
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2007

Parallelizing the Cluster Rank Analysis application Parallelizing the Cluster Rank Analysis application

Anthony G. Esposito Jr.

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Esposito, Anthony G. Jr., "Parallelizing the Cluster Rank Analysis application" (2007). Thesis. Rochester
Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F7786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/7786?utm_source=repository.rit.edu%2Ftheses%2F7786&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Parallelizing the Cluster Rank Analysis Application

by

Anthony G. Esposito, Jr.

Submitted in partial fulfillment of the requirements

For the degree ofMaster of Science

in

Bioinformatics

at the

Rochester Institute of Technology

Thesis Advisor:

Dr. Michael Osier

Thesis Committee Members:

Dr. Dina Newman, Dr. Paul Shipman

~
. Informatics

at

RIT

To: Head, Department of Biological Sciences

Rochester Institute of Technology
Department of Biological Sciences

Bioinformatics Program

The undersigned state that ___ A_n_t_h_o_n....;,.Y_G_._E_s.....:.p_o_s_it_o_,_J_r_. __ , a

candidate for the Master of Science degree in Bioinformatics, has submitted his/her

thesis and has satisfactorily defended it.

This completes the requirements for the Master of Science degree in Bioinformatics at
Rochester Institute of Technology_

Thesis committee members:

Name

Michael Osier Dina Newman
(Committee Chair)

Dina Newman
(Thesis Advisor)

Paul Shipman

Gary R. Skuse, Ph.D.
Director of Bioinformatics

Date

Thesis Author Permission Statement

Title of thesis: ___ ---"P...::a"-'ra::.:.�~le""'Ii""'z~in:.t:g'_'t"_'he"'_'=C:;.:.lu:..:s"""te:..:r....:R""'a::.:n.::.k'_'A'_=n::::al,-,-y"",si","s..:..A.:.op::.op,""li:..::c=at~io",-,n.:....-____ _

Nameofauthor: ___ ..:..A~n~t~ho~n..:..y~G~.~E~s~po~s~i~to~,~J~r _______________ _
Degree: ______ ~~~as~t~er~o~f~S~c~i~e~nc~e~ _________________ _
Program: _____ ~B~i~o~in~f~orm~::::at~ic~s~ __________________ _
College: ______ ~S!::.cl:.!:· e:!.!n!::.ce:::....... ____________________ _

I understand that I must submit a print copy of my thesis or dissertation to the RIT Archives,
per current RIT guidelines for the completion of my degree. I hereby grant to the Rochester
Institute of Technology and its agents the non-exclusive license to archive and make
accessible my thesis or dissertation in whole or in part in all forms of media in perpetuity. I
retain all other ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Print Reproduction Permission Granted:

I, Anthony G. Esposito, Jr. , hereby grant permission to the Rochester
Institute of Technology to reproduce my print thesis or dissertation in whole or in part. Any
reproduction will not be for commercial use or profit.

Signature of Author: Anthony G. Esposito, Jr. Date:::5'-'-"10=5/-"'-07<---__

Print Reproduction Permission Denied:

I, , hereby deny permission to the RIT Library of
the Rochester Institute of Technology to reproduce my print thesis or dissertation in whole or
in part.

Signature of Author: ________________ _ Date: ______ _

Inclusion in the RIT Digital Media Library Electronic Thesis & Dissertation (ETD)
Archive

I, Anthony G. Esposito, Jr. , additionally grant to the Rochester Institute of
Technology Digital ~edia Library (RIT D~L) the non-exclusive license to archive and
provide electronic access to my thesis or dissertation in whole or in part in all forms of media
in perpetuity. I understand that my work, in addition to its bibliographic record and abstract,
will be available to the world-wide community of scholars and researchers through the RIT
D~L. I retain all other ownership rights to the copyright of the thesis or dissertation. I also
retain the right to use in future works (such as articles or books) all or part of this thesis or
dissertation. I am aware that the Rochester Institute of Technology does not require
registration of copyright for ETDs. I hereby certify that, if appropriate, I have obtained and
attached written permission statements from the owners of each third party copyrighted
matter to be included in my thesis or dissertation . I certify that the version I submitted is the
same as that approved by my committee.

Signature of Author: Anthony G. Esposito, Jr. Date:::5=10=5/-"'-'07'---_ _

II

Abstract

A wide range of researchers is beginning to utilize customized statistical

methods for analyzing data as hardware and software become cheaper and more

widely available. Cluster Rank Analysis (CRA) is an existing multivariate

statistical algorithm that existed as an inefficient service-oriented application.

Here it is described how CRA was optimized and parallelized using an available

computing cluster and both open source and custom software. This was followed

by the development of a command-line submission system for CRA jobs, as well

as a Web retrieval system for the results of analyses. A subsequent timing study

revealed speedup that quickly rose to 15 by the use 35 processors, and should

reach a proposed maximum of 19 given over 100 processors. It was found that

this speedup was limited primarily by the serial portion of code; the Ethernet

communication network was sufficient for this application. By the time that even

10 processors were involved in parallel runs, the average runtime had dropped

from over 100 minutes to approximately 15 minutes, before being reduced to 6

minutes by 80 processors. The locations of bottlenecks suggest that further

performance increases are possible through additional parallelization. This work

with CRA illustrates (1) the speed with which high-performance in-house

applications can be developed and (2) the speed and efficiency with which

statistical analyses of complex data structures can be carried out given commodity

hardware and software resources.

in

Table of Contents

List of Figures v

List of Tables vi

Acknowledgements vii

Introduction 1

Materials & Methods 18

Results 31

Discussion 47

Conclusions 61

References 64

IV

List of Figures

Figure 1 Diagram of a mitochondrion, in the context of the

eukaryotic cell in which it and others like it are found. 4

Figure 2 A simplified example of the CRA algorithm. 8

Figure 3 Approximate computation time to permute a set of

elements containing an arbitrary number of data points. 12

Figure 4 Schematics showing two possible physical architectures

for CRA instances. 14

Figure 5 Graph showing the effect ofAmdahl's Law on maximum

attainable speedup, which is limited by the fraction of a

program that must run sequentially. 27

Figure 6 Graph showing the reduction in runtime as the number of

permutation-performing processors is increased. 35

Figure 7 Graph showing the increase in speedup as the number of

permutation-performing processors is increased. 38

Figure 8 Graph showing the decrease in efficiency as the number

of permutation-performing processors is increased. 4 1

Figure 9 Graph showing the region of super-linear speedup for the

two timing runs. 42

Figure 10 Graph overlaying Figure 6 and Figure 7, allowing the

correlation between runtime and speedup to be clearly

seen. 43

Figure 1 1 Graph overlaying Figure 7 and Figure 8, allowing the

correlation between speedup and efficiency to be seen. 44

Figure 12 Screenshot of a typical results page for a CRA run. 46

List of Tables

Table 1 The number of processors used and total runtimes for the

first and second series of CRA runs in parallel. 34

Table 2 The number of processors used and permutation-based

runtimes for the first and second series of CRA runs in

parallel. 36

Table 3 The number of processors used, overall speedup values,

and permutation-based speedup values for the first and

second series of CRA runs in parallel. 37

Table 4 The number of processors used, overall efficiency values,

and permutation-based efficiency values for the first and

second series of CRA runs in parallel. 40

Table 5 The number of processors used, and overall Karp-Flatt

values for the first and second series of timing runs in

parallel. 45

VI

Acknowledgements

vn

Introduction

Many problems in biology, among other fields, exist alongside relevant

sets of data. Very often these sets contain large amounts of data, possibly with

multiple variables and some sort of inherent structure. One type of analysis that

could be performed in such cases would allow data from one dimension to give

some sort of meaning to data that exists in one, two, or even more dimensions. A

tree representing some sort of hierarchical data gives two forms of meaning,

represented by the two dimensions the tree occupies. This tree is capable of

yielding even more information about the data of which it is constructed. It can

be rearranged and have its leaves and nodes in a different order at each level of

the tree; however, as long as all of the edges between two points are maintained,

with no new edges or nodes being created and no edges or nodes being destroyed,

the tree remains the same.

Since a tree can thus be rearranged without affecting the integrity of the

tree, secondary sets of variables can be used to guide these rearrangements and

give them meaning. Applying a secondary data set to the tree could be done by

sorting the leaves while maintaining the topology of the tree; for example, the

leaves could be rearranged and sorted such that a gradient of secondary values is

developed across the leaves. In order to determine the proper order of sets of

leaves that join at higher internal nodes, each internal node could be represented

by the mean value of all the child nodes. The terminal child nodes would of

course be the leaves themselves, whose data points would be the basis for all

internal node values.

In order to give meaning to the rearranged leaves, and determine how

strong a gradient is created, scores like the Spearman rank order coefficient could

be calculated. In this case, the numeric order of the leaves is compared to the

fully sorted numeric order of the leaves; the latter assumes the topology of the tree

has been broken. The gradient would then be easily quantified by a numeric

value.

The potential to apply such an analysis to structured, multivariate data has

potential in many different fields of research. Two areas that are already using

this type of analysis, known as Cluster Rank Analysis (CRA), are human genetics

and ecology. The application of this type of analysis is especially relevant in

biological fields, as the use of hierarchical structures such as phylogenetic trees is

widespread.

Analyzing Human Genetics Data: Presbycusis

Age-related hearing loss, also known as presbycusis, is one of the most

common age-related ailments that affect humans. It is estimated that 30-35% of

the population between the ages of 65 and 75 suffers from some degree of hearing

loss; above the age of 75, the estimated percentage of the population that

experiences a decrease in hearing ability jumps to 40-50% (1, 2). The hearing

loss experienced with presbycusis begins in higher frequencies towards the top of

the audible range for humans. As the condition worsens, however, the loss of

frequency differentiation begins to occur in progressively deepening frequencies

(3, 4). This can become particularly debilitating as the lower frequencies that

humans communicate at begin to be included in the range of loss, threatening the

ability to distinguish speech as the disorder worsens (4).

Pedigree analysis has uncovered a trend in presbycusis sufferers:

presbycusis tends to be more prevalent in the children of a presbycusic mother

than in children of a presbycusic father, assuming that the other parent in each

case is non-presbycusic (5). It is thus hypothesized that presbycusis is linked to

the mitochondrial genome and not the nuclear genome, due to the egg, but not the

sperm, contributing the mitochondria to an embryo (6). There are additional

disorders that can be found in OMIM that are linked to the mitochondria, either

hypothetically or by actual mitochondrial gene linkage (5, 7).

Mitochondria, organelles present in most eukaryotic cells, are the

locations at which oxidative phosphorylation occurs during cellular respiration.

The mitochondrion has two lipid bilayer membranes; the outer membrane encases

the organelle, while the inner membrane surrounds a convoluted interior matrix.

Oxidative phosphorylation occurs across this inner membrane, with ATP synthase

converting ADP to ATP as the end result. The mitochondrion is thought to have

evolved from an intracellular endosymbiotic relationship earlier in eukaryotic

evolution; it has its own circular genome, complete with an origin of replication,

and reproduces by binary fission. Both of these traits are hallmark characteristics

of prokaryotic cells (8). The circular genome encodes, among other things, the

enzymes needed to replicate and sustain it (8). The structure of a single

mitochondrion, including the inner and outer membranes, cristae (internal folds),

and matrix, is presented in Figure 1 .

Figure 1 . Diagram of a mitochondrion, in the context of the eukaryotic cell in

which it and others like it are found. Note that the circular mitochondrial

genome is found in the innermost space of the organelle, known as the

matrix.

The origin of replication on the mitochondrial genome is flanked by two

hypervariable regions (HVR's); these regions are comprised of repeats in the

DNA, and are highly polymorphic (9). These HVR's are named HVR-I and

HVR-II; HVR-I precedes the origin of replication, while HVR-II immediately

follows the origin of replication (10). Currently, the correlation between specific

single nucleotide polymorphisms (SNPs) occurring in HVR-II and onset and

degree of presbycusis is a topic of much interest to human geneticists; for

example, researchers are sequencing the mitochondrial HVR-II of volunteers, as

well as performing a series of standard auditory tests (11). These data can then

used for correlative statistical analyses.

Analyzing Ecological Data: Environmental Sampling

Over the past century, the impact of humans on the environment has been

tremendous. Effects ranging from those of global warming, to waste disposal, to

forest clear-cutting indirectly and directly influence the distribution of species

across the landscape. There may be a trend of endangerment and extinction due

to human factors; one group of organisms that can be used to measure such

impacts is the order Anura (12). This order, which includes frogs and toads, is a

diverse group found not only in every continent except Antarctica, but also in

ecosystems ranging from mountain forests to runoff-water collection ponds (13).

Such a widespread and robust distribution makes this group particularly useful in

the determination of the effects of humans on animal populations (14).

The branch of research that studies the management of forests and the

balance between environmental and societal forest needs is known as silviculture;

while it is easy to measure the societal needs of forest use by examining human

needs such as demand for lumber, it is much more difficult to measure the

environmental needs (15). Thus, researchers can use organisms such as anurans

to gauge the impact of not only silvicultural issues, but also of other human

development issues such as transportation requirements, for example.

While the human impact on the environment may influence the

distribution of anuran species, there are other factors to consider in examining the

distribution of these amphibians over a given period of time (14). One group of

factors consists of those occurring naturally, such as the type of vegetation in a

given plot, the percentage of water, rock, or leaf litter cover, or the elevation (16).

Another group of factors consists of the other anuran species at a plot. Thus, not

only are the relationships between a species and the local environmental factors

examined, but inter-species relationships are also considered (14).

The factors that are considered are typically measured in the field. In one

study, plots 20m in diameter were made in several replicate sites in the Midwest

United States. Measurements and observations were made of various variables at

the sites over the course of several months (14). Of note, not all variables were

continuous or discrete values collected via measurements such as percentages.

There were categorical variables as well, such as local forest type.

It is important to realize that while the common perception is that

development by humans causes the distribution of species to change and

consequently be reduced, that is not always the case. By collecting data from the

field and analyzing it using statistical methods, new correlations can be

discovered; for example, an increase in the number of a given species in clear-cut

forests or near roads might not be expected, but would become evident in a

detailed analysis of the data. One potential relationship that might be

discoverable through further analysis is that cohabitation relationships with regard

to a specific set of environmental factors might vary depending upon those

factors.

Common Traits to both Biological Cases

The above cases share a number of characteristics. Both have large data

sets; for the presbycusis sets, there are DNA sequence data and auditory test

results data. The environmental sampling sets consist of data on species count per

plot, and environmental factor data. Additionally, both cases feature multiple

variables and ranges for those variables. The presbycusis sets have, for example,

type and location of a given SNP and type and result of auditory test. With

environmental sampling, examples include the type and count of species at a site,

along with environmental factor type and measurement value. Percent leaf litter

coverage and average depth, as well as type of forest and type and percent water

coverage are examples of the environmental factors and their respective

measurements. Since both cases feature hierarchical data sets and multi-

dimensionality, they are well-suited for analysis by CRA.

CRA (Cluster Rank Analysis) is one statistical analysis application

available for use in analyzing these types of data sets. In performing an analysis,

CRA constructs a phylogenetic tree based on a given variable, such as the

sequence of the HVR-II, or species count data. The positions of the leaves in a

two-dimensional representation of the tree are then swapped based on a secondary

variable, such as hearing ability at a given frequency, to maximize the gradient

across leaves of the tree; Figure 2 illustrates this. This swapping occurs within

the constraints imposed by the topology. In this figure, the gradient is maximized

from top to bottom, with the decision to swap any two children based on the value

of the two child nodes at a given point. The nodes in question may be two leaves,

a leaf and an internal node, or two internal nodes. The values of internal nodes

are the mean values of all children, calculated recursively down to the leaves.

B.

1 1

1 1 I

I

DDD (5)

* AAA (1)

BBB (3)

CCC (2)

EEE (9)

Original I

DDD (3)

- AAA (9)

- BBB (2)

-CCC (5)

- EEE (1)

Permutation I

CCC (2)

BBB (3)

- AAA (1)

- DDD (5)

-EEE (9)

Original II

^~^~' '

i
i ,

I

EEE (1)

BBB (2)

DDD (3)

* AAA (9)

CCC (5)

Permutation II

Figure 2. A simplified example of the CRA algorithm. "Original
I"

shows

the tree created, with each leaf node paired with its actual secondary value

for this hypothetical secondary data set. "Original
II"

shows the same tree

after swapping has occurred. Note that the tree topology has not changed.

"Permutation
I"

features the same tree with the secondary data values

shuffled; "Permutation
II"

is the resulting tree after swapping has occurred.

The nodes are then given a rank, and the Spearman rank order coefficient

is used to quantify the fit to a gradient. This score measures the correlation

between the order of leaves in a tree, and variables such as specific hearing

abilities (17). Thus, the correlation is determined between the re-ordered

secondary variables of the swapped tree, and those variables in their ultimate

order. Alternatively, the order of the leaves themselves can be used. For

example, in Figure 2A, the series in question are [2,3,1,5,9] and [1,2,3,5,9]; the

Spearman rank coefficient between these two sets is 0.7. For Figure 2B, the first

series is [1,2,3,9,5] and the second remains the same, yielding a Spearman score

of 0.9. This multivariate analysis allows relationships between one primary

hierarchical variable and multiple secondary variables to be quantified.

In the case of the presbycusic data, a certain degree of correlation between

similar genotypes and certain phenotypic traits can be either inferred or

discounted, depending on the Spearman rank coefficient and the p-value

generated through the permutations. As for the environmental sampling data,

analysis can reveal correlations between the presence of certain species at a

sampling site and environmental factors; this would hopefully reveal factors like

sensitivity of groups of unrelated species to environmental conditions, whether

they are natural or human-influenced.

Original CRA Implementation

The original implementation of CRA was run by executing a single Perl

file; this script began by managing the reading of input files and internally

preparing the data for analysis. Primary and secondary variables were stored in

internal data structures. During the course of execution, several Web Services

implemented in Java were called to perform certain functions and transformations

on the data (18). For example, one Web Service constructed a hierarchical tree

based on aligned DNA sequence data and passed it back to the Perl executable.

Another swapped the leaves of the tree and calculated the ranks of the swapped

leaves. A third Web Service calculated the Spearman rank coefficient. Some of

the Web Services, such as the one that constructed a tree, called external software

packages such as PHYLIP (19).

Despite having data sets that may contain a large number of data points,

statistical significance is not elucidated simply by the calculation of the Spearman

scores; these scores are simply coefficients of correlation between two similar sets

that may be ranked differently. CRA must therefore use other means to determine

if the actual Spearman scores are statistically significant.

The manner of determining statistical significance used here is to

randomly shuffle the secondary data for the primary data points a certain number

of times. These shuffled versions of the original tree are then scored, swapped,

and compared to the initial Spearman rank coefficients. Thus, the frequency of

scores that are at least as strong as the observed, given a comparable random data

set, can be determined. For example, if the actual Spearman score for a given

secondary variable v is 0.78, and 3 out of 1000 random permutations have

Spearman scores better than 0.78, then only 0.3% of shuffled scores for variable v

have higher Spearman scores then the original ones. The p-value would therefore

be 0.003, less than the typical acceptance threshold of 0.05. The number of

permutations performed depends on the precision of the p-value desired. The

differences between the first trees in parts A and B of Figure 2 illustrate the

shuffling of secondary data values.

After the specified number of permutations had been computed and

scored, an HTML table containing the independent variables and the results of

their respective permutations was created and written to an output file.

Specifically, the original Spearman rank coefficient and number of times that the

permuted data yielded a higher Spearman score than the original data were

presented.

This original implementation of CRA was designed to run in a fairly

distributed manner; much of the computational work was performed by

10

independent Web Services that were called by the Perl executable. This model

adhered fairly closely to the service-oriented architecture paradigm. Note that

while the term "service-oriented architecture", or SOA, is often applied

incorrectly to any software system utilizing Web Services, the original

implementation of CRA came rather close to being a true SOA, according to

commonly-accepted definitions of the architecture (20).

A number of processors or machines may have been used in an execution

of the original CRA implementation. The client on which the Perl executable

resided was machine 0; each machine that a necessary Web Service ran on was

machine 1 through n, with n being the number of independent servers that were

hosting Web Services. In the original implementation, n could range from one to

four, since there were fourWeb Services called during the course of execution.

Problems with the Original CRA Implementation

In the original decentralized implementation, CRA suffered from several

problems. These ranged from performance issues resulting from the number of

tree permutations that needed to be created and scored, to human factor issues

such as the lack of an intuitive user interface. Additionally, due to its service-

oriented architecture, CRA initially suffered from performance limitations based

on available network bandwidth.

As described earlier, CRA carries out permutations on hierarchical trees in

which it maintains proper linkage within the tree, while determining an order of

nodes and leaves that minimizes the Spearman rank order coefficient. The

11

number of permutations that must be computed is typically around 1000, for a p-

value precision of 0.001. Creating one permutation and scoring it for a single tree

is a trivial process on current computer processors. However, as the number of

trees that need to be considered grows, so does the time a given set of processors

needs to complete the task. The approximate run-time to fully permute and score

a tree of arbitrary size, thus covering every possible permutation of the tree, on a

fixed number of processors can be seen in Figure 3. The runtime is 0(n\); that is,

the computation time grows at a rate that is the factorial of the number of data

elements in the set being permuted (21). This notation typically refers to an

arbitrary number of computational steps that need to be performed, but can be

accepted as a rough estimate of the relative runtime required (22).

5 6

Number of Data Elements

Figure 3. Graph showing the approximate computation time to fully permute

a set of elements containing an arbitrary number of data points.

Respectively, from fastest-rising to slowest-rising, the curves represent

algorithms with O values of (), x! (X), r (?), x (), and log(x) ().

12

Due to CRA having been implemented as a central Perl
"hub"

that utilized

Web Services, it ran on multiple processors during a typical course of execution.

However, despite having had a number of processing units involved during a run

of CRA, only one would be performing CRA-related computations at any given

time. The client running the main executable had at most one processor dedicated

to the application; the same was the case for each of the Web Services, which

were not running in parallel on their respective machines. To illustrate this,

Figure 4 shows two possible physical architectures for the original version of

CRA; one (Figure 4A) assumes that all components of the system, both the

executable and the Web Services, are running on a single machine. The other

(Figure 4B) assumes that the executable is running on one machine, and each

Web Service is running on a unique machine.

13

Perl Executable

Web Service 1 PHYLIP

Web Service 2

Web Service 3

Web Service 4

Perl Executable

B.

4 * Web Service 1

?

4

PHYJP

Web Service 2 Web Service 3 Web Servbe 4)

Figure 4. Schematics showing two possible physical architectures for CRA

instances. Instance A (top) features both the main executable and the Web

Services running on the same server. Instance B (bottom) features the main

executable on a separate client from the Web Services; each of the Web

Services runs on servers unique to each Service. Instance B also happens to

be the logical architecture of the system.

It is important to note that while the physical architecture may have differed

between individual CRA instances, the logical architecture was identical to that in

Figure 4B; that is, the main executable had no explicit information regarding the

physical location of any given Web Service. While Internet protocol (IP)

addresses could be used in calling Web Services, the use of uniform resource

identifiers (URI's) transfers knowledge of physical addresses to DNS servers;

CRA only had to know a logical URL that could then be mapped to any physical

location (23, 24). Abstraction such as this is one of the hallmarks of service-

oriented architectures (20).

14

Since each one of the permutations required calls to Web Services in order

to be scored and ranked, Ethernet latency was an additional problem that CRA

suffered from in its original implementation. Typically, a large number of

permutations will need to be made in order to achieve the desired p-value

precision; therefore, an equally great number of calls must be made over a

network to accomplish this. The main executable and Web Services ran either on

the same server, or on servers within an intranet. This helped to reduce the time

lost to transmission of data; however, such an approach is not feasible when data

must travel over the Internet or over high-traffic intranets. Additionally, each call

to a Web Service required a lookup to map the logical address to a physical one.

This presented yet another possible bottleneck as more and more independent

machines became utilized during an execution. In both sequential and parallel

applications, communication overhead is one of the biggest performance barriers

to overcome. The effect of communication overhead can be seen in the wide

range of times that message transmissions may span. Inter-processor

communication via shared memory or high-speed interconnects may take less

than a millisecond, while inter-server communication over Ethernet may take as

long as several seconds if there is a lot of traffic vying for bandwidth. (25, 26)

An extension to the problem of Ethernet latency and communication

overhead is the potential decrease in reliability that is present when multiple

independent servers are required to complete an analysis. If a machine hosting a

required Web Service is under heavy load from other applications running on it, it

may be slow to respond to a request. Even worse, if the aforementioned machine

15

was to fail, the CRA executable would eventually have to abort execution due to a

major component of its architecture being unavailable. Since calls to the Web

Services were synchronous, the main executable would stop and wait until it

received either a response to its request, or an error of some sort (18). Thus, both

delay of a response and absence of a response could severely impact the

performance of CRA in its original implementation.

The problem of shared resources was introduced above. This refers to

servers typically not being dedicated to a given task, whether it is running the

main CRA executable or hosting any of the Web Services. Even if

communication between two machines was instantaneous, other processes

running on both client and server machines could impact the performance of CRA

drastically. Application servers are often combined with Web servers and

possibly other server setups as well. One instance of CRA ran entirely on the RIT

Bioinformatics departmental server, Pastamaker. In this case, Pastamaker was

running the Perl executable and hosting and running the Web Services. At the

same time, potentially dozens of other users were utilizing CPU cycles. This is a

prime example of how conditions outside the scope of a given application, such as

CRA, can impact the performance of a program.

One final issue that CRA had was its lack of an intuitive user interface.

This was unrelated to overall performance and reliability; however, in order to

adopt a program for frequent or mainstream use, users must feel comfortable

using an application with the minimum possible amount of training. Since it was

executed from a non-CGI Perl script, a user had to have access to a machine that

16

had Perl interpreters installed, as well as a command line interface. The

command line interface was the only way to specify run-time parameters and

input and output files. The user therefore had to have previous knowledge of the

number, type, and order of these arguments, or be able to look at the source code

and read the comments within to determine what the parameters should be. As a

user base grows, such an implementation could become intimidating and impede

the adoption of such a program.

17

Materials & Methods

General Approach to Converting CRA to a Standalone Application

In making CRA a viable solution for the large-scale multivariate data

analysis described previously, many aspects of the program needed to be

modified. These modifications consisted of not only the parallelization of the

program, but also other usability improvements such as a simplified submission

system for running the program and a Web interface for viewing the results of

analyses.

A multi-step approach was taken to make the required changes to the

program. The first step consisted of converting the Java Web Services to Perl

modules. As described earlier, there were initially four Web Services called

during a typical execution, with a fifth alternate Service. Thus, five independent

Web Services had to be rewritten in Perl. Additionally, certain PHYLIP programs

that were called by some of the Web Services, such as tree generation, were

converted to Perl, using existing modules wherever possible. The Comprehensive

Perl Archive Network (CPAN) was used to locate the appropriate Perl modules,

yielding better integration of the program's required components (27). The

conversion to Perl modules allows for reusable, modular components; this

maintains some of the rationale behind the original service-oriented architecture

(20), along with the abstraction that extracting independent portions of code

achieves. By having modular code, other applications that might need to take

advantage of the methods available in the modules may easily do so. The largest

18

Perl source repository, CPAN, is a prime example of the widespread acceptance,

use, and promotion ofmodules in Perl software development (27).

Following the conversion of the Java Web Services to Perl modules, the

main Perl executable was tested using the modules, as they had to function

properly before development could continue. Successful execution of this code,

including valid output, allowed development to pass the first checkpoint. The

resultant product was a stand-alone, serial version of CRA as a Perl application.

Optimization of CRA

The original version of CRA was, as outlined earlier, converted from a

distributed service-based architecture to an integrated application that contains all

necessary methods. The runtime of the subsequent serial application was greatly

reduced over the distributed system, which was expected considering the

problems with public-network Ethernet communication.

In addition to the preexisting Perl modules that are used during execution,

there are several CRA-specific modules that were written during the conversion

of CRA to standalone form. A distance module (Distance.pm) handles the

generation of both DNA and species distance matrices, and any other

implemented distance matrix methods. The DNA distance matrix, as mentioned

earlier, is computed using BioPerl; the species distance matrix, on the other hand,

is computed entirely within this module (28). A tree module (Tree.pm) converts a

BioPerl-generated parentheses-delimited tree into a dynamic tree using Perl's

built-in data structures. Finally, a swapping module (TreeSwapping.pm) handles

19

the flipping of the leaves and nodes based on their secondary variables, the sorting

of the secondary variables, and the traversal of the tree to determine the order of

leaves after the flipping.

After this initial stage, several elements of the program were modified

further optimize it before parallelization. This ensured that the serial version used

for timing was one of the best possible implementations, a necessity in producing

reliable speedup data. The first serial version relied rather heavily on object

orientation, in both BioPerl and CRA itself. The main benefit of using objects is

that the code remains fairly modular and the objects and their methods tend to be

previously documented. However, object oriented (00) functionality is not

currently native to Perl, and therefore adds a degree of overhead to applications.

The decision was made to sacrifice the cleanliness and modularity of object

orientation for the sake of increasing efficiency and decreasing runtime. The non-

OO serial version utilizes native Perl data structures such as hashes, arrays, and

references, rather than objects.

Parallelization of the Optimized Serial Version of CRA

The second step in the development process was the actual parallelization

of the stand-alone application. Development occurred on both a parallel cluster

(described below) and sequential machines; the reason for this is that part of the

parallelization could be done serially, with occasion testing in parallel. This

prevented unnecessary utilization of the Cluster's resources, which are currently

used fairly heavily by about a dozen different users. Further testing and tuning

20

during the parallelization process had to be performed in parallel, however.

Synchronization of the development between the two types of machines was

maintained through the use of modules; rather than having to write the same lines

of code on two systems, modules could instead be copied when changes were

made.

Parallelization itself was accomplished using MPI (Message Passing

Interface), an API for interprocessor communication. This model for parallel

computing is used widely, with bindings available for many programming

languages (29). As with most parallel programs, execution begins on one

processor, with the code branching out onto a specified number of processors.

Successful execution in parallel, which again included valid output, allowed this

portion of the project to pass the second checkpoint.

The division of the algorithm among an arbitrary number of processors

began with the division of permutation calculations among the slave (compute)

nodes. The root node created the distance matrix and tree, and swapped and

scored that original tree for each of the secondary data points. This approach was

then modified to allow the compute nodes to begin working as soon as possible;

after the root node finishes creating the tree, it sends the tree and the secondary

data to the compute nodes. They can then begin the permutations while the root

node scores the original tree and sends those scores to the compute nodes. After

the permutations are complete, the scores are compared to the original ones and

the results are sent back to the root node and tallied.

21

To determine the number of permutations that each slave node must

compute, the number of permutations is divided by the number of processors

being used. Each of these values is then increased by one; this accounts for cases

in which the number of permutations and number of processors are not evenly

divisible. The user is thus guaranteed to have, at a minimum, the number of

permutations computed that they specified.

Computational Resources

The initial conversion of CRA to a standalone application was carried out

on serial workstations. After the serial version was finished and tested for proper

functionality, further development was performed on the IBM High Performance

Computing Cluster (RIT Cluster; the Cluster) (30).

The RIT Cluster, formerly known as plexus.bioinformatics.rit.edu, is a

Beowulf cluster of machines housed in the Center for Advancing the Study of

Cyberlnfrastructure and is maintained and administrated by RIT's Research

Computing Department (31). The Cluster consists of one IBM xServer 345 head

node, which contains dual 2.0GHz Intel Xeon processors and 1Gb of memory.

The head node manages the Cluster's network connection to external networks,

and is what users log onto when using the Cluster. This node also determines

what tasks are assigned to which compute nodes, which will be discussed later in

this section.

In addition to the head node, there are forty-seven compute nodes

available. Each of these machines is an IBM xServer 330, with dual 1.4GHz Intel

22

Xeon processors and 512Mb of memory. The compute nodes are connected to

each other and the head node through gigabit Ethernet and a high-performance

network switch.

The Cluster runs the University of California's ROCKS software package;

this includes CentOS Linux as the operating system, the Apache Web server,

security software, grid computing packages, system monitoring software, and Sun

Microsystem's Sun Grid Engine (SGE) (32, 33). SGE is used to schedule both

parallel and serial jobs; a user submits a script with runtime and, if necessary,

parallel parameters to SGE, which will then send the job to the appropriate

compute nodes when the required number of nodes is available for use. Of note,

since the head node is the primary machine and governs the compute nodes, both

parallel and serial jobs are run on compute nodes only; this maintains the overall

integrity of the Cluster.

Development and Source Code Resources

Development was carried out using the Eclipse Integrated Development

Environment, in conjunction with the EPIC Perl extension for Eclipse (34, 35).

This extends Eclipse's noted Java development functionality to the Perl language;

furthermore, this extension utilizes the PadWalker module. This module allows

the contents of allocated memory and variables to be viewed in real-time while

debugging; this alleviates the tedious process of having a program print out

variables as it runs, which is how debugging in Perl is traditionally accomplished

(36).

23

The BioPerl package is used in several areas of both the optimized serial

and parallel versions of CRA. The generation of a distance matrix and creation of

a tree rely heavily on modules available in BioPerl. The generation of a distance

matrix utilizes the Bio::AlignIO, Bio::Align: :DNAStatistics, and

Bio::Matrix::PHYLIPDist modules (28, 37). For the creation of a hierarchical

tree, Bio::TreeIO, Bio::Tree::DistanceFactory, Bio::Tools::Phylo::Phylip::Prot-

Dist, and IO::Capture::Stdout are used (28, 37, 38). Custom distance methods,

such as the one used for generating species distances, require an intermediate file

between creation of the distance matrix and creation of the tree. The module

String::Random is used to give an arbitrary random name to this intermediate file;

it is later removed from the file system after the tree is created (39). Finally,

Time::HiRes is used to collect the high-resolution times needed for the timing

study (40).

Other Perl modules available on CPAN are utilized in the new versions of

CRA. The generation of Spearman rank coefficients is handled by a function in

an available Perl module; the functions used in the timing study on both versions

of CRA are also publicly available (41, 40).

Parallel CRA uses MPI for interprocessor communication. The bindings

between the Perl source code and the MPI functions available on the Cluster are

managed by MPI.pm, an MPI implementation in Perl (42). The most common

MPI functions, such as
"Send"

and
"Recv"

(receive), are fully implemented in

this module. However, certain functions such as
"Beast"

(broadcast) have not yet

24

been implemented, to the detriment of Parallel CRA's performance; this issue will

be discussed further.

Several of the aforementioned modules are usually not present in a typical

Perl installation; they are quickly and easily installed, though. Most of the

remaining functionality in CRA uses standard Perl features that are included with

every installation. The other required modules are Distance.pm, Tree.pm, and

TreeSwapping.pm; these are the three external modules developed for CRA and

are part of the application core.

Evaluating the Performance of Parallel CRA

Following successful parallelization, benchmarking was performed to

determine the speedup achieved by the parallel implementation of CRA. (Of

note, previous testing to pass checkpoints verified that the results from the parallel

implementation were valid and consistent with those from the original sequential

implementation.) Benchmarking was performed on the Cluster and compared the

rewritten serial CRA implementation to the parallel implementation run both on

one processor and then on an arbitrary number of processors. This allowed

speedup to be determined, which is defined as (43):

s -^

1P

Here, speedup is Sp, where p is the number of processors currently being used to

execute the program, T\ is the run-time for the original sequential algorithm, and

Tp is the time the parallel algorithm takes to run on p processors. Speedup allows

the overall improvement in performance to be measured. The numerator here can

25

be substituted with the time it takes the parallel implementation to execute on one

processor, thus yielding speedup+; this allows analysis of the parallel version as it

runs on 1 to p processors. Speedup+, while not used very frequently in timing

studies, can be effective in standardizing timing results between 1 and p

processors when there is a fundamental algorithmic difference between serial and

parallel versions of a program.

Efficiency was also calculated, which is a measurement of the speedup per

processor, and is defined as (43):

F - ?E
P

It can thus be determined how effective each processor is in increasing speedup,

whose curve tends to flatten out as the number of processors used increases. This

flattening is the effect of Amdahl's Law, which states that the maximum speedup

attainable is limited by the portion of a parallel program that must run

sequentially or serially (44). Amdahl's Law is demonstrated in Figure 5.

26

10 20 30 40 50 60

Number of Processors

Figure 5. Graph showing the effect ofAmdahl's Law on maximum attainable

speedup (x axis), which is limited by the fraction of a program that must run

sequentially. Curves eventually approach an asymptote that limits the benefit

of additional processors on speedup (y axis); this asymptote is the inverse of

the percentage of the code that must run sequentially. The curves shown

here represent, respectively from top to bottom, programs with 5%, 10%,

25%, and 50% serial run-time.

Finally, the Karp-Flatt metric was applied to the timing data. This metric

is often a good indicator of the reason for a limit in speedup. There are two

practical reasons for limits of maximum speedup. The first, governed by

Amdahl's Law, is that the serial portion of code in a program is the limiting

factor, assuming that the parallelization is optimal. The second reason is that

there is a perceivable amount of overhead in the parallel implementation, which

increases as the number of processors, p, increases.

27

The Karp-Flatt equation is defined, in practice, as (45):

1 _

1

P_

1
e =

-- T

P

In this equation, p is the number of processors and i// is the speedup attained given

p processors; this version of the Karp-Flatt equation is derived from a theoretical

equation which can be interpreted as the serial portion of the parallel algorithm

plus all parallel overhead, divided by the runtime on one processor (45).

Development of a Submission System for Parallel CRA Jobs

The final development step was the implementation of a user interface for

the setup, execution, and presentation of results from Parallel CRA. This system

was originally intended to be a Web interface. However, as will be discussed in

Results, several obstacles arose that guided the submission of jobs away from a

Web interface for the time-being. The retrieval of results from CRA analyses is,

however, possible via the Web. While gathering qualitative metrics on the

usability and function of such an interface is difficult with such a small user-base,

qualitative requirements such as ease of use and robustness guided development

here.

A Perl script was created that prompts the user for the names of the files to

upload, and various parameters to be submitted to CRA and the queuing system

on the cluster. These include: CRA's parameters, such as the type of data that is

being submitted and the number of permutations to perform; cluster parameters

such as the number of processors to use and the user's username on the cluster;

28

and job parameters such as the name of the job and the user's email address. Of

note, a random string is appended to job names to avoid job name and output file

name collisions, as the output file names are based on the original job names (39).

The program creates a parameter script that will be used by the cluster's queuing

agent to run the job. Fairly robust checks are performed against the information

provided by the user, to ensure validity in fields such as email addresses, file

names, processor and permutation ranges of values, and usernames.

The verification of usernames is accomplished by checking a

configuration file for names which have been previously authenticated by the

Cluster. Public-private key DSA authentication is first set up by a modified

version of the LUSSH script from the LUFS project (46, 47). This authenticates

users once and then allows for subsequent logins sans password. The names of

users that have done this are appended to a configuration file for use by the

submission script.

Following the gathering of parameters, a zip file is created that contains

the primary and secondary data files, and the parameter script. The zip file is

uploaded to the cluster, unzipped, and submitted to the Cluster's parallel job

queue. The zip file is subsequently deleted from the Cluster.

The results of a parallel run are available to the user in a meaningful

format upon completion of the analysis. The user is notified by email when their

job has finished running; notification is also made when a job starts running and if

any errors occur that result in the job being aborted. The resulting HTML file is

available to the user on the Cluster, via the Web. Cascading Style Sheets (CSS)

29

are used to format the document, while a publicly available JavaScript

(sorttable.js) enables the sorting of HTML tables; this allows the results to be

sortable by column in ascending or descending order (48, 49).

The use of email for notifying the user of job status is due to the time span

that might exist between submission of a job and start of a job; this latency is a

factor of both the number of users utilizing the Cluster's resources at a given time,

the number of processors being used by other users, and the number of processors

that the user specified CRA to use. Any errors that result in job abortion are

typically due to problems on the Cluster, rather than in CRA's source code;

however, users should still know if such errors occur, so that they have the option

to resubmit those jobs.

30

Results

Timing Study Setup and Parameters

The optimization and parallelization of CRA resulted in two separate

applications. The first is a serial version of CRA that runs on one processor and

lacks the overhead associated with the original service-oriented implementation;

the second, a parallel version that can run on one or more processors. As

described previously, the output values produced by intermediate versions of

these programs were compared to known results, to ensure that the changes made

in each developmental stage did not cause the program to output erroneous data.

The primary timing study was performed using presbycusis data. The

primary data file consisted of mitochondrial DNA sequence data that had been

previously aligned and edited; the set contained sequence data for 227 individuals,

with each entry being 216 nucleotides in length. The secondary data file

contained the results of 40 different hearing tests for each of the 227 subjects

involved. The standard number of permutations chosen for timing was 1000; this

is the value used in determining a p-value to a precision of 0.001, as described in

the Introduction with regard to evaluating statistical significance.

Determining Parallel and Serial Runtimes

To determine the runtime of the serial version of CRA, several runs were

carried out using the above data at different times on the cluster. This distribution

of runs ensured that consistent times were gathered, unaffected by external

factors. Once a general estimate could be made of the time that a serial run

31

should take when using the above parameters, a series of five runs was carried

out. The mean of these was then taken, resulting in a runtime of 6557.37 seconds

(alternatively, 109.3 minutes or 1.82 hours). This value represents Tj, the time

required for CRA to run serially, and was used in determining speedup in the

parallel implementation. The improvement of the new serial version over the

original SOA version of CRA was not quantified, due to the latter not being

currently deployed.

After parallelization was completed, a series of parallel runs was carried

out. The data sets and number of permutations remained the same; the number of

processors, however, varied. Beginning with two processors and increasing in

steps of five up to 81 processors, 17 sets of three runs each were performed. As

with the determination of the serial runtime, the mean time for each group of three

runs was taken to be the runtime for that number of processors. This first series

represented ideal runtimes; a second series of runs was carried out, using the

above processor groupings in addition to a run using 86 processors, but with two

runs per group. The reason that only two runs per processor group were

performed is that at the time, the Cluster was scheduled to be taken down for an

indeterminate period of time for a physical relocation. The second series featured

a number of non-ideal runtimes, illustrating several aspects of running programs

in a shared environment; for example, the affect of users running jobs outside an

application queuing system.

It was noted that a range from 2 to 86 processors was used; this represents

the total number of processors used in a given parallel run. Subsequent tables and

32

figures, however, refer to processors in a range from 1 to 80 or 85; this is due to

the approach taken during parallelization. Recall that one processor creates the

distance matrix and tree, and scores the initial tree. After that, the permutations

are divided up among the remaining non-root processors. For example, if 5

processors are used, processor 1 performs the initial serial work, while processors

2 through 5 will create and score the permutations.

Since the concern of this timing study is the number of processors that the

permutations can be divided among, the number of processors performing

permutations will be accounted for as p henceforth. Overall, this will not affect

Sp, speedup for p processors, but will marginally affect Ep, efficiency for p

processors. The runtimes realized in the parallel runs were therefore Tt through

Tss.

The average time that each set of runs took to finish is shown below in

Table 1, in both seconds and minutes. Timing data for 85 processors in the first

run was unattainable due to high cluster usage; the timing data for 85 processors

on the second run was acquired in the hours leading up to the shutdown and

relocation of the Cluster in early March.

The effect of an increase in processors on the total runtime is better

depicted in Figure 6; this figure has two additional curves, which will be

explained below.

When these runs were performed, data was also captured relating to the

portion of the program that was not parallelized. In this case, loading the primary

and secondary data, creating a distance matrix, and constructing a tree are the

33

portions of code that run serially; the permutations are then distributed among the

slave processing nodes.

Table 1 . The number of processors used and total runtimes for the first and

second series of CRA runs in parallel. Tp[l] and TpMinP] are for the first

series of runs, in either second or minute notation, while Tp[2] and TpMin[2]

are second and minute values for the second run. Note that these processor

counts are for the number of processors performing permutations. The total

number of processors involved in each run was equal to p+l.

p TD[1] Tpmin[1] T[2] Tdmin[2]

1 6348.54 105.81 6381 .34 106.36

5 1501.96 25.03 1560.97 26.02

10 899.25 14.99 916.50 15.27

15 695.44 11.59 885.60 14.76

20 591.14

532.88

9.85

8.88 609.28

11
-98..

10.1525

30 489.63 8.16 531.58 8.86

35 462.18 7.70 504.30 8.41

40 441.97 7.37 522.89 8.71

45 424.69 7.08 449.99 7.50

50 412.34 6.87 481.80 8.03

55 402.11 6.70 448.13 7.47

60 390.36 6.51 437.83 7.30

65 384.27 6.40 383.91 6.40

70 376.56 6.28 374.07 6.23

75 371 .20 6.19 372.15 6.20

80 364.39 6.07 363.88 6.06

85
** **

439.85 7.33

The component of the serial portion that took a non-negligible amount of

time to complete was the construction of the distance matrix from the primary

data. Therefore, the time that this took to complete was taken to be the serial

portion of the code, a mean value of 254 seconds, or about 4.23 minutes, for the

data and parameters used.

34

80 85

Figure 6. Graph showing the reduction in runtime as the number of

permutation-performing processors is increased. The top two curves

represent the total runtimes for, respectively from top to bottom, the second

(?) and first () timing series. The lower two curves, also respectively from

top to bottom, represent the time that the second (O) and first () runs

required solely to calculate and score 1000 permutations.

The time required to construct the distance matrix was then subtracted

from the total time that each CRA run took. This allowed an analysis of the

effectiveness of the parallelized portion of code to be performed; the runtime

analysis of which can be seen in the lower two curves in Figure 6. These curves

are based on the runtime values for permutations found in Table 2; the lack of

data for 85 processors in the first timing run was previously explained. If two

data sets use distance matrix methods whose runtimes differ materially, the

subtraction of the serial runtime allows for a more equal comparison between

metrics such as speedup; this is due to multiple data types using the same

35

algorithm for generating and scoring permutations. As explained in Materials &

Methods, several different types of distance-matrix-generating algorithms may be

used by implementing them in the appropriate module.

Table 2. The number of processors used and permutation runtimes for the

first and second series of CRA runs in parallel. TpPERMS[l] and TpPERMS.MIN[l]
are for the first series of runs, in both second and minute notation, while

Tpperms[2] and TpPERMS.min[2] are for the second series of runs.

_ p TpPERMs[1] Tpperms-min[1] TpPERMs[2] TpPERMS-min[2]

1 6098.75 101.65 6129.30 102.16

5

10

1251.00 20.85 1309.23

663.89

21.82

11.06646.69 10.78

15 444.67

340.77

7.41

5.68

634.32

463.28

10.57

7.7220

25 280.22 4.67 358.37 5.97

30 237.46 3.96 279.05 4.65

35 207.18 3.45 251.01 4.18

40 189.43 3.16 271.37 4.52

45 170.56 2.84 194.91 3.25

50 159.00 2.65 227.07 3.78

55 146.92 2.45 193.16 3.22

60 134.67 2.24 183.02 3.05

65 128.59 2.14 128.30 2.14

70 122.53 2.04 122.57 2.04

75 116.43

110.29

1.94

1.84

116.36

110.42

1.94

1.8580

85
** **

183.21 3.05

36

Speedup Achieved in Parallel CRA

Speedup values, presented in Table 3, ranged from 1.07 to 18.68 in the

first series of runs, and from 1.07 to 18.71 in the second series of runs. Recall

that speedup is calculated for p processors as T]/Tp; Ti is the mean time for the

serial version when calculating ordinary speedup, and the mean time for the

parallel version running on one processor for the seldom-used speedup+. Unless

otherwise noted,
"speedup"

here is referring to the former of the two-
ordinary

speedup.

Table 3. The number of processors used and overall speedup (Sp) values for

the first, ideal series (Sp[l]) and second series (Sp[2]) of CRA runs in

parallel, along with speedup values based only on the permutation runtimes

(SppermsP] and SpPERMs[2] for the first and second runs, respectively). As

there was no timing data for 85 processors in the first series of runs, there are

no corresponding speedup values available.

p SD[1] SD[2] SDPERMS[1] SDPERMS[2]

1 1.07 1.07 1.08 1.07

5 4.53 4.36 5.24 5.01

10 7.57 7.43 10.14 9.88

15 9.79 7.69 14.75 10.34

20 11.52 9.47 19.24 14.15

25 12.78 11.17 23.40 18.30

30

35

13.90

14.73

12.81

13.50

27.61

31.65

23.50

26.12

40 15.40 13.02 34.62 24.16

45 16.03 15.13 38.45 33.64

50 16.51 14.13 41.24 28.88

55 16.93 15.19 44.63 33.95

60

65

17.44

17.72

15.55 48.69 35.83

51.1117.73 51.00

70 18.08 18.20 53.52 53.50

75 18.34 18.29 56.32 56.36

80 18.68 18.71 59.46 59.39

85
**

15.48
?*

35.79

37

The speedup values presented above are depicted graphically in Figure 7.

The diagonal represents "ideal speedup", which is the theoretical maximum

speedup achievable given the fastest-possible serial algorithm and a perfect

parallel version of the same algorithm. The lower curves in this figure, which

represent overall speedup from the timing runs, along with the extended trend

line, indicate that speedup is tending toward a maximum of approximately 19.

35 40 45 50 55

Number of Processors

Figure 7. Graph showing the increase in speedup as the number of

permutation-performing processors is increased. The diagonal represents the

ideal, or maximum possible, speedup. The top bold curve () represents

permutation-based speedup for the first series of timing runs. The lower bold

curve () represents overall speedup for the first series. The thin curves

below each of these represent the respective speedup values from the second

set of timing runs (O for permutation-based, ? for overall). Extended trend

lines for the ideal timing series are shown as dotted lines.

The upper two curves in the figure represent the permutation-based

speedup results for the two timing series. Since these curves are based solely on

38

the parallel portion of the program, they are likely to have no maximum value

provided that sufficiently large data sets are used. In practice, however, the

increase in speedup would eventually be limited by the number of available

processors.

Timing fluctuations in the second series of runs, as described earlier, led to

the fluctuations in the two speedup curves for this series. It should not be

assumed, nor is it likely, that speedup drops off so sharply at 85 processors.

Furthermore, the permutation-based speedup curve continues to grow up to 80

processors. Even if a speedup curve were to drop, it should plateau before a

decline occurs.

39

Efficiency Achieved in Parallel CRA

The analysis of speedup can be extended to look at efficiency, a measure

of each processor's contribution to the speedup value. This is defined as Splp,

literally the speedup per processor given p processors. Table 4 presents the

efficiency values for the two timing runs. In addition to the overall efficiency, the

permutation-based analysis is continued; the Z^perms values detail how much each

additional processor contributes to the permutation-based speedup found in Table

3.

Table 4. The number of processors used and overall efficiency (Ep) values for

the first series (Ep[l]) and second series (Ep[2]) of CRA runs in parallel,

along with efficiency values based only on the permutation runtimes

(EpPERms[1] and EpPERMS[2] for the first and second runs, respectively).

p E[1] ED[2] EDPERMS[1] EpPERMs[2]

1 1.07 1.07 1.08 1.07

5 0.91 0.87 1.05 1.00

10 0.76 0.74 1.01 0.99

15

20

0.65

0.58

0.51 0.98

0.96

0.69

0.710.47

25 0.51 0.45 0.94 0.73

30 0.46 0.43 0.92 0.78

35

40

45

0.42 0.39

0.33

0.34

0.90

0.87

0.75

0.60

0.75

0.39

0.36 0.85

50 0.33 0.28 0.82 0.58

55 0.31 0.28 0.81 0.62

60 0.29 0.26 0.81 0.60

65 0.27 0.27 0.78 0.79

70 0.26 0.26 0.76 0.76

75 0.24 0.24 0.75 0.75

80 0.23 0.23 0.74 0.74

85
**

0.18
**

0.42

These efficiency values are illustrated in Figure 8. The two bold curves

are based on the first series of timing runs, with the upper one comprising the

40

permutation-based values and the lower one comprising the overall efficiency

values. The thin curves consist of data points from the second timing series.

Figure 8. Graph showing the decrease in efficiency as the number of

permutation-performing processors is increased. The horizontal line at y=l

represents ideal efficiency. The top bold curve () represents
permutation-

based efficiency for the first series of timing runs. The lower bold curve ()

represents overall efficiency for the first series. The thin curves below each

of these represent the respective efficiency values from the second set of

timing runs (O for permutation-based, ? for overall).

Discrepancies in Runtime, Speedup, and Efficiency Values

In several previous figures, the large variance present in the second series

of runs is a result of the fluctuations in runtimes for that series; the same is the

case here. Recall that this sub-ideal data has been included to illustrate both the

41

shortcomings of computational resource-sharing and the effect that poor timing

results have on other performance metrics that are derived from runtimes.

Several of the initial data points in Figure 8 fall above the theoretical

maximum efficiency of 1, represented by the line v=l; additionally, several of the

values found in Table 3 are greater than their respective number processors, an

indication of super-linear speedup. This is a result of the method of

parallelization, and will be explained in greater detail in the Discussion. The

region of super-linear speedup is shown in Figure 9. Note that the curve for the

permutation-based speedup of the first timing run is above the diagonal beginning

at the start of the series, and continuing until shortly after
p= 12 processors.

Number of Processors

Figure 9. Graph showing the region of super-linear speedup for the two

timing runs. The top two curves represent permutation-based speedup for the

first () and second (O) series of timing runs. The lower two curves

represent overall efficiency for the first () and second (?) series of runs.

The horizontal bracket near the top indicates the region of super-linear

speedup for the first timing series, from/?=l to approximately
p=\2.

42

Correlations Among PerformanceMetrics

The effect that runtime can have on speedup can be seen in Figure 10. For

example, note that the relatively small increase in runtime at p=85 led to a

moderate drop in overall speedup at that value of p, and a tremendous drop in

permutation-based speedup; this is a result of the extra runtime occurring during

the parallel portion of execution.

90

85 -

100

90

-80

70 S
3

C

i
60 r

90

Figure 10. Graph overlaying Figure 6 and Figure 7, allowing the correlation

between runtime and speedup to be clearly seen. The nomenclature for the

curves remains the same, with the overall values for the first and second

series of runs marked by () and (?) , respectively, and permutation-based

points marked by () and (O) for the first and second series, respectively.

The series that begin above the diagonal are the runtime curves, while those

beginning at or below the diagonal are the speedup curves.

43

The effect the speedup has on efficiency is illustrated in Figure 1 1 . Here it

is demonstrated how decreases in speedup are met with decreases in efficiency,

which become decreasingly greater as the number of processor increases.

- 60.00

50 00

80.00

35 40 45 50 55

Number of Processors

65 70 75 80 85 90

Figure 1 1 . Graph overlaying Figure 7 and Figure 8, allowing the correlation

between speedup and efficiency to be seen. The nomenclature for the curves

remains the same, with the overall values for the first and second series of

runs marked by () and (?), respectively, and permutation-based points

marked by () and (O) for the first and second series, respectively. The

series that begin above the diagonal are the efficiency curves, while those

beginning at or below the diagonal are the speedup curves.

44

Karp-FlattMetric for Evaluating Parallelization

The final performance metric that was considered with regard to the

parallelization of CRA was the Karp-Flatt metric. As noted earlier, this metric is

useful in determining whether the limiting factor in the speedup attained is a large

serial portion of code, or overhead related to an increase in the number of

processors. Table 5 shows the Karp-Flatt values, commonly referred to as e, for

both of the timing runs. The values of e in the first timing run increase slightly

over the first several runs, but then stabilize to approximately 0.4. For the second

run, the values of e did not necessarily increase steadily as p increased; however,

there was much greater variance in these e values, with a range of 0.37 to 0.68.

Table 5. The number of processors used and overall Karp-Flatt (e) values for

the first (ep[l]) and second (ep[2]) of timing runs.

p eD[1] eD[2]

5 0.026 0.037

10 0.036 0.038

15 0.038 0.068

20 0.039 0.059

25 0.040 0.052

30 0.040 0.046

35 0.040 0.047

40 0.041 0.053

45 0.041 0.045

50 0.041 0.052

55 0.042 0.049

60 0.041 0.048

65 0.042 0.042

70 0.042 0.041

75 0.042 0.042

80

85

0.042 0.041

0.053
**

45

Web-Based Interface for Retrieval of CRA Results

The layout and design of a typical CRA results page can be seen in Figure

12. As mention in Materials & Methods, the table of results is sortable in

ascending or descending order by any of the available columns. The user is also

given some performance data regarding the runtime, along with brief explanations

of what the table headers represent.

cn

Performance data: This

1

run of: 1000 permutatior (s) (1040 actual) took 383.27 seconds (6.39 minutes).

Variable - the name of the secondary variable scored in a given row

Spearman Score - the Spearman score generated using a given variable on the initial unpermuted data

Permutation Count - the number of times the permutation-based score was greater than the actual Spearman score

Permutation Percentage - the Permutation Count expressed as a percetnage of all permutations. In other words, the

random Spearman ranks were better than the actual Spearman rank this percent of the time.

Variable Spearman Score Permutation Count Permutation Percentage

KT14000L 0.571 494 49.4%

! r-n"12500L 0.4475 13 1.3%

'
KTBOOOR 0.288 93 9.3%

HT11200R 0.2852 128 12.8%

SDTScoreL 0.2783 601 60.1%

HT14000R 0.2742 553 55.3%

PT1000L 0.2293 540 54%

HT12500R 0.2212 894 89.4%

HT11200L 0.2211 535 53.5%

SDTScoreR 0.2158 815 81.5%

PT250R 0.2131 708 70.8%

PT4000R 0.2126 417 41.7%

PT500L 0.2107 699 69.9%

PTA3R 0.2074 590 59%

PT500R 0,2057 689 68.9%

'

PT3000R 0.2017 690 69%

PT30O0L 0.2003 691 69.1%

PT4000L 0.1991 630 63%

PT2000L 0.1991 702 70,2%

HTBOOOL. 0.1981 677 67.7%

HT9000L 0.1967 666 66.6%

Figure 12. Screenshot of a typical results page for a CRA run. The table is

sortable by any of the four column headers, simply by clicking on them.

46

Discussion

Outcome of Running CRA in a Shared Environment

The optimization and parallelization process was quite successful. The

first timing run demonstrated consistently shorter runtimes with each increase in

the number of permutation-performing processors. The second timing run also

had, in general, a decrease in runtime with each subsequent addition of

processors. However, it was noted that this second run was sub-optimal and

included to demonstrate several drawbacks to running applications in shared

environments.

As Figure 6 shows in the difference between the upper and lower curves

for both timing runs, the time to generate the distance matrix remained relatively

constant over the series. Thus, the fluctuations in runtime at 15, 40, 50, 55, and

85 processors during the second timing series are not due to any load imbalance

on the root node. The additional runtime then had to come from either a

bottleneck in interprocessor communication time or from processor slowdowns on

the compute nodes.

The timing runs were supervised using the Ganglia Monitoring System for

high-performance computing systems (50). This allowed the tracking of metrics

such as network bandwidth, processor loads, and active processes. None of the

timing runs resulted in heavy bandwidth usage, nor was the system's

communication network being strained by other parallel jobs. It was observed

that certain users were running parallel jobs outside of the parallel queue. The

Sun Grid Engine (SGE), which handles the queuing of parallel processes,

47

schedules jobs such that the load is balanced across available processors.

Unfortunately, it is only aware of jobs that it started, and not processes that users

began themselves via terminal sessions. Some users were thus permitted to usurp

entire compute nodes, with SGE assuming that these nodes were not being

utilized at all; analyzing the processes and loads on individual compute nodes

showed this to be the definitive cause of errant performance. Multiple processes

were then vying for 100% of available CPU cycles, causing a massive slowdown

in the time it took to create and score permutations. The runtime fluctuations in

the second series of timing runs were due to this. The effect on the generation

and scoring of permutations can be seen in Figure 7; the overall speedup curves

were affected only slightly by increases in runtime; however, the permutation-

based speedup curves are heavily impacted by runtime increases. These

slowdowns were found in the parallel portion of CRA, so those curves are lacking

the buffer of serial runtime that the overall speedup curves have. The policies for

using the Cluster should, in the future, address this issue to ensure that non-trivial

jobs are not permitted to run outside of SGE.

Optimum Balance of Processors in Parallel CRA

The runtime curves in Figure 6 suggest that while any increase in

processor count will result in a decrease in runtime, it may not be necessary to try

to use every available processor. After a certain point, around 15-20 processors

for the timing runs here, the decreases in runtime
became marginal. If the cluster

was a single-user environment, then utilizing every available processor would be

48

optimal. However, since other users are typically competing for processors, it is

most acceptable to use as few processors as needed for a job. Considering the fact

that jobs take more or less 5-10 minutes to run with 20-85 processors, it may be

better to allow fellow users the other 60+ processors and accept the slight

performance reduction.

Additionally, total
"submission-to-results"

time may be significantly

greater when more processors are being used; this is due to SGE waiting until all

of the desired processors are available before it executes a job. A user may spend

several hours waiting for 70 processors to become available, only to save 5

minutes of runtime, which is imprudent; 20 processors may be immediately

available, leading to results much less time. Of course, the optimum number of

processors needed to balance total runtime and
"submission-to-results"

time will

very depending on the size of the data sets that CRA is analyzing.

Effect ofAmdahl's Law on Parallelization of CRA

Amdahl's Law, as previously described and illustrated in Figure 5,

essentially limits the speedup possible in a parallel algorithm by the portion of

code that runs serially. It was determined, and presented in Figure 6, that the

serial portion of execution in the timing runs performed here took approximately

4.23 minutes to complete; recall that this portion was comprised of reading both

data files, initializing necessary variables, creating a distance matrix, and

producing a hierarchical tree from this matrix. These tasks collectively, with the

exception of distance matrix generation, required a negligible amount of time, so

49

the average distance-matrix-generation step was considered to be the serial

runtime and minimum possible runtime. The 7},perms-min values in Table 2 show

that as p surpasses 30 to 40 processors, this serial runtime represents over 50% of

the total runtime. In fact, at 80 processors, this serial time is approximately 70%

of the total runtime. It is estimated that given another 30-50 processors, the time

to calculate and score the permutations for the timing set here would reach

approximately 1.2-1.5 minutes, leaving the serial runtime comprising 73%-78%

of the total runtime (data not shown). This percentage would increase only

marginally, if at all, beyond that number of processors.

It might be assumed that a substantial number of processors would result

in the serial runtime eventually comprising
99%- 100% of the total runtime, as per

Amdahl's Law. This is not the case here, with this percentage reaching a

hypothetical limit of maybe 80% (data not shown). There are several factors at

play here that prevent the serial runtime from assuming nearly the entire run's

duration. It should first be noted that the average time to calculate and score each

permutation in the timing set was slightly greater than 6 seconds (data not shown).

Given 1000 processors, 1000 permutations would not take a total of 6 seconds to

calculate and score. The time per permutation may still be a little over 6 seconds,

but the overall time for the entire parallel portion of code to execute might take

significantly longer than this. The factor behind this, which is also the first of the

additional factors to limit speedup here, is the overhead associated with parallel

code execution.

50

Communication Overhead and Sub-OptimalMPI Bindings

It was noted earlier that speedup in parallel problems typically levels out

as Amdahl's Law takes effect, and may actually start to decrease as additional

processors are incorporated due to additional overhead. In the parallel API used

here, MPI, there is overhead associated with initializing and finalizing processors

before and after the parallel code to be run is distributed. This usually takes a

constant amount of time for any number of processors. Most non-trivial parallel

algorithms also feature interprocessor communication. This is where overhead

and communication latency can increase as more and more processors are

utilized. The Perl MPI module used here has several drawbacks which, in short,

resulted in all communication being point-to-point; that is, the root node had to

initialize and clean up communication streams between every slave node it sent

data to or received data from.

The MPI bindings for Perl, found in the module MPI.pm, implement most

of the commonly used MPI functions and constants, such as the ability to send

and receive data between two processors, and the ability to determine how many

processors are available to communicate with. According to the documentation

for MPI.pm, the function
"Beast,"

which broadcasts a message from one

processor to many others simultaneously, has been implemented (42). The tests

performed to verify proper compilation of module, however, failed during every

installation attempt. These tests were performed after compilation, and the

module was actually usable for just about
all of the functions that are listed in the

documentation as being supported.

51

It was found that the
"Beast"

test kept failing; this was verified by

comparing two test scripts; one featured sequential direct communication between

the root node and several other processors, and the other featured a simultaneous

general broadcast from the root to all other processors. The first run had a single

integer value as the message being sent, and both communication methods

worked. However, once alphanumeric data was used, the broadcast version of the

script failed consistently. It is unknown why the
"Beast"

binding does not

function correctly when using alphanumeric data, and is not a documented

software bug. It would be of interest to persons with intimate knowledge of the

MPI framework to determine what causes one data type to succeed and another to

fail; additionally, since this MPI module is fairly new and still under

development, it would be wise for the aforementioned parties to submit a

hypothesis or solution to the developers ofMPI.pm.

There is some contention as to whether point-to-point or multipoint

communication should be used for interprocessor communication; there are even

custom methods available that are more efficient than the native ones (5 1
,
52). It

is generally agreed upon, however, that actual one-to-many or many-to-many

transactions should utilize a collective communication method. This allows the

parallel framework (in this case, MPI) to handle the initialization and breakdown

of multiple interprocessor streams. This is most likely at least as efficient as a

series of point-to-point calls, due to MPI doing the work that a series of higher-

level program calls would otherwise do. A further comparison between the

current
"Send/Recv"

implementation of CRA and one using a functional
"Beast"

52

would be particularly interesting; even if the actual execution time did not

decrease, at least the source code would be cleaner.

During parallel execution, the root node sends two messages to the

compute nodes, and the compute nodes send two messages to the root node; this

seemingly results in twice as much parallel overhead as necessary, especially

considering that each send has a matching receive as well. The reason for this is

that the amount of data being analyzed is certainly not constant. Metadata

variables such as variable names or a change in the number of primary or

secondary variables could result in a drastic change in the size of the data

packages that need to be sent and received. In MPI, each send and receive action

is accompanied by a value that tags the message with the size of the data structure

contained within. This is easy to determine for the sender, as it needs only to

determine the length of a string. The receiver, however, has no idea how large the

message is; however, MPI states that the receive method call is provided a

variable which contains the minimum size of the data that has yet to be received.

In an environment of constant message sizes or slight fluctuations in message

size, a constant value which contains a certain amount of padding can be

provided, to ensure that adequate memory is allotted before the message is

received. This approach cannot be taken here though, due to the uncertainty in

message size.

The solution used here is to first send an integer to the receiving nodes;

integers can scale greatly without a large change in the actual number of

characters in the number. This integer represents the length of the alphanumeric

53

data message that will be sent. The aforementioned approach, using a fixed value

that includes an adequate buffer, is first used to notify the slave nodes of the size

of the data message. The receive call can then be provided with the exact size of

the data message that will be received, ensuring that only as much memory as

needed is allocated on each node. The same two-step approach is taken when the

results of the permutation creation and scoring are finished, and the results are

sent back to the root node.

Reasons for Super-Linear Speedup and Efficiency

The parallelization of CRA features a slight overlap in execution between

the root node and the compute nodes. Since this occurs for only a short period of

time, the root node was not included in the processor counts found throughout the

Results discussed here. This exclusion of a node did not affect the actual speedup

values, since the number of processors being used does not factor into the speedup

equation. However, the speedup values are still marginally inflated for any given

processor count, as one extra processor was actually used for a short period of

time during the execution.

Consider Table 3, in which speedup at p
= 1 is 1.07; speedup for exactly

one processor should ideally be 1, however, indicating that the parallel

implementation of an algorithm is neither better nor worse than the serial version

when running on one processor. The use of the root processor at the same time as

a single slave processor in this case, even for the short period in which the

original tree is scored, contributes to speeding up the computation by 0.07; while

54

this is a rather insignificant amount, any degree of super-linear speedup in a

parallel algorithm warrants an explanation. Since speedup tends to become

decreasingly greater as more processors are added to a problem, it can be assumed

that the original factor of 0.07 becomes even less as p increases; thus, the

performance increase from the use of an additional processor eventually becomes

negligible.

The horizontal bracket in Figure 9 highlights the region of super-linear

speedup. The two timing series featured super-linear overall speedup at p
= 1 ;

however, the permutation-based speedups for these timing runs were super-linear

at p
= 1, p = 5, and p = 10 for the first timing series and at p

= 1 and p
= 5 for the

second timing series. The permutation-based speedup values are slightly inflated,

as they are based on an inflated permutation-based runtime from the serial version

of CRA. This serial value was calculated by subtracting the time required to

generate the distance matrix from the total serial runtime; thus the time required

to swap and score the original tree was included in the permutation-generating

time. In the parallel version, however, the scoring of the original tree happens

after parallel execution begins; the permutation-based runtime in these runs truly

is the time during which the program creates and scores permutations.

The inflated Tj permutation-based runtime is only off by the several

seconds that it takes to score the original tree using each dependent variable's

independent values (data not shown), and the goal of analyzing the permutation-

based performance metrics was not necessarily to get absolute values for these;

rather, the point was to look at these values relative to one another as the number

55

of processors involved in execution increased. Therefore, while values such as

permutation-based speedup may not be absolutely accurate, they are relatively

accurate among one another when p is greater than 1 ; the purpose of looking at

these values relative to one another is discussed below.

The use of an additional processor for a portion of execution affects

efficiency as well; this is why the overall efficiency values found in Table 4 are

greater than the theoretical maximum of one when p
= 1; however, as with

speedup, this efficiency boost will become marginal as the number of processors

increases.

Limiting Factors ofMaximum Performance Gains

It was determined earlier that the maximum speedup achieved in this study

was 18.71; as mentioned, the maximum speedup given additional processors is

thought to be somewhere around 19. The two reasons for a limit in speedup, to

iterate, are that the serial portion of an algorithm's execution has assumed the

majority of the program's runtime, or that the overhead associated with additional

processors is increasing and hindering any additional increase in speedup. The

problem then arose of determining which of these two reasons caused the speedup

in Parallel CRA to be limited; of course, it could also be a combination of both of

these reasons. To achieve this, the permutation-based performance metrics were

calculated, as was the Karp-Flatt metric.

Calculating the permutation-based runtimes was accomplished, as

described earlier, by subtracting the non-parallel runtime from the total runtime

56

for the parallel runs, leaving only the time the permutations took to create and

score. Speedup and efficiency were determined using these parallel runtimes and

the non-distance-matrix-generating runtime from the serial runs; this resulted in

the skew that was described above. These speedup values are based solely on the

parallel portion of code in CRA; therefore, any limit based on the serial portion of

code has been eliminated. In Figure 7, the relevant curve for the first timing

series follows the ideal linear curve quite closely until 30-35 processors are

involved. Comparing this to the overall speedup curve (for series 1) in the same

figure, it can be seen that by 10-15 processors the latter has begun to slow in

ascent. This indicates a speedup limit caused by serial execution for lower

processor counts. Since the permutation-based curves (barring runtime

irregularities for the second timing series) begin to slow in ascent as higher

processor counts are reached, it can be assumed that parallel overhead such as

initialization of communication streams then begins to limit speedup further.

Amdahl's Law still applies at these higher processor counts; even if the parallel

overhead was non-existent, a limit in speedup would still eventually be reached.

Efficiency, illustrated in Figure 8, drops off quickly at first before taking

on a progressively slower descent. This metric is essentially the percent

utilization of a given processor during a program's execution (43). This figure

thus shows the increase in the percentage of time the serial portion of code takes

(shown in the overall efficiency curves), as well as the increase in the time that

parallel overhead takes, (shown in the permutation-based efficiency curves),

57

causing processors to be utilized increasingly less in execution of Parallel CRA as

overhead takes increasingly more time.

The second of the methods used to determine the cause for a limit in

speedup is the examination of the Karp-Flatt metric, also known as e; this was

described in Materials & Methods. A fairly constant value of e indicates that

speedup is limited by the serial portion of code, while a growing e indicates an

increase in parallel overhead as the cause of limited speedup. The values of e

presented in Table 5 suggest that both reasons for limited speedup are present. In

the first timing series, there is a slight increase in e over the first few runs, but it

then becomes fairly constant. Parallel overhead increases such that the Karp-Flatt

metric detects it, but the overhead itself remains fairly constant as the processor

count increases; the largest factor limiting speedup is therefore the serial portion

of Parallel CRA's execution. The second timing run has a slightly greater range

of values, due to the fluctuations in that timing series; however, the average e

follows the pattern found in the first timing series fairly closely.

Since the speedup in Parallel CRA is limited largely by the serial portion

of the algorithm, it is critical to note that the maximum speedup is therefore

linked to the distance-matrix-generating method. This method, which is the

primary component of the serial portion of the program, can vary depending on

the type of data that is being analyzed. A distance matrix whose construction

takes less time than the one used in this timing study will cause the overall

runtime to decrease and the speedup to increase, in addition to allowing a higher

maximum attainable speedup. If the distance matrix method being utilized takes

58

more time than that used here, the maximum attainable speedup will be less than

19, due to a larger portion of non-parallelizable runtime.

Web-Based Submission and Results for CRA Jobs

The original intent for the submission system was to have a Web-based

interface in which users could upload data and runtime parameters to the cluster.

The steps following this are as implemented: the cluster runs the job, notifying the

user at the start and finish of the run, and then makes the results available via a

Web browser. Several obstacles arose, however, that steered the submission

system in the direction of an intuitive command line interface.

The administrators of the RIT Cluster, the Department of Research

Computing, had the sole requirement that access be no less secure through the

Web interface than through terminal sessions, and there was a desire to avoid the

creation of
"tiers"

of users, in which users of the Cluster create "Web
users"

of

their own. Having users of CRA be registered users of the cluster was not a

problem in itself, as registering is as simple as filling out an online form.

However, users would then either have to have CRA installed in their own

directories, or be authenticated to use a common CRA installation.

Having users install CRA in their own directories was ruled out, and the

latter solution was considered. Two possibilities presented themselves, the first of

which was to authenticate users within CRA. This was ruled out due to the

implementation and testing of a custom authentication process being outside the

59

scope of this project. The second possibility was to use existing Apache modules

to handle security.

There is a module that allows for the authentication of users against the

system user directory, by the Apache Web server itself; however, this creates a

security hole in which attempts to crack the system's root password can be made

(53, 54, 55). Attempting to disallow the use of
"root"

as a username would bring

back the custom authentication problem mentioned above. Apache will allow for

a more secure authentication of users against LDAP; unfortunately, such a

directory is not currently available on the Cluster (56, 57). The implementation of

LDAP, Globus, or some other universal access system is currently being

considered by the Cluster's administrative team; once an acceptable solution is

found and implemented, the development of a Web-based submission system will

make for an acceptable undergraduate research project (58). The framework is

already in place with the command line interface developed here; one must simply

provide an acceptable front-end and work with existing Apache modules to grant

Web access to system users.

60

Conclusions

The goal for this study was threefold: the first was to optimize and

parallelize the original implementation of the Cluster Rank Algorithm; the

second, to perform a timing analysis of the rewritten applications; the third, to

implement a more user-friendly data submission and analyses retrieval system for

Parallel CRA jobs.

CRA was originally implemented using a service-oriented architecture,

which was not necessarily the optimal solution for multiple and frequent

exchanges of complex data types. Custom models for data analysis, as well as

models capable of managing large and complex data structures, are becoming

more practical and more popular as hardware and software platforms become

more amenable to approaches such as parallel computing. The model used in

CRA is no exception; here a two-dimensional data structure based on one data set

is analyzed using a second data set, the equivalent of working with a three-

dimensional data structure.

The timing study accompanied the parallelization effort as a requisite step

in determining just how much more quickly and how much more efficiently

Parallel CRA runs over its serial counterpart. The estimated maximum speedup

of 19 is a reasonable figure, albeit difficult to benchmark against other programs

due to the uniqueness of most parallelization approaches. As was seen in the

permutation-based speedup and efficiency values, as well as the Karp-Flatt

metric, the serial portion of the algorithm was the primary limiting factor in

speedup; parallel overhead played a much smaller role. It is therefore important

61

to remember that the maximum achievable speedup will vary depending on how

long a given distance matrix method takes to execute.

An algorithmic extension to this work, which would increase speedup and

efficiency, and decrease runtimes further, would be to parallelize the generation

of a distance matrix. This would be sensitive to the overall magnitude of the

dependent data, however; it might be quicker to use a serial distance matrix

approach for smaller data sets, and utilize a parallel approach above a determined

threshold.

The original goal of developing a Web interface to CRA was determined

to be out of the scope of this work due to security concerns; this stresses the need

for an Apache Web server module to handle authentication against an operating

system's user base that eliminates the existing security holes. Until a user

directory system is implemented on the Cluster, the command line submission

system will have to suffice. This is certainly not appropriate in allowing all users

to be able to submit their own jobs. It is, however, far more convenient for the

person or persons handling job submission to supply the runtime and output

parameters and have a script handle the uploading of data to the Cluster, the

creation of a parameter file for the queuing system, and the actual submission of

the job to the grid engine. Further development will most likely focus on the

implementation of a Web-based submission tool, following the setup of a user

directory system on the Cluster; the existing command-line system will provide

the framework for this. The goal of being able to retrieve the results of CRA runs

from the Web has been realized (59).

62

Not long ago, parallel computing was a niche market available to large

corporations, governments, and anyone else able to afford a supercomputer from

Cray or Thinking Machines. The emergence of commodity high-performance

hardware and open source software is bringing the efficiency and speed

advantages of parallel computing to a much larger user base. This is allowing

developers not only to write programs directly for parallel architectures, but also

to easily rewrite and optimize programs for parallel systems as they become more

widely available. These resources may even be arrays of CPU's housed in a

single case, or publicly available pay-per-use systems (60, 61). Parallel CRA

demonstrates how high-performance computing resources can be utilized in a

relatively short period of time to more quickly and more efficiently analyze large

or complex data sets.

63

References

1. Seidman, M., Ahmad, N., and Bai, U. Molecular mechanisms of age-related

hearing loss. (2002) Ageing Research Reviews, 1:3, 331-343.

2. Gates G., Caspary D., ClarkW., Pillsbury H., Brown, S., and Dobie, R.
Presbycusis. (1989) Otolaryngology - Head andNeck Surgery, 100:4, 266-271.

3. Cilento, S., Norton, J., and Gates, G. The effects of aging and hearing loss on
distortion product otoacoustic emissions. (2003) Otolaryngology - Head andNeck

Surgery, 129:4, 382-389.

4. Gates, G., and Mills, J. Presbycusis. (2005) The Lancet, 366:9491, 1 1 1 1-1 120.

5. Gates, G., Couropmitree, N., Myers, R. Genetic associations in age-related

hearing thresholds. (1999) Otolaryngology-Head & Neck Surgery, 125:6, 654-

659.

6. Giles, R., Blanc, H., Cann, H., and Wallace D. Maternal inheritance of human

mitochondrial DNA. (1980) Proc. Natl. Acad. Sci, 77:11, 6715-6719.

7. Newman, N. Hereditary Optic Neuropathies: From the Mitochondria to the

Optic Nerve. (2005) American Journal ofOphthalmology, 140:3, 517.el-517.e9.

8. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and

Darnell, J.E. Molecular Cell Biology, 4th ed. (1999). New York: W H Freeman &

Co.

9. Castora F., Arnheim N., and Simpson, M.. Mitochondrial DNA polymorphism:

evidence that variants detected by restriction enzymes differ in nucleotide

sequence rather than in methylation. (1980) Proc. Natl. Acad. Sci., 77:11, 6415-

6419. [PubMed]

10. Brandon, M.. Lott, M., Nguyen, K., Spolim, S., Navathe, S., Baldi, P., and

Wallace, D. MITOMAP: a human mitochondrial genome database-2004 update.

(2005) NucleicAcids Research, 33 (Database Issue):D61 1-613.

11. Newman, D., Raish, K., Edsall, L., Witkowski, C, Eddins, D., Frisina, D.,

Shipman, P., and Osier, M. Cluster Rank Analysis provides evidence for

mitochondrial inheritance of presbycusis. (2005) 55th Annual Meeting of the

American Society for Human Genetics. Salt Lake City, UT.

64

12. Price, S., Marks, D., Howe, R., Hanowski, J., and Niemi, G. The importance

of spatial scale for the conservation and assessment of anuran populations in

coastal wetlands of the Western Great Lakes, USA. (2004) Landscape Ecology,

20,441-554.

13. Savage, J. The geographic distribution of frogs: patterns and predictions.

(1973) Evolutionary Biology of the Anurans. University ofMissouri Press,
Columbia. Vial, J.L., ed. 351-446.

14. Shipman, P., Fox, S., Thill, R., BentlyWigley, T., and Melchiors, M.A.

Anurans are associated with intermediate landscape-level habitat features in the

OuachitaMountains, Arkansas, USA. (2006) Submitted to Forest Ecology and

Management.

15. Pearman, P. Correlates of Amphibian Diversity in an Altered Landscape of

Amazonian Ecuador. (1997) Conservation Biology, 11, 1211-1225.

16. Guldin, J. Landscape-scale research in the Ouachita Mountains ofWest-

Central Arkansas: General study design. In Ouachita and Ozark Mountains

Symposium: Ecosystem Management Research, 143-145. October 26-28, 1999,

Hot Springs, Arkansas. J.M. Guldin, (ed.), General Technical Report SRS-74.

Asheville, NC: Southern Research Station, USDA Forest Service.

17. Spearman, C. The proof and measurement of association between two things.

(1904) American Journal ofPsychology, 15:72, 101.

18. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C,

and Orchard, D. Web Services Architecture. (2004) W3C.

(http://www.w3.org/TR/ws-arch/).

19. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c.

Distributed by the author. Department of Genetics, University ofWashington,

Seattle.

20. Ferguson, D., and Stockton, M. Service-oriented architecture: Programming

model and product architecture. (2005) IBM Systems Journal, 44:4.

(http://www.research.ibm.com/journal/sj/444/ferguson.html).

21. Knuth, D.E. The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Third Edition. Section 1.2.1 1: Asymptotic Representations.
Addison-

Wesley (1997), 107-123.

22. Knuth, D.E., Big Omicron and Big Omega and Big Theta. (1976) SIGACT

News, 8(2), 18-24.

65

23. Mockapetris, P.V., RFC 1034: Domain names - concepts and facilities (Nov.

1987) Status: Standard. Internet Engineering Task Force (IETF).

24. Mockapetris, P.V., RFC 1034: Domain names - implementation and

specification (Nov. 1987) Status: Standard. Internet Engineering Task Force

(IETF).

25. Cypher, R. and Konstantinidou, S. Bounds on the Efficiency of Message-

Passing Protocols for Parallel Computers. (1996) SIAM J. Computing, 25:5, 1082-

1104.

26. Abandah, G.A. and Davidson, E.S. Modeling the communication performance

of the IBM SP2. 10th International Parallel Processing Symposium (IPPS'96),

April 1996.

27. CPAN: Comprehensive Perl Archive Network, (http://www.cpan.org/)

28. Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian,

C, Fuellen, G., Gilbert, J.G.R., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C,

Mungall, C.J., Osborne, B.I., Pocock, M.R., Schattner, P., Senger, M., Stein, L.D.,

Stupka, E.D., Wilkinson, M., and Birney, E.. The Bioperl Toolkit: Perl modules

for the life sciences. (2002) Genome Research. Oct;12(10), 1 161-8.

29. Message Passing Interface Forum. MPI: A Message-Passing Interface

Standard. (1994) University of Tennessee, Knoxville, TN.

30. RIT Research Computing. RIT Cluster & Cluster User Guide. (2007)

Rochester Institute of Technology, Rochester, NY.

(http://cluster.rit.edu)

31. Beowulf.org. What makes a cluster a Beowulf?. Beowulf Project Overview.

Beowulf.org. (2007)

(http://www.beowulf.org/overview/index.html)

32. Papadopoulos, P.M., Katz, M.J., and Bruno, G. NPACI Rocks: Tools and

Techniques for Easily Deploying Manageable Linux Clusters. (October 2001),

Cluster 2001: IEEE International Conference on Cluster Computing.

(http://www.rocksclusters.org)

33. Gentzsch, W. Sun Grid Engine: Towards Creating a Compute Power Grid.

(2001)
1st

International Symposium on Cluster Computing and the Grid, 35.

(http://www.sun.com/software/gridware/)

34. Eclipse Integrated Development Environment. The Eclipse Foundation.

(2007). (http://www.eclipse.org/)

66

35. EPIC - Eclipse Perl Integration, (http://e-p-i-c.sourceforge.net/index.html)

36. Houston, R. PadWalker -

play with other
peoples'

lexical variables.

Comprehensive Perl Archive Network. (2007)

(http://search.cpan.org/dist/PadWalker/PadWalker.pm)

37. Hoon, S. and Stajich, J. Bio::Matrix::PhylipDist A Phylip Distance Matrix

object. Comprehensive Perl Archive Network. (2007)

(http://search.cpan.org/~birney/bioperl-L4/Bio/Matrix/PhylipDist.pm)

38. Reynolds, M. andMorgan, J. IO::Capture::Stdout - Capture any output sent to

STDOUT. Comprehensive Perl Archive Network. (2005)

(http://search.cpan.org/~reynolds/IO-Capture-0.05/lib/IO/Capture/Stdout.pm)

39. Pritchard, S. String: :Random Perl module to generate random strings based

on a pattern. Comprehensive Perl Archive Network. (2006)

(http://search.cpan.org/~steve/String-Random-0.22/lib/String/Random.pm)

40. Wegscheid, D., Schertler, R., Hietaniemi, J., and Aas, G. Time::HiRes - High

resolution alarm, sleep, gettimeofday, interval timers. Comprehensive Perl

Archive Network. (2007)

(http://search.cpan.org/~jhi/Time-HiRes-l.9707/HiRes.pm)

41. Boggs, G. Statistics: :RankCorrelation - Compute the rank correlation between

two vectors. Comprehensive Perl Archive Network. (2007)
(http://search.cpan.org/~gene/Statistics-RankCorrelation-

0.10/lib/Statistics/RankCorrelation.pm)

42. Wilmes, J., and Stevens, C. Parallel: :MPI An MPI Binding for Perl.

Rensselaer Polytechnic Institute. 9 February, 2007.

(http://search.cpan.org/~josh/Parallel-MPI-0.03/MPI.pm)

43. Eager, D.L., Zahorjan, J., and Lozowska, E.D. Speedup Versus Efficiency in

Parallel Systems. (1989) IEEE Transactions on Computers. 38:3, 408-423.

44. Amdahl, G. Validity of the single processor approach to achieving large scale

computing capabilities. (1967) American Federation of
Information Processing

Societies Spring Joint Computer Conference.

45. Karp, A.H. and Flatt, H.P. Measuring Parallel Processor Performance. (1990)

Communication of the ACM, 33:5, 539-543.

46. U.S. Department of Commerce and National Institute of Standards and

Technology. Digital Signature Standard, FIPS PUB 186-2. (2000). Federal

Information Processing Standards Publication.

67

47. Malita, F. Lufs Userspace Filesystem Framework. (2003)

(http://lufs.sourceforge.net/lufs/)

48. Bos, B., Celik, T., Hickson, I., and Lie, H.W. Cascading Style Sheets, level 2
revision 1. CSS 2.1 Specification. (2006). WorldWide Web Consortium (W3C).

(http://www.w3.org/TR/2006/WD-CSS21-20061106/)

49. Langridge, S. sorttable: Make all your tables sortable. (2007)

(http://kryogenix.org/code/browser/sorttable/)

50. Massie, M.L., Chun, B.N., and Culler, D.E. The Ganglia Distributed

Monitoring System: Design, Implementation, and Experience. University of

California, Berkeley. Technical Report. (February 2003).

51. Gorlatch, S., Send-receive considered harmful: Myths and realities of message

passing. (2004) ACM Transactions on Programming Languages and Systems

(TOPLAS), 26:1, 47-56.

52. Mateescu, G. A Method forMPI Broadcast in Computational Grids. (2005) In

Proceedings of the 19th IEEE international Parallel and Distributed Processing

Symposium (Ipdps'05), Workshop 13, Volume 14 (April 04 - 08, 2005).

53. Apache Software Foundation. Apache HTTP Server Project. (2007)

(http://httpd.apache.org/)

54. Neulinger, N., Allison, T., andWolter, J. Mod_Auth_External and

Mod_Authnz_External - Apache External Authentication Modules. (2007)

(http://unixpapa.com/mod_auth_external.html)

55. Wolter, J. pwauth - A Unix Web Authenticator. (2006)

(http://www.unixpapa.com/pwauth/)

56. Wahl, M., Howes, T., and Kille, S. Lightweight Directory Access Protocol

(v3). (1997) Internet Engineering Task Force, Request for Comments (IETF

RFC). RFC 2251.

57. Apache Software Foundation. mod_auth_ldap
- Allows an LDAP directory to

be used to store the database for HTTP Basic authentication. Apache HTTP

Server Version 2.0 (2007)

(http://httpd.apache.Org/docs/2.0/mod/mod_auth_ldap.html)

58. The Globus Alliance. Globus Toolkit. (2007) (http://www.globus.org/)

59. Esposito, A.G. CRA Results Page. (2007) (http://cluster.rit.edu/CRA/)

68

60. Sun Microsystems. Sun Utility Computing. (2007).

(http://www.sun.com/service/sungrioVindex.jsp)

61. Microway, et al. (2007) (http://www.microway.com)

69

	Parallelizing the Cluster Rank Analysis application
	Recommended Citation

