^cos2(6) + -sin2(0) + j-sin{28)5x2 <$y2

520
6x8y~ (107)

rrf = (S
- 0)ww - ||c-(2*) (108)

Substituting equations (97) to (99) into the above equations the polar components of stress in terms ofAiry Stress

function are obtained.

(109)

(110)

(111)

oTT
150

r 8r

1 520
502

o~ge =
62<p
6r2

Tre

1 50

"^50

1

r

520

5r50

Axisymmetric Stresses [5]

Often times, problems in the circular domain are axisymmetric, depending only on r and not on 0. We can

therefore simplify the Airy Stress equations to

150
CTrr= -T-

r 6r
(112)

ogg
520
6r2

rrg = 0

8r2
r 8r r 6r 8r

(113)

(114)

(115)

9 [6r2 r6ri[6r2

r
6rl

\6_
r 6r

r6r[r6rKT

6r'\

= 0

Integrating
V4

in order to get the stresses in terms ofconstants

(116)

(117)

_5_

8r

5 15 50
rT "^(r^~)
6r r 6r 6r

= 0 (118)

5r r 5r 5r (119)

15



ArIA(A] = 9l (120)
8r r 6r 6r r

it{r6A) = cMr) + C2 (12D
r 6r 6r

{r6t) = cMr)r + C2r (122)
6r 6r

rg=C1(^n(r)-^) + C2^ + C3 (123)

= C[r2ln(r) +
C'2r2

+ C3 (124)

6*=C'1rln(r) +C'2r+^ (125)
5r r

0 = cXjHr)
-

~) + Cfjj + C3Zn(r) + C4 (126)

0 = C;'r2to(r) +
C2r2

+ C3Zn(r) + C4 (127)

Substituting into equations (112) through (114), our stresses
become

arT = Cl(l + 2ln(r)) +
2C'2+C3~ (128)

a9g
= C[(Z + 2ln(r)) + 2Cl-Cz\ (129)

Trg
= 0 (130)

GENERAL CASE STUDDZS

Some Airy Stress Functions have been developed in the
general form without specific boundary or loading

conditions. By developing them first in the general case we give ourselves the ability to quickly solve many specific

cases by simply choosing the general function,
or combination there of, and apply our known boundary and loading

conditions.

Polynomial Functions

Polynomial Functions can be developed in the general case, and are especially useful when it comes to

applying the boundary conditions for
specific cases as some terms may be determined based on things such as

symmetry, the need for an odd or even stress function,
or whether a certain stress component must be independent of

a certain direction based on the boundary and loading conditions.

16



First Degree [6]

4> = ax + by (131)

the stress field becomes

0~xx = o-yy rxy=0 (132)

This is only useful in order to indicate as stress free field

Second Degree [6]

0 -

ax2

+ bxy +
cy2

(133)

the stress field becomes

axx = 2c (134)

^
= 2a (135)

rxy= -b (136)

This gives the case ofa uniform stress field over the entire body

Third Degree [6]

the stress field becomes

0 =
ax3

+ bx2y +
cxy2

+
dy3

(137)

axx = 2cx + 6dy (138)

ayy
= 6ax + 2by (139)

7-*,,=
-2bx-2cy (140)

17
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Figure 4: Plot ofLinearlyVarying Stress Field Over Entire Body

Fourth Degree T61

0
ax4

+ bx3y +
cx2y2

+
dxy3

+
ey4

the stress field becomes

crxx =
2cx2

+ 6dxy +
12ey2

ayy
=

12ax2

+ 65xy +
2cy2

rxy
-

Zbx2

4cxy
3dy2

In order to ensure compatability, V40 = 0, we get the following

24a + 8c + 24e = 0

whichmeans that

e=
"(o+g)

Substituting back into our stress equations for e, we get

<jxx = 2cx + 6dxy
12ay2 4cy2

(141)

(142)

(143)

(144)

(145)

(146)

(147)
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ayy
= 12ax + 66xy + 2cy

Txy
3fcx2

-

4cxy
3dy2

This yields a stress field that varies according to a second degree polynomial in both xand ;

(148)

(149)

When you graph the contour plots, you will end up with either hyperbolas or ellipses depending on whether your

constants are negative or posotive and assuming no consants are equal to zero. Some examples are shown below.

Sigma X Sigma Y

TauXY

Figure 5: Stress Plot ofFourth Degree PolynomialWith All Constants Posotive
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Fifth Degree [6]

0 =
ax6

+ 6x4y +
cx3y2

+
dx2y3

+
exy4

+
fy5

the stress field becomes

axx =
2cx3

+ 6dx2y +
12exy2

+
20/y3

o-yy
-

20ax3

+ 126x2y +
6xy2

+
2dy3

Txy=
46x3

-

6cx2y
-

6dxy2
-

4ey3

Checking the compatability equation once again

120ax + 24rby + 120/y + 24ex + 24cx + 24dy = 0

evaluating the equation for e and/ in terms ofother constants, we get

(150)

(151)

(152)

(153)

(154)
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e = (5a + c)

Substituting back into our stress equations

<7IX
=
2cx3

+ 6dx2y
- 12 (5a +

c)xy2

- 4(6 +
d)y3

ayy
-

20ax3

+ 126x2y +
6xy2

+
2dy3

'xy

46x3
-

6cx2y
-

6dxy2

+ 4(5a +
c)y3

This yeilds a stress fieldwhich is a third degree polynomial in x and y .

Sigma X

20 o ^C00-

10

0
0

0

0 0

10
-

20

^5%.

o

^

-20 -10 0 10 20 -20 -10

TauXY

20
==:^ooooo ^rjoooo

10

100000

0

0

10 .

20

^
-100000

--3ooooorr^m

(155)

(156)

(157)

(158)

(159)

Sigma Y

20
o

.

10

0

o
o
o
o

\

0

10

1
o
o

20

\

\
. \

o

10 20

-20 -10 0 10 20

Figure 8: Stress Plot ofFifth Degree Polynomial WithAll Constants Posotive

22



Sigma X

20
O

""^--

-500000

10

0
0

0

0

0

10

-20
50000Q

~~l000n,~

o

Sigma Y

20

10

0

-10

-20

\ \
Y

V
0

0

\\\ . .

/-

-20 -10 0 10 20 -20 -10 10 20

TauXY

20
/
/y

200000

10
b
o

o
z>

5

fi
A,

o o:

0
o
o
o

10 h
20

Q>
-200000

/>
-20 -10 10 20

Figure 9: Stress Plot ofFifth Degree Polynomial With Constants A=C=D=1 and B=10

Figure 9 really emphasizes how rxy varies by a third degree polynomial in x and y
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Figure 10 emphasizes the third degree polynomial stress distribution of <jyy
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Figure 1 1emphasizes the third degree polynomial stress distribution ofax
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SPECIFIC CASE STUDDZS

Some stress functions have been developed for specific boundary conditions, many having
come directly

from our general case studies. By keeping some things general though
- force, length, etc.

- these functions can

also be applied to many different cases even though they
are less general.

Cantilever Beam Loaded at End [7]

i{y

/
/
/
/
/
/
/
/

<< */ Ji

^ f

0
T $ x

/
/

j /

k
I

t
IT

\

Figure 12: Cantilever Beam Loaded at End [7]

0 bxy + dxy (160)

where b and d are constants.

d2y
oXx

= 6dxy (161)

d2X *
=

av

d3y
~

>!/^ = rx=

(162)

(163)

Evaluating the stess vector at the top
and bottom of the beam.

O top TxyQx ~r 0~yy&y (164)
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a bottom
=

Txyx 0yyey (165)

from these two equations and the fact that upper and lower parts of the beam are stress free, it follows that

Txy
= -b- = 0 (166)

"top 4

%
= (16?)

rxybMam=b+^dh2

= 0 (168)

<W_ =0 (169)
^bottom

solving for b in terms ofd

6=-*f! (170)

Evaluating the stress vector at the free end of the beam

a free end &~xx^x T~xyGy (_! /1J

Evaluating the stress vector at x=0

O-freeend
= (b + 3dy2)&y (172)

therefore

ft

t (b + 3dy2)dy= -F (173)
J-\

,bh

Zdh3
bh 3d/i3x

t{Y
+
^r

+
Y

+ ^4r)=-F <174)

dh3

t{bh+)=
-F (175)

subbing in equation (170) and evaluating the constants b and d

,

Sdh3

dh3,- + -f)=-F (176)

(177)

(178)

h tZh\(2F^

tdh3

2

= F

d =
2F

th3
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2th

Using the equation for the axial moment of inertia of the cross section

12

and the solved constants to evaluate the stresses

op
b= -~ (180)

12F

2th th3

28

(181)

6dxy (182)

(183)

Cxx -jxy (184)

rxy= (185)

SF
6Fy2

(186)

F,3 12y\
r-=2(^-^} (187>

F
>2

2n

Txy=2I{^~v) (188)



ayy
= 0 (189)

Sigma X

Figure 13: Stress Plot of azz for Cantilever Beam Loaded at Endwith F=10, t=l, h=2, L=2

Examining the contour plot of axx, figure 13, itmakes sense that the stresses are symmetric about the line y=0, which

is the centroidal axis of a square beam. It also makes sense that the beam is in tension above the line y=0 and in

compression below the line y=0 as indicated on the contour plot where positive numbers indicate tension and

negative numbers indicate compression.

It also makes sense that oxx increases as you increase your moment arm and get closer to the end of the

beam, as well as when you move further from the centroidal axis. Which is reflected in our axx equation as well as

our contour plots.
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Figurel4: Stress Plot of rxy for Cantilever Beam Loaded at Endwith F=10, t=l, h=2, L=2

The contour plot of rxy, figure 14, also makes sense since it is constant as you move across the beam in the

x direction, and dependent only on the distance y away from the centroidal axis y=0. The shear stress decreases to

zero at the top and bottom of the beam which fits our initial conditions whereriy
= 0 at y=+/-| The maximum

value for shear stress occurs at the centroidal axis y=0 and is equal to
~
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Curved BeamUnderAction ofCouples [7]

*. *

Figure 15: Curved BeamUnder theAction ofCouples [7]

Using the following stress function

and using axial symmetry we have

0 = c-J,n(r) + c^r + c3r ln(r) + c,

150
Orr =

~ -X-

r or

d24>
o-gg

dr2

aTg 0

using the axial symmetry and our stress function 0, the stress components become

o~rr -; + 2c2 + 2c3/n(r) + c3
r6

C\

Applying the following boundary conditions

o-gg j
+ 2c2 + 2c3ln(r) + 3c3

oTT aTg 0 at r=ri

oTr
=

org
= 0 at r=r2

t / aggdr = 0

rr2

7
c

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)

(198)
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f\gBrdr = M (199)
Jt,
t

Applying boundary conditions (196) and (197) to the stress component equations (194) and (195) we get

\ + 2c2 + 2czln(n) + c3 = 0 (200)

-\ + 2c2 + 2c3ln(r2) + c3 = 0 (201)

Using equation (195) in boundary condition (198) and dividing the t out since it is equal to 0

/ \ggdr = [c3(l + 2ln(r2)) + 2c2 + %}r2 - [c3(l + 2ln(n)) + 2c2 + %}rx = 0 (202)

Similarly, applying equation (195) to boundary condition (199)

/ o-ggrdr =
-

aln(-) + c2(r\
-

r\) + c3[r2(l + ln(r2)
-

r2(l + ln(n)] = (203)

Comparing equations, we find that when (200) and (201) are satisfied, equation (202) is also satisfied. Carrying out

the algebra and solving for the constants

Cl = A-fr2r2ln(Tf) (204)

c2 =
- ~ [r\

-

r2

+ 2(r2in(r2)
-

r2ln(n))} (205)

c*=(r2-r2) (206)

where

tf = [(r2-r2)2-4r2r2(Zn(^))2]t (207)
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Figure 17: Stress Plot of o-gg for Curved BeamUnder Action ofCoupleswith rl=2, r2=4, t=l ,

M=10

This makes sense since as shown in figure 16 our aTT goes from zero at the inner radius to zero at the outer radius,

coinciding with our boundary conditions. Our contour plot of agg, figure 17, also makes sense since, similar to a

beam in bending, portions towards the inside radius are in compression and portions towards the outer radius are in

tension. The dividing radius between tension and compression is exactly like the centroidal axis of a beam in

bending.
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Elastic Disc Loaded by a Couple [7]

Figure 18: Elastic Disc Loaded By Couple [7]

The tangential stress shown in figure 1 8 is applied at the outer edge, so that

<rrr
= 0

Assuming a stress fuction

0 = Ci0

and letting t = thickness, we get a stress field of

a = 0

agg
= 0

Or0
C\

In order to determine the constant, ciwe use the global equilibrium condition

M [crTg2iTr}rt = 2ixrc\

in order to get

c\

M

2?rf

giving a stress field of

Ott = 0

(208)

(209)

(210)

(211)

(212)

(213)

(214)

(215)
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O-gg = 0

M
oTg

2-Ktr2

(216)

(217)

Taking r from .05 to .2, M=5 and t=l we get figure 19

Sigma RT

?l \v
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M
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- o

210\ V /330x_

240 300

270

Figure 19: Stress Plot ofaTg for Elastic Disc Loaded by Couples

When generating the countour plot for org, figure 19, the reason for choosing such small values for r is the fact that

we have an r2in the denominator of our oTg equation which makes arg trend to zero really fast as r gets larger. This

makes it hard to get a good feel for our contour plot at larger values of r. Examining smaller values of r we can in

fact see the trend towards zero as r gets larger.
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Simply SupportedUniformly
LoadedBeam [4]
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Figure 20: Simply SupportedUniformly Loaded
Beam [4]

Employing the following boundary
conditions

at y
= | we have

'yy

at y
= - | we have

at x =f we have

Txy
= 0

Oyy
= 0

Txy
= 0

raydy
= i? =

qL

h

J:

t

oxxdy
= 0

OxxVdy
= 0

(218)

(219)

(220)

(221)

(222)

(223)

(224)

37



Since the bending moment is maximum at x = 0 and decreases with change in the positive or negative x-directions.

This can only be possible with a stress function that contains even functions ofx

Another key thing to note is that ayy varies from zero at y
= - | to a maximum value of q at y

=

whichmeans that the stress function must contain odd functions ofy .

In order to satisfy both of these conditions on our stress function, we try a polynomial function that is even

in x and odd in y.

$ =
ax2

+ bx2y +
cy3

+
dx4

+ ex4y +
fxy3

+
gy5

(225)

Since we are ignoring body forces on the beam, the stress function must also satisfy V4$ - 0, which helps us reduce

the constants to

d = 0 (226)

9=-^ (227)

Evaluating the cartesian stress components

oxx = 6cy + 6/x2y +
20gy3

(228)

oyy
= 2a + 2by +

\2dx2

+ 12ex2y +
2/y3

(229)

Xy
2bx -

4ex3
-

6/xy2

(230)

plugging in d and g

Oxx = Gey + 6/x2y
- 4(e +

f)y3

(23 1 )

Oyy
= 2a + 2by + 12ex2y +

2/y3

(232)

Txy
= -2bx-

4ex3
-

6/xy2

(233)

Examination ofboundary conditions (218221) shows that oyy must be independent ofx since it is consistant valued

as you move in the x-direction. This means e = 0, which gives

Oxx - 6cy + 6/x2y
-

4/y3

(234)

Oyy
= 2a + 2by +

2/y3

(235)

Txy
= -2bx- 6

fxy2

(236)

Evaluating boundary condition (220) and subbing in our condition on e

0 = 2a + 26(~) +
2/(~)3

(237)
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2 8

Evaluating boundary condition (218)

0 = a-^_^! (238)

2 2 8

adding equations (238) and (240) together and evaluating for a

-q
= 2a + 2b^) +

2f(^)3

(239)

q bh fh3
.,_..,.

-

-

a + + J- (240)

4

From boundary condtions (219) and (221) we get

a=
-% (241)

2

either
- 2x or (b + 3/(|)2) must equal zero, so

0= -2x(6 + 3/(J)2) (242)

4

subbing equations (241) and (243) into equation (238)

b = -

(243)

-!-()(-7)Aa-^
= 0 (244)

4
x2/v 4'

3 fh3

1=
3fk &

4 8 8

/i3

using / in equation (243) to evaluate b

(245)

/ = h (246)

b=-fh (247)

With knowing the values of a, b, and c one can check to see that equations (222) and (223) are satisfied. We can

use equation (224) to solve for the remaining constant c

-

f (6cy2

+ 6(Jj)( - )V -

4(^)y4)dy = 0 (248)

*w 9 w^ 3 A, 9(2cy3

+
(L-)()(L2)y3

- (gX^)*5) = 0 (249)
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solving equation (249) gives

t+*t-- <25>

using the moment of inertia of a unit-width beam

to get

h3

'=n <25l>

" =- *>

=57<S-f> <253

c=~j(2fc2-52) (254)

Now that we have all of our constants evaluated in terms ofknown conditions, we can sub them into equations (234--

236), and rearrange terms to get our final equations for the cartesian components of stress

Oxx =
(4x2

-

L2)y + ^j (3/i2y
-

20y3) (255)

oyy=^I(-h3

+ 4y3~3h2y) (256)

Txy=fI(h2-y2) (257)

The conventional strength ofmaterials solution for this problem, namely, that oxx My/I, gives

oxx =
(4x2

-

L2)y (258)

which is identical to the first term in equation (255). The second term in equation (255) is a correction term for the

strength of materials solution. In the strength of materials solution it is assumed that plane sections remain plane

sections after bending. This is not exactly true, and as a consequence the solution obtained lacks the correction term

shown in our solution. It is clear that the correction term is small whenLh and the strength ofmaterials solution

will be sufficiently accurate.

The countour plot of oxx, figure 21, shows how the upper portion of the beam is in compression with

negative numbers, and the lower portion of the beam is in tension with posotive numbers. It also shows how the

values of stress are symmetric about the centroidal axis y=0, where axx is equal to zero. Since the beam is uniformly

loaded, the stresses are also symmetric about the line x=0. It can also be seen that increasing the moment arm taken

about the end of the beam by moving towards the center of the beam means that to achieve the same amount of stress

you need not stray as far from the centroidal axis y=0.

40



0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

Sigma X

IX
p

\ ' i
I" ' '

~iS
'

'I I'

: : j \ /

\ *0
--

_j
Jsr^)

G \ G G 7

^

o

50^-

a

:
.#

i /^i ; i^K i

-1.5 -1 -0.5 0.5 1.5

Figure 21 : Stress Plot of axx for Simply SupportedUniformly Loaded Beam
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The contour plot of ayy, figure 22, shows how ayy goes from zero to at -h/2 to Q at h/2 for a beam of uniform

thickness equal to one. This agrees completelywith the boundary conditions ofour problem.
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Figure 22: Stress Plot of ayy for Simply SupportedUniformly Loaded Beam
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The contour plot of rxy, figure 23, shows how the shear stress is symmetric about the centroidal axis y=0 It also

shows it is symmetric inmagnitude about the line x=0 varying only between posotive and negative shear stress. Since

all of our y terms in our Txy equation are squared and the largest the y value can be is +/-|, that means
that/i2 4y2

will always be posotive and our x values determine whether we have posotive or negative shear stress. Examining

our equation, we come to the conclusion that values of x<0 indicate negative shear stress, and values ofx>0 indicate

posotive values of shear stress.
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-&-
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Figure 23: Stress Plot of rxy for Simply SupportedUniformly LoadedBeam
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Infinite Platewith Circular Hole Subjected to Uniaxial Tension [4]

t f I t t f t t I t M I

niiiniHiii

Figure 24: Infinite PlateWith Circular Hole Subjected toUniaxial Tension [4]

at r = a we have

atr = oo

oTr
=

TTg = 0 (259)

(260)

&xx 7~xy ^ (261)

In order to solve this problem, we must use the linear superposition of two stress functions. The first function must

be chosen in order to satisfy the boundary conditions at r = oo. The second function must be chosen to have an

associated stress that cancels the stress on the boundary of the hole without influencing the stress at r oo .

For the uniaxial tension we choose a second degree polynomial of

< = ax + bxy + cy (262)

and since we only want tension in the y direction we apply boundary condition (260)

$ =
ax2

o0x

(263)

this stress function satisfies the conditions of a plate without a hole in it, since the stresses in a plate without a hole

are given by equations (259) and (261) .
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If a hole of radius a is cut into the plate, the stresses <r., a^, and Trg on the boundary of the imaginary hole

can be computed from the following equations

o\r
=

(7osin2(0)
=

y(l-cos(26>)) (264)

o\6
=

o0cos2(6)
= ^(1 + cos(20)) (265)

1^
=

<rocos(0)sin(0)
=

ysin(20) (266)

since in the origonal problem, the boundary condtions at r = a are given by equation (259), the boundary condtions

to be satisfied by the stresses associated with the second stress function are

atr = a

Orr =
-

o0sin2(6)
= -

y(l-cos(20)) (267)

Trg =
-

CTocos(0)sin(0)
= -

ysin(20) (268)

atr = oo

Orr = Ogg
= TTg 0 (269)

From equations (267) through (269) it becomes apparent that the stresses errand TTg are functions of sin(20) and

cos(20), suggesting the following

0("> =
(anrn

+
bnr~n

+
cnr2+n

+ dnr2-n)cos(nd) with n>2 (270)

as a possible stress function since ifwe set n=2 it will yield stresses in termes ofcos(20) and sin(20) as follows

aTT = (a2( -

2)
-

62(6)r"4

+ d2(
-

A)r~2)cos(28) (271)

Trg
= (a2(2) -

62(6)r"4

+
c2(6)r2

+ d2(
-

2)r-2)sin(28) (272)

ogg
= (02(2) +

62(6)r"4

+ c2(lO)r2)cos(20) (273)

Further inspection of the stress function 0(2' shows that it can only satisfy the boundary conditions at rrg due to the

fact that all the terms in arr are multiplied by cos(20) making it impossible to get the -

^ portion of the boundary

condition [see eq. (267)]. In order to satisfy the boundary conditions on <7. we need a stress function which when

added to the first function 0(2' will not influence TTg while at the same time allow us to satisfy the boundary
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conditions of<t..Looking at the stress function 0')

0<) = ao + b0ln(r) +
or2

+ ckr2ln(r) (274)

which has the following stresses

orr = + 2co + db(l + 2ln(r)) (275)

ogg =
- % + 2co + do(3 + 2Zn(r)) (276)

v-

Trg
= 0 (277)

which will have no effect on TTg while at the same time help us satisfy the boundary conditions for a^- We must

now test the stress function 0*' + 0<2' to see if it is applicable.

(a2r2

+
b2r~2

+
c2r4

+ d2)cos(20) (278)

aTT = 4 + 2co + do(l + 2ln(r))
T*

- (2a2 +
662r"4

+ 4d2i--2)cos(20) (279)

ogg =
- % + 2co + ofo(3 + 2ln(r))

(2a2 +
662r~4

+ lOc2r2)cos(20) (280)

Tr8
= (2a2 -

6b2r~4

+
6c2r2

-

2d2r"2)sm(20) (281)

Since aTT
= ogg rTg 0 as r + oo we know

cq = d0 = a2 = c2 = 0 (282)

reducing our equations to

oTr
=\[bo~

(662r-2

+ 4d2)cos(20)] (283)

ogg
= \ [

- b0 + 662r-2cos(20)] (284)

fro
= - + 2d2)sm(20)] (285)

From the boundary conditions at r=a we get
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&o =
o0a2

2

&2 =
4

o0ar

4

do =

o0a2

TrB =
-

-2-[(-f + 2d2)sin(20)] = -

~sin(2B) (286)

1
/?^

arr = -j [6o
-

(-y + 4d2)cos(20)] = - ^(1 -

cos(20)) (287)

Evaluating these two equations to get our constant values of

r_2

(288)

(289)

2
(290)

subbing these values into equations (283) through (285)

^=-^[l + (^-4)cOS(20)] (291)

^-(1 + ^(26)) (292)

tf=-|[(^-2)n<2*)] (293)

The solution for the origonal problem is obtained by superposition as follows

orr = oir +o
=

y
{(1 - )[1 + (^

-

l)ocw(2fl)]} (294)

o =

o3 +0#=y{(l+^) + (l + -^-)cos(20) } (295)

rr9 = 4e +^ = f {(1 + ^)(1 - )n(2*)} (296)

The above equations give the stress at any point in the body as defined in r and 0. In order to define the stesses

along the x-axis, we can set 0=0 and r=x to get .

a0 a2.
3a2

G" =

oxx=-(\--~)^ (297)

o0 /
a2 3a2

,

^
=

ffw
=

y(2+^
+ -^-) (298)

TTg
=

Txy
= 0 (299)
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The distribution of crxx/a0 and ayy/a0 is plotted in figure 25 as a function of position along the x-axis. Examining

the graph closer, it is apparent that an infinite plate under uniaxial tension with a hole in it increases the cryy stress by

a factor of three. This factor is often called the stress concentration factor.

80 ELEMENTARY ELASTICITY

<r0

Figure 3.7 Distribution of axx <r0 and ayy aa along the .v axis.

Figure 25: Distribution of axx/o-0 and ayy/a0 along the x-axis [4]

In a similarmanner, the stresses along the y axis can be determined by setting 0=| and r=y as follows

v2

+
y4

Oo

2

o0
,0

oa oa .

Orr
==

Oyy TTK^ '

~a~

) (300)

o0
a2 3a2

ogg
= oxx = it I -o

_

~T)
2 r t

(301)

TrB = Txy 0 (302)

A distribution ofoxJo0 and o-yy/cr0 is plotted as a function ofposition along the y-axis in figure 26. It can be noted

that ox/o0
=
-1 at the boundary of the hole; thus the influence of the hole not only produces a stress concentration,

but in this case also produces a change in the sign of the stresses
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1.5 -1.0

Figure 26: Distribution of axx/a0 and ayy/a along the y-axis [4]

The distribution ofogg about the boundary of the hole is found by setting r=a

Orr = Tr0
= O (303)

ogg = o0(l + 2cos(26)) (304)

The distribution of ogg/a0 about the boundary of the hole is shown in figure 27. The maximum ogg/o0 occurs at the

x-axis (oggjo0 = 3), and the minimum occurs at the y-axis (ogg/o0 -1). At the point defined by
0=60

on the

boundary of the hole, all stresses are zero. This type ofpoint is commonly referred to as a singular point.

49



-.
--

m

Zi?i 3.9 Distribution of a9e ff0 about the boundan of the hole.

Figure 27: Distribution of agg/a0 About the Boundary of the Hole [4]
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ThickWalled CylinderWith to Internal and External Pressures [5]

Figure 28: ThickWalled CylinderWith Internal and External Pressures [5]

A thickwalled cylinder subjected to internal and external pressures is a case of axisymmetrical loading so we can use

a simplified version of the comaptability equation reducing it to

dr*
r dr 6rz

r or
(305)

which must be equal to zero since there are no body forces present. Rewriting this equation into the form

r L \r 6r 6r) 6ri 6r
(306)

Setting this equation equal to zero and working the integration through it can be reduced to the following equation in

terms of constants

0 = c^lnir) +
c2r2

+ czln(r) + C4 (307)

Using the equations that relate 0 to stress we get the following stresses.

Orr ci(l + 2ln(r)) + 2c2 + c3-^
rz

ogg
= ci(3 + 2ln(r)) + 2c2 - c3-

(308)

(309)
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Org = 0 (310)

Applying the following boundary conditions

0-rr(Ro)=-Po (3H)

Orr(Ri)=
-Pi (312)

We get two out of the three necessary equations to determine the constants

-pi
= ci(l + 2Zn(Rt)) + 2c2 + C3-^2 (313)

-p0
= c1(l + 2Zn(Ro)) + 2c2 +

c3-^ (314)

In order to get a third equation we must look at the displacement expressions for axisymmetrical problems, mainly

the displacement ug.

ug [4cir0 + CiCos(8) c$sin(6) + c$r] (315)
E

At first glance it seems to add more constants, but since the expression for ug is multi-valued in theta and our

example which has ug(0) = ug(2ir)
=
ug(4ir), etc. is not multi-valued in theta, we know thatci must be equal to

zero which leaves us with two equations and two unkowns

-Pi
= 2c2 + c35 (316)

-p0
= 2c2 +

c3-^ (317)

Solving these two equations we get the following

-WW

Subbing these into equations (308) and (309) gives the following stress distribitions

_

PiR2
-

Pq^q2

R2Rl(po-Pl)
a"~

(Rl-R2)
+

r2(Rl-R2)
KiM)

PlR2
-

poR2

RlRKpo-pi)
aeB -

(R$-R2)

~

r2(Rl-R2)
(321)
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Case 1: External Pressure Equal to Zero. Setting p=0

V
r2>

o-gg =

m~R2

PiRf
(J2g-J?)v

r

(1 + 5)

(322)

(323)
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Figure 29: Stress Plot of oy,. with External Pressure Equal to Zerowith i^ = 3, ii0 = 5,

pi = 10000
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Figure 30: Stress Plot oiagg with External Pressure Equal to Zerowith Ri = 3, R0 = 5,

pi = 10000

The contour plots of <7rr and cr^ shown in figures 29 and 30 make sense, since 0vrgoes from -10000 at Ri to 0 at R0

per our boundary conditions and everything is in compression, ogg also makes sense since everything is in tension as

we expect an internal pressure to do as it tries to expand the cylinder. The values also go from largest at Ri to

smallest at R0 as the
R2/r2

in the denominator indicates.

Case2: Internal Pressure Equal to Zero. Setting p,-0

RoPo
/M_l)

o-gg

Ri-RV''2

PoRl
(Rl-RlVr24+D

(324)

(325)
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Figure 31: Stress Plot of errr with Internal Pressure Equal to Zerowith Ri = 3, i? = 5,

po = 10000
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Figure 32: Stress Plot of ogg with Internal Pressure Equal to Zerowith Ri = 3, R0 = 5,
po = 10000
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Once again, our contour plot of orr, figure 3 1
,
makes sense since it satisfies our boundary conditions, going from

10000 at Ro to zero at Ri. In the case of o-gg, figure 32, we have
Rj/r2

this time. Since our Ri is in the numerator

this time, our values go from largest at Ri to smallest at R0 and everything is in compression as we would expect an

external pressure to do as it tries to smoosh the cylinder.

Case3: External Pressure On a Solid Circular Cylinder. Setting a=0

Orr Ogg =
-

p0 (326)
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Narrow, Simply Supported BeamUnder Its OwnWeight [5]

Looking at a simply supported beam of unit width under its own weight as shown in figure 1 and assuming that the

supports run the whole depth of the beam we have the following.

L L

. . . ~

Figure 33: Narrow, Simply Supported BeamUnder Its OwnWeight [5]

The body forces are given by

F = -pg

in the y direction which gives us a potential function of

v = pgy

equation (67) becomes

The boundary conditions of the beam are

V40 -
- (1 -

v)V\Pgy)

Txy(x,D)
=

aJx,D)
= 0

oxx(L,y)
= 0

/ rxy(
- L, y)dy

- 2pgDL

J-D

fD

/ rxy(L,y)dy=2pgDL

J-D

The next step is to find the stress function so we can calculate
the stresses from the following equations

(327)

(328)

(329)

(330)

(331)

(332)

(333)
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6V
6y2

oxx = pgy+
-j-j (334)

o-yy = pgy+-j-~2 (335)

_^0_

6x6y
T*y

= -

7^ (336)

Examining what the probable form of the Airy Stress Function might be, we realize that a reasonable starting guess is

that the stress will most likely be an even function in x and an odd function in y. Recalling the polynomial functions

developed earlier we might start with the following stress function

0 = C21x2y +
C23x2y3

+
C03y3

+
C05y5

(337)

The first and third terms satisfy equation (67) individually giving 0=0, but the third and fourth terms must satisfy

equation (67) in combination with each other. Substituting equation (337) into equations (334) through (336)

oxx = pgy + 6C23\2y + SCmy + 20C05y (338)

oyy
= pgy+ + 2C21y +

2C23y3

(339)

Txy= - 2C2lx -

6C23xy2

(340)

Applying the boundary condtions at +D we get

rxy(x, D) =
- 2C21x -

6C23xD2
= 0 (341)

oyy(x,D)
= pgD + 2C21D +

2C23D3
= 0 (342)

which gives

Applying equation (67) we find

wich equals to

C2\ =
3

~-4P9

C23
1 pg

4>2

C05 = -

7C23

5

Co5 = -

1 pg
'

20 D2

(343)

(344)

(345)

(346)

Finally, we need to look at boundary condtion (331) which cannot be satisfied identically in a pointwise fashion by

equation (338). Therefore we invoke St Venants principle where
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/
D

oxx(L,y)dy = 0 (347)

/

-D

D

oxx(L,y)ydy = 0 (348)
D

Evaluating equation (347) using equation (338) we find that it is satisfied since our chosen function for axx is odd in

y and our limits are -D to D giving us 0=0. Applying equation (348) we get

2 2
+ pgL2D +

4C03D3
-

= 0 (349)

from which

C03^

-Pg(^
+ \~) (350)

Evaluating our stresses in terms ofour constants, we get

Oxx = 3pg[-+^(x2-L2)}y-pg^ (351)

= PJf-
[\D2y -

^y3
+ (x2 -

L2)y] (352)

1
v2

Vyy
= ~

2[1

" jp]v (353)

D2y
y3

3
y2

rxy
=
2?[1

-

jp]x (355)

= ?^-{D2x-y2x\ (356)

where I is the moment of inertia/unit width about the centroidal
axis=|)3

.

The plot ofoxx shown in figure 34 makes sense since everything above the line y=0 is in compression and everything
below the line y=0 is in tension. There is also no stress at the the x ends of the beams which satisfies our boundary
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Figure 34: Stress Plot of axx for Simply Supported BeamUnder Its OwnWeight
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Figure 35 shows the contour plot of oyy which makes sense due to the fact that the support pins are on the line y=0

and everything below the pins is hanging and hence getting pulled in tension by gravity, while everything above pins

is also getting pulled by gravity but is in compression since it is not hanging down but "sitting on
top"

of everything

else trying to compress what's below it. The stress at y=+/-l is also equal to zero which satisfies our boundary
conditions.
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Figure 35: Stress Plot ofayy for Simply Supported BeamUnder Its OwnWeight
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LOADING OF DOOR SUPPORT BY GAS SHOCK

Background

Universal Instruments designs machines for automated circuit board assembly lines, designing high speed

pick and place machines with average throughput ranges betwen 30,000 and 80,000 components per hour ranging in

size from .00 lx .002 inches up to 30 x 30 mm. Components are placed using a moving gantry system with an

attached headwhich picks, orients, and then places the componentwithin +/- 45 p.m.

Sji
,BB5p

;

mm | h^p 0

Loader Printer GC-60 GC-60 GC-60 GC-60 GX-11 Oven Unloader

Figure 36: A Sample LineUsing Five ofUniversalsMachines

Design Study ofAccess Doors

In our particular design study we will be fosusing on the design of the access doors, or more specifically, the

supporting structure for the access doors and how we could possibly use Airy Stress Functions as part ofour analysis

by comparing results obtained through the use ofAiry Stress Functions to our Finite Element Analysis results.

Determination ofBoundary Conditions

The access doors consist of two covers hinged together with a gas shock attached to the upper door providing both

mechanical assistance during opening and support to keep the covers in the open position as shown in figures 37 and

38.
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IN

Figure 37: General view of cover packagewith one door open and one closed
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Figure 38: Doors alone, one side open and one side closed

The first step was to design the structure of the two doors to meet all design requirements
- lightweight, no

visible hardware or hinges, bronzed ESD coated acrylic window across front of lower door, easily manufacturable,

provides guarding to our component feeders, provides proper safety interlock switch engagement, cost effective. In

tandem with designing doors that met all those requirements an analysis of the dyanimics ofthe doors and gas shocks

was done in order to determine the parameters for our gas shock. All these things together gave us enough

information to analyze our supporting structure.

Dynamic Analysis

In doing the dynamic analysis we set our origin at the axis of the center hinge and tracked the

movement of the following points axis of pivoting hinge between two doors, center of gravity of

upper door, center of gravity of lower door, fixed gas shock mounting point in our support structure,

movingmounting point of gas shock in our upper door, roller attached to the lower door.

Some assumptions were made to make the analysis easier, yet still applicable. The first

assumption we made was to break the motion of the doors into two sections determined by the roller

attached to the lower door. In the first section the roller rode vertically along a Up in the upper

corner cover as shown in green part of figure 39.
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Figure 39: Picture ofguiding lip for roller attached to lower door

In the second section we made the assumption that once the roller rose above the upper limit of the lip that it

remained at this hieght and only traveled horizontally across the lip ofthe light grey part in figure 39. In reality this

does not happen as upon breaking the upper limit of the lip the lower door begins to swing freely eventually coming
to rest with it's Center ofGravity directly below the moving hinge point between the two doors.

The second assumption made was in relation to the gas shocks further discussed in the next section

where we the assumption that as the gas shock moved through its stroke from fully compressed to fully extended the
force varied linearly. The technically correct analysis would have taken into the account that we are actually

compressing a gas and used some of the gas law equations. To further solidify our assumption as valid we spoke

with themanufacturer who also felt that this was a reasonable assumption given our application.

Using the angle made by the upper door and a horizontal plane running through our origin as our driving
variable, we used excel to carry out all the calculations and make a plot of the motion of all the points we were

tracking as shown in figures 40 and 4 1 .
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Figure 41 : Plot of themotion of all tracked points to help verify and visualize calculations

Gas Shock

Once the dynamic analysis was completed, it was now time to move onto the forces. In our analysis, the moments

generated by the Center ofGravities of the two doors about the origin added together had to be counteracted by the

moment generated by the gas shock about the origin. Since the dynamic analysis was now completed, we could

determine the moments generated by the Center of Gravities and since we tracked the two mounting points ofthe

gas shock, we could also determine how the moment arm ofour gas shock varied throughout the range ofmotion

allowing us to determine the force required by the gas shock to meet our design intentions.

When ordering our gas shocks, certain design parameters were fixed, while others were variable and driven

by some ofour fixed parameters. The endmounting conditions and the max andmin length of the shock which in

turn gives us our requred stroke lengthwere the fixed parameters. The shocks we were orderingwere amixture of

gas and oil. As the shockmoved from compressed to extended it would firstmove rapidly through the gas portion

and then, upon entering the oil portion the velocity would drop dramatically. The amount ofoil in the gas shock was

important as it determined atwhat point in the stroke the oil would engage and the percent increase in force as the

shockwent from the fully extended to fully compressed.

In ordering our gas shock, we could specify the fully extended force, which was initially determined by how

much force would give a strong enough moment to keep the doors in the up position. In order to determine the

desired amount ofoil we added another design parameter in which we wanted to oil to engage just before the roller

broke the upper limit of the Up and the lower door started to swing freely. This was determined by calculating the

lenght of the gas shock just before the upper limit was broke and then subtracting that length from the fully extended

length in order to determine what portion of the stroke needed to be traveling through oil.

Giving the manufacturer the desired extended force and desired amount of stroke in the oil allowed him to

give us the fully compressed force. The fully compressed force allowed us to determin the moment generated by the
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gas shock, whichwas important since it had to be less than the moment generated by the Center ofGravities of the
doors combined or the door would not want to remain in the down position. Meeting this requirement howeverwas
still not enough to solidify the design. We also needed to know how much force was needed to get the doormoving

initially and at what point the gas shock would take over. In order to do that we calculated an imaginary hand force
which acted vertically upward at the tracked roller point. Knowing the moments generated by both the doors and
the gas shock as well as the moment arm of this imaginary hand force allowed us to calculated howmuch force

would be needed at atwhat point this hand force was no longer needed. Our goal was to need no more than 10 lbs

of force to lift the doors from the down position and to have the gas shock take over completed before it hit the oil.

In order to help visualize the hand force requred, we plotted the moments generated by the doors against the
moment generated by the gas shock as shown in figure 42. Location 1 is with the doors in the down position and

location 19 is with the doors in the up position. The point of intersection of these two lines is where the gas shock

takes over and starts to move the doors on it's own. The difference betweenmoments at position 1 gives a visual

feel ofhow much ofan advantage the doors have over the gas shock in the down position. Luckly, the moment arm

ofour imaginary hand force about the origin is quite large, which helps keep the required hand force down.
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Figure 42: Plot of themoments created by the CG of the two doors added together vs the

opposingmoment generated by the gas shock

In figure 40, the yellow row represents the pointwhere we want the oil to engage, and the orange blocks

represent the calculated point where the gas shock starts to take over and no more hand force is required. Varying
the specified extended force was a delicate balance between providing enough force to keep the doors in the up
positionwhile at the same time ensuring that the doors would remain in the down position with less than 10 pounds

needed to get themmoving.

Once all things were considered, we had selected a range ofgas shocks with varying degrees of force and

varying amounts ofoil. The next step was to examine the deflection caused by the force of the gas shock in the

vertical direction, we examined the point where the gas shock will be applying it's maximum force straight up and

down as this is the worst case scenerio for vertical deflection. After analyzing the vertical component of the force
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applied by the gas shock as itmoved through it's various angles, we were able to determine the max amount offorce

applied in the vertical directionwhichwe would then use for our FEA. The load used for the FEA was 65 lbs.

FEA and Airy Stress Function Comparison

In doing the comparison between the FEA results and Airy Stress function results, I wanted to see how close they

meshed up. Since we have an Airy Stress Function for a cantilever beam loaded at the End I went back and ran the

FEA with the 65 lb load at the end of the beam. The final beam looked like figure 43, but in order to get a better

model for FEA and Airy Stress Function we will be leaving off the rounded lip and only analyzing the continious

cross section portion of the underlying beam structure as shown in figures 44 and 45 when doing the Airy Stress

Function analysis. The FEA analysis will be run including the capped end of the beam as shown in figure 46 since

when the cover is assembled the capped end is flush against the corner structure providing a nice surface that we can

choose to hold fixed.

Displacement Mag
Deformed Original Model

Mox Disp +3.0768E-02

Scale I.2I3IE+02

Pin_on_knob

Principal Units;

Inch Pound Second (IPS)

2.735e-02

2.393e-02

2.051e-02

1.709e-02

1.367e-02

1.026e-02

6.B37e-03

3.4l9e-03

CURRENTLYWHAT IT DOESWITH 65 lbs of force at pin

Figure 43: FEA displacement analysis done on final beam structure
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Displacement Mag
Deformed Original Model

Max Disp +U092E-02

Scale 2.426E+02

PinJoad_ini1

Principal Units:
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9.859e-03

9.627e-03

7.394e-03
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2.465e-03
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Figure 44: FEA displacement analysis of continious cross section portion of structure
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Displacement Mag
Deformed Original Model
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Figure 46: FEA displacement analysis of continious cross section including capped end

Airy Stress FunctionAnalysis

Looking at ourAiry Stress function for a Cantilever Beam Loaded at End

<f> = bxy +
dxy3

and the corresponding stress equations where b and d are constants.

357

d2y
oxx

= 6dxy 358

d2x yy

^
dy6x

359

360
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We must first determine our contstants so we begin by setting our coordinate system at the center ofthe box section

ofour beam as shown in figure 45. Ifwe attempt to follow a similar analysis as was done to develop the origonal

Airy Stress function and try to look at the fact that the top and bottom ofour beam are stress free

TXVto
= - b -

3dy2
= 0 361

oyytop
=0 362

rxybottom
= b +

3dy2
= 0 363

"w^ =0 364

we notice that our beam must be symmetric about the z axis. We do not have a cross section that is symmetric about

the z axis, but we will set our coordinate system at the center of the beam, giving us the following

TXy^
= - b -

3d(.041)2
= 0 365

oyVtot> =0 366

rXVbMm =& +
3d(-.041)2

= 0 367

amMbm
=0 368

The above equations however only give us one of the necessary equations to solve for our constants

b= -.005043D 369

Our second equation comes from the evaluating our stress vector at at the free end of the beam x=0

O free end OxxCx TxyQy 370

~$ free end = 6dxy ex + b + 3dy2ey 371

^freeend (b + 3dy2)ey 372

Using our force, 651bs or 291 .2 N, that we determined from our boundary conditions and our stress vector to evalute

the following

adA = F 373
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which can be rewritten as the following

t f (b + 3dy2)dy = -F 374

Since our area thickness is not the same from the bottom to the top of the beam we must do multiple integrals so we

can take into account how the area is distributed about the Z axis

/-.0205

(b + 3dy2)dy = -291.2 375

.041

/-.019

(b + Zdy2)dy= -291.2 376

.0205

/-.0175

(b + 3dy2)dy = -291.2 377

.019

/.on

(b + 3dy2)dy = -291.2 378

.0175

/.0125

.018/
(b + 3dy2)dy = -291.2 379

Jon
/038

.0045/ (b + 3dy2)dy = -291.2 380

.0175

.0265 /'
.019

/-.on

.003

/ [b + 3dy2)dy= -291.2

V.0125
/0395

/ (b + 3dy2)dy= -291.2 381

.7.038

'.0125

0395

.0265

'

'.038
041

2

r.U4I

.254 / (b
.7.0395

+ 3dyz)dy= -291.2 382

After running the integrals and adding them together we get

- 291.2 = 7.91e"46 + 2.51e6d 383

Taking equations 369 and 383 and carrying out the algebra to evaluate our constants

B= -995966.37 384

D - 197494819 385

Plugging our evaluated constants into our stress equations

oxx
= 1.185e9xy 386

ayy
- 0 387

txv
= 995966.37 -

592484456y2

388

Stress Function and FEA Comparison
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Before making stress plots of our Airy Stress Function results, it is wise to run our FEA first so that we can then run

the exact same level curves on our Airy Stress Function results. In running the FEA it is a good idea to get an

Isometric view of the structure as shown in figure 47 so we can see what is happening on the whole beam, however

we also need FEA run looking at the xy plane only - showin in figures 48 and 51 - as that is the plane of our stess

plots from our Airy Stress Functions

Figure 47: Stress Plot ofMax Principal Stress, isometric view, IPS units

Our isometric view shows us that not only is there some beam bending going on, but there is also some torsional

effects going on as can be seen in the green and
yellow countour lines taking on a triangular shape sloping toward the

force.. This torsion comes from the fact that the Force stems partly from the structure of the beam and partly from

the fact that the force is applied only to the small L shaped flange.
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Figure 48: axx shown in the xy plane, FEA, IPS units
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Figure 49: crxarStress Plot, Airy Stress Function, Full Beam
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Figure 50: axx Stress Plot, Airy Stress Function, First 2.5 inches ofBeam

Relatively speaking, the Airy Stress Plots show similar features to the FEA stress plots for axx. The contour lines

take the shape similar to the functions y=^ and y=-
j
in both the Airy plots and the FEA plots, although in the Airy

plot, all the stress lines begin relatively close to the origin and in the FEA plots some of the contour lines aren't even

visible till roughly 18 inches out. This might be caused by the capped end in the FEAmodel.
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Figure 51: rxy shown in the xy plane
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Figure 52: rxy, Airy Stress Function,

Once again, we have semi-similar plots. In the FEA our contour lines remain relatively level, which is exactly what

we have in our Airy Stress Plot. The major difference seen though, is that the contour lines in the FEA plot are

shifted in posotive y direction compared to the Airy Stress contour lines. I believe that this happens because of the

stress function chosen, which makes everything symmetric about the x axis and the fact that the rectangular box

section is not centered on the x axis but shifted vertically in the y direction.

Overall the stress plots are similar, however I do not think that the Airy Stress Function chosen can

adequately show enough about the beam to feel confident in a design, but perhaps might be enough ifyou want to get

general feeling forwhat is going on.
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APPENDICES

Matlab Code

Cantilever Beam Loaded atEnd

clear

clc

%needto make sure your mesh is square asyou havey*3

t=l; %set the thickness to this

h=2; %set the height to this\

L=2; %set the length equal to this

F=10; % this is the load applied in correct units

[x,y]=meshgrid(0:.l:L,-h/2:.l:h/2);

b=-(3*F)/(2*t*h); %this evaluates the constant b in terms ofknown values

d=(2*F)/(t*h*3); %this evaluates d in terms ofknown values

phi=b*x. *y+d*x. *y.AJ;

[m,n]=contour(x,y,phi,20);

clabel(m,n);

title('phi')

grid on

figure(2); %this creates a secondfigure

Sigma_x=(l2*F)/(t*hA3)*x. *y; %this is the equationfor Sigma x

[o,p]=contour(x,y,Sigma_x,10);

clabel(o,p);

title('SigmaX')

grid on

figure(3);

Tau_xy=(F/2) *(3/(t*h)-(12/(t*h*3) *y.*2));

[q,r]=contour(x,y,Tauxy,5);

clabel(q.r);

title('TauXY')

grid on
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CurvedBeam Under theAction ofCouples

%CurvedBeam loaded by couples, stress along x-axis

clear

clc

rl=2

r2=4

t=l

M=10

[th,r]=meshgrid((0:5:360)*pi/180,rl:.05:r2);

[XY]=pol2cart(th,r);

K=[(r2*2-rlA2)*2-4*rl*2*r2*2*(iog((r2/rl))*2)]*t;

cl =4*M/K*rlA2*r2*2*log(r2/rl);

c2=-M/K*[r2A2-r]A2+2*(r2A2*log(r2)-rl*2*log(rl))J;

c3=2*M/K*(r2A2-rlA2);

Sigma_RR=cl./(r.A2)+2*c2+2*c3*log(r)+c3;

%For some reason ifthe difference between rl andrl is 1 itplots nothing.

Sigma_TT=-cl./(r.A2)+2*c2+2*c3*log(r)+3*c3;

h=polar([0 2*pi],[rl r2J);

delete(h)

hold on

[c,h]=contour(X,Y,Sigma_RR);

clabel(c,h);

titlef'Sigma RR')

figure(2)

j=polar([0 2*piJ,[rl r2J);

deleteQ)

hold on

[fg]=contour(X, Y,SigmaJT);

clabel(f,g)

titlef'Sigma TT)
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Elastic Disc Loaded by Couple

clear

clc

rl=05;

r2=2;

[th,r]=meshgrid((0:5:360)*pi/180,rl:.05:r2);

[XY]=poI2cart(th,r);

M=5;

t=l;

cl=M/(2*pi*t);

Sigma_RT=cl./r.A2;

h=polar([0 2*pi],[rl r2J);

deletefh)

hold on

[c,h]=contour(X, Y.SigmaRT);

clabel(c,h);

titlef'Sigma RT)
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ThirdDegree Polynomial

clear

clc

%need to make sureyour mesh is square

[x,y]=meshgrid(-10:.2:10);% This does square at intervals of.1 from -2 to 2

a=l;

b=l;

c=l;

d=l;

subplot(2,2,l); %plotsplot in top left

Sigma %this is the equationfor Sigma x

[o,p]=contour(x,y,Sigma_x);

clabel(o.p)

title('SigmaX')

grid on

subplot(2,2,2) %plots in top right

Sigma_y=6*a*x+2*b*y;

[q,r]=contour(x,y,Sigma_y);

clabel(q.r)

title('Sigma Y')

grid on

subplot(2,2,3) %plots in bottom left

Tau_xy=-2*b*x-2*c*y;

[s, t]=contour(x,y,Tauxy);

clabel(s.t)

title('TauXY')

grid on
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Fourth Degree Polynomial

clear

clc

%need to make sureyourmesh is square

[x,y]=meshgrid(-20:.2:20);% This does square at intervals of.1 from -2 to 2

a=-l;

b=l;

c=-l;

d=-l;

e=-(a+c/3);

% subplot(2,2,l); %plotsfirst one in top left

% phi=a*x.A4+b*x.A3. *y+c*x.A2. *y.A2+d*x. *y.A3+e*y.A4;

% [contour(x,y,phi);

% title('phi')

subplot(2,2, 1); %plots secondplot in top right

Sigma_x=2*c*x.A2+6*d*x.*y-12*a*y.A2-4*c*y.A2; %this is the equationfor Sigma x

[m,nJ=contour(x,y,Sigma_x);

clabel(m,n)

title('SigmaX')

grid on

subplot(2,2,2) %plots thirdplot in bottom left

Sigma_y=12*a*x.A2+6*b*x.*y+2*c*y.A2;

[o,p]=contour(x,y,Sigma_y);

clabel(o,p)

titlefSigma Y')

grid on

subplot(2,2,3) %plotsfourthplot in bottom right

Tauxy=-3*b*x.A2-4*c*x. *y-3 *d*y.A2;

[q, r]=contour(x,y,Tauxy);

clabel(q,r)

title('TauXY')

grid on
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FifthDegree Polynomial

clear

clc

%need to make sure your mesh is square

[x,y]=meshgrid(-25:.2:25);% This does square at intervals of.1 from -2 to 2

a=l;

b=l;

c=-5;

d=l;

% subplot(2,2, 1); %plotsfirst one in top left

% phi=a*x.A5+b*x.A4. *y+c*x.A3. *y.A2+d*x.A2. *y.A3+e*x. *y.A4+f*y.A5;

% contour(x,y,phi);

% title('phi')

subplot(2,2,l); %plots secondplot in top right

Sigma_x=2*c*x.A3+6*d*x.A2. *y-12*(5*a+c)*x. *y.A2-4*(b+d)*y.A3; %this is the equationfor Sigma x

[m,n]=contour(x,y,Sigma_x);

clabel(m,n)

title('SigmaX')

subplot(2,2,2) %plots thirdplot in bottom left

Sigmajy=20*a*x.A3+12*b*x.A2. *y+6*x. *y.A2+2*d*y.A3;

[o,p]=contour(x,y,Sigma

clabel(o,p)

titlefSigma Y')

subplot(2,2,3) %plotsfourthplot in bottom right

Tau_xy=-4*b*x.A3-6*c*x.A2. *y-6*d*x. *y.A2+4*(5*a+c)*y.A3;

[q,rj=
-contour-(x,y,Tauxy);

clabel(q,r)

title('TauXY')
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Pressure Vessels

%Pressure Vessels

clear

clc

ri=3

ro=5

[th,r]=meshgrid((0:5:360)*pi/180,ri:.05:ro);

[XY]=pol2cart(th,r);

%For External Pressure equal to zero

figure(l)

title('Po=0')

pi=10000

po=0

Sigma_RR_po=(riA2*pi)/(roA2-riA2) *(l-(roA2./r.A2));

Sigma_TT_po=(pi*riA2)/(roA2-riA2)*(l+(roA2./r.A2));

h=polar([0 2*pi],[ri roj);

deletefh)

hold on

[c,h]=contour(X, Y,Sigma_RR_po) ;

clabel(c,h);

title('Sigma RR')

figure(2)

j=polar([0 2*pi],[ri roj);

deletefj)

hold on

[f,g]=contour(X,Y,Sigma_TT_po);

clabel(f,g)

title('Sigma TT)

%Thisportion isforpi=0

figure(3)

pil=0

pol=10000

Sigma_RR_pi=(roA2*pol)/(roA2-riA2) *((riA2./r.A2)-l);

Sigma *roA2)/(roA2-riA2) *(l+(riA2./r.A2));

h=polar([0 2*pi],[ri roj);

deletefh)

hold on

[c,h]=contour(X,Y.SigmaRRjpi);

clabel(c,h);

titlef'Sigma RR')

figure(4)
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j=polar([0 2*pi],[ri roj);

deleted)

hold on

[f,g]=contour(X, Y,Sigma_TTj>i);

clabel(f,g)

titlef'Sigma TT)
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Simply SupportedBeam Under Its Own Weight

clear

clc

D=l; %thickness

L=5; %set the length equal to this

[x,yJ=meshgrid(-L:. 1:L, -D:. 1:D);

rho=490.752; %Using steel, units are lb/ftA3

g=32.2; %ft/sA2

I=(2/3)*DA3;

Sigma_x=(rho*g*D/I)*((2/5)*DA2*y-(2/3)*y.A3+(x.A2-LA2).*y); %this is the equationfor Sigma x

[m,n]=contour(x,y,Sigma_x);

clabel(m.n)

grid on

title('SigmaX')

figure(2);

Sigmajy=(rho*g*D/I)*(-DA2*y/3+(y.A3)/3);

[o,p]=contour(x,y,Sigma^y);

clabel(o,p)

grid on

titlef'Sigma Y')

figure(3)

Tau_xy=(rho*g*D/I)*(DA2*x-y.A2.*x);

[r,sJ=contour(x,y, Taujcy);

clabel(r,s)

grid on

title('TauXY')
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Simply Supported UniformlyLoadedBeam

clear

clc

%need to make sure your mesh is square

q=10; %set the distributed load to this

t-1; %set the thickness to this

h=l; %set the height to this\

L=4; %set the length equal to this

[x,y]=meshgrid(-L/2:. l:L/2, -h/2:. l:h/2);

I=hA3/12;

a=-q/4;

b=-(3*q)/(4*h);

c=(q/240*l) *(2*hA2-5*LA2);

d=0;

e=0;

M/(hA3);

g=-(e+f)/5;

%phi=a*x.A2+b*x.A2. *y+c*y.A3+d*x.A4+e*x.A4. *y+f*x. *y.A3+g*y.A5;

% contour(x,y,phi, 10); %this contours Phi

% title('phi')

Sigma_x=(q/(8*I))*(4*x.A2-LA2).*y+(q/(60*I))*(3*hA2*y-20*y.A3); %this is the equationfor Sigma x

[m,nj=contour(x,y,Sigmajc);

clabel(m,n)

grid on

title('SigmaX')

figure(2);

Sigma *!)) *(-hA3+4*y.A3-3*hA2*y);

[o,pJ=contour(x,y,Sigmajy);

clabel(o,p)

grid on

titlef'Sigma Y')

figure(3)

Tau_xy=(q*x/(8*I)). *(hA2-4. *y.A2);

[r,sJ=contour(x,y, Tauxy);

clabel(r,s)

grid on

title('TauXY')
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