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Abstract 
 

Soft sea corals generate a plethora of natural products including steroids and 

metabolites.  As such, they have been of keen interest to biologists and synthetic organic 

chemists.  Recently the soft corals Sarcophyton trocheliophorum and Lithophyton 

arboretum, which were isolated from the Gulf of Aqaba in the Red Sea, have been found 

to produce six butenolide lipids and butenolides with unusual substitution and 

unsaturation patterns. The purpose of this research is to achieve the total synthesis of the 

gamma-lactone 1, Trocheliophorolide A, one of the six butenolide natural products.  

Trocheliophorolide A is composed of a lactone ring and a unique unsaturated side chain.  

This thesis will describe the previous successful synthesis of the lactone ring portion of 

Trocheliophorolide A, followed by the previously explored routes for synthesizing the 

unsaturated side chain that were not successful.  This thesis specifically discusses the 

successful synthesis of the acid chloride side chain in a five-step, efficient route with 

satisfactory overall yields. Additionally, both model study cross-coupling reactions and 

the actual final cross-coupling reaction are explored and discussed.     
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Abbreviations 

 
1H-NMR .........................................................proton NMR 
13C-NMR ........................................................carbon-13 NMR 

Ac ...................................................................acyl 

AcOH .............................................................acetic acid 

Boc .................................................................tert-butyloxycarbonyl 

Bu ...................................................................butyl 

Bu3SnH ..........................................................tributyltin hydride 

C .....................................................................Celsius 

DHP................................................................dihydropyran 

DIBAL-H .......................................................diisobutylaluminum hydride 

DMAP ............................................................4-dimethylaminopyridine 

DMF ...............................................................dimethylformamide 

DMSO ............................................................dimethylsulfoxide 

Et ....................................................................ethyl 

Et3N ................................................................triethylamine 

EtO2CCl .........................................................ethyl chloroformate 

EtOAc ............................................................ethyl acetate 

eq ....................................................................equivalent(s) 

g......................................................................gram(s) 

GC-MS ...........................................................gas chromatography – mass spectrometry 

h......................................................................hour(s) 

Hex .................................................................hexanes 

HF-pyr ............................................................hydrogen fluoride – pyridine complex 

Hz ...................................................................hertz 

L .....................................................................ligand 

LC-MS ...........................................................liquid chromatography – mass spectrometry 

LDA ...............................................................lithium diisopropylamide 

mp ..................................................................melting point 
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Me ..................................................................methyl 

MHz ...............................................................megahertz 

min .................................................................minute(s) 

mL ..................................................................milliliter 

mol .................................................................mole 

NaHMDS .......................................................sodium hexamethyldisilazide 

n-BuLi ............................................................n-butyllithium 

NMR ..............................................................nuclear magnetic resonance 

Pen…………………………………………..pentane 

PCC ................................................................pyridinium chlorochromate 

Pd(PPh3)4........................................................tetrakis(triphenylphosphine)palladium(0) 

Pd(PPh3)Cl…………………………………dichlorobis(triphenylphosphine)palladium(II) 

Ph ...................................................................phenyl 

PPh3 ................................................................triphenylphosphane 

p-TsCl ............................................................para-toluenesulfonyl chloride 

p-TsOH ..........................................................para-toluenesulfonic acid 

rt .....................................................................room temperature 

Sat ..................................................................saturated 

SOCl2 ……………………………………….thionyl chloride 

TBS ................................................................tert-butyldimethylsilyl 

TBSCl ............................................................tert-butyldimethylsilyl chloride 

Tf ....................................................................trifluoromethanesulfonyl (CF3SO2) 

THF ................................................................tetrahydrofuran 

THP ................................................................tetrahydropyran 

TLC ................................................................thin layer chromatography 

TMS ...............................................................trimethylsilyl 
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1.0  Isolation and Biological Activity  

Soft sea corals are known for the production of many natural products of interest 

to synthetic organic chemists and biologists.  Most notable are the diverse groups of 

steroids and steroid derivatives.1,2   Two particular soft sea corals, Pterogorgia anceps and 

Pterogoria guadalupensis, produced the first isolated butenolides in the 1960’s and since 

then these butenolides have been sought after.2-5  In 2001 Rezanka et al isolated and 

characterized six different butenolides now known as Trocheliophorolides A-F (Figure 

1).   These butenolides are characterized by their unusual substitution and unsaturation 

patterns and were isolated from Sarcophyton trocheliophorum and  Lithophyton 

arboretum, located in the Gulf of Aqaba in the Red Sea.6 Several natural products contain 

these butenolide elements. 7-8 

 

OO

O

OOH

OH

H

O O

OH
O

O

HO

OH

O

O

HO

O

O

A (1) B (2) C (3)

D (4) E (5) F (6)  

 

Figure 1:  Trocheliophorolides A-F (1-6).  Trocheliophorolides A-D (1-4) are isolated 
from Sarcophyton trocheliophorum, whereas Trocheliophorolides E-F (5-6) are isolated 
from Lithophyton arboretum.  

 

Biological assays confirm that Trocheliophorolides A-F show evidence of 

considerable inhibition of bacterial cell growth in Staphylococcus aureus and Bacillus 

subtilis and toxicity toward the brine shrimp Artemia salina.  Since both S. aureus and B. 

subtilis are problematic resistant strains of bacteria, promising new antibiotic targets are 

very valuable.  Further analysis showed that these butenolides were only biologically 

active against gram-positive strains of bacteria.6   
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 In Table 1, the zones of inhibition of bacterial growth in millimeters for 

Trocheliophorolides A-F (1-6) are shown.  Each of these values is representative of 

impregnated wafers of the Trocheliophorolide of interest, which are placed into an 

incubation chamber with the bacteria of interest.  The bacteria are allowed to grow 

overnight and the bacteria closest to the disk are killed while the surviving bacteria can 

still be seen proliferating.  The size of the equidistant circle of inhibited bacteria growth 

around the impregnated wafer is a measure of how effective that species is at killing 

those particular bacterial strains.   

 

Table 1:  The zones of inhibition for Trocheliophorolides A-F (1-6) measured in 

millimeters with respect to S. aureus and B. subtilis.       

Bacteria A (1) B (2) C (3) D (4) E (5) F (6) 

S. aureus 11.5 13.2 8.5 10.3 7.8 18.6 

B. subtilis 13.0 14.9 7.6 13.9 5.6 14.7 

 

Given the zone of inhibition for Trocheliophorolide A against S. aureus and the 

appealing structure of the novel unsaturated side chain, butenolide 1 became the synthetic 

focus of the Collison group. Development of a synthetic strategy for Trocheliophorolide 

A would also provide an entry toward the rest of the Trocheliophorolide family.  Lastly, 

since only µg quantities of Trocheliophorolide A can be extracted from 500g wet coral, it 

is important that we find a more sustainable synthetic way of making this compound.1-2  
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1.1 Retrosynthetic Analysis 

We envisioned that Trocheliophorolide A (1) would be assembled via a 

convergent synthesis using a palladium-catalyzed coupling reaction between acid 

chloride 7 and (S)-β- lactone 8 (Scheme 1).  The synthesis of acid chloride 7 was 

envisioned to come from tosylate 9 which could be achieved via a series of reactions 

starting with commercially available 3-methyl-2-buten-1-ol (11).  The synthesis of the 

(S)-β- lactone 8 was envisioned to come from tosylate 10 which could be could be 

achieved via a series of reactions starting with commercially available (S)-ethyl lactate 

12.   The desired stereocenter in the product is conveniently obtained from the starting 

material since (S)-ethyl lactate (12) is derived from a natural amino acid. We decided to 

turn our attention to the (S)-β- lactone 8 first.   

 
OO

OO

Bu3SnO

Cl

OH

O

OEt
HO

+

TBSO Cl

OTs

ClOTs

Cl

Cl

1                                                                            7                                                                   8

9                                                                   10

11                                                                     12  

Scheme 1:  Retrosynthetic analysis of Trocheliophorolide A (1). 
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1. 2 Previous Syntheses of (S)-β- Lactones 

 (S)-β- lactones are a common structural motif in many natural products and as 

such, have been synthesized via several routes. 9-20 William T. Spencer, a former graduate 

student in the Collison Group, did an extensive review of the literature with respect to 

previous syntheses of (S)-β- lactones (Figure 2).11   

 

O

O

R

O

O
H

HH
R

H

O

O

R

O

O

R

O

O

R

RO

13                               14                                   15                                   16                                         17  

Figure 2:  (S)-β-Angelica lactone syntheses reviewed by Spencer 11 

 

 The Himbacine derivative 22 synthesis by Hofman et al was utilized as a partial 

model for our synthesis of stannylfuranone 8 in Trocheliophorolide A (Scheme 2).20  The 

Hofman group began their synthesis by means of commercially available (S)-ethyl lactate 

(12) and protecting it using TBSCl and imidazole in N,N-dimethylformamide to form 

silyl ether 18.  Silyl ether 18 was then reduced with DIBAL-H to form aldehyde 19 in a 

72% yield over two steps.  Next a Corey-Fuchs Olefination was run on aldehyde 19 to 

form dibromide species 20 in a 75% yield.  Dibromide 20 then underwent a double 

elimination reaction followed by a lithium-halogen exchange where the resultant anion 

was quenched with ethylchloroformate.  The silyl ester was then deprotected using a mild 

reflux with acetic acid to form alcohol 21 in an 80% overall yield.  Alcohol 21 then 

underwent a hydrostannation reaction using tetrakis(triphenylphosphine)palladium(0)  

and tributyltin hydride to form stannylfuranone 8 in 80% yield.  The chief shortcoming of 

this synthesis is that dibromide species 20 is both light sensitive and thermally unstable to 

a large temperature range thereby requiring quick use or else suffer rapid decomposition.  

Given Hofman’s work in synthesizing stannylfuranone 8, we pursued a similar pathway 

while avoiding the synthesis of the dibromide species 20. 
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HO
OEt

O

TBSO
OEt

O

TBSO
H

O

Br

Br
TBSO

HO
OEt

O

O

O
Bu3Sn

O

OH H

HH

N
Boc

TBSCl, Et3N

DMAP, THF

DIBAL-H

hexanes, -78oC

2 steps, 72%

PPh3, CBr4

CH2Cl2, -78
oC to RT

75%

i. n-BuLi, THF, -78oC
ii.  ClCO2Et

iii. AcOH, H2O, THF, 60-70oC

                       80%

Pd(PPh3)4

Bu3SnH, THF

80%

Himbacine Derivative

12                                                               18                                                                               19

20                                                                                                                     21

                              8                                                                     22

 

Scheme 2:  Synthetic pathway of Hofman et al for stannylfuranone 8. 20 

 

1.2.1  Synthesis of the Lactone Moiety - Previous Work in the Collison 

Group  

William Spencer of the Collison lab began work towards stannylfuranone 8. The 

major modification to Hofman’s synthesis of stannylfuranone 8 was the avoidance of the 

sensitive dibromo species 20 (Scheme 3).  Spencer’s synthesis began with a protection of 

(S)-ethyl lactate (12) using tert-butyldimethylsilyl chloride and imidazole in N,N-

dimethylformamide to give silyl ester 18 in a 90% yield. Next ester 18 was reduced with 

diisobutylaluminum hydride (DIBAL-H) yielding aldehyde 19 in a 68% yield.  These 

first two steps being identical to the synthesis by Hoffman et al.20  Next Spencer 

elegantly utilized a procedure by Marshall et al to avoid production of dibromo species 

20.21-22  This was done by reacting Aldehyde 19 with a dichloromethane anion and 

further quenching with p-toluenesulfonyl chloride generating tosylate 10 in a 62% yield.  

Since tosylate 10 was silica sensitive it was used in the next reaction without purification 
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to avoid any decomposition.  The crude tosylate 10 underwent a double elimination 

reaction followed by a lithium-halogen exchange using n-butyllithium.  The resultant 

anion was quenched with ethylchloroformate generating alkynoate 23.  Removal of the 

silyl protecting group from alkynoate 23 with HF pyridine gave alcohol 21 in a 57% yield 

after purification over the two steps.  During optimization it was noted that no 

detrimental effects were incurred by not purifying the silyl protected alcohol before 

deprotection.  Finally, purified alkyne 21 was reacted in a palladium-catalyzed 

hydrostannation using tributyltin hydride and tetrakis(triphenylphosphine)palladium(0) 

affording stannylfuranone 8 in a 68% yield. 11  

 

O

OEt
HO

O

OEt
TBSO

O

H
TBSO

OTs
TBSO Cl

Cl

TBSCl, DMF, Imidazole DIBAL-H, Hexanes, -78C

i. LDA, CH2Cl2

ii. p-TsCl

12                                                                                 18

19                                                                               10

O

OEt
TBSO

O

O
Bu3Sn

i. n-BuLi, THF, -78C
ii. ClCO2Et

Bu3SnH, Pd(PPh3)4HF · Py

THF, 0C to rt

O

OEt
HO

THF

         23                                                                                       21

90%                                                                       68%

62%

2 steps, 57%                                                                      68%

8  

Scheme 3:  Spencer’s synthesis of stannylfuranone 8. 11 

 

One of the minor products Spencer obtained was the β-stannylated lactone.  He 

discovered that if the Pd-catalyst was generated in-situ before the tributyltin hydride and 

alkyne 21 were added that the yields of the desired product plummeted to 12%.  It is 

postulated that during the hydrostannation mechanism, alkyne 21 coordinates with the 

palladium to form a complex.  In this complex, the partially positive palladium is paired  

with the partial negative α-carbon of alkyne 21 and the partially negative hydrido ligand 

is paired with the partially positive β-carbon of alkyne 21 (Figure 3).11   
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HO

OEt

O
H PdL2

SnBu3

 

Figure 3:   Spencer’s postulated configuration of alcohol 21 and Pd-catalyst complex.11 

 

1.2.2 Synthesis of the Lactone Moiety - Optimization  

 

 As an undergraduate student in the Collison lab, I was tasked with optimizing 

Spencer’s synthesis of stannylfuranone 8. Spencer completed the synthesis of 

stannylfuranone 8 with an initial 68% pure yield but each time the reaction was run, the 

yields diminished and the original result was not satisfactorily reproduced.  Another 

limitation with Spencer’s synthesis was that HF pyridine is a toxic reagent.  In an effort 

to circumvent the use of HF pyridine, we elected to find an alternative route to deprotect 

silyl ether 23.  Since Spencer had stockpiled well over 75 grams of tosylate 10, 

optimization studies began from this intermediate (Scheme 4).    

OTs
TBSO Cl

Cl

O

OEt
TBSO

O

O
Bu3Sn

i. n-BuLi, THF, -78C
ii. ClCO2Et

Bu3SnH, Pd(PPh3)2Cl2

O

OEt
HO

THF

86-94% over two steps

73%21                                                                                                     8

AcOH, H2O, THF

60-70oC

10                                                                                                                       23

 

Scheme 4:  Optimized synthesis of stannylfuranone 8. 23 

In the optimized synthesis, removal of the silyl protecting group from silyl ether 

23 was accomplished via mild acetic acid reflux to give alcohol 21 in 86-94% yield after 

purification over the two steps.  Finally, purified alcohol 21 was reacted in a palladium-

catalyzed hydrostannation via dichlorobis(triphenylphosphine)palladium(II) and 
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tributyltin hydride affording stannylfuranone 8 in a 73% yield.  Stannylfuranone 8 proved 

to be storage stable. Epimerization was not detected after many months in the freezer.  

Optical rotation was used to assess the fidelity of the stereocenter both pre- and post-

storage.  The optical rotation results for our stannylfuranone 8 in chloroform at 20°C and 

using a sodium D line were +22.7° before and after storage.  The known literature value 

for stannylfuranone 8 is +27.9° in chloroform at 23°C and using a sodium D line.19 The 

differences in temperature between the experimental sample and the literature value 

sample may be the reason for the lack of precision between the two optical rotation 

values.  Additionally, there was a small concentration difference between the 

experimental sample and the literature sample.  The results and experimentals for these 

optimizations were previously published in Stephanie Dorn’s thesis.23 

 With vinyl stannane 8 in hand, work commenced on the new coupling partner, 

acid chloride 7. The unsaturated side chain, although vacant of stereocenters, has proven 

to be the most challenging portion of the total synthesis of Trocheliophorolide A. The 

following sections address the strategies developed towards acid chloride coupling 

partner 7. 

 

1.3 Previous Literature Syntheses of Similar Unsaturated Side Chain 

The unique unsaturated side chain 7 discussed in the retrosynthesis is not a known 

compound; although compounds with similar unsaturated side chain motifs exist (Figure 

4).   

 

7 O

Cl

 

Figure 4:  Unsaturated side chain 7. 

An example is that of Taxifolial A 29 which was synthesized via Commeiras et al 

in 2001 (Scheme 5).24   Commeiras’ synthesis began using commercially available 

aldehyde 24 in a Corey-Fuchs olefination yielding gem-dibromide 25 in an 83% yield.  

Next, gem-dibromide 25 underwent a double elimination followed by a lithium-halogen 
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exchange via the use of n-BuLi.  The resultant anion was quenched with trimethyltin 

chloride affording stannane 26 in an 88% yield.  Stannane 26 was then reacted with vinyl 

iodine 27 in a Stille Cross Coupling reaction by means of a 

dichlorobis(acetonitrile)palladium(II) catalyst to afford triene 28 in a 99% yield.  After 

several more steps Taxifolial A 29 was achieved. 

 

O
Br

Br
CBr4, PPh3, Zn

CH2Cl2, RT

i.  n-BuLi, THF, -78 
oC

ii. Me3SnCl, -78 
oC to RT

24                                                        25                                                                              26

SnMe3

I PdCl2(MeCN)2

 DMF, RT
26                                                      27                                                                                28

OAc

OAc

O

OAc

OAc

OTBS

several steps
29

83%                                                                       88%

99%

SnMe3
+

OAc

OAc

OTBS

 

Scheme 5:  Partial synthesis of Taxifolial A 25 by Commeiras et al. 24 

 

1.3.1 Synthesis of the Unsaturated Side Chain - Previous Work in the 

Collison Group  

The successful synthesis of the unsaturated side chain has been undoubtedly the 

main hurdle in the complete synthesis of Trocheliophorolide A (1).   Several students in 

the Collison Group have undertaken this task, the first of whom were Olukorede Agusto 

and William Spencer III.11, 25  They originally started the side chain with the goal of 

synthesizing vinyl chloride 30 (Figure 5). 

 

Cl

30  

Figure 5:  Original vinyl chloride coupling partner 30.11, 25   
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There were several stumbling blocks along the way to synthesizing vinyl chloride 

30 (Scheme 6).11, 25  First, the terminal alkyne generated in their synthesis was not able to 

be isolated due to volatility problems and as a result, this route required an in-situ 

Sonagashira Cross-Coupling to circumvent  isolation of the terminal alkyne.  This route 

was not reproducible and had a poor yield of only 15%.   

 

OH O
Br

Br

Li
Cl

Cl ClPCC

CH2Cl2

CBr4, PPh3
CH2Cl2, RT

11                                 24                                              25                                                    31                                                                        30
89%                                       90%

i.  n-BuLi

THF
-78oC

ii.  

CuI, Pd(PPh3)4, 
toluene, RT

  15%

32

 

 

Scheme 6:  Synthetic route of Spencer and Agusto for vinyl chloride 30 coupling 

partner.17, 31    

 

Due to the problems associated with the previous synthesis of the vinyl chloride 

30 coupling partner, Spencer attempted to synthesize vinyl triflate 32 as a more robust 

coupling partner (Figure 6).  Unfortunately this route resulted in low yields of 25–35%, 

with rapid decomposition of the product and column chromatography resulted in poor 

purity. 11 
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OTf

32  

Figure 6:  Vinyl triflate 32 synthesized by Spencer as alternative coupling partner for 

lactone 8. 

 

Given the limitations in constructing the vinyl chloride 30, Stephanie Dorn 

attempted to synthesize a new coupling partner, acid chloride 7. It’s been shown in the 

literature that acid chlorides have been used in Stille Cross-Couplings.26   Acid chloride 7 

was chosen as the new coupling target. 

Dorn tried three different approaches to synthesizing acid chloride 7.  Only the 

first route will be discussed since the intermediates in this route are the same as the ones 

used in this thesis in synthesizing acid chloride 7.  Dorn’s Corey Fuchs method began 

with commercially available 3-methyl-2-buten-1-ol (11), which was oxidized via 

pyridinium chlorochromate to yield aldehyde 24 (Scheme 7).  Due to volatility issues, 

aldehyde 24 was filtered through a Celite plug under argon, and then the dichloromethane 

was carefully distilled away from aldehyde 24 as opposed to concentrating the oil in 

vacuo.  Aldehyde 24 was then reacted in a Corey-Fuchs olefination yielding gem-

dibromide 25 in a 30% pure yield over two steps.  Next gem-dibromide 25 underwent a 

double elimination followed by a lithium-halogen exchange via the use of n-BuLi.  The 

resultant anion 31 was quenched with ethylchloroformate giving ester 34 in a 

disappointing 20% pure yield.  She attempted the subsequent saponification of ester 34, 

but 1H-NMR showed the disappearance of starting material and no desired carboxylic 

acid 35.  It was suspected that instability of dibromide 25 was the cause for future 

problems with this route as it was sensitive to silica, making purification difficult, and it 

readily decomposed lending to storage problems. 23  
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Scheme 7: Corey-Fuchs method towards acid chloride 7. 23 

 

2.0 Results and Discussion 

As the project has evolved, it is now envisioned that Trocheliophorolide A (1) 

will be assembled via a palladium-catalyzed coupling reaction between acid chloride 7 

and (S)-β- lactone 8 (Scheme 8).   Acid chlorides are common coupling partners in Stille 

reactions .26 

 

 

 

 

Scheme 8:  Final Stille Coupling reaction as envisioned by Collison group. 

 

The newly proposed synthetic route for acid chloride 7 is shown in Scheme 9.  

Considering the fact that the tosylation method utilized in the lactone synthesis worked so 

well, this same tosylation method is being applied to the acid chloride route of the 

synthesis.  The benefits to this route are that it avoids both unstable terminal alkyne 31 

and dibromo species 25 that were so problematic in the previous routes explored.  Once 
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the coupling is accomplished, a Wittig reaction can be used to complete the total 

synthesis of Trocheliophorolide A.    

OH O

OTs

Cl

Cl

OEt

O

Cl

O

OH

O

PCC, DCM

silica, 3h

LDA, CH2Cl2,
 -78oC to 0oC

then p-TsCl, 0oC to rt

 n-BuLi, THF, -78oC to 0oC

then EtCO2Cl, -78oC to rt

NaOH, MeOH, DCM

30 min

7

34                                                                              35

11                                                               24                                                                      9

SOCl2, DCM

reflux, 16h

 

Scheme 9:  Synthetic pathway toward acid chloride 7. 

 

 This synthetic pathway begins with commercially available 3-methyl-2-buten-1-ol 

(11), which can be oxidized via pyridinium chlorochromate to yield aldehyde 24.  Next, 

aldehyde 24 can be reacted with a dichloromethane anion and further quenched with p-

toluenesulfonyl chloride to generate tosylate 9.   Tosylate 9 can then undergo a double 

elimination reaction followed by a lithium-halogen exchange using n-butyllithium.  The 

resultant anion can then be quenched with ethylchloroformate to generate alkynoate 34.  

Saponification of alkynoate 40 can easily be done to afford carboxylic acid 35; which can 

then be refluxed with thionyl chloride to afford acid chloride 7. 
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2.1 Synthesis of Aldehyde 24  

 

OH OPCC, DCM,

silica, 3 h

47-72%

11                                                                                     24
 

 

Scheme 10:  Synthesis of aldehyde 24. 

 

The synthesis of acid chloride 7 begins with commercially available 3-methyl-2-

buten-1-ol (11), which was oxidized via pyridinium chlorochromate (PCC) to yield 

aldehyde 24 in a 47-72% pure yield (Scheme 10).  Due to the volatility of aldehyde 24, 

its isolation and purification have presented a major hurdle by all students who have 

worked on this project.   

Aldehyde 24 was first synthesized by Augsto in an 89% yield following 

precedented work by Li et al.25, 27 She synthesized aldehyde 24 using PCC in DCM at 

room temperature. After three hours she ran the reaction flask contents through a silica 

plug and concentrated aldehyde 24 in vacuo.  Since Agusto’s attempts, both Spencer and 

Dorn followed her work and were never able to reproduce the high yields she reported.  

Following Agusto’s same reaction conditions, the average yields for Dorn and Spencer 

were 40-70%.  The differences in the yields correlated with the variations in their work 

up and purification conditions. 11, 23    

Spencer experimented with Celite, silica and Florisil for purification followed by 

concentration of aldehyde 24 in vacuo and was able to achieve higher purity, but still saw 

very low yields.  Spencer postulated that aldehyde 24 was likely volatile which is why his 

yields were so low.   

In an effort to circumvent the volatility problem, Dorn altered the work up by 

running the reaction flask contents through a Celite plug followed by distillation of the 

DCM away from aldehyde 24.  This way she would avoid the rotary evaporation step that 
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she suspected was causing so much of aldehyde 24 to be lost.  She did see higher yields 

but lower purity.23   

It was noted that aldehyde 24, which should be pale yellow oil, was often 

obtained as a brown, gritty tar. It was suspected that one of the reasons that some of the 

routes previously attempted were not working was due to chromium salt impurities that 

may not have been apparent by 1H-NMR.  In an effort to increase the yields, and ensure 

that the chromium salts were removed from the product, an experimental protocol 

investigation for this oxidation was pursued (Table 2).  

 

Table 2:  Experimental protocol optimizations utilized for the synthesis of aldehyde 24. 

Method Yield Purity 

Florisil and silica gel plug purification LOW HIGH 

Extraction purification HIGH LOW 

Grind PCC & silica gel together to run reaction, then 

Florisil and silica gel Plug Purification 

GOOD HIGH 

First a plug of florisil and silica gel was utilized in purifying the aldehyde after 

the reaction was complete.  Once the solvent was distilled away from the aldehyde, this 

technique gave excellent purity but the yields were very low (Table 2).   

Next an extraction technique was tried in purifying the aldehyde instead of the 

traditional silica, florisil or Celite plug.  It was hypothesized that since PCC salts were 

water soluble, this would allow for successful removal of all the chromium salts 

achieving better purity.  Once the solvent was distilled away from the aldehyde, this 

technique gave good purity, but once again the yields were very low (Table 2).   

In a final attempt to optimize the reaction conditions precedent work by Luzzio et 

al was used.28 This time the PCC was ground with silica gel using a mortar and pestle and 
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added to the reaction flask along with the dichloromethane solvent and alcohol 11.  This 

method proved to be the highest yielding and gave the highest level of purity as seen by 

both 1H-NMR and visual characteristics of the product (Table 2).   

 

2.2  Synthesis of Tosylate 9 

 

O

OTs

Cl

Cl

LDA, CH2Cl2, THF, -78oC - 0oC

then p-TsCl, 0oC to rt

40 - 81% crude yield

24                                                                                                                9  

 

Scheme 11:  Synthesis of tosylate 9. 

 

 With the procedure to synthesize aldehyde 24 in hand, the next step in the 

synthesis was attempted, again using precedent work by Marshall et al.21-22 (Scheme 11).  

Tosylate 9 proved to be silica sensitive and therefore was carried on without purification 

to the next reaction. 

  This tosylation step was attempted using four different methods of addition.  The 

first method involved adding the LDA solution drop-wise to a solution of aldehyde 

dissolved in dichloromethane and THF (LDA into aldehyde, Table 3).  The second 

method involved adding the aldehyde, dichloromethane and THF solution drop-wise to a 

solution of LDA (Aldehyde into LDA, Table 3).  The third and fourth methods involved 

generating the dichloromethane anion via the LDA first and then either adding it to the 

aldehyde and THF solution (DCM Anion into Aldehyde, Table 3), or adding the aldehyde 

and THF solution to it (Aldehyde into DCM Anion, Table 3). 
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Table 3:  Reaction condition results for tosylation reaction.     

Method of Addition Crude  Yield Purity by 1H-NMR 

LDA into Aldehyde 65% Very Good 

Aldehyde into LDA 63% Fair 

DCM Anion into Aldehyde 70% Very Poor 

Aldehyde into DCM Anion 59% Poor 

 

Although the method of generating the DCM anion and then adding that to the 

aldehyde and THF solution gives a greater crude mass; the method of adding the LDA 

into the aldehyde has much greater purity for the crude material by 1H-NMR.  Each of the 

respective products was taken onto the next reaction in their crude form to see if better 

information could be obtained by this experiment.  Those results will be discussed in the 

next section. 

 

2.3  Synthesis of Ester 34 

 

OTs

Cl

Cl

OEt

O

 n-BuLi, THF, -78oC to rt

then EtCO2Cl

50-85% over two steps

9                                                                          34  

 

Scheme 12:  Synthesis of ester 34. 

 

 With the optimized synthesis of tosylate 9 complete, my attention was focused on 

synthesizing ester 34.  In this reaction, much like the tosylation seen in the synthesis of 

lactone 8, crude tosylate 9 underwent a double elimination reaction followed by a 
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lithium-halogen exchange using n-butyllithium.  The resultant anion was quenched with 

ethylchloroformate generating ester 34 in a 50% initial yield.  As the reaction conditions 

were optimized, pure yields in the 80-85% range have been achieved over the two steps 

from aldehyde 24 to ester 34.    

 As a continuation of my experiment in section 2.2 (Synthesis of Tosylate 9), 

results were compiled as to the purified yields of the resultant ester products for each of 

the methods of addition (Table 4).  Since the tosylate is silica sensitive, the crude 

products of those reactions were carried on to this reaction step without purification.  

Looking solely at the purified yields, it can be seen that the method of adding the LDA 

solution into the solution of aldehyde 24, DCM and THF is the superior method of 

addition.  Resultant spectra for the purified products all had equally pure results upon 1H-

NMR analysis. 

 

Table 4:  Results for the synthesis of ester 34 based on different tosylation routes 

examined.  

Method of Addition Pure  Yield 

LDA into Aldehyde 74% 

Aldehyde into LDA 54% 

DCM Anion into Aldehyde 0% 

Aldehyde into DCM Anion 17% 
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2.4  Synthesis of Carboxylic Acid 35 

 

OEt

O

OH

ONaOH, MeOH, DCM

30 min
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Scheme 13:  Synthesis of carboxylic acid 35. 

 

 With ester 34 in hand, the saponification reaction was attempted using precedent 

work by Theodorou et al.29  Ester 34 was dissolved in a 9:1 DCM:MeOH solvent pair and 

enough 3.0 N methanolic NaOH was added to bring the total concentration to about 0.1N 

NaOH.  After 30 minutes the reaction generally showed completion via TLC.  Initially 

the yield was a mere 43%, but after optimizing the work up, the yields rose to the 90-95% 

semi-purified range.   

Carboxylic acid 35 is commercially available through select companies.  1H-NMR 

spectral results are equivalent to what is reported in the literature.  Carboxylic acid 35 

was purified as well as was able by extraction; however some impurities were still visible 

by 1H-NMR.  IR analysis was used to confirm the carboxylic acid functionality.   

Since carboxylic acid 35 is isolated as an oil with some solid crystalline 

particulate, additional purification by column chromatography was attempted.  

Unfortunately, no matter the polarity of the solvent or whether flash column 

chromatography was used, none of the carboxylic acid product was able to be isolated.  

Two-dimensional TLC techniques confirmed its decomposition on silica (Figure 7).  A 

two-dimensional TLC without decomposition would have all of the spots on the diagonal 

line.   



29 

 

 

Figure 7: A) The two-dimensional TLC of carboxylic acid 35 (left). B) An example of a 

two-dimensional TLC without decomposition (right). 

 

 

2.5  Synthesis of Acid Chloride 7 
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O
SOCl2 , DCM

reflux, 16 h

quantitative yield
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Scheme 14:  Synthesis of acid chloride 7. 

 

 Using precedent work by Becker et al, extraction purified carboxylic acid 35 was 

refluxed with thionyl chloride in DCM for 16 hours affording acid chloride 7 in 

quantitative yield.30  The beauty of this reaction is two-fold; first, both the thionyl 

chloride and the DCM were used straight from the bottle requiring no previous 

purification.  Secondly, the work up consists of merely cooling the reaction flask and then 

concentrating the product in vacuo.  Since DCM and thionyl chloride are low boiling, 

they come off in the concentration process.  The byproducts of this reaction, sulfur 

dioxide and HCl are gaseous so they escape from the reaction via the argon out line.  The 
1H-NMR spectra of the crude reaction product shows good purity.  Absence of the 

A B 
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carboxylic acid functionality was quickly confirmed via IR since the 1H-NMR spectra are 

nearly identical.  

 

2.6  Model Reactions for Final Stille Coupling 

In an effort to prepare for the coupling of our lactone 8 and soon to be completed 

acid chloride 7, some model conditions were examined.  The synthesis of model vinyl 

stannane 49 was performed to be used in the model coupling reaction to follow in section 

(2.6.2) using precedent work by Nielsen et al (Scheme 15).31 Model vinyl stannane 49 

was chosen because it had an analogous structure to our lactone 8, it was readily 

synthesized in high yield from methyl propiolate (48), which is an inexpensive starting 

material. 

 

O

O

O

SnBu3

O

 Pd(PPH3)2Cl2, THF, rt to 0oC

then Bu3SnH, 0oC to rt, 10 min rt

41-98%48                                                                                                49  

 

Scheme 15:  Synthesis of model vinyl stannane 49. 

 

In this reaction methyl propiolate (48) was mixed with 

dichlorobis(triphenylphosphine)palladium(II) in THF at 0°C, then tributyltin hydride was 

added dropwise.  In approximately ten minutes reaction completion was seen via TLC 

and the reaction was worked up.  Initial pure yields were in the 40-50% range, but with 

optimization, a new bottle for tributyltin hydride and less humid lab conditions, pure 

yields were generally in the range of 85-98%.   
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2.6.2 Model Coupling Reaction Between Crotonyl Chloride (50) and 

Vinyl Stannane 54. 

 With model vinyl stannane 49 in hand, the model coupling reaction between 

commercially available crotonyl chloride (48) and vinyl stannane 49 was attempted 

(Scheme 16).  Crotonyl chloride (50) was chosen as the model coupling partner because 

it has a similar structure to our unsaturated side chain and it is inexpensive and 

commercially available.   

 

O

Cl O

O

SnBu3+

O

O

O
Pd(PPH3)2Cl2, toluene

110oC, 16 hrs

X

50                                            49                                                                       51  

  

Scheme 16:  Model coupling reaction between commercially available acid chloride (48) 
vinyl stannane 49. 

 

Using precedented work by Cherry et al crotonyl chloride (50) and vinyl stannane 

49 were dissolved in toluene with a catalytic amount of 

dichlorobis(triphenylphosphine)palladium(II) and refluxed for 16 hours at 110°C.32  It 

appeared that there could be some product by the crude 1H-NMR, but after purification 

the diagnostic protons were absent in the 1H-NMR spectra.  Some starting materials were 

recovered along with ditin species 52 (Figures 8 and 9).   

 

Sn Sn

 

Figure 8:  Ditin Species 52 

  



32 

 

 

 

Figure 9:  1H-NMR (300 MHz, CDCl3) of ditin species 52. 
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Scheme 17:  Model coupling between crotonyl cloride (50) and lactone 8. 

 

 When success was not encountered using the model reaction in last section 

(2.6.2), it was tried with our lactone 8 to see if it might work with less volatile and more 

robust systems (Scheme 17).  Unfortunately, similar results to our model study were 
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obtained using lactone 8.  When the reaction did not show progression via TLC after 16 

hours, the reflux time was increased to 24 hours and more catalyst was added to the 

reaction, but all that was recovered was unreacted starting materials.   

 

2.7 Coupling of Lactone 8 and Acid Chloride 7 
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Scheme 18:  Stille coupling of lactone 8 and acid chloride 7. 

 

 Since the previous coupling reaction was not working, a new procedure was 

attempted using precedented work by Ichige et al.33 This new procedure involves 

bubbling CO gas through the reaction vessel to prevent decarbonylation from occurring 

in the final product.  This reaction was attempted using acid chloride 7 which was 

dissolved in dry benzene and degassed with CO.  Then a 0.1M solution of 1:1 

Pd(OAc)2:(n-Bu)3P (0.1 mole %) in dry benzene was added in one portion to the flask.  

The flask was left to stir at room temperature under a CO atmosphere for one hour.  After 

one hour, no new product spots were seen via TLC and the starting material spot was of 

the same intensity.  At that time another 0.5 mole % of the 0.1M solution of 1:1 

Pd(OAc)2:(n-Bu)3P in dry benzene was added in one portion to the flask and the flask 

was allowed to stir at room temperature under a CO atmosphere for another hour.  When 

another TLC was done, it showed that there was an absence of starting material and two 

new spots; one UV-active and one just a yellow spot.  Both of the resultant compounds 

were purified and analyzed via NMR but no identifiable products were seen.  The only 
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thing seen in the NMR for one of the isolated compounds (the yellow spot) was tri-n-

butylphosphine. 

3.0 Future Work 

Future studies toward the total synthesis of Trocheliophorolide A will focus on 

the cross-coupling reaction between lactone 8 and acid chloride 7 and then on the final 

Wittig reaction (Scheme 19). The final Wittig reaction that will complete the total 

synthesis of Trocheliophorolide A (1) is a classic reaction with well-established 

precedent chemistry.  Other major advantages include: the excellent regioselectivity, mild 

reaction conditions associated with the reaction, lack of byproducts and consistent 

yields.34   

Due to the lack of success so far with the Stille coupling reaction the following 

considerations are suggested:  exploration of other Pd catalysts such as Pd2(dba)3, 

PdC12(CH3CN)2, (dppf)PdC12 and Pd(PPh3)4, exploration of ligands, co-catalysts and 

additives such as CuI, CsF, LiCl, AsPh3 and other phosphine compounds, exploration of 

different solvents such as tetrahydrofuran, dimethylformamide,  N-methylpyrrolidinone 

or N,N-dimethylacetamide and alteration of reaction temperature conditions. 26, 35 
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Scheme 19:  The End Game. 
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Another consideration would be to utilize boron chemistry as opposed to the tin 

chemistry currently being employed in lactone 8 (Scheme 20).36  This would require 

slight modification to the synthesis of lactone 8, but since the metal is not introduced 

until the last step in the lactone synthesis, it won’t require modification of the entire 

route.  Further, tin compounds tend to be toxic, so using boron would present a pathway 

to ‘greener’ chemistry in this new route.  Since we have had limited success with Stille 

couplings, this would provide an alternate and promising synthetic route without having 

to change the synthesis of acid chloride 7 which we have completed and optimized 

already.  The reaction conditions that we have already optimized for lactone 8 may work 

for the new boron containing lactone 54 too.  . 

 

 

O

O
R3B
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O
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Scheme 20:  Proposed synthetic route for boron containing lactone 54. 

 

4.0 Conclusions 

This research toward the total synthesis of trocheliophorolide (1) A has been 

significantly advanced. Thus far both the acid chloride side chain 7 and the lactone 8 

have been successfully synthesized and optimized.  Specifically the research captured in 

this thesis describes the synthesis of the acid chloride side chain 7 in a five-step, efficient 

route with satisfactory overall yields. Additionally, model cross-couplings and actual 

cross-coupling reactions were attempted.  Trocheliophorolide A (1) has never been 

synthesized and once it is completed it will be one of the first reported syntheses of the 

members of the trocheliophorolide family of biologically active (S)-β-lactone natural 

products.   
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General Procedures 

Each non-aqueous reaction was run in flame-dried glassware under an inert argon 

atmosphere.  All reagents were added either via syringe or cannula.  All non-room 

temperature reactions have their respective temperatures within their respective schemes.  

Each distillation was done under an inert argon atmosphere.  Rotary evaporation was 

completed using a Büchi rotary-evaporator under a reduced pressure of approximately 

10-20 mm Hg.   

Chromatography 

 All chromatographic purifications were carried out on EM reagent silica gel 60 

(230-400 mesh).  Thin layer chromatography was carried out on EM silica gel 60 F-254 

pre-coated glass plates or TLC Silica gel 60 F-254 pre-coated plastic sheets.  Eluent 

systems are noted in the respective experimentals.  All TLC plates were visualized via 

short-wave UV illumination (254 nm) or by developing with potassium permanganate 

stain and heat.  Potassium permanganate stain was prepared by diluting potassium 

permanganate (6 g), potassium carbonate (40 g), and sodium hydroxide (5%, 10 mL) to 1 

L with water. 

Reagents and Solvents  

 Solvents were obtained commercially and were used without purification unless 

otherwise noted in experimentals.  Distilled water was utilized for every aqueous 

reaction, work-up procedure, and in the preparation of every aqueous solution used in the 

work-up.  Tetrahydrofuran (THF) distilled after drying with sodium metal and 

benzophenone.  Dichloromethane was distilled after drying with calcium hydride. 

 

Spectroscopic Measurements 

 

Proton (1H) nuclear magnetic resonance (NMR) spectra were obtained via Bruker 

DRX-300.  The chemical shifts in the 1H-NMR spectra are stated with respect to the 



37 

 

resonance of residual CHCl3 at δ 7.26 ppm.  Infrared (IR) spectra were recorded via a 

Shimadzu IRAffinity-1 FTIR.   

 

Experimentals  

 

OH OPCC, DCM,

silica, 3 h

47-72%

11                                                                                     24
 

PCC (25.65g, 119 mmol) was ground with silica gel (10g) using a mortar and 

pestle and added to a flame dried flask along with freshly distilled DCM (278mL) and the 

flask was argon purged.  Alcohol 11 (6.05mL, 59.5 mmol ) was added all in one portion 

via syringe and the once orange suspension immediately turned black.  After being stirred 

for approximately three hours, the reaction was complete as monitored by TLC (4:1 

Hex:EtOAc, non-fluorescent silica, KMnO4 stain, developed with heat).  The amassed 

silica gel and PCC salts were then vacuum filtered through a silica and celite pad away 

from the mother liquor containing aldehyde 24 using DCM as an eluent.   The mother 

liquor was added to a separatory funnel and washed with distilled water and brine to 

remove any other chromium salts.  Finally the mother liquor was dried with anhydrous 

magnesium sulfate, filtered, and aldehyde 24 was concentrated by distillation.  Aldehyde 

24 exists as a pale, clear yellow oil.  In some cases aldehyde 24 appears to have a 

greenish tint post-purification.  Attempts at using the impure aldehyde samples showed 

significantly affected yields in the next reaction step (in the cases that the next reaction 

even worked).  It was noted that although distillation does help to lessen the loss in yield 

due to volatility of the aldehyde; the aldehyde was consistently present in the distilled 

solvent when analyzed by 1H-NMR.  Dichloromethane was used due to its low boiling 

point to try and circumvent this problem.  This is a known compound and the spectral 

data agrees with the known data published.27 

1H-NMR (300 MHz, CDCl3):  δ = 9.96 (d, 1H), 5.89 (d, 1H), 2.17 (s, 3H), 1.98 (s, 3H). 
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Two double neck round bottom flasks, a 250mL and 100mL and two addition 

funnels were flame dried and argon purged.  The 100mL round bottom was charged with 

freshly distilled diisopropylamine (5.97mL, 42.3 mmol) and freshly distilled THF 

(17.54mL, 216 mmol).  The contents of this flask were set to stir and submerged in a -

78°C dry ice and acetone bath.  Once equilibrated, n-butyllithium solution (1.45M, 

17.48mL, 25.4 mmol) was added dropwise via addition funnel.  The resultant LDA 

solution was left to stir at -78°C for 45 minutes.   

While waiting for the LDA to stir the 250mL double neck round bottom flask was 

charged with aldehyde 24 (1.62mL, 169 mmol), freshly distilled THF (35.10mL, 433 

mmol) and freshly distilled DCM (5.41mL, 845 mmol).  This reaction flask was set to 

stir, submerged in a 0°C and allowed to equilibrate over about 30 minutes.  After 30 

minutes the flask was submerged in a -78°C dry ice and acetone bath and allowed to 

equilibrate for another 15 minutes. 

The LDA solution, now pale yellow in color, was cannulated from its own round 

bottom flask into the addition funnel attached to the 250mL round bottom flask.  The 

LDA solution was added to the flask at -78°C dropwise over the course of the next 25-30 

minutes.  Upon complete addition the reaction was left to stir at -78°C for an additional 

30 minutes, at which time it was submerged in a 0°C ice bath for 30 minutes.  Next, p-

toluenesulfonyl chloride (3.87g, 203 mmol) was added to the flask in one portion, the 

addition funnel was replaced by a rubber septum, and the flask was argon purged and 

allowed to stir at 0°C for an additional 10 minutes.    Finally, the reaction was removed 

from the bath and allowed to equilibrate to room temperature over the next 1.5 hours.  

TLC confirmed reaction completion (4:1 Hex:EtOAc, fluorescent silica) so the reaction 

was quenched with 20mL of distilled water and allowed to stir at room temperature for 

15 minutes.    
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The contents of the round bottom flask were added to a separatory funnel with 

50mL diethyl ether.  The layers were partitioned and the organic layer was then washed 

with 50mL of 0.1N HCl followed by 50mL of 1M NaOH.  The aqueous layers were 

combined and back extracted with 2x10 mL of diethyl ether.  Finally the combined 

organics were washed with 50mL of brine, dried with anhydrous magnesium sulfate, 

filtered through a celite pad and concentrated in vacuo to afford tosylate 9 as a dark 

brown oil (4.06g, 81% crude yield).  Two-dimensional TLC as well as trial and error 

have shown that tosylate 9 is silica sensitive.  As such it is carried onto the next reaction 

without purification.  Tosylate 9 is not a known compound so characterization was done 

via 1H-NMR and compared to the spectral characteristics of simulated 1H-NMR software.   

1H-NMR (300 MHz, CDCl3):  δ = 7.80 (d, 2H), 7.35 (d, 2H), 6.70 (d, 1H), 6.20 (d, 1H), 

6.10 (d, 1H), 2.45 (s, 3H), 1.75 (s, 6H). 
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OTs

Cl

Cl

OEt

O

 n-BuLi, THF, -78oC to rt

then EtCO2Cl

50-85% over two steps

9                                                                          34  

A 250mL double neck round bottom flask and an addition funnel were flame 

dried and argon purged.  The round bottom was charged with tosylate 9 (4.174g, 14.1 

mmol) and freshly distilled THF (51.46mL, 635 mmol).  The contents of this flask were 

set to stir and submerged in a -78°C dry ice and acetone bath.  Once equilibrated, n-

butyllithium solution (1.45M, 32.10mL, 46.5 mmol) was added dropwise via addition 

funnel over the course of approximately 20 minutes.  Upon complete addition, the 

reaction flask was left to stir at -78°C for 30 minutes.  Next it was submerged in a 0°C ice 

bath for 30 minutes, then resubmerged in the -78°C dry ice and acetone bath and allowed 

to equilibrate.  Upon temperature equilibration, ethyl chloroformate (2.02mL, 21.2 mmol) 

was added via syringe in a dropwise fashion over a few minutes time.  Upon complete 

addition the reaction flask was removed from the -78°C bath and allowed to stir at room 

temperature for 30 minutes.  At that time TLC showed reaction completion (4:1 

Hex:EtOAc, fluorescent silica) so the solution was allowed to continue equilibration to 

room temperature over the next 45 minutes and was then quenched with a mixture of 

25mL ammonium chloride, 20mL of brine and 15mL distilled water.  The contents of the 

flask were then added to a separatory funnel along with 50mL of diethyl ether.  The 

layers were partitioned and the aqueous layer back extracted with 25mL of diethyl ether 

then 25mL DCM.  Finally the combined organics were washed with 50mL of brine, dried 

with anhydrous magnesium sulfate, filtered through a celite pad and concentrated in 

vacuo to afford crude ester 34 as a brown oil.  Ester 34 was purified by column 

chromatography, eluting with 10:1 Hex:Et2O, yielding a pale yellow oil (1.82g, 85% 

yield).  Et2O was used as the polar eluent instead of EtOAc because they have about the 

same polarity and EtOAc proved problematic to remove in vacuo.  This is a known 

compound and the spectral data agrees with the known data published.37 

1H-NMR (300 MHz, CDCl3):  δ = 5.35 (s, 1H), 4.20 (q, 2H), 1.98 (s, 3H), 1.85 (s, 3H), 

1.30 (t, 3H). 
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OEt

O

OH

ONaOH, MeOH, DCM

30 min

43-95%34                                                                 35
 

A 25mL round bottom flask was flame dried, charged with ester 34 (0.324g, 2.13 

mmol), 9:1 DCM:MeOH (10mL) and 3M methanolic NaOH (4mL) and argon purged.  

The reaction flask was stirred at room temperature under an argon atmosphere for 20 

minutes.  At this time TLC was done (4:1 Hex:Et2O, fluorescent silica) showing reaction 

completion.  The contents of the reaction flask were added to a separatory funnel along 

with 15mL of Et2O and 15mL of distilled water.  The layers were partitioned and the 

aqueous layer was washed four times with10mL portions of Et2O to ensure any unwanted 

organics were removed.  It is easiest for storage purposes to concentrate the sodium salt 

from the aqueous layer in vacuo.  It can be carried on to the next reaction as a salt with no 

detrimental effects.  If carboxylic acid 35 is desired, simply acidify the aqueous layer to 

pH 1-2 (litmus paper turns red) using 3M HCl and extract carboxylic acid 35 into 10-

15mL of Et2O.  The organic layer can then be dried with anhydrous magnesium sulfate, 

filtered and concentrated in vacuo to afford carboxylic acid 35 (0.252g, 95% yield) as a 

brown oil with solid crystalline particulate.   Carboxylic acid 35 was not purified further 

before being brought onto the next reaction as it proved to be silica sensitive via 2-D TLC 

techniques.  

1H-NMR (300 MHz, CDCl3):  δ = 5.39 (s, 1H), 2.05 (s, 3H), 1.95 (s, 3H). 

IR (cm-1):  3024, 2956.87 - 2736.99, 2150.63, 1649.14, 1276.88 – 1193.94. 
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Cl

O

OH

O
SOCl2 , DCM

reflux, 16 h

quantitative yield

35                                                                                                    7

 

A 10 mL round bottom flask and reflux condenser were flame dried.  The round 

bottom flask was charged with carboxylic acid 35 (0.01g, 0.0806 mmol), thionyl chloride 

(0.03mL, 0.413 mmol) and DCM (5mL), then argon purged.  The reaction flask was 

refluxed for 16 hours, then cooled and the contents of the flask concentrated in vacuo 

affording acid chloride 7 in quantitative yield.  The 1H-NMR spectra of the crude reaction 

product shows good purity.  Absence of the carboxylic acid functionality was quickly 

confirmed via IR since the 1H-NMR spectra are nearly identical.  Acid chloride 7 is not a 

known compound so 1H-NMR data was also compared to the spectral characteristics of 

simulated 1H-NMR software.   

1H-NMR (300 MHz, CDCl3):  δ = 5.50 (s, 1H), 2.10 (s, 3H), 1.95 (s, 3H). 

IR (cm-1):  2958.80-2854.65, 2181.49, 1734.01. 
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O

O

O

SnBu3

O

 Pd(PPH3)2Cl2, THF, rt to 0oC

then Bu3SnH, 0oC to rt, 10 min rt

41-98%48                                                                                               49  

 

A 25mL round bottom flask was flame dried and argon purged.  To the flask was 

added methyl propiolate (48) (0.25mL, 3.01 mmol), freshly distilled and degassed THF 

(12.04mL) and freshly prepared Pd(PPh3)2Cl2 (0.65g, 0.926 mmol).  The round bottom 

flask was submerged in a 0°C ice bath and allowed to equilibrate, and then tributyltin 

hydride (0.89mL, 3.31 mmol) was added dropwise over several minutes.  Upon complete 

addition the reaction flask was removed from the ice bath and allowed to stir at room 

temperature for 15 minutes.  At that time TLC analysis was done (94:6 Pen:EtOAc, 

fluorescent silica) showing reaction completion so the contents of the flask were 

concentrated in vacuo, then diluted with 20mL of pentane and left to stir at room 

temperature for about 30 minutes.  Finally the solid catalyst was filtered away from the 

pentane and the pentane was added to a separatory funnel and washed with 25mL of 

distilled water, followed by 25mL of brine.    The organics were then dried with 

anhydrous magnesium sulfate, filtered and concentrated in vacuo to afford crude model 

vinyl stannane 49.  Purification was carried out using column chromatography on silica 

using a gradient elution with a pentane and ethyl acetate solvent system.  This is a known 

compound and the spectral data agrees with the known data published.30 

1H-NMR (300 MHz, CDCl3):  δ = 6.70 (d, 1H), 5.93 (d, 1H), 3.75 (s, 3H), 1.47 (t, 2H), 

1.33 (m, 2H), 0.99 (m, 2H), 0.97 (t, 3H).  
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Pd(PPh3)2Cl2 Catalyst 

Pd(PPh3)2Cl2Pd(II)Cl2
LiCl, PPh3

MeOH, 80oC

90 %  

 

An oven dried pressure vial was charged with palladium(II)chloride (0.126g, 

0.712 mmol), lithium chloride (0.060g, 1.42mmol), triphenylphosphine (0.410g, 1.57 

mmol) and methanol (2 mL).  The reaction vial was refluxed in a sand bath and in the 

dark due to light sensitivity, at approximately 80-85oC for 30-40 minutes, then the vial 

was cooled to room temperature.  The catalyst was filtered through glass frits under argon 

rinsing with freshly distilled and degassed methanol, and then the solid catalyst was dried 

overnight in a septum covered vial under argon yielding Pd(PPh3)2Cl2 as a bright yellow  

solid (0.452g, 90% yield).   Pd(PPh3)2Cl2  was kept wrapped in aluminum foil in the 

desiccator between uses to avoid light and moisture exposure.  When black flecks begin 

to appear in the catalyst, recrystallization from methanol is helpful.  If the catalyst is not 

recrystallized, it will require the use of excess catalyst in reactions to compensate for its 

degradation.38  
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