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Abstract

We discuss the estimation of a process capability index for three-dimensional data. Initially,

we focus on the case in which the engineering tolerance associated with the measurements is

a sphere. Then, we extend the discussion to the more general case in which the engineering

tolerance is ellipsoidal. In both cases, we develop summary measures for repeatability and

reproducibility, to be used in the context of a process capability index.

In the spherical tolerance case we define summary measures, where each measure is based on

the diameter of a sphere that leads to a pre-specified capture rate (we will use here 99%). As

a process capability index, we propose ratios, where each ratio is the diameter of such a

sphere divided by the diameter of the tolerance sphere.

In the ellipsoidal tolerance case, such summary measure will be based on the length of the

major axes of the ellipsoid of identical shape and orientation to the tolerance ellipsoid

providing a pre-specified capture rate (again, we will use here 99%). As a process capability

index, we propose ratios, where each ratio is the major axis of such ellipsoid divided by the

major axis of the tolerance ellipsoid.

We present two algorithms in the language R aimed at facilitating the estimation of our

summary measure of variability. The first algorithm evaluates the probability that a linear

combination of three (or fewer) independent chi-square variables will be less than or equal to

a given constant. The second algorithm estimates the value a linear combination of chi-

square variables is less than or equal to, given a pre-specified probability. In addition, we



offer an algorithm in the language R for computing the process capability index in the

context of color metrics.

We present applications to color measurements and to R&R analysis of color metrics.

We show how the components of variance in these three-dimensional measurements can be

easily compared to each other and to the tolerance region, using the single-dimensional

summary measures ofprocess capability.

Why a single-numerical measure

In the single-sample trivariate normal case, six numbers (three variances and three

covariances) are needed to describe the variability. We suggest here the use of a single-

numerical summary measure of variability, mainly to be used within the context of a process

capability index, to replace those six numbers.

While the use of a single-dimensional measure ofvariability necessarily leads to a partial loss

of information, there are various advantages of using such univariate measure:

Such a summary measure allows for an easy and intuitive comparison of the observed

variability in relation to the defined tolerance region. An appropriate ratio of the

observed variability to the tolerance offers a meaningful estimate of the amount of

tolerance
"used"

by each component of variance.



Similarly, such a summary measure offers an easy and intuitive comparison of the

relative magnitudes of the estimated components of variance (allowing for the

identification and comparison of major sources of variation). This measure can then

be used to prioritize corrective actions, ifneeded.

A univariate summary measure allows for other kinds of comparisons of variance

components, depending on the particular applications. In the colorimetric example

that we provide, the univariate measure of variability offers intuitive means to

compare instruments in terms of the observed variability.

The proposed measure of variability is easier to comprehend than the six-number

variance-covariance matrix.

Depending on the application, other summary measures, or even direct analysis of the

variance-covariance matrix, might be preferred in estimating process capability.



The proposed process capability index

In the case of spherical tolerances, we propose to fit a sphere that provides a pre-specified

capture rate to the data. Our proposed process capability index can then be computed as the

ratio between the diameter of this fitted spheroid and the diameter of the tolerance spheroid.

As discussed in the Otherprocess capability indices section, other metrics derived from such

spheres have been proposed in the past (most notably, the volumes), but most methods agree

in fitting a sphere providing a predetermined capture rate.

In the case of ellipsoidal tolerances, as discussed in more detail in the Literature Review

section, it is common practice to base an estimation of process capability on some measure

relative to the smallest ellipsoid that provides a particular capture rate - for example, by

comparing the length of the major axis of said ellipsoid to the length of the major axis of the

tolerance ellipsoid. A two-dimensional representation is available in Figure 1. The smallest

ellipsoid providing a pre-determined capture rate is what would commonly be used to derive

a process capability index.



Figure 1. Tolerance region and smallest .99 capture ellipse.
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In contrast, we recommend using a different ellipsoid - that is, the ellipsoid with the same

shape and orientation of the tolerance ellipsoid that provides a particular capture rate (we

offer an example in two dimensions in Figure 2).



Figure 2. Tolerance region and proposed .99 capture ellipse.
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We will refer to the smallest fitted ellipsoid (presented in Figure 1) as "data capture", or

"natural", ellipsoid and to the fitted ellipsoid of same shape and orientation as the tolerance

(as in Figure 2) as "fitted capture", or
"fitted"

ellipsoid.

In the case of ellipsoidal tolerances, we propose the use of the major axis of the ellipsoid of

the same shape and orientation as the tolerance ellipsoid as a summary measure of
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variability. However, for the purposes of a process capability index, the choice of which axis

to use leads to invariant results. That is, given that the shape of the compared ellipsoids is

identical, the ratio of the major axes is identical to the ratio of the minor axes -

or, in the

more general case, to the ratio of any other corresponding pair of axes.

Gauge R&R in three dimensions

We have decided to present the use of the proposed capability index within the context of a

process capability, or gauge repeatability and reproducibility (R&R), study, as such studies

naturally lead to comparisons between tolerance regions and variance components.

The simplest R&R scenario involves one operator, using one gauge, making a series of

measurements on one single part. In the context of an R&R study, the variation of such

measurements can be summarized by "repeatability".
"Repeatability"

is defined as the length

of an interval that captures a predetermined fraction /(we will use ^
=

.99)
of such

measurements. In the case with spherical tolerance, we estimate repeatability as the length of

the diameter of the sphere that captures a predetermined fraction y of the reported readings

collected by one operator, using one gauge, on one single part.

In R&R studies, it may be possible to further subset repeatability into additive components

labeled "short-term repeatability", "medium-term
repeatability"

and "long term

repeatability". Our summary measures of repeatability can be subset accordingly.



If we are to consider a scenario in which one of the above factors (operator or gauge)

changes, we fall under the realm of "reproducibility".
"Reproducibility"

is defined as the

length of an interval that captures a predetermined fraction y (we will use/
=
.99)

of such

measurements. For example, if we consider multiple operators, using one gauge, each

making a series of measurements on one single part, we obtain a variation that is

conventionally labeled as "operator reproducibility". Alternatively,
"reproducibility"

can

refer to the case in which we have one operator using multiple gauges, or instruments, to

make a series ofmeasurements on one single part; in this case, we speak of "inter-instrument

reproducibility".

In the three-dimensional case with a spherical tolerance, we estimate "operator

reproducibility"

as the length of the diameter of the sphere that captures a predetermined

fraction y of the reported readings collected by multiple operators, using one gauge, on one

single part. "Inter-instrument
reproducibility"

will be similarly estimated as the length of the

diameter of the sphere that captures y of the reported readings collected by one operator,

using multiple gauges, on one single part
-

and so on, for whatever component of

"reproducibility"

is of interest.

In the more general case of elliptical tolerances, we extend the definitions of both

repeatability and reproducibility; that is, we estimate repeatability as the length of the major

axis of the ellipsoid of equal shape and orientation to the tolerance ellipse that captures yof

the reported readings collected by one operator, using one gauge, on one single part.

"Operator-reproducibility"

can then be similarly defined as the length of the major axis of the

12



ellipsoid - of equal shape and orientation to the tolerance ellipse - that captures y of the

reported readings collected by multiple operators, using one gauge, on one single part.
"Inter-

instrument
reproducibility"

can then be similarly estimated as the length of the major axis of

the ellipsoid - of equal shape and orientation to the tolerance ellipse - that captures y of the

reported readings collected by one operator, using multiple gauges, on one single part
-

and

so on, for whatever component of
"reproducibility"

is of interest.

Those components of variance (repeatability and reproducibility) including possible

interactions (such as, an "operator - short
term"

interaction) can be estimated using the

standard MANOVA method ofmoments. We offer some examples in the following sections.

Literature review

This thesis extends the work of Voelkel (2003), who examined the two-dimensional R&R

analysis in the case when the specified tolerance was circular.

General theory behind gauge R&R studies can be found in AIAG (1992), Wheeler and Lyday

(1989) and Burdick, Borror and Montgomery (2005).

The application presented here is related to color metrics. Volz (1995) discusses multivariate

analysis of color metrics.
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The process described falls under the wider category of "coverage problems", discussed by

Guenther and Terragno (1964).

The estimation of our summary measure of variability requires the estimation of the

probability that a non-negative linear combination of independent chi-square variables will

be smaller than or equal to a given constant. The same distribution of quadratic forms, with

relative application, has been discussed in various different contexts. Johnson, Kotz and

Balakrishnan (1998) offer an extensive discussion of the existing literature on the topic.

The distribution of a linear combination of
j2

random variables, in particular, has been

discussed and tabulated by Grad and Solomon (1955), by Solomon (1960) and by Marsiglia

(1960) in the bi-and tri-variate cases. Johnson and Kotz (1968) presented tables for 4 and 5

dimensions and Solomon and Stephens (1977) offered tables based on linear combination of

6, 8 and 10 variables.

The ideas proposed by Solomon were developed into a series of algorithms; in particular,

Sheil and O'Muircheartaigh (1977) offer an algorithm (AS 106) to calculate the probability

that a linear combination of
A'
non-central independent

x~

random variables will be less than

or equal to a constant c. Davies (1980) offers an algorithm (AS 155) with the same

functionality, but employs inversion of the characteristic function to obtain the solution,

based on a previously published paper by the same author (Davis (1973)). Farebrother (1984)

offers an improved version (AS 204) to the algorithm AS 106, leading to generally faster

computing times. The algorithms AS 155 and AS 204 are both based on a method outlined

by Ruben (1962). Johnson, Kotz and Balakrishnan (1998) discuss other approaches that have

14



been employed to estimate the distribution function of a linear combination of chi-square

variables.

Otherprocess capability indices.

Voelkel (2003) discusses some summary measures of variability that have been considered in

the past. The discussion is specific to the case in two dimensions, but the concepts apply

similarly to our case.

In particular, the area of an ellipse of equal shape and orientation to the tolerance ellipse has

been proposed by Hulting (1992). We believe this summary measure of variability to have

one major difficulty in interpretation. While this area-based measure is mathematically

equivalent to the circle-diameter measure, in most applications the users are more often

thinking in terms of original units ofmeasure, rather then in terms of the squared (or cubed)

units associated with tolerance surfaces and volumes. The sphere-diameter measure that we

propose is expressed in the original units of the measurements, thus offering more intuitive

interpretations.

The length of the major axis of the natural ellipse providing a specific capture rate (Hulting

(1992) and Demeter (1989)) has some appeal as it is a very intuitive summary measure of

variability. We discuss here why we consider it an ineffective summary measure to be used

within the context of a process capability index.

15



When the defined tolerance is spherical, there is no difference between the length of the

diameter of the
"natural"

sphere providing a certain capture rate and the length of the

diameter of the fitted sphere providing the same capture rate, as the two will be necessarily

equivalent. On the other hand, with an ellipsoidal tolerance, a comparison of the length of the

major axis of the ellipsoid offering a specific capture rate could, potentially, offer misleading

results.

We will illustrate the possibility of misleading results in two dimensions. Consider a two-

dimensional dataset with its smallest, or natural, .99 data capture ellipsoid. Assume that the

size and shape of said ellipsoid are very similar to the size and shape of the tolerance

ellipsoid. If, for example, the direction of maximum variability of the data was perfectly

aligned with the direction of maximum variability of the tolerance region, as in Figure 3, a

ratio of the major axis of the data and tolerance ellipses close to 1 would appear to suggest

that the observed variability is about the same size of the tolerance region, leading to an

acceptable product, or process. The dataset depicted includes 100 data points. As expected,

given a capture rate of
.99,

we can observe that one point falls outside of our .99 data capture

ellipsoid and outside the tolerance region.

Please note, a ratio larger than 1 would indicate that the proportion of observations falling

within the tolerance is smaller than the predetermined capture rate (.99). A ratio smaller than

1 would indicate that the proportion of observations falling within the tolerance is larger than

the predetermined capture rate (.99). A process capability index smaller than 1 is thus

desirable.

16



Figure 3. Data and tolerance region with similar orientations.
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If, on the other side, the direction of maximum variability of the data was not aligned with

the tolerance region, as in Figure 4, any ratio based on a comparison of lengths or surfaces of

the two depicted ellipses would still be approximately 1, but the number of observations

falling outside of the tolerance region would be considerably higher. In our example, only

one observation falls outside of the .99 capture ellipsoid, but 7 observations fall outside the

tolerance region. Clearly, the process capability indices for the cases in Figure 3 and Figure 4

17



should differ -

since, in Figure 4, the tolerance region fails to capture .99 of the data, we

would want the associated process capability index to be larger
than 1 .

Figure 4. Data and tolerance region with different orientations.

+
7^

' ---
-t

+
-fcT V -i

\

/
X

/+

K
X

'l

.

J^

-

Tolerance
-

.99Data Capture

+ Data

T

The summary measure of variability we discuss also uses the major-axis length, but it does

account for the differences in orientation between the data and tolerance region, thus being

preferred in most applications. Given the same scenario as the one presented in Figure 4,

when computing a process capability index, we would fit the capture ellipse presented in

18



Figure 5. The ratio of the length of the major axis of said ellipse to the length of the major

axis of the tolerance ellipse is approximately 1.3 - indicating, correctly, that the process

variability is indeed larger than the tolerance region. In this example, the predetermined

capture rate is
.99, but the tolerance region only captures 93% of the data; with out

methodology, the associated process capability index is correctly estimated as being larger

than one.

Figure 5. Data and tolerance region with different orientations and fitted capture ellipsoid.
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Wang et al. (2000) discuss three other multivariate process capability indices (we cite the

relevant indices in three-dimensional applications, although all three have been presented in a

more general multivariate setting):

Shahriari, Hubele and Lawrence (1995) propose a capability index based on three

components: a ratio of volumes (the numerator being the volume defined by the

engineering tolerance region and the denominator being the volume of a modified

process region
- the smallest region similar in shape to the engineering tolerance

region, circumscribed around a probability contour), a measure of the distance of the

centers of the tolerance and data regions and an index variable indicating whether the

modified process region is or is not contained within the tolerance regions.

Taaam, Subbaiah and Liddy (1993) propose a capability index based on the ratio of

the volume of the tolerance region to the volume of a modified process region (which,

in the case ofmultivariate normal data, is an ellipsoid providing a 99% capture rate).

Chen (1994) proposes a capability index to be applied, as the title of his paper

suggests, to rectangular tolerance regions. His index has no intuitive interpretation in

the multivariate case, but it is expressed in the original units ofmeasure of the data.

Kotz and Johnson (2002) present an extensive list of publications regarding process

capability indices, and list the available literature on multivariate indices.

20



Calculating the summary measure ofvariability

Consider the simplest case of one operator, using one gauge, making a series of

measurements on one single part, in which we want to estimate repeatability.

We assume that the variation in these measurements can be modeled by a multivariate

(trivariate) normal distribution, which, without loss of generality, we assume is centered at

zero:

x~n3(o,i:s).

We also assume that the given tolerance region is a tri-dimensional ellipsoid (or, in a special

case, a sphere) centered at zero. An ellipsoid can be mathematically described

by: {x : x'Mx =

c2

), where M is a non-negative definite symmetric matrix defining the shape

of the ellipsoid and c is a scale factor. For the tolerance ellipsoid, we set c - 1
,
which

reduces the equation of the tolerance ellipsoid to {x : x'Mx = l}. The tolerance region can

then be described as the series ofpoints {x : x'Mx < 1} .

Please note that, for the present purposes, an ellipsoidal and a spherical tolerance region are

treated in the same manner.

In order to compute our summary measure of variability, we aim at fitting an ellipsoid with

the same shape and orientation as those of the tolerance ellipsoid, so that a certain proportion

(the "capture rate") of the observed data falls within the ellipse itself; that is, we want to find

c such that:

P(X'M X<c2) = y ,
where y is the desired capture rate.



In geometric terms, we want to shrink or stretch the tolerance matrix M by a factor a so that

we find the matrix of the same shape and orientation that gives:

P(X'aMX <l)=y or, equivalently:

P(X'aMX <l)=P X'MX < - = PJX'MX <
c2

) = y
V a)

Where
c2

=l/a

In order to more easily find c, we can equate the quadratic form X'MX to a linear

combination of independent chi-square variables (as the distribution of the latter has been

amply discussed in the past in the context of "coverage problems", as discussed in the

Literature review section of the present). To accomplish this goal, we apply a series of three

transformations of variables. While these three transformations could have been

accomplished in a single, albeit more complex, transformation, we present them here in a

step-by-step fashion to facilitate understanding.

As a first step, we set U = MI/2X .

U is a linear transformation of a multivariate normal random variable; it is well know that U

itself is also multivariate normal: U~N3(0,i:u) ,
where u = Ml/2i:xMl/2.

BecauseX'MX = X'Ml/2Mi/2X = U'U
,
p(x'MX <

c2 )= p(u'U <
c2

)

Eu is a symmetric positive definite matrix and can be decomposed as follows (Johnson and

Wichern (2002, pp. 66-67)): u = PuDuP,;

where Du is a diagonal matrix containing the eigenvalues of Hu :

D.

K o o

o zU2 0

0 0 I

-)")



Where Xu_ ,/lUi
and Xlh are the eigenvalues of the matrix u and Xu_ > Xu^ > Xih

and Pu =[eU| ,eU2,euJ
contains the corresponding orthonormal eigenvectors; we should

note that
P.'

P.. =1.

In a second transformation, we set V = P^U .

The variance-covariance matrix ofV is:

ln=p:eupu=p:pudup;pu=idui = du

Thatis,V~N3(0,Du).

We then finally have the equation: U'U = VT^P^'V = V'V .

Since we are here discussing the tri-variate case,

X'MX = U'U = VV =

V2

+ V; +
V2

Since V],V2 and VJ are normal variables with variance, respectively, Xu ,XlH and/lu ,
we can

equate:
V2

+
V22

+ V^
=

Xu
Y2

+ /LH
Y2

+ Xu
732

,
where Yx , Y2 and Yi are independent standard

normal random variables.

That is, we have equated X'MX to a weighted sum of independent chi-square variables,

each with one degree of freedom, where the weights are the eigenvalues of the

matrixu =

M1/2LXMI/2

:

p(x'MX <
c2

) = P(U'U < c
2

) =
P(v2

+
V2

+
V2

<
c2

) = p(XUi Y; + Xu^ Y; +^
Y2

<
c2

) = y

After briefly discussing the geometry of the above transformations, we will discuss how the

proposed process capability index reduces to c.

23



A geometric interpretation oftheprocedurepresented

We have presented the above as three consecutive steps in order to simplify understanding of

the procedure. The three steps taken can be easily explained when looked at sequentially and

with a geometrical interpretation. Figure 6, Figure 7 and Figure 8, on the following pages,

offer a graphical representation of the process.

Please note, we have assumed previously that our measurements follow a multivariate

normal distribution, centered at zero; that is, X ~

N3 (0,x ) .

24



Step 1: Please refer to Figure 6. Our starting point is the equation of the tolerance

ellipsoid, which we can describe by a sequence of points {x : x'Mx = lj . A second ellipsoid,

with the same shape and orientation, provides a predetermined capture rate and can be

described by the set of random variables (X : X'MX <
c2

}. The two ellipsoids have the same

shape, orientation and centroid; the two ellipsoids differ in scale (set by the parameter c).

Figure 6. Tolerance, data and fitted ellipse.
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Step 2: Please refer to Figure 7. The first transformation, U = M1/2X
,
has the effect of

shrinking both the tolerance and data ellipsoids along the directions of maximum variability

(axes of the tolerance ellipsoid). Both ellipsoids reduce to spheroids; the tolerance ellipsoid

can be described by a set of points {u : u'u = l}, while the fitted ellipsoid can be described by

a set of random variables (U : U'U <
c2

Figure 7. Transformation to "U-space".
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Step 3: Please refer to Figure 8. The second transformation, V = P^U , rotates both

the tolerance and fitted regions. The resulting spheroids have their axis aligned with the

coordinate systems. Both ellipsoids reduce to spheroids; the tolerance ellipsoid can be

described by a set of points {v : v'v =1), while the fitted ellipsoid can be described by a set of

random variables [V : V'V <
c2

Figure 8. Transformation to "V-space".
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Estimating c and calculating the multivariateprocess capability index.

As discussed in the literature review section, various methods and algorithms have been

proposed in the past to solve:

P\XU
Y2

+ X:i
Y2

+ Xu
732

< c2)=
y ,where 7,, 7, and Y} are independent standard normal

random variables.

In Appendix 1 we use two algorithms to solve the above equation. The first estimates

y given the eigenvalues Xu , Xu and Xu and the parameter
c2

; the second algorithms

estimates
c2

given the eigenvalues Xu ,XU^ and/lu and the parameter y .

The inequality \r\P\Xu
Y2

+ Xu
Y2

+ Xu
Y2

<
c2 )=

y is overparametrized. An often used

reparametrization employed, for example, in the tables compiled by Marsiglia (1960), leads

to:
P(Y2+r]Y2+r2Y2

<r3) = y

Where

'
i
=

K IK

r2
=

\ IK

r^c2jXUi
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We will continue to use the overparametrized version of the equation in the present

discussion.

Once we have M and c, we can proceed in estimating our summary measure of variability

and computing the capability index as follows. Geometrically, as discussed by Johnson and

Wichem (2002, pp. 65-66), the three-dimensional fitted ellipsoid can be determined by the

three axes, whose orientation is described by the eigenvectors et of the matrix M and whose

half length in the e( direction is equal to
,
where Xt is the

/"'

corresponding eigenvalue

of the matrix M.

In the spherical case, we have Xx = X2 = X3 = X . The diameter of the sphere can be calculated

as d = 2c/Jx .

For the purposes of calculating the capability index, we calculate the diameter of the

tolerance sphere: dlol - 2 1 -[X

The process capability index, defined as the ratio between the diameter of the
"fitted"

sphere

and the diameter of the tolerance sphere, reduces to:

d
_

2c/VI

d,o,

~

2/VI
= c
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In the ellipsoidal case, we calculate the length of the major axis of the ellipsoid, of the same

shape and orientation as the tolerance ellipsoid that provides a pre-determined capture rate / .

Our process capability index will then be the ratio of the major axis of this ellipsoid to the

major axis of the tolerance ellipsoid. Clearly, for the purposes of developing a process

capability index, the ratio of the major axes will be equal to the ratio of e.g. the minor axes,

because the shapes of the ellipsoids are identical.

The length of the major axis of the fitted ellipsoid will be equal to 2c/^Xmin

where Xmm =

min(/l1 , X2 , A3 ) . Please note, that the major axis of the ellipse is associated with

the smallest eigenvalues of the matrix M - as the length of each axis is inversely related to

the size of the eigenvalues ofM. The length of the major axes of the tolerance ellipsoid will

be equal to: 2/^jXmm ,
so the process capability index is, again, c .

The process capability index, defined as the ratio between the length of the major axis of the

"fitted"

spheroid and the length of the major axis of the tolerance ellipsoid, reduces to

2c/y/C

2/V-C

The use of c as a scale factor allows for quick and intuitive comparisons. So, for example,

ifc = 0.1
,
we would conclude that the amount of tolerance

"used"

by the data - or by the

particular variance component studied - is 10 percent. This also allows for comparisons of

variance components.
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EstimatingM

In some applications, the users may not be given a matrix M that describes the size and

orientation of the tolerance region. Rather, a set of acceptable observations may be provided,

from which the user has to derive an equation describing the tolerance region. A similar

approach was used in the field of color science to derive a series of equations describing

tolerance regions whose size and orientation vary according to the position in color space of

the measured sample.

We define t; as the vector of length 3 containing the measurements of the
i'h

observations.

If we consider a set of data points describing the entire acceptable tolerance region, define

tol as the sample variance-covariance matrix associated with this set of data points.

We then proceed by finding the value c]calej
= t-S^t, for every observation /.

We define c]cale ,max
=

max(c2.afe, ) . We then define M as:M = 1^, .

scale,max

31



Extensions to p dimensions

We present our method in the three-dimensional case, but the argument applies equally well

to the p-dimensional case.

With spherical tolerances, our summary measure would be the diameter of the p-dimensional

spheroid that leads to a pre-determined capture rate.

With ellipsoidal tolerances, our summary measure would be the length of the major axis of

the ellipsoid (of equal shape and orientation to the tolerance ellipsoid) that leads to a pre

determined capture rate.

When fitting this ellipsoid, we would use a similar set of equations:

p(x'MX<c2)=p(uV<c2)=P(J^XUpY2<c2).
> p

p

With either spherical or ellipsoidal tolerances, c can be interpreted as estimating the fraction

of tolerance
"used"

by the component of variance of interest.

In practice, the main use of this is in the two-dimensional case, extending the result of

Voelkel (2003).
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Application: analysis ofcolor metrics

We present in the following section various applications of the proposed process capability

index, in the context of color metrics. Our process capability index is presented within the

framework of the CIE94 (Bems (2002, pp. 72-74)) standard for color measurements. In the

present section, we briefly summarize the most relevant CIE94 concepts and how they reflect

on the application of our process capability index.

One common coordinate system for reporting color data, and the format in which the datasets

were made available to us, is the CIELAB coordinate system (Bems (2002), pp. 72). Briefly,

CIELAB can be described as a rectangular coordinate system with axes labeledL ,a and/? .

The magnitude of the
L*

coordinate describes the amount of lightness, that of refers to the

amount of redness-greenness while that of
b*

refers to the amount of yellowness-blueness.

"CIE"

stands for Commission Internationale de l'Eclairages - an international body of color

scientists - while
"LAB"

refers to the L\ and

b*

coordinate system. Every measurement can

then be described, within the CIELAB measurement system, by a vector v =
[L*

bj.

Despite the common use of CIELAB in reporting data, CIE94 defines color tolerances within

a different coordinate system, defined simply as "lightness-chroma-hue", with axes

labeledL\ C*ab,H'ah.

CIE94 offers an equation to estimate the size of the acceptable tolerance region for color

differences (Berns (2002, pg. 72). While this above equation was developed to estimate the
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size of a tolerance region around a particular "standard", we have applied a slight

modification to the formulas supplied, in order to compute color differences around the

mean. We define:

A94 =

^=1

f *^*V

+

AC
ab

\kcSc j

AH
V

ab

\^h^h j

, where:

Sc = 1 + 0.045CJ,

S =1 + 0.015^

kL - kH - kc = 1 for reference conditions

Similarly, with slight modifications to the standard formulas (Berns (2002, pp. 72), Stokes

(1992), Seve( 1996)):

M!=L'balch-T

*c:b4aijAbijf4d*r+(b>)f

AH
h
=

ab

ala,c,y -a'bla,ch

[0-5(C,to,cAC + + b'ba,chb
* )f2

Finally, to obtain an estimate of our tolerance region, given a certain position in the

.

b'

color space, which reflects in the C*ab factor, we have to set a maximum acceptable

"overall color difference", as measured byAf94 . For the purposes of the present example, we

will setA94
- 1, a value commonly used in industrial application, although the exact value
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will depend on the particular application studied. In an applied situation, the value of

AE94will be established by the user.

The region containing acceptable observation can then be described as:

T:
'AT V

K^L^L J

( K^*\
ab

AC

\kcSc j

f A
IT* V

AH
ab

ykf/Sfj j

<1

Given a set of Z,*,a*and
b*

measurements, we are then able to both transform the data and

derive an equation for the tolerance region in
AL*

, AC*fc , AH*ah space.

The size and orientation of the tolerance region can be described by a diagonal matrix:

M =

0 0

1

^ 0

0 1/A2

We should observe that the tolerance ellipsoid axes defined by the CIE94 standard, are

aligned with the
AL*

, AC*ab , AH*ab coordinate system.

To estimate the scale factor c for a particular variance component, we need to estimate the

eigenvalues of the matrix Eu =

MI/2LXM1//2

,
which in turn requires an estimate of x .
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In our simplest scenario (one operator, using one gauge to take n measurements on a part),

we could model each reading Xx = AC*ab AH*ah ) as follows:

X; = p + >, with:

p
= (0 0

ei~N3(0,LJ

We can easily estimate Hx as

Var(AX*

)

Cov(AC;A,AI*)

CovfA/CAT)

Cov(az.*,ac;J

Var(AC;J

Cov(AH*ab,AC:b)

Cov(AL*.AHlb)

'

cov(ac;,a//;J

Var(A^;J

Once we have obtained our estimate of xas described above, we can proceed by

findingu =M'/22:xM

1/2 y- M\/2

We then calculate the eigenvalues X, ,X, ,X,
of the matrix and use the latter in

estimating c in P[X
Y2

+ Xu. Yi + K, Yi ^c2)=y.
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To find c for a given set of eigenvalues Xu , AUi , AM and a capmre rate / ,
we proposed an

algorithm in Appendix 1, which is an adaptation of the Ruben algorithm presented by

Farebrother(1984).

In more complex cases, such as a typical gauge R&R study, we are interested in the

estimation of components of variance. In typical applications, we can assume that the

variation of a process can be subset into short, medium and long term components. For

example, we could assume that we could model each reading xijk
=

\AL*ijk ACa/, AH
abj

as

follows:

xjik
= u + si +mj +'k' with:

u = (0 0

s, ~MVN(0,Ls)

i^-MVISKO.EJ

lk ~MVN(0,L,)

Please note that the total error term xis equal to the sum of the short, medium and long

term components: Xx = Es + Em + , .
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Multivariate ANOVA techniques and, in particular, the so called "method of
moments"

(Montgomery (2001, pp 512-549), Jobson (1999), Rencher(2002)) can be employed to

obtainEs,Hm and, . We can then calculate:

tu-s

u,m=M'/2i:mM1/2

tUJ =

M1/2L,M1/2

'/2V lVfl/2

u =Ml/-ExM

We can then obtain the four sets of eigenvalues to obtain estimates of c,csl,cml,ch .

These four estimates would correspond to common summaries of the measurement systems.

For example, csl would be an estimate of short term repeatability.

In the one-dimensional case, we can observe
that:c2

=

c], +c2ml +cft. Voelkel (2003) proved

that, in the two-dimensional case,
c2

<
c2

+ c2ml +cft
- the case for perfect additivity only

holds when all of the components of variance are oriented in the same direction (that is, the

estimated variance-covariance matrices all have the same eigenvectors). The same concept

applies to three or more dimensions:
c2

<
c2

+ c2, +
c,2

,
with the equality holding only when

all components of variance have the same spatial orientation.
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In the same way the method of moments applied to univariate cases can result in negative

component of variance estimates, in multivariate settings the method of moments can result

in estimated matrices that are not non-negative definite.

From our examples, we observed that this problem tends to most often manifest itself, in

multivariate settings, when most of the variance is aligned with one dimension. For example,

we encountered this problem when estimating variance components in our third example (the

long-term cyan data).

When the estimated components of variance are not non-negative definite matrices, we used

the Calvin-Dykstra algorithm (Calvin and Dykstra (1991)). Other possible remedial measures

are described by Calvin and Dykstra (1991).

Applications

We present here three different examples, all relative to estimation of variance (and

components ofvariance) of color metrics.

1 . An estimation of inter-instrument reproducibility and of the related components of

variance (short terms and medium term) and possible interactions

(instrument*

medium-term), based on measurements on a white sample.

2. A comparison of the components of variance (short-term and medium-term) of

measurements obtained with 12 different instruments, based on measurements on a

white sample.
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3. A comparison of the long-term and medium-term variability components of 12

instruments used to measure a cyan tile.

The instruments used in the three examples are of three different kinds: handheld spheres,

benchtop spheres and handheld bidirectional. The instruments were labeled as follows:

Table 1. Instrument types.

Instrument Type

A Handheld Sphere

B Handheld Sphere

C Handheld Sphere

D Handheld Sphere

E Benchtop Sphere

F Benchtop Sphere

G Benchtop Sphere

H Benchtop Sphere

I Handheld Bidirectional

J Handheld Bidirectional

K Handheld Bidirectional

L Handheld Bidirectional

Two pairs of identical models were included in the experiment: A and B, K and L.

The experiments were conducted under the assumption that no operator effects would be

significant. Under this assumption, no data on operators has been collected and the

assumption itself could not be tested.

The capture rate y for the data-fitted ellipsoids has been set in these examples at .99.
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The data was made available to us in the L metrics. We converted to

AL*

, AC*lh , AH*ab space using the formulas discussed in the previous section.

After converting the data to
AL*

, AC*ab ,
AH *ab space, we proceeded by verifying that the data

did meet our assumptions
- that is, that the data is multivariate normal and that no trends

over time are present. Our technique requires also that the mean of each univariate

distribution is zero - given that
AX*

, AC*,, , AH *ab are essentially differences from the mean

value, they are necessarily centered at zero.

We first checked for independence over time (that is, for a lack of time-related trends or

measurement drift). No formal tests were employed -

rather, the data was plotted versus the

order of observation and visually inspected for trends.

In order to verify the normality assumption, we utilized four univariate tests (Shapiro-

Wilkins (Shapiro and Wilkins (1965)), Kolgomorov-Smirnov, Cramer and Anderson Darling

(Ryan and Joiner (1976))) to check for departures from normality in the univariate data

distributions. Finally, we employed the Mardia tests for Skeweness and Kurtosis (Mardia

(1980)) and the Henze Zirkler T-test for normality (Henze and Zirkler (1990)) to check for

multivariate departures. We used normal probability plots and chi-square Q-Q plots

(Chambers, Cleveland, Kleiner and Tukey (1983)) to assess univariate and multivariate

normality departures. The procedure applied is exemplified for one instrument in Appendix 3.

Overall, we were satisfied with the results of such tests and concluded that the data did not

present problematic departures from our assumptions.
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Example 1

The dataset used in this first example consisted of 10 measurements taken every hour, for 8

hours, on each of 12 instruments.

We assume that we could model each reading xijk
=

\AL*jk AC*ab AH*ah J as follows:

Xijk = M- + mi + ij + miij + Sk(ij) >
with:

u = (0 0

m1~N3(0,LII1)

1,-^(0,2.)

mi^-N^O,^)

sk(ij>
~

N3 (0, Es ) , where we define:

Hx = total variance

Ls = short-term (within the hour) variance component

m =medium-term (hour-to-hour) variance component

Lj = instrument variance component

Emi = instrument
-

medium term interaction component

Using the CIE94 equations, we find that the tolerance matrix associated with a white sample

is simply a sphere:

M =

1 0

0 1 0

0 0 1
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We report here one of the metrics used in the test for significance of variance components,

the p-value associated with the F statistic for
Wilks'

multivariate test (Johnson and Wichern

(2002)). When tested at a 5% significance level, the instrument and the instrument-medium

term interaction components of variance were significant, but the medium-term component

was not. In our analysis, we retained the MT component of variance, because the higher-level

interaction is significant; in order to obtain a meaningful estimate ofLm ,
we applied the

Calvin Dykstra algorithm).

Table 2. Significance of variance components, Example 1.

Component
Wilks'

p-value

Instrument 0.0000

MT 0.5450

lnstrument*MT 0.0000

ST na

Using the expected mean square table presented in Table 1
,
we obtained the following estimates for

our components of variance:

2. =

^.3289 .0261

.0261 .0541 -.0234

.0077 -.0234 .0257

v

^.0425 -.0010

-.0010 .0006 -.0001

.0019 -.0001 .0006
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mi =

^
.1225 .0096

.0005

A

.0096 .0037 .0005

.0005 .0005 .0005

J

=

f
.0054 -.0005

.0003^

.0005 .0000 .0000

v
.0003 .0000 .0000

: =

1
.1585 .0179

.0179 .0498 -.0238

.0050 -.0238 .0246

Table 3. EMS for Example 1.

Source df EMS

Instrument 11
L,+10Elm+80E.

MT 7 Ls+10Emi+120i:ni

lnstrument*MT 77 ^s+102mi

ST 864 ^s

Total 959

Once we obtained the above estimates, we could employ the algorithms presented in

Appendix 1 to calculate our process capability index for each component of variance.

Keeping in mind that, because M = I
,
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E =M1/2t
M1/2

= t

iu,st=M|/2i:stMl/2=i:st

E = M ' E M '
= E

u,instrument*mt instrument*mt in:strument*mt

t, mt
=i

m,u,mt mt \,mt

rV2
_

=
MV . M'

= E.
u.rnstrumentt instrumentt rnstrumentt

The estimated process capability indices for each component of variance and for the total are

presented in Table 4 and plotted in Figure 9.

Table 4. Process capability indices, Example 1.

Component
c~

c

Instrument 1.17 1.08

MT 0.04 0.19

InsfMT 0.82 0.91

ST 0.28 0.53

Total 2.29 1.51
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Figure 9. Process capability indices, Example 1.
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Figure 10 depicts the data points, the tolerance region and the .99 capture region of the same

shape and orientation as the tolerance region. In this case, as the c value of 1.54 indicates,

the length of the major axis of this fitted region is approximately 1.5 times the length of the

major axis of the tolerance region.

Figure 1 1 depicts the tolerance region and the natural .99 capture ellipsoids relative to each

variance component.

Figure 12 depicts the tolerance region and the fitted spheres relative to each variance

component. As the c value of 1.08 indicates, the instrument-to-instrument component of

variance by itself exceeds the size of the tolerance region.
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Figure 10. Data, tolerance and fitted ellipsoid, Example 1.
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Figure 11. Tolerance and natural .99 capture ellipsoids for each variance component, Example 1.
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Figure 12. Tolerance and fitted .99 capture spheres for each variance component, Example 1.
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Example 2

The dataset used in the first and second example consisted of 10 measurements taken every

hour, for 8 hours, on each of 12 instruments. In the second example, we conducted a separate

analysis for each of the 12 instruments.

Because the sample measured is the same white tile, the tolerance matrix is the same

employed in Example 1 :

M

1 0

0 1 0

0 0 1

For a given instrument, we assume that we could model each reading

X,
= (Ai; AC;^ A//;a

)'

as follows:

Xu =M- + si(j)+mj,with:

p
= (0 0

si(j)~MVN(0,Es)

mj~MVN(0,i:m)

We allow for Ls and Lm to be estimated separately for each instrument.
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We tested for the significance of variance components and obtained estimates for the sum of

square and cross product matrices associated with each variance component. Based on the p-

value associated with the F statistic for
Wilks'

multivariate test, all of the tested components

ofvariance were significant at a 5% significance level.

Table 5. EMS, Example 2.

Source df EMS

MT 7 2.+10E.,

ST 72 m

Total 79

When computing these components-of-variance estimates, we obtained s matrices as components

estimates that were not non-negative definite. We employed the Calvin-Dykstra algorithm to obtain

new estimates for those components.

Our results, presented in Table 6 and Figure 13, point to dramatic differences in performance

across instruments. Instruments C, D, K and L obtained c values larger than one, indicating

that a portion of their observations is expected to fall outside of the tolerance region. In

instruments C and D this was due to a large medium-term variance component. A similar

phenomenon was observed for instruments K and L, but here the short-term component of

variance appears considerably larger than for other instruments as well.
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Table 6. Process capability indices, Example 2.

Instrument ST

7

c

MT Total ST

c

MT Total

A 0.0006 0.0301 0.0305 0.0237 0.1734 0.1747

B 0.0005 0.0761 0.0766 0.0233 0.2758 0.2767

C 0.0624 1.3390 1 .4000 0.2499 1.1572 1.1832

D j 0.0211 3.5563 3.5777 0.1454 1.8858 1.8915

E 0.0051 0.0251 0.0302 0.0715 0.1583 0.1737

F 0.0001 0.0006 0.0007 0.0121 0.0239 0.0263

G 0.0001 0.0003 0.0003 0.0073 0.0170 0.0178

H 0.0003 0.0024 0.0026 0.0175 0.0488 0.0511

1 0.2004 0.0955 0.2946 0.4477 0.3090 0.5428

J 0.0400 0.5281 0.5643 0.1999 0.7267 0.7512

I
K 1 .2742 0.8451 2.1176 1.1288 0.9193 1.4552

L 1.8503 4.0083 5.8074 1.3603 2.0021 2.4098

Figure 13. Process capability index, Example 2.
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We can also use the concepts presented here to estimate the proportion of points expected to

fall within the tolerance region, for each variance component. We do this by solving

P[XU
y2

+
Xuy2

+ Xu v3
< l)=

y for y using the function Rub presented in Appendix 1 .

The expected proportion of observations within tolerance relative to each variance

component for each instrument is presented in Table 6.

Table 7. Expected proportion of observation falling within tolerance, Example 2.

Instrument ST

r

MT Total

A -100.0% -100.0% -100.0%

B -100.0% -100.0% -100.0%

C -100.0% 97.4% 96.8%

D -100.0% 82.8% 82.6%

E -100.0% -100.0% -100.0%

F -100.0% -100.0% -100.0%

G -100.0% -100.0% -100.0%

H -100.0% -100.0% -100.0%

1 -100.0% -100.0% -100.0%

J -100.0% -100.0% 99.9%

K 97.8% 99.5% 92.3%

L 94.2% 80.1% 71.1%

As an example, we present the results obtained for instrument A in Figure 14 and Figure 15.

Figure 14 presents the data points and the tolerance region. Figure 15 depicts the tolerance

region and the fitted spheres relative to each variance component.
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Figure 14. Data and tolerance region, instrument A, Example 2.
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Figure 15. Tolerance region and fitted .99 capture spheres for each variance component, instrument A,
Example 2.
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Example 3

The dataset used in this example included 12 instruments (labeled A-L), each used to make 2

measurements every day, for 25 days, on a cyan sample. Data for Instrument D was missing

for 3 days, data for instrument E was missing for 5 days and data for instrument H was

missing for one day.

We conducted a separate analysis for each of the 12 instruments. We assume that, for a given

instrument, we could model each reading X,, =
\AL*

, AC*h AH*h I as follows:

Xu =M- + mi(j) +1^1111:

p
= (0 0

lj~N3(0,Ek)

Becase we are measuring a different sample than the white used in the first two examples, we

have to use the CIE94 equations to determine the size and orientation of the tolerance region.

To obtain the equation of the tolerance matrix, we calculated a

*

and b
*

and the related

parameters, obtaining the results presented in Table 8.
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Table 8. Tolerance region parameters, cyan, Example 3.

Parameter Value

mean
a*

-28.3605

mean
b*

-38.4245

mean C*ab 47.7573

l/S/2

1.0000

l/Sc2

3.1491

l/Sh2

1.7164

The resulting tolerance region can then be described by the matrix

M

1 0 0

0 3.14 0

0 0 1.72

We tested for the significance of variance components and obtained estimates for the sum of

square and cross product matrices associated with each variance component. We used the p-

value associated with the F statistic for
Wilks'

multivariate test to determine which

components of variance were not significant; we set the level of significance at 5%. All of

the components of variance tested resulted statistically significant, except for the medium-

term variance components for instruments A, C and D.



Using the expected mean squares presented in Table 9, we obtained estimates for the

variance-covariance matrices associated with each component of variance, for each

instrument.

When computing these components-of-variance estimates, we obtained some matrices as

components estimates that were not non-negative definite (namely, the estimates of the long

term variance-covariance matrices associated with instruments B, F, J, K and L). We

employed the Calvin-Dykstra algorithm to obtain new estimates for those components.

Using the algorithm presented in Appendix 1, we were then able to compute our process

capability indices as shown in Table 10 and in Figure 16.

Table 9. EMS, Example 3.

Source
Df*

EMS

LT 24 E.+2L,

MT 25 m

Total 49
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Table 10. Process capability indices. Example 3.

Instrument MT

2
C

LT Total MT

c

LT Total

A 0.1087 0.0000 0.1087 0.3296 0.0000 0.3296

B 0.0603 0.0797 0.1399 0.2456 0.2824 0.3741

C 0.1054 0.0000 0.1054 0.3246 0.0000 0.3246

D 3.4117 0.0000 3.4117 1.8487 0.0000 1.8487

E 0.1930 0.0522 0.2445 0.4393 0.2285 0.4945

F 0.0234 0.0185 0.0411 0.1531 0.1359 0.2028

G 0.0088 0.0450 0.0534 0.0937 0.2120 0.2312

H 0.0026 0.0286 0.0311 0.0508 0.1690 0.1763

1 0.1006 0.0212 0.1134 0.3172 0.1455 0.3367

J 0.1329 0.0852 0.2170 0.3645 0.2920 0.4659

K 0.1117 0.0903 0.2017
]

0.3342 0.3006 0.4491

L 0.2582 0.0270 0.2683 0.5081 0.1642 0.5180

All of the instruments except for instrument D display repeatability well within tolerance.

The medium term variance component ofD, with an associated c value of 1.8, is the only

component of variance exceeding tolerance.
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Figure 16. Process capability indices, Example 3.
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Figure 17 is a plot of the data and tolerance region. Figure 18 depicts the results obtained for

instrument A. As the LT variance component resulted non significant, the ST variance

component is equal to the total variance.
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Figure 17. Data and tolerance region, instrument A, Example 3.
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Figure 18. Tolerance, .99 natural capture ellipsoid and .99 capture fitted ellipsoid, instrument A,

Example 3.
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Appendix 1

The algorithm is an iterative search procedure, used in solving

P(XlY]"

+ X2Y2
+/l3F32

<
c2)

=

y for c, given the eigenvalues /I, , X-, , X3 and the desired

probability /, where Y, , Y2 , 73 are independent standard normal random variables. The

algorithm is in the language R.

The core of the search procedure is a function named Rub (after Ruben (1962)); the

algorithm is based on AS204, by Farebrother (1984), which in turns employs Ruben's (1962)

method to evaluate the probability that a linear combination of n non-central chi-square

variables will have value smaller than a pre-defined constant c. The Rub function is a

translation of the Pascal version ofAS204, which, to our knowledge, has not been published,

but is available at: http://lib.stat.cmu.edu/apstat/204.

The iterative search procedure, named Invrub, estimates lower and upper bounds for the c

value, then fits values within that range, making use of Rub, attempting to find c for a

given y . Those upper and lower bounds are calculated observing that

c2

in
P(Xxy2 +X2y22+X3y2

<c2) = yhas to be in the range (c
max, cmin ), where:

cL
=

xl(_-rA Similarly, c2,n - zlo-rA

For example, if we wished to calculateP(.3
y2 +.2v2

+.l.v3
< 1) ,

we could employ the

function Rub with the following call: Rub (c(.3,.2,.l),l) .
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The output obtained is y and a fault code (please note, fault codes are those used by AS204

(Farebrother(1984)):

Any negative fault code indicates that one or more of the constraints

Xj > 0,mi > 0 and
82

> 0 is not satisfied;

1 = non-fatal underflow;

2 = one or more of the constraints n > 0,c > O.eps > Oand maxit > 0 is not satisfied;

3 = the current estimate of the probability is less than -1;

4 = the required level of precision could not be obtained in maxit iterations;

5 = the value returned by the procedure is not between 0 and 1 (extremes included);

6 = the estimated y is negative;

9 = faults 4 and 5;

10 = faults 4 and 6;

0 = otherwise;

Similarly, ifwe wanted to find the c for which P(0.3
v,2 +0.2v2

+0.1v3
<
c2)

=
.99,

we could

employ the function Invrub with the following call: Invrub (c (. 3, .2,.1),.99).

The Invrub function offers, as output,
c2

, y (the exact capture rate), the fault code obtained

with the last iteration of Rub and a binary indicator variable. The latter is set to 0 if the

required level of precision is attained, or 1 if the required level of precision was not attained

(in which case, the code can be easily modified for allowing a higher number of iterations,

as indicated in the program comments).
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Thefunction Rub

Rub<-function (lambda, cc)

# Farebrother, R.W. (1984), [AS 204] The Distribution of a Positive Linear

Combination of Chi-Square Random Variables, Royal Statistical Society
(Series C) , Vol. 33, No. 3 1984, pp. 332-339. #

{degcount=0

for (i in 1:3)

{if (lambda [i]==0) { templ=degcount; degcount=templ+l } ; }

n = 3-degcount

maxit = 2000

eps =
.001

mode = 0.90625

exit2=0

delta <-

array (dim=c (n) )

for (i in l:n) {delta[i] = 0}

mult
<-

array (dim=c (n) )

gamma
<-

array (dim=c (n) )

theta <-

array (dim=c (n) )

a
<-

array (dim=c (maxit) )

b <-

array (dim=c (maxit) )

for (i in l:n) mult[i]
= 1

exit = 0

L = 0

if (n==0) {RUBEN=0; ifault=0; exit=l } else

{if (n < 1 | cc<=0 | maxit<l | eps <=0)

{RUBEN=-2; ifault =2}

{tol=-200;

beta =lambda[l];

sum=lambda [ 1 ] ;

for (i in 1 : n)

{ ho ld= lambda [i] ;

if (hold <=0 | mult[i]<l | delta[i]<0)

{RUBEN =

-7;

ifault =

-i;

exit = 1 ;

i =

n;};}

if (beta>hold) beta=hold;

if (surrKhold) sum=hold; } ; }

if (exit == 0)

{if (mode>0)

{ temp=mode*beta;beta=temp} else

{temp=2/ (1/beta+l/sum) ;beta=temp} ;

k= 0 ; s um= 1 ; suml
= 0 ;

for (i in 1 : n)

{hold=beta/ lambda [i] ; gamma [i] =l-hold; temp=l;

for (j in l:mult[i]) { temp=temp*hold} ;

sum=sum*temp; suml=suml+delta [ i ] ; k=k+mult [ i ] ; theta [ i ] =1 } ;

ao=exp ( .

5*
(log (sum) -suml ) ) ;

if (ao<=0)

{reuben=0;dnsty=0; ifault=l } else

{z=cc/beta; itemp= (k%/%2 ) *2 ;
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if (k==itemp)

{ i=2; lans
= -

. 5*z; dans=exp (lans) ;pans
= l-dans } else

{i=l;
lans=-.5*

(z+log(z) ) -0 . 2257 91352 644 73; dans=exp (lans) ;

rz=sqrt (z) ;pans= ( pnorm (rz, 0, 1, TRUE, FALSE)
-

pnorm
(-

rz, 0, 1, TRUE, FALSE) ) };

k= k - 2;

while (i <= k)

{if (lans < tol)

{lans = lans + log (z/i) ; dans =

exp(lans)} else

{temp = dans; dans =

temp
*
z/i);

temp=pans;pans=temp-dans; i=i + 2 } ;

prbty=pans; dnsty=dans; eps2=eps/ao; aoinv=l/ao; sum=aoinv-l ;

for (m in l:maxit)

{if (exit2==0)

{suml = 0.0;

for (i in 1 : n)

{hold = theta [i] ;

theta [i] = hold *
gamma [i];

hold2 = theta [i] ;

temp
= hold2 *

mult[i] + m
* delta [i]

*

(hold -

hold2)

suml = suml + temp};

b[m] = 0.5 *
suml;

suml
= b [m] ;

itemp
= m

-

1;

if (itemp > 0)

{for (i in itemp: 1)

{suml = suml + b[i]
*
a [m-i] } ; } ;

a [m] =
suml/m;

suml = a [m] ;

k = k + 2;

if (lans < tol)

{lans = lans + log(z/k);

dans =

exp(lans)} else

{temp
= dans;

dans = temp
*
z/k; }

pans = pans
- dans;

sum = sum
-

suml;

temp
= dnsty;

dnsty
=

temp + dans
*
sural;

temp
= suml ;

suml = pans
*
temp;

temp
=
prbty;

prbty
=

temp + suml;

if (prbty < -aoinv)

{RUBEN =

-3.0;

ifault = 3;

exit = 1;

m = maxit; }

if (exit == 0)

{temp
= abs

(pans*

sum) ;

if (temp < eps2)

{temp
= abs (suml) ;

if (temp < eps2)

{ifault = 0;
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L = 1;

m = maxit;exit2 = l ;

};

if (L == 0) {ifault = 4} ;

if (exit == 0)

{temp = dnsty;

dnsty = ao
*
temp/ (beta + beta) ;

temp
=
prbty;

prbty
= ao

*

temp;

if (prbty < 0.0 | prbty > 1.0)

ifault = ifault + 5} else

{if (dnsty < 0.0) {ifault = ifault + 6};}

RUBEN =
prbty; }

RUBEN

test=c (RUBEN, ifault)

test}

Thefunction Invrub

Invrub<- function ( lambda 1 , crate)

{minlambda=min ( lambda 1 [ 1 ] , lambda 1 [2 ] , lambda 1 [ 3] )

maxlambda=max (lambdal [1 ] , lambdal [2] , lambdal [3] )

cmin=qchisq (1-crate, 3, FALSE, FALSE) *minlambda

cmax=qchisq (1-crate, 3, FALSE, FALSE) *maxlambda

cf irst= (cmax+cmin) /2

exitl=l

precision =
.00001 Isets the level of precision#

maxnit=100 tsets the maximum number of iterations#

for (counter in l:maxnit)

{if (exitl==l)

{a=Rub (lambdal ,
cfirst)

prec= (cmax-cmin) /2

deviation =

crate-a[l]

if (prec > precision)

{if (deviation > 0)

{ cmin=cfirst ; cfirst= (cf irst+cmax) /2 } else

{ cmax=cf irst; cf irst= (cf irst+cmin) /2 } }

else {exitl=0}};}

b=Rub (lambdal, cfirst)

d=exitl

e=c(cfirst,b[l] ,d,b[2] )

e}
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Appendix 2

The algorithm presented here is meant to automate the computation of the proposed process

capability index in the field of color metrics. It attempts to estimate the process capability

index by making use of the CIE94 equations presented in the Application: analysis of color

metrics section.

The following algorithm has been developed as well for the statistical package R. It makes

use of the two algorithm presented in Appendix 1, Rub and Invrub. In addition, it requires the

package
scatterplot3d'

to be installed and loaded. The function requires the following input

parameters:

VarCovar the variance-covariance matrix for the variance component of interest

Amean the mean observed value for

Bmean the mean observed value for
b*

Gamma the desired capture rate

The algorithm output will include: c (the process capability index),
c2

,
the exact capture rate

associated with that c and two fault codes, associated, respectively, with the algorithms Rub

and Invrub (if fault codes are different from zero, we recommend increasing the number of

maximum allowed iterations in the respective algorithms). Finally, the algorithm offers a

three-dimensional plot presenting the y capture region associated with the variance-

Available at http://www.r-proiect.org/
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covariance matrix, the tolerance region and the /capture region with the same shape and

orientation of the tolerance region.

For example, the following call, using the parameters for Example 3, Instrument A:

pei (matrix(c (0.013248, .0043168, .0093528, .0043168, .007848, .0017508, .0

093528,. 0017508,. 0124696), 3, 3), -2 8. 360494, -38. 42449,. 99)

will produce the plot presented in Figure 19 and the following output:

[1]
"c=" "0.329637830095298"

[1]
"c*2=" "0.108661099029937"

[1] "Exact
Capture=" "0.99000098123337"

[1] "Fault
Codes=" "0" "0"
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Figure 19. Output of the Pei algorithm.
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Thefunction Pei

pci<- function (VarCovar , Amean, Bmean, Gamma)

{Cabmean= ( (Amean*2) + (Bmean'2) )
A

( .5)

Sl = l

Sc=l+0 . 045*Cabmean

Sh=l+0 . 015*Cabmean

MaxDim=max(Sl, Sh, Sc)

SqrootTol=matrix(c (Si , 0 , 0 , 0 , Sc, 0 , 0 , 0 , Sh) ,3,3)

InvSqrootTol=chol2inv (chol (SqrootTol) )

Ul=InvSqrootTol%*%VarCovar

U=Ul%*%InvSqrootTol

valuesl=eigen (U) $values

values2=sort (valuesl)
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values = c (values2 [3] ,
values2 [2] ,

values2 [1] )

pcisq=Invrub (values
, Gamma)

pci =sqrt (pcisq [1] )

print (c (
"c="

, pei) )

print (c ( "c"2=" , pcisq [1] ) )

print (c ( "Exact Capture= "

, pcisq [2] ) )

print (c ( "Fault
Codes="

, pcisq [3] , pcisq [4] ) )

Ml=SqrootTol

M2=pci*SqrootTol

m31=ll . 34*VarCovar

m31 .
eigen=eigen (m31 )

C=m31 . eigen$vectors

D=diag (m31 . eigen$values )

M3=C%*%sqrt (D) %*%t (C)

xpoints=0

ypoints=0

zpoints=0

x=0

y=0

z = 0

for (thetali in 0:100)

(for (theta2i in -75:75)

(thetal= (thetali + 0) *3 . 6

theta2= (theta2i + 75) *1 . 8

x=c(x,sin(thetal)*cos(theta2) )

y=c (y, sin (thetal ) *sin(theta2) )

z=c ( z ,
cos (thetal ) ) }

}
sphere =cbind (x, y ,

z )

ell ipse l=sphere%*%Ml

ellipse2=sphere%*%M2

ellipse 3 = sphere%*%M3

total=rbind(ellipsel,ellipse2,ellipse3)

xcord=total [ , 1]

ycord=total [ , 2]

zcord=total [ , 3]

color=
"black"

color=c (color, rep (
"green"

,
(nrow (total) -3) /3) )

color=c (color,
"black"

)

color=c (color, rep (
"red"

,
(nrow (total) -3) /3) )

color=c (color,
"black"

)

color=c (color, rep (
"black"

,
(nrow (total) -3) /3) )

color = c (color, rep (
"black"

, 0 ) )

scatterplot3d (xcord, ycord, zcord, color, pch=
'

.

'

,

xlab=expression (paste (Delta,
' L* '

) ) ,
ylab=expression (paste (Delta,

'
C*ab

'

) ) ,zla

b=expression (paste ( Delta,
'H*ab'

) ) ,
scale. y=. 5, angle=4 5)

legend ( "toplef
t"

,
c (
"Tolerance"

,

"Fitted"

,

"Natural "
) ,
text . col = c (

"green"

,

"red"

,

"black"

) ,
cex=

. 90) }
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Appendix 3. Data assumption checking, instrument I, long-term data, cyan.

To illustrate the procedure applied when exploring the datasets used in the example, we

report the process applied to the long term dataset, cyan tile, for the first handheld

bidirectional instrument (instrument I).

Univariate plots of the data versus order of observations are presented in Figure 20, Figure 21

and Figure 22. The results of formal univariate normality tests are presented in Table 1 1
,

Table 12 and Table 13.
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Figure 20. Lightness versus time, long-term, cyan, instrument I.
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Figure 21. Chroma versus time, long-term, cyan, instrument I.
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Figure 22. Hue versus time, long-term, cyan, instrument I.
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Table 11. Univariate normality tests, long-term, cyan, lightness, instrument I.

Test Test Statistic Value P-value

Shapiro-Wilk W 0.9900 0.9921

Kolmogorov-Smirnov D 0.0742 >.15

Cramer-von Mises W-Sq 0.0316 >.25

Anderson-Darling A-Sq 0.1815 >.25

Table 12. Univariate normality tests, long-term, cyan, chroma, instrument I.

Test Test Statistic Value P-value

Shapiro-Wilk W 0.9700 0.3475

Kolmogorov-Smirnov D 0.0453 >.15

Cramer-von Mises W-Sq 0.0375 >.25

Anderson-Darling A-Sq 0.2600 >.25

Table 13. Univariate normality tests, long-term, cyan, hue, instrument I.

Test Test Statistic Value P-value

Shapiro-Wilk W 0.9800 0.8233

Kolmogorov-Smirnov D 0.0746 >.15

Cramer-von Mises W-Sq 0.0287 >.25

Anderson-Darling A-Sq 0.1938 >.25

Normal probability plots are presented in Figure 23, Figure 24 and Figure 25.
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Figure 23. Normal probability plot, long-term, cyan, instrument I, lightness.
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Figure 24. Normal probability plot, long-term, cyan, instrument I, chroma.
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Figure 25. Normal probability plot, long-term, cyan, instrument I, hue
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Formal tests for normality for the multivariate set presented in Table 14 detected no

significant skeweness or kurtosis at a level of confidence of .05. Finally, the Henze-Zirkler

T-test did not detect any significant departure from normality at a level of confidence of .05.

A chi-square Q-Q plot presented in Figure 26 confirms the findings.

Table 14. Multivariate tests.

Test Value P-value

Mardia Skewness 5.24 0.8748

Mardia Kurtosis -0.67 0.5022

Henze-Zirkler T -1.39 0.1658
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Figure 26. Chi-square Q-Q plot, long term, cyan, instrument I.
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