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Abstract

This study is an evaluation of a method of improving the multigrid process by cor

recting error spikes which are generated when moving from a coarser to finer level.

The correction method was tested on nine one-dimensional problems governed by
second order differential equations. Tests were performed with an accomodative, full

approximation scheme, full multi-grid algorithm.

Results indicate that appropriate implementation of the correction can increase so

lution accuracy. Accuracy was increased in 75% of cases in which a single correction

was applied to a point in the central portion of the grid. Single corrections performed

on points with error greater than the average error were effective 86% of the time.

Further study is required to determine a method of identifying this scenario.
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Chapter 1

Introduction

Multigrid is an iterative method which utilizes grids ofmultiple sizes to reduce error on

multiple wavelengths. Many classical iterative methods (Gauss Seidel, etc.) efficiently
reduce the error of high frequency components,

"smoothing"

the error. Multigrid uses

a relaxation scheme to smooth the error on several grid levels of varying coarseness. In

this way, multigrid can greatly reduce the time required to obtain a solution. Brandt

introduced multigrid methods in his 1977 paper [1]. Since that time several books

have been written on the topic, including [6], [5], [3], and [4].

In this study the multigrid process was examined graphically through plots of the

residuals and error after each iteration in the multigrid cycle. From the examination

of these plots it became apparent that spikes in the residual plots corresponded to

spikes in the error plots. It was also noted that error spikes were prevalent when

moving to finer grid levels. A correction method designed to mitigate these error

spikes is described in this thesis. Testing showed that the removal of a single error

spike could increase the accuracy of the solution while only minimally increasing the

amount of computational work.

To evaluate the effectiveness of the correction method, a multigrid program was writ

ten and nine one-dimensional problems were tested. The multigrid program utilized

an accomodative, full approximation scheme, full multi-grid algorithm (FAS FMG).

Brandt provides a detailed description of an accomodative FAS FMG algorithm in

[2]. One-dimensional problems were used for simplicity. For consistency, the prob

lems evaluated were all second order differential equations. The differential equation

solutions include five polynomials, three trigonometric functions, and one exponential

function. The effects of several independent variables (such as grid level, location on

grid, etc.) on solution accuracy and number of iterations required for convergence

were recorded and are presented here.

A brief introduction to computational fluid dynamics (CFD) is given in Chapter 2

of this thesis. The basic multigrid process is outlined in Chapter 3, and the multi-

grid program used in this study is described in Chapter 4. Chapter 5 describes the

proposed correction method and discusses the computational work required for its



implementation. The problems used in the study are presented in Chapter 6. Testing

methods are discussed in Chapter 7, and results are reported in Chapter 8.



Chapter 2

Computational Fluid Dynamics

Many fluid flow problems cannot be solved analytically. These problems can be solved

numerically using computation fluid dynamics.Computational fluid dynamics (CFD)
is the term given to a variety of numerical mathematical techniques used to solve the

equations that govern fluid flows and aerodynamics. CFD was developed in the 1970s

after the introduction of high speed computers.

Because CFD solvers use numerical methods to obtain a solution, the region being
analyzed must be divided into a grid with discrete grid points. A numerical solution

is obtained at each of the grid points. To use CFD to solve a problem, the govern

ing equations must be discretized so that the values of the variables are considered

at the grid point only. If there are n grid points on the grid, n algebraic equations

are developed by discretizing the governing differential equations. Several discretiza

tion schemes exist. In this thesis, differential equations were discretized using central

differencing derived from the Taylor series expansion (5.1), (5.2). Other types of dis

cretization include forward and backward differencing as well as forward, backward,

or central differencing using a larger number of grid points (for example three and

four point formulae).

When a problem is discretized it changes from a differential equation to a set of

algebraic equations. If the problem is nonlinear it must be linearized before it can be

solved using the methods described in this thesis. For simplicity, only linear problems

are discussed in this thesis. If the set of equations is linear it can be represented in

matrix form as:

Au = f (2.1)

where, A is the known coefficient matrix, u is the vector of n dependent variables,

and / is the vector of known values. Equation (2.1) can be solved using direct or

iterative methods. Direct methods use a finite number of operations to obtain a

solution and iterative methods use a variable number of iterations depending on the

accuracy desired. The number of iterations is controlled by the stopping criteria,

usually an average of the residuals (the difference between / and Au at each point).

Multigrid methods and the Gauss Seidel iteration are iterative methods. The Gauss



Seidel iteration is given in equation (4.1).

Boundary conditions are specified conditions on the edges of the domain which aid in

the solution of partial differential equations. Common boundary condition types are

Dirichlet, Neumann, and Cauchy boundary conditions. Dirichlet boundary conditions

specify the values of the function on the boundary. Neumann boundary conditions

specify the derivative of the function on the boundary. Cauchy boundary conditions

specify a weighted average of Dirichlet and Neumann boundary conditions. When

Neumann boundary conditions are specified the boundary conditions are part of the

computational domain (the computational domain is the area of the grid where the

values of the dependent variable are unknown) . Boundary grid points with Dirichlet

boundary conditions are not included in the computational domain.

The following example illustrates the process of discretizing the partial differential

equation (2.3) and expressing it in the matrix form Au = f (2.6). The example

applies the steady state heat conduction equation (Laplace equation) (2.2) to a plate

with an unknown temperature distribution, known edge temperatures, and no heat

generation. In (2.2) u is the temperature (the dependent variable) and the dimensions

of the plate are Lx L. The temperature is constant along each edge of the plate. The

temperatures on the edges of the plate are the boundary conditions and are designated

Bi, B2, B3, B4. For example, u = B\ at x = 0 and u = B2 at y = L. The example

has Dirichlet boundary conditions (known boundary values) . The 2-dimensional plate

being analyzed is shown divided into a grid in Figure 2.1. The distance between grid

points in the x and y directions are denoted by Ax and Ay respectively. In this case

Ax = Ay = ~. There are four points in the computational domain (n = 4) which

are labeled u\, u2, u3, and u^. The grid coordinates are denoted by {i,j).

d2u d2u

^
+ ^=0 <2-2>

Ax2 Ay2

ui+1J + Uj_ij
-

Auid + UiJ+1 + Ujj-i = 0 (2.4)

Grid point (f ,
^): u3 + Bx - Am + B2 + u2

= 0

Grid point (f , f ): u4 + Bj - Au2 4-
m + BA = 0

Grid point {f, f): B3 + Ul
- Au3 + B2 + uA = 0

{Lb)

Grid point (^, f ): B3 + u2
- Au4 + u3 + BA = 0



iY

B,

B,

Ui u3

u2 u4

B,

B.

Figure 2.1: Example grid.

-4 1 1 0 i B\ B2
1 -4 0 1 u2 Si J94

1 0 -4 1 U3 B3 B2
0 1 1 -4 Ui B3 ?4

(2.6)



Chapter 3

Multigrid

Multigrid methods are iterative methods used to solve partial differential equations.

Mulitgrid methods use multiple grids of varying coarseness to speed up convergence.

The two main components of multigrid methods are error smoothing and coarse grid

correction.

Each grid used in solving the problem is identified by a grid level (for example the

coarsest grid is referred to as level 1). On each grid level the error is
"smoothed"

with

the one or more iterations of a relaxation scheme (e.g. Gauss-Seidel) . The relaxation

methods are efficient at reducing the error (4.9) of high frequency components. Figure

3.1 shows the effects of one and four Gauss-Seidel iterations on a one dimensional

problem. The high frequency errors are quickly resolved giving the plot a smooth

appearance.

Figure 3.1: Error vs. Grid Point: After initial guess, After 1 GS iteration, After 4

GS iterations.

Once the error on the fine grid is smoothed it is transferred to a coarser grid. The

error is smoothed on the coarse grids and the coarse grid approximations are used

to correct the finest grid approximation. Applying the relaxation scheme to grids of

varying coarseness results in efficient error reduction at multiple frequencies.



3.1 Basic Multigrid Process

This section describes the multigrid process in very general terms. A detailed descrip
tion of the algorithm used in this study is given in the next chapter. The discretized

equation to be solved is (2.1). On the
kth

grid level the discretized equation is repre

sented as:

Akuk
=
fk

(3.1)

Restriction and prolongation operators are used to move between grid levels. Re

striction operators are used to transfer to coarser levels and either directly inject or

average fine grid values to obtain a coarse grid value. Prolongation operators use

interpolation to transfer to finer grids. The restriction and prolongation operators

are denoted by R and P respectively.

Ruk+1
=
uk

(3.2)
Puk

=
uk+1

(3.3)

The first step in the multigrid process is presmoothing, the application of v\ iterations

of an appropriate relaxation scheme. This is denoted by:

S(uk,Ak,fk,Vl) (3.4)

The process then moves to a lower (coarser) grid level. On the lower grid level,
fk

is

modified and a relaxation scheme is implemented to approximate
uk

(3.1). This coarse

grid approximation is used to correct the finer grid approximation. The value of
fk

and the meaning of
uk

depend on the multigrid scheme (see Coarse Grid Processing,
below). The final step of the process is postsmoothing, relaxation on the fine grid

level. These steps can be performed multiple times on any number of grid levels.

3.2 Multigrid Algorithms

Starting Point

Full Multi-Grid (FMG) algorithms begin on the coarsest level and move up. The

coarsest level solution may be obtained by relaxation or a direct method. [2]

Cycling algorithms begin with an approximation on the finest grid. The approxima

tion can be trivial, such as u = 0, or the solution of a previous similar problem. [2]



Program Progression

An algorithm is described as accomodative or fixed. Accomodative algorithms use

internal checks to determine when a switch will be made to a finer or coarser level.

The checks are usually based on relative magnitudes of residuals.

Fixed algorithms have no internal checks and operate based on a predetermined flow.

Fixed algorithms may execute more quickly than accomodative algorithms because

they do not require the calculation of residuals after each iteration.

Coarse Grid Processing

A multigrid algorithm can use the Correction Scheme or the Full Approximation

Scheme described in this section. In the Correction Scheme the long wavelength error

of the fine grid approximation {uk+1) is approximated on the coarse grid by uk. On

the coarse grid, the right hand side of equation (3.1) is given by (3.6), the restriction

of the fine grid residual error
(rfc+1 (3.5)). To correct the fine grid approximation

{uk+1),
uk

is prolongated and added to
uk+1

(3.7). [2]

rk+1

=
fk+l

-

Ak+1uk+1

(3.5)
fk
=
Rrk+i

(3>6)

E2
= <u +

Puk

(3.7)

In the Full Approximation Scheme (FAS) the coarse grid approximation (uk) approx

imates the solution to the differential equation on level k. When transferring to a

coarser level k, an initial value of
uk

is the restriction of
uk+1

(3.8). This initial value

is used in the calculation of
fk

(3.9). The fine grid is corrected with (3. 10). [2]

uk

=
Ruk+1

(3.8)
fk
=
Akuk

+
Rrk+i

^
= uk+} + P{uk-Ruktl}) (3.10)u

fe+i

new

The algorithm used is fully described by one item from each of the above three

sections. The program used in this study is an accomodative, full approximation

scheme, full multi-grid (FAS FMG) algorithm.



Chapter 4

Multigrid Program

A multigrid program written for this study is described in this section. This program

provided a means of testing the correction method. The program uses an accomoda

tive full approximation scheme full multi-grid (FAS FMG) algorithm. It is capable of

solving one dimensional problems with Dirichlet boundary conditions. The program

source code is in Appendix A.

4.1 Basic Elements

Smoothing Method

The Gauss-Seidel iteration is used for error smoothing on all grid levels. For the case

of M equations the n +
1th

round of Gauss-Seidel iterations can be written as:

<+1
=

T

t-1 M

j=l j'=i+l

for i = 1 to M (4.1)

Gauss-Seidel iterations are performed by the subroutine gs.for, see Appendix A.3.

Prolongation/Restriction Operators

The restriction and prolongation operators used in grid transfer are defined by the

following equations:

Ruj = -~u2j-i + 7-U2J + ~7u2j+i Restriction (4.2)

Pu2j = Uj Pu2j+\ = ~{uj + Uj+i) Prolongation (4.3)
Zi

These are taken from [6]. Prolongation and restriction matrices are created in the

subroutine prores.for, see Appendix A.4.



Coefficient Matrix

The finest level coefficient matrix A from (2.1) is provided by the user. To perform

smoothing operations on all grid levels, an A matrix must be obtained for each level.

Here the Galerkin coarse grid approximation is used:

Ak
= RAk+ip (44)

4.2 User Inputs

Seven items must be supplied by the user for the program to operate:

1. nm The number of grid points in the computational domain on the finest

level

2. The exact value of the center point of the computational domain

3. domain The length of the grid {xmax xmin)

A. Dirichlet boundary conditions

5. em Finest level convergence criteria

6. A The coefficient matrix in (2.1)

7. / The vector of known values in (2.1)

4.3 Structure

The number of grid levels m used in computation is calculated from n, the size of the

computational domain (number of grid points) on the finest level. For the program

to function n must be able to satisfy (4.5) where m is an integer. The size of the

computational domain on levels 1-6 is shown in Table 4.1. Level 1 is the coarsest

level.

n =
2m

- 1 (4.5)

Level 12 3 4 5 6

n 1 3 7 15 31 63

Table 4.1: Size of computational domain per grid level.

10



The program begins computation on the coarsest level 1 and works up to the finest

level m. Level 1 consists of only three grid points. The exact values of these three

points are supplied. The two end points are the Dirichlet boundary conditions. The

center point is provided by the user. It is assumed that this point can be obtained

through iterative or direct methods. Because the values of u on level 1 [u1) are known

this level is not revisited.

The prolongation of
u1

gives an initial estimate for u2. One Gauss-Seidel (GS) iter

ation is then performed on u2. Convergence on the current level is then checked as

described in section 4.4. If convergence has been obtained on level 2 the program

moves up to level 3 (3.10). If not, another GS iteration is performed on u2.

After a transfer is made to any level, one Gauss-Seidel iteration is performed and

both convergence and convergence rate are checked as described in section 4.4. If

the convergence on the current level has been obtained the program moves to a finer

level (3.10). Otherwise if the relaxation convergence rate is acceptable, another GS

iteration is performed on the current level. If the relaxation convergence rate is slow

the program moves to a coarser level using (3.8) - (3.9). This procedure is repeated

until the convergence criteria are met on the finest grid level.

4.4 Convergence Testing

After each GS iteration, the norm of the residuals ek (4.6) is computed and con

vergence and convergence rate are tested. The convergence criteria for the current

operation level is denoted by ek. Convergence has been obtained on the current level

if ek < ek. Finest level convergence em is provided by the user. Initial values of ek for

all other levels are obtained from (4.7) unless this calculated ek is smaller than eTO,

in which case ek is set equal to em.

rv^"fc ,-21

1/2

ek
=
[2^x ' J

(4.6)
nk

fc

domain

nk + 1
(4.7)

Equation 4.7 sets ek equal to the distance between grid points squared. Each time a

transfer is made to a coarser level ek is updated:

ek = 0.2efc+1 (4.8)

To correct the fine grid solution, the coarse grid residuals should be smaller than the

fine grid residuals. [2]

11



If ek > fc, convergence rate is tested. The convergence rate is satisfactory if ek < rjek,

where n = 0.5 and ek holds previous values of ek. If the convergence rate is satisfactory

ek is set equal to ek {ek =

ek) before another GS iteration is performed. When

a transfer is made to a coarser level, ek is set equal to the norm of the residuals

immediately after the transfer is made (before any GS iterations are performed).

The value of ek is not changed immediately after a fine grid transfer because testing

showed that this decreased program efficiency.

If ek > r]ek the convergence rate is slow. This indicates that the error is smooth and

should be approximated on a coarser grid.

4.5 Program Outputs

After each Gauss Seidel iteration, the error and residuals of each grid point are written

to a file. The error referred to in this thesis is obtained by subtracting the current

values from the exact solution (4.9). Residuals are calculated from (4.10).

error = uexact
-

u (4.9)

residuals = Au f (4-10)

4.6 Program Efficiency

This program can solve equations much more efficiently than a solver which uses

standard Gauss Seidel iterative methods. Table 4.2 shows the number of iterations

required by the program outlined above and a Gauss Seidel program to reach the

indicated convergence. The number of iterations required for the multigrid program

are weighted to account for iterations on different grid levels. The number indicated

is the equivalent number of finest level iterations. A single iteration on level k requires

the same amount of work as 2~(m~fc) iterations on level m (the finest level, here level

6). The Gauss Seidel program is executed on grid level 6 and begins with an initial

guess of u = 0. Convergence is reached when the residual norm (4.6) is less than or

equal to the convergence criteria.

12



Problem Gauss Seidel Multigrid Convergence

Iterations Iterations Criteria

1 2522 16.06 1.0E-06

2 1519 12.38 1.0E-06

3 5925 16.94 1.0E-07

4 1756 12.81 1.0E-06

5 2456 20.44 5.0E-08

6 4351 15.69 5.0E-07

7 2748 15.56 7.0E-06

8 2666 14.94 5.0E-07

9 1509 13.00 1.0E-06

Table 4.2: Number of iterations required for convergence.

13



Chapter 5

Correction Method

5.1 Description of Correction

The proposed correction improves efficiency by adjusting the values of grid points

where large residual spikes occur. The adjustments are made immediately after pro

longation of the approximate solution when moving to a finer level. After the new

fine level solution is obtained the residuals are calculated. The value of the point at

the location of the absolute maximum residual is changed. The new value is obtained

from the discretized equation (5.1), where Uj is the point that is corrected.:

1
Ui =

i-\ M

fi-^2 aiiui
~

S aiiui

j=l J=i+1

for i = \ to M (5.1)

Only the spike which corresponds to the maximum residual is corrected. This can

effectively increase accuracy and requires a minimal amount of additional work. This

type of correction works well when moving to a fine level because the error is typically

not smooth after prolongation.

This method is effective in reducing error because residual spikes correspond to error

spikes. Figure 5.1 shows the plots of corresponding residual and error curves (Problem

5, Iteration 14). The largest residual is at point five, Figure 5.2 shows the error plot

after this point has been replaced.

The new value of point 5 is more accurate than the original. After one GS iteration

the effect of the correction is still apparent (Figure 5.3).

When implemented at appropriate times this correction method can reduce the er

ror of the solution and reduce the number of iterations required to achieve residual

convergence. The code used for the correction is in Appendix A.2. This code was

inserted into the multigrid program code.

14



Figure 5.1: Problem 5, Iteration 14. Residual vs. Grid Point (left) and Error vs.

Grid Point (right).

Figure 5.2: Problem 5, Iteration 14. Error vs. Grid Point after replacement of point

5.

Figure 5.3: Error vs. Grid Point one GS iteration later without (left) and with (right)
correction.

15



5.2 Correction Processing Time

The amount of time required to perform a single correction was compared to the

amount of time required to perform a single Gauss Seidel iteration. If residuals are

calculated for all grid points, one correction takes approximately the same amount of

time to implement as one Gauss Seidel iteration on the same level. Table 5.1 shows

the amount of work required for a correction as a fraction of a Gauss Seidel iteration.

One correction requires the calculation of residuals, a comparison of the residuals

(to determine the maximum residual), and the calculation of the new value of the

corrected point. Two programs were written to compare the processing time of a

Gauss Seidel iteration to a correction, see Appendix B. Each program was run four

times, each time with a different number of grid point values. The level number which

these corresponded to is shown in Table 5.1.

The running time required for each program was recorded and is presented in Table

5.1. In the table, 'GS
Time'

is the running time of the Gauss Seidel program. The

correction program determines the max residual (includes the calculation of residuals

and a comparison of the residuals). This running time is 'Max Residual
Time'

in

Table 5.1.
'Residual/GS'

is the ratio of 'Max Residual
Time'

to 'GS Time'. 'New

Value
Calculation'

accounts for the calculation of the new value of the corrected

point. The amount of work required for the calculation of the new value is equal to

a fraction of a Gauss Seidel iteration, l/nk {nk is the number of grid points on level

k). 'Total
Correction/GS'

is the sum of Residual/GS and New Value Calculation, it

is the amount of work required for a correction expressed as a fraction of a Gauss

Seidel iteration.

Level

GS Time (s)
Max Residual Time (s)

Residual/GS

Calculation of New Value

Total Correction/GS

6

10.77 18.99 35.03 67.21

8.54 16.01 32.02 60.76

0.79 0.84 0.91 0.90

0.143 0.067 0.032 0.016

0.935 0.910 0.946 0.920

Table 5.1: Work required for a correction compared to a Gauss Seidel iteration.

Table 5.1 indicates that a single correction requires approximately the same amount

of work as one Gauss Seidel iteration on the same level. This means that a correction

performed on level 3 will increase the total amount of work required to solve a problem

by only 0.125 equivalent level 6 GS iterations. Between 12 and 21 equivalent level

6 GS iterations were required for the solution of each problem (Table 4.2). Thus, a

level 3 correction would increase computational work by 1% or less.

16



Chapter 6

Problems

The correction was tested on the nine problems shown in Table 6.1 below. All are

second order differential equations with Dirichlet boundary conditions.

Problem Equation Classification

1 +
3m'

+ 6m =
6x5

+
27x4

+
14x3

-

15x2
- - 66x + 35 hyperbolic

2
u"

-

Au'

+ 2u =
2x5

-

16x4
-

22,-r3
+
86x2

- 36x - 2 hyperbolic

3
u"

+
2m'

+ 3m = 2 sin x + 2 cos x elliptic

4
m"

3m + m = 8 sin 3x 9 cos 3x hyperbolic

5
u"

+
5'

-

u = + 23x + 45 hyperbolic

6
2m"

-

2u'

+ 3m =
3x3

-

3x2

+ 2x + 38 elliptic

7
5m"

+
4m'

+ 5m = sin x + 30 cos x - 60x sin x + 24x cos x elliptic

8
u"

+
hu'

+ 2u =
2Aex

-

8ex
hyperbolic

9
m"

+
2m'

- 3m = +
50x3

+
15x2

- 64x + 23 hyperbolic

Problem Solution Domain Lower BC Upper BC

1 u =
x5

+
2x4

+
5x3

-

2x2

+ x + A 0-1.0 4.0 11.0

2 u =
x5

+
2x4

-

5x3

+
x2

+ x 0-1.0 0.0 0.0

3 u = sin x O-tt/2 0.0 1.0

4 u = sin 3x O-tt/2 0.0 1.0

5 m =
3x2

+ 7x - A 0-1.0 -4.0 6.0

6 u =
x3

+
x2

- 2x + 10 0-1.0 10.0 10.0

7 m =
3x2

cos X O-tt/2 0.0 0.0

8 u =
3ex

+
Ae~x

0-1.0 7.0 9.6

9 u =
Ax4

-

6x3
-

x2

+ 8x - 3 0-1.0 -3.0 2.0

Table 6.1: Problems

The problems were discretized using three point central differencing (6.1), (6.2). The

domain of each problem was split into 64 elements of equal size h, yielding a compu

tational domain of n = 63 grid points. Six grid levels {m = 6) were used in multigrid
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computations (refer to (4.5)).

du

dx
= ^Ui+l ~ui-i)

dAu

dx2

=

Ja^Ui-x ~2ui + ui+i)

(6.1)

(6.2)
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Chapter 7

Methods

To test the effectiveness of the correction, each problem was run several times. These

runs are referred to as trials. The effects of the correction on solution accuracy and

the number of iterations required for convergence were measured. The correction was

implemented up to three times per trial.

As stated in Chapter 5, corrections were made immediately after prolongation when

moving to a finer grid level. In addition corrections were only made after a Gauss

Seidel iteration had been performed on each level. The correction is not effective

when applied to the initial iterations in a problem because the error at each grid

point is high. It is most effective when there is a large amount of localized error.

A trial was performed for each correction possible based on the above criteria (indi

cated in yellow in Figure 7.1). Some additional test runs with multiple corrections

per run were also performed.

The accomodative algorithm did not control the flow of the correction trials. Instead

the structure of the multigrid runs without corrections (labeled trial 0) was preserved

in each of the correction trials. The structure of the runs can have a significant impact

on the solution, and any variance can make it difficult to evaluate the effects of the

correction. While the flow, or pattern, of the runs was preserved, the number of

iterations on each level was varied in accordance with changes in the residual norm.

A generic structure is shown in Figure 7.1. It represents the basic flow that the

accomodative algorithm used in this study produced. The structure of each of the

trials performed in this study was a variation of that shown in Figure 7.1, with a

varying number of iterations performed on each of the points in the figure. Points at

which a correction could be applied are colored yellow. Plots of iteration vs. grid level

for each multigrid run without corrections (trial 0 for each problem) are presented in

Appendix C. From the plot of Problem 1, Trial 0 it can be seen that the trial began

on level 1, then moved up with one Gauss Seidel iteration performed on levels 2,3,

and 4 and two GS iterations performed on level 5 and level 6, and so on.

The effects of the correction were measured in terms of the number of iterations
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Figure 7.1: Generic multigrid structure.

required and the accuracy of the solution. In Chapter 8 percent change in error

and percent change in iterations are referred to. These are the change in number of

iterations and the change in error with respect to the trial without corrections (trial

0).

%AError =
\error\

-

\errortriai0\

\errortrial0\
*100 (7.1)

^Alterations =
iterations iterationstriaio

iterationstriaio
*100 (7.2)

Increased solution accuracy is indicated by a negative change in error. Similarly, a

negative change in iterations indicates a decrease in the number of iterations required

for convergence.
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Chapter 8

Results and Discussion

Several variables influenced the effectiveness of the correction. These included the

nature of the corrected error spike, the grid level that the correction was implemented

on, the time it was implemented, and the grid point that was corrected. Error was

decreased in 68% of trials with one correction. The majority of the results summarized

below are of trials with one correction only. The results ofmultiple correction trials are

discussed only in section 8.7. Specific results of each trial are presented in Appendix

E.

8.1 Error Spike Direction

The direction of the error spike that was corrected had a significant effect on whether

the correction increased or decreased the error of the final solution. If the error of the

corrected point was greater than the error of the two points adjacent to it, correcting

it generally decreased the error of the solution (Figure 8.1). In this document, this

is referred to as a "correct
direction"

spike because in the graphical view, the error

spike appears to be
"pointing"

in the desirable direction. In some cases the error

of the corrected point was negative and the error of the two surrounding points was

positive, or vise versa. This situation is labeled "partially
correct"

and is shown in

Figure 8.2. Corrections on partially correct spikes were not as effective as those made

on correct spikes.

In the case of an
"incorrect"

direction spike, the error of the corrected point is smaller

than the error of the adjacent points. Correcting an incorrect direction spike does not

always yield positive results because the correction increases the error of the corrected

point. Figures 8.1 and 8.2 show examples of error spikes in the "correct", "partially
correct"

,
and

"incorrect"

directions, as defined in this paper. Overall 58% of all spikes

were in the correct direction, 28% in the incorrect direction, and 14% of spikes were

partially in the correct direction.

Tables 8.1 and 8.2 show the effect of the direction of the corrected spike on the final
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error for trials with a single correction. Corrections applied to spikes in the correct

direction produced a decrease in solution error 86% of the time. In the trials in which

corrections of correct direction spikes increased the solution error, it was increased

an average of only 0.8%. Corrections made on spikes in the incorrect and partially

correct directions caused an increase in solution error the majority of the time.

Figure 8.1: Error vs. Grid Point,
"Correct"

spike (left) and
"Incorrect"

spike (right).

Figure 8.2: Error vs. Grid Point, "Partially
Correct"

spike.

It is difficult to determine if an error spike is in the correct, partially correct, or

incorrect direction when the exact solution is not known. The difficulty lies in de

termining whether the error of the points adjacent to the spike have a positive or

negative margin. The direction of the spike (pointing up or down in the plot) can be

determined from the residuals. If the diagonal of the A matrix is a negative value,

the residual spike and error spike will point in the same direction (residual and error

calculated from (4.10) and (4.9)). If the diagonal of the A matrix is a positive value,

the error spike will point in the opposite direction of the residual spike (Figure 8.3).
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Error

Direction Decreased Increased

Correct

Incorrect

Partially Correct

86%

40%

44%

14%

60%

56%

Overall 68% 32%

Table 8.1: Percentage of trials error was decreased or increased per error spike direc

tion.

Error

Direction Decreased Increased

Correct

Incorrect

Partially Correct

5.1

2.4

16.7

0.8

1.9

17.1

Total 6.4 7.3

Table 8.2: Average percentage change in error per error spike direction.

Unfortunately, a method of determining whether the surrounding error has a negative

or positive margin has not been devised. Without this information, knowledge of the

direction of the spike is not useful.

8.2 Grid Level

Corrections on coarser grid levels proved to be more effective than corrections on

finer grid levels. Coarse level corrections correct error on a larger scale than finer

level corrections and therefore have a greater influence on the accuracy of the final

solution. This is illustrated in Table 8.3 and Figure 8.6. Table 8.3 shows the average

of the absolute value of the percentage change in final error for trials with a single

correction on the specified grid level.

Figure 8.6 shows the change in error produced by each trial with a single correction

and indicates which corrections yielded a decreased number of total iterations. Each

data point is the result of one trial. The level that each correction was implemented

on is indicated by the color of the data point.
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Figure 8.3: Error plot (top) and residual plot (bottom) for Problem 1, Trial 1 (level

3).

Level

3

4

5

6

Average | % A Error

15.9

7.5

1.4

2.8

Table 8.3: Average change in error per grid level.
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8.3 Point in Multigrid Cycle

The point in the multigrid cycle that a correction is made can also effect the accuracy

of the solution. Correctionsmade earlier in the cycle have a greater impact on solution

accuracy than those made later in the cycle. For example, if a problem requires 36

iterations for convergence, a correction made on the 15th iteration will generally have

a greater effect on accuracy than a correction made on the 34th iteration. Corrections

made near the end of the cycle produced smaller errors when error increased.

Table 8.4 and Figure 8.5 illustrate this. In the table and figure the location of the

corrected iteration in the multigrid cycle is given as a percentage of the total number

of iterations. Figure 8.5 shows the results of all of the single correction trials (in the

same way that Figure 8.6 does). One data point shows the change in error produced

by each trial.

In Table 8.4 the location of the correction in the cycle is reported in three segments.

The first segment (20-60%) represents the first set of corrections made on any grid

level as illustrated in Figure 8.4. The final set of corrections is made in the last

segment (75-100%) (Fig. 8.4). If three sets of corrections were possible, the second

set was made in the middle segment (60-75%) (Fig. 8.4). Problem 5 was the only

problem in which corrections were made in the 60-75% range of the cycle (Fig. 8.5).

7

6

5

"3

S 4

I

'
3

13

7\-ML M-L
\ //A, ll\ TLL
\Li/ V // \fit

F AV^ ' ~\A v\

^jjb^j;
lsl

set 21! et Final set

corrections

i 1

corrections

i 1

corrections

1

20 40 60 80

Location in Multigrid Cycle (%)

100 120

? Correction Locations

Figure 8.4: Generic multigrid structure, grid level vs. point in cycle.
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Location of Correction In Multigrid Cycle

20-60% 60-75% 75-100%

Level Dec. Error Inc. Error Dec. Error Inc. Error Dec. Error Inc. Error

3

4

5

6

-15.4 43.5

-13.9 8.6

-1.2 1.1

-5.8 0.8

-0.3

-0.3

-5.6

-19.7

-11.4 11.9

-3.0 9.5

-1.3 0.6

-0.1 0.3

All -9.08 13.51 -6.45 -3.95 5.57

Table 8.4: Average percentage change in error per location in multigrid cycle.
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X
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?
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Location in Multigrid Cycle (%)

Figure 8.5: Change in error vs. point in multigrid cycle.
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8.4 Grid Location

Corrections on points located in the center of the grid were more effective than cor

rections on points near the grid boundaries. In the following discussion grid point

locations are expressed as a percentage of the computational domain of the problem.

It should be noted that Dirichlet boundary conditions were used in all of the trials.

Corrections on points located in the center of the grid had a greater impact on solution

accuracy than those performed within a distance of 10% (of the grid length) of the

boundaries. Figure 8.6 shows the percentage change in solution error vs. the location

of corrected point as a percentage of the length of the grid. The percentage change

in error for all single correction trials is plotted in Figure 8.6. Each of the plotted

points is the result of one trial. On finer grids errors near the edge of the grid are

reduced by the boundary conditions, and corrections near the grid edges are not as

effective. Corrections implemented in the center of the grid also decreased error more

frequently than corrections near the boundary conditions (Table 8.5).

60.00

40.00

20.00

w
0.00

-20.00

-40.00

-60.00

-6h

20

fljFafr

t
nri-*

40"

*& 60 ? 80

*S*i

life

? Level 3

Level 4

A Level 5

x Level 6

o Iterations

Decreased

Grid Location (% span)

Figure 8.6: Change in final error vs. correction location and level.

27



Error of Final Solution

Distance from Boundary (% grid length) Decreased Increased

0-10%

10-25%

25-50%

8

12

30

5

9

10

Table 8.5: Number of trials in which final error was increased or decreased vs. cor

rection location.

8.5 Residual Magnitude

There was no correlation between the size of the residual spike and the percentage

change in final error. Figure 8.7 shows the change in the error of the solution as

a function of the residual/norm (norm refers to the residual norm) of the corrected

point.

8.6 Problems

The effect of single corrections on the error of each problem is shown in Figure 8.8.

This plot is nearly identical to Figure 8.6. As in Figure 8.6, each data point is the

result of one trial and the results of all trials with one correction are plotted. In

Figure 8.8 the problem that was solved in each trial is indicated. The effect of the

corrections on solution accuracy varied between problems. Most of the differences

can largely be attributed to the factors discussed above (spike direction, location,
and grid level). Corrections were most effective in problem 5.

The number of single correction trials in which corrections were made on correct,

incorrect, and partially correct direction spikes is shown in Figure 8.9. In problem

6, 100% of the spikes corresponding to the maximum residual were in the correct

direction. Problem 8 had the largest number of spikes in the incorrect direction. The

number of trials performed varies between problems because of the variation in the

structure of the runs (see Appendix C). A larger number of trials were performed on

problem 5 because it has more iterations than any other problem and moves between

the grid levels an additional time. Only seven trials were performed on problem 2

because iterations were performed on level 2 at two points in the cycle instead of

three.
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8.7 Multiple Corrections

The results presented in the previous sections are the results of trials with a single

correction. Twenty-six trials with multiple corrections were performed, 21 with two

corrections, and 5 with three corrections. Appendix D shows the results of these trials.

The percent change in error (7.1) and the percent change in number of iterations (7.2)
are reported. In some cases the number of iterations did not change and therefore

the percent change in number of iterations does not show up in the plot.

The graphs show the effects of the multiple correction trials and the corresponding

single correction trials (performed at the same points in the cycle). The iteration

that a correction was implemented after is indicated in parentheses next to the trial

number. The iterations indicated in the single correction trials are not always the

same as the iterations indicated in the multiple correction trial. This is because some

multiple correction trials resulted in a decreased number of iterations and a move to a

higher level at an earlier iteration. The details of the trials can be found in Appendix

E.

In 12 trials the change in error produced by the multiple correction trial was within

6% of the sum of the error changes produced by the corresponding single correction

trials. Six trials produced an improvement in solution accuracy over the combination

of the single corrections. In 23 of the 26 trials the the change in number of iterations

produced by the multiple correction trial was equal to the sum of the changes in

number of iterations produced by the corresponding single correction trials.
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Chapter 9

Conclusions

This study is an initial evaluation performed to assess the viability of the correction

method. The results indicate that it has the capacity to improve solution accuracy and

potentially increase solver efficiency for a problem solved with multigrid methods. The

correction can also cause a decrease in solution accuracy if it applied at an improper

time.

The most important factor in determining whether a correction will produce positive

results is the direction of the corrected error spike. Almost all of the corrections per

formed on "correct
direction"

error spikes increased solution accuracy. Unfortunately

it is difficult to determine whether or not the spike is in the
"correct"

direction. This

would be possible if a method was devised to determine whether the error had a

positive or negative margin.

There was also a correlation between the location of the correction on the grid and

correction effectiveness. Error was decreased in 75% of single correction trials in

which the corrected point was in the central portion of the grid.

In most cases implementation of the correction did not affect the number of iterations

required for convergence. In these cases the amount of computational work was

increased by an amount approximately equal to that required for one Gauss Seidel

iteration. It is up to the end user to decide whether the accuracy improvements

produced in these cases are worth this extra computation time.

Maximum efficiency is achieved when the correction is implemented on coarser grid

levels. Corrections made on coarser grid levels have a greater effect on solution

accuracy and require the computation of fewer residuals. The efficiency of a fine level

correction could be improved by calculating the residuals of points located near the

center of the grid only. Multiple corrections can be as efficient as single corrections,

and can be used to further increase accuracy.

Due to the limited number of problems tested in this study, it is difficult to determine

if specific types of problems are better suited to this correctionmethod. Future studies
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should examine a more diverse set of problems, including two and three dimensional

problems.
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Appendix A

Multigrid Program - Fortran 90 Code

A.l Multigrid - main.for

program main

integer

integer

integer

integer

integer

integer

integer

character (len=80)

character (len=80)

character (len=80)

character (len=80)

character (len=80)

character (len=80)

character (len=80)

character (len=10)

character (len=100)

character (len=80)

real

real

real

real

real

real

real

real

real ,dimension( :
,

real ,dimens ion(: ,

real,dimension(: ,

real , dimens ion ( : ,

real,dimension(:
,

real ,
dimens ion ( : ,

real, dimens ion ( :
,

real, dimens ion (: ,

real ,dimension( :
,

real
,
dimension ( : ,

real,dimension(:
,

real , dimension ( : ,

real, dimension (: ,

real
,
dimension ( : ,

real, dimension (: ,

: ai , aifine , aicoarse .halfai , aj

: aicoarsea.alocation

:ajcoarsel,ajfinel,ajfine2

:v, size,digits

: coarse, rn.divs

:k , 1 , m , div2 , aim , index ,
lenname

: iteration ! iteration number

:name

:name2

:name3

:n4

:name5

:name6

:name8

:chariteration

: :errorname

: index!ile

: error , convrate , scriptem , avgerror

:proresidual , resresidual

:n,p

:normf
,
sumgs

, weight

: sumfdiff

:bcl,bc2,bcplace,levell

: scripteinit

rxrange

) , allocatable ::asizes

) .allocatable ::a

) .allocatable ::x

) , allocatable : : f

) .allocatable ::ffine

) .allocatable : :fres

) .allocatable ::master

) .allocatable ::pro

) .allocatable : :res

) .allocatable ::e

) .allocatable ::olde

) .allocatable : :ebar

) .allocatable ::scripte

) .allocatable : : exactx

) , allocatable : : residual
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real, dimension(:

real , dimension ( :

real , dimens ion ( :

) .allocatable : :residual2

) , allocatable : : current!

) , allocatable : : abserror

integer .dimens ion ( : ,
: ) .allocatable : : smooth

!get user input

print*, 'What is the index file path?'

read*
, indexfile

! connect to index file

open (16,file= indexfile, status="old")

! read from file

read (16 , *)ai ,
name ,name2 , namefa , levell ,

xrange , be1 ,
bc2

close (unit=16)

ai=ai+2

print*,
'ai='

,ai !number of grid points

print*,
'name='

.name

print*,
'name2='

,name2

print*
,

'name5='
,name5

print*,
'levell='

, levell

print*
,

'xrange^'

,
xrange

print*,
'bcl='

,bcl

print*,
'bc2='

,bc2

print*, 'Where do you want the output to be
written?'

read*,name3

print*, 'Where do you want the error text
files?'

read*
, n4

n=0.5

print*, 'What is the stopping
criteria?'

read*
, scriptem

div2=0

aim=ai-l

do

if (mod ((aim) ,2) /=0) exit

aim=aim/2

div2=div2+l

end do

m=div2 (number of grid levels

! creates asizes vector

! column vector to hold sizes of A beginning with level 1

size=ai-2

allocate (asizes (m , 1) )

asizes (m,l)=size

do i= m-1,1,-1

size=(size+l)/2-l

asizes(i,l)=size

end do

aj=sum (asizes)

print*
,
asizes

allocate (a(ai-2,aj))

allocate (f (ai-2 ,m) )

allocate (exactx(ai-2 , m) )

! connect to coefficient matrix file

open
(2,file= name,status="old")

Iread from file
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read (2,
' ai-2>(f15.7)) ') ((ad.j) , j=l,ai-2) ,i=l,ai-2)

close (unit=2)

! connect to solution vector file

open (3,file=
name2,status="old")

Iread from file

read (3, (f15.7) ') (f (i.m) ,i=l.ai-2)

close (unit=3)

! connect to exact solution file

open (9,file= name5,status="old")

Iread from file

read
(9,' (f15.7) ') (exactx(i.m) ,i=l,ai-2)

close (unit=9)

! initial values

allocate (x (ai ,m) )

!boundary conditions

x(l,l)=bcl

x(3,l)=bc2

! level 1 solution

x(2,l)=levell

lepsilon for each level

allocate (scripte (m , 1) )

scripte (m ,
l)=scriptem

divs=4

do i=2,m-l

scripte (i,l)=(xrange/divs)**2

if (scripted, l)<scriptem) then

do j=i,m-l

scripted, l)=scriptem

end do

exit

end if

divs=divs*2

end do

scripted, 1)=100.0

l=m

k=l

aicoarse=ai

alocat ion=asizes (m, 1)

ajcoarsel=l

allocate (master (ai ,m) )

allocate(pro(l,D) Irandom size

allocate(resd.l)) Irandom size

allocate (residual (1,1)) Irandom size

allocate(residual2(l,D) Irandom size

allocate (currentf (1,1)) Irandom size

allocate(abserrord.l)) Irandom size

allocate(e(m,D)

allocate (olde(m.D)

allocate (ebar(m.D)

allocate (smooth (m.D)

allocate (ffine (ai-2 , 1) )

smooth=0

e=0

coarse=0

olde=l

iteration=0

ebar=100000
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rn=0

dlgits=l

p=2

open (4,file=
name3,status="replace")

write (4,*) 'convergence criteria=' .scripte (m.l)

write (4,*) 'initial epsilon=' ,scripte(2:m-l,l)
close (unit=4)

lenname=len(trim(name3) )-4

print*,
'lenname='

.lenname

name8=name3 ( : lenname) // ' 2 . txt
'

open (8 , f ile=name8 ,

status="replace"

)

write (8,*) 'Iteration Level Error'

write
(8,*)' '

close (unit=8)

{initial f and a matrices

ffine (2 : aicoarse-3 , 1)=f (2 : aicoarse-3 ,m)

ffine(l,l)=f (l,m)+bcl*a(2,ajcoarsel)

ff ine(aicoarse-2 , l)=f (aicoarse-2 ,m)+bc2*a(aicoarse-3 , alocation)

do j=m-l,2,-l

*=j
aifine=aicoarse

aicoarse=(aifine+l)/2

aicoarsea=aicoarse-2

deallocate (res)

deallocate (pro)

allocate (res (aicoarse , aifine) )

allocate (pro (aifine , aicoarse) )

call prores (aifine
, aicoarse .pro , res)

f (1 : aicoarsea , j )=matmul (res (2 : aicoarse-1
,
2 : aifine-1) ,

& ffined: aif ine-2,1))

ffine (1 : aicoarsea, l)=f (1 : aicoarsea, j )

alocation=sum(asizes(k:m,l))

ajcoarsel=l+alocation- (aicoarse-2)

ajf
inel=alocation- (aicoarse-2) - (aif ine-2)+1

ajfine2=alocation- (aicoarse-2)

a(l : aicoarse-2 ,
ajcoarsel : alocation) =

& matmul (matmul (res (2: aicoarse-1, 2:aifine-1) ,

& a(l :aifine-2,ajfinel:ajfine2)) , pro (2: aifine-1,2: aicoarse-1))

I acoarse^smatmul (matmul (res ,
afine) .pro)

f (l,j)=ffine (1,1) -bcl*a(2,ajcoarsel)

f (aicoarsea, j )=ffine (aicoarsea, l)-bc2*a(aicoarsea-l , alocation)

exactxd: aicoarsea, j)=matmul (res (2: aicoarse-1,2:aifine-1) ,

& exactx(l:aifine-2,j+D)

end do

k=l
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aifine=aicoarse

aicoarse=(aifine+l)/2

aicoarsea=aicoarse-2

print*,
'aifine='

, aifine

print*,
'aicoarse='

.aicoarse

open (4,file=
name3,position="append")

write (4,*) 'grid level=',k

close (unit=4)

open (4,file=
name3,position="append")

write (4,*) 'iteration=' .iteration
write(4,*)' '

close (unit=4)

open (5,file=name8,position="append")

write(5,
'
(i9)

'
,advance="no")iteration

write(5.'(i5)')k

write(5,*)' '

close (unit=5)

go to 2

! -Presmoothing using gauss seidel

1 open (4,file=
name3,position="append")

write (4,*) 'grid level=',k

close (unit=4)

call gs2(a, alocation,x.f,aicoarse,error,k.ai.aj ,

k m,name3,n4, iteration, exactx, aicoarsea,digits.avgerror)

open (4,file=
name3,position="append")

if (rn==l) then

write(4,*) 'prev residual
norm='

, resresidual

end if

if (rn==2) then

write(4,*) 'pro prev residual
norm='

,proresidual

end if

write (4,*) 'residual
norm='

.error

convrate=error/olde (k , 1 )

write (4,*) 'convergence rate=
'

,
convrate

write
(4,*)' '

close (unit=4)

4 open (5,file=name8,position="append")

write(5,
'
(i9)

'
,advance="no")iteration

write(5,
' (i5)

'
,advance="no")k

write (5 ,

' (esll . 2)
'
)error

write
(5,*)' '

close (unit=5)

e(k,l)=error

olde(k,l)=error

smooth(k,l)= smooth(k,l) + 1

2 rn=0

if (e(k,l)<=scripte(k,D) then

!
print*,'!'
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II

if (k==l) then

IB

I exit

go to 3

else I switch to finer level

rn=2

deallocate (pro)

deallocate (res)

allocate (pro (aifine , aicoarse) )

allocate (res (aicoarse
,
aifine) )

call prores (aifine,aicoarse,pro,res)

xd:aifine,k+l)= master(l:aif ine,k+l) + matmul

ft (pro (1:aifine, 1: aicoarse) , (x(l : aicoarse,k) -matmul

ft (res (1 : aicoarse
, 1 : aifine) .master (1 :aifine ,k+l) ) ) )

!xfine= xfineold + matmul (pro, (xcoarse-matmuKres.xfineold)))

if (k==l-l) then I if at second highest level

aicoarse=aif ine

else

aicoarse=aif ine

aifine= (aicoarse*2) -1

end if

k=k+l

alocation=sum (asizes (k:m, 1) )

aicoarsea=aicoarse-2

(calculate residuals of current solution

deallocate (residual)

deallocate (residual2)

deallocate (currentf)

allocate (residual (aicoarsea, 1) )

allocate(residual2(aicoarsea,D)

allocate (currentf (aicoarsea , 1) )

currentf (1 : aicoarsea,
1)=

ft matmul(a(l:aicoarsea,l+alocation-aicoarsea:alocation) ,

ft x(2:aicoarse-l,k))

do i=l,aicoarsea

residual (i , 1)=currentf (i , 1) -f (i , k)

end do

write (chariteration,
" (Kdigits>) ") iteration

open
(12,file= errorname,status="replace")

do i=l, aicoarsea

write (12,*)residual(i,l)

end do

close (unit=12)

I compute norm of residuals

do i=l,aicoarsea

residual2(i,l)
= (residuald,l))**2

end do
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proresidual=( (sum(residual2) )** . 5) /aicoarsea

*************************************************************************************

*************************************************************************************

I If Using Correction, Insert Correction Code Here

*************************************************************************************

*************************************************************************************

ICalculate Absolute Error of current solution

deallocate (abserror)

allocate (abserror (aicoarsea, 1) )

do i=l,aicoarsea

abserror(i,l)=exactxd,k)-xd+l,k)

end do

write (chariteration ,

"
(Kdigits>)

"
) iteration

errorname=trim (n4) //
"n"
//trim(chariterat ion) //

"
. txt

M

open (15,file= errorname,status="replace")

do i=l .aicoarsea

write (15,*)abserrord,l)

end do

close (unit=15)

Iback to GS

! cycle

goto 1

end if

else if (e(k,l)<=(n*ebar(k,D) .or. k==l) then

ebar(k,l)=e(k,l)

go to 1

end if

I if at crudest level

if (k==2) then

I save values of current level

master (1: aicoarse,k)=x(l: aicoarse,k)

goto 1

end if

I save values of current level

master (1: aicoarse,k)=x(l: aicoarse,k)

I switch to a coarser level

rn=l

coarse=coarse+l

k=k-l

alocation=sum(asizes (k : m ,
1 ) )

if (k==(l-D) then I if you have moved to the second highest level

aicoarse=(aifine+l)/2

else

aifine=aicoarse

aicoarse= (aifine+1)II
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end if

deallocate (pro)

deallocate (res )

allocate (pro (aifine , aicoarse) )

allocate (res (aicoarse , aifine) )

call prores (aifine .aicoarse .pro ,res)

x(l: aicoarse,
k)=

ft matmul (res ( 1 : aicoarse, 1:aifine) ,x(l:aif ine,k+l))

I xcoarse=matmul(res ,xfine)

aj
coarsel=l+alocation- (aicoarse-2)

aj finel=alocat
ion-

(aicoarse-2) - (aif ine-2) +1

ajf
ine2=alocation- (aicoarse-2)

I a(l: aicoarse-2,ajcoarsel: alocation) =

ft! matmul(matmul(res(2:aicoarse-l,2:aif ine-1) ,

ft I a(l:aifine-2,ajfinel:ajfine2)) ,pro(2:aifine-l,2:aicoarse-l))

I acoarse=matmul (matmul (res ,afine) .pro)

f (1 : aicoarse-2 ,k)=matmul (a(l : aicoarse-2, ajcoarsel : alocation) ,

ft x(2: aicoarse-1,k)) + matmul(res(2:aicoarse-l,2:aif ine-1) ,

ft (f (l:aifine-2,k+l)-matmul(a(l:aifine-2,ajfinel:ajfine2) ,

ft x(2:aifine-l,k+l))))

!fcoarse=matmul(acoarse,xcoarse) + matmul (res, (ffine-matmul(afine,xfine)))

if (0.7*scriptem>.2*e(k+l,l)) then

scripte (k,l)=.7*scriptem

else

scripte (k, 1)=. 2*e (k+1 , 1)

end if

aicoarsea=aicoarse-2

I calculate residuals of current solution

deallocate (residual)

deallocate (residual2)

deallocate (currentf )

allocate (residual (aicoarsea , 1) )

allocate(residual2(aicoarsea, 1) )

allocate (currentf (aicoarsea, 1) )

currentf (1: aicoarsea, 1)=

ft matmul (a(l: aicoarsea, 1+alocation-aicoarsea:alocation) ,

ft x (2 :aicoarse- l,k))

do i=l,aicoarsea

residual (i , 1)=currentf (i , 1) -f (i , k)

end do

write (chariteration, "(Kdigits>)") iteration

errorname=trim (n4) //
"rn" //trim(chariteration) //

"
. txt

"

open
(13,file= errorname,status="replace")

do i=l, aicoarsea

write (13,*) residuald,l)

end do

close (unit=13)
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I compute norm of residuals

do i=l .aicoarsea

residual2 (i , 1) = (residual (i , 1) ) **2

end do

resresidual=( (sum (residual2) ) ** . 5) /aicoarsea

{Calculate Absolute Error of current solution

deallocate (abserror)

allocate(abserror(aicoarsea,D)

do i=l .aicoarsea

abserror(i,l)=exactxd,k)-x(i+l,k)

end do

write(chariteration,
"

(Kdigits>) ")iteration

errorname=trim (n4) //
"n" //trim (chariteration) //

"
. txt

"

open (14,file=
errorname,status="replace")

do i=l,aicoarsea

write (14 ,*)abserrord , 1)

end do

close (unit=14)

ebar(k,l)=resresidual

olde(k,l)=resresidual

goto 1

3 weight=l

do i=m,l,-l

sumgs = weight*smooth(i,l)+sumgs

weight=
. 25*weight

end do

Iprint # iterations

open (4,file= name3,position="append")

write(4,*) 'Number of coarse grid
transfers='

.coarse

write(4,*)' '

write (4,*) 'Number of GS smoothing operations per level asc.
order'

write(4,
' l>(i4)) ') ((smoothd, j) , j=l,l) ,i=l,m)

write (4,*) 'Sum of GS
iterations='

,
sumgs

close (unit=4)

end program main

A.2 Correction

IThis code is inserted into main. for in the specified location

IEnter iteration of correction

if (dteration==39)) then I.or. (iteration==ll) ) then

ft I .or. (iteration==26)) then

maxresm=maxloc (residual2 (2 : aicoarsea) )
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maxres=maxresm(l)+l

maxratio=abs (residual (maxres) ) /proresidual

if (maxratio>2)then

open (4,file=
name3,position="append")

write(4,*)
'maxres='

,maxres

write (4,*) 'maxratio=' .maxratio

write
(4,*)' '

write
(4,*)' '

close (unit=4)

if (maxres==aicoarsea) then

x(maxres+l,k)=(f (maxres,k)-x (maxres,k)

ft *a(2,l+alocation-aicoarsea))

ft /a(2,2+ alocation-aicoarsea)

else

x(maxres+l,k)=(f (maxres,k)-x (maxres,k)

ft *a(2,l+alocation-aicoarsea)-x(maxres+2,k)

ft *a(2,3+alocation-aicoarsea))

ft /a(2,2+ alocation-aicoarsea)

end if

end if

end if

A.3 Gauss Seidel - gs.for

subroutine gs2(a, alocation,x.f , aicoarse, error .k.ai.aj ,

ft m,name3,n4, iteration, exactx, aicoarsea,digits,avgerror)

Ideclare variables

integer :: aicoarse
, imxres, factor

integer : :iter,c

integer .intent (out) ::digits

integer ,
intent (inout) : : iteration

integer, intent (in) : : alocation,ai, aj ,m

integer, intent (in) : :k,aicoarsea

real : :num, mxres

real, intent (out) :: error ,
avgerror

character (len=80) : :name

character (len=80) : :name2

character (len=80) : :name3

character (len=80) : :n4

character (len=10) :: chariteration

character (len=100) ::errorname

real,dimension(ai-2,aj) ::a

real.dimension(ai.m) .intent (inout) : :x

real.dimension(aicoarsea.l) ::xnew

real,dimension(ai-2,m) ::f

real,dimension(aicoarsea,aicoarsea+l) : :b

real.dimension(aicoarsea.l) : :residuals

real.dimension(aicoarsea.l) : :residuals2

real.dimension(aicoarsea.l) : :currentsol

real.dimension(aicoarsea.l) : :abserror

real,dimension(ai-2,m),intent(in) : :exactx

b=0

!define augmented matrix b
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do i=l,aicoarsea

do j=l .aicoarsea

b(i, j)=a(i, j+alocation-aicoarsea)

end do

end do

do i=l,aicoarsea

b(i ,aicoarsea+l)=f (i ,k)

end do

IGS iterations

iteration=iteration+l

imxres=0

mxres=0

do i=l .aicoarsea

num=b(i ,aicoarsea+l)

do j=l,aicoarsea

num=
num-x(j+l,k)*b(i,j)

end do

xnew(i,l)= (num+x(i+l,k)*b(i,i))/bd,i)

x(i+l,k)=xnew(i,l)

end do

currentsol ( 1 : aicoarsea, 1)=matmul (b ( 1 : aicoarsea, 1 : aicoarsea) ,

ft x(2: aicoarse-1,k))

do i=l, aicoarsea

residuals (i,l) = (currentsold,l)-f (i,k))

if (abs (residuals (i , 1) )>abs (mxres) ) then

mxres = residuals (1,1)

imxres = i*2**(m-k)

end if

end do

open (4,file= name3,position="append")

write (4,*)
'iteration3'

.iteration

write (4,*) 'max residual=',
mxres,'

at
location3'

, imxres

close (unit=4)

! Exact solution

do i=l,aicoarsea

abserror (i,l)=exactx(i,k)-x(i+l,k)

end do

I average of abserror

if (k==m) then

avgerror=sum (abserror) /aicoarsea

end if

if (iteration < 10) then

digits=l

else if (iteration <100) then

digits=2

else if (iteration<1000) then

digit s=3

else if (iteration<10000) then

digits=4

end if
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Iwrite error text files

write (chariteration,
"

(Kdigits>) ") iteration

errorname=trim(n4)//"r"//trim (chariteration)
//".txt"

open (7,file=
errorname,status="replace")

do i=l .aicoarsea

write (7,*) residualsd.l)

end do

close (unit=7)

write (chariteration,
"

(Kdigits>) ")iteration

errorname=trim (n4) //trim(chariteration) //
"

. txt
"

open (8,file=
errorname,status="replace")

do i=l .aicoarsea

write (8 , *) abserror (i , 1)

end do

close (unit=8)

I compute norm of residuals

do 1=1, aicoarsea

residuals2(i,l)= (residuals (i,l))**2

end do

error= ( (sum(residuals2) ) ** . 5) /aicoarsea

end subroutine gs2

A.4 Prolongation and Restriction Operators - prores.for

subroutine prores (aifine,aicoarse, pro,res)

Ivariables

integer : : c

integer, intent (in) ::aifine

integer, intent (in) : : aicoarse

real,dimens ion(aifine, aicoarse) ,intent(out) : :pro

real,dimension(aicoarse,aifine) ,intent(out) : :res

!define prolongation operator matrix

pro=0

pro(l,l)=l

c=2

I odd rows

do i=3,aifine,2

pro(i,c)=l

c=c+l

end do

c=l

I even rows

do i=2,aifine-1, 2

pro(i,c)=.5

pro(i,c+l)=.5

c=c+l

end do

!define restriction operator matrix
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res=
. 5*transpose (pro)

res(l,l)=l

res(l,2)=0

res (aicoarse,aif ine)=l

res (aicoarse, aif ine-1)=0

end subroutine prores
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Appendix B

Efficiency Test Programs - Fortran

90 Code

B.l Gauss Seidel Efficiency Test Program

program gstest

real : :x

real ::f

real ::al

real ::a2

real ::a3

real ::a4

real ::a5

real ::a6

real ::a7

real ::x2

real ::x3

real ::x4

real ::x5

real ::x6

real ::x7

f= 5 463667

al= 3 254534

a2= 5 979375

a3= -37.85091

a4= 4 235096

a5= -15.49078

a6= 7 094582

a7= 9 430092

a8= 4 687798

a9= 3 068973

al0=-6. 975475

all=3 254534

al2= 5.979375

al3= -

37.85091

al4= 4.235096

al5= - 15.49078

al6= 7.094582

al7=
.432092
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al8= 4.687798

al9= 6.045973

a20=-6. 978475

a21=3. 254534

a22= 5.979375

a23=
-3.550912

a24= 4.735056

a25=
-15.49078

a26= 7.094582

a27= 9.439092

a28= 4.687798

a29= 5.045973

a30=-6. 978475

a31= 2.655665

a32= 7.484155

a33=
-2.342189

a34= 4.235096

a35=
-15.49078

a36= 8.094582

a37= 9.430092

a38= 4.647798

a39= 2.068973

a40=-6. 975475

a41=3. 554534

a42= 5.979375

a43=
-37.87091

a44= 4.235096

a45=
-15.49078

a46= 7.094582

a47= 9.432092

a48= 4.687798

a49= 6.045973

a50=-6. 978475

a51=3. 254534

a52= 5.979375

a53=
-3.550912

a54= 4.735056

a55=
-15.49078

a56= 7.098582

a57= 9.439092

a58= 5.687798

a59= 5.045973

a60=-6. 978475

a61= 2.555665

a62= 3.484155

a63=
-2.347189

x2=
-9.086549

x3= 3.576876

x4= 6.875432

x5=-6. 873684

x6= 14.586123

x7= 9.6612868

x8=-5. 298981

x9= 4.459823

xl0=8. 945722

xll=-4. 864655

xl2= -5.086549

xl3= 3.579876

xl4= 6.875432

xl5=-6. 273684

xl6= 13.58612

xl7= 9.661986

xl8=-5. 098981
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xl9= 4.459523

x20=6. 935722

x21=-4. 896655

x22=
-5.026549

x23= 3.579816

x24= 8.875432

x25=-6. 273684

x26= 13.58612

x27= 9.645986

x28=-3. 098981

x29= 4.459523

x30=6. 934322

x31=-7. 890655

x32=l. 5644651

x33=2. 5861816

x34= 6.875432

x35=-6. 875984

x36= 14.586123

x37= 2.6612868

x38=-5. 278981

x39= 4.459823

x40=5 . 945722

x41=-4. 864955

x42=
-5.086549

x43= 3.879876

x44= 9.875432

x45=-6. 283684

x46= 13.58612

x47= 9.661986

x48=-5. 097981

x49= 4.459523

x50=5. 935722

x51=-4. 896655

x52=
-5.026549

x53= 4.579816

x54= 8.879432

x55=-6. 273684

x56= 18.58612

x57= 9.645986

x58=-3. 098981

x59= 4.459523

x60=6. 934322

x61=-7. 890655

x62=l . 5644651

x63=2. 5861816

do k=l,10

call cpu_time(tl)

do i=l, 100000000

X=(f-a2*x2-a3*x3-a4*x4-a5*x5-a6*x6-a7*x7-a8*x8-a9*x9

ft -al0*xl0-all*xll-al2*xl2-al3*xl3-al4*xl4-al5*xl5

ft -al6*xl6-al7*xl7-al8*xl8-al9*xl9-a20*x20-a21*x21

ft -a22*x22-a23*x23-a24*x24-a25*x25-a26*x26-a27*x27

ft -a28*x28-a29*x29-a30*x30-a31*x31-a32*x32-a33*x33

ft -a34*x34-a35*x35

ft -a36*x36-a37*x37-a38*x38-a39*x39-a40*x40-a41*x41

ft -a42*x42-a43*x43-a44*x44-a45*x45-a46*x46-a47*x47

ft -a48*x48-a49*x49-a50*x50-a51*x51-52*x52-a53*x53

ft -a54*x54-a55*x55-a56*x56-a57*x57-a58*x58-a59*x59

ft -a60*x60-a61*x61-a62*x62-a63*x63) /al
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end do

call cpu_time(t2)

print *, 'time to process = ', (t2-tl)

end do

end program gstest

B.2 Correction Efficiency Test Program

program correctlontest

real :x

real :f

real :al

real :a2

real :a3

real :a4

real :a5

real :a6

real :a7

real :x2

real :x3

real :x4

real :x5

real :x6

real :x7

xl=
-:-.458456

f= 5 463667

al= 3. 254534

a2= 5. 979375

a3= <- 7.85091

a4= 4. 235096

a5=
-1 5.49078

a6= 7. 094582

a7= 9. 430092

a8= 4. 687798

a9= 3. 068973

al0=-6 . 975475

all=3. 254534

al2= 5 . 979375

al3= - 37.85091

al4= 4 .235096

al5= - 15.49078

al6= 7 .094582

al7= 9 .432092

al8= 4 . 687798

al9= 6 .045973

a20=-6 .978475

a21=3. 254534

a22= 5 .979375

a23= - 3.550912

a24= 4 .735056

a25= - 15.49078

52



a26=: 7.094582

a27=: 9.439092

a28=: 4.687798

a29=' 5.045973

a30=
-6.978475

a31=' 2.655665

a32=: 7.484155

a33=:
-2.342189

a34= 4.235096

a35=
-15.49078

a36= 8.094582

a37= 9.430092

a38= 4.647798

a39= 2.068973

a40=
-6.975475

a41=3.554534

a42= 5.979375

a43=
-37.87091

a44= 4.235096

a45=
-15.49078

a46= 7.094582

a47= 9.432092

a48= 4.687798

a49= 6.045973

a50=
-6.978475

a51=3.254534

a52= 5.979375

a53=
-3.550912

a54= 4.735056

a55=
-15.49078

a56= 7.098582

a57= 9.439092

a58= 5.687798

a59= 5.045973

a60=
-6.978475

a61= 2.555665

a62= 3.484155

a63=
-2.347189

x2=
-9.086549

x3= ;3.576876

x4= 15.875432

x5=-l5.873684

x6= :14.586123

x7= 9.6612868

x8=-5. 298981

x9= 4.459823

xl0=8. 945722

xll=-

-4.864655

xl2=
-5.086549

xl3= 3.579876

xl4= 6.875432

xl5=-

6.273684

xl6= 13.58612

xl7= 9.661986

xl8=-

5.098981

xl9= 4.459523

x20=6. 935722

x21=-

4.896655

x22=
-5.026549

x23= 3.579816

x24= 8.875432

x25=-6.273684

x26= 13.58612
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x27= 9.645986

x28=-3. 098981

x29= 4.459523

x30=6 . 934322

x31=-7. 890655

x32=l . 5644651

x33=2. 5861816

x34= 6.875432

x35=-6. 875984

x36= 14.586123

x37= 2.6612868

x38=-5. 278981

x39= 4.459823

x40=5. 945722

x41=-4. 864955

x42=
-5.086549

x43= 3.879876

x44= 9.875432

x45=-6. 283684

x46= 13.58612

x47= 9.661986

x48=-5. 097981

x49= 4.459523

x50=5. 935722

x51=-4. 896655

x52=
-5.026549

x53= 4.579816

x54= 8.879432

x55=-6. 273684

x56= 18.58612

x57= 9.645986

x58=-3. 098981

x59= 4.459523

x60=6. 934322

x61=-7. 890655

x62=l. 5644651

x63=2. 5861816

do k=l,10

call cpu_time(tl)

! residual calculation

do i=l, 100000000

X=f-al*xl-a2*x2-a3*x3-a4*x4-a5*x5-a6*x6-a7*x7-a8*x8-a9*x9

ft -al0*xl0-all*xll-al2*xl2-al3*xl3-al4*xl4-al5*xl5

ft -al6*xl6-al7*xl7-al8*xl8-al9*xl9-a20*x20-a21*x21

ft -a22*x22-a23*x23-a24*x24-a25*x25-a26*x26-a27*x27

ft -a28*x28-a29*x29-a30*x30-a31*x31 -a32*x32-a33*x33

ft -a34*x34-a35*x35

ft -a36*x36-a37*x37-a38*x38-a39*x39-a40*x40-a41*x41

ft -a42*x42-a43*x43-a44*x44-a45*x45-a46*x46-a47*x47

ft -a48*x48-a49*x49-a50*x50-a51*x51-52*x52-a53*x53

ft -a54*x54-a55*x55-a56*x56-a57*x57-a58*x58-a59*x59

ft -a60*x60-a61*x61-a62*x62-a63*x63

end do

I comparison

do 1=1,98412698 1100000000*62/63 !62 comparisons are made for every 63 runs
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if(x>2) then

x=l

end if

end do

call cpu_time(t2)

print *, 'time to process = ', (t2-tl)

end program correction test

55



Appendix C

Accomodative Algorithm Runs

Problem 1, Trial 0

10 15 20 25

Iteration
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Problem 2, Trial 0

10 15

Iteration

30

Problem 3, Trial 0

z
**i

X
2 2

I
?????/ W \***

20 30 40

Iteration

50 60
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Problem 4, Trial 0

10 15 20

Iterations

35

Problem 5, Trial 0
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Problem 6, Trial 0

Problem 7, Trial 0
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Problem 8, Trial 0

20 25

Iteration

Problem 9, Trial 0

10 15 20

Iteration

35
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Appendix D

Multiple Correction Results

Problem 1, Trial 9 Problem 1, Trial 10

p1M(13) pits (29) pH9 (13,28) pH1 (1 3) p!12 (1 5) pit! 0 (1 3,1 4)

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

Trial (Iteration Corrected) Trial (Iteration Corrected)

I% Change in Error % Change in Iterations 1% Change in Error % Change in Iterations
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0.00

-5.00

-10.00

-15.00

-20.00

-25.00

Problem 1, Trial 11

p1t1 (13) p1t6(31) p1t1 1(13,30)

Problem (IterationCorrected)

Problem 1, Trial 12

p1t12

p1t1(13) pits (29) p1t6(31) (13,28,29)

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

Problem (Iteration Corrected)

I% Change in Error % Change in Iterations % Change in Error % Change in Iterations

Problem 2, Trial 8 Problem 3, Trial 9

12.00

10.00

8.00

6.00

4.00

2.00

0.00

p3t2 (22) p3t3 (24) p3t9 (22,24)

p2t1 (1 1 ) p2t2 (1 3) p2t8 (1 1 ,1 2) -20.00

Problem (Iteration Corrected) Problem (Iteration Corrected)

I% Change in Error % Change in Iterations I% Change in Error % Change in Iterations
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Problem 3, Trial 10 Problem 3, Trial 11

p3t2 (22) p3t6(39) p3t1 0(22,39)

0.00

-2.00

-4.00

-6.00

-8.00

-10.00

-12.00

-14.00

-16.00

-18.00

-20.00

1=4
1-

Problem (Iteration Corrected)

p3t11

p3t2(22) p3t3(24) p3t4 (26) (22,24,26)

Problem (Iteration Corrected)

I% Change in Error % Change in Iterations I% Change in Error % Change in Iterations

Problem S, Trial 12

p5t2 (1 4) p5t3 (1 6) pStl 2 (1 4 ,1 6)

Problem (IterationCorrected)

20.00

10.00

0.00

-10.00

-20.00

-30.00

-40.00

Problem S, Trial 13

p5t2 (14) p5t4 (1 8) p5H 3 (1 4 ,1 8)

Problem (Iteration Corrected)

I% Change in Error % Change in Iterations I% Change in Error % Change in Iterations
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Problem S, Trial 14

p5t2(14) p5t7(34) p5t14(14,34)

Problem S, Trial 15

p5t15

p5t2(14) p5t7(34) p5H0(47) (14,34,47)

Problem (Iteration Corrected)

I% Change in Error % Change in Iterations

Problem (Iteration Corrected)

I% Change in Error % Change in Iterations

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Problem 6, Trial 9

p512(15) p6t3(17) p6t9 (15,17)

Problem 6, Trial 10

p6t2(15) p6t4(19) p6t10 (15,19)

Problem (Iteration Corrected) Problem (Iteration Corrected)

I% Change in Error % Change in Iterations I% Change in Error % Change in Iterations
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Problem 6, Trial 11 Problem 6, Trial 12

p61S(30) p616(32) p6t11 (30,32) p6112

p6t2(15) p613(17) p6t4(19) (15,17,19)

Problem (Iteration Corrected)

% Change in Error % Change in Iterations

Problem (Iteration Corrected)

I% Change in Error % Change in Iterations

Problem 7, Trial 9 Problem 7, Trial 10

p7t3(19) p7t4(21) p7t9 (19,21) p7t3(19) p7t6(34) p7t1 0(19,34)

0.20 -,
. 0.00

0.00

-0.20

-0.40

-0.60

-0.80

1 .00

E

Problem (Iteration Corrected)

I % Change in Error % Change in Iterations

Problem (Iteration Corrected)

I% Change in Error % Change in Iterations
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Problem 7, Trial 1 1
Problem 7, Trial 12

p7t6(34) p7t7(37) p7t11 (34,36)

-4.00

Problem (Iteration Corrected)

p7t1 (1 5) p7tS (32) p7t1 2 (1 5,32)

0.00

Problem (Iteration Corrected)

> Change in Error % Change in Iterations I% Change in Error % Change in Iterations

Problem 7, Trial 13 Problem 7, Trial 14

p7t1 (1 5) p7t2 (1 7) p7t1 3 (1 5 ,1 7) p7tS (32) p7t6 (34) p7t1 4 (32,34)

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

Problem (Iteration Corrected) Problem (Iteration Corrected)

I% Change in Error % Change in Iterations I% Change in Error % Change in Iterations
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Problem 8, Trial 9

p8t2(15) p613(17) p8t9(15,17)

20.00

15.00

10.00

5.00

0.00

-5 00

Problem (Iteration Corrected)

Problem 8, Trial 10

p8t10

p8t2(15) p8t3(17) p8t4(19) (15,17,19)

20.00

15.00

10.00

5.00

0.00

-5.00

Problem (Iteration Corrected)

1% Change in Error % Change in Iterations I% Change in Error % Change in Iterations

Problem 9, Trial 9

p9t3 (1 5) p9t6 (26) p9t9 (1 5,26)

Problem (Iteration Corrected)

Problem 9, Trial 10

p9tS(2S) p9t6(26) p9t1 0(25,26)

Problem (Iteration Corrected)

I% Change in Error % Change in Iterations I% Change in Error % Change in Iterations
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Appendix E

Trial Results

The tables below show the results of all of the trials executed for this study. The letter

p indicates the problem number, t indicates the trial number. Trial 0 is the multigrid

run performed without any corrections. The trials which are listed on multiple lines

have multiple corrections, the net result of the trial is shown on the first line.

The
'Iteration'

column indicates the Gauss Seidel iteration the correction was per

formed after. 'Point in
Cycle'

is the ratio of the iteration number to the total number

of iterations multiplied by a factor of 100.
'Level'

indicates the grid level that the

correction was made on.
'Direction'

refers to the error spike direction (see section

8.1). 'Grid
Point'

is the grid point which was corrected.
'Location'

is the ratio of

'Grid
Point'

to the total number of grid points on the level multiplied by a factor of

100.
'Residual/Norm'

is the ratio of value of the residual of the corrected point prior

to the correction to the residual norm (4.6).

'Total
Iterations'

is the total number of iterations required for convergence (conver

gence criteria are given in Table 4.2. 'Weighted
Iterations'

is the equivalent number

of level 6 iterations (see section 4.6). '% A
Iterations'

is the percentage change in

number of iterations required for convergence (7.2). A negative value indicates a

decrease in the total iterations.

'|Error
|'

is the average of the absolute value of the error of the solution. '% A
Error'

is the percentage difference in error between the trial and trial 0 (7.1). A negative

value indicates an increase in accuracy.

'A
Work'

is obtained from subtracting the weighted iterations of the trial from the

weighted iterations of trial 0 and adding the value of one iteration on the level of each

correction (each correction takes approximately the same time to process as a Gauss

Seidel iteration, section 5.2). A positive value indicates an increase in computational

work. It should be noted that this is a calculated value and not an actual measure of

computation time.
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