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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

Degree: Doctor of Philosophy  Program: Microsystems Engineering  

Authors Name: Wangshi Zhao  

Advisors Name: Zhaolin Lu  

Title:  Novel Metamaterials and Their Applications in Subwavelength Waveguides, Imaging and Modulation  

The development of metamaterials has opened the door for engineering electromagnetic 

properties by subwavelength artificial “atoms”, and hence accessing new properties and 

functionalities which cannot be found among naturally occurring materials. In particular, 

metamaterials enable the flexibility of independently controlling the permittivity and permeability 

to be almost any arbitrary value, which promises to achieve deep subwavelength confinement and 

focusing of electromagnetic waves in different spectrum regimes. The next stage of this 

technological revolution will be focused on the development of active and controllable 

metamaterials, where the properties of the metamaterials are expected to be tuned by external 

stimuli. In this sense, some natural materials are also promising to provide the tunable capability, 

particularly in the near infrared and terahertz domains either by applying a voltage or shining light 

on the materials. The objective of this dissertation is to investigate novel metamaterials and explore 

three important applications of them: subwavelength waveguiding, imaging and modulation. The 

first part of this dissertation covers the theory, design and fabrication of several different types of 

metamaterials, which includes artificially designed metamaterials and some naturally existing 

materials. The second part demonstrates metal gratings functioning as designer surface plasmonic 

waveguides support deep subwavelength surface propagation modes at microwave frequency. The 

third part proposes multilayered metal-insulator stack as indefinite metamaterial that converts 

evanescent waves to propagating waves, hence deep subwavelength image can be observed. The 

fourth part explores the tunability of several natural materials – gallium (Ga), indium tin oxide (ITO) 

and graphene, and demonstrates electro-optical (EO) modulators based on these materials can be 

achieved on nano-scale. The final part summarizes the work presented in this dissertation and also 

discusses some future work for photodetection, photovoltaics, and modulation.  
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1 INTRODUCTION 

1.1 Motivation 

Electromagnetic (EM) metamaterials, with their extraordinary properties which cannot be 

obtained in most naturally existing materials, have been shown tremendous potentials in many 

fields of science and technology. Many scientific breakthroughs, for example, invisible cloaking 

[1-3] and super lenses [4-7], have been experimentally demonstrated with metamaterials.  

Generally, metamaterials can be treated as effective media, where their extraordinary properties 

depend on their periodic structure rather than their composition [8]. The periodicity of each unit 

cell in a metamaterial is significantly smaller than the wavelength of interest. Therefore, each unit 

can be viewed as a microscopic building block of the metamaterial, in analogy to the atoms in the 

naturally occurring conventional materials. Figure 1.1 illustrates a three-dimensional (3D) flat lens 

and its unit cell, with which subwavelength resolution imaging can be observed at microwave 

frequency regime [9]. 

 

Figure 1.1 A three-dimensional metamaterial and its unit cell, where the unit cell is arranged 

in a body-centered-cubic structure. [9] 
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The history of metamaterials dates back to 1968, when a Russian scientist, Veselago, 

theoretically investigated [10] the electromagnetic consequences of a material which has both 

negative ε and negative µ, and made a conclusion that the refractive index of the material should 

be revised and expressed as . Materials with negative refractive index n have numerous 

interesting applications and many classical physical phenomena associated with EM wave 

propagation need to be reexamined. For example, Doppler shift is reversed, and Cherenkov 

radiation is emitted in the opposite direction to the charge’s motion rather than in the forward 

direction [10]. However, Veselago’s theoretical work on the negative refractive index material had 

not been experimentally demonstrated for a long time since materials with negative index do not 

exist in nature. In 1990s, John B. Pendry and his colleagues proposed, for the first time, to use 

artificial materials to realize negative permittivity [11] and negative permeability [12], which 

opened up a completely new research area -- metamaterials. 

At the early stage, the research on metamaterials was focused on microwave region to 

demonstrate negative refractive index [13] and superlenses [14]. In recent years, most efforts were 

focused on the engineering and extension of the functionalities of metamaterials at terahertz [16-

18] and optical [5,13,19,20] frequencies. More recently, researchers focus on the metamaterial 

design which leads to the realization of tunability in metamaterials [19,21,22]. Tunable 

metamaterials are designed for switching and modulating EM waves if the properties of the 

metamaterials can be controlled by applying external stimulus. Some natural materials, such as 

graphene and transparent conductive oxides (TCOs), have already shown their outstanding 

properties as tunable metamaterials [23-25]. In this dissertation, I have explored the field of novel 

metamaterials and addressed three important applications of metamaterials: subwavelength 

waveguiding, imaging and modulating. These applications have been explored in an integrated 



3 

 

approach: starting from a fundamental study of subwavelength waveguiding with a designer 

surface plasmon (DSP) waveguide at microwave frequency regime, then extending the exploration 

to imaging beyond diffraction limit and modulating at optical frequencies. 

1.2 Metamaterials 

From a theoretical concept proposed several decades ago, the research on the topic of 

metamaterials is now rapidly expanding. With the fast development of nano-fabrication techniques, 

metamaterial are not limited to the microwave region, more complex structures working at higher 

frequencies can be fabricated and a wider range of materials can be selected. In this section, several 

different types of metamaterial designs, as well as their properties and applications will be 

introduced.  

1.2.1 Background 

Materials play key roles in the development of optics and photonics, since the main 

objective in these fields is to obtain the control on light propagation and light-matter interaction. 

In a conventional material, the propagation of light is influenced by the local refractive index 

. The EM response of a metamaterial can be described with two frequency-dependent 

macroscopic parameters, permittivity ε(ω) and permeability µ(ω). Figure 1.2 shows a “material 

parameter space”, which includes all types of materials, as far as EM properties are concerned. 

Region I represents materials with both permittivity and permeability positive, which covers most 

conventional dielectric materials. Region II includes metals and heavily doped semiconductors, 

which exhibit negative permittivity at some frequency regimes. In the microwave spectrum regime, 

negative permittivity can also be achieved by artificially designed wire structures [11] as illustrated 

in the top left. The first man-made material with negative permeability is the split ring resonators 

(SRRs) [12], as shown in the top right of region IV. Region III is the most interesting one, in which 
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permittivity and permeability are simultaneously negative. No such material can be found in nature. 

The representative negative index metamaterial (NIM) at microwave frequency is constructed by 

the SRRs and metallic wires [15]. On the subwavelength scale, the electric and magnetic fields are 

decoupled, so the permittivity ε(ω) could be the only parameter to be considered to fulfill the 

requirements of the metamaterials with desired EM properties, while disregarding the permeability 

µ(ω). In this dissertation, the focus will be put on the manipulation of the frequency-dependent 

permittivity ε(ω), and the related novel metamaterial designs as well as their properties and 

applications. 

 

Figure 1.2 Material parameter space. [11,12,15] 

One of the greatest potentials of metamaterials is the possibility to create negative 

refractive index, and the associated application is super lenses with imaging resolution beyond the 

diffraction limit [4]. Besides the negative refractive index, advanced developments in 

metamaterials [11,12,14,15,26] promise unprecedented flexibility in providing the artificial 
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materials with very complex specifications, including independent control of the permittivity and 

permeability with positive, negative, or near zero values, and with desired anisotropy and designed 

gradients. Tunable metamaterials attract more attention in recent years since they show variable 

response to an incident light beam, hence they are promising candidates to achieve nanometer-

scale modulators on chip. The tunability of metamaterials has been demonstrated with different 

approaches, for example, electrically or optically pumping the semiconductor constituent of the 

metamaterials [21,22], and external DC magnetic field tuning [19].  

One of the significant challenges researchers have to face is the high loss in the 

metamaterials at telecommunication and optical frequencies, which is usually caused by the metals, 

metal alloys or heavily doped semiconductors in those metamaterials. These large losses seriously 

limit the practicality of metamaterials for many novel applications, which is also a major obstacle 

in the design of efficient devices. Hence, new materials with relatively low loss are desirable. The 

introduction of alternative materials, for example, graphene and transparent conductive oxides 

(TCOs), can overcome the major bottleneck and improve the performance of the devices. 

Graphene, the two-dimensional atomic crystal, combines its exceptionally high electronic and 

thermal conductivities, as well as many other supreme properties, all of which make it highly 

attractive for numerous applications. The carrier concentration in TCOs is in the range of 

1020~1021/cm3, which will shift the plasma frequency into the near infrared (NIR) regime for 

telecom applications. 

1.2.2 Negative refraction and subwavelength imaging 

The original interest in metamaterials was triggered by Pendry’s work in 2000 [4], where 

he claimed “negative refraction makes perfect imaging”. In a conventional medium, the maximum 

resolution of an image cannot be smaller than the diffraction limit, because the evanescent waves 
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which carry the subwavelength feature information decay exponentially in that medium. However, 

in a metamaterial with a negative refractive index, the amplitudes of the evanescent waves can be 

amplified [4]. After emerging from the medium, the amplitudes will reach to the original level 

[27], as shown in Fig. 1.3(a). The propagating waves pass through the NIM with both negative 

refraction and a reversed phase front [as shown in Fig. 1.3(b)], which leads to zero phase change 

at the image plane [27]. Therefore, both propagating and evanescent waves are recovered in phase 

and amplitude, and a perfect image can be obtained. 

 

Figure 1.3 (a) Evanescent waves can be enhanced by a negative refractive index 

metamaterial, so the amplitudes of the evanescent waves are identical at the object and the 

image plane. (b) Propagating waves in the metamaterial. [27] 

Metamaterials with negative permittivity or permeability or both can be used as a superlens 

in the form of a thin slab, which has been experimentally demonstrated at microwave [6], mid-

infrared [7], and optical frequencies [5] with different designs, as shown in Fig. 1.4. The planar 

transmission-line lens, as shown in Fig. 1.4 (a), consisting of a grid of printed metallic strips loaded 

with series capacitors and shunt inductors, can form a subwavelength image of 0.21 effective 

wavelengths [6]. Figure 1.4 (c) illustrates the experimental setup for a near-field imaging system 

with an ultra-thin SiO2-SiC-SiO2 superlens, in which 1200nm and 860nm holes can be resolved at 

a mid-infrared wavelength of 11µm [7]. At optical wavelengths, the inherent resonances of a metal 

(a) (b)
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can lead to negative permittivity. Thus, a very thin layer of metal can act as a superlens at some 

specific wavelengths. A representative example of a superlens at optical frequency is shown in Fig. 

1.4 (h-k), where a 40nm-thick Ag film substantially improves the image resolution to one-sixth of 

the illumination wavelength [5]. 

 

Figure 1.4 Superlens at microwave frequencies with a loaded transmission-line structure [6] 

(a-b). (a) The planar transmission-line lens. (b) The measured electric field at source (dashed 

curve), image (solid curve), and diffraction limit (dash-dotted curve with triangles). Superlens 

at mid-infrared frequencies with an 880nm-thick SiO2-SiC-SiO2 structure [7] (c-g). (c) 

Experimental setup. (d) Scanning electron micrograph of the object plane, showing the holes 

in the Au film. (e) Infrared amplitude in the image plane at λ=10.85µm. (f) Infrared phase 

contrast at λ=11.03µm. (g) Control image of amplitude at λ=9.25µm. Superlens at optical 

frequencies with a thin Ag film [5] (h-k). (h) Experimental setup. (i) Focused ion beam (FIB) 

image of the object. (j) Atomic force microscopy (AFM) image of the developed image on 

photoresist with a silver superlens. (k) Control image on the photoresist when the silver was 

replaced by PMMA. 

Three dimensional (3D) optical metamaterials and negative refraction were demonstrated 

more recently [13,20], but the fabrication process was complicated. Thus, 3D metamaterials at 

longer wavelength become a very attractive means for fundamental research. It might be easier to 

construct resonant elements at microwave frequency since constructing resonant elements that are 

far smaller than the operating wavelength is relatively straightforward, but there are only few 

experimental demonstrations of 3D metamaterials at these wavelengths yet, due to the challenges 

(a)

(b)

(c) (d)

(e) (f) (g)

(h)

(i)

(j)

(k)
source

diffraction 

limit

image
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faced by the fabrication of 3D periodic structures. Actually, metamaterials were initially proposed 

as a 3D structure by Pendry et al in 1996 [11], as the wired structure on top left of region II shown 

in Fig. 1.2. The structure dilutes the average concentration of electrons and considerably enhances 

the effective electron mass through selfinductance. Therefore, such a structure can depress the 

plasma frequency into the far infrared or even into the GHz band. One advantage of the structure 

is that different plasma frequencies can be achieved by varying the lattice constant. Non-uniform 

periods will introduce anisotropic property to the metamaterial and hence it will be a potential 

candidate for the application of invisible cloaks [1-3]. 

1.2.3 Indefinite metamaterial 

In addition to the negative index metamaterials, negative refraction and subwavelength 

imaging can also occur in a simple but important metamaterial, which is constructed by a 

multilayer metal-insulator stack and widely used for superlens design [28-31], optical lithography 

[32], and subwavelength sensing/detecting [33].  

Considering a particular anisotropic material, where the permittivity component along the 

propagation direction (z-axis) is negative, i.e., 0z  , and all other permittivity and permeability 

components are positive (assuming a non-magnetic material, i.e., µ=1), the dispersion diagram is 

in a hyperbolic form 

,                                                                (1.1) 

where the z axis is the light propagation direction. This kind of artificial material is named as 

“indefinite metamaterial” since not all the components of permittivity and permeability has the 

same sign [1]. 
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The refraction behavior of an indefinite metamaterial can be determined by the rules as 

below [26,34]: (1) The group velocity, specifies the direction of energy flow, which 

must be normal to the equifrequency surface and in the direction where ω is increasing; (2) The 

component of the group velocity which is along z-axis, vgz, must have the same sign in both media 

(the air and the metamaterial), since the energy must be carried away inside the metamaterial; (3) 

The wave vector kx, which is along the transverse x-axis, is continuous across the interface of the 

air and the metamaterial. 

Re-writing Eq. (1.1), the wave vector along the propagation direction kz can be expressed 

as 

                                                                                                                         (1.2) 

Given  and  there is no cutoff for any spatial frequency kx in the metamaterial. In other 

words, the indefinite metamaterial can convert the evanescent waves which would normally decay 

in conventional materials into propagating waves, which enables the metamaterial functions as a 

superlens to form subwavelength images [35-37]. 

The effective medium theory (EMT) [38] can be applied to approximate the macroscopic 

behavior of the indefinite metamaterial if only thin alternating layers are included [35]. An 

alternating Ag-SiO2 stack is shown in Fig. 1.5(a). The effective permittivity tensor of an indefinite 

metamaterial can be determined by 

                                                          (1.3)  

                              

∀
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where εi and εm are the permittivity of the dielectric and the metal, respectively,  is the 

ratio of the two layers width. For the layered material, the desired effective permittivity εz and εx 

can be tuned either by varying the thickness ratio η or by changing the incident wavelength λ. The 

permittivity of a metamaterial constructed by the Ag-SiO2 alternating layers as functions of η (at 

a fixed λ=630nm) and λ (at a fixed η=1.5), respectively, are demonstrated in Fig. 1.5(b) and (c). 

The permittivity data of Ag and SiO2 are taken from the book of Palik [39]. The yellow shadowed 

regions highlighted in both figures represent that the real parts of εz and εx having opposite signs, 

which imply that the possibility to construct the indefinite metamaterial is available over a broad 

spectral region. The imaginary parts of εz and εx also need to be taken into consideration, in order 

to get a low-loss metamaterial.  

 

Figure 1.5 (a) A sample of indefinite metamaterial with the coordinates, in which εi(εm) and 

di(dm) are the permittivity and the thickness of dielectric material(metal), respectively. (b) 

The permittivity of a metamaterial constructed by Ag and SiO2, at λ=630nm, with a varying 

thickness ratio η. (c) The permittivity of the metamaterial with a fixed thickness ratio η=1.5, 

at varying thickness. The real of εz and εx have opposite signs in the yellow shadowed areas in 

both figures. 

Figure 1.6 shows the transmitted electric field intensity |Ex|
2, plotted as a function of x, for 

various different layer widths [35]. Decreasing the width of the layers that make up the 

metamaterial stack, while keeping the total stack width as a constant, causes the principle peak to 

(a)                                                         (b)
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narrow. As the layers get thinner, the transmitted image more closely resembles the effective 

medium result.  

 

Figure 1.6 The transmitted electric field intensity for a line source, imaged by a metamaterial 

slab of thickness 1/k0. The material parameters used correspond to layers of Ag and ZnS-

SiO2, embedded in crystalline Ge2Sb2Te5 (a phase-change material used in optical storage 

devices), for light of wavelength 650nm. The corresponding total slab width is around 105nm.  

[35] 

1.2.4 Designer surface plasmonic metamaterials 

Light hitting a metamaterial is transformed into electromagnetic waves of a different 

variety [40], namely surface plasmon polaritons (SPPs) [41,42]. The fundamental plasma 

frequency can be expressed as 

                                                                                                                                           (1.4)         

which is proportional to the density of free carriers N, and effective electron mass m*. For metals, 

the plasma frequency falls in the ultraviolet part of the light spectrum, due to the high carrier      

density. The transverse mode size supported by a plasmonic waveguide is mainly determined by 

the skin depth in the dielectric [43], which can be calculated as 
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                                                                             (1.5) 

where λ0 is the wavelength in vacuum, εd and εm are relative permittivity of the dielectric and the 

metal (metal is treated as a dielectrics with complex-value permittivity), respectively. Near the 

plasma frequency (in the ultraviolet regime for most metals), εm is comparable to εd, resulting in a 

small transverse mode size. Recent breakthroughs have produced a wide range of nanoplasmonic 

devices that generate, guide and detect light [44-51]. As the frequency decreases from the near 

infrared and even down to microwave regime, most metals may be treated as perfect electric 

conductors (PECs), and the penetration of the EM fields in the dielectric material extends to the 

distance of the order of many wavelengths and almost completely excluded from the metal surface. 

The EM waves are weakly localized at the metal-dielectric interface, and the SPPs eventually 

acquire the characters of Sommerfeld or Zenneck waves [43], which are essentially grazing-

incidence light fields. 

This problem can be solved by patterning a metal surface texture (e.g. periodic grooves or 

holes) with subwavelength features, as shown in Fig. 1.7(a) and (b). This approach can be date 

back to Goubau [43], Mills and Maradudin [52], who discovered that designed surface textures 

can result in highly bounded surface waves. In those cases, the EM boundary conditions are altered 

and strongly localized field radiation can be obtained at longer wavelengths. The dispersion 

relation of the localized modes obtained by the one-dimensional array of grooves is shown in Fig. 

1.7(c), which is similar as the one associated with the SPPs supported by the surfaces of real metals. 

Therefore, this highly localized EM wave on a textured metal slab is called ‘spoof’ or ‘designer’ 

surface plasmons [53-55]. 
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Figure 1.7 (a) A one-dimensional array of grooves of width a, depth h, and periodicity d. [53] 

(b) An a × a square holes arranged on a d × d lattice are cut into the surface of a perfect 

conductor, in which localized surface plasmon modes can be induced by the structure. [54] (c) 

The dispersion relation [ω(kx)] of the surface bound states supported by the one-dimensional 

array of grooves [Fig. 1.7(a)], with geometrical parameters a/d=0.2 and h/d=1. [53] 

The existence of designer surface plasmons has recently been verified both in the 

microwave and THz regimes [56-62]. Figures 1.8(a-b) show at THz frequencies, deep 

subwavelength energy concentration can be obtained in cylindrical structure and superfocusing in 

conical structure [60]. The strong localized confinement is achieved by either gradually increasing 

the depth of the grooves or reducing the radius of the cylindrical cone while keeping a constant 

groove depth. More recently, simple metal gratings as designer surface plasmon waveguides have 

been investigated [63]. The basic structure is just a periodic arrangement of grooves patterned on 

the top surface of metallic slabs. The properties of the guided modes are mainly controlled by the 

geometrical parameters defining the grooves, as shown in Fig. 1.8(c), the blue curve and the 

overlapped black curves present the dispersion of the waveguides with different groove heights. 

One extraordinary property of the waveguide is the modal effective index is almost insensitive to 

the change of the lateral widths. This enable the structure can be used as a tapered waveguide to 

obtain subwavelength light concentration at the far-end taper tip, as illustrated in Fig. 1.8(d). 

(a)                                                    (b)                                          (c)
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Figure 1.8 (a) Field concentration via adiabatically increased groove depth. Distribution of 

the E field, evaluated at f=0.6 THz, along the radial direction at different locations of the wire 

corresponding to different depth. The inset shows the distribution of the E field on a 

logarithmic scale. [59] (b) Superfocusing on a corrugated cone of length 2mm (shown in the 

magnitude of E field on a logarithmic scale), with constant groove depth 5µm and groove 

period 50µm. The radius of the cone is reduced from 100 to 10µm. [59] (c) Dispersion relation 

of designer surface plasmon waveguides for various lateral widths L. Inset: diagram of the 

structure and geometric parameters. [63] (d) Left: Poynting vector field distribution in a 

horizontal plane of the tapered waveguide. Right: Amplitude of electric field in transverse 

vertical planes at locations shown by white dashed lines in left. [63] 

Another advantage of the designer surface plamsonic devices is that since metals are treated 

as PECs at low frequency regime, there is no difficulty to scale the structure to work at other 

frequencies based on the ratio of wavelengths. The ability to engineer a surface plasmon at almost 

any frequency, where metals are nearly PECs from DC up to the threshold of the terahertz regime, 

provides opportunities to control and direct radiation at surface over a wide spectral range. 

1.2.5 Graphene 

Graphene as the first 2D atomic crystal available to us [64] and has a nick name ‘miracle 

material’ due to its many supreme properties, such as mechanical stiffness, strength, elasticity, 

(b) (d)

(a)
(c)
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very high electrical and thermal conductivity. These properties suggest that graphene could replace 

other materials in existing applications. The combination of impermeability, transparency and 

conductivity will find use in transparent protective coatings and barrier films, while transparency, 

elasticity and conductivity will find application in flexible electronics, and this list of the 

combinations is continuously growing [64]. One reason that the research on graphene has 

progressed so fast is the much easier access to high-quality graphene synthesized by laboratory 

procedures. Various methods have been used for graphene synthesis, for example, liquid phase 

[65,66] and thermal exfoliation [67], and chemical vapor deposition (CVD) [68,69]. 

Graphene has been proposed as a new platform for plasmon waveguiding at infrared 

frequencies [70-74] and can be considered as terahertz (THz) metamaterial [75]. Photons in NIR 

or THz domain can be readily coupled to surface plasmon polariton (SPP) surface wave with many 

attractive properties, such as tunability by chemical doping or electrical gating, which is the most 

important advantage of graphene over metal thin films. The tunability of SPP waves in graphene 

originates from its complex dynamic conductivity determined from the Kubo formula [73,76,77], 

which largely depends on the radian frequency ω, scattering rate Γ, and chemical potential μc. The 

imaginary part of the dynamic conductivity, which may have a negative or positive sign at different 

frequency ranges depends on the chemical potential, plays a key role in supporting different types 

of surface waves. The dynamical tuning by gate voltage – Ebias is in real time, locally and 

inhomogeneously. By using different values of Ebias at different locations across the single 

graphene layer, desired conductivity patterns can be created [77], as shown in Fig. 1.9. In the 

simulation result shown in Fig. 1.9(a), the conductivity of the graphene are segmented by two 

different voltage bias. The imaginary of conductivity of the “farther” half is positive, which 

supports a TM SPP, while the “closer” half with a negative imaginary part doesn’t support TM 
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SPP. As a TM SPP is launched from the farther half, it reflects back at the boundary, which forms 

the pattern observed in Fig. 1.9(a). Graphene-based waveguide and splitter can be proposed based 

on the similar idea, as shown in Fig. 1.9(b) and (c), respectively. In both simulations, an uneven 

ground plane is used to achieve two different chemical potentials that segment the conductivity of 

graphene.  

 

Figure 1.9  Simulation results showing: (a) TM SPP wave pattern on graphene with two 

different voltage bias; (b) graphene waveguide; and (c) graphene beam splitter. The launched 

TM SPP is with a frequency f=30THz. [77] 

Reference [78] shows an example of graphene-based long-wave infrared modulator at 

f=30THz, as illustrated in Fig. 1.10(a). The switching between the ON (high transmitted power, as 

shown in Fig. 1.10(b)) state and the OFF (low transmitted power, as shown in Fig. 1.10(c)) state 

is controlled by changing the carrier density in the graphene monolayer via adjusting the bias 

voltage on a gate contact affixed to the graphene. The interband absorption of the plasmon energy 

is blocked at high carrier densities resulting in low-loss propagation of the plasmon and a high 

optical throughput. At low carrier densities, interband absorption is allowed resulting in high-loss 

propagation of the plasmon and low optical throughput [78]. 

(b) (c)(a)
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Figure 1.10 (a) Illustration of the plasmon modulator. A gate bias is applied to the graphene 

monolayer by applying a voltage from the Au contacts to the doped Si substrate. (b) Low-loss 

state. (c) High-loss state. [78] 

By integrating graphene with silicon optical waveguide, graphene could be used as the 

active medium in an optical electro-absorption modulator [79], as shown in Fig. 1.11(a). The 

optical modulation phenomenon can be observed in optical bandwidth from 1.35 to 1.60μm. The 

coupling strength between the evanescent waves and graphene can be controlled by adjusting the 

Fermi level by using an externally applied gate voltage, which induces the changes in the 

transmission of the graphene-based optical modulator, as shown in Fig. 1.11(b). Changing the gate 

voltage bias, the Fermi level will be shifted above or below the threshold value (ħω/2), therefore 

the optical modulator can be switched “on” or “off” status. In other work [80], where an optical 

modulator is constructed with two graphene layers separated by an oxide layer, the modulation 

depth can be further increased to ~0.16dB/μm. These results are comparable to the modulation 

efficiency observed in traditional optical modulators made of Si [81], GeSi [82], and InGaAs.  

(a)

(b)

(c)
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Figure 1.11 (a) Graphene-based electro-optical modulator, where a monolayer graphene is 

put on top of a silicon waveguide. (b) Static electro-optical response of the modulator at 

different drive voltages. [79] 

1.2.6 Transparent conductive oxides (TCOs) 

Transparent conductive oxides (TCOs) are doped metal oxides used in optoelectronic 

devices such as flat panel displays and photovoltaic [83]. Indium tin oxide (ITO), is a 

representative of TCOs, which is a solid solution of typically 90% indium oxide (In2O3) and 10% 

tin oxide (SnO2) by weight. ITO is widely used in industry due to its low resistivity of ~10-4 Ω·cm 

and a transmittance greater than 80% [83]. Another representative of TCOs is aluminum-doped 

zinc oxide (AZO), which is also a degenerately doped semiconductor. 

In recent years, TCOs as alternative and promising plasmonic metamaterials for NIR 

applications have been explored [23,25]. Generally, the characteristic penetration depths to either 

metal (m) or dielectric (d)  determines the compactness of the 

SPP, where z is the direction perpendicular to the interface,  is the wavevector in a medium (d 

or m) in z direction, and λ is the vacuum wavelength. Comparing with Ag and Au, TCOs showed 

more compact SPPs mode at NIR, as illustrated in Fig. 1.12(a). For a single-sided metal-dielectric 

(air) structure, the penetration depths in the air are much shorter when the adjacent materials are 

TCOs at NIR regime. The penetration depth ld exceeds λ/2 at 539nm in silver and 660nm in gold, 

(a)                                                            (b)
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where the modes are not well confined any more [23]. Note that at proper doping and processing 

conditions, low loss TCOs have cross-over wavelengths (at which the real part of the dielectric 

constant is zero) at the telecommunication range, shown in Fig. 1.12(b-c). ITO is demonstrated as 

a promising material to reduce the footprint of electro-optical (EO) modulator with a cross-over 

wavelength near the telecom wavelength, as present in Chapter 5. 

 

Figure 1.12 (a) SPP penetration depth ld to an adjacent dielectric medium (air) for silver (1), 

gold (2), ITO (3), ZITO [{ZnO}0.05:{SnO2}0.05:{In2O3}0.9, by weight] (4), and AZO (5). Grey 

solid line is for ld =λ/2. Experimental spectral of real (b) and imaginary (c) part of 

permittivity for ITO (1), ZITO (2), AZO (3), and ITZO (4). [23] 

Another advantage of TCOs is the tunable optical properties, since a small change in carrier 

density in the accumulation layer may result in a significant change in the dielectric constant with 

a suitable applied voltage. In Ref. [24], a unity-order index change in ITO at visible frequencies 

has been experimentally demonstrated in a metal-oxide-semiconductor (MOS) structure, as shown 

in Fig. 1.13(a). In the MOS-like structure, the semiconductor is replaced by an active material with 

a higher carrier density. Under an applied field, the structure in Fig. 1.13(a) forms an accumulation 

layer at the dielectric/conductive oxide interface. The resulting excess carrier density and the local 

change of the refractive index are shown in Fig. 1.13(b) and (c), respectively. The thickness of the 

experimentally measured accumulation layer was found to be 5±1nm [24] for all applied voltages. 

For an applied voltage of 2.5 V, at λ0 = 500nm the index change is Δnindex = 0.41 and at λ0 = 800nm 

(a)                                                                  (b)                                                     (c)                
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the index change is Δnindex = 1.39. This change in index is accompanied by an increase in the 

carrier concentration from 1021 to 1022 cm-3 in the accumulation layer. Moreover, the same degree 

of refractive index modulation was observed even the thickness of the ITO layer was decreased by 

half, which means for such a thick ITO film, its thickness change would not affect the accumulation 

layer. Without the SiO2 layer, no refractive index modulation phenomenon was observed in the 

experiments. The same modulation effect could be observed in the heterostructure with indium 

zinc oxide (IZO) replacing the ITO, which indicates that the origin of the refractive index change 

is related to the formation of an accumulation layer at the SiO2/TCO interface [24]. This work gave 

us a hint for designing an ITO-based multilayer modulator, where we also employed an electrolyte 

gel to replace SiO2, to provide strong electric field. 

 

Figure 1.13 (a) Structure schematics. When a voltage is applied to the MOS device, an 

accumulation layer forms. (b) The carrier density are modified by an applied voltage across 

the insulator/active material interface. (c) Refractive index modulation. Dashed red/solid 

green: with/without charge accumulation. [24] 
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1.3 Fabrication of Metamaterial Samples 

Since metamaterials gain the novel properties based on their artificial structures, the 

fabrication schemes are determined by the functionalities as well as the working frequencies of 

interest of the metamaterials. Hence, metamaterials could be fabricated in a cleanroom by a series 

of nano fabrication processes [84], or in a machine shop patterning periodic features [85], or even 

with electronic textile technology to build 3D cubic structure [86]. In this section, a general 

introduction of fabrication methods of man-made metamaterials will be presented, as well as those 

of the naturally existing metamaterials – graphene and ITO. 

1.3.1 Metamaterial with artificially designed structures 

At the early stage, metamaterials were experimentally demonstrated at microwave 

frequency regime, because it is relatively easy and straightforward to construct resonant elements 

at longer wavelengths. Metamaterials have been successfully shown their applications in invisible 

cloak as shown in Fig. 1.14(a) [87], flat lens [86] and subwavelength waveguiding and focusing 

[85] at microwave frequency. Usually, these metamaterials are fabricated in a layer-by-layer 

fashion, then assemble all the layers together to form the metamaterial sample. Designer surface 

plasmonic (DSP) metamaterials are fabricated by patterning periodic features, for example, holes 

or grooves, on the surface of metal slabs.  

The fast development of nano fabrication techniques as well as the advancement of material 

research enable the dimension of the unit cells down to terahertz, near-infrared and optical 

frequency regimes. Figures 1.14(b)-(d) show the SEM images of metamaterials [84] fabricated by 

a series of nano/micro fabrication processes, including thin film deposition, patterning and etching. 

It is easily seen that for optical metamaterials [84], the fabrication processes are complicated and 

time-consuming.  
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Figure 1.14 (a) Microwave invisible cloaks [87]. (b) Terahertz metamaterial [88]. (c) and (d) 

Optical metamaterials. [84] 

1.3.2 Graphene synthesis, transfer and characterization 

In order to practically implement graphene to devices, reliable, stable and economical 

process techniques should be developed. One of the most successful methods that results in 

isolation of single layer graphene (SLG) is the mechanical exfoliation [89]. Beside the mechanical 

exfoliation, other promising techniques as epitaxial growth on metal substrates [68,90-92,94], 

epitaxial growth on silicon carbide [94,95], growth from metal-carbon melts [69], and chemical 

synthesis [96,97]. Figure 1.15 illustrates some of these methods, their cost and the quality of 

graphene film synthesized by each corresponding method. 
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Figure 1.15 Several methods of mass-production of graphene, which allow a wide choice in 

terms of size, quality and price for any specific application. [64] 

Epitaxial growth of graphene on metal substrates uses the atomic structure of metal 

substrates to seed the growth of the graphene [68,90-92,94]. Ni and Cu thin films deposited on top 

f SiO2/Si wafers are usually used as the substrate. After the graphene growth, instantaneous etching 

of metal films and polymer-supported transfer onto other substrates are followed. These methods 

are using mixed gas of Methane, Hydrogen, Argon or Helium in a high temperature furnace for 

the growth of graphene. It is shown that mono- and bi-layer graphene grows predominantly on a 

Cu substrate, while on Ni, the layers of graphene range from three to eight, which depends on the 

reaction time and cooling rate [90]. Cooling rate significantly affects the amount and quality of the 

carbon segregated on the metal substrates. With a 10ºC/s cooling rate, high quality graphene with 

well-controlled thickness can form on a Ni substrate.  

Large and homogeneous layers of graphene can also be obtained by annealing silicon 

carbide in a dense noble gas atmosphere, so silicon will sublimate from SiC surface. During the 



24 

 

process, graphene nucleates along the plane, which is known as terrace step edges, on the 

silicon carbide surface. The nucleation and growth of monolayer graphene on the Si-face of SiC 

is highly dependent on growth conditions, SiC surface morphology, and SiC surface defects. The 

quality of the graphene films can be improved with a higher synthesis temperature (1425°C) [95]. 

Graphene may also grow from metal-carbon melts [69]. This process involves dissolving 

carbon inside a molten metal at a specified temperature and then allowing the dissolved carbon to 

nucleate and grow on top of the melt at a lower temperature. Similarly as the epitaxial growth 

methods, Ni and Cu could be used as the molten metal. First, the metal is melt and in contact with 

a carbon source. The source could be graphite chunk or powder temperature results in dissolution 

and saturation of carbon atoms in the melt. Upon lowering the temperature, the solubility of carbon 

in the molten metal decreases and the excess amount of carbon precipitates on top of the metal. 

High-quality single layer graphene is obtained in the Ni melt [69]. 

Graphene can be produced by direct chemical synthesis. Common laboratory reagents 

ethanol and sodium are used and single layer graphene is synthesized by low-temperature flash 

pyrolysis of solvothermal product of the two reagents, followed by gentle sonication of the 

nanoporous carbon product [96]. Graphene nanoribbons (GNR) with width below 10nm are 

solution-phase-derived, stably suspended in solvents with noncovalent polymer fictionalization, 

and exhibited ultra-smooth edges with possibly well-defined zigzag or armchair-edge structure 

[97].  

Graphene-transferring process is a key as well as challenging step in the fabrication of 

devices [98-100], since the thin graphene film is very delicate and easily broken during the process. 

The process shown in Fig. 1.16 is the as-grown graphene transferring to a desired substrate in a 
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step-by-step fashion. The graphene sample is synthesized by chemical vapor deposition (CVD) 

technique [68,69]. Polymethyl-methacrylate (PMMA) as a supporting and protection layer will be 

coated on top of graphene. Then the PMMA/graphene/nickel/SiO2/Si chip will be immersed into 

buffered oxide etch (BOE) solution to etch SiO2 layer first. After the long etching process in BOE, 

the film will be transferred to FeCl3 solution to remove nickel residue. The following step after the 

transfer (shown in Fig. 1.16(b)) is to remove the PMMA by acetone. Then the graphene sheet on 

the target substrate will be rinsed in IPA and dry. Figure 1.16(c) shows the ‘active’ graphene after 

lithography/oxygen plasma etching, in which the graphene region is 11μm long in the light 

propagation direction. 

 

Figure 1.16 (a) Process for transferring as-grown graphene to a desired target. (b) PMMA-

supported graphene on the target. (c) After oxygen etching, the graphene region is 

highlighted by the yellow dashed lines. 

Accurately determining the numbers of layer of a graphene sample is critical for its 

applications. Raman spectroscopy is a noncontact, reflective technique, which provides a fast, 

nondestructive means of determining layer thickness of graphene thin films. The Raman spectrum 
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of graphene exhibit a relatively simple structure characterized by three principle bands designated 

as the G-band at ~1582 cm-1, D-band at ~1350 cm-1 and 2D-band at ~2685 cm-1, as an example of 

the Raman spectrum of highly ordered pyrolytic graphite (HOPG) is shown in Fig. 1.17(a).  

 

Figure 1.17 (a) Raman spectrum of highly ordered pyrolytic graphite (HOPG). (b) 

Illustration of as layer increases, the G-band shifts. [101] 

The most important information contains in G-band is used to determine the layer numbers 

in graphene. Figure 1.17(b) demonstrates the effect of layer numbers of graphene on the shifting 

of G-band. As the layer number increases, the peak of the G-band shifts to lower energy, which 

represents a slight softening of bonds [101,102]. The D-band is known as the defect band, and its 

intensity is proportional to the defect level in the graphene sample, which is typically weak in high 

quality graphene. The 2D-band is the second order of the D-band, but it does not represent of 

defects in the sample. This band is also used to determine the layer numbers of graphene. 

Comparing with the G-band method, the 2D-band method depends on both the band position and 

the band shape, which is clearly demonstrated in Fig. 1.18. For single layer graphene, the shape of 

the 2D-band is symmetrical. As the layer number increases, the 2D-band could be split into several 

overlapping modes [102].  

 

(a)                                                                            (b)
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Figure 1.18 The significant different band shapes (red curves) of 2D-band with the number of 

layers on each. [102] 

1.3.3 ITO deposition and annealing 

The optical property of ITO mainly depends on its deposition and post-deposition 

annealing conditions, which includes the ambient gases and the temperature [103]. The deposition 

method could either be sputtering or laser ablation [104]. In Semiconductor & Microsystems 

Fabrication Laboratory (SMFL) of RIT, ITO thin film can be deposited by sputtering process with 

CVC601. The basic idea of sputtering is using accelerated particles to bombard the target and 

knock the target atoms out. Then these free atoms will be deposited on the surface of the substrate. 

During the sputtering process, plasma is usually used since it contains charged particles, this low-

pressure gas is easily directed by electric fields. To obtain plasma, a voltage will be applied on a 

pair of electrodes. Free electrons which gain energy from the electric fields will collide with gas 

particles, eventually cause ionization. This is known as direct-current (DC) glow discharge [105]. 

The sputtering process using a (In2O3)0.9(SnO2)0.1 weight percentage target, was done at room 

temperature and at 7.3mTorr pressure within the chamber. Argon is the only gas used in the 

deposition process. With a deposition time of 12 mins, the ITO thin film has a high sheet resistance 

around 3000 ~ 4000 Ω/□. And the thickness of ITO film is measured and turned out in the range 

of 22-25nm. 

Significant changes in the conductivity of ITO film can be observed with post-deposition 

annealing process in different ambient, for example, film annealed in nitrogen showed more 

(a) Single layer

(b) Two layers

(c) Three layers

(d) Multilayers
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conductive and in oxygen less conductive but more transparent [106]. In Ref. [107], the change of 

the dielectric function of the e-beam evaporated ITO film is observed with different annealing 

ambient environments, as shown in Fig. 1.19. A higher annealing temperature increases the 

conductivity of ITO film and reduces the loss within the wavelength range of interest [107]. The 

post-annealing process is carried out in a vacuum oven – Heraeus oven – at 350°C for 4 hours. 

After the annealing process, the sheet resistance of the ITO film decreased significantly, which 

was in the range of 60-100Ω/□. The optical property of the ITO film will be introduced in Chapter 

5.  

 

Figure 1.19 Real (a) and imaginary (b) parts of permittivity of ITO annealed at various 

conditions (N2, 450°C; N2, 650°C; O2, 450°C; O2, 650°C). [107] 

1.4 Finite-Difference Time-Domain (FDTD) Modeling  

The FDTD method [108] is one of the most important and effective numerical methods to 

study metamaterials, which was proposed by Yee in 1966 [109]. Since FDTD is a time domain 

solver, it is convenient to investigate the characteristics of metamaterials over a wide frequency 

regime. The basic idea of Yee algorithm is simultaneously dealing with both electric and magnetic 
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fields in time and space using coupled form of Maxwell’s curl equations. The Maxwell’s curl 

equations in linear, isotropic, nondispersive materials can be written as 

                                                          (1.5) 

                                                                (1.6) 

where σ* is equivalent magnetic loss, σ is the electric conductivity, 𝐸⃗  is the electric field, 𝐻⃗⃗  is the 

magnetic field, ε is the medium permittivity and μ is the permeability. Expanding the vector 

components of the curl operators of Eq. (1.5) and (1.6) yields the following six coupled scalar 

equations under Cartesian coordinate, which are the basis of the FDTD numerical algorithm for 

modeling electromagnetic wave interactions with arbitrary three-dimensional objects [110] 

                                                                                                    (1.7) 

                                                                                                    (1.8) 

                                                                                                    (1.9) 

                                                                                                    (1.10) 

                                                                                                   (1.11) 

                                                                                                    (1.12) 

In Yee’s algorithm, 𝐸⃗  and 𝐻⃗⃗  components are positioned at the centers of the grid lines and 

surfaces such that each 𝐻⃗⃗  component is surrounded by four 𝐸⃗  components, and vice versa, as 

shown in Fig. 1.20. 
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Figure 1.20 Yee’s spatial grid. (Internet) 

In Yee’s algorithm, all of the 𝐸⃗  components in the modeled space are computed and stored 

in memory by using the previously computed values of 𝐸⃗  and the newly updated 𝐻⃗⃗  field data. In 

the next step, 𝐻⃗⃗  is recomputed in a similar way. This process stops when the time-stepping is 

terminated [110].  

In order to get numerical stability of the Yee algorithm, an upper bound on the time step 

Δt should be set, which is determined by the spatial increments Δx, Δy, Δz in accordance with the 

Courant-Friedrich-Levy (CFL) stability condition [110]. In three dimensions the condition is given 

by 

                                                 (1.13) 

1.5 Dissertation Overview 

This dissertation presents numerical and experimental results of novel metamaterials and 

their applications in subwavelength waveguiding, imaging and modulating. These results are 

structured as follows.  
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Chapter 2 presents the motivation, numerical modeling and the experimental 

demonstration of a metal grating functioning as a designer surface plasmonic waveguide, which 

can support deep subwavelength surface modes and the width of the modes can be squeezed also 

into deep subwavelength by tapering the width of the waveguide.  

Chapter 3 introduces a re-visit of classical optical phenomenon – Talbot effect, in indefinite 

metamaterial. The 2D and 3D numerical simulations show that the “super” Talbot effect can be 

achieved in the indefinite metamaterial, even without the paraxial approximation.  

 Chapter 4 presents the numerical modeling of optical switch based on a metal-insulator-

metal plasmonic waveguide with Si3N4 core sandwiched between two gallium (Ga) metal layers. 

Combing the unique structural phase transition property of gallium, within a total length of 400nm, 

an extinction ratio as high as 7.68 dB can be achieved in the proposed nanoplasmonic structure. 

Chapter 5 proposes active plasmonic metamaterials for electro-optical modulator 

applications. When applying external voltages on these ITO-based multilayer structures, electric 

double layers are formed at the interfaces of ITO and electrolyte gel. Based on attenuated total 

reflection (ATR) measurement results, modulation depth up to 38.8% can be achieved. Preliminary 

result is present for the real time response of an ITO/electrolyte gel/doped-Si modulator. 

Chapter 6 continues the work in Chapter 5 and investigates a novel waveguide, namely 

“TCO-slot waveguide”, which combines both the tunable property of a TCO and field 

enhancement of a slot waveguide. In this work, light absorption can be sharply enhanced when the 

slot dielectric constant is tuned close to zero. Based on TCO-slot waveguides, efficient electro-

absorption modulation can be achieved within 200nm with small insertion loss. 
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Chapter 7 experimentally demonstrates greatly enhanced light absorption by monolayer 

graphene over a broad spectral range, from visible to near infrared, based on the attenuated total 

reflection. In the experiment, graphene is sandwiched between two dielectric media referred as 

superstrate and substrate. Based on numerical calculation and experimental results, the closer the 

refractive indices of the superstrate and the substrate, the higher the absorption of graphene will 

be. The light absorption of monolayer graphene up to 42.7% is experimentally achieved. 

Chapter 8 continues the work in Chapter 7 and presents the recent exploration of graphene 

electro-optic modulators based on graphene sandwiched in dielectric or plasmonic waveguides. 

With a suitable gate voltage, the dielectric constant of graphene can be tuned to be very small due 

to the effect of intraband electronic transition, resulting in “graphene-slot waveguides” and greatly 

enhanced absorption modes. Up to 3 dB modulation depth can be achieved within 800nm long 

silicon waveguides, or 120nm long plasmonic waveguides based on three-dimensional numerical 

simulations. 

Chapter 9 summarizes work as well as an outlook for future work.  

Chapter 10 lists all the publications.  

1.6 Contributions 

The following are the main contributions of this dissertation. 

1) We propose to use microwave near-field imaging system, which is known to be the 

first time this method is used to study designer surface plasmons. The fundamental 

work can be extended to design DSP devices at THz frequency regime. 
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2) We explore the novel effects of light propagation in indefinite metamaterials and 

propose the applications in various operational settings, i.e. lithography, optical 

storage, and imaging system. 

3) We investigate the epsilon-near-zero (ENZ) properties of natural materials – graphene 

and ITO, combining novel slot waveguides as the platform to propose ultra-compact, 

efficient electro-optical modulators. 

4) We experimentally demonstrate the absorption of monolayer graphene can be 

significantly enhanced over a broad spectral range, where there is no complicated, 

time-consuming fabrication process involved. 
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2 DEEP SUBWAVELENGTH WAVEGUIDING AND 

FOCUSING BASED ON DESIGNER SURFACE 

PLASMONS 

 In Chapter 2, focusing and guiding electromagnetic (EM) waves in a designer surface 

plasmonic waveguide with deep subwavelength mode cross section was experimentally 

demonstrated. The experiments show that a metal grating with suitable parameters, functioning as 

a designer surface plasmonic waveguide, can support deep subwavelength surface modes and the 

width of the modes can be squeezed also into deep subwavelength by tapering the width of the 

waveguide. The results provide a new insight into deep subwavelength waveguiding and focusing 

[85]. It is the first time that microwave near-field microscopy has been used to study designer 

surface plasmons experimentally. 

2.1 Introduction 

Surface plasmons can be viewed as quasi 2D EM excitations, propagating along a 

dielectric-metal interface and having the field components decaying exponentially with small skin 

depth into both neighboring media [42,111-112]. The transverse mode size supported by a 

asmonic waveguide is mainly determined by the skin depth in the dielectrics [42], which can be 

calculated as , where λ is the wavelength in vacuum, εd and εm are relative 

permittivity of the dielectrics and the metal (metal is treated as a dielectrics with complex-value 

permittivity), respectively. Near the plasma frequency (in the ultraviolet regime for most metals), 

εm is comparable to εd, resulting in a small transverse mode size. Recent breakthroughs have 

produced a wide range of nanoplasmonic devices that generate, guide and detect light [42,44-
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47,50,51,113,114]. However, far below plasma frequency, εm is approximately a pure imaginary 

number with large magnitude, resulting in a very large transverse mode size (~102λ and ~103λ in 

the THz and microwave regimes, respectively). This limits some important applications of surface 

plasmons, especially in the THz regime, where deep subwavelength optical devices will be a 

critical technique for the integration of THz, photonic, and electronic circuits on the same chip 

using the CMOS compatible technology.  

Nevertheless, this issue can be addressed by plasmonic metamaterials, where the dispersion 

of surface plasmons and spatial confinement of waves can be engineered by designed surface 

textures. This approach can date back to Goubau [43], and Mills and Maradudin [52], who 

discovered that a surface texture on metal, such as arrays of holes or grooves, can result in highly 

bounded surface waves. In 2004 and 2005, researchers established their similarity with surface 

plasmons and referred them to as “designer surface plasmons” or “spoof surface plasmons” [54-

55]. The existence of designer surface plasmons has recently been verified both in the microwave 

and THz regimes [56,58,115]. More recently, significant progress has been made on designer 

surface plasmonic (DSP) devices using various types of surface textures [59-63,116]. However, 

most of effort has been focused on numerical investigations and the importance of designer surface 

plasmons is far from being demonstrated. Herein, we demonstrate the remarkable advantages of 

using the designer surface plasmons for deep subwavelength waveguiding and focusing. 

2.2 Design and Fabrication 

2.2.1 Modeling 

The main structures involved in our work are simply metal gratings, specifically aluminum 

slabs patterned with an array of rectangular grooves. The metal gratings as DSP waveguides were 

investigated more recently [53,63]. Assume the width, length and depth of each groove are w, a 
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and h, and the period of the array is d. Pendry’s pioneering work shows that a simple metal grating 

can work well as a DSP waveguide [54].  

If only the fundamental TM-like mode (magnetic field H is parallel to the groove 

orientation) is considered, the dispersion of EM waves propagating in the DSP waveguide can be 

described as [45] 

                                                                                               (2.1) 

where , 𝛽 , β is the propagation constant, and k0 is the wave 

number in free space. The dispersion curve is similar to that of widely investigated dielectric-metal 

plasmonic waveguides in the near infrared or visible regimes. When or equivalently ≈

, β reaches its maximum. Therefore, the surface structure can “shift” the effective plasma 

frequency of the textured metal into any region closer to working frequency and achieve much 

stronger mode binding. More precisely, due to the interference of multiple waves on the surface 

texture, a tightly bounded mode can be formed on the surface. In particular, based on the dispersion 

relation, such a metal grating can be roughly equivalent as an h-thick layer of homogeneous but 

anisotropic medium on PEC when a << d << λ [53]. Consequently, if only the first order diffraction 

is considered, the skin depth over the grating can be estimated as  

                                                     (2.2) 

which can be on the deep subwavelength scale. Moreover, due to the tight binding of surface waves, 

the decrease of the width of the grating will reduce the mode size in another transverse direction, 

yet not significantly alter the dispersion of the guided modes [63]. An extreme case is that the 

surface texture is converted into a series of aligned rods, which can guide EM waves at ultra-deep 
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subwavelength scale in both transverse directions. Essentially, the aligned rods form a 3D deep 

subwavelength DSP waveguide, similar as arrays of nanoparticles forming nanoplasmonic 

waveguides in the visible light regime [44,116]. 

2.2.2 Fabrication and experimental setup 

The 2D and 3D DSP waveguides are designed to work at microwave regime by patterning 

arrays of periodic surface textures on an aluminum slabs. The structure designs are using 3D CAD 

software SolidWorks and the fabrication is finished by Brinkman Machine Tools and 

Manufacturing Laboratory at RIT.  Figure 2.1 shows some pictures of the designer surface 

plasmonic waveguides. The main parameters of the 3D waveguide shown in Fig. 2.1(a) are: period 

d=12.7mm, metal rod length a=6.35mm, width w=6.35mm, height h=19.05mm. A directional 

coupler is formed by aligning two identical 3D waveguides, as illustrated in Fig. 2.1(b). For the 

tapered waveguide, input 2D waveguide width W=203mm, tapered region length L=216mm. The 

parameters of the 3D waveguide are the same as those shown in Fig. 2.1(a). 

 

Figure 2.1 (a) 3D DSP waveguide. (b) Two identical 3D waveguides are aligned and forming a 

directional coupler. (c) Tapered DSP waveguide with a 2D waveguide as input. [85] 

To experimentally explore its performance, a microwave near-field measurement setup 

based on a vector network analyzer was built [9,117,118] as shown in Fig. 2.2, where the 

propagation of EM waves in a waveguide can be measured by the raster scan of a 1-mm microwave 
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monopole to detect the evanescent tails. One monopole was fed as the source and another was used 

as the detector. The movement of the detector in x and y directions was controlled by a motion 

controller. In order to show the mode profiles rather than in x-y plane, a manual stage (along z-axis 

moving range: 25mm, minimum resolution: 0.025mm) was used in the experiments to control the 

movement of the detector in z direction. The precise control of the motion of the detector and the 

small size of the detector ensured that the experimental results were reliable [119]. To get accurate 

results, the maximum pixel size was set to be 0.5mm by 0.5mm in the measurements related to the 

calculations of mode sizes along different directions. Both the amplitude and phase of each 

measurement point were recorded by the E8362A PNA vector network analyzer. 

 

Figure 2.2 Experimental setup based on VNA and XYZ stages. 

2.3 Experimental results and analysis 

2.3.1 3D DSP waveguide 

Figure 2.3 plots the dispersion diagram of the supported modes. When the working 

frequency varies from 1.4 GHz to 3.3 GHz, the effective index of the corresponding guided modes 

increases, and then jumps to the second band starting at 8.39 GHz, which is not shown in the figure. 
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Compared with the dispersion relation of the 2D DSP modes (infinite width), the finite width of 

the 3D DSP waveguide imposes a lower-side cutoff frequency when the dispersion curve is located 

inside the light cone. After a raster-scan of the detector at different locations over the structure, 

good guided modes at frequencies between 1.5 GHz and 3.5 GHz were observed, which 

respectively coincide with the lower and upper cutoffs of the numerical results as shown in Fig. 

2.3. Furthermore, according to the phase distribution along the waveguide, we can calculate the 

propagation constants at different frequencies. As shown in Fig. 2.3, the measured dispersion curve 

is in good agreement with the simulated one. Figure 2.4 shows the intensity of the mode profile in 

different directions at f = 2.25GHz. Figure 2.4(a) is the fabricated 3D DSP waveguide. As shown 

in Figs. 2.4(b)-2.4(d), the guided mode is tightly “nailed” on the metal rods of the grating and 

slightly diverges between the rods. The slightly beating of the intensity shown in Fig. 2.4(d) is due 

to the back reflection. The maximum of the mode size can be mapped in the middle plane of two 

neighboring rods. The mode size slightly varies with different frequencies and minimizes at 

5.5mm-by-4.5mm (or 0.04λ-by-0.03λ) by intensity full width at half maximum (FWHM) at 2.25 

GHz, as shown in Fig. 2.4(e). Over the metal rod, the mode size is 7.00mm-by-1.00mm as shown 

in Fig. 2.4(c). And the mode size measured along the side wall of the rod shown in Fig. 2.4(f) is 

15mm-by-1.3mm. Therefore, the overall mode size relies on the dimensions of rods and can go 

into the deep subwavelength scale.  
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Figure 2.3 The dispersion diagram of DSP waveguides. The parameters of the waveguides are 

d = 12.7mm, a = 6.35mm, and h = 19.05mm. The width of the 2D DSP waveguide is assumed 

to be infinite; the width of the 3D DSP waveguide is w = 6.35mm. The circles indicate the 

measured dispersion relation for the 3D DSP waveguide. [85] 

Theoretically, the propagation loss is very small because the 3D DSP waveguide supports 

a guided mode with small effective index (neff =1.2 at f=2.25GHz) and the small mode size 

supported by the waveguide is due to the interference of surface waves. The propagation 

attenuation mainly comes from the scattering due to fabrication imperfection. In our microwave 

device, the attenuation is very small and cannot be accurately measured within a short propagation 

distance. 

 



41 

 

 

Figure 2.4 (a) The fabricated 3D DSP waveguide. The measured mode profiles (shown in 

normalized intensity) in different directions: (b) Side (over rods, in x-z plane), (c) Cross 

section over a rod (in y-z plane), (d) Top view (over rods, in x-y plane), the dashed blue 

squares indicate the positions of the metal rods, (e) Cross section in a groove (in y-z plane), (f) 

Cross section along the side wall of a rod (in y-z plane). [85] 

2.3.2 3D directional coupler 

To further demonstrate the function of the metal grating as a deep subwavelength DSP 

waveguide, we aligned two identical waveguides in parallel and formed a directional coupler as 

shown in Fig. 2.5(a). The EM source was then fed from one of the waveguides. Figure 2.5(b) 

shows that the EM wave switches between the waveguides at f = 3.25GHz. The distance between 

the two identical waveguides is 12.7mm (from center to center). 

 

Figure 2.5 (a) Two DSP waveguides in parallel form a directional coupler. (b) The EM wave 

(shown in normalized amplitude) propagates in the directional coupler. [85] 
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2.3.3 Tapered 3D DSP waveguide 

As shown in Fig. 2.3, the decrease of the waveguide width does not significantly affect the 

dispersion of the guided modes. This enables the mode-tapering in the transverse direction from a 

wide waveguide into deep subwavelength waveguide with high efficiency. The simulation of the 

taper in the terahertz regime was reported in recent work [63]. Our work in this aspect is focused 

on the experimental demonstration of this technique in the microwave regime. To this end, we 

fabricated a tapered DSP waveguide as the input of the uniform waveguide as shown Fig. 2.6(a). 

The waveguide is tapered from 203mm into 6.35mm within the distance of 216mm. In the 

experiment, we fed the taper with a monopole in the far end and partial EM waves are coupled to 

the taper. Figure 2.6(b) shows the measured intensity distribution on the device surface. As can be 

seen, when the EM waves propagate in the taper, the mode size becomes smaller and smaller with 

the intensity gradually increasing, and eventually EM waves are coupled into the deep 

subwavelength mode. This is an essentially squeezing or focusing process. Note that the tapered 

mode will be eventually end up as the guided mode of the 3D deep subwavelength DSP waveguide 

with dimensions 40mλ x 30mλ. 

 

Figure 2.6 (a) The integration of the 3D subwavelength DSP waveguide with a tapered DSP 

waveguide as input. (b) Experimental result of normalized intensity distribution when EM 

waves are coupled from a 2D DSP waveguide and a 3D DSP waveguide. [85] 
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2.4 Conclusions 

Compared to most theoretical work in designer surface plasmonic metamaterials [59-

63,116], in this work, metal grating as a deep subwavelength DSP waveguide is experimentally 

investigated, where mode cross section down to 40mλ x 30mλ can be achieved in air. An efficient 

coupler for the deep subwavelength waveguide is also demonstrated, which provides a means to 

squeeze or focus EM waves into the deep subwavelength scale. It is worth noting that the modeling 

of the devices is based on perfect electric conductor (PEC) for metal and hence there is no difficulty 

to be scaled down into the THz regime, where metal can still be roughly treated as a PEC. 

In addition, the working wavelength is scalable with the index of the surrounding medium 

as opposed to air. This is evident that when we immersed the device in low loss oil with refractive 

index nd ≈ 2, the working frequency shifted to approximate half of its original value. Thus, the 

mode size to wavelength ratio is inversely proportional to the refractive index. In particular, the 

mode size can be further shrunk into 0.01λ0-by-0.02λ0 (λ0 is the wavelength in free space), if silicon 

(nd ≈ 3.5) is coated on a 3D DSP waveguide in the THz regime. In Ref. [120], with silicon (at 0.6 

THz) or germanium (at MIR region of 30 THz), numerical modeling via 3D FDTD has shown 

deep sub-wavelength mode confinement in transverse directions to smaller than λ/50 by λ/50, with 

an estimated propagation loss of less than 0.1 dB for each repetitive unit. 
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3 SUPER TALBOT EFFECT IN INDEFINITE 

ANISOTROPIC METAMATERIAL 

In Chapter 2, an image size of 0.04λ-by-0.03λ can be achieved by metal gratings 

functioning as designer surface plasmonic (DSP) waveguide at microwave frequencies. In this 

chapter, we will re-visit a classical optical phenomenon named as Talbot effect and see that a 

comparable image size (~0.087λ0) can be obtained at visible frequency via indefinite metamaterial. 

The Talbot effect (or the self-imaging effect) can be observed for a periodic object with a pitch 

larger than the diffraction limit of an imaging system, where the paraxial approximation is applied. 

The “super” Talbot effect can be achieved in an indefinite metamaterial even when the period is 

much smaller than the diffraction limit in both two-dimensional (2D) and three-dimensional (3D) 

numerical simulations, where the paraxial approximation is not applied. This is attributed to the 

evanescent waves, which carry the information about subwavelength features of the object, can be 

converted into propagating waves and then conveyed to far field by the metamaterial, where the 

permittivity in the propagation direction is negative while the transverse ones are positive. The 

indefinite metamaterial can be approximated by a system of thin, alternating multilayer metal and 

insulator (MMI) stack. As long as the loss of the metamaterial is small enough, deep 

subwavelength image size (~0.087λ0) can be obtained in the super Talbot effect [121]. 

3.1 Introduction 

3.1.1 TE and TM waves 

In the electromagnetic waves, both the electric field and the magnetic field are oscillating 

in different directions. The polarization of the EM wave refers to the direction of the electric field. 

In parallel polarization, also known as p-polarization, or TM polarization, the electric fields lie on 
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the plane of incidence and the magnetic fields are perpendicular to that plane (along y-direction) 

and transverse to the z-direction, as shown in Fig. 3.1(a). In perpendicular polarization, which is 

also known as s-polarization, or TE polarization, the electric fields are perpendicular to the plane 

of incidence (along y-direction) and transverse to the z-direction, and the magnetic fields lie on 

that plane, shown in Fig. 3.1(b).  

 

Figure 3.1 Illustration of oblique incidence for (a) TM- and (b) TE-polarized light.  

Now we consider that the interface shown in Fig. 3.1(a) and (b) is between a dielectric and 

a metal, shown as Fig. 3.2(a). We will apply Maxwell’s equations in Eq. (3.1a-d) to the flat 

interface and investigate the physical properties of surface plasmon polaritons (SPPs) [41,42], 

which is known as electromagnetic excitations propagating at the interface and evanescently 

confined perpendicular to the interface. These equations describe how the electric field E and 

magnetic field H are generated and altered by each other and by external charge density ρ and 

current density J.  

                                                                                                            (3.1a) 
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                                                                                                               (3.1b) 

                                                     ×                                                     (3.1c) 

                                                    ×                                                (3.1d) 

 

Figure 3.2 (a) Illustration of a SPPs as a collective excitation at a metal-dielectric interface. 

The electric field E and magnetic field H are enhanced at the interface. (b) The perpendicular 

field Ez decays exponentially with a characteristic length δd in the dielectric and δm in metal. 

[122] 

Using the curl Eqs. (3.1c-d), for harmonic time dependence ( ), and propagation 

along the x-direction ( ), we can have the following set equations, 

                                                                                                                      (3.2a) 

                                                                                                            (3.2b) 

                                                                                                                     (3.2c) 

                                                                                                                        (3.2d) 

                                                                                                       (3.2e) 
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                                                                                                                  (3.2f) 

Equation set (3.2a-c) are the transverse magnetic (TM or p) mode, where only the field components 

Ex, Ez and Hy are nonzero, and the second set (3.2d-f) are the transverse electric (TE or s) mode, 

with only Hx, Hz and Ey are nonzero. 

For TM modes, the equation set can be simplified to  

                                                           (3.3a) 

                                                                                                             (3.3b) 

and the wave equation for the TM mode is 

                                                                                                        (3.3c) 

For TE modes the equation set is 

                                              
𝜇

                                                                (3.4a) 

                                              
𝜇

                                                                   (3.4b) 

and the TE wave equation is 

                                                                                                         (3.4c) 

From Eqs. (3.4a-c), for TE mode, the expressions for the field components in half spaces 

shown in Fig. 3.2(a) are 

                                                       (3.5a) 

                                        (3.5b) 
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                                                (3.5c) 

for  and 

                                                       (3.5d) 

                                       (3.5e) 

                                                (3.5f) 

for . In these equation sets,  is the wave component perpendicular to the 

interface. From boundary condition – the continuity of Ey and Hx at the interface leads to 

                                                                                                                       (3.6) 

To get the confinement at the interface, it requires that and . In Eq. (3.6) 

this condition is only fulfilled when , therefore . Hence, there is no surface 

mode exists with TE polarization.  

On the other hand, for TM polarization, the field expressions are  

                                                         (3.7a) 

                                        (3.7b) 

                                             (3.7c) 

for  and 

                                                            (3.7d) 

                                                                                                    (3.7e) 

                                                 (3.7f) 
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for . According to boundary conditions, the continuity of Hy and εiEz at the interface leads to 

 and . Thus, surface plasmon polaritons only exist for TM polarization at the 

interface between materials with opposite signs of the real part of their dielectric permittivity, i.e. 

a conductor and an insulator. The perpendicular wave vectors’ reciprocal values δd and δm define 

the evanescent decay lengths in dielectric and metal perpendicular to the interface, respectively, 

as shown in Fig. 3.2(b). 

As we introduced in Chapter 1, most metamaterials are composed by artificially designed 

structures with metallic and dielectric materials. The novel properties of the metamaterials are 

enabled by the interaction of incident light with the metal-dielectric materials, where the light is 

transformed into electromagnetic waves of a different variety – surface plasmon polaritons.  

3.1.2 Classical Talbot effect 

The Talbot effect was originally discovered by H. F. Talbot in 1830s [123]. The self-

imaging phenomenon is a direct result of Fresnel diffraction [124], which can be observed for a 

periodic object when illuminated by a monochromatic light. Over many years, different aspects of 

this phenomenon have been investigated and understood by researchers, and the theory of the 

Talbot effect based on diffraction theory [124-129] has been established. The field amplitude is 

observed to be periodic in both the transversal and light propagation directions behind the object, 

illustrated in Fig. 3.3. A monochromatic, coherent plane wave with a wavelength of λ is 

illuminating an infinitely long grating. In Fourier optics, such a periodic object can be represented 

as 

                                                ,                                              (3.8) 

where d is the spatial period, and cn is the amplitude of the nth harmonic.  
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Figure 3.3 Illustration of the optical Talbot effect, shown as a Talbot carpet. [130] 

The diffracted field amplitude E(X) is defined in terms of the amplitude transmission of the 

object A(x) and the coherent amplitude of the source S(xs), according to the Fresnel-Kirchhoff 

diffraction theory [131], where X, x, and xs are Cartesian coordinates in the observation, object, 

and source planes, respectively. In the paraxial approximation, the diffraction amplitude E(X) at a 

distance z from the object is proportional to 

                               .                                          (3.9) 

By substituting Eq. (3.8) into Eq. (3.9), we can get 

                                                                                               (3.10) 

At a certain distance z, all diffraction orders are in phase by satisfying the condition 

                                                      ,                                                                           (3.11) 

where m is a positive integer and referred as the self-imaging number, and d is the period of the 

diffraction grating. From Eq. (3.11), the Talbot distance is defined as 

0                                     zT/2                                  zT

Periodic object
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                                                                                                                                   (3.12) 

At z = ZT, the primary Talbot image is observed in Fig. 3.3, and at z =ZT/2 is the Talbot distance 

of the secondary Talbot image, where the image has a d/2 shift along the transversal direction. The 

fractional Talbot images are observed at all rational multiples of ZT, which can be expressed as 

                                                         ,                                                                         (3.13) 

where p and q are prime integers.  

Due to its simple arrangement, the Talbot effect attracts researchers’ interests and the self-

imaging phenomenon has a variety of applications in the optical dispersive fiber system [132,133], 

optical computing [134], phase locking of laser arrays [135], and in electron optics and microscopy 

[136]. The Talbot effect has also been demonstrated with atomic waves [137], and waveguide 

arrays [138,139].  

3.1.3 Talbot effect in plasmons 

Studying the analogues of the classical optical phenomena is an important aspect of the 

development of new branches of optics. Surface plasmon polaritons (SPPs) is well known for their 

advantages, for example, they can concentrate the electromagnetic field near the metal/dielectric 

interface, therefore enabling compact light waveguiding [140]. In 2007, Dennis and Zheludev, et. 

al., first proposed the concept of the plasmon Talbot effect [141]. The analog of the Talbot effect 

in plasmons is illustrated in Fig. 3.4(a), where a plane wave is incident from the back of a metal 

film, with a periodic one-dimensional array of subwavelength hole structures, with period a. The 

complex carpet patterns shown in Fig. 3.4(c)-(d) are generated on the incident light exiting surface 

by the plasmons converted by part of the incident light. Each subwavelength hole can be modeled 

as a dipole, oscillating with a wavelength of λ0, which is the incident wavelength. The converted 
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surface plasmons has a wavelength of , where ε is the frequency-dependent 

dielectric constant of the metal. In this scenario, the Talbot length is derived to be 

                                                 ,                                                                    (3.14) 

The amplitude of the electric field Ez component of a plane with z=0.5μm above the metal surface 

is plotted in Fig. 3.4(b)-(e), where the incident wavelength λ0=1.55μm and λSP=1.544μm. As seen 

in Fig. 3.4(b), with the period a=λSP, although a periodic pattern is developed, the Talbot effect is 

not observed. With a larger period a, the self-imaging phenomenon is clearly shown in Fig. 3.4(c)-

(e).  

 

Figure 3.4 (a) Illustration of the plasmon Talbot effect above a metal surface. Numerically 

computed plasmon Talbot carpets for a metal film drilled by an array of nanoholes with 

different periods a: (b) a=λsp, (c) a=5λsp, (d) and (e) a=20λsp. [141] 

As the plasmonic Talbot effect has wide potential applications, experimentally 

investigation of this effect is important as well. In 2009, the first plasmonic self-imaging 

experiment was performed [142] by using SPP launching gratings (SPPLGs), which consist of 

periodic grooves drilled on a gold film. The SPPLGs can be characterized by an opening ratio 

α=a/d, as shown in Fig. 3.5(a). Two different SPPLGs are fabricated with the periods of 3λSP and 

(b) (c)

(d) (e)

(a)
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6λSP, respectively, and the opening ratio α = 0.5 for both SPPLGs. As a y-polarized laser beam is 

normally illuminating on the SPPLGs, the SPPs are excited at the grooves and propagate to form 

Talbot carpet. Figure 3.5(b) and (c) show the experimental results, where periodic patterns are 

clearly observed along both the transversal and longitudinal directions.  

 

Figure 3.5 (a) Left: Illustration of the SPPLGs. Right: scanning electron micrograph of the 

SPPLG with d=6λsp and α=1/2. Experimental Talbot carpets for the SPPLGs with d=3λsp (b) 

and d=6λsp (c), respectively. [142] 

3.2 Design and Modeling 

3.2.1 Structure design 

Figure 3.6(a) schematically illustrates a two-dimensional (2D) structure investigated in the 

numerical simulations. A one-dimensional periodic grating is put in front of a medium, which is 

either conventional material (for example, air) or indefinite metamaterial. The period of the grating 

is D, and the duty cycle is expressed as d/D. A TM-polarized plane wave (magnetic field is in the 

y-direction) with a wavelength of λ0 propagates along z-axis and impinges the grating from the left 

side. A three-dimensional (3D) structure was also investigated, where the grating along both x and 

y axes was periodic.  

(a)

(b) (c)
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Figure 3.6 Schematic illustration of the investigated structure, the 1D grating is assumed to 

be infinite along y-axis. [121] 

3.2.2 Talbot distance in indefinite metamaterial  

Since the wavelength λ0 is much larger than the period D, the paraxial approximation 

cannot be applied any more. In our case, light propagates in the indefinite metamaterial behind the 

input grating structure can be expressed in Fourier series form as 

                                                                                     (3.15) 

where qx=2π/D, and kz is expressed by Eq. (1.2), which is . Replacing kx by 

mqx in Eq. (1.2) and then plugging Eq. (1.2) into Eq. (3.15), we get 

                                                                           (3.16) 

Under long wavelength approximation, λ0 >> D and hence qx/k0 >>1, so Eq. (3.16) can be 

further simplified as 

                                                                                                              (3.17) 

which only depends on the permittivity components of the metamaterial and the input object period. 

Note the permittivity of a metamaterial is highly frequency-dependent. Using Eq. (3.17), the Talbot 

distance in the indefinite metamaterial (with εz = -1 and εx = 1) can be calculated approximately as 
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100nm, while the Talbot distance measured in the simulation is around 117nm. The difference 

may come from that the ratio of the wavelength λ0 and the period D is only around 6.3 while Eq. 

(3.17) is based on the condition that λ0>>D.  

3.3 Results and Discussion 

3.3.1 Talbot effect without paraxial approximation 

Classical Talbot effect can only be observed under paraxial approximation, where the 

incident wavelength should be much smaller than the period of the grating. Here, the focus is put 

on the opposite condition, where the wavelength is larger than the period. For the 2D structure 

shown in Fig. 3.7, the period of the grating D is 100nm, d is 50nm and the incident wavelength λ0 

is 630nm. In a conventional material, the evanescent waves which carry the information about the 

subwavelength features of the object will decay exponentially. Hence, if the period of the input 

object is much smaller than the incident wavelength, no Talbot effect can be seen in the regular 

material (as shown in Fig. 3.7(a), in the air). In contrast to the case in the air, self-imaging effect 

can be achieved in an indefinite metamaterial, which is due to the evanescent waves being 

converted into propagating waves and conveyed far away. This self-imaging effect observed in the 

indefinite metamaterial when the period of the object much smaller than the incident wavelength 

is defined as “super Talbot effect” in this paper. Figure 3.7(b) clearly shows the strong, periodic 

magnetic field distribution pattern in the indefinite metamaterial (with εz = -1 and εx = 1) behind 

the input grating. This effect is related to but also distinct from the plasmon Talbot effect reported 

in recent work [141,142], where surface plasmon Talbot effect is observed on the surface of metal 

and its resolution is still limited by the surface plasmon diffraction limit. In contrast, our super 

Talbot effect is based on bulk plasmons without diffraction limit. 
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Figure 3.7 Without paraxial approximation: (a) No Talbot effect is seen in air. (b) Periodic 

Talbot carpet pattern can be observed in indefinite metamaterial (shown in normalized H 

field distribution). [121] 

3.3.2 Classical Talbot effect in indefinite metamaterial 

To better understand the super Talbot effect, the self-imaging of a large-pitch mask (D = 2 

μm and d = 100nm) in a conventional medium and in an indefinite metamaterial was also modeled, 

respectively. As shown in Fig. 3.8(a), the Talbot effect can be observed in a conventional material 

(for example in the air) under paraxial approximation, where the incident wavelength is still 630nm. 

If the medium behind the grating is replaced by an indefinite metamaterial with εz = -1 and εx = 1, 

the Talbot carpet pattern still can be clearly observed (shown in Fig. 3.8(b)). The feature size of 

the squared hot spot in Fig. 3.8(b) along the transverse direction measured is approximately as 

160nm, which is much smaller than that in the air, 240nm. The result is within our expectation 

since the high spatial-frequency waves can be conveyed to far field in the indefinite metamaterial, 

as mentioned previously. 
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Figure 3.8 Talbot effect in (a) air, and (b) indefinite metamaterial. Both are shown in 

normalized power distribution. [121] 

3.3.3 Super Talbot effect in indefinite metamaterial 

As mentioned previously in Section 1.2.3, indefinite metamaterial can be approximated by 

a system of thin, alternating multilayer metal-insulator (MMI) stack. In this work, Ag and SiO2 

were selected as the metal and insulator, respectively. The structure we investigated is similar as 

shown in Fig. 3.4, where the material behind the grating was replaced by the MMI stack composed 

of Ag and SiO2 thin layers and they were assumed to be infinite in y-axis. The alternating layers 

were stacked in the x direction and each layer has a thickness of 5nm. In the simulations, periodic 

boundary conditions were implemented for the boundaries parallel to the z-axis. The wavelength 

of the incident TM-polarized plane wave λ0 = 630nm, the period of the grating D = 94nm and the 

duty cycle = 50%. At the wavelength of interest, the permittivity of Ag is εAg = -15.69 + j1.06 and 

that of SiO2 is εSiO2 = 2.12. As η = 1, from Eq. (1.3) the effective permittivity of the MMI stack is 

calculated to be εz = -6.79 + j0.53 and εx = 4.9 + j0.05. Even the material loss is considered, the 

super Talbot effect is still obvious as shown in Fig. 3.9(a). Figure 3.9(b) plots the cross-sectional 

profile of the power in z-axis (where x = 52nm, the horizontal white solid line in the figure). Each 

of the peaks numbered from 1 to 7 of the curve represents the location of one Talbot imaging plane 

where the self-imaging phenomenon occurs. The intensity gradually decays due to the attenuation 

of the MMI stack. The distance between the two adjacent peaks is the Talbot distance ZT, which is 
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approximately measured as 152nm. The Talbot distance calculated by Eq. (3.17) is around 110nm. 

Both the effective medium theory and the long wavelength approximation may contribute to the 

difference. If the attenuation of the MMI stack is negligible, deep subwavelength image size can 

be achieved in the super Talbot effect. At point 1, where z = 40nm (along the first dashed vertical 

line as shown in Fig. 3.9(a)), the full-width half-maximum (FWHM) of one image hot spot is 

measured as 35 nm (or 0.056λ0). At another Talbot imaging plane, where z = 642nm (point 5 in 

Fig. 3.9(b), along the second dashed vertical line in Fig. 3.9(a)), a subwavelength image size of 

55nm (or 0.087λ0) still can be achieved. Comparing the cross-sectional power profiles of point 1 

and point 5 (which are not shown in the paper), the contrast of the power at point 5 is not as sharp 

as that of point 1 and the quality of the image is worse, which are attributed to the loss of high-

order diffraction light in the MMI stack. 

 

Figure 3.9  (a) Super Talbot effect in an Ag-SiO2 stack (shown in normalized power). (b) 

Cross-sectional power profile along the white solid line shown in (a), where x = 52nm. [121] 

3.3.4 Super Talbot effect demonstrated in 3D simulations 

When considering the realistic applications, for example in nanolithography, where usually 

the pattern on the mask in the y-axis is also periodic, the super Talbot effect in a 3D configuration 

needs to be explored. Here we mimic a simple scenario in nanolithography, where light is incident 

from a chrome (Cr) mask with periodic subwavelength holes, as shown in Fig. 3.10(a). The 
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incident plane wave is polarized in x-axis and has a wavelength of 630nm. The parameters of the 

hole-array are as below: hole diameter 2r = 80nm and the periods along the x and y axes are 

identical as D = 150nm. For simplicity, behind the Cr (εCr = -6.3 + j31.2) mask is an indefinite 

metamaterial which is assumed to be lossless and the permittivity components are εz = -4, and εx = 

εy = 1. The origin of the whole system is defined at the center of the hole (marked with the red 

solid circle) with z = 0 at the interface between the Cr mask and the indefinite metamaterial. 

 

Figure 3.10 (a) Illustration of the structure. Hole diameter: 2r = 80nm, hole array periods: D 

= 150nm along x and y axes. Incident wavelength is λ0 = 630nm. (b) The Talbot carpet pattern 

in the vertical z-y plane at x = 0. (c) Talbot carpet pattern in the horizontal z-x plane at y = 0. 

(d) One integer Talbot imaging plane. (e) One fractional Talbot imaging plane with z =2/3ZT. 

(b-e) are shown in normalized |E|2. [121] 

In Fig. 3.10(b), the |E|2 distribution of the vertical z-y plane at x = 0 is depicted, and 

similarly, Fig. 3.10(c) for the horizontal z-x plane at y = 0. Clearly, the super Talbot effect can be 

obtained in both the vertical and horizontal planes. The Talbot distance ZT (as shown in Fig. 3.10(c)) 

measured is about (300 ± 15) nm, which agrees with the result from Eq. (3.17), calculated as 
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300nm. The asymmetric pattern distributions as shown in Fig. 3.10(b) and 3.10(c) may be 

attributed to the polarization dependent effect. Figure 3.10(d) shows the image in one of the Talbot 

imaging planes (x-y plane, z = 365nm). The positions of the hot spots coincide with those of the 

periodic holes on the Cr mask. The size of each hot spot (FWHM) is approximately 40nm-by-

40nm (or 0.0635λ0-by-0.0635λ0). Besides the integer self-imaging planes, we also observed some 

fractional Talbot imaging planes which locate between two adjacent integer Talbot planes [143], 

with z = p/qZT (p and q are prime integers). One representative fractional Talbot imaging plane 

with z ≈ 2/3ZT was shown in Fig. 3.10(e). Comparing with the integer Talbot imaging plane [Fig. 

3.10(d)], the image on the fractional Talbot imaging plane as shown in Fig. 3.10(e) has the same 

spatial frequency but is shifted about 0.5 periods (75nm) along x-axis. The image size (FWHM) 

of those hot spots is measured as 30nm-by-40nm (or 0.0476λ0-by-0.0635λ0).  

Low loss 3D indefinite metamaterials may be constructed by an array of aligned metallic 

nanowires (εm < 0) embedded in a dielectric host (εd > 0). The fabrication of the nanowire-based 

metamaterial is based on a well-developed technique named “template synthetic method” [144-

147] and with the pores filled by metals. 

3.4 Conclusions 

In conclusion, we have shown that super Talbot effect can be observed in an indefinite 

metamaterial without the paraxial approximation. A 2D indefinite metamaterial can be 

approximated by a multilayer metal-insulator stack for super Talbot applications. As long as the 

loss of the metamaterial is small enough, a deep subwavelength resolution (~0.087λ0) can be 

achieved. Unlike the other plasmon Talbot effect discussed in Ref. [141,142], the super Talbot 

effect in this work is based upon bulk plasmon without diffraction limit. The super Talbot effect 
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may find a variety of applications in the fields as nanolithography and optical storage. In particular, 

3D photonic crystals may be fabricated based the super 3D self-imaging phenomenon [148].  
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4 NANOPLASMONIC OPTICAL SWITCH BASED ON 

GA-SI3N4-GA WAVEGUIDE 

In the previous two chapters, we introduced two different types of metamaterials -- 

designer surface plasmonic (DSP) waveguides [85] with periodic patterns on metal surface and an 

indefinite metamaterial consisting of alternative thin metal and dielectric layers [121], where in 

both cases the novel properties were achieved by man-made structures. In this chapter, we will see 

that a natural material – gallium (Ga), can also be treated as metamaterial, where the refractive 

index of gallium changes via the phase transitions of the material itself [149]. A numerical study 

of optical switch based on a metal-insulator-metal plasmonic waveguide with Si3N4 core 

sandwiched between two gallium (Ga) metal layers, is present [150]. Combining the unique 

structural phase transition property of gallium, within a total length of 400nm, an extinction ratio 

as high as 7.68 dB can be achieved in the proposed nanoplasmonic structure [150]. 

4.1 Introduction 

Silicon is a prevalent, also a favorite choice in photonics, and silicon-based photonic 

components ranging from passive devices to active devices (like modulators, detectors, and light 

amplifiers) have been intensively investigated and developed [151-153]. On the other hand, silicon 

has the drawbacks of relatively low electro-optic coefficient and low light emission efficiency, 

which make silicon not a suitable for dense circuit component integration. A promising solution 

may be found in surface plasmon polaritons (SPPs), i.e. surface electromagnetic excitations 

coupled with collective electrons, which have intrigued considerable interest. Since SPPs exhibit 

extremely small guiding wavelengths and high field intensities along dielectric-metal interfaces, 

optical confinement can be scaled to deep subwavelength dimensions in plasmonic devices. 
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In recent years, considerable interest arises in the nonlinear effect enhancement by 

structural phase transitions in polyvalent metals, for example, Ga, which has already shown to 

enable all optical switching at mill watt power levels in thin films [154] and nanoparticles [155], 

as well as promises a new type of photodetector [156]. Gallium is a material known for its 

polymorphism [157]. The stable “ground-state” phase, α-gallium, is a highly anisotropic metal 

because molecular and metallic properties may coexist – some inter-atomic bonds are strong 

covalent bonds, forming well-defined Ga2 molecules, and the rest are metallic bonds [149]. The 

structure is highly anisotropic, with much better thermal and electrical conductivity in the “metallic 

planes” than along the covalent bonds. The phase transitions between α-gallium and metallic 

gallium will occur when the temperature is close to the melting temperature of α-gallium, which 

is very low as 29.8ºC. The switching may be achieved by external optical excitation or just simply 

changing the temperature of the metal with the switching time approximately in the picosecond-

microsecond range [158]. The significant difference in the optical properties of α-phase and 

metallic phase makes gallium a very suitable material for plasmonic modulators and switches, 

when α-gallium is near its melting point. However, gallium also presents another means to achieve 

metallic phase, by a non-thermal transition [158,159]. With high intensity femtosecond optical 

excitation, the molecular character of the α-gallium structure results in highly localized excitation 

of the dimers, due to the very fast localization of the photo-generated electron-hole pairs on the 

dimers. Therefore, light absorption can excite a dimer from the bonding to the anti-bonding state. 

Consequently, the α-gallium structure transits to a new configuration, as shown in Fig. 4.1, without 

near the melting temperature [149]. This process is called light-induced surface-assisted 

metallization [149]. 
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Figure 4.1 Surface light-induced metallization at a gallium-silica interface, at a wavelength of 

1.55μm. [149] 

In 2004, Krasavin and Zheludev proposed an active Au/Ga waveguide [154], which 

contains a 2.5μm long gallium switching layer, as illustrated in Fig. 4.2. The mechanism of the 

modulation is from the great different optical properties of the α-gallium and liquid gallium, in 

terms of the dielectric constants, |εliquid - εα| ~ 180 at a wavelength of 1.55μm [154]. For a section 

of gallium waveguide 2.5μm-by-2.5μm the optical energy required for high-contrast switching will 

be on the order of 10 pJ. The intrinsic switch-on time was found to be 2-4 ps [160], which was 

measured on a gallium-quartz interface. The SPP switch-on time will be expected to be also on the 

scale of a few ps, while the switch-off to be in μs-ns time scale [158].  
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Figure 4.2 A SPP-based gold-on-quartz waveguide containing a gallium switching section, 

where gallium is at the bottom of the quartz substrate, shown in the magnitude of the 

magnetic field. [154] 

4.2 Design and Modeling 

Based on the previous work [154], in this work [150] the unique phase transition property 

of gallium is employed and the focus is put on the signal light transmission through a simple Ga-

Si3N4-Ga waveguide. Finite-difference time-domain (FDTD) method [108,109] is used to 

investigate the switching properties of the plasmonic waveguide. In the FDTD simulations, the 

experimental data for the frequency-dependent dielectric constants of Ga is directly used [161,162], 

including both the real and imaginary parts for the three main crystalline axes (a-axis, b-axis, and 

c-axis) of α-gallium and the metallic gallium. At a wavelength of 1.55μm, the dielectric constants 

of different phase of gallium are: εmetallic=-132.84+j134.77, εα_a-axis=-3.61+j23.79, εα_b-axis=-

36.43+j21.79, and εα_c-axis =2.83+j21.62. The simulated structure is created as a simple coupler by 

placing a Ga-Si3N4-Ga plasmonic waveguide embedded between two identical dielectric (silicon) 

waveguides, as shown in Fig. 4.3(a). The silicon waveguides and the Ga-Si3N4-Ga waveguide are 

aligned along the light propagation direction. The two silicon waveguides are used to couple 

optical signals into and out of the Ga-Si3N4-Ga waveguide, respectively. Recent work shows that 

high efficiency photonic-plasmonic-photonic coupling can be achieved through this configuration 

[163]. In order to calculate the power transmission of the Ga-Si3N4-Ga waveguide, a fundamental 
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TM mode in the input silicon waveguide is excited by a mode source. The power fluxes are 

measured in both the input and output silicon waveguides. Since the center of attention describes 

the switching characteristics of the plasmonic waveguide, the parameter optimization of the whole 

structure to achieve high extinction ratios, as well as waveguide transmission, will be discussed 

later in this chapter. The geometrical parameters of the silicon waveguides are temporarily put as: 

the width of the silicon waveguides, wd = 400nm, the length of the Ga-Si3N4-Ga waveguide, lp = 

400nm, and the width of dielectric core, wp = 60nm. Perfectly matched layers are used at all the 

boundaries of the simulation area to minimize the unnecessary reflection [164]. The spatial and 

temporal steps are set as Δx = Δy = 2nm and Δt = Δx/2c [165] respectively, to ensure accurate 

results in the FDTD simulations and c is the speed of light in free space. 

  

Figure 4.3 (a) A Ga-Si3N4-Ga plasmonic waveguide embedded between two silicon dielectric 

waveguides. (b) Dielectric gaps are introduced at both ends of the plasmonic waveguide. [150] 
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4.2.1 2D FDTD simulation results 

We investigate the different conditions when external optical excitation is applied and 

hence, the phase of gallium parts may completely switch between the ground phase, α-gallium, 

and the metallic phase. The simulations include all main crystalline orientations of α-gallium. First, 

we consider the different transmissions of the waveguide at a wavelength of 1550nm. In the 

simulations, we assume that the gallium part is a homogeneous medium either in the α-phase or in 

the metallic phase. Figures 4.4(a) and 4.4(b) are the simulation results of the power distributions 

when the gallium is in the metallic phase and α-phase, CB (CB denotes the c-axis lying along the 

propagation direction and the b-axis lying along the transverse direction which is perpendicular to 

the Ga-Si3N4 interface, similar notations will be used in other figures), respectively. For a better 

comparison, the two figures are normalized to the maximum value of the result with metallic 

gallium. Simulation results with the α-gallium in other crystalline directions showed similar power 

distributions as shown in Fig. 4.4(b). The power transmission decreases from 24.8% (with metallic 

gallium) to less than 5.77%, depending upon a specific crystalline direction, 1.36% for AB, 2.72% 

for AC, 4.4% for BA, 5.77% for BC, 1.62 for CA, and 1.06% for CB. Here, we define at a given 

wavelength,  

                                                                     (4.1) 

where Tα-max is the maximum transmission among those of the waveguide with α-gallium, and 

Tmetallic is the transmission of the waveguide with metallic gallium at the same wavelength. 

Compared with the 2.5-μm long (the length of the gallium section, not including the lengths of the 

Au sections and the two 10 element coupling and decoupling gratings) structure in Ref. [154], an 

extinction ratio as high as 6.33 dB can be achieved in the simple Ga-Si3N4-Ga waveguide, with a 
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total length of only 400nm. This result is noticeable since the optical switch has been considered 

as a part of the integrated circuit, and the embedded structure is ready for fabrication. The detailed 

fabrication processes will be discussed in Section 4.3. 

 

Figure 4.4 (a) Simulation result of field distribution with metallic gallium. (b) Simulation 

result of field distribution with α-gallium, CB [150]. Both plots are normalized with the result 

with metallic gallium.  

To further investigate the performance of the modulator, we varied the working 

wavelengths of the optical switch from 1000 to 2000nm in the simulations. Figure 4.5 shows the 

transmissions at different wavelengths of incident light for the same structure. The most important 

information obtained from the simulation results is that the structural phase of the gallium is the 

main factor to determine the transmission of the Ga-Si3N4-Ga waveguide. From Fig. 4.5, we find 

that as the wavelength increases, the transmission levels for all the cases increase, except for the 

transmission of the waveguide with metallic gallium decreases at a very narrow wavelength range 

(1000 to 1070nm). We also note that an extinction ratio over 3 dB (not shown in Fig. 4.5) can be 

achieved at wavelengths approximately from 1160 to 2000nm. The reason can be attributed to the 

following: when the structural phase of gallium changes, the changed refractive index of gallium 

will cause the propagation loss as well as the impedance change. By carefully examining Fig. 4.5, 

(a)                                                                        (b)
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we found that at λ = 1360nm, the extinction ratio reaches its maximum, which is 7.68 dB. 

 

Figure 4.5 Power transmission of the Ga-Si3N4-Ga plasmonic waveguide as a function of 

wavelength for different phases and crystalline directions of gallium. [150] 

Transitions between different structural phases in a bulk material are not reversible and 

therefore would not be suitable for controlling light with light. However, this will become a 

dynamic coexistence of structural forms if the material is placed in a restrictive geometry. The 

simplest form of confinement is the formation of an interface with another material [149]. The 

phase transition of gallium is a surface-mediated effect [154]. As shown in Fig. 4.3(a), a very thin 

layer of metallic gallium with thickness d is assumed to develop at Si3N4 and α-gallium interface. 

The thickness of metallic gallium layer d will steadily increase with either temperature just below 

the gallium bulk melting point or incident light intensity [149]. We simulate the conditions as the 

thickness d of metallic gallium continuously increases. The transmissions of the waveguide for a 

series of incident wavelengths and the corresponding extinction ratios are shown in Figs. 4.6(a) 

and 4.6(b), respectively. In the simulations, a thin layer metallic gallium is sandwiched between 
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Si3N4 and α-gallium, CB. The simulated structure and main geometric parameters are kept the 

same as the previous simulations. It is clearly seen that with the presence of tens of nanometers 

thick metallic gallium, the transmissions of the waveguide, as well as the extinction ratios, increase 

rapidly. This may be due to that only the metal in the vicinity of the metal-dielectric interface will 

be involved in the switching processes, since the field decays exponentially inside the metal at the 

interface. As shown in Fig. 4.6(b), at λ = 1550nm, with a 40-nm thick metallic gallium layer, the 

extinction ratio reaches around 9.98 dB and the transmission increases to 10 times of its original 

value [see Fig. 4.6(a)]. The plasmonic waveguide with metallic gallium represents an “on” state 

while with α-gallium represents an “off” state. The transmission of the waveguide with metallic 

gallium can be improved by choosing the optimal geometric parameters of the waveguide or 

simply introducing dielectric gaps to the structure, as shown in Fig. 4.3(b). Those gaps may 

function like “funnels” to gather more SPPs to the dielectric core of the waveguide [165]. With 

two 40-nm wide gaps placed at both ends of the plasmonic waveguide, at an incident wavelength 

of 1550nm, the transmission of the waveguide with metallic gallium is improved to 30.3%, while 

the extinction ratio is approximate 7.05 dB. Other parameters (e.g., the width of Si3N4 core, wp), 

can also be optimized to increase the power transmission. From simulation results, with increased 

core thickness wp, the transmission of the waveguide will increase as well. For example, when wp 

= 90nm, transmission of the waveguide with metallic gallium increases to 39.7% at λ = 1550nm. 

The whole structure exhibits Fabry–Pérot effect as the length of the plasmonic waveguide changes 

[163], when the length of the Ga-Si3N4-Ga waveguide is 140nm, transmission with metallic 

gallium is around 40.7%, and the extinction ratio is approximately 4.25 dB. 
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Figure 4.6 (a) Power transmission as a function of the depth d of metallic gallium thin film. 

(b) Extinction ratios of the Ga-Si3N4-Ga plasmonic waveguide as a function of d. [150] 

4.2.2 3D FDTD simulation results 

To characterize the optical switch in a 3D configuration and compare the extinction ratios 

with the 2D switch, the dimensions of the optical switch is similar to those in 2D simulations. The 

cross section of the Si waveguides in the y-z plane is assumed to be square, where the height of the 

Si waveguides hd equals the width wd to be 400nm. The height of the plasmonic waveguide hp is 

identical as hd. The length lp and the width wp are set as lp = 400nm and wp = 60nm, respectively. 

In the 3D numerical simulations, the gallium is either in the metallic phase or in the α-phase. The 

same notation of gallium in the α-phase is used, for example, CB represents c-axis lying in the 

light propagation direction, x-axis, b-axis lying in the z-axis, and a-axis lying in the y-axis. A mode 

with the main component of E in the y direction is excited in the input silicon waveguide. The 

power transmission measured at the output silicon waveguide is as follows: 31.1% for metallic 

gallium, 1.2% for AB, 2.95% for AC, 4.3% for BA, 7.0% for BC, 1.34% for CA, and 1.0% for 

CB. The extinction ratio using Eq. (4.1) is calculated as 6.48 dB, which is consistent with that of 

the 2D switch, 6.33 dB. 

(a)                                                                       (b)
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4.3 Proposed Fabrication Steps 

 

Figure 4.7 (a) Starting the fabrication process on an SOI wafer. (b) Defining the input and 

output silicon waveguide. (c) Deposition of Si3N4 film as the core of the plasmonic waveguide. 

(d) Deposition of gallium film. [150] 

Here, a possible 3D implementation of the optical switch is proposed. Figures 4.7(a) –4.7(d) 

illustrates the main fabrication steps of the optical switch. First, the input and output silicon 

waveguides will be fabricated on a silicon-on-insulator (SOI) wafer. In the second step, the 

dielectric core of the plasmonic waveguide, silicon nitride, will be deposited between the two 

silicon waveguides by a method named hot-wires chemical vapor deposition [167]. With NH3/SiH4 

ratios between 40 and 70, and at low substrate temperature of 100ºC or 250ºC, dense films (2.56 

to 2.74 g/cm3) and refractive index between 1.93 and 2.08 can be obtained [167]. The following 

lithography and etch steps will pattern the dielectric core. Good alignment is required to make the 

dielectric core be in alignment with the input/output silicon waveguides in the y-axis. In the third 

step, a high quality gallium film will be deposited on the substrate from Ga targets using a Q-

switched mode-locked Nd:YAG laser (λ=1.064 μm; τFWHM =60 ps) [168]. It has been reported 

that gallium nanoparticles with a relatively narrow size could be formed on the substrate if it was 

illuminated by very low intensity laser light [169,170]. The gallium film will re-solidify to α-phase 

after the melting process [168]. 
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Recently, experimental demonstrations of plasmonic waveguide [171] and coupler [172] 

have been reported. Different from our proposed structure, the core material of the fabricated 

waveguides is air. One challenge of the fabrication process for our structure is the conformality of 

each deposited film. In order to show how the thicknesses of the silicon nitride or the gallium film 

will impact the extinction ratio, we performed a series of simulations with the conditions that either 

the silicon nitride or the gallium film was not at the target thickness, which is 400nm. Figure 4.8 

shows the extinction ratio as a function of the thickness of silicon nitride or gallium. For simplicity, 

in each simulation, only one film (silicon nitride or gallium) thickness varies, while the other one 

has a thickness of 400nm. The range of thickness variation is 400 ± 40nm. From the results, it is 

seen that gallium film thickness is more critical, since ±10% thickness variation will cause a 

maximum 15% extinction ratio change, while with the same thickness variation, silicon nitride 

will only bring an 8.4% change in extinction ratio. 

 

Figure 4.8 Extinction ratio as a function of thickness of silicon nitride or gallium film. [150] 

4.4 Conclusions 

Recently, all-optic switching has also been reported in metal-insulator-metal waveguides 

with Kerr nonlinear defects [173,174]. Compared with the plasmonic waveguides proposed in 
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those papers, the switching mechanism of our Ga-Si3N4-Ga waveguide mainly depends on the 

waveguide material (gallium) property, not by introducing an additional nonlinear medium. Hence, 

our proposed structure is much simpler and easier to fabricate.  

To summarize, in this chapter the potential switching properties of a simple Ga-Si3N4-Ga 

plasmonic waveguide is investigated. With a length of only 400nm, an extinction ratio as 7.68 dB 

can be achieved in the proposed structure. Since the phase transition of gallium is a surface-

mediated effect, we also show that with tens of nanometers thick metallic gallium sandwiched 

between Si3N4 and α-gallium, the power transmission level will increase greatly. Further study on 

the parameter optimization confirms that the transmission of the waveguide can be improved to 

40.7%, while the extinction ratio is still kept over 4.25 dB. 
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5 ITO-BASED MULTILAYER ELECTRO-OPTICAL 

MODULATOR 

Gallium is not the only naturally existing metamaterial. From Chapter 5 to Chapter 8, we 

will introduce another two natural metamaterials – ITO and graphene, and explore their 

applications in ultra-compact modulators. 

 In this chapter, we investigated an active plasmonic metamaterial – ITO and its application 

in electro-optical modulators, where the structures are planar multilayer structure. Here we also 

use a new material named electrolyte gel to enhance the modulation effect. When applying external 

voltages on these multilayer structures, electric double layers are formed at the interfaces of ITO 

and electrolyte gel, which can attract more electrons or holes in ITO. Two different structures: 

ITO/electrolyte gel/doped-Si and ITO/electrolyte gel/ITO, are investigated. Based on attenuated 

total reflection (ATR) measurement results, modulation depth up to 38.8% can be achieved. 

Preliminary result is present for the real time response of an ITO/electrolyte gel/doped-Si 

modulator.  

5.1 Introduction 

Conventional photonic elements have physical dimensions on the order of the wavelength 

of light, due to the diffraction limits of light in those devices. Hence, the difference in the physical 

sizes between the nanometer-scale electronic devices and the micrometer-scale photonic devices 

leads to the incompatibility between these two types of devices. Surface plasmon polaritons (SPPs) 

combines the high bandwidth offered by photonics and the nanometer-scale device size offered by 

nano-electronics by coupling a photon’s energy with a free-electron gas, creating a subwavelength, 
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oscillating mode at the interface of dielectric and metal. Plasmonics and metamaterials are driving 

the development of novel devices with unprecedented functionalities, such as subwavelength 

waveguides [175-177], superlenses [4,5,178], optical invisibility cloaks [179-181], and planar 

magnifying hyperlens and light concentrators [182-184]. Since the plasmon phenomenon in optical 

and telecommunication frequencies typically originates from the collective oscillations of free 

charges in a material, plasmonic devices generally require metallic components. The abundant free 

electrons provide the negative real permittivity, which is an essential property of plasmonic 

material. One important challenge in these fields is the high loss caused by the metallic components 

in the devices, especially in the visible and ultra-violet (UV) spectrum regime. The high loss is a 

major obstacle in the design of efficient devices, seriously limiting the feasibility of many 

plasmonic applications. In order to compensate the high loss, optical gain materials are combined 

with metallic structures [185-187]. However, even the best gain materials available are barely 

enough to compensate the losses in metals. Therefore, alternative plasmonic materials with lower 

losses are desired to develop robust plasmonic devices and overcome the major bottleneck.  

Conventionally, semiconductors are regarded as dielectric materials for frequencies above 

several hundred THz. However, semiconductors can exhibit a negative real permittivity in this 

spectrum regime under certain conditions [103,188,189]. Due to the flexibility in tuning the carrier 

concentration, semiconductors are potential alternative plasmonic materials. Indium-tin-oxide 

(ITO), a representative of TCOs, has been shown to be a potential plasmonic material in the near-

infrared (NIR) region [190-192]. ITO is transparent degenerately doped semiconductor, containing 

90%wt indium oxide (In2O3) and 10%wt tin oxide (SnO2), which is widely used as transparent 

electrodes in solar cells and displays [103,193,194].The exploration of TCOs as the plasmonic 

metamaterial for near-infrared (NIR) applications can be traced back to decades ago [190,192,195]. 
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Comparative studies can be found in Refs. [25,196]. The carrier concentration in ITO is in the 

range of 1019~1021/cm3, which can be controlled by manipulating the concentration of oxygen 

vacancies and interstitial metal dopants. The high carrier concentration enables guiding surface 

mode at the interface of ITO and dielectric materials, for example air, which has a great potential 

in the applications of electro-optic (EO) modulators [24,107]. 

5.2 Transfer Matrix Method (TMM) 

The transfer matrix method [197-199] in optics is a powerful numerical method used to 

analyze the propagation of the electromagnetic waves through a layered medium. According to 

Maxwell’s equations, there are simple continuity conditions for the electric/magnetic field across 

boundaries from one medium to the next medium.  If the field is known at the beginning of a layer, 

the field at the end of the layer can be derived from a simple matrix operation. Therefore, a stack 

consisted of multiple layers can be represented as a system of matrix, which is a product of the 

individual layer matrices. By converting the system matrix back into reflection and transmission 

coefficients is the final step of this method. 

5.2.1 Single boundary 

Considering a wave transmits through a planar boundary between two materials with 

indexes n0 and n1 as illustrated in Fig. 5. 1, we have according to Snell’s law. 

The transfer matrix M01 can be expressed as 

,                                                   (5.1) 

where , ,  for TE mode, and , , 

 for TM mode. 
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Figure 5.1 Oblique incidence. 

5.2.2 Propagation in a multilayer stack 

Figure 5.2 shows an incoming light beam transmitted through a planar multiple layer stack 

from medium 1 to medium (i-1), where media 0 and i are the input and output media, respectively. 

 

Figure 5.2 Illustration of a planar multilayer stack, incoming light comes from medium 0 and 

leaves the stack from medium (i-1). 

As the light beam transmits from medium 0 to medium 1 with an oblique angle, at the 

boundary, the transmission matrix M01 can be expressed as Eq. (5.1). When the light transmits 

through medium 1 to medium 2 and propagates in medium 2, the transmission matrix will be added 

one propagation term  and expressed as 
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,                                             (5.2)  

where , k0 denotes the vacuum wave vector [200]. If medium 1 is a lossless 

material, the propagation only induce phase change without amplitude change. If the medium has 

a complex index, for example metal, both amplitude and phase will change.  

The transmission matrix through the whole stack is the product of all the individual 

matrices in sequence 

                                  (5.3) 

The transmission matrix M can also be expressed in a concise way as an ABCD matrix, as shown 

in Eq. (5.3). The reflectance from the whole system can be calculated as 

                                                                 .                                                                   (5.4) 

In this chapter, we characterized the modulation properties of the ITO-based multilayer 

modulators by measuring the reflected power on an ATR setup. The experimental results will be 

modeled with transfer matrix method (TMM).  

5.3 Drude model 

The Drude model explaining the transport properties of free electrons in materials, was 

proposed in 1900 [201,202]. There are two main solid state systems that exhibit strong free electron 

effects: metals and doped semiconductor. Both can be treated as plasmas, which is a neutral gas of 

heavy ions and light electrons. Considering the oscillations of a free electron induced by the AC 

electric field E(t) of an electromagnetic wave, the equation of motion for the displacement x of the 

electron is 
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                                   (5.5) 

where ω is the frequency of the light, and E0 is its amplitude. The acceleration of the electron is 

represented by the first term, while the second is the frictional damping force of the material. The 

term on the right hand side is the driving force exerted by the light.  

By substituting  into Eq. (5.5), we can obtain . The 

polarization P of the gas is equal to –Nex, where N is the number of electron per unit volume. 

Recalling the electric displacement field D, which is defined as 𝜀 𝜀 . Therefore, 

D can be written as 

  .                                                (5.6) 

Hence, we can get 

                                         (5.7) 

This equation can be written in a more concise form as 

                                             (5.8) 

where 

                                                           (5.9) 

is known as the plasma frequency, while e is the unit electric charge, ε0 the free space permittivity, 

and m0 the electron mass. The plasma frequency ωp corresponds to the natural resonant frequency 

of the free carrier gas. 
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The free electron model presented above can be applied to doped semiconductors if two 

appropriate modifications [203]. Firstly, the fact that the electrons and holes are moving in the 

conduction or valence band of a semiconductor needs to be considered. In this scenario, we can 

assume that those carriers behave as particles with an effective mass m* rather than the free 

electron mass m0. Secondly, there are other mechanisms that may contribute to the dielectric 

constant as well as the free carrier effects. The main extra part is the contribution to the polarization 

due to the optical response of the bound electrons. Therefore, Eq. (5.6) can be rewritten in the 

following form when the two modifications are considered 

                                                              (5.10) 

The effective mass m* accounts for the band structure of the semiconductor, ε∞ is the high 

frequency dielectric constant, and carrier density N in this equation is the density of free electrons 

or holes generated by the doping process. From Eq. (5.10) we can write the frequency dependence 

of the dielectric constant as 

                                                        (5.11) 

where  is the plasma frequency. Since the carrier density is much smaller than that in 

metals, the plasma frequency may occur in the infrared spectral range.  

In this chapter, we will use Eq. (5.11) to model the optical properties of ITO, where the 

ITO is treated as doped-semiconductor.  
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5.4 Optical property of ITO 

 

Figure 5.3 ATR setup in Kretschmann configuration. 

An attenuated total reflection (ATR) setup was built in the Kretschmann configuration 

[204], as illustrated in Fig. 5.3. A collimated laser beam propagates through a broadband polarizer 

(P1), and the output is either s- or p- polarized light, and is then split into two by a beam splitter 

(BS). One beam is used for collecting source power fluctuation and fed into a Ge photodiode (PD2); 

another is incident at the angle θ into a BK7 glass hemi-cylindrical (Ø100mm obtained from 

Rocoptonics) lens, which functions as a coupling prism in this setup. The reflected light is then 

collected by another Ge photodiode (PD1). The reflectance, R, is well measured by the power ratio 

between PD1 and PD2, even there is power fluctuation in the laser source. The rotation of the 

prism (together with the multilayer ITO modulator) and PD1 is in a θ-2θ configuration, which is 

precisely controlled by two motorized rotation stages. The increment of θ is set as 0.25º.The 

measurement result is recorded by a LabView program, thus, the reflectance R as a function of θ 

can be plotted.  

The measured reflectance of the ITO on corning glass slide is numerically fitted by 

calculating the reflectance through the multilayer structure based on the transfer matrix method 

(TMM) [197-199]. In order to avoid the thin air gap between the sample and the BK7 prism, a 

PD1
PD2Laser

BS

P1

R

θ
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BK7 index matching liquid was used. The film stack in this experiment can be treated as 

BK7/ITO/air. In the fitting, the thickness of the ITO film and its permittivity (both real and 

imaginary parts) were used as the variables to model the measured reflectance data. After the 4 

hours-annealing process, the sheet resistance of the ITO film is 63.16Ω/□. The fitted results are 

shown in Fig. 5.4(a), where the magnitude of the permittivity is also plotted. Here a cross-over 

wavelength is defined as, at this specific wavelength, the magnitude of the permittivity |ε| is very 

small and even close to zero. In Fig. 5.4(a), a cross-over wavelength of 980nm is observed, where 

the permittivity of ITO is  and |ε|=0.478. Two measured reflectance curves as a 

function of angle are shown in Fig. 5.4(b), the blue curve is at λ=980nm where ε is close-to-zero 

and the red one is at λ=1260nm where ε is far-from-zero. As mentioned previously in Section 1.3.3, 

deposition/annealing conditions play a crucial role in achieving the desired optical property of ITO. 

For example, Ref. [196] demonstrates that ITO could have a cross-over wavelength in the near 

infrared (NIR) regime.  

 

Figure 5.4  (a) Fitted permittivity of an ITO on glass sample. (b) Measured reflectance curves.  

The permittivity of ITO can be described by Drude model [201,202], which is described in 

Eq. (5.11) 𝜔  where ε∞ is the high frequency dielectric constant, ωp is the plasma 
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frequency, and γ is the electron damping factor. Hence, the carrier concentration in ITO can be 

determined by 

 (5.12) 

where ωp is the plasma frequency, and m* is the effective mass of electron. Assuming ε∞= 4 [196], 

the carrier concentration is estimated as N=4.12E+21/cm3 at wavelength of 980nm. 

5.5 ITO-based multilayer modulators 

5.5.1 Fabrication of multilayer structure 

 

Figure 5.5 Illustration of ITO-based multilayer modulator: (a) ITO/gel/doped-Si, and (b) 

ITO/gel/ITO. (c) Commercial Electrolyte gel.  

Figure 5.5(a) and (b) illustrate two different types of ITO-based multilayer modulators, 

which are similar as that of metal-oxide-semiconductor (MOS). Here, an electrolyte gel is used to 

replace the sandwiched oxide material and form simple planar multilayer structure. Electrolyte has 

been used as gate insulators in organic field-effect transistors in 2005 by Nilsson et. al. [206]. The 

interface between a metal (or heavily-doped semiconductor) and electrolyte is of interest in most 

electrolyte applications, where two parallel layers of positive and negative charges called an 

electric double layer (EDL) are formed. Another advantage of using electrolyte as the gating 

SiO2

ITO

Electrolyte Gel

Highly doped Si

(a)
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material is, the device behavior can be conveniently controlled by varying the concentration of 

chemical compounds in the electrolyte [207,208]. In our experiments, a commercially available 

electrolyte Redux® Gel is used to fabricate the ITO-based multilayer modulators. Sodium chloride 

(NaCl) is the main chemical compound in the electrolyte gel that makes it highly conductive. The 

fabrication of the modulators starts from ITO film deposition on a transparent glass slide, as 

described in Section 5.4. After applying a thin layer of electrolyte gel on the surface of ITO film, 

either a heavily doped (resistivity as low as 0.001-0.002Ω·cm) silicon chip or another identical 

ITO sample with the ITO side facing the electrolyte gel is tightly pushed toward the substrate ITO 

to form the multilayer modulator, as shown in Fig. 5.5(a) and (b), respectively. With this 

fabrication method, the thickness of the sandwiched electrolyte gel is usually 4-6μm, which is 

determined by the numerical fitting. 

5.5.2 Experimental demonstration of modulation effect 

An ATR setup as illustrated in Fig. 5.3 was used to test the modulation performance of the 

two types of ITO-based modulators. During the experiment, the ITO-based modulators were 

mounted on the back of the hemi-cylindrical BK7 prism. To avoid a thin air gap between the prism 

and the modulator, a BK7 index matching liquid is applied between them. In all the experiments, 

the reflectance of the modulators was measured in a sequence of: (1) without externally applied 

voltage, (2) with an externally applied voltage VP, and (3) with an externally applied voltage which 

has reversed polarity but the same magnitude. We firstly focused on a simple structure, as shown 

in Fig. 5.6(a), which includes only one active ITO layer. The measured reflectance of the 

modulator with different applied voltages, as a function of θ with a p-polarized incident light beam 

at λ = 1520nm is shown in Fig. 5.6. With an applied voltage, an EDL is formed at the interface of 

the electrolyte gel and the ITO. Here we assumed there is a 5nm-thick [24] depletion layer (with 
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positive voltage VP = 10 V, illustrated in Fig. 5.6), or a 5nm-thick accumulation layer (with 

negative voltage -VP=-10V) formed in ITO at the interface. The modulation depth, M(θ), as a 

function of angle θ at a given wavelength can be defined as: 

                                                                                                      (5.13) 

where R0 is the experimentally measured reflectance without applied voltage,  is the 

magnitude of the difference of the two reflectance with applied voltages. From Fig. 5.5, the 

modulation depth at a specific angle of θ=70º can be calculated as M(70º)=20.7%. We attribute 

the modulation to the change of the free carrier concentration in either the 5nm-thick depletion 

layer or the accumulation layer in ITO at the interface, which is assisted by the redistribution of 

the ions in electrolyte gel induced by the applied voltage. The charge distribution at the interface 

and electric potential (V) at a stable status with the applied voltage is schematic illustrated in Fig. 

5.6. 

 

Figure 5.6 Normalized reflectance as a function of angle for the ITO/electrolyte gel/heavily-

doped Si modulator with different applied voltages. Inset: illustration of the modulator with 

applied voltage.  
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The measured reflectance of the ITO modulator is numerically fitted by calculating the 

reflectance through the multilayer structure based on the transfer matrix method (TMM) [197-199]. 

In this experiment, the film stack can be treated as BK7/ITO/electrolyte gel/heavily-doped Si. In 

order to simplify the fitting, we used the permittivity of the 5nm depletion layer or accumulation 

layer in ITO (both real and imaginary parts), and the thickness of the electrolyte gel as the variables 

to model the measured reflectance data. The permittivity of the electrolyte gel is determined by a 

separate ATR measurement, which is εgel ≈ 1.80 at λ = 1520nm. In the numerical fitting, the BK7 

medium has a refractive index of n = 1.50 at λ = 1520nm. The result turns out that the dielectric 

constant of ITO film εITO = 3.7+j1.0 at λ = 1520nm without applied voltage, and the thickness of 

the electrolyte gel . Note the fitted dielectric constant of ITO at the wavelength of 

1520nm is significantly different with the one shown in Fig. 5.4(a), due to the ITO film was not 

annealed after deposition.  

 

Figure 5.7 ATR measurement results and fitted curves for (a): with Vp= +10V, (b): Vp= -10V. 

With an applied voltage of VP = 10 V, the permittivity of the 5nm depletion layer of ITO is 
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accumulation layer of ITO is εITO-acc = -1.59+j8.1. Combining Eq. (5.11) and (5.12), the carrier 

concentration in ITO can be estimated as: ,  for 

the 5nm depletion layer, and for the 5nm accumulation layer, assuming 

ε∞=4.55 for all the conditions [24]. The fitted curves are shown in Fig. 5.6 as the blue dashed lines 

for the applied voltage measurements.  

 

Figure 5.8 Normalized reflectance as a function of angle for the ITO/electrolyte gel/ITO 

modulator with different applied voltages. Inset: illustration of the modulator with applied 

voltage.  

The modulation depth can be further enhanced when the electrolyte gel sandwiched 

between two identical ITO samples. To make the measurement result accurate, we used a glass 

deflector on the other side of the modulator [205], to avoid any light reflected back and collected 

by the detector PD1. When applying a voltage to the double-ITO modulator, there will be an EDL 

formed at each electrolyte gel/ITO interface, as shown in Fig. 5.8. The double EDLs result a higher 

modulation depth, which is M(70º)=38.8%, at a specific angle of θ = 70º with s-polarized light at 

λ = 1520nm. This result also reveals that the ITO-based multilayer modulator is not sensitive to 

the polarization of the incident light beam. 
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5.5.3 Preliminary result for real-time response  

The switching speed of the modulator is directly influenced by the relaxation of the ions in 

the electrolyte gel. For the modulator structure shown in Fig. 5.5(a), another experiment is carried 

out to test this relaxation effect, where two rectangular voltage pulses are excited by a DC power 

supply. The first pulse is 30s wide with a height of +20V applied on ITO, after 120s the second 

pulse is excited with the same width but an opposite polarity, as illustrated by the blue curve in 

Fig. 5.9. The incident light beam is at λ = 1310nm with p-polarization. The response of the ITO-

based modulator to the applied voltage pulses as a function of time is measured at a specific angle 

θ = 65º and the reflectance is shown in Fig. 5.9. When there is no applied voltage, the reflectance 

R is at its baseline level. When the voltage pulses are applied on the ITO (at time t1 and t2), EDLs 

are immediately formed at the interface of the electrolyte gel/ITO. The induced change of the 

reflectance is similar as we observed in the first experiment shown in Fig. 5.6, and the modulation 

depth is around 12.4%. When both the rectangular pulses vanished, the reflectance of the 

modulator either decreases or increases toward its baseline level, respectively. However, it is 

clearly seen that for both the situations, the modulator needs a long time to recover to its baseline 

level. With the positive voltage pulse, the recovery time is even longer. The phenomenon could be 

caused by the different mobility of the major carriers in the 5nm region in ITO at the interface. 

The response of the ITO modulator under high-frequency AC signals needs further investigation. 

Both the ions in electrolyte gel and the free carriers in ITO needed to form the electric double layer 

will probably limit its applications at high frequency. 
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Figure 5.9 Ionic relaxation effect of the electrolyte gel, at an angle of θ = 65°. 

5.6 Conclusions 

To summarize, we have experimentally demonstrated modulation effect with multilayer 

modulators based on ITO. The fabrication of the modulators are much simpler compared to other 

work [24], which contains only one fabrication process (ITO deposition). The modulation depth is 

around 21.7% with one ITO active layer, and this result can be further enhanced to 38.8%, where 

there are two ITO active layers. The real time response of the ITO-based modulators needs further 

investigation, where the response is determined by the relaxation of the ions in electrolyte gel as 

well as the free carriers in ITO. 

0 200 400 600 800 1000 1200 1400 1600
-20

-15

-10

-5

0

5

10

15

20

Time (s)
0 200 400 600 800 1000 1200 1400 1600

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.39

5.63

4.96

A
p
p
lie

d
 V

o
lt
a
g
e
 (

V
) R

e
fle

c
ta

n
c
e
 (a

.u
)

30s

5.36

t1 t2

electrolyte gel

ITO

V+

+ + + + + + + + + +

electrolyte gel

ITO

V-

+ + + + + + + + 



91 

 

6 ULTRACOMPACT ELECTRO-OPTIC 

MODULATORS BASED ON ENZ-SLOT 

WAVEGUIDE 

In this chapter, we will continue the work in Chapter 5 and propose a novel waveguide, 

namely “TCO-slot waveguide”, which combines both the tunable property of a TCO and field 

enhancement of a slot waveguide. Recent experiments showed that unity-order index change [24] 

in a TCO can be achieved in a metal-oxide-semiconductor (MOS) structure by accumulation 

charge. However, the ultrathin (~5nm) accumulation layer and inherent absorption of TCOs 

impede the practical applications of this effect. We found that light absorption can be sharply 

enhanced when the slot dielectric constant is tuned close to zero. Based on TCO-slot waveguides, 

efficient electro-absorption modulation can be achieved within 200nm with small insertion loss.  

6.1 Introduction 

Ultracompact high-speed electro-optic (EO) modulators have become one of the critical 

technical bottlenecks impeding the wide applications of on-chip optical interconnects. This is due 

to the very poor EO properties of conventional materials. Phase modulators are on the order of 

millimeters [209-211] and can reduce to about tens of micrometers by introducing novel structures 

to enhance the EO effect [212]. Absorption modulators can be quite compact, but in most cases 

they require advanced materials [82,213]. Even though, their dimensions are still 10μm~100μm. 

On-chip optical interconnects require EO modulation at the nanoscale. The key to achieve 

nanoscale EO modulation is to (1) identify an efficient and low cost active material and (2) greatly 

enhance light-active medium interaction based on a novel waveguide or platform. 
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The development of metamaterials has opened new horizons in photonics [11,214]. Recent 

research shows that the dielectric constant of materials can be engineered to be almost arbitrary 

value (positive, zero, or negative). One example is epsilon-near-zero (ENZ) materials [215-217], 

which received significant attention and found applications in squeezing electromagnetic energy 

through very narrow channels [218,219], design of matched zero-index materials [217,220], as 

well as shaping the radiation pattern of a source [214,221].  In our recent research [222], we found 

that light absorption can be greatly enhanced in ENZ-slot waveguides hence ENZ material is very 

promising to improve the performance of EO modulators. An ENZ material is found to have many 

advantages as an EO material: (1) sharply enhanced absorption can be achieved in an ultrathin slot; 

(2) the ultrathin slot does not introduce a large insertion loss; (3) an ENZ material often has tunable 

optical properties because a small change in carrier density may result in a significant change in 

dielectric constant. 

As introduced in Chapter 5, the effect of free carriers on an optical material can be 

approximated by the Drude model [201,202], . Here, ε∞ is the high frequency 

dielectric constant, γ is the electron damping factor, ω is the angular frequency of the light, and ωp 

is the plasma frequency given by , which depends on carrier concentration N, and the 

effective electron mass m*. The ENZ effect can be found in many materials at  for 

example, tungsten at λ0=48.4nm with a minimum |ε(W)|=0.483, and aluminum at λ0=83nm with a 

minimum |ε(Al)|=0.035 [39]. However, the plasma frequencies of most metals are located in the 

UV regime due to their ultrahigh electron density. To make ENZ located in the near infrared (NIR) 

regime, the electron density should reduce to 1020~1021/cm3, which coincides that of TCOs. 

Recently, considerable effort has been focused on TCOs as the plasmonic and ENZ metamaterial 
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for NIR applications [107,190,192,195,223]. Feigenbaum et al. [24] have studied the refractive 

index changes in the accumulation layer of a metal-oxide-ITO heterostructure, and experimentally 

showed that carrier concentration at the oxide/ITO interface can increase from 1E+21/cm3 to 

1E+22/cm3 under a few volts across a 100nm thick oxide. In particular, the crossover wavelength, 

where the real permittivity crosses zero, of ITO shifts from 1918nm to 1136nm with only 1.0 V.  

6.2 Tunable ENZ-slot waveguides 

6.2.1 Epsilon-near-zero (ENZ) state 

Based on Feigenbaum et al. work [24], we paid special attention to the two conditions of 

ITO listed in the bale below:  

Va(V) ε∞ ωp(rad/s) γ(rad/s) N(cm-3) 

0 4.55 2.0968E+15 7.25E+14 1.00E+21 

1 4.37 3.4687E+15 5.29E+13 1.65E+22 

Table 6.1 Free carrier concentrations in ITO. 

The two conditions in Table 6.1 are referred by their corresponding carrier concentrations 

N=N1=1.0E+21/cm3 and N=N2=1.65E+22/cm3, which are directly related to the dielectric constant 

of ITO. Based on the Drude model and the measured parameters, Fig. 6.1(a) plots the dielectric 

constant of ITO accumulation layer (real part and imaginary part) as a function of wavelength 

under N=N1 and N=N2, respectively. In particular, at λ0=1136nm, 

N=N1 ε1=3.2074+j0.5867 ε-far-from-zero state 

N=N2 ε2=-0.0014+j0.1395 ε-near-zero state 

Note that the magnitude of the dielectric constant has changed |ε1|/|ε2|=23.4 times by only 

1.0 V gate voltage across the 100nm oxide. In this sense, ITO and other TCOs may be excellent 

EO materials. Indeed, TCOs have been proposed as the active media in several plasmonic 
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modulators [224,225]. However, there seems always a tradeoff between the dimensions and 

insertion loss of the modulators. In this work, we show that modulators with ultracompact 

dimensions and small insertion loss can be achieved even on a plasmonic platform based on our 

recent work on ENZ-slot dielectric waveguides [222]. 

 

(a)                                                                          (b) 

Figure 6.1 (a) Real part and imaginary part of the dielectric constant of ITO as a function of 

wavelength at two different carrier concentration based on Drude model. (b) The illustration 

of ENZ-slot waveguides.  

A low carrier concentration (or a voltage between 0 and 1.0 V in Ref. [24]) should result 

in ENZ accumulation layer at the telecom wavelengths. However, due to the lack of the 

experimental data, we only consider devices working at 1136nm. To circumvent the band edge 

absorption of Si at 1136nm in the theoretical and numerical study, the waveguide semiconductor 

is assumed to be a material with a similar refractive index of Si at telecom wavelengths, e.g. GaAs. 

The applications of the devices described below can be easily extended into telecom Si photonics. 

6.2.2 Significantly enhanced absorption by ENZ state 

Figure 6.1(b) illustrates the structure to be discussed in this chapter. We will use ITO as 

one example of various TCOs. Assume 10nm thick ITO film is sandwiched between two Au slabs 

with 30nm thick SiO2 buffer layer. The structure is simply the MOS structure as reported in Ref. 
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[24] with a thinner oxide layer. Optically, it is also known as a metal-insulator-metal (MIM) 

plasmonic waveguide, where a well confined transverse magnetic (TM) plasmonic mode can be 

excited between the two Au slabs. The magnetic field is parallel to the slabs, i.e. H=Hx in Fig. 

6.1(b). At the SiO2-ITO interface, the continuity of normal electric flux density, 

                                                   (6.1) 

is applicable, where the free charge effect is included in the complex dielectric constant. Thus, 

very high electric field can be excited when |εITO|  0. In other words, an ENZ-slot can sharply 

enhance the electric field in the slot. Without loss of generality, we assume the dielectric constant 

of the ENZ-slot to be: 

                                                         .                                                   (6.2) 

The dissipation power density:  

                                                                                              (6.3) 

can be greatly enhanced at ENZ because: (1) |Ey| reaches its maximum and (2) ε"/|ε| nearly grows 

to its maximum at the same time. To maximize the absorption, the magnitude of dielectric constant 

of the slot should decrease to zero as close as possible. Equation (6.3) is valid for infinitesimal slot 

thickness. Otherwise, the guided power will redistribute, and the operation of the slot waveguide 

fails if the slot thickness is too large. The absorption of the ENZ-slot may even be much stronger 

than that of Au in the waveguide as can be seen in the following context. 

Based on the transfer matrix method, we solved the TM mode supported by the Au-ITO-

SiO2-Au stack, i.e. a 2D ITO-slot MIM plasmonic waveguide. The dielectric constant of Au is ε= 
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-63.85+j5.07 at λ0 = 1136nm. We considered two cases: (1) without a gate voltage, N = N1 and the 

10nm ITO layer has dielectric constant ε1 = 3.2074+j0.5867; (2) with a suitable gate voltage, N = 

N2 and the 10nm ITO layer is split into two, namely 5nm unaffected layer with ε1 = 3.2074+j0.5867 

and 5nm accumulation layer with ε2 = -0.0014+j0.1395. As shown in Fig. 6.2(b), the electric field 

can be greatly enhanced in the accumulation layer at λ0=1136nm when carrier concentration 

increases from N1 to N2. In particular, the magnitude of Ey increases about 9.2 times. In addition, 

similar level of enhancement can be achieved when the ENZ-slot is sandwiched in a dielectric 

waveguide. Figure 6.2(b) shows the mode profiles of an ENZ-slot dielectric waveguide at N1 and 

N2. The top and bottom dielectric layers, each 125nm thick, are assumed to be heavily doped 

semiconductor with refractive index 3.45. 

 

                                             (a)                                                                 (b)   

Figure 6.2 (a) The plots of the transverse electric field magnitude across the ENZ-slot MIM 

plasmonic waveguide at N=N1 and N=N2, respectively. (b) The plots of the transverse electric 

field magnitude across the ENZ-slot dielectric waveguide at N=N1 and N=N2, respectively. 

6.3 Nanoscale EO modulators 

6.3.1 Mode profiles 

These 2D film stacks can be easily rendered into 3D rib waveguide as shown in Fig. 6.3. 

We used a 3D mode solver to study their modes based on the finite-difference time domain (FDTD) 
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method. Figure 6.3(a) shows the mode profiles of the ITO-slot plasmonic waveguide at different 

carrier concentrations. Note the top Au strip is only 200nm wide. As can be seen, there is a 

considerable shift in the effective index: 1.99 at N=N1, and 1.09 at N=N2. Thus, quite compact 

phase modulators may be realized. More importantly, there is a huge change in the waveguide 

attenuation. At N=N1, the |Ey| in the ITO is even lower than in the SiO2 buffer layers, and the 

waveguide works at the low loss state with α1 = 2.92 dB/μm; at N=N2, the |Ey| in the accumulation 

layer is many times higher than in the SiO2 buffer layers, and the waveguide works at the high 

absorption state with α2=23.56 dB/μm. As a result, modulation depth 20.64 dB/μm can be achieved, 

and 3 dB modulation depth only requires 146nm propagation distance. Based on the film stack 

shown in Fig. 6.2(b), a dielectric modulator can be designed. Figure 6.3(b) shows the mode profiles 

of the ITO-slot dielectric modulator at different carrier concentrations. A similar modulation effect 

can be achieved. The dielectric modulator may find more practical applications.  

 

Figure 6.3 The electric field profiles, effective indices, and propagation loss for different ITO-

slot waveguides at N=N1 and N=N2, respectively: (a) in a plasmonic waveguide; (b) in 

dielectric rib waveguide. The refractive indices of the semiconductor and SiO2 are assumed to 

be 3.45 and 1.45, respectively. All mode profiles are shown in normalized electric fields. 

6.3.2 Performance Analysis 

To evaluate the insertion loss of the EO modulators, we performed 3D FDTD simulations 
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with the smallest mesh size down to 0.5nm. We first simulated the modulator based on the 

plasmonic waveguide platform as shown in Fig. 6.4(a). We assume the modulator is embedded in 

a waveguide with same configuration as itself except without the ITO layer. The length of the EO 

modulator is 150nm. Figures 6.4(b) and (c) show the power distribution in the waveguide at N=N1 

and N=N2, respectively. Simulation results demonstrate that the overall throughput is 89.6% at 

N=N1, and 40.8% at N=N2. Note that the insertion loss is only 0.48 dB (89.6%). The achievable 

modulation depth, 3.42 dB, is very close to the one predicted by the 3D mode solver. We also 

simulated the modulator based on the dielectric waveguide platform as shown in Fig. 6.4(d). The 

length of the EO modulator is 200nm. In this case, we assume the modulator is embedded in a 

dielectric waveguide with same overall dimensions as itself except without the ITO and buffer 

layers. Figures 6.4(e) and (f) show the power distribution in the waveguide at N=N1 and N=N2, 

respectively. Simulation results demonstrate that the overall throughput is 88.2% at N=N1, and 

39.1% at N=N2. The achievable modulation depth, 3.53 dB, is smaller than the one predicted by 

the 3D mode solver. This is due to the mode mismatch between the slot waveguide of the 

modulator and its input/output rib waveguide. We expect that its performance (modulation depth 

and insertion loss) can be significantly improved by replacing the input/output rib waveguide with 

a dielectric slot waveguide.  

The design of the EO modulator is ultracompact and has much lower insertion loss 

compared with previous works, in which a modulation depth around 3 dB need the modulator 

lengths of 4μm [226] and 50μm [82], respectively. In most works, the insertion loss is either not 

reported or quite large. For example, the insertion loss is over 3.7 dB in Ref. [82]. 

In addition, the optical bandwidth of the modulators can be over several THz due to the 

slow Drude dispersion [227]. The EO modulators can potentially work at an ultra-high speed, 
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being mainly limited by the RC delay imposed by electric circuits.  

 

Figure 6.4 (a) The illustration of an EO modulator embedded in a plasmonic rib waveguide. 

(b,c) The 3D simulation of light propagation between a plasmonic rib waveguide and the EO 

modulator at N=N1 and N=N2, respectively. (d) The illustration of an EO modulator 

embedded in a dielectric rib waveguide. (e, f) The 3D simulation of light propagation between 

a dielectric rig waveguide and the EO modulator at N=N1 and N=N2, respectively. (b), (c), (e) 

and (f) are shown in normalized power distribution.  

6.4 Conclusions 

Recent research shows that transparent conductive oxides (TCOs) are promising tunable 

ENZ metamaterials. When sandwiched in a plasmonic or dielectric waveguide, a very thin ENZ 

film can greatly enhance light absorption. The tunable ENZ-slot waveguides may enable EO 

modulation at nanoscale and an optical modulator can be made at the scale of a transistor. In 

addition, the nanoscale modulators potentially have the advantages of small insertion los, 
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ultrahigh-speed, and easy fabrication. A similar work can be found in Ref. [227], where aluminum-

doped zinc oxide (AZO) is the active material. The successfully development of this technique 

may lead to a significant breakthrough in on-chip optical interconnects.  
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7 GREATLY ENHANCED ABSORPTION OF 

MONOLAYER GRAPHENE IN AN ULTRABROAD 

BAND 

In Chapter 5 and Chapter 6, we explored the electro-optic (EO) property of ITO and its 

potential applications in light modulation. From Chapter 7 to Chapter 8, we will focus on another 

natural metamaterial – graphene and investigate its properties which can be employed in 

modulators. In this chapter, greatly enhanced light absorption by monolayer graphene over a broad 

spectral range, from visible to near infrared, is experimentally demonstrated based on the 

attenuated total reflection. In the experiment, graphene is sandwiched between two dielectric 

media referred as superstrate and substrate. Based on numerical calculation and experimental 

results, the closer the refractive indices of the superstrate and the substrate, the higher the 

absorption of graphene will be. The light absorption of monolayer graphene up to 42.7% is 

experimentally achieved [205]. Compared to other reported works [248,265-269], our work 

doesn’t need any complicated, time-consuming fabrication process and the greatly enhanced 

absorption is shown to be broadband.  

7.1 Introduction 

Graphene [229,230] is the first two-dimensional (2D) atomic crystal available to 

researchers, which is a basic building block for graphitic materials of all other dimensionalities 

[231], as shown in Fig. 7.1. Since it was isolated by mechanical exfoliation in 2004 [229], many 

extraordinary properties of graphene have been demonstrated. For example, graphene can support 

remarkably high density of electric currents [232], and has high thermal conductivity [233] and 

elasticity [234]. At room temperature, the electron mobility of graphene is extremely high, up to 
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2.5×105 cm2 V-1 s-1 [232,235]. This property enables graphene a desirable material in the 

advancement of nanoelectronics [236], for example, metal-oxide-semiconductor field effect 

transistor (MOSFET) channels [237], graphene nanoribbons [97,238,239], bilayer graphene 

transistor [240] and perforated graphene transistors [241-243]. The optical properties of graphene 

have intrigued considerable interest as well. Recent research revealed gate-variable optical 

conductivity [244] and high-speed operation [245] of graphene. These extraordinary properties 

combining with its high electron mobility make graphene a promising candidate satisfying the 

need of broadband optical modulators [78,222,246,247] and photodetectors [245,248]. 

 

Figure 7.1 Illustration of the graphene (upper), 0D bucky balls (lower left), 1D nanotubes 

(lower middle), and 3D graphite (lower right). [231] 

7.2 Optical Absorption of Graphene and Its Applications 

The optical property of graphene is attracting researchers’ interests. The light transmission 

(T) of a free standing monolayer graphene could be derived with Fresnel’s equation for a thin film 

with a fixed universal optical constant [232,247] of , to be:  
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                                                      (7.1) 

where  is the fine structure constant [249]. The reflectivity of graphene is 

very low (< 0.1%), therefore nearly 2.3% of the incident light will be absorbed by the graphene 

thin film, which is independent of the wavelength [244,249-251]. The absorption spectrum of a 

single layer graphene is quite flat for a wide wavelength range, from 300 to 2,500nm [252]. The 

large transmission combines the high conductivity, makes graphene a promising candidate in a 

variety applications, including solar cells, touch screens and organic light-emitting diodes 

(OLEDs). Indium tin oxide (ITO) is widely used in the above mentioned devices. Despite that ITO 

has an optical transparency of nearly 90% and a low sheet resistance (less than 100 Ω/□, which 

depends on process condition), it is brittle and expensive. With stable doping to increase 

conductivity and a controlled layer number, graphene could replace ITO as the transparent 

electrode in solar cells [253,254]. Graphene may also work as photoactive material [255] and the 

channel [256] in photovoltaic devices.  

Graphene can be used with metals in the form of graphene/metal contacts in photo detectors 

[245], since it has a very wide spectrum of absorption and fast carrier transport. A Schottky-like 

barrier at a graphene/metal contact will be set up and generate a built-in electric field. Electron-

hole pairs generated near the contact will be separated by the electric field and a net photocurrent 

can be observed [257-260]. Recently, interdigitated metal electrodes made of two different metals 

are employed in a graphene photo detector [261]. The design allows photo detection over the entire 

area of the device. Reliable detection of optical data streams of 1.55μm light pulses at a rate of 10 

GBits/s can be obtained in this device [261].  
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7.3 Enhanced Optical Absorption by Graphene 

7.3.1 Background 

Considered its single atom thickness, the interaction between light and graphene is quite 

strong: light absorption can go up to  = 2.293% (α is the fine-structure constant) [232,262-264] 

when light is normal incident through graphene. However, the absolute value (~2.3%) of 

absorption is still weak for most practical applications. For active optoelectronic devices 

[245,261,265], a strong light-matter interaction is usually desired. Therefore, many approaches 

have been explored to increase the interaction of light with graphene or to enhance the optical 

absorption. One possible way is to utilize plasmonic nanostructures [265] or nanoparticles [266] 

in graphene-based photodetectors, where the responsivity can be significantly enhanced due to the 

localized surface plasmons. It was also shown that the enhanced absorption of graphene can be 

achieved by patterning doped-graphene into a periodic nanodisk [267] or alternating with insulator 

layers to form superlattice structure [268]. More recent research work demonstrated that over 60% 

absorption can be reached by integrating graphene with a microcavity structure [248]. However, 

all these methods mentioned above either need complicated, time-consuming fabrication processes 

[248,269] or the devices exhibit very narrow bandwidth [248,266,269] due to the involvement of 

microcavities or resonators. An easily fabricated graphene-based device with a broad bandwidth 

is then desired for fundamental research and practical applications. 

In a recent research [270], up to 10% light absorption by a monolayer graphene was 

demonstrated through an F2 prism coupling into a graphene-sandwiched silica waveguiding 

structure. The experimental setup used in Ref. [270] is based on an attenuated total reflection (ATR) 

configuration. This configuration has been used to measure the graphene absorption spectra [270], 

analyze terahertz surface plasmons on graphene [272], and estimate number of carbon layers in an 

unknown graphene sample [273]. 
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7.3.2 Numerical Analysis 

Here we consider a graphene-sandwiched three-layer structure as shown in the inset of Fig. 

7.4(a). The top layer (superstrate), graphene, and bottom layer (substrate) have refractive indices, 

n1, n2, and n3, respectively. Assume that a plane wave is incident into the three-layer structure and 

the corresponding propagation angles to the normal are θ1, θ2, and θ3, respectively. Snell’s law is 

held between layers, (q=1, 2, 3). Based on the transfer matrix method 

(TMM) [197-199], the amplitude reflectance can be calculated by: 

                                           (7.2) 

where 𝜑 , k0 is the wavenumber of the light wave in free space; d ≈ 0.335 nm is 

the thickness of graphene). Also, (q=1, 2, 3) for s-polarized light, and  

 (q=1, 2, 3) for p-polarized light. 

 

Figure 7.2 (a) Numerical calculation of the reflectance and absorption as functions of incident 

angle, θ1, and substrate refractive index n3. (b) Calculation of maximum achievable 

absorption as a function of substrate refractive index n3. Results in (a) and (b) are obtained at 

λ=650nm for s-polarized light, and n1=1.51. [205] 

For pristine graphene, its surface conductivity σg can be universally expressed as 

 where h is the plank constant and e represents the elementary charge. Thus, 
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the refractive index of graphene is a complex number and can be calculated by , 

where ε0 is the permittivity of the free space, and ω is the angular frequency of the incident light 

wave. 

We assume the refractive index of the superstrate is n1 = 1.51 at λ = 650nm, and first 

consider the s-polarized light case. The solid lines in Fig. 7.2(a) plot the power reflectance 𝑅 =

|𝑟|2as a function of incident angle θ1 and substrate refractive index. Based on the transfer matrix 

method [197-199], we can similarly calculate the power transmittance T. The absorption A=1-R-

T. The dashed lines in Fig. 7.2(a) plot the A-θ1 relations for different substrates. Almost identical 

curves can be obtained at λ = 1520nm or even longer wavelengths if n1 and n3 remain the same as 

their corresponding values.  

From the graph, we can see that the maximum absorption occurs at the critical angle 

 for each case. This can be explained as follows. Due to the ultrathin thickness of 

graphene, the three-layer structure can also be approximately treated as a two-layer (n1|n3) structure, 

with the boundary replaced by graphene as a perturbation, if the graphene absorption is not 

significant. According to the continuity relation of electric field in different layers, the electric 

field in graphene, E2, is proportional to the amplitude transmittance between the superstrate and 

substrate: 

,                                          (7.3) 

where Ei is the electric field of the incident light wave. The power dissipation in graphene in a unit 

area can be calculated by , and maximum |E2| gives rise to maximum pd. In Eq. (7.3), 

|E2| reaches its maximum, 2|Ei|, when cos 𝜃3 = 0 or equivalently . 
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Furthermore, the closer n3 and n1 are, the larger the critical angle, and the larger the 

absorption. The reason is because a larger critical angle decreases the incident power density on 

graphene, , which will increase the ratio between dissipated power and 

incident power, i.e.  

where η1= η0/n1 is the impedance of the superstrate and η0 = 120 π(Ω) (the impedance of the free 

space). For normal light incidence into graphene suspended in air, in Eq. (7.4). 

When the absorption becomes significantly large, the amplitude transmittance cannot be estimated 

based on the above equation. Instead, the three-layer model needs to be applied.  

Based on the three-layer model, the absorption grows with the increase of n3, as shown in 

Fig. 7.2(b). The closer n3 to n1
(-), the larger the absorption is. For example, the absorption can reach 

79.6% when n3=1.509. However, when n3>n1, the maximum absorption will sharply drop. In our 

work, we only consider the cases where n1>n3. The power transmittance T=0 when 𝜃1 ≥ 𝜃𝑐; thus, 

the incident power will be either reflected back or absorbed by graphene, i.e. A=1-R. The scattering 

by graphene is negligible as can be seen in the experimental result for p-polarized light. In other 

words, when 𝜃1 ≥ 𝜃𝑐, the absorption can be easily measured by testing the reflectance.  

Furthermore, there is no cavity or resonant component involved in the structure. As a result, 

the absorption expression given in Eq. (7.4) is not an explicit function of frequency, which implies 

that the same level of enhanced light absorption can be achieved in a broad band. This is verified 

by the more accurate calculation based on the three-layer model: the absorption would slightly 

increase from 39.1% at 650nm to 39.2% at 1620nm if there were no material dispersion (n1 and n2 

are actually slowly varying functions of frequency due to material dispersion). Consequently, 
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greatly enhanced ultrabroad band light absorption can be achieved simply based on the graphene-

sandwiched three-layer structure. 

7.3.3 Experimental Results and Discussion 

To experimentally demonstrate the greatly enhanced light absorption by graphene, we have 

built an ATR setup in the Kretschmann configuration [197], as illustrated in Fig. 7.3. A collimated 

laser beam propagates through a broadband polarizer (P1) to choose either s- or p- polarized light, 

and is then split into two by a beam splitter (BS). One beam is used for recording source power 

fluctuation and fed into a germanium photodiode (PD2); another is incident at the angle θ1 into a 

BK7 glass hemicylindrical (Ø100mm obtained from Rocoptonics) lens, which functions as a 

coupling prism in this setup. The reflected light is then collected by another germanium photodiode 

(PD1). The power ratio between PD1 and PD2 can well measure the reflectance, R, even if there 

is power fluctuation in the laser source. The rotation of the prism (together with the graphene 

sample) and PD1 is in a θ1-2θ1 configuration, which is precisely controlled by two motorized 

rotation stages. In our experiment, we made one measurement for every 0.25° increment of θ1. As 

a result, the reflectance, R, as a function of θ1 can be plotted.  

 

Figure 7.3 Illustration of the experimental setup for ATR measurement. The red dashed line 

represents the monolayer graphene film. P1 and BS represent the polarizer and beam 

splitter, respectively. [205] 
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Our sample is commercially available monolayer graphene [274] synthesized by the 

chemical vapor deposition (CVD) process then transferred to our bare BK7 glass slide. Its Raman 

spectroscopy result shown in Fig. 7.4 indicates that the sample is monolayer graphene with an 

obviously higher 2D peak than the G peak [275]. The graphene sample is mounted at the back of 

the hemicylindrical prism. To avoid a thin air gap between the prism and the graphene sample, a 

BK7 index matching liquid is applied between them. In this case, the superstrate can be simplified 

and treated as a BK7 medium, consisting of the BK7 prism and the BK7 glass slide. The medium 

on the other side of the graphene is referred as the substrate, which is another matching liquid from 

CargilleTM in our case to better control the refractive index. A thick (>10 mm) glass plate is used 

to hold the matching liquid and meanwhile to deflect light away from PD1. 

 

Figure 7.4 Raman spectroscopy result for the graphene sample. The three curves represent 

three different points on the same sample. [274] 

In our work, we focused on s-polarization and carried out the experiment in a step-by-step 

fashion. First, we tested the graphene on BK7 glass sample without any substrate (or air as the 
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substrate), as shown in Fig. 7.3 but without the deflector. The experimentally measured reflectance 

at λ = 650nm and 1520nm as a function of θ1 is shown in Fig. 7.5(a) and (b), respectively. In order 

to calculate the absorption of the monolayer graphene, the reflectance (blue triangles) of a bare 

BK7 glass slide is measured as a control experiment. The critical angle is measured to be 41.00° 

(at λ=650nm) and 41.25° (at λ=1520nm), which is in agreement with the theoretical calculation 

value 41.3° (at λ=650nm) and 41.8° (at λ=1520nm). The discrepancy is attributed to the angle error 

in θ1, and corrected in our following calculation. 

 

Figure 7.5 Reflectance of a reference BK7 glass slide (blue triangles), monolayer graphene 

(red circles), and numerical fit (green) with an s-polarized light (a) with wavelength of λ = 

650 nm and (b) λ = 1520 nm. In the legend, “G” represents “graphene”. “BK7/G/air” 

means the result with the BK7(prism)-graphene-air configuration. [205] 

In each plot, both the reflectance curves are normalized by the average value of the total 

internal reflection part in the reference curve. Therefore, the red curve represents the reflectance 

of the monolayer graphene. At the critical angle, the absorption of the monolayer graphene can be 

calculated as A=1-R, which is 7.6% (at λ=650nm) and 9.8% (at λ=1520nm). The measured 

reflectance of the monolayer graphene is numerically fitted (green curve in Fig. 7.5) by calculating 

the reflectance through the three-layer structure based on the transfer matrix method (TMM) [197-

199]. In the numerical fitting, the BK-7 medium has a refractive index of n=1.50 at λ=1520nm. 
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We use the dielectric constant of graphene (imaginary part) as the fitting parameter to approach 

the measured reflectance data. The result turns out that the dielectric constant of graphene εg= 

1+j15.96 or surface conductivity σg=6.22×10-5S at λ=1520nm. We attribute the discrepancy 

between the fitted value and the theoretical value calculated by Eq. (7.2) to the doping in graphene. 

A slightly smaller conductivity can also be fitted for the result measured at λ=650nm. 

Based on the same sample and configuration, we also measured the absorption of graphene 

at longer wavelengths up to 1620nm. At the critical angle, the absorption of monolayer graphene 

is in the range of 7.6%-11.2%, which is 3~5 times stronger than the widely known absorption 

coefficient (~2.3%). When the incident angle is larger than the critical angle, the reflectance of 

graphene is observed to gradually increase and projected to be 100% at θ1 = 90º. 

 

Figure 7.6 (a) Normalized measured reflectance of the monolayer graphene with M1.50 as 

substrate under s-polarized light incidence at λ=650nm. (b) Measured reflectance of the 

monolayer graphene with M1.50 as substrate under s-polarized light incidence at λ=1520nm. 

In both graphs, red curves represent the results when a BK7 deflector is used; blue curves 

represent the results when a BSG deflector is used. In the legend, “G” and “M” represent 

“graphene” and “matching liquid”, respectively. “BK7/G/M/BK7” means the result for the 

BK7(prism)-graphene-M1.50(substrate)-BK7(deflector) configuration. [205] 
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The absorption of the monolayer graphene can be further enhanced when the refractive 

index of the substrate increases. In our work, a matching liquid with refractive index 1.50 (at 

λ=589.3nm according to the manufacturer; referred as “M1.50”) is applied as the substrate of the 

graphene. Two different supporting glass deflectors, BK7 and borosilicate glass (BSG), are 

separately used to hold the substrate M1.50. In Fig. 7.6, triangle points are the control experiments 

measured by “removing” the graphene. Both the curves measured with graphene sample are 

normalized with the corresponding control curves. 

In the control experiment with BK7 deflector, the total internal reflection occurs at the 

interface of the superstrate BK7 and the substrate M1.50, θC ≈ 81.75°. As shown in the red dot 

curve, at θC the absorption of monolayer graphene is measured as 42.7%, which is ~18 times 

stronger than the widely known absorption (~2.3%). 

This result is further confirmed by replacing the BK7 deflector with the BSG deflector and 

repeating the measurement, as shown in the blue dot curves in Fig. 7.6(a), where the absorption is 

measure as 40.5%. In this configuration, there are two total internal reflections: first one occurs at 

the interface of the substrate M1.50 and BSG deflector with a critical angle θC1 ≈ 76.75°, and the 

second one occurs at the interface of the superstrate BK7 and the substrate M1.50 with θC2 ≈ 81.75°. 

Beyond θC2, the blue dot curve is in a good agreement with the red dot curve, and both indicate the 

reflectance of the monolayer graphene in the sandwich configuration. The oscillation of the blue 

triangle curve between the two angles θC1 and θC2 is due to the substrate M1.50 functioning as a 

cavity between the graphene and BSG deflector.  

Similarly, R-θ1 relation at different wavelengths is measured. Figure 7.6(b) shows the 

results for the measurement at λ=1520nm. The absorption is about 35.3% at the critical angle. 

When the wavelength varies from 650nm to 1620nm, the absorption gradually decreases from 40.5% 
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to 33.1% with the BSG deflector, and from 42.7% to 35.3% with the BK7 deflector. Thus, 

ultrabroad band enhanced light absorption is achieved. The variation of the absorption with the 

wavelength can be attributed to the dispersion of the superstrate BK7 and substrate M1.50. In 

particular, the absorption becomes more sensitive when n1 and n3 are close enough. When the 

substrate is replaced by M1.49 matching liquid, the absorption will considerably decrease, for 

example, dropping from 42.7% to 28% at λ=650nm. 

 

Figure 7.7 For 1520nm p-polarized light incidence, the normalized measured reflectance by 

the monolayer graphene sample as a function of incident angle when (a) the substrate is air, 

and (b) the substrate is M1.50. [205] 

The enhanced absorption of graphene is shown to be very sensitive to the polarization of 

the incident light. Similar as previous experiments, we measured the reflectance of the monolayer 

graphene when the substrate is air and M1.50 separately with p-polarized incident light. As can be 

seen in Fig. 7.6, the maximum absorption does not occur at the critical angle and is not sensitive 

to the substrate refractive index. The minimum reflectance beyond the corresponding critical angle 

is 97.65% (when the substrate is air) or 97.7% (when the substrate is M1.50), respectively. 

Therefore, the absorption in both cases is calculated as ~2.3%, which is similar as the widely 
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known absorption coefficient. The reason is because the electric field in graphene for p-polarized 

incident light cannot be estimated by Eq. (7.3), instead 

.                    (7.5) 

where E2t and E2n represents the tangential and normal components of the electric field in graphene. 

Therefore, when , and , which is opposite to that case for 

s-polarized light. In the latter case, E2 = E2t gains its maximum when . 

7.4 Conclusions 

In this work, we have experimentally demonstrated that the absorption of monolayer 

graphene can be significantly enhanced over a broad spectral range, from visible to infrared, when 

the incident light is s-polarized. At the critical angle, the absorption is in the range of 7.6%-11.2%, 

when the substrate is air, and up to 42.7%, when the substrate is replaced by a medium with a 

closer refractive index compared to that of the superstrate. The enhanced absorption is not strongly 

dependent on the wavelength but very sensitive to the polarization of incoming light. The 

significantly enhanced absorption of monolayer graphene may have potential applications in 

broadband photodetectors and solar cells. 
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8 NANOSCALE ELECTRO-OPTIC MODULATORS 

BASED ON GRAPHENE 

Research on graphene has revealed its remarkable electro-optic properties, which promise 

to satisfy the needs of future electro-optic modulators. However, its ultrasmall thickness, compared 

with operating light wavelength, downplays its role in an optoelectronic device. The key to achieve 

efficient electro-optic modulation based on graphene is to enhance its interaction with light. To 

this end, some novel waveguides and platforms will be employed to enhance the interaction. In 

this chapter, we will continue the work in Chapter 7 and present the recent exploration of graphene 

electro-optic modulators based on graphene sandwiched in dielectric or plasmonic waveguides 

[222]. With a suitable gate voltage, the dielectric constant of graphene can be tuned to be very 

small due to the effect of intraband electronic transition, resulting in “graphene-slot waveguides” 

and greatly enhanced absorption modes. Up to 3 dB modulation depth can be achieved within 

800nm long silicon waveguides, or 120nm long plasmonic waveguides based on three-dimensional 

numerical simulations. They have the advantages of nanoscale footprints, small insertion loss, low 

power consumption, and potentially ultrahigh speed, as well as being CMOS-compatible. 

8.1 Introduction 

Surface plasmon polaritons (SPPs) are collective oscillations of electrons at the interface 

of dielectric/metal, which can be excited by photon or electron. Usually, noble metals (Au or Ag) 

are used as the plasmonic materials. However, high loss and non-tunability are the main 

disadvantages of the devices fabricated with these materials. As a rising star, graphene has been 

proposed as a new platform for plasmon waveguiding at infrared frequencies [68-74], and also 

considered as terahertz metamaterials [75]. SPPs excited in graphene have many promising 
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properties [72,276], for example, extremely strong confinement, tunability with electrical gating 

or chemical doping, and low loss. Hence, graphene is an attractive alternative to traditional 

plasmonic materials. Graphene as plasmonic material has been demonstrated in light harvesting 

[277], optical biosensing [278], and transformation optics [76]. The tunability of graphene-based 

plasmonic devices originates from its complex dynamic conductivity determined by the Kubo 

formula [73,76,77], which will be discussed in the following section of this chapter. Simply 

speaking, the imaginary part of the conductivity σ" may has a negative or positive value which 

depends on the chemical potential of graphene at different frequency ranges, and it plays an 

important role in supporting different types of surface waves. With a low chemical potential, 

graphene has a negative σ", leading to a semiconductor-like behavior, capable of guiding a proper 

TE surface wave. With a large chemical potential (|μ|>ħω/2), σ" is positive and graphene will 

behave like metal and support a proper TM surface wave, which shows similar behavior as noble 

metals [279-282].  

8.2 Intraband absorption of graphene 

8.2.1 Surface conductivity model of graphene 

Graphene can be modeled as an infinitesimally-thin, local two-sided surface characterized 

by a surface conductivity σ (ω, μc, Γ, T), where ω is radian frequency, μc is chemical potential, Γ 

is scattering rate, and T is temperature. The conductivity of graphene can be expressed by the Kubo 

formula [73,76,77],  

     (8.1) 

where e is the charge of an electron, ħ=h/2π is the reduced Planck’s constant, 

 is the Fermi-Dirac distribution, and kB is Boltzmann’s constant. The local 
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conductivity is isotropic, where there is no external magnetic field is present. The first term in Eq. 

(8.1) is contributed by intraband absorption, and the second one by interband absorption.  

From equation (8.1), the surface conductivity of graphene can be simplified as σ = σintra(ω, 

μc, Γ, T) + σinter(ω, μc, Γ, T). The chemical potential μc is determined by the carrier density ns 

,                               (8.2) 

where vF ≈ 9.5E+5 m/s is the Fermi velocity. By applying a gate voltage or chemical doping, the 

carrier density can be easily controlled. Thus, the conductivity of graphene can be dynamically 

tuned by gate voltage VD in real time. Basically, when μc < ℏω∕2, interband absorption dominates 

and graphene becomes absorptive; otherwise, quite transparent. Electrically switching on/off 

graphene interband absorption plays a key role in the modulator reported in Ref. [247]. 

The intraband term in Eq. (8.1) can be written as 

                             (8.3) 

and the interband term can be approximated for , 

                                                (8.4) 

The complex surface conductivity can be simply expressed as , as mentioned 

in the introduction part, at low frequency regimes, a proper TE surface wave exists only if 𝜎" > 0 

(associated with intraband absorption), and a proper TM surface wave exists for 𝜎" < 0 (associated 

with interband absorption) [283].  

8.2.2 Intraband absorption 

We found the intraband absorption can be equally important in a graphene absorption 
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modulator. Based on Eq. (8.1), we calculated the graphene conductivity at T = 300K (scattering 

rate, ℏΓ = 5 meV) [247]. Figures 8.1(a) and 1(b) plot the real and imaginary parts of the 

conductivity as a function of the chemical potential and wavelength in the near-infrared regime. 

In particular, the real part of conductivity is very sensitive to chemical potential; for example, at 

wavelength λ0 = 1550nm, varying from nearly 60.85μS to 1.37μS when chemical potential rises 

from 0 to 0.6eV, as shown in Fig. 8.1(c). Figure 8.1(c) also shows how interband absorption and 

intraband absorption contribute to the graphene conductivity, respectively. Figure 8.1(d) plots the 

corresponding dielectric constant (real part, imaginary part, and magnitude), 

 , where Δ = 0.7nm is the effective thickness of graphene [247]. The dielectric 

constant of graphene varies from εeff (0 eV) = 0.985 + j8.077 to εeff(0.6 eV) = −2.508 + j0.182 at 

λ0 = 1.55μm. Note the sign of real part flips due to intraband absorption because the interband 

absorption and intraband absorption contribute to the imaginary part of conductivity with different 

signs, as shown in Fig. 8.1(c). As a result, there is a dip in the curve of dielectric constant 

magnitude, where “metallic graphene” is transforming to “dielectric graphene” with Ref{εeff} = 0. 

In this case, the “transition chemical potential” is μt = 0.515 eV and |εeff(μt)| = |− 0.048 + j0.323| = 

0.327, which means the magnitude varies |εeff(0)|/|εeff(μt)| ≈ 25 times. Note this “epsilon-near-zero” 

[218,219,284] effect can be seen almost in any material at its plasma frequency; for example, Ag 

at λ0 = 326nm. The uniqueness of graphene lies in that its plasma frequency can be tuned by 

electrical gating. 
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Figure 8.1 (a) Real part and (b) imaginary part of the graphene conductivity as a function of 

chemical potential and wavelength (T = 300K) based on the Kubo formula. (c) The graphene 

conductivity (real part and imaginary part), by interband transition and intraband 

transition, as the function of chemical potential at λ0 = 1550nm. (d) The effective dielectric 

constant (real part, imaginary part, and magnitude) as a function of chemical potential at λ0 = 

1550nm. (e) The illustration of a 2D “graphene-slot waveguide” with a 10nm thick Si3N4 

buffer layer on each side of graphene. (f) The plots of the transverse electric field magnitude 

across the waveguide at μc = 0 and μc = μt, respectively. [222] 

8.3 Design and modeling 

8.3.1 Significantly enhanced absorption in graphene-slot waveguide 

The effect of dielectric constant change is not very manifest when graphene is placed on 

top of a dielectric waveguide. Based on the change of dielectric constant, we solved the transverse 

magnetic (TM) modes of graphene on a 250nm by 600nm silicon waveguide with a 7nm Al2O3 

buffer layer at λ0 = 1.53μm when chemical potential is 0 and μt, respectively. The effective indices 
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are both 2.06, but the attenuation rates are significantly different, 0.134 dB∕μm for μc = 0 and 0.044 

dB∕μm for μc = μt. The mode profiles are shown in Fig. 8.2(a) and (b), respectively. The absorption 

can be further reduced when μc shifts from 0.515 eV to 0.6 eV or higher. The resulting modulation, 

0.09 ∼ 0.13 dB∕μm, coincides with the recent experimental work [247]. 

 

Figure 8.2 Mode profiles for graphene on top of dielectric waveguide. [247] (a) At μc = 0, 

attenuation α= 0.134dB/μm, and (b) at μc = 0.515 eV, attenuation α= 0.044dB/μm. Both 

figures are shown in normalized electric fields. 

The absorption of a TM mode can be greatly enhanced when graphene is sandwiched inside 

the silicon waveguide, forming a “graphene-slot waveguide,” as illustrated in Fig. 8.1(e). In a slot 

waveguide [285], the magnitude of transverse electric field |Ey| is roughly inversely proportional 

to that of the dielectric constant. The power absorbed in a unit area, ∙

, can be greatly enhanced at μc = μt because (1) |Ey| reaches its maximum, and (2) 

Im{εeff}/|εeff| nearly grows to its maximum at the same time, as shown in Fig. 8.1(d). To verify this, 

we first consider the multilayer stack, as illustrated in Fig. 8.1(e), where graphene is sandwiched 

in a silicon waveguide with a 10nm Si3N4 buffer layer on each side. Based on the transfer matrix 

method, we find the optimal silicon thickness to enhance light absorption is about 150nm. Figure 

8.1(f) plots the |Ey| profiles at μc = 0 and μc = μt, respectively. The absorption is roughly 

proportional to |Ey|, with an enhancement about 25 times. In our case, μc = 0 is the transparence 
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state, while μc = μt is the absorption state, which are exactly opposite to the operation principle of 

the EO modulator reported in Ref. [247] as well as the graphene-sandwiched devices proposed in 

a recent review article [286]. In those devices, the electric field strength for the two states is at the 

same level and the imaginary part of graphene dielectric constant determines the absorption. 

Graphene has higher conductivity (and larger imaginary part of dielectric constant) at μc = 0. 

8.3.2 Mode profiles 

Once the configuration of the graphene-slot waveguide is optimized, we use a three-

dimensional (3D) mode solver to determine the optimal waveguide width based on the finite-

difference time-domain (FDTD) method. Considering the fabrication tolerance, the optimal width 

of the waveguide is found to be 450nm. Figure 8.3(a) shows the mode profiles of the graphene-

slot waveguide at different chemical potentials. There is only a slight shift in the effective index: 

2.032 at μc = 0, and 2.034 at μc = μt. In contrast, there is a huge change in the waveguide attenuation. 

At μc = 0, the |Ey| in the graphene is even lower than in the Si3N4 buffer layers, and the waveguide 

works at the low loss state with α0 = 0.183 dB/μm; at μc = μt, the |Ey| in the graphene is many times 

higher than in the Si3N4 buffer layers, and the waveguide works at the high absorption state with 

αv = 4.603 dB/μm. As a result, modulation depth 4.42 dB/μm can be achieved, and 3 dB modulation 

depth only requires 679nm propagation distance. An 800nm propagation distance results in 

modulation depth 3.54 dB. Therefore, a graphene EO modulator can be made on the nanoscale. 

For the sake of easy fabrication, the silicon modulator can also take the form of an asymmetric slot 

waveguide, as shown in Fig. 8.3(b). There is only a slight change in the performance. 



122 

 

 

Figure 8.3 The transverse electric field profiles, effective indices, and propagation loss for 

different graphene-slot waveguides at μc = 0 and μc = μt, respectively: (a) in a dielectric 

waveguide (Si waveguide is 450nm wide and 150nm thick for each layer); (b) in a dielectric 

strip waveguide (strip Si waveguide is 450nm wide and 150 nm thick for each layer); (c) in a 

metal-insulator-metal waveguide (waveguide is 200 nm wide); (d) in a metal strip waveguide 

(strip metal is 200nm wide); (e), (f) in photonic-plasmonic hybrid waveguides [waveguide is 

400 nm wide in (e) and 200 nm wide in (f), Si layer is 130 nm thick for both structures]. All 

mode profiles are shown in normalized electric fields. The refractive indices of Si, Si3N4, and 

SiO2 are assumed to be 3.47, 1.98, and 1.44, respectively. [222] 

Furthermore, recent work shows that highly confined modes can be achieved in plasmonic 

waveguides [287]. Based on nanoplasmonic platforms, the dimensions of a graphene modulator 
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should be even smaller. Following the same approach, we investigated the interaction between 

graphene and various plasmonic modes. Figures 8.3(c) and 8.3(d) list the guided mode profiles, 

effective indices, and attenuation of graphene-slot waveguides based the metal-insulator-metal 

plasmonic platform. Because of the close interaction between metal and graphene, the chemical 

potential with highest absorption shifts to 0.518 eV. Figures 8.3(e) and 8.3(f) list the mode 

calculation of graphene-slot waveguides based on the hybrid plasmonic platform. Although Au or 

Ag may decrease the metal absorption of the plasmonic waveguides, CMOS-compatible metal, Cu, 

is used in all plasmonic modulators, and its dielectric constant is assumed to be −67.86 + j10.01. 

A 10nm thick Si3N4 buffer layer is designed on each side of graphene for all plasmonic waveguides 

shown in Figs. 8.3(c)–8.3(f). As can be seen in Fig. 8.3(d), a 3 dB (3.82 dB at 1550nm) EO 

modulator can be made within 120nm using the metal strip plasmonic waveguide, where the 

attenuations are 6.76 dB/μm at μc = 0, and 38.59 dB/μm at μc = 0.518 eV. 

8.4 Performance analysis 

8.4.1 Insertion loss 

To evaluate the insertion loss of the EO modulators, we performed 3D FDTD simulations 

with the smallest mesh size down to 0.35nm. In the simulations, we assume the modulators are 

embedded in the same waveguide as themselves except without the sandwiched graphene. We first 

simulated the modulator based on the silicon waveguide platform, as shown in Fig. 8.4(a). The 

length of the graphene modulator is 800nm. Assume the thickness of the bottom silicon layer for 

electrical contact is negligible. Figures 8.4(b) and 8.4(c) show the power distribution in the 

waveguide at μc = 0 and μc = 0.515 eV, respectively. Simulation results demonstrate that the overall 

throughput is 92.0% at μc = 0, and 42.5% at μc = 0.515 eV. Note that the insertion loss is only 0.36 

dB (92.0%). The achievable modulation depth, 3.4 dB, is slightly smaller than the one predicted 
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by the 3D mode solver. We also simulated EO modulators based on the guided modes listed in 

Figs. 8.3(b)–8.3(f). The results are similar as predicted in the mode solver. As one example, Figs. 

8.4(e) and 8.4(f) show the simulation results at μc = 0 and μc = 0.518 eV for the plasmonic 

modulator illustrated in Fig. 8.4(d). The overall throughput is 81.04% at μc = 0, and 36.92% at μc 

= 0.518 eV. Note that the overall length is only 120nm, while the modulation depth is 3.4 dB. 

 

Figure 8.4 The illustration of a graphene EO modulator based on a silicon waveguide. (b), (c) 

The 3D simulation of light propagation between a silicon waveguide and the EO modulator at 

μc = 0 and μc = μt, respectively. (d) The illustration of a graphene EO modulator based on a 

metal strip plasmonic waveguide. (e), (f) The 3D simulation of light propagation between a 

metal strip plasmonic waveguide and the EO modulator at μc = 0 and μc = μt, respectively. 

Figures (b), (c), (e) and (f) are shown in normalized power distribution. [222] 

8.4.2 Bandwidth 

On-chip optical interconnects require a broad bandwidth. Although the conductivity of 

graphene only weakly depends on the working frequency, the effective dielectric constant, 

, is a function of working frequency. As a result, in terms of dielectric constant, 

graphene is a dispersive medium. Nevertheless, we found the effect of dispersion is not so obvious. 
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We studied the bandwidth of the EO modulators by solving the modes shown in Fig. 8.3 at different 

working wavelengths. Figure 8.5(a) shows the waveguide absorption as a function of wavelength 

in a silicon waveguide. As can be seen, the attenuation of the modulator at μc = 0 nearly remains a 

constant, 0.18 − 0.20 dB/μm, while the attenuation at μc = 0.515 eV decreases when the wavelength 

shifts away from 1550nm. In particular, the attenuations are 4.44dB/μm, 4.60dB/μm, and 

4.45dB/μm at 1545nm, 1550nm, and 1555nm, respectively. Wavelength spanning from 1545nm 

to 1555nm, or 1.25THz bandwidth, only decreases modulation depth 0.16 dB/μm. For our 800nm 

silicon modulator, the decrease will be 0.14 dB. The prediction was further verified by 3D FDTD 

modeling. At μc = 0, the overall throughput is 92% for both 1545nm and 1555nm; at μc = 0.515 

eV, the overall throughput is 43.7% and 43.6%, for 1545nm and 1555nm, respectively. Thus, this 

modulator has a 3 dB bandwidth at least 1.25 THz.  

We also studied the bandwidth of our EO modulators based on plasmonic waveguides. 

Figure 8.5(b) shows the waveguide absorption as a function of wavelength in a metal strip 

plasmonic waveguide based on the 3D mode solver. As can be seen, when wavelength shifts ±

5nm away from 1550nm, the attenuation decreases about 1.9 dB/μm. Within 120nm, the 

modulation depth changes 0.23 dB, from 3.82 dB to 3.59 dB. Thus, this EO modulator also allows 

for over a terahertz bandwidth. The calculation was also further verified by 3D FDTD modeling. 

At μc = 0, the overall throughput is 81% for both 1545nm and 1555nm; at μc = 0.518 eV, the overall 

throughput is 37.84% and 37.58%, for 1545nm and 1555nm, respectively. 
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Figure 8.5 The attenuation of graphene-slot modulators as a function of working wavelength 

at μc = 0 and μc = μt, respectively: (a) in a silicon waveguide; (b) in a metal strip waveguide. 

The attenuation of graphene-slot waveguides as a function of chemical potential and gate 

voltage at a wavelength of 1550nm; (c) in a silicon waveguide (450nm wide and 150nm thick 

for each layer); (d) in a metal strip plasmonic waveguide (strip metal is 200nm wide). [222] 

8.4.3 Power consumption, modulation speed and thermal effect 

The modulator footprint mostly comes from the electrical contacts and the overall footprint 

can be made about 2–3μm2 with the corresponding capacitance ∼0.02 pF (the dielectric constant 

of Si3N4 is assumed to be 7.5). Note the magnitude of graphene dielectric constant is nearly stable 

between 0 and 0.4 eV, as shown in Fig. 8.1(d). More accurately, significant output power decrease 

only occurs when the chemical potential varies from 0.445 eV to 0.515 eV, as shown in Figs. 8.5(c) 

and 8.5(d). When projecting the chemical potential to gate voltage across a 10nm Si3N4 buffer 

layer, the gate voltage change ΔV = (3.93−5.25) V. Thus, each bit only requires 0.12–0.13 pJ. 

Employment of doped graphene and a high-k (e.g., HfO2) buffer layer can further decrease the 
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power consumption. 

The proposed modulators can potentially work at an ultrahigh speed. Graphene has 

outstanding carrier mobility. In addition, intraband transition is much faster than interband 

transition [288]. The operation speed is mainly limited by the RC delay imposed by electric circuits. 

The submicrometer wide graphene may result in a very large resistance. Direct graphene–

semiconductor contact may resolve this issue, as shown in Figs. 8.6(a) and 8.6(b), and the RC 

delay can potentially decrease to several picoseconds. 

The thermal transport in the modulators was also considered. Although graphene has a 

superior thermal conductivity, most heat still transfers through the buffer layers. In this case, we 

treat graphene as a thermal source. Assume the photonic signal power P = 1 mW (which is huge 

for telecommunications) and half is absorbed by graphene. Silicon nitride has a thermal 

conductivity k = 29 W/mK. When applying the heat flux  in the silicon 

waveguide-based modulator, the resulting temperature gradient in the Si3N4 buffer layer will be 

~0.048°C/nm. The 10nm buffer layer only results in temperature rise, 0.48°C.  

All the theoretical analysis and numerical modeling in the preceding text are based on the 

small optical signal assumption, i.e., the change of the graphene conductivity due to the absorption 

of light is negligible. Because of the extremely enhanced light absorption, saturable absorption and 

other nonlinear effects may become obvious when the signal power increases to some level. 

Actually, this nonlinear effect will become obvious when the pump signal is not so strong. 

According to our calculation, bias voltage VD = 5.3 V will result in μc = 0.518 eV across a 10nm 

Si3N4 buffer layer with Ns = 2.2 × 1013cm−2. Absorption of light will give rise to excess carriers, 

which can be estimated by pump rate  and carrier lifetime τ (~0.135 ps for graphene), i.e., 
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. For the modulator simulated in Figs. 8.3(d)–8.3(f), P = 1 mW pump will result in 

ΔNs = 4.4×1012 cm−2 ≈ 0.20Ns. Therefore, the modulator also provides us opportunities to study 

nonlinear optical effects at a low power level. One important application is all-optic modulators, 

where one weak optical signal (λs) may be switched on/off by another strong optical pump (λp) 

based on the graphene-slot plasmonic waveguide, where a DC bias voltage results in the maximum 

absorption of λp. 

 

Figure 8.6 The illustration of nanoscale graphene modulators containing direct graphene-

semiconductor contacts based on (a) dielectric strip waveguide, and (b) metal strip 

waveguide. [222] 

8.5 Conclusions 

To summarize, we studied the optical conductivity and dielectric constant of graphene 

under different chemical potentials in the near-infrared regime. Because of the effect of intraband 

absorption, the magnitude of graphene dielectric constant (and hence the attenuation of a graphene-

slot waveguide) can be dynamically tuned in a large range by electrical gating. We proposed and 

modeled a series of graphene EO modulators based on graphene-slot waveguides. Nanoscale 

graphene EO modulators can be developed based on both silicon and plasmonic platforms. These 

modulators promise to remove the technical bottleneck in on-chip optical interconnects with the 

advantages of nanoscale footprints, small insertion loss, low power consumption, and potential 

ultrahigh speed, as well as being CMOS-compatible. 
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9 CONCLUSIONS 

In this dissertation, several different types of novel metamaterials have been investigated 

and explored analytically, numerically and experimentally for the applications of subwavelength 

waveguiding, imaging and modulation. The novel metamaterials studied are not limited to man-

made structures, also included naturally existing materials, for example, graphene and TCOs, 

which have been proven to have superior properties at some specific spectral regimes. The research 

topics covered in this dissertation concentrated on improving the performance of the devices by 

taking the advantages of the metamaterials, such as minimizing the footprints of optical modulators 

to be on nanometer-scale, enhancing resolution of an imaging system that is beyond the diffraction 

limit, etc.  

9.1 Designer surface plasmonics (DSP) and indefinite metamaterials 

Chapter 2 and 3 explored the possibility of achieving deep subwavelength imaging via 

metamaterials with periodic structures. Chapter 2 focused on the experimental demonstration at 

microwave frequency, which is mimicking surface plasmons with structured metal surfaces. The 

spacing and the size of the grooves can be readily controlled on scales in GHz and even to THz 

regime, which enables to engineer a surface plasmon at almost any arbitrary frequency (as long as 

metals could be treated as nearly perfect conductors). Chapter 3 examined optical properties of a 

metamaterial consisting of alternating thin layers of metal and dielectric. A slab of this 

metamaterial can form images with subwavelength sizes, at some specific positions related to the 

frequency of interest. Two factors will affect the quality of the image formed: the absorption of 

the materials in the alternating layered structure and the finite thickness of the layers. The 

combination of the subwavelength imaging with the fact that at specific positions to achieve the 
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images suggested this layered metamaterial may have very useful applications, for example, 

enhancing the resolution of lithography.  

Both works presented in Chapter 2 and 3 are governed by the effective medium theory 

(EMT), where the metamaterials can be modeled as homogeneous media. This effective medium 

is a helpful simplification in terms of understanding and simulating, especially in simulations only 

macroscopic parameters – permittivity tensors, need to be considered. This theory requires the 

periodicity of the metamaterials to be much smaller than the wavelength, so the incident radiation 

cannot resolve the individual feature.  

The work in Chapter 2 is the first time microwave near-field microscopy has been 

used to study designer surface plasmons experimentally. The super Talbot effect shown in 

Chapter 3 is based upon bulk plasmon without diffraction limit, unlike the plasmon Talbot effect 

discussed in other works.  

9.2 Tunable metamaterials 

The work presented in Chapter 4 – Chapter 8 concentrated on the tunable metamaterials 

and their applications in active devices. All the metamaterials – gallium, ITO and graphene – are 

naturally existing materials, unlike the artificially designed man-made counterparts proposed in 

Chapter 2 and 3. The dielectric constants of these materials will be significantly different under 

some specific conditions, for example, shining light or applying external voltages. Besides the 

extraordinary properties of the materials themselves, novel waveguide structures also play key 

roles to achieve the promising results. For example, in Chapter 4, the metal-dielectric-metal 

plasmonic structure provides a restrictive geometry that allows the surface-mediated effect of 

gallium to happen, which induces the phase transition of the metal and hence the modulation 

phenomenon can be observed when external stimulus is applied on the waveguide. In Chapter 6 
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and 8, a slot-waveguide structure is employed, where the sandwiched thin slot can further enhance 

the absorption of either ITO or graphene, which paves the way for achieving nanoscale EO 

modulators. 

In Chapter 5 and 7, transfer matrix method (TMM) and Kretchmann ATR experimental 

setup have been used to explore the modulation effect based on ITO in a planar multilayer structure 

and the enhanced absorption of monolayer graphene, respectively. In the ITO-based planar 

modulators presented in Chapter 5, a new material – electrolyte gel is used to form electric double 

layer at the interface with ITO, where the strong electric field attracts more carriers in ITO to get 

larger modulation depth. Comparing the modulation depth of ~9% with traditional dielectric (SiO2, 

Al2O3, etc.), up to 38.8% of the modulation depth can be achieved with electrolyte gel. The 

fundamental study of the optical property of monolayer graphene, which is presented in 

Chapter 7, has shown that greatly enhanced light absorption up to 42.7% could be achieved 

over a broad spectral range. This promising result is observed based on a simple ATR setup, 

without any further process, like patterning or integrating graphene to other devices. 

9.3 Future work 

The work presented in the dissertation is concentrated on the three important applications 

of metamaterials: subwavelength waveguiding, imaging and modulation. There is certainly a huge 

scope for further development on several aspects of the work. Below are some directions which 

could be followed up: 

1. Graphene photodetector, which may be one of the potential applications of the significantly 

enhanced absorption by graphene presented in Chapter 7. The wavelength-independent 

absorption enables graphene to be used for a wide spectral range from ultraviolet to infrared. 
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Another advantage of graphene is its high operating bandwidth, which makes it suitable for 

high speed data communication. There are several ways to improve the sensitivity of 

graphene-based photodetectors, for example, integrating it with a waveguide to increase the 

light – graphene interaction, or using plasmonic nanostructures to enhance the local electric 

field.  

2. Graphene solar cells. The supreme properties of graphene makes it fulfill multiple 

functions in photovoltaic devices: 1) transparent conductor window, 2) photoactive material, 

3) channel for charge transport, and 4) catalyst. Plasmonic structures can be integrated to the 

graphene solar cells, combing with the significant light absorption by graphene, the efficiency 

of the photovoltaic devices can be further improved.  

3. ITO-based multilayer modulators with high-k material. In Chapter 5, a modulation depth 

up to 38.8% was experimentally demonstrated when electrolyte gel was used in the planar 

waveguide. In the fabrication process of the modulator, the electrolyte gel was manually 

applied to the structure. A new material with a comparable or even higher dielectric constant 

as well as CMOS-compatible is desirable. Ferroelectronic BaTiO3 (BTO) may be a good 

candidate to replace the electrolyte gel, due to its high refractive index (no≈2.224±0.001 

and ne≈2.219±0.001 at 1539nm [289]), which can be grown by RF sputtering process.  
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