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Abstract

Optical Heterodyne Detection of

Phase-Shifted Signals

Daria Permeneva

My thesis investigates whether abrupt changes in optical phase (i.e., phase shifts) can be

measured using optical heterodyne detection (OHD), a method commonly used to mea-

sure gradual changes in the temporal phase. I developed analysis software in MATLAB to

considered and quantify the success of three different phase-shift measurement methods:

non-split signal method, split signal method and split signal with zero-out method. I also

explored whether spectral information can be used to access temporal phase shifts; this is

a new area, as OHD typically deals with temporal information. My work identified both

spectral and temporal phase assessment methods that provide high precision results.
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Chapter 1

Introduction

1.1 Background

Optical heterodyne detection is an interferometric technique measuring the phase of a

temporal signal [1]. The principle of optical heterodyne measurement is based on two

independent monochromatic lasers as depicted in Figure 1.1. An incoming signal with

angular frequency ωs is mixed with a local-oscillator signal with angular frequency ωo by

means of a 3-dB coupler. One port of the coupler goes into a photodiode. Two signals

interfere with each other which allows for analyzing and performing phase detection in

the photodiode. The photo current at the angular frequency difference ∆ω = ωs − ωo is

recovered at the output.
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Figure 1.1: Basic set-up of optical heterodyne detection.

It is important to be able to detect the temporal phase because it can vary during

the period of transmission (commonly referred to as chirp in fiber optics applications).

When it does so, the instantaneous frequency changes, representing an increase in the

spectral content of the signal. This larger spectral content (larger signal bandwidth), in

turn, may impair signal quality through processes such as chromatic dispersion and signal

clipping. Moreover, the phase is used to encode data in phase-shift-keying (PSK) and

quadrature amplitude modulation (QAM) data formats, and so a variation in temporal

phase would mean a potential corruption of data. Optical heterodyne detection for phase

shift assessment can be used in research and device-characterization laboratories, where

components and optical processes are being characterized; such a technique would be

useful for phase modulators, intensity modulators, and directly modulated light sources,

to name a few.

Generally a set up with two balanced photodiodes was preferred for phase detection

as the laser phase noise can be strong [2]. However, it is possible to mend this problem

by the use of filtering.

The next section will discuss the principle of operation for phase extraction using the

optical heterodyne detection method.
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1.2 Phase detection

1.2.1 Temporal mixed signal

In order to extract the phase of the signal, multiple steps should be performed. First,

the power detected at the photodiode is given as:

P (t) = Pa + Pb cos(∆ωt+ ∆Φ), (1.1)

where ∆ω = ωs−ωo is the angular frequency difference between the signal and the local-

oscillator, ∆Φ = φs− φo is the phase difference between phase offset of the signal φs and

the local-oscillator φo , and Pa and Pb are two power levels (to be specified later). The

cosine is the natural result of the electric fields beating together.

The power can also be expressed as:

P (t) = Pa + Pb cos(∆ωt+ ∆Φ) = Pa +
Pb
2
{ei(∆ωt+∆Φ) + e−i(∆ωt+∆Φ)}. (1.2)

In terms of temporal frequencies, this power expression becomes

P (t) = Pa +
Pb
2
{ei(2π∆ft+∆Φ) + e−i(2π∆ft+∆Φ)}, (1.3)

where ∆f = fs − fo, the temporal frequency of the signal fs = ωs/2π, and the temporal

frequency of the local oscillatorfo = ωo/2π.

An example of P (t) is shown in Figure 1.2, for the case of Pa = 1 mW, Pb = 1 mW,

∆f = 1 MHz, and ∆Φ = π
2
.

3



Figure 1.2: Temporal mixed signal.

1.2.2 Spectral mixed signal

The next stage is to decompose the time domain signal into low and high frequencies

with the help of the Fourier transform. The Fourier Transform is defined as

F{g̃(t)} =

∫ ∞
−∞

g̃(t)e−i2πftdt. (1.4)

The Fourier transform of an exponential function is:

F{ei(2π∆ft)} = Aδ(f −∆f). (1.5)

The Fourier transform on the power signal is performed as

P (t)
F−→ S̃(f), (1.6)

Pa + Pb cos(2π∆ft+ ∆Φ)
F−→ Paδ(f) +

Pb
2

[ei∆Φδ(f −∆f) + e−i∆Φδ(f + ∆f)]. (1.7)

Strictly speaking, most mathematical operations are not directly applicable to the Dirac

delta functions. However, for the purpose of illustrating the spectral power and phase,

4



we assume that δ is a narrow Gaussian function.

S̃ = Paδ(f) +
Pb
2

[ei∆Φδ(f −∆f) + e−i∆Φδ(f + ∆f)]. (1.8)

The spectral power is given by |S̃|2= S̃ × S̃∗:

|S̃|2= [Paδ(f) +
Pb
2
ei∆Φδ(f −∆f) +

Pb
2
e−i∆Φδ(f −∆f)]

×[Paδ(f) +
Pb
2
e−i∆Φδ(f −∆f) +

Pb
2
ei∆Φδ(f −∆f)].

(1.9)

Any term having the product of two different delta functions, such as δ(f) · δ(f −∆f),

is zero, leaving the following:

|S̃|2= P 2
a δ(f)2 +

P 2
b

4
δ(f −∆f)2 +

P 2
b

4
δ(f + ∆f)2. (1.10)

The graphical representation of the spectral mixed signal S̃ is represented in Figure 1.3.

The spectral mixed signal S̃ is a set of three peaks. Paδ(f) is the central peak at the

zero frequency, and Pb

2
e−i∆Φδ(f + ∆f) and Po

2
ei∆Φδ(f − ∆f) are negative and positive

side peaks at −∆f and ∆f , respectively. The spectral phase φ(f) can be identified using

the real and imaginary parts as follows:

tan {φ(f)} =
Im{S̃}
Re{S̃}

, (1.11)

S̃ = Paδ(f) +
Pb
2

cos(∆Φ)δ(f −∆f) +
Pb
2

cos(−∆Φ)δ(f + ∆f)

+i{Pb
2

sin(∆Φ)δ(f −∆f) +
Pb
2

sin(−∆Φ)δ(f + ∆f)},
(1.12)

S̃ = Paδ(f) +
Pb
2

cos(∆Φ)[δ(f −∆f) + δ(f + ∆f)] + i
Pb
2

sin(∆Φ)[δ(f −∆f)− δ(f + ∆f)],

(1.13)

tan {φ(f)} =
Im{S̃}
Re{S̃}

=
Pb

2
sin(∆Φ)[δ(f −∆f)− δ(f + ∆f)]

Paδ(f) + Pb

2
cos(∆Φ)[δ(f −∆f) + δ(f + ∆f)]

. (1.14)

If f = 0, tan {φ(f)} = 0. In this case, φ(f = 0) = 0.

If f = ∆f , tan {φ(f)} =
Pb
2

sin(∆Φ)
Pb
2

cos(∆Φ)
= tan(∆Φ). In this case, φ(f = ∆f) = ∆Φ.
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If f = −∆f , tan {φ(f)} =
−Pb

2
sin(∆φ)

Pb
2

cos(∆φ)
= − tan(∆Φ). In this case, φ(f = −∆f) = −∆Φ.

These values are shown in Figure 1.3

Figure 1.3: Spectral power and phase of the spectral mixed signal.

Note that the phase difference ∆Φ can be determined for the analytic expression case

simply by reading off the spectral phase value at the frequency of the right spectral power

peak, or by the negative spectral phase of the left spectral power peak.

1.2.3 Filtered spectral mixed signal

In order to isolate the phase offset difference ∆Φ, the highest frequency peak is filtered

out as depicted in Figure 1.4. The filter width is given by α, and the filtered spectral

mixed signal is given by S̃f :

S̃(f)
Filter−−−→ S̃f (f), (1.15)

S̃f (f) =
Pb
2
ei∆Φδ(f −∆f). (1.16)

The filtering process can be considered to be the multiplication of the initial function

S̃(f) by a rectangular function Π(f−f0
α

) centered at f = f0, and having the width α:

S̃f (f) = S̃(f)× Π(
f − f0

α
). (1.17)
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Figure 1.4: Filtered spectral mixed signal.

1.2.4 Filtered temporal mixed signal

The filtered spectral mixed signal is brought back to the temporal domain by applying

the inverse Fourier transform:

S̃f (f)
F−1

−−→ P̃f (t). (1.18)

The inverse Fourier transform is defined as

F−1{h̃(f)} =

∫ ∞
−∞

h̃(f)ei2πftdf. (1.19)

The inverse Fourier transform of a delta function is given by

F−1{Bδ(f −∆f)} = Bei2π∆ft. (1.20)

The filtered temporal mixed signal can be written as:

P̃f (t) =
Pb
2
ei(2π∆ft+∆Φ) =

Pb
2

cos(2π∆ft+ ∆Φ) + i
Pb
2

sin(2π∆ft+ ∆Φ). (1.21)

Note that P̃f (t) is a complex quantity. |P̃f (t)|2= 0.25P 2
b , and the real part Re{P̃f (f)} =

Pb

2
cos(2π∆ft + ∆Φ) and is plotted in Figure 1.5 for the case of Pb = 1 mW, ∆f = 1

MHz, and ∆Φ = π
2
.
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Figure 1.5: Real part of the filtered temporal mixed signal.

1.2.5 Phase of filtered temporal mixed signal

The filtered temporal signal P̃f (t) can be thought of as

P̃f (t) = |P̃f (t)|eiφf (t). (1.22)

The phase of P̃f (t) is φf (t) = 2π∆ft+ ∆Φ, which is the relationship of phase difference

in time between the original signal and local oscillator, and is depicted in Figure 1.6 for

the case where ∆f = 1 MHz and ∆Φ = π
2
. The phase can be determined as follows:

φf (t) = tan−1

{
Im{P̃f}
Re{P̃f}

}
, (1.23)

φf (t) = tan−1

{
Pb

2
sin(2π∆ft+ ∆Φ)

Pb

2
cos(2π∆ft+ ∆Φ)

}
, (1.24)

φf (t) = tan−1 {tan(2π∆ft+ ∆Φ)} , (1.25)

φf (t) = 2π∆ft+ ∆Φ. (1.26)
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Figure 1.6: Temporal phase of filtered temporal mixed signal.

The slope m of this temporal phase is m = 2π∆f , and the phase offset b = ∆Φ. A

linear fit φf = mt + b therefore extracts ∆Φ. Removing the linear fit from φf (t) yields

φ′f (t) = φf − mt = b. The effect of 3-dB directional coupler is to change φ′f = φ′f + π
2

which is plotted in Figure 1.7. ∆Φ = φs − φo is the final quantity determined by optical

heterodyne detection, and is the desired phase offset φs referenced to the phase offset of

the local oscillator φo.
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Figure 1.7: Temporal phase of filtered temporal mixed signal with linear part removed.

We note that ∆Φ is provided by two steps in the OHD process:

1. φ′f (t), Figure 1.7

2. φ(f), Figure 1.3b

We will continue to look at both sources of ∆Φ throughout the thesis.

1.3 Details on Coupling and Mixing

In this section we discuss the optical heterodyne detection operations in greater detail,

with an explicit mathematic form for the coupling. As depicted in Figure 1.1 — the basic

set-up of optical heterodyne detection — the electric field of the signal Ẽs(t) with optical

frequency ωs and phase φs is combined with the electric field of the local-oscillator Ẽo(t)

with optical frequency ωo and phase φo:

Ẽs(t) = As e
iωst+iφs , (1.27)

10



Ẽo(t) = Ao e
iωot+iφo . (1.28)

The 3-dB directional coupler is a four-port device with two input and two output ports,

and is used to combine two signals. For the case of only one input signal, the two outputs

are equal in power but the coupled output lags behind the direct port by 90◦ as in Figure

1.8 [5].

Figure 1.8: 3-dB directional coupler.

The transfer matrix for a 3-dB directional coupler looks like this:Ẽ1

Ẽ2

 =


√

1− ε i
√
ε

i
√
ε
√

1− ε

 ∗
Ẽs
Ẽo


Ẽ1 =

√
1− εẼs + i

√
εẼo =

√
1− εAsei(ωst+φs) + i

√
εAoe

i(ωot+φo), (1.29)

Ẽ2 =
√

1− εẼo + i
√
εẼs =

√
1− εAoei(ωot+φo) + i

√
εAse

i(ωst+φs), (1.30)

where ε = 0.5 for a 3-dB coupler.

After the coupling, the total electrical field is represented as Equation 1.29 or 1.30.

Accordingly, the optical heterodyne detection relationship between photocurrent Ip(t)

and phase is based on the following [6]:

Ip(t) = <|Ẽ(t)|2= <P (t). (1.31)

Out of the direct port the photocurrent is:

= <(
√

1− εAs ei(ωst+φs) + i
√
εAo e

i(ωot+φo))(
√

1− εAs e−i(ωst+φs) − i
√
εAo e

−i(ωot+φo))

(1.32)

11



= <[εA2
o + (1− ε)A2

s − i
√
ε(1− ε)AsAoei[(ωs−ωo)t+(φs−φo)]

+i
√
ε(1− ε)AsAoei[(ωo−ωs)t+(φo−φs)]]

(1.33)

= <{[εA2
o+(1−ε)A2

s−i
√
ε(1− ε)AsAoei∆ωtei∆Φ+i

√
ε(1− ε)AsAoe−i∆ωte−i∆Φ]} , (1.34)

= <{εA2
o + (1− ε)A2

s + 2
√
ε(1− ε)AsAo sin(∆ωt+ ∆Φ)}. (1.35)

where < is the responsivity of the photodiode, ε is the power-coupling coefficient of the

optical coupler, ∆ω = ωo−ωs is the frequency difference between the signal and the local

oscillator, and ∆Φ = φo − φs is the phase difference between phase offset of the signal

and the local oscillator. Since Ao
2 = Po and As

2 = Ps, we have

Ip1(t) = <{εPo + (1− ε)Ps + 2
√
ε(1− ε)

√
PsPo sin(∆ωt+ ∆Φ)}. (1.36)

For a 3-dB directional coupler, ε = 0.5, which yeilds

Ip1(t) = <{1

2
Po +

1

2
Ps +

√
PsPo sin(∆ωt+ ∆Φ)}. (1.37)

For the coupled port, the photocurrent is

Ip2(t) = <{εA2
s + (1− ε)A2

o − 2
√
ε(1− ε)AsAo sin(∆ωt+ ∆Φ)}. (1.38)

In terms of the optical power for a 3-dB directional coupler, the photocurrent is

Ip2(t) = <{1

2
Ps +

1

2
Po −

√
PsPo sin(∆ωt+ ∆Φ)}. (1.39)

Note that the sum of the photocurrents expresses the conservation of optical power

Ip1 + Ip2 = <(Po + Ps). (1.40)

The current recovered at the photodiode is then processed and analyzed. The ratio of

the photocurrent Ip to the optical power P is responsivity <. Responsivity is a measure

of a photodiode’s response to light [6].

< =
Ip
P
. (1.41)
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From this we can find the equation for P (t):

P (t) =
Ip(t)

<
. (1.42)

Combining equations 1.34 and 1.42, we obtain the formula for the optical power:

P1(t) = εPo + (1− ε)Ps + 2
√
ε(1− ε)

√
PsPo sin(∆ωt+ ∆Φ). (1.43)

= εPo + (1− ε)Ps + 2
√
ε(1− ε)

√
PsPo cos(∆ωt+ ∆Φ− π

2
). (1.44)

Comparing this expression for P1(t) with the simple expression Equation 1.1 yields

Pa = (1− ε)Ps + εPo,

Pb = 2
√
ε(1− ε)

√
PsPo,

∆Φ′ = ∆Φ− π

2
,

(1.45)

where ∆Φ′ is the phase offset difference of the simple approach and is the result of the

OHD process. Since the desired ∆Φ = ∆Φ′ + π
2
, π

2
must be added to the OHD result.

This extra π
2

needs to be added for both techniques of extracting ∆Φ — in the temporal

and spectral domains. The −π
2

term exists because φo is subtracted from φs, and the

local oscillator picks up a π
2

phase shift from the directional coupler. Thus, we need to

add π
2

in the case of a 3-dB directional coupler in order to cancel the π
2

shift coming from

it, yielding only ∆Φ.
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1.4 Summary of Optical Heterodyne Detection

The steps used to perform optical heterodyne detection are summarized as follows:

1. P (t), using ∆f = fs − fo

2. S̃(f) = F{P (t)}

? ∆Φ = φ(∆f) = φ(−∆f)

? (with 3-dB directional coupler) ∆Φ = φ(∆f) + π
2

= φ(−∆f)− π
2

3. S̃f (f) = F{P (t)} × Π(f−f0
α

)

4. P̃f (t) = F−1{S̃f (f)}

5. φf (t) = tan−1
{
Im{P̃f}
Re{P̃f}

}
= angle{P̃ (f)}

6. φf (t) = mt+ b

? ∆Φ = φf (t)−mt = b

? (with 3-dB directional coupler) ∆Φ = φf (t)−mt+ π
2

= b+ π
2
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Chapter 2

Numeric Computations

Since actual signals are not analytic expression, we need to use the Fast Fourier Transform

(FFT) algorithm to perform the Fourier Transform. The MATLAB function fft converts

a signal with the fixed length N from the time to the frequency domain. In this section

we discuss optical heterodyne detection using the FFT algorithm instead of the analytic

expression method. Comparisons to analytic expression results will be made along the

way.

2.1 Temporal mixed signal

For the computational method there is no need to perform analytic expression calcu-

lations. The MATLAB code will find the final solution without knowing the analytic

expression solution. The inputs for the code are the equations of the incoming signal and

local oscillator. The power detected at the photodiode is the absolute squared value of

their sum.

Ẽs(t) =
√
Ps e

iωst+iφs , (2.1)

Ẽo(t) =
√
Po e

iωot+iφo , (2.2)
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Ẽtot =
√

1− εẼs + i
√
εẼo, (2.3)

P (t) = |Ẽtot|2. (2.4)

The temporal mixed signal with N = 212 = 4096 points and the time vector range of

10000 [ns] is depicted in Figure 2.1. This plot is identical to the one shown in Figure

1.2. We take Ps = Po = 1 [mW], fs = 1.001 [GHz], fo = 1 [GHz], φs = π
2

[rad], and

φo = 0 [rad]. Here, although ∆Φ = φs − φo = π
2
− 0 = π

2
, the graph includes the phase

contribution from the 3-dB coupler, ∆Φ′ = φs − φ′o = π
2
− 0− π

2
= 0. Thus, the graph is

correctly located at t = 0 [ns].

Figure 2.1: Temporal mixed signal.

The text box in Figure 2.1 shows several important quantities. N is the number of

points in the time vector. δt is the duration between two points in the time vector; this

quantity can be considered to be the sampling period. Range t = tmax− tmin is the range

of values of the time vector. The quantity δt can be calculated directly via

δt =
Range t

N − 1
. (2.5)
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2.2 Spectral mixed signal

The next step is converting the temporal mixed signal into the spectral mixed signal

with the help of the Matlab FFT function. The graphical comparison of the analytic

expression and numeric signals is given in Figure 2.2. The spectral mixed signal consists

of three spikes with different amplitudes.

Figure 2.2: Spectral power of mixed signal analytic expression and numeric examples.

The text box in Figure 2.2 shows several important quantities. The frequency differ-

ence ∆f = fs− fo defines where the side bands are located, N is the number of points in

the frequency vector, δf is the distance between two points in the frequency vector, and

Range f is the range of the values of the frequency vector.

The maximum absolute frequency fabsmax, which is also known as Nyquist frequency

is determined by

fabsmax =
1

2δt
. (2.6)

The vector of frequency values varies from fmin = −fabsmax to fmax = fabsmax − δf , such

that the Range f is given by

Range f = (fabsmax − δf)− (−fabsmax) = 2fabsmax − δf. (2.7)
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Defined this way, fmin is the furthest frequency from zero in either the positive or negative

frequency direction.

The frequency difference δf is given by

δf =
Range f

N − 1
=

2fabsmax − δf
N − 1

. (2.8)

If δf is not removed from 2fabsmax in the numerator, then, the number of points in the

denominator increases from N − 1 to N , yielding

δf =
2fabsmax
N

. (2.9)

The equations 2.6 and 2.9 provide an insightful relationship:

δf =
2fabsmax
N

=
2

N
× 1

2δt
=

1

Nδt
, (2.10)

δf · δt ·N = 1. (2.11)

As an example, if we use the values from the Figures 2.1 and 2.2, where δf = 0.099976

MHz, δt = 2.442 ns, and N = 4096 points:

δfδtN = 0.099976 · 106 × 2.442 · 10−9 × 4096 = 1. (2.12)

There are several differences between the analytic expression and numeric plots in

Figure 2.2. One major difference is that the sharp lines have broadened, which is an

artifact of using a scatter plot with connected lines. The triangle shape for the numeric

case occurs because a large power value only exists at one frequency point. The triangle

shape occurs when connecting the dots to two neighboring data points with low or zero

power. The width of the triangle spike is therefore approximately the frequency interval

δf .
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Figure 2.3: Wrapped and unwrapped spectral phase of mixed signal.

Figure 2.3 demonstrates wrapped and unwrapped phase of the spectral mixed signal.

In the wrapped case, the peaks give us the phase value 0.00766990394 [rad]; after adding π
2

because of the 3-dB coupler it goes up to 1.578466231 [rad] with ∆ = 0.00766990394. The

phase for the unwrapped case is 31.41− 2 ·π · 5 + π
2

= 1.5649 [rad] which is ∆ = 0.005926

[rad] different from the analytic expression result. Although both techniques can be

used to find the result, the unwrapped phase has an offset which has to be removed

and slows down the computations. Therefore, the wrapped phase detection technique

for the spectral mixed signal will be used in further discussions. The saw-tooth nature

of the wrapped phase originates from the underlying sinc function of the numeric data

(discussed in Chapter 3).

Figure 2.4 compares the analytic expression and numeric phase of the spectral mixed

signal. For the numeric case we added π
2

to the positive frequency value and removed π
2

from a negative case.
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Figure 2.4: Spectral phase of mixed signal analytic expression (a) and numeric (b).

A technique for finding ∆f is to use the frequency of the peak of the filtered spectral

mixed signal. The location of the peak shows us ∆f = 0.9998 [MHz] for both numerical

cases, which is 0.0002 [MHz] decrease from the analytic expression value ∆f = 1 [MHz].

2.2.1 Filtered spectral mixed signal

The highest frequency peak is filtered out by multiplying S̃(f) by a rectangular function

filter. The filter width α is defined manually, but should be wider than the spectral spike.

We find that α should be chosen so that α > 2δf = 2
δtN

. In our case the width of the

bottom of the peak is 2δf = 0.201 [MHz] and choosing α = 0.4 [MHz] allows to catch all

the features of the spike.
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Figure 2.5: Filtered spectral mixed signal analytic expression and numeric.

Figure 2.6: Filtered spectral mixed signal.

The filtered spectral mixed signal, as shown in Figure 2.6, has the same number of points

N , sampling frequency δf , and Range f as the unfiltered signal. It contains the highest

frequency peak and the rest of the vector is filled with zeroes.
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2.3 Filtered temporal mixed signal

After applying the Inverse Fast Fourier Transform (IFFT) algorithm to the filtered spec-

tral mixed signal, we get the waveform very similar to the initial temporal mixed signal

as shown in Figure 2.7. However, the power variation is half smaller because of the

filtering. This numeric calculation is in-line with the analytic expression solution that

P̃f (t) = Pb

2
ei(2π∆ft+∆Φ), when the amplitude of the temporal mixed signal changes from

Pb to Pb

2
after filtering.

Figure 2.7: Real part of the filtered temporal mixed signal.

2.4 Phase of filtered temporal mixed signal

Figure 2.8 compares wrapped and unwrapped temporal phase of the filtered tempo-

ral mixed signal against time. The unwrapped phase is a straight line which makes

it easy to pull out the line fit and find the slope. MATLAB function polifit allows

us to perform a polynomial curve fit and create the line equation of the phase of fil-

tered temporal mixed signal. In order to provide best fitting, we use function p(t) =
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polyfit(t′, unwrap(phaxx), 6)) to find coefficients of a polynomial p(t) of sixth degree

that fits the data in a least squares sense. The calculated polynomial is 0 · t6 + 0 · t5 + 0 ·

t4 +0 ·t3 +0 ·t2 +m ·t+b, leaving us with φ = mt+b = 2π∆f+∆Φ, where m = 0.0062832

[rad GHz] and ∆Φ = 31.4159 [rad] as in the text box of Figure 2.8 b. After removing

2πk from the phase value, where k is an integer, and adding π
2

to offset the effect of

3-dB directional coupler we get the phase value within 0 and 2π. From this equation,

we can find ∆Φ = 31.4159 − 2π · 5 + π
2

= 1.570796327 [rad] with ∆ = 2.051034897e−10

[rad] difference and ∆f = m
2π

= 1.000002338 [MHz] with ∆ = 2.338 [Hz] error. Thus,

optical heterodyne detection has successfully found the phase offset difference ∆Φ and

the frequency difference ∆f .

Figure 2.8: Temporal phase of filtered mixed signal.

The wrapped temporal phase is adjusted by multiplying the wrapped phase by e(−i·m·t)

and adding π
2

as a 3-dB coupler correction. The detected phase shift is at 1.570796327

[rad]. The unwrapped temporal phase is adjusted by subtraction of the linear term

mt from y = mt + b and addition of π
2
. This gives us the straight line at the phase

of 1.570796327 [rad] as shown in Figure 2.9. The phase shift 1.570796327 [rad] has

∆ = 2.051034897e−103.6732e−6 [rad] difference from π
2
.
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Figure 2.9: Phase without linear portion.

After comparing the wrapped and unwrapped phase for the temporal and spectral

mixed signals, we found that the wrapped spectral phase and unwrapped temporal phase

provide the best and simplest ways to find the phase shift, although all approaches gave

reasonable results as shown in Table 2.1. Thus, these phase quantities will be used in

further discussions.

Table 2.1: Phase shift

Source ∆Φ ∆

Actual π
2

—

φ(f) wrapped 1.578466231 0.00766990394

φ(f) unwrapped 1.5649 0.005896

φ(t) wrapped 1.570796327 2.051034897e−10

φ(t) unwrapped 1.570796327 2.051034897e−10
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2.5 Impact of zero padding

In this section we discuss the impact of zero padding on the performance of optical het-

erodyne detection. The time and frequency domains are interconnected via the following

relation Nδtδf = 1. Based on this equation, if δt is held constant and N is increased, δf

must decrease. Therefore, the addition of zero padding to the temporal mixed signal will

improve the spectral resolution and benefit the performance of the spectral mixed signal.

First we compare the example of not having the padding in case A and adding the

symmetric zero padding to both sides of the temporal mixed signal in case B. The number

of points in the mixed signal is the same for both cases and equal to Nsig = 212 = 4096.

Additionally, the total number of points in the zero padding case B is N = 217 = 131072

making the number of pad points on each side equal to 63488 points. The temporal

mixed signal is seen in Figure 2.10. The Fast Fourier transform representations are the

most efficient when the length of array N is a power of 2.

Figure 2.10: Temporal mixed signal with (B) and without (A) zero padding.
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Figure 2.11: Spectral power of mixed signal with (B) and without (A) zero padding.

Figure 2.11 demonstrates the spectral power of the mixed signal for both cases. Zero

padding has a noticeable effect on the spectral power graphs, making them more detailed

and improving the quality as seen in the figure. Zero padding reduces the bin-size in

the frequency domain which graphically reflects as improved resolution. Note that since

the time interval δt was held constant, the maximum absolute frequency fabsmax stays

the same, since fabsmax = 1
2δt

. The frequency interval δf reduces by the fraction that

N increases because Nδtδf = 1. Since total number of points N was increased from

212 to 217 (32 times), the sampling frequency δf reduces by 32 times from 9.9976e−3 to

3.1242e−3 [MHz]. However, the width of the spectral spike does not decrease by 32 times.

It’s width is determined by the Range t of the sinc term, which is not affected by zero

padding.

The non-zero width of spectral power spikes is due to the finite length of the signal

vector in time. For the analytic expression case, the modulating temporal power extends

infinitely in time. For the numeric case, however, the modulated temporal power P (t)

must be truncated in time. The width of this truncation is Range tsig = tmax sig−tmin sig,
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and the actual temporal function can be considered to be

P ′(t) = P (t)× Π(
t− to

Range tsig
), (2.13)

where to is the center of the rectangular function and is given by to =
tmax sig+tmin sig

2
. The

Fourier Transform of P ′(t) therefor a convolution:

F{P ′(t)} = F{P (t)} ∗F{Π}. (2.14)

The Fourier Transform of a rectangular function is a sinc function:

F{Π(
t− to

Range tsig
)} = Range tsig · sinc(f ·Range tsig)e−i2πfto . (2.15)

Due to the product f ·Range t in the sinc argument, as Range tsig increases, the impact

of f is larger, so the spectral function becomes more narrow. Likewise, as Range tsig

decreases, the impact of f is lessened, and so the spectral function broadens. The ap-

proximate full width half maximum of the sinc function is

FWHM ≈ 1

Range tsig
. (2.16)

The convolution of F{P (t)} with the sinc function will cause the narrow spectral spikes

(of the analytic expression case) to broaden. They will broaden to a width of about the

width of the sinc function, which is about 1/Range tsig.

For the case shown in Figure 2.11, the width of each spike located at f = ±1 [MHz] is

estimated to be 1/Range tsig = 1/10µs = 0.1 [MHz]. The actual half width of the spikes

is 0.1042 [MHz]. In case A there are only 3 points per spike, which does not allow the

half width to be found accurately. There are about 60 points per spike in case B with

zero padding with N = 217 and Nsig = 212 which allows to calculate the FWHM.
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Figure 2.12: Phase of spectral mixed signal with (B) and without (A) zero padding.

Figure 2.12 B allows to see that unwrapped phase is actually consists of squared

elements and flat at the top and bottom. We cannot see it in the case without padding

due to the lack of points.

Figure 2.13: Filtered spectral mixed signal with (B) and without (A) zero padding.
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Figure 2.14: Real part of filtered temporal mixed signal with (B) and without (A) zero

padding.

Figure 2.15: Phase of temporal mixed signal with (B) and without (A) zero padding.

Figures 2.12 and 2.15 show the phase of the spectral and temporal mixed signals

for both cases. The text box of Figure 2.12 shows that the phase offset of the spectral

signal is the same for both cases and yields to 0.00767 + π
2

= 1.578466327 [rad] with

∆ = 0.00767 [rad]. After removing the linear part and adding π
2

as a 3-dB coupler

effect to the temporal phase in Figure 2.15, we get phase offset of 1.570796327 [rad] with

∆ = 2.00296e−10 [rad] and 1.551239063 [rad] with ∆ = −0.0195572 [rad] for cases A and
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B, respectively as shown in Figure 2.16.

Figure 2.16: Phase of temporal mixed signal with (B) and without (A) zero padding with

linear part removed.

In summary, zero padding improves the graphical resolution in the spectral domain,

improves the FWHM calculation and captures the same spectral phase shift as the case

without padding. It is a useful technique which allows us to maximize the resolution of

spectral mixed signal without changing Nsig, δt, Range t and ∆f . Padding, however, does

not give a better result in phase and frequency detection in either spectral or temporal

domains. Table 2.2 demonstrates the assessed phase difference for wrapped spectral phase

and unwrapped temporal phase for cases with and without padding.
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Table 2.2: Phase shift

Source ∆Φ ∆

Actual π
2

—

φ(f) without padding 1.578466327 0.00767

φ(f) with padding 1.578466327 0.00767

φ(t) without padding 1.570796327 2.00296e−10

φ(t) with padding 1.551239063 -0.0195572
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Chapter 3

Important conditions for optical

heterodyne phase detection

While this method of phase detection can be applied to a wide range of cases, there are

a couple of conditions which have to pass in order for the analysis to work. There are

three important aspects that determine the spectral power shape:

a) δf , the spectral resolution,

b) sinc(fRange tsig), the shape of the spectral spike,

c) ∆f , the frequency difference fs − fo.

Conditions are placed on the frequency difference ∆f , the number of temporal periods

(which is related to Range tsig), and the number of points in the signal Nsig, all of which

are discussed in this chapter.
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3.1 Frequency difference ∆f & δf

As we discussed in Chapter 1, ∆f defines where the side bands are located. This condition

distinguishes heterodyne detection from homodyne detection:

∆f = fs − fo 6= 0. (3.1)

When ∆f = 0 as shown in Figure 3.1, there are no visible side bands which makes filtering

impossible. Therefore, one of the must conditions for the optical hetrodyne phase shift

detection analysis is ∆f 6= 0. In this case, the process of the optical heterodyne detection

would be used.

Figure 3.1: Spectral power of mixed signal when ∆f = 0.

The important idea here is that the frequency difference ∆f must be larger than the

width of the spectral power spike ∆f > 2δf = 2
δtN

. Here, the graph is limited by δf , not

the sinc function.

3.2 Frequency difference ∆f & δtN

Another important condition is that the number of periods in the temporal mixed signal

can influence the power spectrum and produce the same problem as in the previous case
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— no side bands in the spectral mixed signal. The number of periods in the temporal

mixed signal depends on the frequency difference ∆f , the time vector length Range tsig,

and the time interval δt. Here, Range tsig is the range of the data and does not include

zero padding. For example, one period can be reached by lowering frequency offset ∆f

as in Figure 3.2 A or by decreasing the length of the time vector as in Figure 3.2 B.

Figure 3.2: Temporal power for A. ∆f = 0.1 MHz, Range tsig = 10000 ns; B. ∆f = 0.5

MHz, Range tsig = 2000 ns.

For these examples, the waveform with one period cannot be used for the analysis

as it does not have visible side bands in the spectral mixed signal as shown in Figure

3.3. The side bands are essential for the filtering and separating the phase noise in our

method of phase shift detection. For case A, 2δf = 2
δtN

= 0.12 [MHz] and is larger than

the frequency difference ∆f = 0.1 MHz. Therefore, the side spikes are buried in the

width of the central spike. For the case B, 2δf = 0.6 [MHz], which is larger than the

frequency offset ∆f = 0.5 [MHz]. Thus, the side bands are not visible.
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Figure 3.3: Spectral power for A. ∆f = 0.1 MHz, Range tsig = 10000 ns; B. ∆f = 0.5

MHz, Range tsig = 2000 ns.

Here, we introduce another condition that must be met:

1) Frequency resolution: ∆f > 2δf = 2
δtN

,

2) sinc width: ∆f > 2
Range tsig

.

These conditions appear similar, but they are not the same. Range tsig is the extent of

the signal, and does not include zero padding. Thus, while increasing Range tsig does

correspond to an increase in N number of points in the signal, adding zero padding also

increases N (assuming δt is fixed), but does not correspond to an increase in Range tsig

of the signal.

Furthermore, the relationship between δf and the width of the sinc function is im-

portant too. Under the following conditions, the sinc functions will be resolved:

δf <
C

Range tsig
, (3.2)

1

δtN
<

C

Range tsig
, (3.3)
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where C is a constant on the order of 0.5. Range tsig = δtNsig − δt, which yields

1

δtN
<

C

δtNsig − δt
, (3.4)

1

N
<

C

Nsig − 1
. (3.5)

Since Nsig is much greater than 1, this expression simplifies to

1

N
<

C

Nsig

. (3.6)

Without zero padding, Nsig = N , and

1 < C. (3.7)

Since C is on the order of 0.5, the sinc function is not resolved well without zero padding.

In the case of zero padding, N = Nsig +Npad, which yields

1

Nsig +Npad

<
C

Nsig − 1
. (3.8)

Again, for simplicity, we approximate Nsig − 1 by Nsig.

1

Nsig +Npad

<
C

Nsig

, (3.9)

Nsig

Nsig +Npad

< C. (3.10)

As Npad increases, it is easier to make the LHS < C, and therefore the features of the

sinc function can be resolved.

3.3 Number of points N & δt

The number of points in the time vector plays an important role in the process of trans-

formation from the time to frequency domain. Extending the number of points N from

212 to 216 in the temporal domain yields to higher resolution in spectral domain if the
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time step δt is held constant. Due to Nδtδf = 1, the distance between points δf de-

creases. Temporal and spectral mixed signal with N = 212 is represented in Figure 3.4,

with N = 216 points in Figure 3.5.

Figure 3.4: Temporal and spectral mixed signal, N = 212

Figure 3.5: Temporal and spectral mixed signal,N = 216

The larger N allows the frequency and height of the spectral spikes to be more ac-

curate. Note that because Range tsig is held constant, the width of the spikes doesn’t

change.

37



3.3.1 Number of points and zero padding

As discussed previously, zero padding helps to increase the number of points N and

reduce the distance between the points in frequency domain if the time interval δt is

held constant. Thus, it creates more accurate graphs in the spectral domain. However,

increasing the number of points and using zero padding produces even better results. This

is because increasing the number of points increases spectral resolution, while using zero

padding reduces the impact of windowing the sin wave. The following is a relationship

between the number of points in the signal Nsig and zero padding.

38



Figure 3.6: Power of spectral mixed signal Nsig = 212 without and with zero padding

respectively.

Figure 3.7: Power of spectral mixed signal Nsig = 216 without and with zero padding

respectively.

The best results are achieved with the number of points in the signal Nsig ≥ 216 and

zero padding used at the same time. This way the frequency offset has the least amount

error — ∆f = 1 [MHz] — and the spectral mixed signal has higher resolution.
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Figure 3.8: Phase of spectral mixed signal Nsig = 212 without (A) and with (B) zero

padding.

Figure 3.9: Phase of spectral mixed signal Nsig = 216 without (A) and with(B) zero

padding.

Figures 3.8 and 3.9 compare the phase of spectral mixed signal. The phase offset

detected for the case Nsig = 212 is 0.00767 + π
2

= 1.578466327 [rad] with ∆ = 0.00767

[rad]. For the case Nsig = 216 it is 0.00047 + π
2

= 1.571275727 [rad] with ∆ = 0.0004794

[rad] difference from π
2
. Thus, the Nsig = 216 case gives better results in estimation of the

phase offset difference. Moreover, the ∆f is 0.9998 [MHz] in the case Nsig = 212 which is
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0.0002 [MHz] error from the correct value of 1 [MHz] as detected in the case Nsig = 216

points.

Figure 3.10: Phase of temporal mixed signal Nsig = 212 without (A) and with(B) zero

padding.

Figure 3.11: Phase of temporal mixed signal Nsig = 216 without (A) and with(B) zero

padding.
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Figure 3.12: Phase of temporal mixed signal with linear part removed and 3-dB coupler

correction for Nsig = 212 without (A) and with(B) zero padding.

Figure 3.13: Phase of temporal mixed signal with linear part removed and 3-dB coupler

correction for Nsig = 216 without (A) and with(B) zero padding.

Figures 3.12 and 3.13 show the phase of the temporal mixed signal for Nsig = 212

and Nsig = 216 points. In the case Nsig = 212 without padding, the phase offset is

31.4159 − 2 · π · 5 + π
2

= 1.5708 [rad] with ∆ = 2.65358e−5 [rad] difference from π
2
. The

difference in the slope is 6.146928e−7 [MHz]. In the case Nsig = 212 points with padding,

the phase offset is 1.5512 [rad] with ∆ = 0.0195963 [rad]. In the case Nsig = 216 points
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without padding, the phase offset is 1.5708 [rad] with ∆ = 2.65358e−5 [rad]. In the case

Nsig = 216 points with padding, the phase offset is 1.5706 [rad] with ∆ = 1.963268e−4

[rad].

These results show that we get the biggest improvement when we increase the number

of points to Nsig = 216. Increase in total number of points N allows to decrease δf without

affection the sinc function. Zero padding plays an important role in analyzing signals in

the spectral domain, however it does not help to decrease the error of the phase or

frequency detection in the temporal domain.

3.4 Conclusion

The important points we can conclude from this chapter are:

� We need to have side bands in the spectral mixed signal, so the restriction is

* ∆f > 2
δtNsig

� The number of points in the signal has a significant effect of the error of detection,

therefore we will be using Nsig = 216 points in further calculations. Increase of the

number of points cause a decrease in δf and the sinc function. Using the conditions

Nsig = 216 points without padding and ∆f = 1 [MHz], Figure 3.14 shows the data

for the assessed ∆Φ as markers and the input phase as a line for the temporal and

spectral phase shifts.
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Figure 3.14: Assessed phase versus actual input phase, for spectral and temporal phase

assessment techniques.
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3.5 Summary of Optical Heterodyne Detection

The steps and conditions used to perform optical heterodyne detection are summarized

as follows:

1. P (t), using ∆f = fs − fo

? ∆f > 2
δtNsig

2. S̃(f) = F{P (t)}

? ∆Φ = φ(∆f) = φ(−∆f)

? (with 3-dB directional coupler) ∆Φ = φ(∆f) + π
2

= φ(−∆f)− π
2

3. S̃f (f) = F{P (t)} × Π(f−f0
α

)

? α > 2δf = 2
δtNsig

4. P̃f (t) = F−1{S̃f (f)}

5. φf (t) = tan−1
{
Im{P̃f}
Re{P̃f}

}
= angle{P̃ (f)}

6. φf (t) = mt+ b

? ∆Φ = φf (t)−mt = b

? (with 3-dB directional coupler) ∆Φ = φf (t)−mt+ π
2

= b+ π
2
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Chapter 4

OHD of Phase-Shifted Signals:

Non-Split Signal

In this thesis we are interested in understanding the optical heterodyne detection of phase-

shifted signals. We study two basic categories of analyzing the phase-shifted signal. The

first category is to process the entire temporal mixed signal with the numerical analysis

described in the Chapter 2. This method called the non-split signal method and is the

focus of this chapter. The second category is to split the signal at the phase shift into

two separate waveforms and then apply the analysis to each segment separately. This

method is called the split signal method and is the focus of chapters 5 and 6. In this

current chapter we discuss the analysis of phase-shifted signals without splitting the

waveform for phase shifts of π, π
2

and −π
2

[rad] in detail, and a range of phase shifts in

summary.
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4.1 Phase shift of π

Temporal mixed signal: The temporal mixed signal in Figure 4.1 has phase shift of

π in the middle of the waveform at t = 0. We use the number of points N = 216 since

it gives less percentage error and compare the signal with and without padding side by

side.

Figure 4.1: Temporal mixed signal with a phase shift of π at t=o, with (B) and without

(A) padding.

The phase shift ∆φ(f) is given by

∆φ(f) = ∆Φ2 −∆Φ1 = φs2 − φo − (φs1 − φo) = φs2 − φs1, (4.1)

showing that the phase reference of the local oscillator drops out. φs1 and φs2 are the

phase offsets of the signal before and after the phase change.

Spectral mixed signal: Proceeding with the analysis we perform the Fast Fourier

transformation on the temporal mixed signal. The power of the spectral mixed signal is

represented in Figure 4.2. The power of the spectral mixed signal does not look like that

of a single spike anymore. The phase shift of π affects the waveform and cancels out some
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of the peak making it reach zero in the middle. Note that the spike is broader than the

non-phase shifted case.

Figure 4.2: Power of spectral mixed signal, with (B) and without (A) padding.

The phase of the spectral mixed signal is different as well. The negative frequency

used to provide the negative spike, now it is flipped and the negative frequency has the

positive spike as shown in Figure 4.3. The detected phase at f = 1 MHz is −3.141 rad,

but we still need to add π
2

to it because of the 3-dB coupler effect.

Analyzing the spectral phase shift, we noticed that the phase shift could be detected

using a formula based on the difference of the phase values found at +∆f and −∆f :

∆φ(f) = (φ(+∆f) +
π

2
)− (φ(−∆f)− π

2
) = φ(+∆f)− φ(−∆f) + π, (4.2)

where φ(+∆f) and φ(−∆f) is phase detected at ±∆f . In this case, the assessed phase

shift is ∆φ(f) = −3.140633916 − 3.140633916 + π = −3.139675178 + 2π = 3.143510129

[rad] with error ∆ = 1.91747518e−3 [rad].
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Figure 4.3: Phase of spectral mixed signal, with (B) and without (A) padding.

The width of the filter α was broadened to capture additional features and lower the

error. We used α = 1 [MHz] and the filtered spectral mixed signal is represented in

Figure 4.4.

Figure 4.4: Filtered spectral mixed signal, with (B) and without (A) padding.

Filtered temporal mixed signal: Figure 4.5 shows temporal mixed signal with and

without padding. For the case with padding, the waveform was zoomed in for the time

period from -5000 to 5000.
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Figure 4.5: Filtered temporal mixed signal, with (B) and without (A) padding.

After applying the filter and inverse FFT, the unwrapped temporal phase of the

filtered temporal mixed signal is extracted and represented in Figure 4.6. We can find

the polynomial line equation for this waveform, however the resulted waveform is not a

straight line anymore. Therefore does not accurately detect ∆f = 0.795313166 [MHz]

with error ∆ = 0.20468683 [MHz]. The actual waveform has a phase shift and the fitted

line is a straight line.

Figure 4.6: Temporal phase of the mixed signal, with (B) and without (A) padding.

In order to find the phase shift, we subtract the linear fit equation (y = mt+ b) from
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the temporal phase waveform. The result is shown in Figure 4.7. The phase distance

between two peaks is the phase shift. However, this method does not provide an accurate

result. The detected value for the no padding case is 2.568374197 [rad] which is ∆ =

−0.5732184563 ≈ π
6

[rad] difference from the original value of π. The case with padding

has a phase shift of 2.101947819 [rad] which yields to ∆ = −1.039644834 ≈ π
3

[rad] error.

Figure 4.7: Phase of filtered temporal signal, having the linear part removed, with (B)

and without (A) padding.

4.2 Phase shift of π
2

Figure 4.8 shows the temporal mixed signal with a π
2

phase shift. We proceed with the

analysis and find the power and phase of the spectral mixed signal depicted in Figure

4.9.
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Figure 4.8: Temporal mixed signal with the phase shift of π
2
.

The power of the spectral mixed signal in Figure 4.9 differs from the one in Figure

4.3. The spike does not reach zero in the middle anymore, but it is short and broad. The

phase shift ∆φ(f) = φ(+∆f)−φ(−∆f)+π yields to −0.7849−0.7849+π = 1.571770324

[rad] with ∆ = 9.739969006e−4 [rad] difference from π
2
.

Figure 4.9: Power and phase of the spectral mixed signal.

Figure 4.10 demonstrates filtered spectral and temporal powers.
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Figure 4.10: Filtered spectral and temporal signals.

Figure 4.11 shows the phase of the temporal mixed signal and the extracted phase

shift. However, the error of those calculations is too high being ∆ = 0.6719963 ≈ π
5

[rad]

difference between the actual input phase of π
2

and assessed phase shift of 0.8988 [rad].

Figure 4.11: Phase of temporal mixed signal.

4.3 Phase shift of −π
2

In this section we discuss the case of phase change from φ1 = π to φ2 = π
2
, with a total

phase shift of ∆φ = −π
2
. The power of temporal and spectral mixed signal is displayed
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in Figure 4.12.

Figure 4.12: Power of temporal (A) and spectral (B) mixed signal.

Figure 4.13 A shows phase of spectral mixed signal. Using ∆φ(f) = φ(+∆f) −

φ(−∆f) + π we get ∆φ(f) = 4.713332459 − 2π = −1.569852848 [rad] with ∆ =

9.434790845e−4 [rad] error.

Figure 4.13: Phase of spectral (A)and temporal (B) mixed signal.

The temporal assessment demonstrated in Figure 4.13 B provides an inaccurate result,

with ∆φ(t) = 0.95014 [rad], and error ∆ = 0.62065632 ≈ π
5

[rad].
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4.4 Phase shift of 0

In this section we discuss the assessment of the phase shift of 0 [rad]. Table 4.1 shows

multiple ways of achieving ∆φ = 0 [rad] and the assessed spectral and temporal phase

shifts. The temporal phase shift shows a good result being assessed with a constant error

∆ ≈ 2.1e−4 [rad]. However, the spectral phase shift of 0 [rad] does not comply with the

equation we were using for the assessment ∆φ(f) = φ(+∆f) − φ(−∆f) + π. It seems

like for the case of ∆φ = 0 [rad] the assessed phase shift is φs1 + φs2. Thus, due to the

high error of detection and the equation not applicable for all situations, the method of

non-split phase shift detection is not recommended for the phase shift assessment.

Table 4.1: Spectral φ(f) and temporal φ(t) phase shift assessment of ∆φ = 0 [rad]

φs1 φs2 Assessed ∆φ(f) Assessed ∆φ(t)

0 0 0.000958738 2.083520701e−4

π
12

π
12

0.524565143 2.078515756e−4

π
6

π
6

1.048169504 2.143091689e−4

π
4

π
4

1.571770324 2.177939577e−4

π
2

π
2

3.142551392 2.008806462e−4

π π 6.284144045 2.083520702e−4

3π
2

3π
2

-3.140633916 2.008806462e−4

2π 2π 9.587379934e−4 2.083520701e−4
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4.5 Conclusion

After analyzing the technique of processing the temporal mixed signal without splitting

it at the phase shift, we were able to achieve good results with spectral phase shift

assessment for non-zero phase shifts, however the phase shift of 0 [rad] does not comply

the formula used or calculations. The temporal phase shift assessment has a large error for

the most of the phase shifts. Figure 4.14 shows the assessed phase versus the input phase

for the spectral mixed signal. We got identical results for both cases with and without

padding and the largest error yields to ∆ = 1.00367e−3 [rad]. Figure 4.15 demonstrates

the assessed phase shift of the temporal mixed signal. The temporal assessment results

are accurate for the phase shift values of 0 and ±2π, however, they reach the largest

error of approximately π
3

[rad] for the case with padding and π
5

[rad] for the case without

padding.

Figure 4.14: Assessed spectral phase shift with (B) and without (A) padding.
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Figure 4.15: Assessed temporal phase shift with (B) and without (A) padding.

Table 4.2: Spectral φ(f) phase shift assessment [rad] with and without padding

Actual ∆φ(f) without padding ∆ ∆φ(f) with padding ∆

0 9.587379924e−4 9.587379924e−4 9.587379924e−4 9.587379924e−4

π
2

1.571770324 9.739969006e−4 1.571770324 9.739969006e−4

π 3.140633916 9.587379234e−4 3.140633916 9.587379234e−4

3π
2

4.713332459 9.434790843e−4 4.713332459 9.434790843e−4

2π 6.282226569 9.587379929e−4 6.282226569 9.587379929e−4
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Table 4.3: Temporal φ(t) phase shift assessment [rad] with and without padding

Actual ∆φ(t) without padding ∆ ∆φ(t) with padding ∆

0 2.083520701e−4 2.083520701e−4 0.2848720012 0.2848720012

π
2

0.85925701882 -0.5911519235 0.8592570188 -0.711539308

π 2.568374197 -0.5732184563 2.101947819 -1.039644834

3π
2

4.091730657 -0.6206583234 3.99142327 0.7209657103

2π 6.282976955 2.083520703e−4 6.311185307 0.0280701

Figure 4.16: ∆ difference error.
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4.6 Summary of OHD of Phase-Shifted Signals: Non-

split Signal

The steps used to perform optical heterodyne detection of phase shifted signals for the

non-split signal method are summarized as follows:

1. P (t), using ∆f = fs − fo and ∆φ = φs1 − φs2

? ∆f > 2
δtNsig

2. S̃(f) = F{P (t)}

? (with 3-dB directional coupler) ∆φ = φ(+∆f)− φ(−∆f) + π

3. S̃f (f) = F{P (t)} × Π(f−f0
α

)

? α > 2δf = 2
δtNsig

4. P̃f (t) = F−1{S̃f (f)}

5. φf (t) = angle{P̃ (f)}

? ∆φ = φf (t)− (mt+ b)
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Chapter 5

OHD of Phase-Shifted Signals: Split

Signal

In this chapter we discuss our first method of phase shift detection using the split signal.

The second method is discussed in Chapter 6. In this current chapter, we consider the

phase shift of π in detail and many shifts in summary for the phase-shifted signal split

in equal and non-equal parts.

5.1 Impact of time vector zero position

In this section we look at the example of changing time vector zero positions and its effect

on the temporal and spectral signals.

For example, instead of defining the time vector from −5000 to 5000 [ns] and centered

at to = 0 as in case A, the time vector is changed to −2500 to 7500 and centered at

to = 2500 [ns] as in case B. Figure 5.1 shows the temporal signal for cases A and B. The

initial conditions for both cases are defined with φs = π
2

and φo = 0. For both cases N ,

∆f , ∆φ and Range t have been defined the same, as indicated in the text box of Figure
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5.1.

Figure 5.1: Temporal mixed signal for case A and B.

Figure 5.2 displays the power of the spectral mixed signal for the both cases. All the

parameters and the form of the peaks remain the same. Shifting the time vector zero

position has no effect in the spectral power. Even though the time vector is different,

δtN and ∆f remain the same, so the peaks in the spectral domain appear at the same

frequency values.

Figure 5.2: Power of spectral mixed signal for case A and B.
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Figure 5.3: Phase of spectral mixed signal for case A and B.

Figure 5.3 displays the phase of spectral mixed signal. This example demonstrates

that the spectral phase actually depends on time vector zero position. In case A, after we

add π
2

to the value of the phase located at f = 1 MHz and subtract π
2

from the amplitude

of the phase located at f = −1 MHz, we get ±1.5785 [rad] respectively. After we perform

the same operations on case B, we get ∓1.5632 [rad] respectively. Although the absolute

value is approximately the same, the sign has changed.

We need to adjust the spectral phase in order to get the correct value by subtracting

2πfto from the phase value:

φ′ = (φ− 2πfto)− 2πk +
π

2
, (5.1)

where to is the center of the temporal window and f is the variable of the frequency

vector that ranges from fmin to fmax. The center of the temporal window is the middle

of the defined time vector and calculated as to = tmax sig+tmin sig
2

.

The adjustment to the spectral phase expressed by Equation 5.1 forces the data to

obey the Fourier Shift Theorem (FST). The FST states that a shift in time relates to

a linear spectral phase contribution. The MATLAB FFT is unaware of absolute time
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values, and therefore its output data must be corrected.

Figure 5.4 demonstrates the spectral phase adjusted by (φ − 2πfto). Spectral phase

remains unchanged for case A because at to = 0 [ns], φ = φ−2πfto. For case B, to = 2500

[ns] and φ′ = −18.85 + 2 · π · 2 + π
2

= 1.57057 [rad] with error ∆ = −4.440784e−4 [rad].

Figure 5.4: Adjusted phase of spectral mixed signal for case A and B.

Figure 5.5: Temporal phase of filtered spectral mixed signal for case A and B.
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Figure 5.6: Phase of temporal mixed signal with linear part removed and 3-dB coupler

correction for case A and B.

Figure 5.6 shows the phase of the temporal mixed signal with the linear part removed

and the 3-dB coupler correction applied. The detected phase shift is 1.5708 [rad] for case

A and 1.5709 [rad] for case B, which yields to ∆A = 3.6732e−6 and ∆B = 1.036732e−4

difference respectively. Note that the FST fix expressed by Equation 5.1 does not have

to be applied to the current phase based on the temporal phase.

5.2 Split of phase-shifted signal at equal parts

The phase-shifted signal will be split in two parts, before and after the phase shift, and

each part will be processed and analyzed separately side by side. This method allows

analysis of multiple phase shifts in one waveform by splitting the waveform at each phase

shift. Based on the fact that the temporal phase does not depend on the time vector

position and spectral phase needs to be adjusted, we can safely split the waveform.
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Figure 5.7: Temporal mixed signal before split.

Temporal mixed signal: Figure 5.7 shows the temporal mixed signal with the phase

shift at t=0. Figure 5.8 demonstrates the splitted temporal mixed signal before (A) and

after (B) the phase shift. Comparing to Figure 5.7 the total number of points N and

Range t split in half, but the time difference δt remains the same. The time vector runs

from −5000 to 0 [ns] for case A and from 0+ δt to 5000 [ns] for case B. Those time vector

values are preserved along the analysis. Note that in this example N , Range t, and δt

are identical for both cases. It does not have to be this way, and further on we discuss

the case when they are different.
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Figure 5.8: Temporal mixed signal, before and after phase shift.

Spectral mixed signal: Figure 5.9 shows the spectral mixed signal. We split the

waveform in half, so N becomes a half of the non-split case and the side spikes get wider.

The estimated width of each spike is 2δf = 2
δtN

= 0.3999938965 [MHz]. The actual width

of the spike is 0.4000 [MHz].

Figure 5.9: Power of spectral mixed signal, before and after phase shift.

The adjusted by 2πfto phase of the spectral mixed signal is represented in Figure

5.10. As we discussed in the last section, it is necessary to adjust the spectral phase by

the time vector zero position. to is centered at −2500 [ns] for case A and 2500 [ns] for
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case B. In case A, the adjusted phase at 1 MHz is φ′s1 = 17.28− 2 ·π · 3 + π
2

= 1.12404e−3

[rad]. In case B, the phase is φ′s2 = −17.28 + 2 · π · 3 + π
2

= 3.14035 [rad] with error

∆ = 1.12404e−3 [rad]. Thus, the phase shift is ∆φ(f) = φ′s2− φ′s1 = 3.1391096 [rad] with

∆ = 2.48305e−3 [rad] error.

Figure 5.10: Phase of spectral mixed signal, before and after phase shift.

Figure 5.11 shows the filtered spectral mixed signal with α = 0.4 [MHz].

Figure 5.11: Filtered spectral mixed signal, before and after phase shift.

Filtered temporal mixed signal: Figure 5.12 demonstrates the real part of the fil-

tered temporal mixed signal before and after the phase shift. In this case it is similar to
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Figure 5.8 — the temporal mixed signal with amplitude being half of that before filtering.

Figure 5.12: Filtered temporal mixed signal, before and after phase shift.

Figure 5.13 shows the phase of the temporal mixed signal. First, let’s determine

the phase for the each case. In case A, φs1 = 29.8449 − 2 · π · 5 + π
2

= −2.3021e − 04

[rad]. In case B, φs2 = 1.571 + π
2

= 3.1418 [rad]. Individually, these two phase values

are correct. The assessed phase shift is ∆φ(t) = φs2 − φs1 = 3.14203021 [rad], which

is ∆ = 4.375564102e−4 [rad] accurate in reference to π. The angular frequency is the

same for both cases and equal 0.006283 [rad-GHz] which is ∆ = 2e−7 [rad-GHz] accurate

compared to 2π∆f = 0.0062832 [rad-GHz].
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Figure 5.13: Phase of temporal mixed signal, before and after phase shift.

Figure 5.14 shows the phase shift of filtered temporal mixed signal with the linear

part removed and 3-dB coupler correction applied. The detected phase shift is ∆φ(t) =

3.142069389 [rad] with ∆ = 4.767351611e−4 [rad] error.

Figure 5.14: Phase of temporal mixed signal with linear part removed and 3-dB coupler

correction.

Conclusion: The techniques of splitting the signal at the phase shift and analyzing

each part of it separately provides the best results in the phase detection. Figure 5.15
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shows the correlation between assessed and inputted phase shift for spectral and temporal

phase shifts. At N = 216 points the largest error was −4.793836081e−4 [rad]. Thus, we

can conclude that this method of phase detection is successful for both spectral and

temporal phase assessment.

Figure 5.15: Assessed phase shift.

Table 5.1: Spectral φ(f) and temporal φ(t) phase shift assessment [rad]

Actual Assessed ∆φ(f) ∆ Assessed ∆φ(t) ∆

0 −4.793836081e−4 −4.793836081e−4 −4.76735162e−4 4.76735162e−4

π
2

1.571275703 4.793762938e−4 1.571273269 4.769421099e−4

π 3.142072037 4.793836076e−4 3.142069389 4.767351611e−4

3π
2

4.712868357 4.79376293e−4 4.711912038 4.769421091e−4

2π 6.283664691 4.793835947e−4 6.282708572 4.767351622e−4
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Figure 5.16: ∆ difference error.

5.3 Split of phase-shifted signal at not even parts

In the last chapter we have discussed splitting the signal in two even parts. However, it

is not always an option. Therefore in this chapter we discuss the case when the phase

shift is not at the middle of the waveform. For this example, we picked the signal with

the Range t = 20000 points and ∆f = 1 [MHz], so we have long enough waveform to

minimize the errors after splitting.

Temporal mixed signal: Figure 5.17 demonstrates the temporal mixed signal with

the phase shift at t = −5000 [ns].
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Figure 5.17: Temporal mixed signal before split.

Figure 5.18 shows temporal mixed signal after the split. Temporal mixed signal 2 is

3 times longer and has 3 times more points than signal 1.

Figure 5.18: Temporal mixed signal after split at the phase shift.

Spectral mixed signal Figure 5.19 displays the power of the spectral mixed signal.

The spikes for case A are shorter and wider than case B. It can be explained with the

equation FWHM = δf = 1
δtN

, where δt stays the same, N1 = 16384 points for case A,

and N2 = 49152 points for case B. So, the FWHM of the spikes for case A will be 3 times
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larger than for case B.

Figure 5.19: Power of spectral mixed signal after split at the phase shift.

Figure 5.20 shows phase of the spectral mixed signal with accounting for the FST.

The center of the temporal window is at to = −7500 [ns] for case A and to = 2500

[ns] for case B. After adding π
2

for the each value of the adjusted spectral phase, we get

φ′s1 = 48.68− 2 · π · 8 + π
2

= −4.686130642e−3 [rad] for case A and φ′s2 = −17.28 + 2 · π ·

3 + π
2

= 3.140352248 [rad] for case B. The phase shift ∆φ(f) = 3.145038379 [rad] which

is ∆ = 3.445725386e−3 [rad] difference from π.

Figure 5.20: Phase of spectral mixed signal after split at the phase shift.
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Figure 5.21: Filtered spectral mixed signal after split at the phase shift.

Filtered temporal mixed signal: Figure 5.22 shows filtered temporal mixed signal

before and after the split at the phase shift.

Figure 5.22: Filtered temporal mixed signal after split at the phase shift.
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Figure 5.23: Phase of filtered temporal mixed signal after split at the phase shift.

Figure 5.24: Phase of filtered temporal mixed signal after split at the phase shift.
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Figure 5.25: Phase of filtered temporal mixed signal with linear part removed and 3-dB

coupler correction.

Figure 5.24 shows the phase of the filtered mixed signal with linear part removed and

π
2

added. Case A has a bigger error than case B. It is based on the lower number of points

in the first part of the waveform before the shift (case A). Figure 5.25 shows the assessed

temporal phase shift ∆φ(t) = 3.11746891, the error of calculation is ∆ = −0.02412374376

[rad].

Conclusion: The method of split signal with non-equal parts is successful. The highest

error of the spectral mixed signal is approximately 9.59e−4 [rad]. Note that there is a

constant error of approximately 2.41e−2 [rad] in the detection of the temporal phase

which comes from the φs1 assessment. Figure 5.26 shows the assessed phase versus

the actual phase for the spectral and temporal phase assessment. The highest error

is 2.412374376e−2 [rad] in the temporal case still allows correct detection of the phase

shift.
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Figure 5.26: Assessed phase.

Table 5.2: Spectral φ(f) and temporal φ(t) phase shift assessment [rad]

Actual Assessed ∆φ(f) ∆ Assessed ∆φ(t) ∆

0 9.587672198e−4 9.587672198e−4 2.412374376e−2 2.412374376e−2

π
2

1.569837567 9.587599045e−4 1.546670856 2.412547115e−2

π 3.140633886 9.587672201e−4 3.11746891 2.412374376e−2

3π
2

4.71143022 9.587599046e−4 4.736514452 2.412547115e−2

2π 6.28222654 9.587672192e−4 6.259061563 2.412374376e−2
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Figure 5.27: ∆ difference error.
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5.4 Summary of OHD of Phase-Shifted Signals: Split

Signal

The steps used to perform OHD of phase shifted signals for the split signal method are

summarized as follows:

1. P (t), using ∆f = fs − fo and ∆φ = φs1 − φs2

? ∆f > 2
δtNsig

2. Split P (t) at ∆φ in P1(t1) and P2(t2)

3. S̃1(f1) = F{P1(t1)} and S̃2(f2) = F{P2(t2)}

? (with accounting for the FST and 3-dB directional coupler)

φ′s1 = φs1(∆f)− 2πf1to1 + π
2

= φs1(−∆f)− 2πf1to1 − π
2

φ′s2 = φs2(∆f)− 2πf2to2 + π
2

= φs2(−∆f)− 2πf2to2 − π
2

? ∆φ = φ′s2 − φ′s1 = (φs2(∆f)− 2πf2to2)− (φs1(∆f)− 2πf1to1)

∆φ = φs2(∆f)− φs1(∆f)− 2π(f2to2 − f1to1)

4. S̃f1(f1) = F{P1(t1)} × Π1(f−f0
α

) and S̃f2(f2) = F{P2(t2)} × Π2(f−f0
α

)

? α > 2δf = 2
δtNsig

5. P̃f1(t1) = F−1{S̃f1(f1)} and P̃f2(t2) = F−1{S̃f2(f2)}

6. φf1(t1) = angle{P̃1(f1)} and φf2(t2) = angle{P̃2(f2)}

7. φf1(t1) = m1t1 + b1 and φf2(t2) = m2t2 + b2

? ∆φ = b2 − b1
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Chapter 6

OHD of Phase-Shifted Signals: Split

Signal with Zero Out

This chapter discusses a second method that uses the split signal to assess phase shifts.

In this method the Fourier Shift Theorem (FST) is enforced by setting the unwanted part

of the waveform to zero. It maintains the initial time vector to detect the phase shift for

temporal and spectral analysis. We discuss the phase shift of π in detail and a variety of

phase shifts in the summary at the end of the chapter.

6.1 Split signal with zero out

Temporal mixed signal Figure 6.1 (A) shows the power of the temporal mixed signal

with the phase shift of π [rad] at t = 0 [ns]. Exactly the same conditions were discussed

in Chapters 4 and 5 which allows us to compare this method to others. Figure 6.1 B

demonstrates the vector mask used in MATLAB. The masks are used to modify two

replicas of the original signal.
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Figure 6.1: Temporal mixed signal.

Figure 6.2 shows the waveforms we work with in this chapter. We use the whole time

vector from −5000 to 5000 [ns] but analyze each signal with the unwanted part zeroed

out.

Figure 6.2: Temporal mixed signal.

Spectral mixed signal Figure 6.3 shows the power of spectral mixed signal.
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Figure 6.3: Power of spectral mixed signal before (A) and after (B) shift.

Figure 6.4 shows the phase of spectral mixed signal which is detected at f = 1 [MHz]

as φs1 = −1.5705566 + π
2

= 2.3967718e−4 [rad] for case A and φs2 = 1.571515 + π
2

=

3.14231171439 for case B. The assessed phase shift is ∆φ(f) = 3.142072037 [rad] with

error ∆ = 4.793836232e−4 [rad]. This method simplifies the detection of the phase of the

spectral mixed signal compared to the split signal method discussed in Chapter 5. The

current method requires only correction for the 3-dB coupler of the phase assessment.

Figure 6.4: Phase of spectral mixed signal before (A) and after (B) shift.

Figure 6.5 displays filtered spectral mixed signal for case A and case B.

82



Figure 6.5: Filtered power of spectral mixed signal before (A) and after (B) shift.

Filtered temporal mixed signal After performing the inverse Fourier transformation

on the filtered spectral mixed signal, we get the temporal mixed signal displayed in Figure

6.6. Note that due to the filtering, the part of the waveform which was zeroed out has a

wavy form. Moreover, the phase of the filtered temporal mixed signal, depicted in Figure

6.7, has a wavy composition as well primarily in the zeroed out part. This creates a

sizable error in the temporal phase shift assessment.

Figure 6.6: Filtered power of temporal mixed signal before (A) and after (B) shift.
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Figure 6.7: Phase of temporal mixed signal before (A) and after (B) shift.

Depicted in Figure 6.8 temporal phase with linear part removed and 3-dB coupler

adjustment is estimated as a numeric average at φs1 = 2.7215 ≈ π
1.2

[rad] instead of 0

[rad] for case A; and φs2 = 0.42014 ≈ π
7

[rad] instead of π [rad] for case B. The temporal

phase shift is assessed at ∆φ(t) = 2.30130975 [rad] with error ∆ = 0.840282897 ≈ π
4

[rad].

Figure 6.8: Temporal phase with linear part removed and 3-dB coupler correction, before

(A) and after (B) shift.
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6.2 Temporal phase split

Concerned by poor results in the temporal phase assessment, we decided to use another

technique and split the temporal phase shift at the time vector zero position, dropping

the part of the waveform which was previously zeroed out. After that a new linear fitting

was applied to the temporal phase waveform. Figure 6.9 shows a new phase of the filtered

temporal mixed signal. Note that the new fit has better precision.

Figure 6.9: Split signal temporal phase, before (A) and after (B) shift.

Figure 6.10 shows the temporal phase with the linear part removed and the 3-dB

coupler correction applied. The temporal phase shift waveform is not a straight line

either. However, the total assessed phase shift displayed in Figure 6.11 is averaged at

∆φ(t) = 3.27622766 [rad] with error ∆ = 0.13463501 ≈ π
23

[rad]. These results are

considerably better than the ones achieved without phase splitting.
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Figure 6.10: Split signal temporal phase with linear part removed and 3-dB coupler cor-

rection, before (A) and after (B) shift.

Figure 6.11: Assessed temporal phase shift.

Conclusion: The method of splitting the signal by zeroing out the unwanted part of the

waveform demonstrates successful results for the spectral phase analysis. Unfortunately,

it provides poor assessment for the temporal phase. Splitting the phase of the filtered

temporal mixed signal at the time vector zero position after calculating the spectral

phase shift, gives us the benefit of using both techniques discussed in Chapters 5 and
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6, and decreases inaccuracy of calculations. However, the results achieved by splitting

the waveform in Chapter 5 have higher precision especially for temporal phase shift

assessment. In current chapter the highest error reaches 0.747 ≈ π
4

[rad].

Figure 6.12: Assessed phase.

Table 6.1: Spectral ∆φ(f) and temporal ∆φ(t) phase shift assessment [rad]

Actual Assessed ∆φ(f) ∆ Assessed ∆φ(t) ∆

0 4.7938362377e−4 4.7938362377e−4 -0.020412189 0.020412189

π
2

1.571275703 4.793763093e−4 0.82287224 0.74792408196

π 3.14207204 4.793836232e−4 3.27622766 0.13463501

3π
2

4.71286835669 4.7937630865e−4 4.5618870515 -0.1505019288

2π 6.2827059235 4.7938362426e−4 6.2627731177 -0.02041218941
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Figure 6.13: ∆ difference error.
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6.3 Summary of Optical Heterodyne Detection: Split

Signal with Zero Out

The steps used to perform optical heterodyne detection of phase shifted signals for the

split signal with zero out and split method are summarized as follows:

1. P (t), using ∆f = fs − fo and ∆φ = φs1 − φs2

? ∆f > 2
δtNsig

2. Split P (t) at ∆φ by zeroing out unwanted part

P1(t) = P (t)× zero mask1 and P2(t) = P (t)× zero mask2

3. S̃1(f) = F{P1(t)} and S̃2(f) = F{P2(t)}

? (with 3-dB directional coupler) φs1 = φ1(∆f) + π
2

= φ1(−∆f)− π
2

φs2 = φ2(∆f) + π
2

= φ2(−∆f)− π
2

? ∆φ = φs2 − φs1 = φ2(∆f)− φ1(∆f)

4. S̃f1(f) = F{P1(t)} × Π1(f−f0
α

) and S̃f2(f) = F{P2(t)} × Π2(f−f0
α

)

? α > 2δf = 2
δtNsig

5. P̃f1(t) = F−1{S̃f1(f)} and P̃f2(t) = F−1{S̃f2(f)}

6. φf1(t) = angle{P̃1(f)} and φf2(t) = angle{P̃2(f)}

7. Split the phase vectors φf1(t) and φf2(t) at the phase shift φf1(t1) and φf2(t1),

where t1 time vector before the shift, t2 time vector after the shift

φf1(t1) = m1t1 + b1 and φf2(t2) = m2t2 + b2

? ∆φ = b2 − b1

89



Chapter 7

Conclusion

In this chapter we summarize our study of using optical heterodyne detection to assess a

phase shift. Table 7.1 provide a high-level summary. The temporal assessment provides a

significant error in two methods — the non-split signal method and the split signal with

zero out method. However, the temporal assessment provides a low error for the split

signal method, and without introducing any FST term.

All spectral assessments yield much lower error. None of the spectral methods require

the inverse Fourier transform or curve fitting like in the temporal assessment methods.

However, the non-split signal method uses an odd equation which does not work for all

∆φ(f). The split signal method requires introduction of Fourier Shift terms, while the

split signal with zero out requires zero-out operations.

Based on the following considerations, we recommend using split signal or split signal

with zero out for spectral phase shift assessment and split signal for temporal phase shift

assessment. However, there is no need to proceed to the temporal phase shift assessment

for the successful phase shift detection. Spectral phase assessment provides high precision

results with the minimum of calculations.
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Table 7.1: Summary of phase shift assessment

Method Spectral Assessment Temporal Assessment

Non-split signal ∆φ(f) = φ(+∆f)− φ(−∆f) + π ∆φ(t) = φf (t)− (mt+ b)

∆max = 3.14255 [rad] ∆max = 0.67 [rad]

7 7

Split signal ∆φ(f) = φs2 − φs1 − 2π(f2to2 − f1to1) ∆φ(t) = b2 − b1

∆max = 4.8e−4 [rad] ∆max = 4.7e−4 [rad]

X X

Split signal ∆φ(f) = φs2(∆f)− φs1(∆f) ∆φ(t) = b2 − b1

with zero out ∆max = 4.8e−4 [rad] ∆max = 0.748 [rad]

X 7
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