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ABSTRACT

One discipline of study that has been coming up in the recent years is the study in the

behavior of nonlinear systems. Most of these exhibit chaos traits and this has spurred

much interest. Fractal geometries, which are as a result of chaos behavior, have been

more feasible to research on, with the recent computer technology.

Most of these fractal behaviors can be mapped into the sound domain. This 'sound

domain'

is referred to as acoustic signature. This thesis majors on a way to map out the

fractals to the sound domain without much change in the parameters that define the

fractal. Some of these parameters include position of the individual points on the drawing

axis and the way a fractal appears in form of a color map.

Due to their dependence on initial conditions sometimes they may look similar and hence

a method is needed that can distinguish them. The different types of fractals are mapped

in different ways. Some of these ways involve producing an audio wave (known as wav

file) that is further converted to MIDI.
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INTRODUCTION

Computers are one our most important tools for creational reasoning. The beauty and

importance of computers lies mainly in their usefulness as a tool for reasoning, creating

and discovering. All around us we are surrounded by creatures and things that have

motion or states of behavior .llie study of these behaviors that leads to evolving of states

is what makes systems. Some of the behaviors can be predicted but some cannot. The

reason why most of these cannot be predicted is due to the fact that they are sensitive to

initial conditions. The behavior they project is what is known as chaotic behavior or

simply 'chaos'.

Chaotic behaviors are bounded, and it has been discovered that some display patterns in

and within themselves;-such that a behavioral picture is made up of different parts which

are similar to each other upon magnification and it's these pictures that are called fractals.

These can be further mapped into the sound domain to get an acoustic signature. There is

a broader term that is used for mapping fractals into sound domain and its 'fractal
music'

Basically there are two definitions of fractal music. One is where upon scrutiny of a piece

of music one is able to see self-similarity or the
'fractal'

behavior, or one can create a

piece ofmusic that embeds self similarity in it. This has no relation to the fractal images

that are as a result of behavior displayed by chaos.

The other definition of fractal music is where a property of a fractal image is obtained

from a fractal algorithm and it's mapped to music such that every particular image has its

own version of sound. This is like labeling every fractal .This is what is referred to as

'acoustic signature'.

Just like the way every human is expected to have a particular signature or way of

identifying oneself, each fractal will have its own identification.

This thesis is dealing with the latter definition of fractal music. The objective is to

obtain an acoustic signature for chaos and attractors.

The algorithms used are in created in MATLAB .The program maps out the fractals into

the sound domain inMIDI form.
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1 LITERATURE SURVEY

1.1 DYNAMICAL SYSTEMS

Different systems around us involve dynamics and hence create the interest to study

them. [15] Some include:

population growth

variations on exponential growth e.g. radioactive decay

competition and predators in nature

Motion of living creatures, e.g. the flashing of fireflies.

The are basically two broad divisions of dynamical systems

Discrete -time dynamical systems

Continuous -time dynamical systems

A discrete -time dynamical system consists of a space X and a one parameter family of

maps of
{/'

:X X},fe Rot te
R+

that forms a one parameter group. [16]

The system is called a flow if the time t ranges over R and a semi flow if t ranges over
R+

An example of a discrete time dynamical system is a map, which can be written in vector

form as

Xn+i=M(Xn)

Xn has N components:

Xn= (xm,xm..jcm)

Hence the different values are obtained at different components.

An example of a continuous-time dynamical system is a system ofN first order

autonomous, ordinary differential equations; [23]

dt

This is often written in vector form as



= F[x(t)]
dt

x is an N-dimensional vector.

Hence for an initial state of the system, we can in principle solve the equations to obtain

the future system state, jc ( t ).

The other broader division of systems in terms of motion is linear and nonlinear systems.

Linear systems can be used to approximate the behavior and study how nonlinear systems

behave. The key ingredient is differentiability i.e. the existence of a good linear

approximation near any given point.

1.2 CHAOS

The simplest nonlinear chaotic dynamical systems in dimension one are the quadratic

maps [16], qn (x) = rx(l
-

x), r > 4

Liapunov exponents:

Liapunov exponents are a generalization of the eigenvalues of a dynamical system at an

equilibrium point. They are used to determine the stability of any type of steady state

behavior including chaotic solutions. Liapunov exponents measure the infinitesimal

exponential rate at which nearby orbits are moving apart, or the measure of exponential

growth rate of tangent vectors along orbits. [16,17].

Considering the case of a discrete time system e.g. the cantor set dimension one
, for

each point jcO the liapunov exponent X( xO ) is defined as follows:

/l(xO)
= limn_i(log(|/(;i)1^0)|))

n

=Hnwif logj f(xj ) |) , Xj
=
fj

(xO) .

n ;=o

For continuous systems in the form of first order differential equations like



dx
=

rx, the liapunov exponent is defined as
dt

f

/l(^,M0)
= lirnr^o- In

1 y(t)\

ml

\

V

These liapunov exponents can be used to calculate an approximate fractal dimension of

an attractor. [44].

One of the differences between chaos and fractals is that chaos is a condition of extreme

unpredictability occurring in a dynamical system and fractality is a condition of extreme

irregularity or ruggedness in a geometric configuration. [5]

Let (X,d)bt a metric space, and let / : X > X be a function. The map is chaotic

provided that

f has sensitive dependence on initial conditions

f is transitive(For two open sets U and V, /(n)U is an area that intersects U andV

Periodic points of f are dense in X.

Topological entropy is defined as a quantitative measurement of how chaotic a map is by

determining how many "different
orbits"

there are for a given map (or flow)[17].The

human mind, when aided by numbers and symbols is capable of expressing and

understanding concepts of great complexity.[l]

An example of chaos in a logistic map:

BIFUR_MAP.m

% Bifurcation Diagram for the Logistic Map
%

r0 = 3;

r = linspace(3,4,100);

y = zeros(250,100);

fornn = 1:100

x(1)=.45;

%

fork =1:1000

x(k+1)=r(nn)*x(k)*(1-x(k));

end;



y(:,nn) = [x(751:1000)]';

end

plot(r,y,,'k.') % The columns of y ,
or the rows of

y'

are plotted vs. r

bifurcation
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Bifurcation seen on its way to chaos!

1.3 ATTRACTORS

Attractors by observation in nature: [21]

Moths to a light/ bees to a flower.

Magnetic attraction/ gravitation

Cauchy sequence/ limit sequence

Convergence /divergence



An attracting fixed point which is a simple attractor can be defined
below:-

A fixed point p of a map fn : X -> X of a metric space is said to be an attracting

fixed point if there is a neighborhood U of p such that

f(U)CU and
Ci _ f(U) = {p]

neN

Another familiar attractor is the limit cycle, which is defined as a periodic point p

that has a neighborhood whose every point is positively asymptotic to v_>'p.[l]

An orbit is asymptotically periodic if it converges to a periodic orbit as

n > o and is eventually periodic if it lands precisely on a periodic orbit. [25]

A compact set C c U is an attractor if there is an open set U containing C,

such that / (U ) c U and C = n
JC /

"

(U )

A Strange attractor is one that is chaotic i.e. with sensitive dependence on initial

conditions.

Examples -

Henon attractor

Lorenz attractor

Rossler attractor

Ueda attractor

Another definition of an attractor is a set that contains a dense orbit of a function f.

The existence of such an orbit ensures that the attracting set behaves as a single unit that

cannot be decomposed into a collection of disjoint subsets that are themselves attractors.

[17, 18, 19]



ROSSLER ATTRACTOR

Credited to Otto Rossler

The equations that govern the attractor are basically:

x = -

y
-

z

y
- x + a

*
v

z = b+z*(x-c)

Where a = 0.2, b = 0.2, c = 5.7

figl.

-20 -10
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UEDA ATTRACTOR

B = 7.5, k = 0.05

x =

y

y
=

-x3-k*y +
B*

sin z

z = 1

-
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M
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LORENZ ATTRACTOR

x = a
*

(y
-

x)

y=-x*z+r*x

m

z=-b*z+x*y

a=10;b = (8/3);r = 25.3;

fig 3.
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HENON ATTRACTOR

x = 1- A*
x2

+ y

y
= B *

x

A=1.4,B=0.3

fig 4.

The Henon model is given by:

Xn+i=a*Xn-b(yn-xn )

Yn+i=b*xn+a(yn-xn2)

Here a = cos a and b = sin a .

Henon attractor

100x

fig 5



1.4 FRACTALS

DEFINITIONS & FRACTAL BASICS:

A fractal is a geometric shape that has 2 special properties: [3]

The object is self similar

The object has fractional dimensions.

A fractal applies to a particular static geometry configuration such as a freeze
- frame

image of a waterfall. It can be described as self similar if it can be decomposed into

smaller copies of itself. [5, 11]

The smaller units are similar to the whole and share the same units of measurement. An

ideal fractal surface looks the same at all magnifications. They can also be defined as sets

that have non integer dimensions. [14,15].

Fractal geometry builds complex objects by applying processes to complex building

blocks
,
for example - recursion

,
which involves the echoing a simple rule over and over

again.

A geometric object is called self-affine if it may be written as a union of rescaled copies

of itself where the rescaling may be dependent on the direction.

Examples of self similarity: [21]

The head of the cauliflower,

peeling an onion,

head of lettuce ,

The distance between clouds.

A self similar image has smaller pieces that are similar to each other and to the whole.

The parts must scale equally in all directions while for a self -affine image it scales

differently in one direction than another.

Self affinity can be considered as self similarity with a skew or a shear.

10



Types of transforms:

Scaling - this changes the size uniformly .More than 1 magnifies the size.

Shear (known as affine transformation) is scaling that is uneven in different

directions. In music it can be considered as a motive changed in part such as

changing intervals in size while others remain the same.

Translation (called glide or displacement) moves the image. In music it s

compared to transposition.

Reflection turns the image over, right or left, up or down. In music vertical

reflection is called inversion and horizontal reflection is known as retrograde.

Rotation turns the image around an axis. In music it refers to a melody that is

changed into a chord or vice versa.

TYPES OF FRACTALS

There are basically two types of fractals:

Regular

Random

Regular fractals are those which display exact self similarity. These include simple

objects such as line integrals, solid squares, solid cubes, and some complex shapes are

like the Cantor set and Koch snowflake.

Regular fractals have their origin in the formulas for the area of a square and the volume

of a cube.

A random fractal is an element of a set S which is closed under application of a

renormalization formula or a group of renormalization formula.

Random fractals display a weaker, statistical version of self-similarity or self affinity.

11



1.5 APPLICATIONS

Speech production uses generating functions which simulate the air pressure

waves produced by the lungs. These pressure wave forms are then shaped by the

filter functions in order to produce a more complicated speech like signal.

The power spectral analysis of instrument sounds are sensitive to the periodicities

in the melodic pitch sequence .The computer is not analyzing time waveforms but

frequencies of the progression of musical score( which themselves represent

fundamental frequencies of notes on a keyboard ).The sounds are not analyzed.

Parameters such as loudness, attack and timbre are left out.

Study of carbon black particles, respiratory dust, cosmic particles.

Study of metal grain shapes and size and also special metal crystals.

Study of diesel soot

Study of the structure of some types of sand grain.

12



2 FRACTAL GEOMETRIES

Fractal characterization

A fractal object has a shape with increasingly detailed features with increasing

magnification, and examples include mountains and coastlines.

Shapes of nature can be characterized by a single number, the "fractal
dimension"

D.

Mandelbrot suggested that the relationship between the measuring stick length ( e ) and

the apparent total length (L) of a coastline could be expressed by the parameterD, the

fractal dimension. Let N be the number ofmeasuring sticks, e be the length of the

measuring stick.

For a smooth curve such as a circle:-

c

N() = where c is a constant.

For a fractal curve the relationship
is:-

c

N() = and multiplying both sides by e the relation becomes

L() = jr and D can be a fraction.

Since the coastline has bumps upon bumps as it is magnified, it tends to fill space and its

dimension lies somewhere between a plane and a line. Fractals objects are not always

self- similar at all scales.

Types of self similarity

An object is considered self-similar if its features (i.e. the general nature of its irregular

bumpy surface) remain constant through successive magnifications.

Self similarity implies scaling similarity i.e. shapes are invariant under magnification.

The edges of circles and lines are self similar since they look the same at different

magnifications; however they are smooth hence not fractals. They possess standard

scaling symmetry.

13



Objects with
"bumpiness"

but with scaling symmetry possess non standard scaling

symmetry. The main focus in this thesis is to deal with objects that have non standard

scaling symmetry.

Though irregularity continues with each magnification, the degree of roughness seems to

fluctuate slightly when looking at isolated magnifications.

To estimate the values ofD using the above equation, plots of log N vs. log 8 are

calculated and the slope determined by the least squares line fit to the data. For a speech

signal, D seems to be unaffected by the pitch (fundamental frequency).

Self-similarity and its branches:

Self similarity

Standard

Scaling symmetry

Random (statistically invariant)

M-set

Phase

transitions,

Percolations,

Speech,

waveforms

Non standard

Scaling

Non random

(Exact scale invariance)

Julia set

CHART 1
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2.1 FRACTAL DIMENSIONS

One of the definitions of dimension is given below:-[19]

Let 5 be a set in
R"

and let N(S,e) be the smallest number of closed balls of

diameters
,
required to cover the set 5 . Then the dimension D ofS is given by

D = lim
e->0

-ln(N(S,e))

ln(e)

Example
A

For the Cantor set, C = f|~=1/ with

/, =[0,l],/2 =[0,^]U[0,^]J3^[0,/9]\J[%,y3][J[%,%]U[%,ll..

N(C,fy
= 2,

A

N(C, Vg) = 4... where N is the number.

D = liiri.
-ln(/V(C,G)

-hO

V
ln(e)

J

Z> = liiiL._

"-lnC2/')>

,^(3-"),

ln2

ln3

Hence C has a fractal dimension less than one. (>=0.63)

Anothermethod of characterizing the fractal dimension is given below by considering an

island [13]

Let:

X be the side of a polygon normalized with respect to maximum projected length of the

profile.

P is the polygon perimeter of side X. normalizedwith respect to maximum projected

length of the profile.

6 be the fractal dimension of the boundary .

L be the maximum projected length.

15



Given the island

fig 6

A, is varied a plot of P against A yields data with a slope m where

S = l+\m\
S is the fractal dimension.

5=1.24

Fractal dimension does not tell us anything about the overall gross shape of the profile.

An example of the application of fractal dimension is a robot programmed to use the

structured walk exploration technique, can only
"see"

what it
"feels"

at any one time with

its
"fingers"

set at A .

Koch Island 1.1291

Quadratic Koch island 1.5

Koch island and archipelago 1.6131

Peano curve 2

Fractal dimensions [2]

16



2.2 ITERATED FUNCTION SYSTEMS (IFS)

Iterated functions scheme is a new type of dynamical system that employs a collection of

contracting maps to create chaotic attractors that have a fractal structure. [20].

IFS can be thought of as a collection of functions whose domain and range are in the

same space. It can be considered as a set of rotations, translations, scalings and

reflections. Iteration will mostly result in a fractal attractor that is the union of all limit

points of the composition of the functions.

There are generally two ways of creating IFS:

Deterministic- where all the transformations are applied simultaneously.

Random - where the transformations are applied in a random order.

IPS has been useful to help produce images of clouds, smoke, seascapes, flames, horizons

and plant branching to name a few.

The simplest IFS can be described as a set of two dimensional affine maps:

yn+l=a3Xn+a4yn+a6

The Sierpinski triangle uses the same iteration principle but the results lie in the real

plane, using only real numbers. An example of this can be generated using the following

affine transformations:

wi (x> y)
- (0.5*,0.5;y)

w2(jc,};)
= (0.5jc+0.5,0.5j)

w3(x,y)
= (0.5x,0.5y+0.5)

Where w represents the transformation maps.

The Henon model is given by:

Xn+X=a*Xn-Kyn-Xn2)

Yn+l=b*xn+a(yn-xn2)

Here a = cos a and b = sin a.

17



The linear map used later in the Matlab codes as (Test2.m and Test3.m) use the basic

function

The code Test2.m uses 2 functions:

fl(x) = alx+bl

f2(x) = a2x+b2

And the range of a and b is in 0 < at +bt < 1 .

The code Test3.m uses 3 functions.

2.3 COMPLEX FRACTALS

Gaston Julia (1893-1978) in 1919 founded the mathematical theory of a type of fractal

generated by a so called iterative conformal transformation A conformal transformation

is one that leaves the angle unchanged.

X'

=x2-y2+a

Y'

= 2xy+b

where b and a are arbitrary numbers. For every value of b and a, we obtain a fractal (Julia

fractals).

In the complex notation we have:-

Z'

= Z2+c

Where Z = X +i*Y mdc = a + i*b.

The set of points, whose orbits are bounded under the iteration of, q(Z) =
Z2

+c is

called the filled Julia set of q. A Julia set is the boundary of a filled Julia set [24] .To

create a Julia set, the value of c is fixed and the values ofZ is varied .Then iterations are

performed.

To create aMandelbrot set the value ofZ is fixed initially at zero and the value of c is

varied.

18
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(Code: Julia_6)
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fig 8
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3.0 SYNTHESIS OF SOUND

The basic process involved in this chapter is mapping mathematical algorithms into

sound. The first method discussed is mathematical synthesis which involves mapping

sine waves to sound and obtaining a pleasable sound. The next method, MIDI, involves

mapping instructions into sound. In this thesis the instructions are created from the

fractals.

3.1 MATHEMATICAL SYSNTHESIS

One of the well known links between mathematics and music is the theory of Fourier

series. This theory states that every periodic function can be represented by an infinite

series containing only sine and cosine terms where the frequencies are integermultiples

of one fundamental frequency, the frequency of the tone. We are able to distinguish a

pleasant sound by the way the tones are arranged. Therefore ifwe can come up with a

formula recipe that arranges the tones mathematically then we can make a pleasant sound

mathematically.

The series is given by:

f(x) = -f
+Xancos\ +2Asm

2 ^ ^ c J ^ V c J

Considering a special case with the wavelength, c=l. When alla 's are zero the resulting

function is symmetric around the origin f (-x) = f (x) and this is equivalent to the

condition that f(0) = f (1) , which in physical terms , corresponds to the waveform

representing a vibration string; secured at the endpoints.

Hence the resulting function used here to get a waveform is

f(x) = ^bnsm(2nnx)
n=\

According to some research done Erich Neuwirth [9], they found out that to get a

pleasing sound from a sine wave, the value of the coefficients in the series above has to

20



b ( 1
Y~'

be bn+l = or bn - which means that the overtone amplitude used is half the

previous one.

For generalization purposes suppose the value is considered a factor q in the range

l<q<l. Then the term becomes

CO

f(x) =
Y,q"~l

sm(2mx)
n=l

It would be helpful to consider this as part of a complex function

oo oo

gq(x)
=
^q"~l

cos(27mx) +
iqn~l

sin(2^uc)
n=\ n=l

=
2>' leinx

=1

=
eixJj{qeixy

n=l

From the convergence test of a geometric sum [44] we get

i

ga(*)=

\-qeL

This leads to

_a,

e"(X-qe )
=

g"-g

(1 - qeu)(X
-

qe-*)
l + q2~2q cos(2m)

Expanding e leads to

_

(cos(2;ze)
-

q) + i sin(2m:)

gq
~

l + q2-2qcos{2m)

The imaginary part then is:

sin(2m)
JaW

~

1 + q -2qcos(2m;)
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From further calculations [36] and considering the local extrema the value ofx is found

to be

x = l arccos

2n

2q

vl + ^2y

A matlab code for the synthesis of sound can be created

Matsynthesis.m

% Mathematical synthesis of sound

clear

q = -1 :0.01 :1 ; % when using a fractal the value of q will come from the

% fractal image

x =
(1-(1/2*pi).*

acos(2.*q./(1+ q.A2)));

forn=1:201

f(n)= sum(q.A(n-1 ).*sin(2*pi.*n.*x));

end

wavwrite (f, 'synsound') % this creates a wav file in the directory called

%'synsound.wav'.

%the method above sets the sampling rate at the default value in Matlab. The

value is 8192 Hz. It is important to have in mind the sampling frequency because

this helps put a check on aliasing. Hence to create a sinusoid to make sound we

can specify the sampling rate. It has to be more than twice the highest frequency

in the signal. Suppose we want to play for 1 second and we have 201 points then

it will be comfortable to use the sampling frequency as 512.

Fs=512;

N=201 ;

t=([1:N]-1)/Fs;

y1=sin(2*pi.*x.*t);

plot(t,y1);

sound(y1
,Fs)

% this creates a sound vector and plays at the same time

wavwrite (f,512, 'synsound') % this creates a wav file
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3.2 MIDI BASICS

Definition: MIDI stands for Musical Instrument Digital Interface.

MIDI FILE

A MIDI file is a data file. It stores information, just like a text (i.e., ASCII) file may store

the text of a newspaper article, but aMIDI file contains musical information.

Specifically, aMIDI file stores MIDI data -- the data (i.e., commands) that musical

instruments transmit between each other to control such things as playing notes and

adjusting an instrument's sound in various ways.

You can't load aMIDI file into a text editor such as Notepad and view it. That is why a

Midi Disassembler is needed to view the text file.

Sequencers are software used to play back aMIDI file.Windows has aMIDI sequencer

built right in. It allowsMIDI data sequences to be captured, stored, edited, combined, and

replayed. The MIDI data output from aMIDI sequencer is transmitted via the devices

'MIDI
OUT'

connector.

A MIDI message is made up of an eight-bit status byte, which is generally followed by

one or two data bytes. At the highest level,MIDI messages are classified as being either

Channel Messages or SystemMessages.[ll] .(More details onMIDI is in Appendix 3.0)

how rrworks

MIDI manages to remain compact by capturing the essential characteristics of a piece of

music in a shorthand format. During the play back theMIDI information is decoded in

real time, including details such as what instrument voices are playing, what notes and for

what duration. The frequency of a sound wave determines the pitch of a sound -what we

perceive as high or low an audible wave appears.

Advantages of using MIDI composers [3]

One is able to:

Write down notes
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Transpose the music

Change clefs

Cut and paste notes

Change tempo/keys.

Advantages of usingMIDI files

One can easily edit and manipulate data.

They occupy a small storage space.

A good reason for using MIDI: Because of this relation between instruments, which we

humans hear in music, we can distinguish the separate instruments (or instrument

groups). Therefore in some way we are able to
'translate'

a piece ofmusic into aMIDI

file by listening to it. A computer (program) does not have that ability, that sense. It

cannot distinguish music from noise.

Difference between MIDI and other audio files:

MIDI files storeMIDI messages, which are commands that tell a musical device what to

do in order to make music. For example, messages to play a particular note or to change

to another instrument. These files do not contain actual sampled sound files likeWAVE

files.

WAVE files store digital audio waveforms. This data must be played back through a

device with a Digital to Analog Converter (i.e., DAC) such as aMIDI sampler or a

computer sound card's DAC. There is no information concerning musical rhythms or

tempo stored in aWAVE file.

The primary difference between aWAVE andMP3 file is that the latter uses compression

to squeeze the data down in size, resulting in a typically much smaller file size.

An example ofmusical attractors

Keys, scales and chords contain tendencies that are established by the internal

organization of the key. In C major, C is the tone toward which all motion tends. Other

supporting tones such as E and G help stabilize C and establish its definition. B is known
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as a 'leading
tone'

tending upward to C; while F tends downward toward E if no other

motion requires it to rise. [11]

Here then C is a prominent attractor with support from E and G as less prominent but

useful attractors.

Other musical attractors might be the meter and the barline.

A small copy of a Midi text file:

MFile 0 1 24

MTrk

0 TimeSig 4/4 24 8

0 Tempo 500000

60Onch=10n=36v=77

62 On ch=10 n=36 v= 0

TrkEnd

Where:

'MFile 0 1
24'

'MTrk'

'0 TimeSig 4/4 24
8'

'0 Tempo
500000'

-Describes the header of the file. The file name, file format

method, number of tracks and the number of clock ticks.

- Shows the beginning of the track.

-This specifies the way the music is going to be played.

- This specifies the speed of the music piece. The higher

the number the slower the speed.

'60 On ch=10 n=36 v=
77'

- Describes the number of the note, that it is to be
'ON'

,
its

to be played on Channel 10, the key that is to be played (

in midi numbers), the volume at which it will be sounded.

(Maximum volume is 127).

'62 On ch=10 n=36 v=
0'

- Describes the number of the note. This is the same key
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note that was played before but this is
'OFF'

because the

volume V is 0.

'TrkEnd'
- Denotes the end of the track.

NB: When making a midi text there has to be a new line after 'TrkEnd'. I guess this is

because of how the Text to midi conversion application file was made.
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4.0 ACOUSTIC SIGNATURE

4.1 BASICS

Definitions of fractal music

Hugh McDowell "All music may be thought of as consisting of patterns. In nature, music

and fractals there is a happy blend of form and irregularity, structure and surprise, or, if

you prefer, theme and variation".

Lawrence Ball

"Music is fractal in many senses, one of which is that there are patterns occurring at

different time scales. Music which has these same patterns is called self-similar since

levels of basic skeletal structures within it are similar to its surface
patterns."

Fractal music

The term 'Fractal
Music'

typically refers to music composed wholly or in part using the

same types of iterative or recursive processes used to create fractal images. This is

different from the term 'acoustic
signature'

where music is made directly from the fractal

image as a way of identifying the fractal.

Algorithmic Composition

Creating music from fractals is an example of
'algorithmic'

music composition.

Algorithmic composition refers to the process of using a formula or recipe (an algorithm)

for creating music. Musical
'recipes'

can be formal or informal depending upon how

precisely the compositional steps are specified.

Though fractal music can be composed without a computer, currently most is composed

with the aid of a computer. Computer composed fractal music always uses a formal

'recipe'
- the software program - to produce music.

During computer-based fractal music composition inputs from the fractal image or fractal

generating process are converted to musical parameters to create melodies, harmonies,

rhythms, textures, etc.

a) Voss (1/f) Music In 1975, Voss and Clark discovered music often follows a '1/f

(frequency)'

rule like many other natural phenomena. 1/f noise is an example of 'scaling

noise'

and therefore has certain fractal characteristics.
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A '1/f distribution is used to generate note pitches and volumes. Note that with this

distribution small pitch changes are more probable than large changes. With the random

algorithms all pitch interval changes are equally possible.

b) Chaotic AttractorMusic

Many attractor-based composition algorithms work by assigning a starting pitch to

particular x, y coordinates on the attractor. They then follow the orbit of successive

iterations along the attractor and map either the absolute values of the coordinates or the

change in coordinate to a given pitch range.

c) fFS AttractorMusic

Like the Chaotic Attractor example this algorithm works by following the orbit of the

attractor for successive iterations and mapping the normalized values of the coordinates

along that path to an index into the pitch array.

d) MandelbrotMusic

This method generates melodies by following the orbit of an attractor and mapping the

coordinate values to musical parameter values. An example is by using the RGB color

values from a fractal image to generate fractal music.

4.2 DSP METHODS

There are two methods particularly specified in this thesis on how to get an acoustic

signature of fractals. Concentrating on the IFS fractals, the methods used are:

Making a wave from x and y coordinates. These values obtained from the

coordinates are
'modified'

using signal processing tools (DSP methods) to create

a signal. The signal is converted to aWAV file and then to aMIDI file.

Mapping the
'modified'

x, y coordinates to the music key notation .From this

point it is converted to a midi text file or one can manually enter them into the

bar chords in a music software and the result can be heard through aMIDI

instrument like a keyboard.

This thesis is not dealing with manually drawing notes into the music bar chords.
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DSP literally Digital Signal Processing is a way of processing signals. A physical signal

such as sound pressure or voltage from an amplifier can be represented as a continuous

function of time.

To get an acoustic signature for fractals the data obtained from the fractals like the x, y

coordinates have to be analyzed in the form of a continuous signal. One of the ways of

obtaining a waveform of a map with respect to time is by getting the time series .By

doing a Fourier transform on the continuous signal we are able to get the frequency

domain representation. This is convenient for filter design and analysis among other

applications.

Some important definitions associated with DSP are:

Nyquist rate -to obey the Nyquist sampling theorem, a band limited waveform

has to be sampled at a rate which is at least twice the Nyquist frequency. This

minimum sampling rate is known as the Nyquist rate. Failure to follow this

restriction results in aliasing.

Aliasing -refers to an often detrimental phenomenon associated with the sampling

a continuous time waveform at a rate below the Nyquist rate. Hence the

frequencies greater than one-half the sampling rate becomes indistinguishable

from frequencies between DC and one-half the sampling rate (the fundamental

band width).

To avoid aliasing, the sampling frequency has to be at least twice the highest

frequency occurring in the signal.

Nyquist frequency - For a band limited waveform, the width of the band of

frequencies contained within the waveform is described by the upper limit known

as the Nyquist frequency.

Sampling rate -refers to the frequency at which a continuous time waveform is

sampled to obtain a corresponding discrete
- time waveform. Values are given in

Hz. [43].

Zero-Padding- This is the method of extending a signal with zeros to extend its

time (or frequency band) limits. This enables the creation of a wave file with a

reasonable amount of sampling rate.
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Discrete Fourier Transform (DFT) - This is Fourier transform in a discrete form.

The infinite sum in the Fourier transform is replaced with a finite sum. The result

when applied to a discrete signal is a set of sine and cosine coefficients which

when multiplied to sine and cosine waves of appropriate frequencies the original

waveform is reconstructed.

Fast Fourier Transform (FFT) - This allows the DFT to be obtained rapidly and

efficiently. It reduces the number of computations needed for N points from
2N2

to 2N log2 N, where log2 is the base -2 logarithm.

In Matlab,

F1=abs(fft(y1)); % the fft of a signal y1

The formula for DFT is

X(k) = YJx(n)e
U

it = 0,1, N-l

The transform in the frequency domain is:

X(jw) =
Yjx(nT)e-jwnT

n=0
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5.0 INSTRUMENTATION AND TESTING

Equipment used for this thesis: -

Computer

Music Keyboard

Midi connectors

Software employed:

Matlab / C++

Music Time deluxe

Advantages of using Matlab:

Storing capabilities for visualization, analysis and algorithm development.

Compatibility across multiple hardware

Open and extensible software architecture.

To create an acoustic signature the main programs are run in Matlab .The application

files, - t2mf.exe and mf2t.exe, that are used to convert a text file to a midi file and vice

versa respectively, have to be loaded into the folder with theMatlab algorithms.

To convert for example the text file to midi file, in Matlab we type:

!t2mf 'textfile'.txt 'midifile'.mid

Where
'textfile'

is the name of the text file that had been created from the midi text-

creation programs (Midi programs) and
'midifile'

is the name of the midi sound file to

be created.

It is possible to open the window media player fromMatlab in order to play a midi file.

The file
'mplayer2.exe'

located in theWindows media folder has to be copied into the

folder containing theMatlab and midi files. Then to execute this from Matlab we type:
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! mplayer2 'midifile'.mid

Ifwe are using the other version of the windows media, we will do the same with

'wmplayer.exe'

and type:

! wmplayer 'midifile'.mid

1. MAIN PROGRAMS

Caller programs

These programs bring together different programs hence the linking one program to

another. They link up the program making the fractal, the program processing the fractal,

the program making the midi file and they initialize the opening of the midi file. Some of

the fractal programs are designed to create video files (*.avi). The avifile can be played in

the media windows when executed from Matlab. The two options from Matlab platform

are:

! mplayer2 'avifile'.avi

! wmplayer 'avifile'.avi

Hence the stages from a fractal creation to a midi file in text format can be achieved from

running one file.

Caller 1 is the logical map that requires an input of either Test2 or Test3. These

are logical maps involving a 2x2 and a 3x2 matrix respectively. Other programs

linked in this one are:

> SignaLIFS

> Shownotes

> Midi programs- Notelabels, Pianolabels, and Drumlabels.

Caller 2- Uses the same format as in Caller 1 but it first creates a wav file from

the map and then uses a C++ program to create a midi text file. To create a wav

file, DSP tools are utilized. These are zero-padding, fft and magnitude sampling.

Other programs linked are:

> SignaLIFS

> wavconverter.m
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> mFormat.c

Caller3- Creates an acoustic signature for random-point fractal system. It requires

the specific file as input togetherwith the number of points desired. Other

programs linked are: -

> RandornJFS

> Midi programs

Caller4- Uses the same files in Caller3 but it creates a wav file first and

transforms this to get the midi text file. Other programs linked are:

> RandornJFS

> wavconverter.m

> mFormat.c

Caller5 - Gives the option to select a Julia set.

Caller6 - Starts the process to get a Julia set by giving an option to choose the

value of c (a constant) and links up to Caller5.

Caller7 - Just like Caller 6 but gives other values of c to choose from.

Caller8 - This program combines the option to choose a value of c and also to

choose a Julia set.

Caller9- Creates theMandelbrot set

CallerlO- creates fractals from iterated function systems.

2. DSP PROGRAMS

These are called DSP programs because they use DSP tools such as

Fast Fourier Transform

Sampling

Normalization

Zero-padding
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to get the desired output. Not all fractals can be treated in the same way so by using the

appropriate DSP tools we are able to get an acoustic signature in consistency with the

uniqueness of the fractal. The programs in this category are:

Signal IFS- the main focus in this is to use the X coordinate points from the

fractal. These are

Random IFS -this program makes use of both the X and Y coordinate points.

Both are mapped to the parts of a complex number where the X represents the

real part and the Y the imaginary part. Then the absolute is obtained and after

normalizing the points are mapped into midi by either creating a wav file or

mapping the numbers into
'midi'

numbers.

Frac IFS -This program deals with the attractor-like fractals.

ComplexfFS- this program deals with the fractals that are made from the

complex fractals. These involve the Julia sets andMandelbrot fractals.

3. MIDI PROGRAMS

These are the programs that induce the mapping into the acoustic domain. The main

focus is to get a sound file and particularlyMIDI because of the benefits ofMIDI as

discussed before. The programs involved are:

Shownotes -This operates with the logical map and maps the X coordinate

points onto the musical scale ranging from 0-12. There are 12 keys on the

musical scale namely A, A+, B, C, C+, D, D+, E, F, F+, G, G+. So every

number obtained is changed into these keys and is further mapped into midi

numbers (recognized by the text-to-midi converter).

Notelabels- this program embarks on changing the numbers obtained from the

DSP programs into the musical scale keys. The first thing is to change the

numbers into a string. The main function involved is
'strrep'

which replaces the

numbers with the keys as specified.
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Drumlabels- this program further maps the keys into midi numbers. The

numbers for drums in midi are specifically from 34 to 58. So the keys are

replaced with these numbers. A useful tool has been the Chart 2 in appendix.

Pianolabels- this program like Drumlabels maps the keys from
'Notelabels'

to

piano numbers. These range from 0-127. Middle C is 60. Since middle C is

comfortable to listen to, not high or low, this program makes use of 12 numbers

from 60.

Drumtext.m and Piantext.m - these both operate with the numbers obtained to

make a midi text file. This file is later changed into a midi file one can listen to.

Piantext is modified in a way that one can listen to a specific instrument by

changing the value of "p". The instrument numbers are given in the appendix.

RECONSTRUCTION

This is an attempt to reconstruct a fractal from a midi file. The steps are:-

Record the piece ofmusic. This is done with the help of music keyboard and

music deluxe midi software.

Save as a midi file.

Move the midi file to the folder containing the midi-to-text converter application

file (mf2t.exe) i.e. to the currentMatlab directory.

! mf2t 'midifile'.mid 'textfile'.txt

Where
'midifile'

is the name of the midi file recorded and
'textfile'

is the name of

the text file being created.

In Matlab we load the text file and run
'midiback.m'

. This program picks out the

keys from the text file and these can be used to create a fractal. Hence a color

map can be created.
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6.0 Matlab Programs

The Matlab programs are divided into different sections:

1 . Main programs

2. Chaos and fractal programs

3. Signal processing programs

4. Midi programs

1. Main Programs

The main programs are programs to demonstrate how to make an acoustic

signature of fractals. The basic programs used here are the versions of
'Test.m'

and 'fern.m'.

The programs are called
'Callers'

because they call different files together to get

a result. The final output is a midi text file that has to be changed to a midi file

using an executable file outside of matlab.

Callerl.m

% This program involves the logistic/linear map

% The notes obtained from shownotes file are further mapped

% into midi drum /piano numbers in a midi text file .

%The file is later turned to a midifile using an application.

% When running again and changing the logical map ,
all other files will be

% changed accordingly.

elf

% select logical map

while 1 clc;
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v = input(Test2(1), Test3(2) ? ');
if v >= 1 & v <= 2; break

end

end

switch v

case 1

disp(Test2-
every file made will be for

"Test2"

');

Test2;
case 2

disp('Test3-
every file made will be for "Test3"');

Test3;

end

0/
/o

shownotes;

%

notelabels;

%

drumlabels;

/o

pianolabels;

/o

% Run the stand alone application to change the midi text to a midi file

%within Matlab.

! t2mf drumtext.txt callerla.mid

%

disp( 'a midi file called
"callerla.mid"

has been created ')
% to create an additional wav file

[filename,path]=uigetfile(^mid','Choose CALLERIa.MID Input Sound File');

habari = [path.filename];

Midi2wav; %Creates an additional wav file.

/
/o

movefile('mzuri.wav', rcaller1a.wav')% to change the name back

o/
/o

! t2mf piantext.txt callerlb.mid

o/
/o

disp( 'a midi file called
"callerlb.mid"

has been created")

% to create an additional wav file

[filename.path^uigetfiler.mid'.'Choose CALLERIb.MID Input Sound File');

habari = [path.filename];

Midi2wav; %Creates an additional wav file.
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%

movefile('mzuri.wav', 'caller1b.wav')% to change the name back

%

%To listen to the midi sounds

pause

%

! mplayer2 callerla.mid

%

pause

disp('may have to manually close the mplayer2 window to play the next *.mid')
/o

! mplayer2 callerlb.mid

Caller2.m

% This program involves IFS fractals

% and makes a wav file from the data obtained from the fractal

% The data from the wav file-(obtained using wavread) is compiled using a
MEX-

% file in C++ program.

% The end result is a midi text file that is later converted to a midi file.

elf

n = input('Enter the number of points for the fractal:(at least 500):\n\n n = ')

dispC ');

% select fractal

while 1 clc;

v =
input("

Choose the kind of fractal \n Tree(1), Sierp(2) ? ');
if v >= 1 & v <= 2; break

end

end

switch v

case 1

disp(Tree on figure');

[xpts,s]=Tree(n);

case 2

disp('Sierp on figure');

[xpts,s]=Sierp(n);

end

%

Allocation; % this processes points and creates a wave file.
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/o

disp('

a wave file called
"random.wav"

has been created for the next step');

%

pause

/o

disp('

Upon request to choose a compiler choose
"LCC"

')
/o

wavconverter; % makes a matlab matrix from the wav file

%

mex mFormat.c % from here we are building a text file

%

mFormat(ans,'tree.txt') % this text is used to get a midi file.

%
disp('

a text called
"tree.wav"

has been created')

/o

% Run the stand alone application to change the midi text to a midi file

%within Matlab.

if v==1 ;

! t2mf tree.txt Tree.mid

/o

disp( 'a midi file called
"Tree.mid"

has been created ')
[filename,path]=uigetfile('*.mid','Choose Tree.MID Input Sound File');

habari = [path.filename];

Midi2wav; %Creates an additional wav file.

/o

movefile('mzuri.wav','Tree.wav')% to change the name back

%

else

! t2mf tree.txt Sierp.mid

o/
/o

disp( 'a midi file called
"Sierp.mid"

has been created ')
%To create an additional wav file

[filename,path]=uigetfile('*.mid', 'Choose Sierp.MID Input Sound File');
habari = [path.filename];

Midi2wav; %Creates an additional wav file.

o/
/o

movefile('mzuri.wav',"Sierp.wav')% to change the name back

end

pause

% to play the midi sounds.

if v==1 ;

! mplayer2 Tree.mid

else

! mplayer2 Sierp.mid

end
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Caller3.m

% This program creates the fern fractal and

% processes the data to obtain an acoustic signature in the form of

% midi drums thru 'drumlabels.
m'

or piano sounds
thru'

pianolabels.rrf

% the signature can be heard thru midi file obtained using an application.

clear

%

n = input('Enter the number of points for the fem:\n\n n = ')
disp('

');

if n<=300

error(['use a minimum of 500']);

end

% select fern

while 1 clc;

v=input('fern(1),fern1(2),?');

if v >= 1 & v <= 2; break

end

end

switch v

case 1

disp('fern');

[xpts,s]=fern(n);

case 2

disp('feml');

[xpts,s]=fern1 (n);

end

%

Allocation;
o/
/o

drumlabels

/
/o

disp('

a text called
"drumtext.txt"

has been created')

%

pianolabels

o/
/o

disp('

a text called
"piantext.txt"

has been created')

% Run the stand alone application to change the midi text to a midi file

%within Matlab.
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! t2mf drumtext.txt femd.mid

/o

disp( 'a midi file called
"fernd.mid"

has been created ')
%To create an additional wav file

[filename,path]=uigetfile('*.mid', 'Choose fernd.MID Input Sound File');
habari = [path.filename];

Midi2wav; %Creates an additional wav file.

/
/o

movefile('mzuri.wav', 'fernd.wav')% to change the name back

/
/o

! t2mf piantext.txt fernp.mid

/
/o

disp( 'a midi file called
"fernp.mid"

has been created')

%To create an additional wav file

[filename,path]=uigetfile('*.mid', 'Choose fernp.MID Input Sound File');

habari = [path.filename];

Midi2wav; %Creates an additional wav file.

/o

movefile('mzuri.wav', 'fernp.wav')% to change the name back

% To listen to the midi sounds

pause

/
/o

! mplayer2 fernd.mid

/o

pause

disp('

manually close the mplayer2 window to play the next
"*.mid"

')
/
/o

! mplayer2 fernp.mid

Caller4.m

% this program creates a fern fractal and using the location of the data

% points it creates an acoustic signature, the first step involves

% creating a wav file and then converting it to a midi file. The wav file

% file is changed into a matlab matrix and this is then compiled thru a C++

% program to get a midi text file. This is then later converted to a midi file.

%Changing the type of fern fractal will change the type of miditext

%displayed and the midi file too.

/o

clear

%
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elf

n = input('Enter the number of points for the fern:\n\n n = ')

dispC ');

% select fern

while 1 clc;

v = input('fern(1))fem1(2)?');
if v >= 1 & v <= 2; break

end

end

switch v

case 1

disp('fern');

[xpts,s]=fem(n);

case 2

dispCfernl');

[xpts,s]=fern1(n);

end

/o

Allocation % processes the data points and creates a wav file.

/o

disp('

a wave file called
"random.wav"

has been created-for the next step');

/
/o

pause

/o

disp('

Upon request to choose a compiler choose
"LCC"

')

wavconverter; % Changes the wav file to a matlab matrix.

%

mex mFormat.c % from here we are building up the text file.

%

mFormat(ans,'fern.txt')
o/
/o

disp('

a text called
"fern.txt"

has been created")

%

! t2mf fern.txt caller4.mid

%

disp( 'a midi file called "called.
mid"

has been created ')
%To create an additional wav file

[filename,path]=uigetfile('*.mid', 'Choose Caller4.MID Input Sound File');

habari = [path.filename];

Midi2wav; %Creates an additional wav file.

%
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movefile('mzuri.wav','caller4.wav')% to change the name back
/
/o

disp('manually close the mplayer2 window after playing midi ')
pause

% to play the midi sounds.

! mplayer2 caller4.mid

Caller5.m

function [W] = Caller5(varargin);

global c

% This file helps to choose the type of julia recipe to plot.

% you have to begin from caller6 or Caller7

N = input('Enter the number of iterations:\n\n N = ')

disp(");

if N > 50

error(['Sorry!Takes too long to iterate-use a
'

...

maximum of 50']);

end

while 1 clc;

v = input('selectajuliaset\n\nJ1(1), J2(2),J3(3),J4(4),J5(5),J6(6),J7(7) ? ');

if v >= 1 & v <= 7; break

end

end

switch v

case 1

disp('JI');

[W]=Julia_13(c,N);

case 2

disp("J2');

[W]=Julia_2(c,N);

case 3

disp('J3');

[W]=Julia_3(c,N);

case 4

disp('J4');

[W]=Julia_4(c,N);

case 5
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disp('J5');
[W]= JuliaJ5(c,N);
case 6

disp('J6');

[W]=Julia_6(c,N);
case 7

disp('J7');

[W]=Julia_7(c,N);
end

complexnotes

Caller6.m

%This program helps to start of making Julia sets in conjunction with

%Caller 5. It gives you the option of choosing a complex number to use.

global c

%select c

while 1 clc;

v = input('select a value of c\n\n d(1), c2(2),c3(3),c4(4),c5(5),c6(6) ? ');
if v >= 1 & v <= 6; break

end

end

switch v

case 1

disp('d');

c = 0.5 + i*0.5;
case 2

disp('c2');

c = 0.46 + i*0.2;

case 3

disp('c3');

c = 0.36 + i*0.1;

case 4

disp('c4');

c = 0.29 + 0.54*i;

case 5
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disp('c5');

c=-0.1+0.8*i;

case 6

disp('c6');

c=0.4+0.07*i;

end

Caller5 % link to Caller5.m

Caller7.m

%This program helps to start of making Julia sets in conjunction with

%Caller 5. It gives you the option of choosing a complex number to use.

% Other numbers are available in Caller6.

%select c

while 1 clc;

v =
input('

d(1), C2(2),c3(3),c4(4),c5(5),c6(6),c7(7),c8(8) ? ');

if v >= 1 & v <= 8; break

end

end

switch v

case 1

disp('cl');

c = -0.194 + i*0.6557;

case 2

disp('c2');

c = 0.27334 + i*0.00742;

case 3

disp('c3');

c = -1.553 + i*0.003;

case 4

disp('c4');

c = -0.765 + i*0.003;

case 5

disp('c5');

c = -0.765 + i*0.11;

case 6

disp('c6');

c = -0.687 + i*0.312;

case 7

disp('c7');

c = 0.402 + i*. 1951;
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case 8

disp('c8');

c = 0.399 + i*.0999;
end

Caller5 % link to Callers.m

Caller8.m

% This program involves some Julia sets, the variables are all in one file

% unlike the connection of Caller6 &7 with Caller5

while 1 clc;

v = input('select a value of c\n\n d (1 ), c2(2),c3(3),c4(4),c5(5) ? ');

if v >= 1 & v <= 3; break

end

end

switch v

case 1

disp('cl');
c= -.745429+. 11308*i;

case 2

disp('c2');

c = 0.27334 + i*0.00742;

case 3

disp('c3');

c = 0.399 + i\0999;

case 4

disp('c4');

c = -0.01;

case 5

disp('c5');

c = 0.36 + i*0.1;

end

%

N = input('Enter the number of iterations:\n\n N = ')
disp('

');

if N > 50

error([Takes too long to iterate-use a
'

...
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'maximum of 50']);

end

/o

while 1 clc;

v = input('select a julia set\n\n J8(1), J9(2), J10(3),J1 1 (4),J12(5) ? ');
if v >= 1 & v <= 5; break

end

end

switch v

case 1

disp('J8');
[W]= Julia_8(c,N);

case 2

disp('J9');

[W]=Julia_9(c,N);
case 3

disp('JIO');

[W]=Julia_10(c,N)
case 4

disp('J11');

[W]=Julia_11(c,N)
case 5

disp('J12');

[W]=Julia_12(c,N)
end

complexnotes

/o

disp('

a text called
"drumtext.txt"

has been created')

%

% Run the stand alone application to change the midi text to a midi file

%within Matlab.

! t2mf drumtext.txt caller8.mid

%

disp( 'a midi file called
"caller8.mid"

has been created - percussion sounds')

%To create an additional wav file

[filename,path]=uigetfile('*.mid', 'Choose caller8.MID Input Sound File');

habari = [path.filename];

Midi2wav; %Creates an additional wav file.

%

movefile('mzuri.wav', 'caller8.wav')% to change the name back

% To listen to the midi sounds

/o
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% To listen to the midi sounds

pause

%

! mplayer2 caller8.mid

Caller9.m

% This program involves some Mandelbrot sets.

N = input('Enter the number of iterations:\n\n N = ')

dispC ');
if N > 30

error(['Takes too long to iterate-use a
'

...

'maximum of 30']);

end

/
/o

while 1 clc;

v = input('select a mandelbrot set\n\n M1(1),M2(2), M3(3),M4(4),M5(5),M6(6) ? ');

if v >= 1 & v <= 6; break

end

end

switch v

case 1

disp('MI');

[W]=Mandel_1(N);

case 2

disp('M2');
[W]= Mandel_2(N);

case 3

disp('M3');
[W]= Mandel_3(N);

case 4

disp('M4');

[W]= Mandel_4(N);

case 5

disp('M5');

[W]=Mandel_5(N);

case 6

disp('M6');

[W]=Mandel_6(N);

end
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complexnotes

%
disp("

a text called
"drumtext.txt"

has been created')
%

% Run the stand alone application to change the midi text to a midi file

%within Matlab.

! t2mf drumtext.txt caller9.mid

/o

disp( 'a midi file called
"caller9.mid"

has been created - percussion sounds')

[filename,path]=uigetfile('*.mid', 'Choose Caller9.MID Input Sound File');
habari = [path.filename];

Midi2wav; %Creates an additional wav file.

o/
/o

movefile('mzuri.wav','caller9.wav')% to change the name back

/
/o

% To listen to the midi sounds

pause

/o

! mplayer2 caller9.mid

CallerlO.m

% This program involves different fractals.

while 1 clc;

v = input('select a fractal\n\n M1(1), M2(2), M3(3) ? ');

if v >= 1 & v <= 6; break

end

end

switch v

case 1

disp('Mosaic');

[W] = mosaic;
complexnotes

case 2

disp('gingerman');

[X1,Y1]=gingerman(N);

case 3

disp('dream');

[X1,Y1]=dream(N);

end
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/
/o

disp("

a text called
"drumtext.txt"

has been created')
o/
/o

% Run the stand alone application to change the midi text to a midi file

%within Matlab.

! t2mf drumtext.txt callerlO.mid

/
/o

disp( 'a midi file called
"callerlO.mid"

has been created percussion sounds')

[filename,path]=uigetfile('*.mid','Choose CALLER10.MID Input Sound File');
habari = [path.filename];

Midi2wav; %Creates an additional wav file.

%

movefile('mzuri.wav', 'caller10.wav')% to change the name back

/o

% To listen to the midi sounds

pause

/o

I mplayer2 callerlO.mid

if v==1

movefile('caller10.mid', 'mosaic.mid')

elseif v==2

movefile('caller10.mid','gingerman.mid')

else

movefile('caller10.mid', 'dream,mid')

end

2. Chaos and fractal programs

These are the programs that generate the fractals. Some have been designed to

create video files(*.avi). The video files are then played using the
'mplayer2.exe'

or
'wmplayer.exe'

from Matlab platform.

TEST2.m

% TEST2

% Iterated Function System using 3 linear maps

/
/o
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clear C
disp('

')
C = input('Enter a 2x2 matrix in which each row contains the slope and.

intercept:\n\n C = ')
disp('

')
a1 = C(1,1); b1 = C(1,2); a2 = C(2,1); b2 = C(2,2);
/

x(1) = 0;
%

for kk= 1:1000

P(kk) = fix(2*rand);
if P(kk) == 0

x(kk+1) = a1*x(kk) + b1;
else

x(kk+1) = a2*x(kk) + b2;

end;

end;

subplot(2,1,1),
plot(x(800:1000),'.'),title('

Time Series ')
subplot(2,1,2), plot(x(800:1000),x(801:1001);.','color','r')...

xlabel('x(n)'), ylabeIC x(n+1)')
o/
/o

pause

subplot(111)
stairs((800:1000),x(800:1000)),title("

Stair Plot ')
pause

hist(x(900:1000)),axis([0 1 0
100]),title('

Histogram ')
%

pause

polar(2*pi*x(800:1000),ones(1 ,201 ),'.')

xlabel( 'Limit Points on the Circle ')
pause

% From here we go to create a signal and process it.

signaLIFS

TEST3.m

% Iterated Function System using 3 linear maps

%

clear C
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disp('

')
C = input('Enter a 3x2 matrix in which each row contains the slope and...

%intercept:\n\n C = ')
disp('

')
%

a1 = C(1,1); b1 = C(1
,2);

a2 = C(2,1); b2 = C(2,2); a3 = C(3,1); b3 = C(3,2);
0/
/o

x(1) = 0;
%

for kk= 1:1000

P(kk) = fix(3*rand);
if p(kk) == 0

x(kk+1) = a1*x(kk) + b1;
elseif P(kk) == 1

x(kk+1) = a2*x(kk) + b2;

else

x(kk+1) = a3*x(kk) + b3;

end;

end;

subplot(2,1,1),
plot(x(800:1000),'.'),title('

Time Series ')
%

subplot(2, 1 ,2), plot(x(800:1 000),x(801 :1 001 ),'.','color','r')

xlabel('x(n)'), ylabel('x(n+1)')

%

pause

subplot(111)
stairs((800:1000),x(800:1000)),title('

Stair Plot ')
pause

hist(x(900:1000)),axis([0 1 0
100]),title('

Histogram ')
pause

%

polar(2*pi*x(800:1000),ones(1 ,201 ),'.')

xlabel( 'Limit Points on the Circle ')
pause

%

signalJFS

TREE.m

function [xpts,s] =Tree(n)

% This program creates a fractal tree with
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%different values of the affine transformation.

%

A1 = [0 0; 0 .5];
A2 = [.42 -.42; .42 .42];

A3 = [0.42
.42; -0.42 0.42]; A4 = [0.1 0;0 0.1];

T1 = [0 ; 0]; T2 = [ 0 ; .2];

T3 = [0;.2]; T4 = [0; .2];
%

P1 =.05; P2 =
.4; P3 = .4;

P4 =
.15;

% Probabilities

%

elf

/o

s=rand(2,1); xpts = s;

plotfsOJ.s^),'.'), hold on,

mov = avifile('Tree.avi','keyframe',50,'fps',10)
/o

for j=1:n

r=rand;

if r<=P1,s=A1*s+T1;

elseif r <= P1+P2, s=A2*s+T2;
elseif r <= P1+P2+P3, s=A3*s+T3;
else s=A4*s;

end

plot(s(1),s(2)I'.');

xpts = [xpts s];

G=getframe; % creation of a movie by getting frames

mov=addframe(mov,G);

end

mov=close(mov)

hold off

SIERP.m

% This program creates a Sierpinski triangle

function [xpts.s] = Sierp(n)

/

A1 = [.5 0; 0 .5];
A2 = [0.5 0; 0 .5];

A3 = [.5 0; 0 .5];

T1 =[150; 150]; T2 = [0;150];
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T3 = [75 ; 0];

%

P1 =.85; P2 =
.07; P3 =

.08;
% Probabilities

%

elf

%'o

s=rand(2,1); xpts = s;

plotfsOJ.s^/O.hold

mov = avifile('Sierp.avi','keyframe',50,'fps',10) % creates an avifile

/
/o

for j=1:n

r=rand;

if r<=P1,s=A1*s+T1;

elseif r <= P1+P2, s=A2*s+T2;
else s=A3*s+T3;

end

plot(s(1),s(2),'.')

xpts = [xpts s];

G=getframe;

mov=addframe(mov,G);

end

mov=close(mov)

hold off

FERN.m

function [xpts,s]=fern(n)

% This program creates a fractal fern with the probabilties as

A1 = [.85 .04;
-.04

.85];
A2 = [-.15 .28; .26 .24];

A3 = [.2 -.26; .23 .22];
A4 = [0 0; 0 .16];

T1 = [0 ; 0.2]; T2 = [ 0 ; .2];

T3 = [0;0.2]; T4 = [0; 0];

%

P1 =.85; P2 =
.07; P3 =

.07; P4 =
.01 ; % Probabilities

%

elf

%

s=rand(2,1);xpts = s;

plot(s(1),s(2),,.,),holdon;

mov = avifile('fern.avi','keyframe',50,'fps',10)

%
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for j=1:n

r=rand;

if r<=P1,s=A1*s+T1;

elseif r <= P1+P2, s=A2*s+T2;
elseif r <= P1+P2+P3, s=A3*s+T3;
else s=A4*s;

end

plot(s(1),s(2),'.');

xpts = [xpts s];

G=getframe;

mov=addframe(mov,G);

end

mov=close(mov)

hold off

FERNLm

function [xpts,s] = fernl (n);

% This program creates a fractal fern with different values of T vector.

%

A1 = [.85 .04;
-.04

.85]; A2 = [-.15 .28; .26 .24];

A3 = [.2 -.26; .23 .22];
A4 = [0 0; 0 .16];

T1=[0;1.6]; T2 = [0;.44];

T3 = [0;1.6]; T4 = [0; 0];
%

P1 =.85; P2 =
.07; P3 =

.07; P4 =
.01 ; % Probabilities

/o

%

s=rand(2,1); xpts = s;

plot(s(1),s(2)l,.,),holdon

mov = avifile('fern1
.avi','keyframe',50,'fps',10)

0/
/o

for j=1:n

r=rand;

if r<=P1,s=A1*s+T1;

elseif r <= P1+P2, s=A2*s+T2;

elseif r <= P1+P2+P3, s=A3*s+T3;

else s=A4*s;

end

plotfsO)^),'.')

xpts = [xpts s];

G=getframe;
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mov=addframe(mov,G);

end

mov=close(mov)

hold off

MOSAIC.m

% Mosaic

%this program creates a mosaic pattern.

function [Z] = mosaic

elf

x=-50:0.5:50;

y=x;

[X,Y]=meshgrid(x,y);

%

Z=(cos(X))A2+(cos(Y))A2;

W=exp(abs(Z));

colormap prism(256)

pcolor(W);shading interp

axis('equal', 'square', 'off')

GINGERMAN.m

% this program produces the gingerbread man

function [X1.Y1] =gingerman(n)

n=input('lnput the number of points \n n=');

if n>=30

error(['use a maximum of 20']);

end

mov = avifileCgingerman.avi'.'keyframe'.S.'quality'.lOO)
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%

elf

%

for nn = 2:12

x(1) = 0.1 +(nn-2)/10;

y(1) = 0.1 +(nn-2)/10;

for k = 1:n

x(k+1) = 1 -

y(k) + abs(x(k)) ;

y(k+1) = x(k);

end;

/
/o

plot(x,y,'*')

F=getframe;

mov=addframe(mov,F);

hold on

end

mov=close(mov)

X1=x;

Y1=i.*y;

Random IFS

DREAM.m

%This fractal is used to create the Kings dream

elf

%

function [X1.Y1] =dream(N);

if nargin ~= 1

error(['One input argument is required.']);

elseif N<=1 00

error(['use a minimum of 200']);

end

a=-0.966918; b=2.879879; c= 0.765145;

d=0.744728;

x(1)=rand(1);

y(1)=rand(1);
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mov = avifile('dream.avi','quality',100)

forn=1:N

x(n+1) = sin(y(n)
*

b) + c
*

sin(x(n)
*

b);

y(n+1) = sin(x(n)
*

a) + d
*

sin(y(n)
*

a);

x(n)=x(n+1);

y(n)=y(n+1);

plot(x,y,'.')

F=getframe;
mov=addframe(mov,F) ;
hold on

end

mov=close(mov)

X1=x;

Y1=i.*y;

Random_IFS

3. DSP PROGRAMS

SIGNALJFS.m

% SIGNALJFS Fourier Spectrum of IFS Time Series

%

signl = x(745:1000);

N=length(signl);

del_t = 1 ; %sampling rate set as 1

k = 0:N-1;
/
/o

%

subplot(2,1,1), plot(745 + k*del_t,signl-mean(signl)), xlabel(
'n'

)
title('

Signal about the Mean Value ')
/
/o

% Compute and plot the frequency spectrum

XX = fft(signl-mean(signl),500);

magXX = abs(XX);

Hertz = k*(1/(N*del_t));

subplot(2,1
,2),

plot(Hertz(1 :N/2),magXX(1 :N/2))
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title('

Magnitude of XX(k) '),...

xlabel(
'Hz'

), ylabel(
'

|XX(k)| '), grid

%

subplot(111)

pause

stem(Hertz(1:N/2),magXX(1:N/2)),
title('

Magnitude of XX(k) '),...

xlabel(
'Hz'

), ylabel(
'

|XX(k)| '), grid

RANDOMJFS.m

% RandornJFS

% The objective here is to process the sample points.What is needed is a

% signal as the output.The signal is further mapped into Midi by other

% programs.

% The x-component of the sample points is combined with the y-component.

%

S=sqrt(real(X1) A2 + imag(Y1).A2);

%

S1=S-mean(S); % mean value

S1 1=abs(S1 )/max(S1 ); % Normalization

N=length(S1);

del_t = 1 ;

k = 1:N;

S1=S11(100:length(S11));

S2 =abs(fft(S1,10000)); % 10,000 pnts needed for the wave file

S2=S2/max(S2);

Hertz = k*(1/(N*del_t));

pause

figure(2)
if S2~=0;

subplot(2, 1 ,
1 ), plot(Hertz(1 00:(N-1 )/2),S2(1 00:(N-1 )/2))

title('

Magnitude of S2(k) '),...

xlabel(
'Hz'

), ylabel(
'

|S2(k)| '), grid

subplot(212)

Stairs of S2(k) '),.

xlabel(
'Hz'

), ylabel(
'

|S2(k)| '), grid
0/
/o

% Create a wav file

wavwrite(S2,22050,'random') % this makes a wav file

else
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notes= 1 2*S 1 1 ( 1 :N- 1 )/max(S 1 1 ) ;
stairs(notes),title("

Stairs of notes '),xlabel(
'notes'

), ylabel(
'

scale ')
end

%

FF=floor(notes*10);
%

F=num2str(FF);
/
/o

notelabels

%

COMPLEXNOTES.m

% for complex fractals:This is the Processing fashion for the complex

% fractals. There is much of NaN involved and they are replaced with zero

% for the sake of mapping to sound

disp('

')
NN = input(

'

Enter the number of notes to display NN :
'

)
/o

s=floor(nansum(W)); % Get the susm ignorig the NaN's

k=num2str(s); % Convert to a string inorder to get rid of the final NaN

s=strrep(k,'NaN','0'); % replace the NaN with zero for the sake of plotting

s=str2num(s); % Convert back to numbers because plot cannot use
'strings'

if length(s)>1 000 % Limit the number of values to 1 000

length(s)=1000;

end

NN1 =length(s)-NN+1;

figure(2)
stairs(NN1 :length(s),s(NN1 :length(s)))

title('Note Sequence'),
ylabel('

Scale Values')
/o

s=s/max(s);

notes = round(127*s(NN1:length(s))); % scale to range of midi numbers

/o

F=num2str(notes);
/
/o

notelabels

/o

drumlabels

ALLOCATION.m
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% this program allocates the points obtained from the fractals and renames

%the axis values

X1=xpts(1,:)';

Y1=i.*xpts(2,:)';

%

Random IFS

WAVCONVERTER.m

o/ o/

o/ **********
r^r^^*******************

% [W5]

% Get the energy of a wave file, piece by piece.

% Analyze the energy to determine the overall tempo,

% when each note was started and stopped,

% the pitch of each note

% and the volume of each note

% k = the actual final output matrix

% Each entry in k has 8 parts:

% 1) when the note starts (measure subdivision)

% 2) when the note starts (quarter subdivision)
% 3) when the note starts (smaller note subdivision)
% NB: I have combined the first 3 divisions to suit the application file that

% converts it to midi file.

% 4) when the note ends (measure subdivision)

% 5) when the note ends (quarter subdivision)

% 6) when the note ends (smaller note subdivision)

% NB: I have combined these 3 divisions to suit the application file that

% converts it to midi file.

% 7) whether the note was a kick, snare, high hat hit or a ding
% 8) how loud the note was

% The very first entry of k is the tempo (clicks per second)

% a = the original sound wav file

% quantizeLevel = what level of notes the MIDI should be quantized to

% For instance: 1/16 = sixteenth notes, 1/32 = thirty-second notes

% 1/8 = eigth notes, 1/24 = swing sixteenth notes

function k =Wavconverter(a, quantizeLevel)
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[filename,path]=uigetfile('*.*,,'Choose .WAV Input Sound File');
mywav = [path.filename];

a=wavread(mywav);

b = length (a);
countm = (1:b);
c = size(a);

e = zeros(c);

f = zeros(c);

g = zeros(c);

h = zeros(c);

%

%

j = zeros(c);

% e = bar graph of when sound occurs

% f = a, when sounds are compressed to the same volume

% g = FFT of each sound in a

% h = avg FFT for each sound in a, given by the equation:

avgFFT = (Sigma(k = 1 to (N/2))[FFT(a)*k])
/(Sigma(k = 1 to (N/2))[FFT(a)])

% j = avg FFT for each sound in a, compressed over time

ktemp = zeros(1 ,8); % ktemp = k before it's adjusted to take the tempo into

% account

k = zeros(1
,8);

% k = the actual final output matrix

klndex = 2; % klndex is used to determine how many notes were in the wav

soundEnergyCutoffLevel = 0.03;

% If any collective form of energy adds up to being less than

% soundEnergyCutoffLevel, then it is ignored as being background noise

avgEnergyAmt = 0.005; % Used to compress the wav file so that all the sounds

% will be the same volume, and thus matrix 'f can be created

collectiveEnergy = 0; % Built up over the time of each sound, and then divided

% by the average energy amount in order to compress the sound

% to the same volume as all other sounds; also used to determine

% the sound's volume

energyStart = 0; % Used to record when each note begins

energyEnd = 0; % Used to record when each note ends

energyOldEnd = 0; % Used to record when the previous note ends to avoid

% blips

energyLevel = 0; % Used to record when the previous note starts to avoid

blips

% A blip is an unintentional sound, such as collective energy incorrectly
% gathered at the end of one sound and treated as a new sound.

energyTime = 0; % Used to record how long a sound lasted

energyRatio = 0; % Ratio between the collective energy of a sound and the

% average energy; used to compress the sound's volume

soundHit = 0; % Used to determine if a sound is currently occuring

matlabRatio = 1000; % Make all output numbers in the same range so that the

% C program inputs the exact values without any rounding errors

jValue = 0; % Each value in matrix
'h'

divided by the time that value occurred

kickHit = 10000; % Used to represent that the sound was of a kick

dingHit = 30000; % ... ding
snareHit = 50000; /o snare
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highHatHit = 60000; % ... high hat

ksDiff = 0.095; % Used to determine the difference in frequency between a

% kick and a snare

hsDiff = 0.26; % ... a high hat and a snare

dingTime = 3500; % Used to show if the note was long enough to be a ding

% These beat variables are used to determine when each note started

% and ended, in terms of measures, quarters, and any smaller beats,

% depending on what the quantize level was set to.

beatsPerQuarter = 24;

beatsPerMeasure = 4
*

beatsPerQuarter;

quantizeLevel=1/16;

beatsPerQuantize = beatsPerQuarter
*

4
*

quantizeLevel;

samplingTimeRatio = 100000/22050;

blipDifference = beatsPerQuantize
*

samplingTimeRatio;

% blipdiffernce makes sure no blips are recorded starting and

% ending before the end of the previous notes

% amount of samples for each block checked... 22050 samples = 1 second

delta_amnt = 20;

% In this for loop, the program does an initial scan of the wav file, 20 samples at

a time.

% Here the program discovers:

% when each note starts

% when each note ends

% the pitch of each note

% the volume of each note

for i = 1 :delta_amnt:b

if (i + delta_amnf) < b

% Find energy in the 100-unit block

eBlock = (mean(abs(a(i:(i + delta_amnt)))));

if eBlock > soundEnergyCutoffLevel

soundHit = 1 ;

else

soundHit = 0;

end

% Here is where a sound just started, so set the energyStart flag and begin

% recording the collective energy of the sound.

if energyLevel - soundHit == -1

energyStart = i;

energyLevel = 1 ;

collectiveEnergy
= eBlock;

energyOldEnd = energyEnd;

else

collectiveEnergy
= collectiveEnergy + eBlock;
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% Here is where a sound just ended, so

if energyLevel - soundHit == 1

energyEnd = i;
energyLevel = 0;

energyTime = energyEnd -

energyStart;

% To avoid small blips at the end of a sound, check to make sure that no

% sounds are accidentally included too close to the end of the previous sound

if energyEnd > (energyOldEnd + blipDifference)
% e simply records when each sound starts and stops

e(energyStart:energyEnd) = 1 ;

energyRatio = (energyTime
*

avgEnergyAmf) / collectiveEnergy;

% f takes each sound and compresses it, normalizing the volume

f(energyStart:energyEnd) = ...

energyRatio
*

(a(energyStart:energyEnd));
% g is the fft of each individual sound

g(energyStart:energyEnd) = ...

(abs(fft(f(energyStart:energyEnd))));
energyTimeHalf = energyTime/2;

energyMid = energyStart + energyTimeHalf;

% For some reason, g gets inverted at times, this code deals with that

[flipReason, tempNumber] = size(g(energyStart:energyMid));

% Calculate h using the equation:

% h = (Sigma(k = 1 to (N/2))[FFT(a)*k])
% /(Sigma(k = 1 to (N/2))[FFT(a)])
if flipReason == 1

h(energyStart:energyEnd) = ((countm(1:energyTimeHalf +
1))*

...

((g(energyStart:energyMid))'))/ ...

(sum(g(energyStart:energyMid)));
else

h(energyStart:energyEnd) = ((countm(1:energyTimeHalf +
1))*

...

(g(energyStart:energyMid)))/ ...

(sum(g(energyStart:energyMid)));
end

jValue = h(energyStart:energyEnd)/energyTime;

j(energyStart:energyEnd) = jValue;
% Put when the sound started and ended into ktemp.

% NB: The start and stop values are temporary and will be quantized

% once the tempo is determined and added to k (see next FOR loop)

ktemp(klndex,1) = energyStart;

ktemp(klndex,4) = energyEnd;
% Determine the volume of the sound.

% Quieter sounds will be given a velocity of 75.

% The louder a sound, the closer its velocity will be to 127.

k(klndex,8) = ...

(floor(75 + (atan(collectiveEnergy)
*

(57/(pi/2))))/1);
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if k(klndex,8) > 127

k(klndex,8) = 127;
end

k(klndex,8) = k(klndex,8)
*

matlabRatio;

% Increase the k index.

klndex = klndex + 1;

else

collectiveEnergy = 0;
end

end

end

else

e(i:b) = 0;

end

end

% Figure out tempo by taking the difference of when the first two notes started.

% Then multiply that tempo by the ratio between the recording sampling rate

% (22050 samples/second) and the MIDI playback rate (100000 micros/second)

tempo = ktemp(3,1) - ktemp(2,1);
k(1

,1)
= tempo

*

samplingTimeRatio;

tempoRatio = beatsPerQuarter/tempo;

% These two variables are used to compare the time the current note started and

stopped

% to when previous notes started and stopped, and thus discover its rhythm

relative to

% the previous notes

prevHit = ktemp(4,1);

oldBeats = 0;

for i =
4:(klndex-

1)

% Figure out what each hit was, depending on the level of its avg frequency,

% discovered taking its fft and averaging it above

drumHit = j(ktemp(i,1));

if drumHit < ksDiff

if ktemp(i,4)
- ktemp(i,1) < dingTime

k(i,7) = kickHit;

else

k(i,7) = dingHit;

end

else

if drumHit > hsDiff
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k(i,7) = highHatHit;
else

k(i,7) = snareHit;
end

end

% Quantize note starts to fit into tempo

% amtTime is the raw data of when the note started, based on the last few hits

amtTime = ((ktemp(i,1) -

prevHit)
*

tempoRatio) + oldBeats;
% Take that data and quantize it in terms of the quanitize level, rounding it to

% the closest quantized beat subdivision (ie sixteenth note, eighth note, etc)

if (amtTime - (floor(amfTime/beatsPerQuantize)
*

beatsPerQuantize)) < ...

(((floor(amtTime/beatsPerQuantize) + 1)
*

beatsPerQuantize)
-

amtTime)

amtHitQuanTime = (floor(amtTime/beatsPerQuantize)
*

beatsPerQuantize);

else

amtHitQuanTime = ((floor(amtTime/beatsPerQuantize) + 1) *...

beatsPerQuantize);

end

% To get the value of the beat

numQuantBeats = 1 + floor(amtHitQuanTime/beatsPerQuantize) *...

beatsPerQuantize;

k(i,3) = numQuantBeats
*

matlabRatio;

if k(i,3) < 0

k(i,3) = 0;

end

% Update previous beat data every five notes to ensure accuracy

ifmod((i + 1),5)= 0

prevHit = ktemp(i,1);

oldBeats = amtHitQuanTime;

end

% Quantize note releases to fit into tempo the same way that note starts were

calculated

amtTime = ((ktemp(i,4)
-

prevHit)
*

tempoRatio) + oldBeats;

if (amtTime - (floor(amtTime/beatsPerQuantize)
*

beatsPerQuantize)) < ...

(((floor(amtTime/beatsPerQuantize) + 1)
*

beatsPerQuantize)
-

amtTime)

amtReleaseQuanTime = (floor(amfTime/beatsPerQuantize) *...

beatsPerQuantize);

else

amtReleaseQuanTime = ((floor(amtTime/beatsPerQuantize) + 1) *...

beatsPerQuantize);

end

if amtReleaseQuanTime == amtHitQuanTime;

amtReleaseQuanTime = amtReleaseQuanTime + beatsPerQuantize;

end
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amtReleaseQuanTime = amtReleaseQuanTime - 1 ;

numQuarters=1+floor(amtReleaseQuanTime/beatsPerMeasure)+.

numQuantBeats/1
.05;

k(i,4) = numQuarters
*

matlabRatio;

end
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4. MIDI PROGRAMS

SHOWNOTES.m

% SHOW_NOTES
0/

disp('

')
NN = input(

'

Enter the number of notes to display NN :
'

)
%

NN1 =1000-NN+1;

stairs(NN1:1000,round(12*x(NN1:1000))),axis([NN1 1000 0 12])
title('Note Sequence'),

ylabel('

Scale Values')
%

notes = round(12*x(NN1:1000));

cmatrix = C;
prob = P;

F=num2str(notes);

Notelabels.m

% This program converts the notes to the keys and hence we obtain an

%acoustic signature of the IFS

/
/o

% this program changes the Midinote numbers to the names

F= strrep(F,'0','C);

F=strrep(F,T,'Db');
F= strrep(F,'2','D');

F= strrep(F,'3','Eb');

F= strrep(F,'4','E');

F= strrep(F,'5,,'F');

F= strrep(F,'6','Gb');

F= strrep(F,'7','G');

F= strrep(F,'8','Ab');

F= strrep(F,'9','A');

F= strrep(F,'DbC','Bb');

F= strrep(F,'DbDb')'B');

F= strrep(F,'DbD','C);

F= strrep(F,'DbEb','Db');

F= strrep(F,'DbE','D');

F= strrep(F)'DbF',,Eb');

F= strrep(F,'DbGb','E');

F= strrep(F,'DbG')'F);
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trrep(F,

trrep(F,

trrep(F,

trrep(F,

trrep(F,

trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

;trrep(F,

;trrep(F,

.trrep(F,

trrep(F,

,trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

;trrep(F,

!trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

.trrep(F,

trrep(F,

trrep(F,

trrep(F,

trrep(F,

,'GbE','E');

,'GbF','F);

,'GbGb','Gb');

/GbG'.'G');

,'GbAb','Ab');

,'GbA','A');

.'GC'.'Bb');

,'GDb','B');

,'GD','C');

.'GEb'.'Db');

,'GE','D');

.'GF'.'Eb');

.'GGb'/E');

,'GG','F');

,'GAb','Gb');

,'GA','G');

,'AbC','Ab');

.'AbDb'.'A');

,'AbD','Bb');

,'AbEb','B');

,'AbE','C);

,'AbF','Db');

,'AbGb','D');

,'AbG','Eb');

,'AbAb','E');

,'AbA','F');

,'AC','Gb');

,'ADb','G');

,'AD','Ab');

,'AEb','A');

,'AE','Bb');

,'AF','B');

,'AGb','C');

,'AG','Db');

,'AAb','D');

,'AA','Eb');

,'BbC','E');

,'BbDb','F');

.'BbD'.'Gb');

.'BbCEb'/G');

,'BbE','Ab');

,'BbF','A');

.'BbGb'.'Bb');

,'BbGVB');

.'BbAb'.'C');

.'BbA'.'Db');
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F= strrep(F,'BC','D');
F= strrepJF/BDb'.'Eb');

F= strrep(F,'BD','E');
F= strrep(F,'BEb','F');

F= strrep(F,'BE','Gb');

F= strrep(F,'BF','G');

F= strrep(F,'BGb','Ab');

F= strrep(F,'BG','A');

F= strrep(F,'BAb','Bb');

F= strrep(F,'BA','B');

F= strrep(F,'CC','C);

F= strrep(F,'CDb','Db');

F= strrep(F,'CD','D');

F= strrep(F,'CEb','Eb');

F= strrep(F,'CE','E');

F= strrep(F,'CF','P);

F= strrep(F,'CGb,,'Gb');

F= strrep(F,'CG',,G');

Drumlabels.m

% This program converts the keys to drum midi numbers

Clear Keys

Keys=F;

Keys= strrep(Keys,'Bb,,'46');

Keys= strrep(Keys,'B','35');

Keys= strrepfKeys/C'.'Se');

Keys= strrep(Keys,'Db','37');

Keys= strrep(Keys,'D','38');

Keys= strrep(Keys,'Eb','39');

Keys= strrep(Keys,'E','40');

Keys=strrep(Keys,'F','41');
Keys= strrep(Keys,'Gb','42');

Keys= strrep(Keys,'G','43');

Keys= strrep(Keys,,Ab','44');

Keys= strrep(Keys,'A','45');

Keys= strrep(Keys,'Bb','46');

Keys=str2num(Keys);

Keys=abs(Keys); % to put a check on negative values.

drumtext
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pKeys= strrep(pKeys,'Bb','71');

pKeys=str2num(pKeys);

pKeys=abs(pKeys); % to put a check on negative values.

pianotext

Pianotext.m

% This program crerates a Midi Text from the notes obtained from the
'Test'

% program. This is then converted to a midi file using an executable file.

% x and y values become the values of the note number/position and the
'pKeys'

% indicate the type of key/note to be played.

fp = fopen('piantext.txt', 'w');

% Print head information into the text file.

fprintf(fp, 'MFile 0 1 24\n');

fprintf(fp, 'MTrk\n');

fprintf(fp, '0 TimeSig 4/4 24 8\n');

fprintf(fp, '0 Tempo 450000\n');

fprintf(fp, '0 PrCh ch=1 p=40\n'); % the value of p shows the instrument type

% (see appendix 2)

x(1)= 1; % initial values x(1) and y(1) picked at choice.

%The disparartion between the two is for making them quite audible.

y(i)=6;
/
/o

for m=1 :length(pKeys);

y(m)=x(m)+13;

x(m+1)=y(m)+4;

fprintf(fp,'%d On ch=1 n=%2d vol=120\n ,,x(m),pKeys(m)); % quite an

% audible volume.

fprintf(fp,'%d On ch=1 n=%2d vol=0\n ',y(m),pKeys(m)); % The volume is 0

end % to ensure the note is turned off

%and ready for the next one.

%

fprintf(fp, TrkEnd\n'); % the end of the track.

status = fclose(fp); % closing the file.
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Multimix.m

% Multimix.m

% This program creates a Midi Text from the notes obtained from the

% fractals. This is one is particularly modified to have multiple

% instruments in the midi file. It is designed to have 3 tracks.

fp = fopen('mixtext.txt', 'w');
% Print head information into the text file.

fprintf(fp, 'MFile 0 3 24\n'); % format of file is 0, and it has 3 tracks.

fprintfjfp, 'MTrk\n');

fprintfjfp, '0 TimeSig 4/4 24 8\n');

fprintfjfp, '0 Tempo 550000\n');

x(1)=1;

y(i)=6;

for m=1:length(Keys); % The instrument here is percussion

y(m+1)=x(m)+12; % which is always channel 10.

x(m+1)=y(m)+4;

fprintf(fp,'%d On ch=10 n=%2d vol=120\n ',x(m),Keys(m));

fprintf(fp,'%d On ch=10 n=%2d vol=0\n ',y(m),Keys(m));

end

fprintf(fp, TrkEnd\n');
% begin another track

fprintf(fp, 'MTrk\n');

fprintf(fp, '0 PrCh ch=2 p=35\n'); % The instrument is no. 35 on channel 2

for m=1:length(Keys);

y(m+1)=x(m)+11;

x(m+1)=y(m)+4;

fprintf(fp,'%d On ch=2 n=%2d vol=120\n ',x(m),pKeys(m));

fprintf(fp,'%d On ch=2 n=%2d vol=0\n ',y(m),pKeys(m));

end

fprintf(fp, TrkEndW);

% begin another track

fprintfffp, 'MTrk\n');

fprintf(fp, '0 PrCh ch=3 p=70\n'); % The instrument is no. 70 on channel 3

form=1:length(Keys);

y(m+1)=x(m)+11;

x(m+1 )=y(m)+4;

fprintf(fp,'%d On ch=3 n=%2d vol=120\n ',x(m),pKeys(m));

fprintf(fp,'%d On ch=3 n=%2d vol=0\n ',y(m),pKeys(m));

end

fprintf(fp, TrkEnd\n');

status = fclose(fp);
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A word on using the compiler...

After coming up with a matlab matrix from
'Femprog3'

we can create a MIDI text

file using a C program.

The first is to configure the default options file to create MEX-files using the

compiler. (This has been accounted for in the
'Caller'

files).

The switch (entered in at the matlab prompt) is:

mex -setup

and the following comes up :

Please choose your compiler for building external interface (MEX)
files.

Would you like mex to locate installed compilers [y]/n? n

Select a compiler:

[1] Compaq Visual Fortran version 6.6

[2] Lcc C version 2.4

[3]Microsoft Visual C/C++ version 6.0

[0] None

Choose the "Lcc C version
2.4"

[2]

To compile the program will need to type in matlab:

mex mFormat.c

mFormat("matlabmatrix",'miditext.txt') where "matlabmatrix
"

is the output from
'wavconverter.m'

,
and 'miditext.txt

'

is the name of the text file being created.

********************************************************************

mFormat.c

*

mFormat.c

************** rjpp***********nA/c]

*

Takes a matrix and compiles it to become a midi file text
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#include <stdio.h>

#include
"mex.h"

// This is used to print a number and add the appropriate spaces,

// depending on if it is one, two or three digits long.

void PrintNumber(FILE *theFile, int theNumber)

{
if (theNumber >= 100) {
fprintf(theFile, "%d", theNumber);

} else if (theNumber < 10) {
fprintf(theFile,

"

%d", theNumber);

} else {

fprintf(theFile,
"

%d", theNumber);

}

return;

}

// This is the main function.

void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )

{
double "x; // x is the input matrix

char *y; // y is the name of the text file created

int mrows; // number of entries (ie., rows) in x

int i; // index variable

int buflen; // number of characters in y

int status; // makes sure y is the full input string
int tempo; // the tempo of the song, in microseconds

int volume; // the volume of each note

int thirdCol.seventhCol;

int eighthCol; // constant added to the index of x in

// order to access that many columns over

int curSubBeat = 0; // quantized beat

int matlabRatio = 1 000; // used to make sure C doesn't round off any
// input number

int fixedQ, fixedQQ; // the newest beat on and off respectively

int kickHit = 1 0000; // the value in x used to represent a kick

int dingHit = 30000; // hit, ding hit, snare hit or high hat hit

int snareHit = 50000;

int highHatHit = 60000;
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FILE *fp; // the text file written to

/*

Check for proper number of arguments. 7

if(nrhs!=2) {

mexErrMsgTxtfExactly two inputs required: MIDI matrix and MIDI file name.");

}

/*

Get the dimensions of the matrix input x. */

mrows = mxGetM(prhs[0]);

/*

Second input must be a string. */

if (mxlsChar(prhs[1])!=1)
mexErrMsgTxtfSecond input must be a string.");

/*

Assign a pointer to the first input. 7

x = mxGetPr(prhs[0]);

/*

Input must be a row vector. */

if (mxGetM(prhs[1])!=1)
mexErrMsgTxtflnput must be a row vector.");

/*

Get the length of the input string. */

buflen = (mxGetM(prhs[1])
*

mxGetN(prhs[1])) + 1;

/*

Allocate memory for input and output strings. */

y = mxCalloc(buflen, sizeof(char));

/*

Copy the string data from prhs[1] into a C string
*

input_ buf.
*

If the string array contains several rows, they are copied,
*

one column at a time, into one long string array.

7

status = mxGetString(prhs[1], y, buflen);

if(status != 0)
mexWamMsgTxt("Not enough space. String is truncated.");

tempo = x[0];

thirdCol = 2
*

mrows;

seventhCol = 6
*

mrows;

eighthCol = 7
*

mrows;

fp = fopen(y, "w");

// Print head information into the text file.

fprintfffp, "MFile 0 1 24\n");

fprintf(fp, "MTrk\n");
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fprintf(fp, "0 TimeSig 4/4 24 8\n");

fprintf(fp, "0 Tempo 600000\n");

// Put in the beats using the MIDI matrix.

for (i = 3; i < mrows; i++) {

// On Note

fixedQ = x[i + thirdCol] / matlabRatio;
// Print the sub-beat number recognized cumulatively.

if (fixedQ > curSubBeat) {
PrintNumber(fp, fixedQ);
curSubBeat = fixedQ;

}

fprintf(fp, "Onch=10n=");
// Print the note's pitch

if (x[i + seventhCol] == kickHit) {
fprintf(fp, "36");

} else if (x[i + seventhCol] == dingHit) {

fprintf(fp, "68");

} else if (x[i + seventhCol] == snareHit) {

fprintf(fp, "40");

} else {

fprintf(fp, "42");

}

// Print the note's volume

fprintf(fp,
"

v= ");

volume = x[i + eighthCol] / matlabRatio;

PrintNumber(fp, volume);

fprintf(fp, "\n");

// Off Note -- code is similar, but with a few changes and relies on many

// variables, so I didn't want to make it a separate function

fixedQQ = x[i + thirdCol] / matlabRatio + 4;

// Print the sub-beat number recognized cumulatively.

if (fixedQ > curSubsBeat) {

PrintNumber(fp, fixedQQ);

curSubsBeat = fixedQQ;

}

fprintf(fp, "Onch=10n=");

if (x[i + seventhCol] == kickHit) {

fprintf(fp, "36");

} else if (x[i + seventhCol] == dingHit) {
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fprintf(fp, "68")
} else if (x[i + se

fprintf(fp, "40")

} else {

fprintf(fp, "42")
}

venthCol] == snareHit) {

// Print the note's volume

fprintf(fp,
"

v= 0");

fprintf(fp, "\n");

fprintf(fp, "TrkEnd\n");

fclose(fp);

}

return;

I*

End *.
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7.0 DISCUSSION AND CONCLUSION

The creating of acoustic signatures for chaos and attractors was achieved .One of the

challenges was to convert a wav file made from fractal data to midi. A Midi disassembler

which is encouraged by other users was unattainable. The programs used to obtain a

midifile from a text format and vice versa were mf2t.exe and t2mf.exe. All other midi

programs have been created to suit these programs.

For the Iterated function system (IFS) fractals, the location of the points on the plot were

mapped into midi.Taking the y axis as an imaginary axis the abstract value was computed

by combining the x axis as real and y axis as imaginary( as shown in 'Random_IFS.m).

To obtain the acoustic signature for the complex fractals, the color values are sought

which are in a range of less than Lit was computed from the exp(abs(Z))

('Complexnotes.m), where Z, is the function to get the complex fractal. The function

used to create
the'signal-like'

vector was nansum, which is the sum of the non-NaN

elements of the matrix. For example, nansum(X) is a row vector containing the sum of

the non-NaN elements in each column ofX.).So this row vector was mapped into midi.
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7.1 RECOMMENDATIONS

1 A real time process that involves reconstruction from the signature to the

fractal. This suits the application in the theatre halls.

2 Making a video for the fractals together with the acoustic signature in real

time scenario.

3 For a good view of fractals, a computer with much more memory is required.

4 Analysis of the
'signals'

before making wav files, using wavelet based signal

processing methods.

5 Every acoustic signature for the complex fractals involved data at the last

iteration. There is need to be able to make a signature with every iteration.
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8 APPENDIX

Appendix 1

8.1 RECONSTRUCTION PROGRAMS

These programs are intended to be used to be able to reconstruct a fractal or

even to make a fractal from a MIDI file. The MIDI file is first converted to the text

format using the executable file outside of Matlab.

Then using
'midiback.m'

we are able to get the matrix of notes that were on. This

is the same as notes off, the difference being that the volume for the notes off is

zero.

The matrix of the Notes on which is
'NoteOn'

can be considered as the positions

on a plot like the x axis. Another matrix has to be obtained to form a y axis. This

can be left to the discretion of the user, e.g., the sin of 'NoteOn'. Then the two

matrices can be used as input parameters in the recipe that generates fractals

like for the Julia set or Mandelbrot set. And hence a fractal is obtained.

Steps in reconstruction:

Record a midi song from an instrument use Music Time Deluxe to save as

a midi file. This is then moved to the current directory in Matlab

In Matlab type in:

! mf2t 'midifile'.mid 'textfile'.txt

this creates a text file.

Run 'Callerl 1 .m'. This creates a matlab matrix of the notes that were

played. And uses other programs for reconstructing the fractals.

CallerH.m

% This program is an attempt to reconstruct the fractals

%from a midifile.

%First step is to change the midi file to a text file.

clc

filename=uigetfile('V, 'Choose .MID Input Sound File');
str=sprintf('mf2t %s mytext.txt'.filename);
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unix(str);
o/
/o

disp('

a text called
"mytext.txt"

has been created for next step')
/
/o

Midiback;
/
/o

while 1 clc;

v = input('select a program\n\n R1(1), R2(2), R3(3), ? ');
if v >= 1 & v <= 3; break

end

end

switch v

case 1

disp('create a Julia fractal');
[W]= Midijulia;
case 2

disp('create a mandelbrot fractal');

[W] =Midimandel;

case 3

disp('create an IFS fractal ');

[X1,Y1]=Midiginger;

end

MIDIBACK.m

function midiback(FileName)

% Extracts MIDI
'notesOn'

from thetext-format MIDI file

% The midi file is assumed not to have much variation in the channel numbers.

% The only point of interest is the note numbers.

% They display some similarity and yet they are a non-uniformly distributed.

% The only input required is the filename called
'source'

% the text file used must be the one obtained from the conversion of the

% midi file using the
'mf2t'

application. (Most likely in big CAPS)

% Name of MIDI text file with extension added

[filename,path]=uigetfile('*.*', 'Choose .txt Input Sound File');
source = [path.filename];

% Name of this file

myname = 'MIDIBACK: ';
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% Initialize the note-on and note-off arrays

NoteOn = [ ];
NoteOff = [ ];

% Open the TXT file in text read mode

[fid emessage] = fopen(source,rt');
if fid == -1

disp([myname, emessage])
return

end

% Read the header chunk ID; verify that first five characters

% are as expected

s=fscanf(fid,'%s',1);

if (s ~= 'MFile')

disp([myname,
'" '

source
' "

is not a text-format MIDI file']);

disp([myname,
'

(expected first five characters to be
"MFile"

']);
return

end

% Read the file type, number of tracks, and division

FileType = fscanf(fid,'%d',1);
NumTracks = fscanf(fid,'%d',1);
Division = fscanf(fid,'%d',1);

% Read all the tracks

for k=1:NumTracks

% Read the track chunk ID; verify that characters are correct

s=fscanf(fid,'%s',1);

if (s ~= 'MTrk')

disp([myname,
' " '

source
" '

is garbled (1)']);
return

end

% Set flag to indicate when finished reading track

TrackDone = 0;

while (TrackDone ~= 1)
% Read delta time string; test if it represents end of track

s=fscanf(fid,,%s',1);

if (isletter(s(1)))
% Appears to be a track end label

if (S == TrkEnd')
disp([myname, 'Finished reading Track

',num2str(k),'

of ',num2str(NumTracks)])
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TrackDone = 1 ;

else

disp([myname,
' " 'source' "

is garbled (2)']);
end

else

% Read the MIDI event name

MidiEventName = fscanf(fid,'%s',1);

% Read the MIDI event data

s = fgetl(fid);
% Parse the MIDI event

switch (MidiEventName)
case

'On'

% Read note number

loc=findstr(s,'n=');
MidiNumber = sscanf(s(loc+2:length(s)),'%d');

% Read velocity

loc=findstr(s,'v=');
Volume = sscanf(s(loc+2:length(s)),'%d');

% Append to note-on array if velocity is nonzero, otherwise

% append to note-off array

if (Volume ~= 0)
NoteOn = [NoteOn; [ MidiNumber]];

else

NoteOff = [NoteOff; [ MidiNumber]];

end

case 'Off

% Read note number

loc=findstr(s,'n=');

MidiNumber = sscanf(s(loc+2:length(s)),'%d');

% Append to note-on array

NoteOff = [NoteOff; [ MidiNumber]];

end

end

end

end

% Close the file
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fclose(fid);
%

subplot(211)

plot(NoteOn,'.')

% display the last N notes.

N = input(
'

Enter the number of notes to display N :
'

)
%

subplot(212)

NN = length(NoteOn)-N+1 ;

if NN<=0;

stairs(NoteOn);

dispfyour request is large')
else

stairs(NoteOn(NN:end))

end

title('Note Sequence'),
ylabel('

Scale Values')

Midijulia.m

function [W]= Midijulia(NoteOn);

% the program cretes a julia fractal from the midi file . the values of x

% and y are obtained by manipulation.

clear

load('NoteOn') % loads NoteOn.mat

x=(NoteOn)/max(NoteOn);

y=rand(1,length(x))';

d=x+y;

x=sortrows(d);

c = -0.765 + 1*0.11;

N = 100;

r = (1:N)'/N;

theta = pi.*x(1 :length(N)); % the values of NoteOn.mat come into use here.

XX = r.*cos(theta);

YY = r.*sin(theta);

[X, Y] = meshgrid(XX,YY);

Z=X +i*Y;

for itr = 1 :N,

Z=Z.A2 +c;

W=exp(-abs(Z));

if abs(Z) > 30,
N= itr; break,

end

end

grid off
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pcolor(W)

axis ('equal', 'tight', 'off')

Midimandel.m

function [W] =Midimandel;

% the program cretes a mandelbrot fractal from the midi file . the values of x

% and y are obtained by manipulation.

clear

load('NoteOn') % loads NoteOn.mat

x=(NoteOn)/max(NoteOn);

y=rand(1,length(x))';

d=x+y;

x=sortrows(d);

%

N = 100;

r = (1:N)7N;
theta = pi.*x(1 :length(N)); % the values of NoteOn.mat come into use here.

XX = r.*cos(theta);

YY = r.*sin(theta);

[X, Y] = meshgrid(XX,YY);

Z=zeros(length(X));

C=X +i*Y;

fork=1:N,

Z=Z.A2 +C;

W=exp(-abs(Z));

if abs(Z) > 30,
N= k; break,

end

end

figure(2)

pcolor(W)

axis ('equal', 'tight', 'off')

Midiginger.m

%This program reconstructs the ginger fractal from midi file outputs.

function [x,y] =midigingerman(n)

clear

load('NoteOn')
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x=sin(NoteOn);

y=rand(1,length(x));

n=input('lnput the number of points \n n=');

if n>=30

error(['use a maximum of 20']);
end

elf

for k = 1 :n

x(k+1) =

y(k+1) =

end;

1 -

y(k)

x(k);

+ abs(x(k))

%
plot(x,y,'

*')
pause

axis fill

image

OTHER FRACTALS

KOCHLm

%KOCH1(n)
% this program draws the Koch curve fractal.

% n is the number of iterations.

function koch1(n)

n=input('input the value of n\n\ n=')

if nargin ~= 1

error(['One input argument is required.']);

elseif n > 6

error(['Takes too long to give you the curve-use a
'

'maximum of 6']);

end

xl = zeros(10,1);

xr = xl;

yl = xl;

yr = yl;

xr(n) = 1 ;

r =
sqrt(1/3A2- 1/6*2);

elf;

fig=figure
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set(fig,'DoubleBuffer','on');

set(gca,'FontSize',8);

set(gcf,'Color',[1,1,1]);

set(gca,'NextPlot',,replace'.'Visible',,off)
hold on;

levels(xl,xr,yl,yr,n,r);
title('Koch Curve');

text(0.5,-0.05,(['Number of iterations:
'

num2str(n)]), ..

'HorizontalAlign','center','FontSize',12);

hold off;

axis equal; axis tight; axis off;

/0

function levels(xl,xr,yl,yr,n,r)

if (n<2)

plot([xl(1)xr(1)],[-yl(1)-yr(1)],'b-')

G=getframe;
return

end

%doing more iterations

n=n-1 ;

%

xl(n)=xl(n+1);

yl(n)=yl(n+1);

xr(n)=1/3*xr(n+1 )+2/3*xl(n+1 );
yr(n)=1/3*yr(n+1 )+2/3*yl(n+1 );

levels(xl,xr,yl,yr,n,r);

/o

xl(n)=xr(n);

yl(n)=yr(n);

xr(n)=.5*xr(n+1 )+.5*xl(n+1 )-r*(yl(n+1 )-yr(n+1 ));

yr(n)=.5*yr(n+1 )+.5*yl(n+1 )+r*(xl(n+1 )-xr(n+1 ));

levels(xl,xr,yl,yr,n,r);
/
/o

xl(n)=xr(n);

yl(n)=yr(n);

xr(n)=2/3*xr(n+1 )+1 /3*xl(n+1 );

yr(n)=2/3*yr(n+1 )+1/3*yl(n+1 );

levels(xl,xr,yl,yr,n,r);
o/
/o

xl(n)=xr(n);

yl(n)=yr(n);

xr(n)=xr(n+1);

yr(n)=yr(n+1);

levels(xl,xr,yl,yr,n,r);
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n=n+1 ;

return;

Circles.m

%this program creates a circular patterns.

x=-50:0.5:50;

y=x;

[X,Y]=meshgrid(x,y);

a=5;

Z = a*(X.A2 + Y A2);

W=floor(Z);

colormap prism(256)

pcolor(W);

shading interp
axis('equal', 'square', 'off')
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Complex fractals

Julia_1.m

% Julia_1.m

for k=1 :3

x=0;

x=xA2+c;

end

XX=abs(x);
clear x

t=linspace(0,2*pi,1000);

X=XX*(cos(t)+i*sin(t));

Y=c;

plot(real(X),imag(X),'k.');

hold on

%Two images

fork1=3

Z1=((-1)Ak1)*sqrt(X-c);

plot(real(Z1),imag(Z1),'b.');

fork2=1:3

Z2=((-1)Ak2)*sqrt(Z1-c);

plot(real(Z2),imag(Z2),'g.');

end

end

plot(real(c),imag(c),'r*');

hold off

clear Z1 Z2

pause

plot(real(X),imag(X),'k.');

hold on

%Four preimages

for k1 =1:3

Z1=((-1)Ak1)*sqrt(X-c);

plot(real(Z1),imag(Z1),'b.');

for k2=1 :3

Z2=((-1)Ak2)*sqrt(Z1-c);

plot(real(Z2),imag(Z2),'g.');

fork3=1:3

Z3=((-1)Ak3)*sqrt(Z2-c);

plot(real(Z3),imag(Z3),'y.');

fork4=1:3

Z4=((-1)Ak4)*sqrt(Z3-c);
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plot(real(Z4),imag(Z4),'m.');
end

end

end

end

plot(real(c),imag(c),r*');
hold off

clear Z1 Z2 Z3 Z4

pause

plot(real(X),imag(X)/k.');
hold on

for k1 =1:3

Z1=((-1)Ak1)*sqrt(X-c);

plot(real(Z1),imag(Z1),'b.');

fork2=1:3

Z2=((-1)Ak2)*sqrt(Z1-c);

plot(real(Z2),imag(Z2),'g.');

for k3=1 :3

Z3=((-1)Ak3)*sqrt(Z2-c);

plot(real(Z3),imag(Z3),'y.');

for k4=1 :3

Z4=((-1)Ak4)*sqrt(Z3-c);

plot(real(Z4),imag(Z4),'m.');

fork5=1:3

Z5=((-1)Ak5)*sqrt(Z4-c);

plot(real(Z5),imag(Z5),'k.');

for k6=1 :3

Z6=((-1)Ak6)*sqrt(Z5-c);

plot(real(Z6),imag(Z6),'b.');

for k7=1 :3

Z7=((-1)Ak7)*sqrt(Z6-c);

plot(real(Z7),imag(Z7),'g.');

end

end

end

end

end

end

end

plot(real(c),imag(c),'r*');

hold off
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Julia_2.m

%

function [W] = Julia_2(c,N);
%

elf

x=-1.4:0.008:1.0;
y=-1.2:0.008:1.2;

[xO, yO] = meshgrid(x,y);
n = zeros(size(xO));

for k= 1:length(y),
for m = 1:length(x),
Z = xO(k.m) + i*yO(k,m);
for itr = 1:N,

Z=sin(Z)+cos(Z)+ c;

W=exp(-abs(Z));
if abs(Z) < 1

,

n(k,m) = itr; break,

end,

end,

end,

end,

figure(1)
mesh(x0,y0,n);

axis('square', 'equal', 'off');

az = 0;

el = 90;

view(az, el);

grid off

Julia 3.m

% Julia_3.m

function [W] = Julia_3(c,N);

%

x=-1.4:0.008:1.0;

y=-1.2:0.008:1.2;

[xO, yO] = meshgrid(x,y);

n = zeros(size(x0));

/o

fork= 1:length(y),

form = 1:length(x),
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Z = xO(k.m) + i*yO(k,m);
for itr = 1:N,
Z=cos(Z)+ i*cos(Z)+ c;

W=exp(-abs(Z));
if abs(Z) < 1

,

n(k,m) = itr; break,

end,

end,

end,

end,

figure(1)
mesh(xO,yO,n);

axis('square', 'equal', 'off');
az = 0;

el = 90;

view(az, el);

grid off

Julia_4.m

% A Julia_4.m

% The value of N is for specifying the resolution and not the number of

% iterations mesh(x0,y0,n);

function [W] =julia_4(c,N);
%

x0=-1 .3:1.3;

y0=-1.3:1.3;

%

x1 = (max(x)
-

min(x))/N;

y1 = (max(y)
-

min(y))/N;

%

[x,y]=meshgrid([-1 .3: x1 :1
.3],

[-1 .3: y1 :1 .3]);

Z=x+i*y;

iter = 1 ;

for iter=1 :30

Z=Z.A2 + c;

W=exp(-abs(Z));

end

pcolor(x,y,abs(Z)), shading('flat');

hold on, axis('square');

%colormap(hsv);

colormap([0 0 0.4; 111]);
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set(gca>'XTick')[],'YTick',[]);

Julia_ 5.m

% Julia_5.m

function [W]= Julia_5(N);
%

x = -1.5:0.008:1.5;

y = -1.5:0.008:1.5;

%

[xO, yO] = meshgrid(x,y);

p = zeros(size(xO));

for k= 1:length(y),
for m = 1:length(x),
Z = xO(k,m) + i*yO(k,m);
for itr = 1:N,

Z = Z.A2 + c;

W=exp(-abs(Z));

ifabs(Z)>10,

p(k,m) = itr; break,
end

end

end

end

mesh(x0,y0,p);

axis('square', 'equal', 'off');

az = 0;

el = 90;

view(az, el)

Julia_6.m

% Julia_6.m

function [W]= Julia_6(c,N);

%

x = -2:0.008:2;

y = -2:0.008:2;

%
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[xO, yO] = meshgrid(x.y);

p = zeros(size(xO));

for k = 1:length(y),
for m = 1 :length(x),

Z = xO(k,m) + i*yO(k,m);
for itr = 1:N,
Z = Z.*G + Z.M +c;

W=exp(-abs(Z));
if abs(Z)> 10,

p(k,m) = itr; break,
end

end

end

end

mesh(x0,y0,p);

axis('square', 'equal', 'off');
az = 0;

el = 90;

view(az, el)

Julia_7.m

%Julia_7.m

%

function [W] = Julia_7(c,N);
%

x=-1.4:0.008:1.0;

y=-1.2:0.008:1.2;

[xO, yO] = meshgrid(x,y);

n = zeros(size(x0));

/
/o

for k = 1:length(y),

for m = 1:length(x),

Z = x0(k,m) + i*y0(k,m);

for itr = 1:N,
Z=sin(Z)+(Z.A2)+ c;

W=exp(-abs(Z));

if abs(Z) < 1
,

n(k,m) = itr; break

end

end

end

end

96



mesh(xO,yO,n);

axis('square', 'equal', 'off');
az = 0;

el = 90;

view(az, el);

Julia_8.m

%Julia_8.m

%

function [W] = Julia_8(c,N);
%

x=-1.4:0.008:1.2;

y=-1.2:0.008:1.0;

[xO, yO] = meshgrid(x,y);
n = zeros(size(xO));

for k= 1:length(y),
for m = 1:length(x),

Z = x0(k,m) + i*y0(k,m);

for itr = 1 :30,

Z=Z.*Z+ c;

W=exp(-abs(Z));

if abs(Z) >4,

n(k,m) = itr; break

end

end

end

end

mesh(x0,y0,n);

axis('square', 'equal', 'off');

az = 0;

el = 90;

view(az, el);

grid off

Julia_9.m

%Julia_9.m

% This use pseudo color plot.

function [W] = Julia_9(c,N);

%

p=400;
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x=0;

y=0;

g=1.5;

x=linspace(x-g,x+g,p);

y=linspace(y-g,y+g,p);

[X,Y]=meshgrid(x,y);

Z=X+i*Y;
%

fork=1:N;

Z=Z.A2+c;

W=exp(-abs(Z));
end

colormap prism(256)

pcolor(W);

shading flat;

axis('square', 'equal', 'off');

Julia_10.m

function [W] = Julia_10(c,N);
/
/o

p=400; %number of points.

x=0;

y=0;

9=1.5;

x=linspace(x-g,x+g,p); %creates a vector of p points between 2 limits.

y=linspace(y-g,y+g,p); %creates a vector of p points between 2 limits.

[X,Y]=meshgrid(x,y); % creates 3-D surface plots.

Z=X+i*Y;

%

fork=1:N;

Z=Z.AZ+c;

W=exp(-abs(Z)); %to establish values between 0 and 1

end

colormap prism(256) % for creating a map

pcolor(W); %creates a pseudocolor plot with the values specified in W.

shading flat;

axis('square','equar,'off);
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Julia_11.m

% Julia_11.m

%

function [W] = julia_1 1 (c,N);
%

x = -2:0.009:2;

y = -2:0.009:2;

k=1:length(y);
m = 1:length(x);

[xO, yO] = meshgrid(x.y);

p = zeros(size(xO));

%

Z = xO(k,m) + i*yO(k,m);
for itr = 1:N;

Z = Z.*(1-Z) + c;

W=exp(-abs(Z));
if abs(Z)>10,

p(k,m) = itr; break

end

end

colormap prism(256)

pcolor(W);

shading flat;

axisCsquare'.'equar.'off);

Julia_12.m

%Julia_12.m

%

function [W] = Julia_12(c,N);

%

x=-1 .4:0.008:1.0;

y=-1.2:0.008:1.2;

%

k=1:length(y);

m = 1:length(x);

[xO, yO] = meshgrid(x,y);

n = zeros(size(xO));

Z = xO(k,m) + i*yO(k,m);

for itr = 1:N,
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Z=sqrt(Z) -

c;

W=exp(-abs(Z));
if abs(Z) < 1

,

n(k,m) = itr; break,
end,

end,

colormap prism(256)

pcolor(W);

shading flat;

axis('square', 'equal', 'off');

Julia_13.m

%a

function [W] = Julia_13(c,N);
%

x=-1
.4:0.008:1.0;

y=-1.2:0.008:1.2;

%

for k = 1 :length(y);

form = 1:length(x);

[xO, yO] = meshgrid(x,y);

n = zeros(size(xO));

Z = xO(k,m) + i*yO(k,m);

for itr = 1:N,

Z=sin(Z)*c;

W=exp(-abs(Z));

if abs(Z) < 1
,

n(k,m) = itr; break

end

end

mesh(xO,yO,n);

axis('square', 'equal', 'off');

az = 0;

el = 90;

view(az, el);

grid off

Julia_14(N)
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function Julia_14(N)

if nargin ~= 1

error(['One input argument is required.']);

end

c = 0.46 + i*0.2;
x = -2:0.01 :2;y =

-2:0.01:2;

k=1:length(y);
m = 1 :length(x);

[xO, yO] = meshgrid(x,y);

p = zeros(size(xO));

z = xO(k,m) + i*yO(k,m);
for itr = 1:N;

z = (cAexp(-1)).*(z.A2) + c;
if abs(z) > 1 0,

p(k,m) = itr; break,

end,

end,

mesh(xO,yO,p);

axis('square', 'equal', 'off');
az = 0;

el = 90;

view(az, el)

Julia_15(N)

%

function Julia_15(N)

Like Julia_14 with:

C = 1 + i*1 .02871 376821 8725;

Z = Z A2 + C.*conj(Z);
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Julia_16.m

% Julia with a function and exponential

function Julia_16(N)

Like Julia_14 with:

C = 0.46 + i*0.2;

Z = sin(Z) + exp(Z) + C;
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Julia_17.m

% Julia with a function and exponential

function Julia_17(N)

Like Julia_14 with:

C = 0.46 + i*0.2;

if real(Z) > 0

Z = (real(Z)A2 - imag(Z)A2 - 1)+ i
*

(2*real(Z)
*

imag(Z));

else

Z = (real(Z) A2
- imag(Z)) A2

- 1 +
real(c).*

real(Z)+ i
*

(2*real(Z) imag(Z))
imag(c).*

real(Z);

end
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Julia_18.m

% Julia with a function and exponential

function Julia_18(N)
Like Julia_14 with:

c = -.74543+
i*

.11301;

z = z.A2 -

c;
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Julia_19.m

% Julia with a function and exponential

function Julia_19(N)

Like Julia 14 with:

c = i*0.1;
z = sin(z).A2 ;

MandeM .m

% Mandel_1 .m

% This creates a mandelbrot set.

function [W]=MandeM(N);

N=20;

r=10;

m=400;

tx=0.25;

ty=0;
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1=0.3;

x=linspace(tx-l,tx+l,m);

y=linspace(ty-l,ty+l,m);

[X,Y]=meshgrid(x,y);

Z=zeros(m);

C=X+i*Y;

fork=1:N;
Z = (CAexp(-1)).*(Z-A2) + C;

W=exp(-abs(Z));
end

colormap jet(256);

pcolor(W);

shading flat;

axis('square', 'equal', 'off')

Mandel_2.m

%Mandel_2

% This creates a mandelbrot set.

function [W]=Mandel_2(N);

x = -2:0.01 :2;y = -2:0.01:2;

[xO, yO] = meshgrid(x,y);

n = zeros(size(xO));

k = 1:length(y);

m = 1:length(x);

c = xO(k,m) + i*yO(k,m);

z=0;

for itr = 1 :N;

z=z.*7+c;

W=exp(-abs(z));

if abs(z)>8

n(k,m) = itr; break

end

end

colormap winter(256);

pcolor(W);

shading flat;

axisCsquare'.'equar.'off')
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Mandel_3.m

% Mandel_3.m

% This creates a mandelbrot set.

function [W]=Mandel_3(N);

m=400;

cx=-.2;

cy=0;

1=1.5;

x=linspace(cx-l,cx+l,m);

y=linspace(cy-l,cy+l,m);

[X,Y]=meshgrid(x,y);

Z=zeros(m);

C=X+i*Y;
%

fork=1:N;

Z=Z.A50+C;

W=exp(-abs(Z));
end

%

colormap copper(256);

pcolor(W);

shading flat;

axisCsquare'.'equar.'off);

Mandel_4.m

% Mandel_4.m

% This creates a mandelbrot set.

function [W]=Mandel_4(N);

x = -2:0.01 :2;y = -2:0.01:2;

[xO, yO] = meshgrid(x,y);

n = zeros(size(xO));

k = 1:length(y);

m = 1:length(x);

c = xO(k,m) + i*yO(k,m);

z=0;

for itr = 1 :N,

z = z*z + c;

W=exp(-abs(z));

ifabs(z)>10,
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n(k,m) = itr; break

end

end

colormap winter(256);

pcolor(W);

shading flat;

axis('square', 'equal', 'off');

Mandel_5.m

% Mandel_5.m

% This creates a mandelbrot set.

Like MandeM with:

Z = C+sin(Z) A2;

Mandel_6.m

% Mandel_6.m
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% This creates a mandelbrot set.

Like MandeM with:

fork=1:N;
if real(z) > 0

z = (z-1).*c;

else

z = (z+1).*c;

end

W=exp(-abs(Z));

end
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Newtmthd.m

% uses Newton method

P=20;

m=300;

cx=0;

cy=0;

1=10;

x=linspace(cx-l,cx+l,m);

y=linspace(cy-l,cy+l,m);

[X,Y]=meshgrid(x,y);
Z=X +i*Y;

c=-0.5-i*0.8660254;

for k=1 :p;

Z=2/3*Z+1/3*1./(Z.A2);

end

%

W=abs(Z-c);

A=angle(Z);

colormap prism(256);

mesh(W-A);

shading flat;

axis('square', 'equal', 'off');

az = 0;

el = 90;

view(az, el);

Mosaic2.m

% Mosaic2

%this program creates a mosaic pattern. Gives the option to choose a pattern

x=-50:1:50;

y=x;

[X,Y]=meshgrid(x,y);

% select a function that creates a portrait

while 1 clc;
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v =
input('

Z1 (1 ), Z2(2),Z3(3),Z4(4),Z5(5),Z6(6)>Z7(7),Z8(8),Z9(9) ? ');
if v >= 1 & v <= 9; break

end

end

switch v

case 1

disp('ZI');

Z=sin(X.A2+Y.A2);
case 2

disp('Z2');

Z=sin((X + Y ) + sin(3*X) + sin(3*Y));

case 3

disp('Z3');

Z=sin((X.*2 + Y.*2) + sin(3*X)+ sin(3*Y));

case 4

disp('Z4');

Z=sin((X +Y) + (sin(3*X).A2)+ (sin(3*Y) A2));
case 5

disp('Z5');

Z=sin((X +Y) + tan(3*X) + tan(3*Y));

case 6

disp('Z6');

Z=sin((X.A6 + Y.^) + (sin(3*X).M)+ (sin(3*Y).M));

case 7

disp('Z7');

Z=sin((X +Y) + sin(Y)."sin(3*(Y)).wsin(X)."sin(3*(X)));

case 8

disp('Z8');

Z=sin((X +Y) + sin(3*X + 3*Y + sin(2*(X)+sin(2*Y))));

case 9

disp('Z9');

Z=sin((X + Y ) + sin(10*X) + sin(10*Y));

end

pcolor(X,Y,Z);

shading interp
axis('equar, 'square', 'off')
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Tiling.m

%

%this program creates a tiling mosaic pattern.

x=-50:0.5:50;

y=x;

[X,Y]=meshgrid(x,y);
g=rand

Z=g.*(sin(pi*X)+sin(pi*Y));

pcolor(X,Y,Z);

shading interp
axis('equar, 'square', 'off')

Sierpinski.m

function [xpts,s]=sierpinski(h)
% h is the height of the gasket.

elf

h=input('lnput the height \n\n h=');

elf;

mov = avifileCsierpy.avi', 'fps',30,'quality',100)
for y=0:h-1

for x=0:y
s= [x+h-.5*y h/2-y];
xpts = s;

if bitand(x,(y-x)) == 0 % returns bit wise of x and y-x

plot(s(1),s(2)('r.');

axis equal; axis off;

set(gcf,,Color,,[1,1,1]);

end

xpts = [xpts s];

G=getframe(gca);

mov = addframe(mov,G);

hold on

end

end

set(gca,'FontSize',14);

title(The Sierpiski Gasket');

hold off;

mov = close(mov)
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Tinkerbell.m

% Tinkerbell Mapping
function [X1.Y1] =Tinkerbell(n);

if nargin ~= 1

error(['One input argument is required.']);
elseif n <4000

error(['Bell does not look good -use a
'

...

'minimum of 4000']);
end

x(1) = 0.1 ;

y(1) = 0.5;

%

for k = 1 :n

x(k+1)= x(k)^2
-

y(k)A2 + 0.9*x(k) - 0.601 3*y(k);
y(k+1)= 2*x(k)*y(k) + 2*x(k) + 0.5*y(k);

end

plot(x,y,'*')

X1=x;

Y1=i.*y;

Random IFS

Henonl.m

% Generalized Henon Mapping
function [X1 ,Y1 ] = Henonl (N)
elf

if nargin ~= 1

error(['One input argument is required.']);

elseif n<1000

error(['Bell does not look good -use a
'

...

'minimum of 2000']);

end

mov = avifileCHenonl.avi'.'fps'^'quality'.lOO))

for nn = 2:10

a =1.265;

x(1) = 0.1 +(nn-2)/10;

y(1) = 0.1 +(nn-2)/10;
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for k= 1:N

x(k+1)=x(k)*cos(a)
-

(y(k)-(x(k))*2)*sin(a);

y(k+1)=x(k)*sin(a) + (y(k)-(x(k))*2)*cos(a);
end;

%

plot(x(1000:N),y(1000:N),'.')

G=getframe;

mov=addframe(mov,G);

hold on

axis off

end

mov=close(mov)

example

N=2000

Quadattract.m

% Program creates a Quad attractor.

function [X1.Y1] = quadattract(N)
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elf

N=input('lnput the number of points \n N=');
mov = avifile('quadattract.avi','fps',1

, 'quality',100))
for nn = 2:10

a = pi;

b=0.3;

c=0.5;

x(1) = 0.1 +(nn-2)/10;

Y(1) = 0;

%

forn = 1:N

x(n+1) = y(n)
-
sign(x(n)).*sqrt(abs(b.*x(n)-c))*

atan(sqrt(log(abs(c*x(n)-b))));

y(n+1) = a-x(n);

end;

%

plot(real(x(1 :N)),real(y(1 :N)),'.')

G=getframe;

mov=addframe(mov,G);

hold on

end

mov=close(mov)

Example N=200

???*????

*

?
?
?
*???
S/? AAA.* A*

?
??T

??
?: I

*???*

???? ????
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Rings.m

% Generalized Saturn rings

function [X1.Y1] = rings(N)

%

elf

for nn = 2:20

a = -2.8;b = 2.5;c = 0.7;d = 1.3;

x(1) = 0.1 +(nn-2)/10;

y(1) = 0.1 + (nn-2)/10;
%

fork=1:N

x(k+1)= sin (y(k)
*

b) + c
*

sin(x(k)
*

b);

y(k+1) = sin (x(k)
*

a) + d
*

sin(y(k)
*

a);

end;

0/

plot(x(1:N),y(1:N),V)

hold on

end

example

N=500

? ?

?
?

*

?? ?
*
?

*
*

?

?

? ?

?

? ?

?

?

?

?

? ?
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Rossler.m

% Rossler attractor

function [X1 ,Y1
,Z1]

= Rossler(N);
if nargin ~= 1

error(['One input argument is required.']);
elseif N <2000

error(['not looking very good-use a
'

...

'minimum of 2000']);
end

dt =
.04, a = .2,

b =
.2, c = 5.7

/

x(1)=0;

y(i)=o;

z(1)=0;

fork=1:N

x(k+1) = x(k)
- y(k)*dt

-

z(k)*dt;

y(k+1) = y(k) + x(k)*dt + a*y(k)*dt;

z(k+1) = z(k) + b*dt + x(k)*z(k)*dt -

c*z(k)*dt;

end

%

X1 =x;

Y1=y;

Z1=z;

plot(x, z)

Lorenz.m

% Lorenz Attractor

/c

function [X1.Y1.Z1] = lorenz(N);

if nargin ~= 1

error(['One input argument is required.']);

elseif N<1 000

error(['not looking very good-use a
'

...

'minimum of 1 000']);

end

dt = .02;a = 5;b = 15;c = 1;
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o/
/o

x(1)=1;

y(i)=i;

z(i)=i;

fork=1:N

x(k+1) = x(k) + (-a*x(k)*dt) + (a*y(k)*dt);

y(k+1) = y(k) + ( b*x(k)*dt) -

(y(k)*dt) - (z(k)*x(k)*dt);

z(k+1) = z(k) + (-c*z(k)*dt) + (x(k)*y(k)*dt);

plot(x, z)

end

%

X1 = x(k);

Y1 = y(k);

Z1=z(k);

Lorenz3.m

% Lorenz one lobe Attractor

function [X1,Y1,Z1] = lorenz3(N);
if nargin ~= 1

error(['One input argument is required.']);

elseif N <1000

error(['not looking very good-use a
'

...

'minimum of 1000']);

end

dt = .02;a = 5;b = 15;c = 1;

%

x(1)=1;

y(i)=i;

z(i)=i;

forn = 1:N

norm = sqrt(x(n)A2 + y(n)A2);

x(n+1) = x(n) + (-a*dt-dt)*x(n) + (a*dt-b*dt)*y(n)...

+ (dt-a*dt)*norm + y(n)*dt*z(n);

y(n+1) = y(n) + (b*dt-a*dt)*x(n) - (a*dt+dt)*y(n)...

+ (b*dt+a*dt)*norm -

x(n)*dt*z(n)
-

norm*z(n)*dt;

z(n+1)
= z(n) +(y(n)*dt/2)

-

c*dt*z(n);

plot3(x,y,z)
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end

/o

X1 = x(n);

Y1 = y(n);

Z1=z(n);

example

N=5000

Lorenz3d.m

% Lorenz three lobe Attractor

%

function [X1 ,Y1
,Z1]

= lorenz3d(N);

if nargin ~= 1

error(['One input argument is required.']);

elseif N<1 000

error(['not looking very good-use a
'

...

'minimum of 1000']);

end

dt = .02;a = 5;b = 15;c = 1;

%

x(1)=1;

y(i)=i;
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z(1)=1;

forn = 1:N

norm = sqrt(x(n)A2 + y(n)A2);

x(n+1) = x(n) +(-(a*dt+dt)*x(n) + (a*dt-b*dt+z(n)*dt)*y(n))/3 ...

+ ((dt-a*dt)*(x(n)A2-y(n)A2)...

+ 2*(b*dt+a*dt-z(n)*dt)*x(n)*y(n))/(3*norm);

y(n+1) = y(n) +((b*dt-a*dt-z(n)*dt)*x(n)
- (a*dt+dt)*y(n))/3 ...

+ (2*(a*dt-dt)*x(n)*y(n) ...
+ (b*dt+a*dt-z(n)*dt)*(x(n)A2-y(n)A2))/(3*norm);

z(n+1) = z(n) +(3*x(n)*dt*x(n)*y(n)-y(n)*dt*y(n)A2)/2
-

c*dt*z(n);

plot3(x,y,z)

end

%

X1 = x(n);

Y1 = y(n);

Z1=z(n);

Chip.m

% Chip.m

% this program produces the chip attractor

function [x,y] =chip(N);
if nargin ~= 1

error(['One input argument is required.']);

end

fig =figure;
set(fig,'DoubleBuffer','on');

setigca/NextPlot'.'replace'.'Visible'/off)

mov = avifile('chip3.avi','fps',1'quality',100))

for nn = 2:10

x(1) = 0.1 +(nn-2)/10;

y(1) = 0.1 +(nn-2)/10;

a=3; b=4;c=.5;

for n = 1 :N

x(n+1) = y(n)
-

sign(x(n)).*

cos(sqrt(log(abs(b.*x(n)-c)))).

*atan(sqrt(log(abs(c.*x(n)-b))));

y(n+1) = a-x(n);

end;
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0/
/o

plot(x,y,'*')

G=getframe(gca);

mov=addframe(mov,G);

hold on

end

mov=close(mov)

example

N=250

-*- + +

Kamtorus.m

% Generalized Kamtorus Mapping
function [xpts.x.y] = kamtorus(N)

if nargin ~= 1

error(['One input argument is required.']);

elseif N<=1 000

error(['not looking very good-use a
'

...

"minimum of 2000']);

end

mov = avifileCkamtorus.avi'.'fps'^.'keyframe'.S, 'quality', 100))

for nn = 2:11
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a = 3.265;
x(1)= (nn-2)/3;
y(1)= (nn-2)/3;
%

fork=1:N

x(k+1)=x(k)*cos(a) + (x(k).*x(k)-y(k))*sin(a);

y(k+1)=x(k)*sin(a)
-

(x(k).*x(k)-y(k))*cos(a);
end;

%

plot(x(1000:N),y(1000:N),'.') %

G=getframe;

mov=addframe(mov,G);

hold on

axis off

end

mov=close(mov)

example

N=2000
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Barryfrac.m

function [X1
,Y1]

= barryfrac(N);
if nargin ~= 1

error(['One input argument is required.']);

elseif N <400

error(['not looking very good-use a
'

...

'minimum of 500']);

end

mov = avifile('barry.avi', 'fps',1,'keyframe',5, 'quality', 100))
for nn = 2:20 ;

a=100;b=5;c=3;

x(1) = 0.1 +(nn-2)/10;

y(1) = 0;

%

forn = 1:N

x(n+1) = y(n)
- sqrt(abs(b x(n)

-

c))
*

sign(x(n));

y(n+1) = a-x(n);

end;

%

plot(x,y,'.')

G=getframe;

mov=addframe(mov,G);

hold on

end

mov=close(mov)

X1=x;

Y1=y;

example N=4000
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Orbitatt.m

% Orbitatt.m

% Program creates an attractor for different orbits.

function [X1
,Y1]

= orbitatt(N)

if nargin ~= 1

error(['One input argument is required.']);

elseif N>=1 100

error(['not looking very good-use a
'

...

'maximum of 1000']);

end

mov = avifile('orbitatt.avi', 'fps',1 , 'quality',100))
for nn = 2:10

a = 1 .265;

b=0.3;

c=0.5;

x(1)
= 0.1 +(nn-2)/10;

yO) = o;

%

forn = 1:N

x(n+1)
= y(n)

- sign(x(n)).*sqrt(abs(b.*x(n)-c));

y(n+1) = a-x(n);

end;

%

plot(x(1:N),y(1:N),'.')

G=getframe;

mov=addframe(mov,G);

hold on

end

mov=close(mov)

X1=x;

Y1=y;

example

N=500
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Orbitattract.m

%Orbitattract.m

% Program creates a Martin attractor.

function [X1.Y1] = orbitattract(N);
elf

N=input('lnput the number of points \n N=');

mov = avifileCorbitattract.avi'.'fps'.l, 'quality',100));

for nn = 2:10

a = pi;

b=0.3;

c=0.5;

x(1) = 0.1 +(nn-2)/10;

y(1) = 0;
/

forn = 1:N

x(n+1) = y(n)
- sign(x(n)).*(abs(sin(x(n))*cos(b)+ c

-

x(n)*sin(a+b+c)));

y(n+1)
= a-x(n);

end;

plot(real(x(1:N)))real(y(1:N)),'.')

G=getframe;

mov=addframe(movG);

hold on

end

mov=close(mov)
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example

N=1000

Martin.m

% Martin.m

% forms spirals.

function [X1.Y1] = martin(N);

if nargin ~= 1

error(['One input argument is required.']);

elseif N<10

error(['not looking very good-use a
'

...

'minimum of 20']);

end

mov = avifileCMartin.avi'.'fps'.l
, 'quality',100))

for nn = 2:20 ;

a=-2*pi;

x(1) = 0.1 +(nn-2)/10;

y(1) = 0;

%

forn = 1:N
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x(n+1) = y(n)-sin(x(n));

y(n+1) = a-x(n);

end;

%

plot(x,y,'.')

hold on

G=getframe;

mov=addframe(mov,G);

hold on

axis off

end

complex_generator.m

c=.377 -.248*i;

N=30;

p=500;

x=0;

y=0;

g=4;

x=linspace(x-g,x+g,p);

y=linspace(y-g,y+g,p);

[X,Y]=meshgrid(x,y);

Z=X+i*Y;
%

for k=1 :N;

Z=Z AZ+ Z/5 +c;

W=exp(-abs(Z));

if abs(Z)>100 break

end

end

colormap prism(256);

pcolor(W);

shading flat;

axisOsquareVequalVoff');

example
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MOVIES

FERNMOVIE.m

function fernmovie(n)

% This program creates a fractal fernmovie.

%

A1 = [0 .0;
.0 .5];

A2 = [.42 -.42; .42 .42];

A3 = [.42 .42;
-.42 .42];

A4 = [0.1 0; 0 .1];

T1 = [0 ; 0]; T2 = [ 0 ; .2];

T3 = [0;.2]; T4 = [0; 0.2];

%

P1 =.05; P2 = .4;
P3 = .4;

P4 =
.15; % Probabilities

%

elf
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s=rand(2,1);

h=plot(s(1),s(2)I'.');

set(h,'MarkerSize',12);

axis([-0.5 .5 -.1
.5])

axis square

grid off

hold

A>

forj=1:n

r=rand;

nframes = 1 ;

for k = 1 :nframes

if r<=P1,s=A1*s+T1;

elseif r <= P1+P2, s=A2*s+T2;
elseif r <= P1+P2+P3, s=A3*s+T3;
else s=A4*s;

end

set(h,'XData',s(1),'YData'Is(2))

plot(s(1),s(2),'.')

M(k) = getframe;
end

end

hold off

movie(M,1);

HENONMOVIE.m

function [X1.Y1] = Henonmovie(N)
elf

if nargin ~= 1

error(['One input argument is required.']);

elseif n<1 00
error(['

does not look good -use a
'

...

'minimum of 200']);

end

mov = avifile('Henonmovie.avi','fps',2'quality',100))

for nn = 2:10

a = 1 .4 ;b=0.3;

x(1) = 0.1 +(nn-2)/10;

y(1) = 0.1 +(nn-2)/10;

%
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for k=1 :N

x(k+1) = 1 + y(k)-a*x(k)A2;

y(k+1) = b*x(k);
end

h= plot(x,y,'.')

set(h,'Markersize',12)

G=getframe;

mov=addframe(mov,G);

hold on

axis off

end

mov=close(mov)

TREEMOVIE2

function [xpts,s] =treemovie2(n)

% This program creates a movie of a fractal tree with

%different values of the affine transformation.

%

A1 = [0 0;0 0.5]; A2 = [0.42 -0.42;0.42 0.42];

A3 = [0.42 0.42; -0.42 0.42]; A4 = [0.1 0;0 0.1];

T1=[0;0]; T2 = [0;0.2];

T3 = [0 ; 0.2]; T4 = [0; 0.2];

%

P1 =.05; P2 = .4;
P3 = .4;

P4 =
.15;

% Probabilities

%

elf

%

s=rand(2,1);xpts = s;

h=plot(s(1),s(2),'.');

setfh.'MarkerSize'.e);

axis square

grid off

hold

%

for j=1 :n

r=rand;

nframes = 1 ;

for k = 1 :nframes

if r<=P1,s=A1*s+T1;

elseif r <= P1+P2, s=A2*s+T2;
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elseif r <= P1+P2+P3, s=A3*s+T3;
else s=A4*s;

end

end

h=plot(s(1),s(2),'.');
xpts = [xpts s];

set(h,'XData',s(1),'YData',s(2));

M(k) = getframe;
end

hold off

movie(M,1)

Juliamovie.m

%A connected set and movie

c=-0.1+0.8*i;

rho=2.1;

t=linspace(0,2*pi,50);

X=rho*(cos(t)+i*sin(t));

plot(real(X),imag(X),'k.');

hold on

for k1 =1:2

Z1=((-1)Ak1)*sqrt(X-c);

plot(real(Z1),imag(Z1),'b.');

fork2=1:2

Z2=((-1)Ak2)*sqrt(Z1-c);

plot(real(Z2),imag(Z2))'g.');

for k3=1 :2

Z3=((-1)Ak3)*sqrt(Z2-c);

plot(real(Z3),imag(Z3),'y.');

fork4=1:2

Z4=((-1)Ak4)*sqrt(Z3-c);

plot(real(Z4),imag(Z4),'m.');

fork5=1:2

Z5=((-1)Ak5)*sqrt(Z4-c);

plot(real(Z5),imag(Z5),,k.');

for k6=1 :2

Z6=((-1)Ak6)*sqrt(Z5-c);

plot(real(Z6),imag(Z6),,b.');

for k7=1 :2

Z7=((-1)Ak7)*sqrt(Z6-c);

plot(real(Z7),imag(Z7),,g.');
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for k8=1:2

Z8=((-1)Ak8)*sqrt(Z7-c);

plot(real(Z8),imag(Z8),'r.');

for k9=1 :2

Z9=((-1)Ak9)*sqrt(Z8-c);

plot(real(Z9),imag(Z9),'m.');

F=getframe;
end

end

end

end

end

end

end

end

end

plot(real(c),imag(c),'r*');

hold off

movie(F,1)

Other Julia sets

Julia set with c=0.32+0.0043*i;
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Julia set with c=0.32+0.0043*i:

Julia set with c= -0.1194+0.6289 *i;
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Julia set with c= 0.377 - 0.248*i;

Julia set with c= 0.25 + 0.52*i;
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Julia_set

Z = ZA2 +sin(Z) +c;

c=0.1+0.1*i;
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Below is the same fractal about the centre 'zooming
in'

(x 4)
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Appendix 2

CHART 2

General Midi Instruments List General MIDI

program changes

Piano Chromatic Percussion Organ

000 Acoustic Grand Piano 008 Celesra 016 Drawbar Organ

001 Bright Acoustic Piano 009 Glockenspiel 017 Percussive Organ

002 Electric grand Piano 010 Music Box 018 Rock Organ

003 Honky Tonk Piano 011 Vibraphone 019 Church Organ

004 Electric Piano 1 012 Marimba 020 Reed Organ

005 Electric Piano 2 013 Xylophone 021 Accordion

006 Harpsichord 014 Tubular bells 022 Harmonica

007 Clavinet 015 Dulcimer 023 Tango Accordion

Guitar Bass Strings/Orchestra

024 Nylon Acoustic Guitar 032 Acoustic Bass 040 Violin

025 Steel Acoustic Guitar 033 Electric Fingered Bass 041 Viola

026 Jazz Electric Guitar 034 Electric Picked Bass 042 Cello

027 Clean Electric Guitar 035 Fretless Bass 043 Contrabass

028 Muted Electric Guitar 036 Slap Bass 1 044 Tremolo Strings

029 Overdrive Guitar 037 Slap Bass 2 045 Pizzicato Strings

030 Distorted Guitar 038 Syn Bass 1 046 Orchestral Harp
031 Guitar Harmonics 039 Syn Bass 2 047 Timpani

Ensemble Brass Reed

048 String Ensemble 1 056 Trumpet 064 Soprano Sax

049 String Ensemble 2 057 Trombone 065 Alto Sax

(Slow) 058 Tuba 066 Tenor Sax

050 Syn Strings 1 059 Muted Trumpet 067 Baritone Sax

051 Syn Strings 2 060 French Horn 068 Oboe

052 Choir Aahs 061 Brass Section 069 English Horn

053 Voice Oohs 062 Syn Brass 1 070 Bassoon

054 Syn Choir 062 Syn Brass 2 071 Clarinet

055 Orchestral Hit

Pipe Synth Lead Synth Pad

072 Piccolo 080 Syn Square Wave 088 New Age Syn Pad

073 Flute 081 Syn Sawtooth Wave 089 Warm Syn Pad

074 Recorder 082 Syn Calliope 090 Polysynth Syn Pad

075 Pan Flute 083 Syn Chiff 091 Choir Syn Pad

076 Bottle Blow 084 Syn Charang 092 Bowed Syn Pad

077 Shakuhachi 085 Syn Voice 093 Metal Syn Pad

078 Whistle 086 Syn Fifths Sawtooth 094 Halo Syn Pad

079 Ocarina Wave

087 Syn Brass & Lead

095 Sweep Syn Pad
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Synth Effects Ethnic Percussive

096 SFX Rain 104 Sitar 112 Tinkle Bell

097 SFX Soundtrack 105 Banjo 113 Agogo

098 SFX Crystal 106 Shamisen 114 Steel Drums

099 SFX Atmosphere 107 Koto 115 Woodblock

100 SFX Brightness 108 Kalimba 116TaikoDrum

101 SFX Goblins 109 Bag Pipe 117 Melodic Tom

102 SFX Echoes 110 Fiddle 118 Syn Drum

103 SFX Sci-fi 1 1 1 Shanai 119 Reverse Cymbal

Sound Effects

120 Guitar Fret Noise

121 Breath Noise

122 Seashore

123 Bird Tweet

125 Telephone Ring
125 Helicopter

126 Applause

127 Gun Shot

General MIDI Drums note number

(MIDI channel 10 is used for drums)

035 B0 Acoustic Bass Drum 048 C2 High Mid Tom

036 CI Bass Drum 1 049 C#2 Crash Cymbal 1

037 C#l Side Stick 050 D2 High Tom

038 Dl Acoustic Snare 051 D#2 Ride Cymbal 1

039 D#l Hand Clap 052 E2 Chinese Cymbal

040 El Electric Snare 053 F2 Ride Bell

041 Fl Low Floor Tom 054 F#2 Tambourine

042 F#l Closed Hi Hat 055 G2 Splash Cymbal

043 Gl High Floor Tom 056 G#2 Cowbell

044 G#l Pedal Hi Hat 057 A2 Crash Cymbal 2

045 Al Low Tom 058 A#2 Vibraslap

046 A#l Open Hi Hat 059 B2 Ride Cymbal 2

047 Bl LowMid Tom
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060 C3 High Bongo (CENTER C) 072 C4 LongWhistle

061 C#3 Low Bongo 073 C#4 Short Guiro

062 D3 Mute High Conga 074 D4 Long Guiro

063 D#3 Open High Conga 075 D#4Claves

064 E3 Low Conga 076 E4 High Wood Block

065 F3 High Timbale 077 F4 Low Wood Block

066 F#3 Low Timbale 078 F#4MuteCuica

067 G3 High Agogo 079 G4 0penCuica

068 G#3 Low Agogo 080 G#4 Mute Triangle

069 A3 Cabasa 081 A4 Open Triangle

070 A#3Maracas

071 B3 ShortWhistle

Made byMarco Zanon http://www.marcozanon.com

Based upon a previous work by Danchan and the standard GM list, freely distributable
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Appendix 3.0

MIDI TERMS

Channel messages are those which apply to a specific Channel, and the Channel

number is included in the status byte for these messages.

System messages are not Channel specific, and no Channel number is indicated in

their status bytes.

Channel Voice Messages are used to send musical performance information. The

messages in this category are the Note On, Note Off, Key Pressure, Channel

Pressure, Pitch Bend Change, Program Change, and the Control Change

messages.

Note ON-When a key is pressed on aMIDI keyboard instrument orMIDI

keyboard controller, the keyboard sends a Note On message on theMIDI OUT

port.

Note OFF - The Note Offmessage also includes data bytes for the key number

and for the velocity with which the key was released.

The Pitch Bend Change message is normally sent from a keyboard instrument in

response to changes in position of the pitch bend wheel. The pitch bend

information is used to modify the pitch of sounds being played on a given

Channel.

The Program Change message is used to specify the type of instrument that

should be used to play sounds on a given Channel.

Channel Mode messages (MIDI controller numbers 121 through 127) affect the

way a synthesizer responds toMIDI data.

MIDI SystemMessages are classified as being System Common Messages,

System Real Time Messages, or System Exclusive Messages. System Common

messages are intended for all receivers in the system.

The MIDI System Real Time messages are used to synchronize all of theMIDI

clock-based equipment within a system, such as sequencers and drum machines.

System Exclusive messages may be used to send data such as patch parameters or

sample data between MIDI devices.
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A MIDI file allows easy editing of the individual musical parts, because each part

is usually assigned to its own MIDI channel, and it's easy to separate that part's

MIDI data from the other
parts'

MIDI data, based upon the MIDI channel in each

MIDI message.

A sequencer is a machine that
"plays"

musical performances. It tells equipment

that can make musical sounds (i.e., play pitches, chords, etc.) what musical notes

to play, and when to play them. It does this using MIDI messages. One advantage

of using this is one can change the playback speed.
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LIST OFMATLAB PROGRAMS

1 ) Bifurjmap 3

2) Matsynthesis 22

3) Callerl 36

4) Caller2 38

5) Caller3 40

6) Caller4 41

7) Caller5 43

8) Caller6 44

9) Caller7 45

10)Caller8 46

ll)Caller9 48

12)CallerlO 49

13)Test2 50

14)Test3 51

15)Tree 52

16)Sierp 53

17)Fern 54

18)Fernl 55

19)Mosaic 56

20)Gingerman 56

21)Dream 57

22) SignaLIFS 58

23)RandornJFS 59

24) Complexnotes 60

25)Allocation 60

26)Wavconverter 61

27)Shownotes 68

28)Notelabels 68

29)Drumlabels 71

30)Drumtext 72
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31)Pianolabels 72

32)Pianotext 73

33)Multimix 74

34)Callerll 81

35)Midiback 83

36)Midijulia 86

37)Midimandel 87

38)Midiginger 87

39)Kochl 88

40) Circles 90

41)Julia_l 91

42)Julia_2 93

43)Julia_3 93

44)Julia_4 94

45)Julia_5 95

46)Julia_6 95

47)Julia_7 96

48)Julia_8 97

49)Julia_9 97

50)Julia_10 98

51)Julia_ll 99

52)Julia_12 99

53)Julia_13 100

54)Julia_14 100

55)Julia_15 101

56)Julia_16 102

57)Julia_17 103

58)Julia_18 104

59)Julia_19 105

60)Mandel_l 105

61)Mandel_2 106
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62)Mandel_3 107

63)Mandel_4 107

64)Mandel_5 1 08

65)Mandel_6 108

66)Newtmthd 110

67)Mosaic2 110

68) Tiling 112

69) Sierpinski 112

70)Tinkerbell 113

71)Henonl 113

72)Quadattract 114

73)Rings 115

74)Rossler 117

75)Lorenz 117

76)Lorenz3 118

77)Lorenz3d 119

78)Chip 120

79)Kamtorus 121

80)Barryfrac 123

81)Orbitatt 124

82)Orbitattract 125

83)Martin 126

84) Complex_generator 127

85)Fernmovie 128

86)Henonmovie 129

87)Treemovie 130

88) Juliamovie 131

C++ Program:

mFormat.c 75
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