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ABSTRACT

Team software development is a complex andmostly unpredictable process and is

characterized by inefficient use of staff and calendar resources. Given the magnitude of software

development costs, a deeper understanding of the process may suggest ways to improve resource

utilization.

Simulation modeling is a useful approach to study the dynamics of complex systems.

System dynamics characterizes systems as collections of interacting, non-linear feedback loops.

The foundations of system dynamics were developed atMIT in the early 1950s. Since that time,

system dynamics has been applied to a large number of complex system domains. In the early

1980s, the system dynamics simulationmethod was first used atMIT to develop a software

development process model.

A different approach to modeling complex systems is to use an actor, or property-based

programming language. In a property-based model, the behaviors of individual entities are

represented as concurrently executing threads, and discrete event clocks are used to simulate

time. Easel is a new property-based programming language developed at the Software

Engineering Institute housed at CarnegieMellon University. Although determining the

survivability of large-scale networks was the motivation to develop Easel, the SEI has conducted

some initial work in applying Easel to the software development process domain.

This thesis compared the use of system dynamics and Easel as tools to study the software

development process. Both modeling approaches were used to test the validity ofBrooks's Law

under different hiring strategies for small, medium, and large-scale projects. The models

produced nearly identical results, and so provided a high level of confidence that the models

were logically equivalent.

The thesis concludes with a comparison of the two techniques based on background

knowledge required, object representation, debugging difficulty, model maintainability,

scalability, and timing control. A summary about the applicability of each technique is presented

and recommendations for future work are offered.
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CHAPTER 1

INTRODUCTION

The objective of this thesis is to compare, through experimentation and evaluation, two

simulation techniques, System Dynamics and Easel, for simulating subsets of software

development processes. Each technique is discussed in detail followed by supporting examples

of their use in modeling software development processes.

1.1 The Nature of the Software Development Process

According to J. Raynus (1999), a software development project is a social system of

interrelated components where developers share a common goal: to manufacture a defect-free

software product on time and on budget. He defines a system as formally independent

operations, or software processes, performed by those skilled in such operations. Therefore a

software development organization is classified as a social system, for it consists ofpeople

responsible for allocating resources and performing and regulating activities. As an integrative

and complex system that combines both management and software productionmethods, software

development projects often produce unpredictable and problematic results.

These problems contribute to inefficient use of resources. A study conducted by the

Standish Group in 2002 reported the failure ofover 13,000 projects, about 15% of the total

number ofprojects surveyed (Brock et al, 2003). This result suggests that more attention needs to

be directed to software process improvement (Christie, 1999). Improved and optimized software

development processes will lead to more predictably project outcomes and to more efficient use

ofresources. The following sections discuss the inefficiencies typically found in the use of

software development resources.



1.1.1 Study ofProblems

Two major organizations researched thousands of software development projects: the

Standish Group and researchers at Oxford University. In its 2003 annual research report, the

Standish Group found that only one third of the 13,522 projects observed were completed on

time and on budget with the required features and functionality (Pearce, 2003). Further analysis

shows that 70% of the projects were challenged (i.e., overbudget, overschedule, and/or without

complete functionality and features), and 15% of these projects were abandoned. Anothermore

recent study conducted by the United Kingdom revealed similar results. Out of421 projects,

only 15% of the projects were completed on time, on budget, and with all specified features and

functions (Huber, 2003). One in ten of the projects was abandoned, thus wasting time, effort,

and money.

1.1.1.1 Cost The following statement, taken from a Government Accounting Office

(GAO) report that summarized case studies involving software or software-related problems in

the military, notes: "We have repeatedly reported on cost rising bymillions ofdollars, schedule

delays ofnot months but years, and multi-billion-dollar systems that don't perform as

envisioned"

(Paulk, 1995). Costs exceed budgets due to overrun schedules and defects. As

reported by the Standish Group in the same study, challenged projects were over budget by an

average 43% (Pearce, 2003). In the UK study, only 41% of the 421 projects observed were

within the set budget. Furthermore, the budgets were overrun by an average on 1 8% (Huber,

2003). As other technologies such as computer hardware decrease in cost, software programs

remain both high in cost and low in quality. In 2002 alone, the U.S. spent a total of $255 billion

on software projects, but $55 billion of this amount was wasted on cancelled and overrun

projects (Pearce, 2003).
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1.1.1.2 Schedule. Although schedule predictions have traditionally been based on prior

experience, this method has proved inaccurate. One Department ofDefense (DoD) software

organization reviewed 17 major projects and found that "the average 28-month assigned

schedule was missed by an average of20
months,"

exceeding the estimated schedule time by

more than 70%. (Paulk, 1995) Not a single project reviewed was delivered on time. In the

Standish Group study, challenged projects resulted in schedule overruns averaging 82% (Pearce,

2003). In the UK study, only 55% of the 421 projects observed were on time and the average

schedule variance was 23% of the estimated schedule (Huber, 2003).

1.1.1.3 Quality. Many
organizations'

products have high defect rates and a Software

Engineering Institute (SEI) survey found that 60% of the organizations studied used inadequate

measures ofquality assurance (McConnell, 1996, p. 69). In 1986, Capers Jones, the chairman of

Software Productivity Research Inc., studied five system codes. His data suggests that the

average software defect density of those five systems was anywhere between 49.5 to 94.6%

(Russel, 1991). The 2003 Standish Group study reported that in challenged projects only halfof

the features and functions envisioned for a project were successfully implemented (Pearce,

2003). In the UK study, 54% of the observed projects failed to deliver the requested

functionality and features and only 5% of the projects functioned at a higher level than expected

(Huber, 2003).

1.1.2 Process Improvement

Management is to blame for these lengthy schedules, increasing costs, and decreased

quality. One way to deal with management problems is to shift the development focus from the

product to the process. In 1986, the SEI began to coordinate efforts to improve software

processes. The SEI partneredwith theMITRE Corporation to develop a process maturity
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framework, which led to the 1987 introduction of the CapabilityMaturityModel (CCM) for

software (SEJVCMU, 1994, p. 5). "The CMM is based on actual practices, reflects the best of the

state of the practice, reflects the needs of individuals performing software process improvement

and software process appraisals, is documented, and is publicly
available."

(SEI/CMU, 1994, p.

6) The SEI not only highlighted the need formore reliable and predictable software

development processes, but also provided an accessible, well-documented procedure for

improving these processes.

Inefficient or imperfect processes must be understood in order that theymight be

improved. While increased and active understanding ofprocesses will not eliminate all problems,

it will allow for greater levels ofprediction, analysis, and control. By shifting focus to the

process, CMM practices allow organizations to understand, define, measure, and continuously

improve processes. It also allows management to gather data and make conscientious decisions

(Raynus, 1999). In another Standish Group report, a number of IT executives established

estimates using the following process: "First get their best estimate, multiply by two and then

add half (2001). However, this results in projects that are 150% over budget before they even

begin. One motivation behind development of the CMM was to reduce reliance on non-data

based estimating practices.

By adopting the CMM, numerous organizations have realized significant improvements

in the outcomes of their software development projects. The SEI studied 13 organizations at

various maturity levels to determine the overall benefits ofprocess improvement though CMM.

The overall average results were (Herbsleb et al., 1994):

35% productivity gain per year

22% ofdefects found in pretest per year

12



19% reduction in time to market

39% fewer field error reports per year

5:1 return on investment

Each level ofprocess improvement provides substantial benefits. The General Dynamics

Decision Systems Organization examined the benefits of implementing CMM at various levels

for 20 development programs. Table 1 summarizes the General Dynamics CMM experience.

CMM Level % ofDeveloper

Time Dedicated

to Rework

% ofDefects

Contained to

Creation Phase

Customer

Reported

Defects per

KSLOC

Productivity

2 23.2 25.5 3.2 lx

3 14.3 41.5 0.9 2x

4 9.5 62.3 0.22 1.9x

5 6.8 87.3 0.19 2.9x

Table 1 - Performance vs. CMM Level (King & Diaz, 2000)

Schedule overruns and error-prone modules, common in the majority of software

development systems in the United States, have proven costly. However, by emphasizing

process improvement, SEI's CMM has taken strides in improving software development across

the globe. In short, process improvement is the key to improving overall software development

in terms of cost, time, and quality.

1.1.3 SoftwareDevelopment System Complexity

Software development inefficiency problems can be traced back to more than just product

emphasis. Another source ofproblems is human nature. States Paulk, "Humans beings are

fallible"

(1995). Mixing people with technology can create a very complex structure that is both

13



unstable and unpredictable. For example, instead ofusing quantitative models to make

decisions, people often trust their instincts or use previous experience as their sole decision

making basis (Paulk, 1995).

Although human error is to blame formany software development inefficiencies, the

interconnected subsystems that are inherent in software development represent another

significant factor contributing to development inefficiencies. A system that consists of several

interconnected subsystems is referred to as a complex system. These complex systems are often

difficult to document, test, and understand. In his paper on the architecture of complexity,

Herbert A. Simon defines a complex system as a "systemmade up of a large number ofparts that

interact in a nonsimple
way"

(1981, p. 99). Software development complexity results from large

numbers of interacting parts, ranging from humans to pieces of code. Grady Booch states that

these complexities exist for the following reasons: the problem domain, software flexibility, and

complexity of the process (1993).

Problem domain, or the definition of a problem, plays a vital role in software

development complexity. Initial data gathering is a necessary requirement of the software

development process. However, this requirement is often burdensome because users and

developers will have conflicting views. Even after data has been collected, requirements likely

will change. During the development of a typical project, a 25% change in requirements is not

uncommon (McConnell, 1996).

Software flexibility also increases complexity. Due to a lack of standards in the software

industry, many technologies can be used when creating a software product. This nearly

unbounded list of choices compounds complexity.
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Developing large-scale software requires a large group ofpeople. Therefore, no single

individual or team typically understands the entire system. As more people are added to a given

project, communication and coordination increase both in complexity and importance. That is,

while the process itself increases in complexity, managementmust struggle to efficiently

distribute resources and oversee development.

Due to the sheer volume of interacting components, and the large number ofvariables, it

is problematic to characterize the behavior of these systems. If a developer makes poor design

decisions early in the project, it is likely to affect work at a later date. Design errorsmay also

impact components built by other developers in unforeseen ways. For example, once a design

flaw is inserted into a project, it is nearly impossible to predict when the flaw will be discovered

and how the flaw will impact the project. Often, rework will need to be undertaken once the flaw

is ultimately identified. This illustrates a feedback loop, which can exist in several forms. They

can be found between people, between a program and a programmer, and between a project and

a process. Feedback loops are difficult for developers andmanagers to grasp, especially if there

is a substantial time delay between the creation of the problem and the resultant effects.

Consequences of these complexities include late project delivery, budget burdens, and an

inability to meet user requirements.

1.1.4 The ProposedSolution

The GAO report that identified several categories of software development problems also

identified a major problem with the software industry: "The understanding of software as a

product and of software development as a process is not keeping pace with the growing

complexity and software dependence of existing and emergingmission-critical
systems"

(Paulk,

1995). Although not all software products fall into the mission-critical category, the lack of
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understanding about software development as a process is evidenced by rising costs, missed

deadlines, and decreased quality ofmany software development systems.

According to Alan Christie (1999) of the SEI, "systems are more than the sum of their

components."

Simulations of software development processes force one to think in global terms

and to provide insight into complex behavior patterns. Ultimately, simulations can improve the

decision-making process, provide greater insight into development processes, and increase the

overall understanding of these processes. Multiple feedback loops results can appear anywhere

betweenminutes and years after the cause. Humans do not have the capacity to predict these

results without additional help and, in addition, simulations allow humans to get results within a

shortened period of time. Traditional process analysis does not address behavioral issues, and

this omission can be corrected through simulation. Christie asserts that with simulation, we can

learn about a process without directly observing the process, thereby circumventing potentially

costly errors (1999).

1.2 Opportunities and Challenges

Simulations provide users with opportunities to learn about and improve processes within

an organization. However, many challenges accompanymodeling complex systems.

1.2.1 Opportunities

Creating a simulation involves first defining a problem and thenmodeling that problem.

The model can then be programmed and verified. After the model is verified, the simulation, or

computerizedmodel, can be used for experimentation. This is an inexpensive way for
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organizations to assess processes when the manipulation of a real system is not possible (Kellner

etal., 1999).

Kellner et al. provides many reasons why organizations use simulations:

Strategicmanagement - Simulations aid in making development decisions; for example,

they indicate when to create components or when to use commercial off-the-shelf

(COTS) products.

Planning
- Simulations can be used to predict certain development factors such as effort,

resources, and risks. This can then be used to determine the best processes for

implementation.

Control and operation management - In order to monitor and control processes,

simulations can help in planning milestones and/or determining when corrective action

needs to be taken.

Process improvement and technology adoption
- Simulations aid in making decisions

that will improve processes and also help to determine the effects of adapting a tool.

Understanding
-

Using a simulation helps one understandwhat makes a process

successful or unsuccessful.

Training and learning
- Through the use of simulations, future managers can visualize

the impact of classic management mistakes.

The following discussion refers again to the work ofChristie (1999) who states that

several areas within a system can be improved through simulation. "Simulations can mimic the

performance characteristics of software components and their interactions, the effects of time

delays and feedbacks, and of finite capacities and resource
bottlenecks."

One way that

developers can capitalize on simulations is to use them to develop and manage requirements.
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Quantitative measures can be gathered through simulations to define the initial requirements.

Since requirements are in constant flux, simulations allow one to view the results of a possible

modification before actual implementation.

As mentioned, individuals are to blame formany, ifnot all, software development

problems. The two most important project estimates are schedule and cost. Simulations provide

quantitative results that support improvedmanagement decisions.

In software development, learning from experience is expensive. Christie states that,

"Simulation can provide considerable insights into how a process will work, prior to its

implementation."

Because processes can be observed without actual process execution,

organizations can observe and assess the potential benefits of adapting and improving a given

process. Another benefit of simulations is that they can used anywhere. Allowing a manager to

train at a desk versus a remote training location also saves money.

A few other areas in which simulation can be helpful are COTS product adoption,

product-line practices, risk management, and acquisitions management. Simulation can be used

to examine the effects ofutilizing a COTS product, such as resource usage, usability, and timing.

Some simulation tools aid in the calculation ofproduct-line costs and help determine which

product-line practices provide the most cost effective solutions. Since risks appear throughout

the software development lifecycle, simulations can help to predict these risks early on. Christie

also states that simulations can estimate the expected progress of contract workers, which leads

to honesty and efficiency.

Simulations can also determine the impact of actions, decisions, and environmental

factors on a product's success. They can be further utilized to test the effect of certain factors on

a system. Simulations may also predict the outcome of certain processes and determine a
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system's sensitivity to internal or external factors. Thus, in general, simulations enable their

users to illuminate all the relationships within a system, and thus to effectively understand the

system as a whole.

1.2.2 Challenges

One challenge associated with software development is the modeling of soft or people

variables. Since software is an intangible product, human capability is difficult to model
(Abdel-

Hamid & Madnick, 1991, p. 119). For example, employee knowledge is difficult to quantify.

Thus, to avoid problems and errors with calculation, an arbitrary scale is used to quantify

questionable variables (Bustard, 2000).

A technical report on simulation in high-maturity organizations recommended handling

soft variables, such as personal attitudes and learning curves, by first scaling them and then

correlating them to generate observable quantities (Burke, 1997, p. 42). However, how does an

individual estimate whether they are 40% or 95% finished with a particular task? Abdel-Hamid

and StuartMadnick have concluded that, in the early phases of software development, progress

can be measured by the "rate of expenditure of resources rather than by the count of

accomplishments"

(p. 119). For example, if a developer has been allocated 40 days to

accomplish a task, it is estimated that he will have completed 25% of the task by the tenth day.

During later phases of development, the developer's perception ofhow much of the task is

completed determines progress. Thus, it is possible to model soft variables using a reasonable

and scalable approach.

A problem that occurs with novice modelers is that they attempt to model the whole

system instead ofjust a specific problem. Furthermore, simulation development environments
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such as iThink make the inclusion of several variables easy, which tends to generate many

unnecessary variables.

Not all variables can be effectively modeled. Some concepts that have an effect on a

system, such as politics and resistance to change, are challenging to model (Bustard, 2000). The

variables that are chosen should maintain a high level of significance. In short, people can make

systems less complex if theymodel with discretion.

1.3 Simulation of Software Development: Two Approaches

Of the several simulation tools available, this thesis examines two existing approaches:

System Dynamics and Easel. System dynamics has been available for over 50 years and has

proved effective across a wide range of complex systems. Easel is a new approach developed by

the SEI that uses property-based programming to simulate software-driven organizations.

1.3.1 System Dynamics

Developed in the 1950's by Jay Forrester, system dynamics is a modeling methodology.

Tarek K. Abdel-Hamid describes system dynamics as "application of feedback control systems

principles and techniques to managerial and organizational
problems"

(1991).

1.3.1.1 Background. This modeling technique is based on the idea that the structure of

an organization has a direct effect on the behavior of the organization. What distinguishes this

modeling methodology from others is that rather than concentrating on the flow of information in

a complex system, it also incorporates soft issues such as motivation and knowledge level. By

illustrating the total picture of a particular problem, system dynamics allows organizations to

understand all the forces influencing its causes. This also furthers an organization's

understanding of the relationship between a system and its environment.
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System dynamics is an approach commonly used when soft variables are suspected of

playing a role in an organization's problems. Determining ways to alter the situation requires a

precise measurement of soft variables. However, other problem factors should be examined

before choosing system dynamics as amodeling tool.

In order for the system dynamics approach to be suitable for examining a problem or

situation, three key attributes must be present:

1 . It must be complex.

2. It must be dynamic (involving quantities that change over a period of time).

3. It must contain feedback loops. Feedback is when the action of an individual or things

comes back to affect that person or thing again. See Figure 1 for a feedback example.
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Figure 1 - Schedule Feedback Loop (Abdel-Hamid andMadnick, 1983)

System dynamics is a very good approach for determining the cause and effect of

organizational problems. Most individuals find it difficult understandmultiple causes and

effects when they are separated in time. That is, system dynamics allows people to understand

the causes and effects of a problem even when time is a factor.

The steps of the simulation process described above still apply when using system

dynamics to simulate a problem area. The initial modeling is done with causal loop diagrams

(CLDs), which represent the problem by arrows that show relationships between actions. The

model translation, or the program of the model in a computer language, is based on the use of
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flow diagrams. These diagrams incorporate equations to represent the system. Creating a

simulation using system dynamics requires the creation of causal loop and flow diagrams.

1.3.1.2 CLDs. "CLDs consist ofvariables connected by arrows denoting causal influence

among variables"(Cano, 2003); that is, these diagrams show how one set of variables affects

another set ofvariables. An arrow indicates the movement between variables. The arrowhead

has a plus or negative polarity. The plus (+) indicates positive change, while the minus (-)

indicates negative change (Houston, 1996).

Death Rate

Fractional

Birth Rate

Average

Lifetime

Figure 2 - Simple CLD (Cano, 2003)

The arrows then further connect to create loops. Bustard et al. describe some of the

effects that loops can have on a given system. These can demonstrate how one cause may have

an escalating or diminishing effect on a system variable. A cause in a loop can also be cancelled

out by another cause in the loop. This is called a balancing or negative feedback loop. An

increase in action by the loop is called a vicious cycle and a decrease in action is called a

virtuous cycle. Individual loops can have both polarities and cycle names.

This modeling technique helps organization members learn about a given problem. To

create these models, individuals within the organizationmust be involved to gain a full

understanding of all the variables. Cano comments that a single personwithin an organization

should never create a CLD (2003). Many members should observe the multifaceted dimensions

22



of a problem to determine the strongest variables. The CLD is likely to have a certain number of

variables creating causal loops that interconnect with other loops. As in Figure 3, the more

variables that are brought into amodel, the more complicated the resulting web.
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Figure 3 - A more complicated CLD (Bustard, 2000)

Because CLDs provide an overview of the problem, tracing through the loops often

explains the effect of a variable in a given system. However, when time is involved, it becomes

difficult to see the overall effect that a variable, or multiple variables, may have on a system.

This leads to software programs designed to diagram variables over time.

1.3.1.3 FlowDiagrams. To understand the dynamic changes ofvariables within a

system the use ofa modeling tool is needed. Though flow diagrams closely resemble CLDs,

they use a slightly different notation method as well as mathematical notation.
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Figure 4 - Flow Diagram (Bustard, 2000)

Bustard et al. describe the different components of flow diagrams and how they relate

(2000). In flow diagrams, the square often called a level represents an accumulation of

physical or logical factors. Flows, or lines, represent the addition or deletion ofmaterial stored

within the square. The flows often represent human actions or decisions. Houston comments

that decision functions, or valves, control these flows (1996). The link between stocks and flows

resembles CLDs. Influences, depicted as circles on the model diagrams, act as outside

influences on valves. Clouds, which represent sources, denote concepts that lay outside the

scope of the problem.

These models and their mathematical representation can then be generated with the use of

simulation software. The results of simulation software form a line graph depicting the change

in a variable over time.
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Figure 5 - Sample System Dynamics Output for Brook's LawModel (Madachy, 2003)

1.3.1.4 Advantages. Carr explains why the software development process may benefit

from the use of system dynamics (1990). To review, system dynamics requires three attributes:

complexity, dynamism, and feedback. Because the software development process is complex, it

involves coordinating several variables, including soft variables. The process is also dynamic

because the values of these variables change over time. Finally, feedback is present in software

development. Because software development satisfies these three requirements, it is a perfect

candidate for system dynamics.

System dynamics provides the ability to model several soft variables that impact software

development. These soft variables include qualitative factors such as motivation, workload, and

advancement opportunities. Using system dynamics allows users to understand how certain

decisions or environmental factors affect the software development lifecycle.

1.3.1.5Disadvantages. There are several reasons why systems dynamics may not be the

modeling choice for every complex system. Because several problems exist within the current

state of system dynamics, it is likely to face problems in the future.
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Some of the cited problems with the current and future state of system dynamics include:

problems understanding model behavior and a shortage ofquality practices, validating models,

and education in the system dynamics field. The resolution of these problems would encourage

organizations to adopt this approach.

The advantages and disadvantages of system dynamics are discussed in greater detail in

Chapter 2.

1.3.1.6Mapping the software development lifecycle model using system dynamics.

In their book on software project dynamics, Abdel-Hamid andMadnick examine how the

software development life cycle model can be mapped into the systems dynamic model (1991).

When simulating a system, the problem area and its scope must be established. They then

examined the behavior of scheduling, productivity and staffing, and their interactions. The scope

of the simulation, or model boundary, was confined to the development phases including testing.

This model represents both developers and projects managers.

In order to effectively represent this complex system, Abdel-Hamid andMadnick divided

it into four subsystems: human resource management, software production, planning, and

controlling. They assigned each subsystem a certain set of responsibilities. The human

resources subsystem was responsible for the "hiring, training, assimilation, and transfer of the

project's human
resources"

(p. 21). The software production subsystem included development,

quality assurance, rework, and testing. The information collected by the software production

subsystem was subsequently passed to the planning system where schedule changes could be

made as needed. Lastly, the controlling system allowed for the comparison between the project's

estimates and its current status.
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Figure 6 illustrates the communication across subsystems, allowing for a greater

understanding of the feedback loops involved and the complexity of the system.

Progress

Status

Work \ Work Force

Force \ Needed

Available

Software

Production

Controlling

Effort Remaining

Schedule

Figure 6 - Software Development Subsystems (p. 22)

To represent variables such as manpower and experienced work force, Abdel-Hamid and

Madnick used levels and rates to change these value levels.

Figure 6 is a high-level view of the software development sector. There is one level

representing the tasks developed. There is one rate representing the software development rate

(SDVRT). There are two auxiliaries: the fraction of effort for system testing (FREFTS) and the

dailymanpower for software development (DMPSDV). The outside influences, or external

variables influencing the subsystem include: perceived job size (PJBSZ), perceived task

remaining size (TSKPRM), the dailymanpower for software development/testing (DMPDVT),

and software development productivity (SDVPRD). Outside influences often affect SDSVT, or

the factor determining the level of tasks developed.
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Figure 7 - Software Development Sector (p. 78)

Equations lie behind each of these components. For example, in the human resource

subsystem the average employment time can be calculated by a single equation. Information

represented in the equation includes the number of experienced work force (L), the time in years

(t), and the average employment time in years (T). The following equation is then used to

compute the average employment time.

L(t)= L(0) x
e(~1/T)

Equation 1 - Average Employment Time (Abdel-Hamid & Madnick, 1991, p. 66)

The system dynamics model can simulate many facets of the software development

process. In order to model these parts, one must know the variables affecting the simulation and,

consequently, the larger problem at hand. When dealing with a large scope or problem area, it

may be best to segment the processes into their appropriate subsystems. Subsystem variables
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can then be represented through the use of levels, rates, and auxiliaries. Outside variables can

also be represented.

The advantages and disadvantages of system dynamics along with its application to

software development projects are further discussed in Chapter 2.

1.3.1. 7 Prior applications ofsystem dynamics to software development. Several individuals

including Abdel-Hamid andMadnick have conducted studies where system dynamics was used

to simulate software development organizations. The studies elaborated on in Chapter 2 include

the following:

Software Project Dynamics: An IntegratedApproach, by Abdel-Hamid and

Madnick (1991), explains system dynamics via its application to a problem in a

software development organization.

System DynamicsModeling andSimulation ofSoftwareDevelopment is a tutorial

byDan Houston (1996) that explores the simulation of systems, and then explains

the system dynamics approach. Houston later uses diagrams by Abdel-Hamid to

show how software development can be modeled using system dynamics.

"Software Process SimulationModeling: Why? What?
How?"

byMarc I. Kellner,

Raymond J. Madachy, and DavidM. Raffo (1999) takes a look at why simulating

software processes is worthwhile, what should be simulated, and how it should be

simulated, with an emphasis on system dynamics.

A Ph.D. dissertation proposal by Ioana Rus (1997) ofArizona State University

discusses modeling problems that occur with software quality and how these

problems can be modeled using system dynamics.
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1.3.2 Easel

Easel, Emergent Algorithm Simulation Environment and Language, emerged from

survivability research conducted by the SEI. System survivability describes a system's ability to

withstand attacks, failures, or accidents to fulfill its purpose (Fisher, 1999). A system can be

anything from a network to an actual computer. Easel simulations can operate under limited

visibility, that is, with actors who are unable to see beyond the local scope of an action, an

inability which ultimately leads to emergent behaviors.

1.3.2.1 Background. The idea behind emergence is that local, simple actions can

produce global patterns without the help of administrative authorities (Fisher, 1999). These

patterns emerge naturally. Easel helps to predict these patterns because it is able to represent a

number of actors, or nodes. Muchwork has been done at the SEI with Easel to produce network

patterns, but it is widely believed that Easel may also be used to predict software development

patterns.

Easel may be used with almost any system that has emergent properties. It can be used to

represent a dynamic and complex system, or a system with amultitude ofvariables. It can also

be used to represent systems influenced by visibility between objects, where the consequences of

local actions are hard to determine. A node's view of an organization or system is often

restricted to a certain area, which Christie and Fisher refer to as
"unboundness."

Easel differs

from other software development modeling software, because it can actually alter the

topographical relationship between actions during simulation. To model these unbounded

systems, Fisher believes that, "a loosely coupledmultiprocessingmodel with near neighbor

communicationwith parallel semantics is
needed"

(1999). Most simulation languages use a

sharedmemorymodel with interleaved semantics instead (Fisher, 1999).
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No single modeling technique is recommended for Easel. It is a property-based language

and deals with property-based types, otherwise known as object-oriented language classes.

Because everything in Easel is some form of a type, Easel supports many built-in types as well as

the creation of additional types. Part of the type hierarchy is shown in Figure 8.
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Figure 8 - Partial Type Hierarchy of Easel (Fisher, 1999)

One of these types, the actor, can be used to simulate entities in the real world. Actors can be

used to represent almost anything, from a system administrator to an ant. Actors are unique in

that their behavior is threaded and they have
"neighbor"

relationships. Since there is no global

visibility, it is possible to define the relationships between actors. This actor can then affect the

state ofother actors, such as an observer, whose main purpose is to observe and then gather data

from the simulation. Another actor is a facilitator whose job is to set up and control the

simulation. When the simulation is executed, these actors begin and end their work in parallel-

simulated time (Fisher, 1999).
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Easel is very similar to other languages because it has many of the same data types and

control structures. The Easel Language ReferenceManual and Author Guide, created by

Christie, Durkee, Fisher, andMundie at the SEI, explains Easel's language structure and

available types. It also provides examples useful to Easel programmers.

1.3.2.2 Advantages. In addition to the advantages ofEasel mentioned above, Alan

Christie and David Fisher (2000) state many reasons for Easel's attractiveness as a simulation

tool. Among these are the following:

It can support a large number of actors

It has many conventional programming language features

It simulates processes without all information present

It provides many statistical functions

It includes a simulation tool known as graphic visualization

It supports an interactive user interface

It provides a bird's eye view ofa system

Its main advantage is the ability to show topographical relationships and provide actors with a

limited view of data, which can lead to emergent behaviors.

1.3.2.3 Disadvantages. Because Easel was only recently developed, few case studies are

available for review. Currently, the only resources about Easel available to developers are a

limited number ofpublished papers, the individuals responsible for creating Easel at SEI, and the

forums hosted at the CERTWeb site. However, information about Easel may increase with its

recent production release.

The advantages and disadvantages ofEasel are discussed in greater detail in Chapter 2.
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1.3.2.4Mapping the SoftwareDevelopment Life CycleModel Using Easel. In their

paper on the use of simulation in complex software-intensive organizations, Fisher and Christie

support the claim that Easel can be used to simulate software development (2000). Because they

define software development organizations as systems that exude emergent behaviors, Easel

presents an ideal modeling tool. Individuals within these organizations can function without

complete knowledge of the entire organization.

Easel provides the opportunity to model the factors that play a role in software

development. One of the attractive qualities ofEasel is that, through the use of actors, it can

model a large number ofphysical world entities. These actors range from project managers to

quality assurance team members. Thus actors allow for each person involved in the software

development lifecycle to play a role in the simulation. The actors, like members of an

organization, can work simultaneously, come into emergence late in the process or leave in the

middle of the process, exhibit separate behaviors, and have a relationship with their neighbors.

The tasks that the software developers are working on can also represent an Easel type. These

types can both have attributes and be seen on a global scale and, ifnecessary, be hidden from

other developers.

Figure 9 shows Easel code that defines developers (Christie, 2002).

developer (s :sm) : actor type is

# developers implement modules

devID: int := ? ;

mod: :module := ?;

num_mods : : int : = 0 ;

devT : : number : = 0.0;

modList: : list := new list module;

modListl:: list := new list module;

dev_state:: dev_states:= free;

tm : number : = 0.0;

for every true do

if (length modList) > 0 & dev_state = free then

mod :=

pop modList;

push (modListl, mod) ;
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dev_state := occupied;

mod.startT := devT;

mod . endT : = devT+mod . dev_time ;

devT := max (mod. endT, tni);

num_mods : =num_mods-l ;

outln("dev ID: ", devID,
"

mod

ID: ", mod.modID,
"

proj ID: ", mod.proj .proj ID) ;

outln( "start time: ", mod.startT,
"

end time: ",mod. endT,
"

mods remaining ", num_mods) ;

outlnC ");

drawMod(s, self, mod) ;

wait mod.dev_time;

mod.mod_state: = completed;

dev_state := free;

else

tm:= tm+s.dt;

wait s.dt;

Figure 9 - Developer Actor Code

In this code, the developer is first declared an actor. As indicated above, the developer has

several different attributes including the following:

A developer ID

A module or task that the developer is currently working on

A number of currently assignedmodules

A current development time

A list of assigned modules

A list ofmodules completed

A development state defined as either
"free"

or
"occupied"

A current time

Below these attributes, Christie lists the action of the developer. If the developer is free and has

several assigned modules, she must work on amodule ofher choosing. If there is no assigned

work, the developer will simply wait. Like the developer, the module will also have attributes
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such as an ID, a state, a development time, a start and end time, and an umbrella project to which

it belongs.

Easel creates any entity requiring representation in a simulated module. Then, through an

actor that represents a projectmanager, these entities are brought together as they would be in

the real world. Figure 10 illustrates this bridge.

manager (s:sm) : actor type is

# managers assign modules

prj :project := ? ;

for every true do

for prj: every s. projList do

if prj .prj_state != closed then

if prj .prj_state
= unallocated then

assign_mods_to_developers (s, prj ) ;

prj .prj_state
:= allocated;

else if prj .prj_state = allocated &

all_mods_completed(s, prj) then

prj .prj_state:
= mods_completed;

outln("all mods completed for

project ", prj.projID);

outlnC ") ;

else if prj.prj_state=mods_completed then

prj .prj_state := closed;

wait s.dt;

Figure 10 - Project Manager Actor Code (Christie, 2002)

The code indicates that a manager, who can be assigned to one or more projects,

distributes the tasks or modules to the developers on the team. The project manager can also

monitor
developers'

progress. Because they are each provided threads of control, these actors

can then run simultaneously and can communicate as needed.

With the ability to represent individuals, their tasks, and the appropriate attributes, Easel

can simulate the software development life cycle. Individuals such as designers, developers,

testers, quality assurance personnel, and managers are represented through actors, and the tasks

they are working on can be represented through Easel types. Actors can interact socially and

certain actors can monitor particular tasks. By factoring project development and representing
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those involved with each stage ofdevelopment, Easel realistically portrays what happens within

the software development life cycle at several levels.

1.3.2.5 PriorApplications ofEasel to SoftwareDevelopment. Christie and Fisher have

investigated Easel and its application to the software development field. The following

documents discuss their work with Easel and how itmay be used to simulate the software

development life cycle. Other studies are discussed in greater detail in Chapter 2.

Christie and Fisher (2000) presented their paper, "Simulating the Emergent

Behavior ofComplex Software-Intensive
Organizations,"

at the ProSim 2000

Workshop in London, England. It discusses the advantages ofusing the Easel

language and why it can be used to model the software development life cycle.

Christie and Fisher also created a PowerPoint presentation, "Easel A New

Simulation Language and Its Application to Software
Process,"

that discusses the

need for Easel, its language design, and its application to software development

processes.
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CHAPTER 2

LITERATURE REVIEW

2.1 System Dynamics Literature Review

JayW. Forrester, Germeshausen Professor Emeritus and Senior Lecturer atMIT's Sloan

School ofManagement developed the Systems Dynamics method. In his book, The Beginning of

System Dynamics (1995), Forrester discusses the birth of the system dynamics field.

2.1.1 Beginning ofSystem Dynamics

Forrester started the System Dynamics Group atMIT in 1956. The first application of

system dynamics, known as industrial dynamics, emerged when Forrester joined with General

Electric to discuss its recurring problem with employment instability. This problem proved

particularly troublesome considering the high demand for GE products. Using only a pencil and

paper and the information that he had gathered about hiring and inventory policies at General

Electric, Forrester conducted a simulation. With this simulation, he determined that the system's

instabilitywas due to poor decisionmaking at the management level.

Forrester was later asked to join the Digital Electric Corporation's board of directors,

where, through the modeling oforganizational structures, he gained insight into the nature of

high technology corporations and expanded his choice ofmodeling variables (Forrester, 1995).

In addition to looking at physical variables, he recognized that system dynamics techniques

could be applied to organizational policies. In IndustrialDynamics: aMajor Breakthroughfor

Decision Makers (1958), the first published report describing system dynamics, Forrester

discussed how "industrial company success depends on the interaction between the flows of
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information, materials, money, manpower, and capital
equipment"

(Roberts, 1978, p. 37).

Forrester then published IndustrialDynamics, which was intended to be used as a textbook.

As noted in the book Urban Dynamics, Forrester began applying the system dynamics

approach to urban dynamics in 1968. Although Urban Dynamics explored sensitive topics, the

book was well received and demonstrated general applications of the system dynamics approach.

The book also showed that the system dynamics technique could be applied to world dynamics.

In 1970, Forrester was invited to a Club ofRome meeting. The Club ofRome is a nonprofit

group that consists ofvarious members from an array ofprofessions that study global trends

while avoiding the influence ofpolitical andmonetary concerns. Using the issues discussed at

that meeting, he built a model that appeared in his next book, WorldDynamics. This book was

widely acclaimed for illustrating the versatility of system dynamics and influenced the

publishing ofThe Limits ofGrowth (Meadows, 1972), where a world model was utilized to

examine "accelerating industrialization, rapid population growth, widespreadmalnutrition,

depletion ofnonrenewable resources, and a deteriorating
environment"

(Pestel, 1972). This

model produced eye-opening conclusions culminating with the claim that the earth cannot

withstand present growth trends which will eventually produce a catastrophic decline in

population and industry (Pestel, 1972).

For years, Forrester had recognized the flexibility of industrial dynamics, and its ability

to model large, complex systems (Edwards, 1997). Thus, to reflect the system's wide range of

capabilities, he officially changed its name from industrial dynamics to system dynamics.

Currently, system dynamics research is in a state ofrapid growth. Forrester is still

actively involved in this field and continues to teach system dynamics atMIT, reaffirming that

system dynamics provides a generalized approach to problem solving.
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2.1.2Applications ofSystem Dynamics

System dynamics has been applied to many fields. Forrester's initial work has shown

that system dynamics modeling and simulation can be applied to corporations (Forrester, 1 962),

the public (Forrester, 1969), and global industries (Forrester, 1971). Examples of the scope of

system dynamics include its application to: corporate management, process improvement,

economics, biology, medicine, energy and the environment, theory development (Dill, 1997),

dynamic decision making, supply chain management, and software development. Several

system dynamics application descriptions are presented below.

2.1.2.1 Corporatemanagement modeling. Several system dynamics applications and

case studies as they apply to corporate management are available. The textsManagement System

Dynamics andApplication System Dynamics illustrate system dynamics application to corporate

problems.

Management System Dynamics (Coyle, 1977) applies system dynamics to the corporate

world. In his discussion of socio-economic systems, Coyle describes how the forces that cause

dynamic change can be better understoodwhen they are modeled as a system. The book also

includes several system dynamic management case studies.

The other text,ManagerialApplications ofSystem Dynamics (Roberts, 1978),

summarizes system dynamics tutorials based on early articles in the field. The book provides

manymodels and sample code in DYNAMO, a simulation language, for system dynamics

simulations.

Several other papers highlight system dynamics real-world use inmanufacturing,

marketing, and management. In a 1984 article in the StrategicManagement Journal, J.D.W.

Morecraft shows how simulations can "act out the consequences of strategy proposals in their
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full organizational
setting"

(p. 215). He emphasizes how system dynamics models can help

executives bothmake decisions and understand overall corporate strategy. System dynamics has

been used to "support project bids, to identify risks, and to assess the benefit of several process

and organizational
changes,"

(Lyneis, Cooper, & Els, 2001, p. 237) allowing corporations to

learn from previous complex projects in order to improve future performance.

Because system dynamics models allowmanagers to make better business decisions by

reliably predicting factors such as demand, revenues, and profits, they provide management with

a better understanding of industry behavior (Lyneis, 2000). Managers can then enforce polices

andmake decisions that improve an organization's overall performance.

These journal articles have widely supported the system dynamics approach and its

application to corporate management. System dynamics enables management to make smarter

decisions when deciding "which aspects of the performance of the process are to be measured

and how these measurements are to be used to change the level or resources utilized in the

process"

(Powell, Schwaninger, & Trimble, 2001, p. 63). However, these articles also

emphasize the need to improve business processes using the system dynamics approach. Thus,

in short, although system dynamics has allowedmanagement to explore the effects ofmodifying

a single process, there remains room for improvement within business processes.

2.1.2.2Biological andmedicalmodeling. System dynamics has also been applied to the

health field in an attempt to manage epidemics, thereby reducing the risk ofhealth-related

disasters. It has helped managers in the health field "understand the impact of alternative

strategies for addressing disasters such as national
epidemics,"

(p. 119) and was proven effective

when it helped to control an outbreak ofdengue fever inMexico (Ritchie-Dunham & Galvan,

1999). System dynamics modeling can also inform healthcare officials on how to make the best
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possible decision when faced with the outbreak of an infectious disease. For example, system

dynamics has provided healthcaremanagers with the ability to understand the impact of certain

policy changes and has taught them how to create scenarios portraying "future trends in reported

AIDS
cases"

(Dangerfield & Roberts, 1999).

Furthermore, research is not limited to epidemics of infectious disease. In an article

published in 2002, Tarek Abdel-Hamid explored the threat of an obesity epidemic by creating a

model that reflected an individual's weight gain and weight loss. Using system dynamics, he

included several variables, such as metabolism and exercise. Among other observations, he

discovered that diets loaded with carbohydrates can still result in significant weight loss.

2.1.2.3 Energy and environmentalmodeling. In a few cases, system dynamics has

provided a greater understanding of the environment. Previously, fractured bedrock flow was

difficult to represent mathematically, but the coupling of system dynamics modeling with field

and laboratory data, has allowed researchers to develop equations that accurately represent this

complex system (Abbot & Stanley, 1999). System dynamics has also been used to illustrate the

public's ignorance about global warming (Sterman & Sweeney, 2002). In a study that used

system dynamics models, students were asked to predict the environmental impacts ofCO2 on

different scenarios. The results showed that even highly educated students were unaware of the

effect ofCO2 on the environment and its connection to global warming.

2.1.2.4 Dynamic decision makingmodeling. As we have seen, system dynamics can aid

decisionmaking in the corporate management arena. However, it can also be used to model

human decisionmaking in general. The Carnegie School conducted a study illustrating how

system dynamics can be used to simulate the human decision-making process (Morecroft, 1983).

This case study "reviews and contrasts the concept ofbounded rationality as developed by
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Herbert
Simon"

(Sastry & Sterman, 1992). Another study on human decision making atMIT

linked the human decision-making process to the production of chaos (Sterman, 1989).

2.1.2.5 Supply chain managementmodeling. Some time after Forrester explored supply

chain management in IndustrialDynamics, the use of system dynamics in supply chain

management has begun to regain popularity (Angerhofer & Angelides, 2000). On a broader

scale, studies have explored the application of system dynamics to international supply chain

management strategies (Akkermans, Bogerd, & Vos, 1999) and "observed [the]
roadblocks"

hindering international supply chains. Other studies have simulated emergent supply networks

through the use of agent-based modeling and system dynamics (Akkermans, 2001). These

studies have shown that system dynamics is important when dealingwith inventory,

management, and policy decisions. Further system dynamics research is needed to effectively

combat the problems prevalent in partnership supply chains.

2.1.2.6 Software engineeringmodeling. Several studies have tested the application of

system dynamics in software-development organizations. Abdel-Hamid &Madnick's Software

ProjectDynamics: An IntegratedApproach (1991) uses system dynamics to simulate various

sectors ofa software-intensive organization and discuss the lessons learned through system

dynamics modeling. The Dynamics ofSoftware Project Scheduling (1983), an article also by

Abdel-Hamid andMadnick, looks at the system dynamics approach in order to take a closer look

at the variables that influence a software project's schedule. Tvedt's Ph.D. dissertation on

process improvement (1996) explores various simulation techniques, with an emphasis on

system dynamics, in order to explore various process-improvement approaches. Ioana Rus's

Ph.D. dissertation proposal on software quality (1997) discusses modeling problems that occur

with software quality and how these problems can be modeled using systems dynamics. Kahen,
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Lehman, and Ramil's paper (2000) on long-term software management uses system dynamics to

explore process improvement over a lengthy period of time while focusing on crucial project

areas. These studies focus on specific processes, such as quality assurance and inspection, as

well as policies dealing with variables such as scheduling and costs. A few of these software-

development-related system dynamics studies are discussed below.

2.1.3 Organizational Studies

Tarek K. Abdel-Hamid and StuartMadnick developed a system dynamics model for

software development systems (Abdel-Hamid, 1984). In 1990, they published a case study that

applied a system dynamics model to NASA's DE-A software project.

The DE-A software system was designed "for processing telemetry data and providing

attitude determination and control for the DE-A
satellite"

(p. 40). A full 85% of the actual project

budget was allocated to software development, and the remaining 15% to testing. Thirty percent

of the development cost was allocated to quality assurance (QA). As this project needed to be

finished on time, schedule slippage was not tolerated. Thus, when the project began to fall

behind schedule, management added a number ofnew people to the project. In the end, although

the project was larger and more expensive than expected, it was delivered on time.

System dynamics modeling allowed Abdel-Hamid andMadnick to explore several

important topics. They were able to experiment with a previously developedmodel to determine

the roles that staffing and QA played in this project. The model for software development had

four subsystems: control, which included factors such as productivity and perceived project size,

planning, which included factors such as schedule pressure and forecasted completion date,

software production, which included factors such as error rate and actual productivity, and

human resource management, which included factors such as hiring and turnover rates.
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When experimentingwith staff increases and decreases, Abdel-Hamid andMadnick

discovered that Brooks's Law does not apply in every situation. Brooks's Law, which states that

addingmanpower to a late project only serves to make the project later, is discussed in more

detail later in this chapter. They concluded that "the drop in productivitymust be large enough

to effectively render each additional person's net cumulative
contribution"

(p. 42) in order for

Brooks's Law to be applicable. They ran several test cases using a constant 380-day schedule,

and estimated that the project could be completed with 234 man days, thereby decreasing 10.6%

of the total project cost.

They also tried lowering the time and budget spent on QA to determine the optimal

amounts. They concluded thatNASA could achieve the same level ofquality even if they

lowered their original 30% QA budget allotment to 15%.

Abdel-Hamid and Madnick hoped to identify some of the problems within the software

development process to enable others to leam fromNASA's mistakes, thus reducing the chance

of similar errors in the future. They stressed that hiding frommistakes is detrimental to progress

and that system dynamics simulating can provide a method by which to leam from mistakes.

In a study conducted by Raymond J. Madachy in 1996, the software development process

was modeled to examine the effects of inspections on a project's factors such as cost and

schedule. This model was intended to establish a "baseline for benchmarking process

improvement"

(p. 376), to collect data on different software development process tradeoffs, and

to provide managers with tools enabling them to make streamlined plans.

To develop an accurate model, Madachy conducted an "extensive literature review,

analysis of industrial data, and expert
interviews"

(p. 377). The scope of this model, which

begins and ends with the appropriate phases of the waterfall life cycle, simulates only the
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software development, quality assurance, and testing sectors. Madachy collected the data for this

model from both Litton Data Systems and expert interviews with Litton personnel.

The model reflected activities starting with the design stage and ending with system

testing. Inspections and system testing were the onlymethods ofdefect removal. It is worth

noting that inspection-training costs were not included and that errors were introduced in both

the design and coding phases. Variable input consisted of"job size, productivity, schedule

constraints, and resource leveling
constraints"

(p. 378).

The model was then calibrated using the COCOMO model and the data collected from

Litton Data Systems. Testing of the model, which dealt with factors such as error generation

rates, job size, and schedule compression, was conducted using test cases and Litton data.

The results in some studies showed that inspections added about 10% effort in both the

design and coding phases, while reducing test phase efforts by about 50%. Error generation rate

test studies showed that "if there is a low defect density of inspected artifacts, then inspections

take more effort per detected error and there are diminishing
returns"

(p. 381). The simulation

showed that inspections were not beneficial when defects/KSLOC fell below 20%.

Simulation test cases also showed that a "fixed staff size entails a longer project schedule

by about
30%"

and schedule compression showed that "average personnel level increases and

the overall cumulative cost goes up
nonlinearly."

Overall, it was shown that this model is

scalable on several levels and shows a significant return on investmentwhen inspections are

introduced only after considering aspects such as "phase error inspection rate, error

amplification, testing error fixing effort, and inspection
efficiency."

In his study's conclusion,

Madachy suggests exploringmanymore project variables such as model validation and

variations on staffing policies.
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Gordon E. McCray and Thomas D. Clark Jr. explored outsourcing options using a system

dynamics model (1999). Their model was created to quantitatively determine whether or not an

IT organization should build or buy a product. The model, which depended on the organization

structure, included factors such as "organizational policy, perceived benefits, and levels of

knowledge,"

as well as market stability and competition.

The model they created included five sectors based on the "logical grouping of system

variables,"

which included the following: internal software acquisition sector, external software

acquisition sector, internal hardware acquisition sector, external hardware acquisition sector, and

boundary management sector. The internal software acquisition sector included variables such

as how the use of internal resources can meet the demand for an application. The external

software acquisition sector included variables such as how outsourcing can impact internal

variables. Both hardware sectors contain variables for processing and staff resources. The final

sector, boundarymanagement, consisted ofvariables that drive the other model sectors, such as

knowledge transfer rate and cost control pressures.

Through experiments, the authors researched the "impact oforganizational and

environmental factors on the outsourcing
decision"

and "whether long-term benefits accrue to

those firms that elect to
outsource"

(p. 358). They experimented with the model during two

independent phases: the outsourcing of application development work phase and the outsourcing

ofprocessing capabilities phase. Some of the variables critical to the simulation included the

technologymarket stability and competitive stability. Lesser variables includedmanagement

pressures to control costs or retain control over development.

Simulations for application development outsourcing were run under both the

encouragement and discouragement ofoutsourcing hypotheses. The experiment showed that
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"high levels in both the technologymarket and the competitive market also precipitate low levels

ofoutsourcing ofdevelopment
work"

(p. 360). However, when there is management pressure to

retain costs and internal control is relatively low, the likelihood ofoutsourcing increases

significantly.

Overall, the experiments indicate that "success of the outsourcing is heavily dependent

uponmanagement
policies"

(p. 370) and that the wide adoption ofoutsourcing will ultimately

result in lower service levels. The latter is due to the expected cost decreases associated with

outsourcing. In other words, projects will be allocated fewer funds, which will result in lower

service levels. This study sheds light on the advantages and disadvantages ofoutsourcing as well

as all the variables that affect the buy or build decision.

A similar case study focused around an Australian service organization called Gigante

(Bustard, Kawalek, & Norris, 2003). Though Gigante was releasing new products at ever

increasing rates, its overall product quality was decreasing. They blamed the process, but

remained unsure about why the process was failing.

In an attempt to solve the problem, a system dynamics approach was taken. First,

researchers created data flow diagrams by interviewing Gigante employees. Then, they recorded

the factors associatedwith tracking and preventing errors such as defect rate, customer

satisfaction, training hours, and knowledge gap. They then created a system dynamics model

with iThink that used all of the appropriate observed variables, includingmany soft variables.

The apparent sectors included: training, knowledge base, workforce, and error detection and

correction.

Running the simulation singled out variables affecting the error rate, such as the period

between product releases. If the period was too short, the appropriate training ofnew staff
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became nearly impossible and error rates increased. The number of staff also played an

important role. For example, if an organization is short-staffed, employees cannot fix errors

because they are overworked.

System dynamics modeling has shed much light on the IT and software development

industries. Thus, knowledge about processes within these fields will continue to grow as system

dynamics expands.

2.1.4 Tutorials

A recent text on systems thinking is Gharajedaghi's Systems Thinking: Managing Chaos

and Complexity (1999). Gharajedaghi highlights several system principles, including the

emergence property and dimensions. His examples also employ several types ofmodeling and

relevant case studies. He compares learning systems thinking to a chess game, where the rules

are simple yet the outcome is often unpredictable. Another useful book for understanding the

importance of systems thinking inmanagement is
Haines'

The Systems ThinkingApproach to

Strategic Planning andManagement (2000). Haines uses systems tliinking to provide a
step-by-

step guide to organizational improvement.

After becoming acquainted with systems thinking, the next step is to create a system

dynamics simulation. To do this, one must leam about feedback loops, system dynamics

modeling, and simulation tools. Several texts are available about one or more of these topics.

Dan Houston ofArizona State University-(ASU) created a brief tutorial (1996) on system

dynamics modeling, particularly its uses with software development. This brief tutorial

discusses systems thinking, the overall simulation process, and the basics of creating a simple

system dynamics model. Houston completes the tutorial with an explanation of the software

developmentmodel created by Abdel-Hamid.
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Another publication from ASU (Kirkwood, 1998), which provides a briefoverview of

system dynamics modeling and simulation procedures, is designed to help novice users model

business processes. This tutorial begins with a discussion of systems thinking and then outlines

basic modeling approaches. By going into greater depth than Houston's tutorial, it provides the

reader with more insight on the modeling process.

The System Dynamics Education Program under the direction ofForrester, created an

online resource known as RoadMaps (SDEP: Road Maps). This program, a nine-chapter user's

guide to system dynamics, is recommended for both-beginners and advanced system dynamics

users. The program, which discusses everything from feedback loops to real-world examples,

functions as an all-inclusive study guide. As such, it includes many examples and cites many

papers dedicated to the study of this modeling technique.

A reference for complex system simulation using the simulation language DYNAMO is

the book Introduction to Computer Simulation: a System DynamicsModelingApproach.

(Roberts, Anderson, Deal, Garet, and Shaffer, 1983) The book covers everything from the basics

of system simulation and feedback loop dynamics to the development ofmore complex models.

As such, a wide variety of complex models are demonstrated throughout the book. The

simulation code is limited to the DYNAMO software package code.

Thus, there are several systems thinking and systems dynamics modeling and simulation

tutorials and texts available for beginners. Each text provides readers with a basic understanding

of system dynamics models, allowing them to gain an understanding of the system and develop

an appropriate model for improvement.
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2.1. 5Advantages

System dynamics 's popularity is mainly due to its ability to model complex, nonlinear,

and dynamic systems. However, several other reasons why the system dynamics approach has

become popular are discussed below.

System dynamics has become widely accepted due to its ability to model a variety of

systems and factors, including soft factors which contribute to the increase in a number of

problems (Bustard, Kawalek, & Norris, 2003). Othermodeling methodologies are not ideal for

modeling soft factors such as knowledge base and schedule pressure. The relationships between

soft and hard variables can also be examined through system dynamics simulation.

An organization's structure and policies might lie at the crux of a system's problems.

Because system dynamics has the capability to illustrate the relationship between processes and

the organization, it can be used to teachmanagement policies through existing case studies. This

will hopefully lead to better organization design (Legasto, Forrester, & Lyneis, 1980). System

dynamics can also be used as a training tool, where management explores the impact of

important organization policies and decisions. Furthermore, the visual nature of a system

dynamic simulation's output facilitates comprehension.

2.1.6Disadvantages

Due to the rapid growth of system dynamics over the last 40 years, a few problem areas

have emerged. In an article published in 1996, George P. Richardson, editor of the System

Dynamics Review, provides insight into some current and future problems with system dynamics.

While these problems do not provide an exhaustive list, they do represent some of the most

pressing problems in the field today.
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The first problem Richardson discusses is model behavior. Because it is difficult to

model a complex system, the system model must be developed iteratively. That is, each

successive model increases complexity. This is amethod bywhich to understand model

behavior, but it is very time consuming. Because the system dynamics field lacks the technical

support needed to make "the connections betweenmodel structure and
behavior,"

the difficulty

ofmodel creation increases.

Richardson also notes that documentation onmodels is limited and remains largely

inaccessible. Furthermore, no books or workshops deal with advancedmodeling concepts.

Richardson also points out that there is no accumulation of the results in the system dynamics

field. Without an accumulation of the results in the system dynamics field, scholars cannot build

on previous work butmust reinvent old processes. Finally, because the field lacks a best

practices collection, there is no organized system to aid novice modelers.

Another problematic issue that Richardson notes is the inability to determine when to use

qualitative mapping versus formal modeling. Furthermore, once a model has been created, it

should be validated. Currently, the most "comprehensive statement on model validation and user

confidence in system dynamics
modeling"

is over twenty years old. The field needs new

documentation on validationmethods to rebuild eroding confidence.

The future of system dynamics relies on its ability to "widen the
base"

or educate the

population, to understand the basic principles of system dynamics. Though some work has been

done in this field, particularly at the high school education level, more work needs to be done to

avoid future problems.

Other studies have shown different problematic issues. In the Gigante study (Bustard,

Kawalek, and Norris, 2003) the authors noted a wide variety ofpotential problems, such as
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problems concerning system conceptualization andmodeling. There was also a "tendency to

model the system rather than model the
problem."

Other problems followed, such as how to

determine the level of the system to be modeled, the relevant software variables, and the proper

modeling of those variables.

Because there is a steep learning curve for those who wish to leam system dynamics,

organizations may not be willing to spend the time andmoney needed to effectively train

employees in this system. Furthermore, the authors of the Gigante study found that "many of the

recommendations are contrary to normally accepted management
policies."

Thus, the biggest

concern for most system dynamics supporters is how to convince management to use the

recommendations acquired from a given simulation.

Authors such as Forrester, Legasto, and Lyneis (1980) have noticed other problems with

system dynamics such as model definition. Model definition, including scope and variables,

remain hard to determine. Scholars disagree over what constitutes important feedback and

accurate measurement techniques. The validation ofmodels remains a hot topic formany

researchers, yet represents a problematic area for system dynamics. For example, the model

used for WorldDynamics has yet to be validated.

Before the number oforganizations adopting system dynamics can increase, these and

other problems need to be addressed.

2.2 Easel Literature Review

Easel is a new simulation language developed at the Software Engineering Institute.

Easel belongs to the class of actor-based languages and has the capability to simulate emergent

behaviors in large-scale systems. Although Easel's development was motivated by a need for
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advanced studies in network survivability, the language is well suited for software development

process simulation.

2.2.1 Actor-basedLanguages

Actor-based languages became popular in artificial intelligence (Al) communities in the

early 1980s. Actors represent a single entity containing a knowledge bank as well as the ability

to communicate with other actors and run concurrently with other actors . Prior to the Al

community's adoption of the term
"actor,"

actors were previously referred to as
"objects"

The

first actor-based systems were Smalltalk andMIT's language, PLASMA (Pugh, 1984).

Carl Hewitt (1977) of the MIT Artificial Intelligence Lab first mentioned the idea of

actors in 1976. He wrote a lab memo where he "approachedmodeling intelligence in terms of a

society of communicating knowledge-based problem-solving
experts"

in order to better

understand control structure patterns. In this memo, Hewitt explains how actors can simulate

these experts and pass messages to other known actors. He also discusses how the early

language, PLASMA, can simulate these actor-filled systems. PLASMA, which was derived

from declarative languages like Lisp, was one of the first actor languages. It was followed by

several other languages including: Actl, Act2, ABCL/1, Actalk, and Lucy.

In an article published in 1984, John Pugh discusses an early simulation of an air battle

known as SWIRL, which was conducted using a language called ROSS. The military used this

simulation to recreate air battles. Pugh also discusses how several other languages such as Act 1,

Director, Flavors, and LOOPs have emerged through Al studies.

Gul Agha of theMIT Artificial Intelligence Laboratory further elaborates on the

importance of actor-based languages in his 1986 overview of actor-based languages. He

highlights the concepts of encapsulation and inheritance as important real world experience-
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simulating tools. In his discussion of the overall system, Agha defines three important,
actor-

based concepts which include the ability to sendmessages, to create new actors, and "to specify

a replacement which will accept the next
communication"

(p. 61). The semantics of actor

languages especially Act 1 and the development ofhigher-level actor languages are also

section topics. A few years later, Agha further expounded on these ideas with another paper that

dealt primarily with concurrent computing (1988).

Prior to the 1988 article, Agha (1986) wroteActors: A Model ofConcurrent Computation

in DistributedSystems, where he discusses how actor languages can be used to concurrently

model systems. He also discusses two actor languages: SAL and Act. Although the book

functions as a guide to developing concurrent programs using actor languages, it does not

provide many case studies or
real-world applications of the languages.

2.2.1.1 Characteristics. An actor resembles a human being in that "each actor in a

system can be thought of as playing out an active (acting) role not unlike the roles humans play

in real-life
systems"

(Pugh, 1984). Actors can communicate with other actors by exchanging

messages. They can respond to these messages by changing their behavior or by physically

passing amessage back to the sender. Each actor has a queue where messages are stored until

they are retrieved. There is no central knowledge database, but rather each actor contains its own

knowledge database that can be programmed to share information with other actors. Most

importantly, because these actors have their own thread of control and work parallel to each

other, each actor can run independently. As Frolund articulates, the actor model is a "distributed

application that consists of a collection of asynchronous objects that execute
concurrently."

(1996, p. 3).
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2.2.2Beginning ofEasel

During the 1980's, the Software Engineering Institute (SEI) needed to simulate

unbounded and emergent systems to assert the survivability ofnetwork infrastructure given the

failure of a node or system. From 1985 to 1990, the idea of a property-based language first

emerged (Fisher, 2000). In a lecture about Informalism, David Fisher (1991) ofCarnegie Mellon

University explained the need for a new simulation method. Fisher argued that formal methods

to that point had failed due to several reasons. He asserted that because systems were often

unbounded and physical objects were not finite, they could not be "modeled
completely."

He

concluded that "formal methods are inadequate for describing and reasoning about the physical

world."

Fisher envisioned a language that would be able to eliminate these modeling problems

and more accurately represent the real world.

At that time, no simulation language was able to model changing relationships between

elements within a simulation. These languages also failed to allow elements to alter

relationships after changing an element's physical location. However, with the creation of

Emergent Algorithm Simulation Environment and Language (Easel), researchers at the SEI were

able, on the one hand, to simulate emergent and survivability systems, and on the other, to

simulate a large number of cooperating actors where global visibility and centralized control

were absent. (Belani, Das, & Fisher, 2002, p. 721). Thus, this property-based language helps to

create a representative model of the real world.

David Fisher discusses the background andmotivation behind the creation ofEasel

(1999). He notes that the interest in modeling systems for survivability reasons stems "from the

concerns for infrastructure
assurance"

(Fisher, 1999). By early 1999, the experimental design

and implementation ofEasel had already begun, but the [runtime system] was not created until
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the summer of the same year (Fisher, 2000). Alpha and Beta releases followed in 2001 (Fisher,

2000) and they are currently in their first production release.

The first real-world application ofEasel was undertaken by the Defense Advanced

Research Project Agency (DARPA) which simulated an "emergent algorithm for location-

independent IP routing within a survivable routing
infrastructure"

(DeSantis, 2001). A few other

applications followed, including two simulations about transportation methods in large cities.

Christie and Fisher, with the help of a few SEI colleagues, released an Easel language

guide in 2003 that is available at the CERT website. This document thoroughly explains the

syntax of the Easel language and aids the user in creating useful simulations.

2.2.3 Easel andSoftwareDevelopment

In 2000, David Fisher and Alan Christie gave a presentation about Easel and its

application to the field of software development. Fisher began by showing that a software

development organization is unbounded because complete information about the system is not

known and the people within an organization are dynamic as opposed to static. Thus, Easel can

more accuratelymodel a software development organization than other languages because it

operates with incomplete information and accommodates changing relationships.

Fisher and Christie also released a paper in 2000 on Easel's use in simulating "emergent

behavior of complex software-intensive
organizations."

They emphasize the notion thatmost

decisions in an organization are based on inaccurate information. Thus, the consequences of

these decisions are not only largely unpredictable, but also fail to provide insight into their

associated ramifications. Furthermore, stressful environments often plague software

development organizations whose employees must function under strict deadlines and unclear
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requirements. In response to these pressures, Easel can help organizations adapt to their

organizational problems and the dynamically changing external environment.

2.2.4Advantages

As mentioned, Easel can be used to simulate unbounded and emergent survivability

systems that involve a large number of interacting actors. Christie and Fisher (2000) provide a

number of reasons that illustrate the need for Easel.

Other simulating languages lack the features or functionality needed to simulate certain

systems. Several packages, such as Swarm orMAML, have been created to work with

languages such as C++ and Java, but there remains a shortage of simulation packages

representing actor behaviors. The only simulation tool that can currently compete with Easel is

StarLogo. However, unlike Easel, StarLogo is unable to simulate neighbor relationships or

model complex data structures. System dynamics simulation tools offer these capabilities, but

fix element locations prior to simulation. Conversely, Easel allows the location to vary

throughout the simulation. Fisher and Christie believe that Easel's ability to move elements

during simulation is crucial to the simulation of informal processes, such as social interactions.

In addition to changing neighbor relationships, Easel has several other advantages. Easel

provides a threaded environment where all modeled entities are considered types. Unlike

StarLogo which uses a grid-based graphics system, Easel allows interaction during simulation

via its dynamic graphic display. Actors within the simulation may also communicate with other

actors and are provided with limited visibility. Finally, Easel allows for the manipulation of

entities in a way that is not possible with the use of traditional program objects.
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In short, Easel was created at the SEI in order to fill the need for a simulation tool that

would be able to simulate emergent, unbounded, and complex systems, where neighbor

relationships and a dynamic interactive display would allow the user to observe processes.

2.2.5Disadvantages

Because work with Easel as a simulation tool remains limited, only the SEI at the CERT

Coordination CenterWeb site has documented its uses and results. Easel's relative newness also

brings other drawbacks. Unlike for system dynamics, there exist no established methods for

developing Easel models. Because most of the information available on Easel discusses its

creation, structure, and syntax, developers working to create actual Easel models can only refer

to the limited number of sample programs available on the CertWeb site. However, Easel has

been incorporated into the curriculum at a few schools, thereby enhancing its growth potential.

2.3 Brooks's Law Literature Review

There have been several system dynamics applications ofBrooks's law. These

applications are discussed below.

In 1983, Abdel-Hamid andMadnick published an article on the dynamics of software

project scheduling with regard to the inability and difficulty ofmany software development

project managers to establish an accurate schedule estimate. They recognized that software

development was a complex system where feedback was present. In this article, they discuss the

model that they developed in order to simulate such systems.

They developed amodel of a project with the size of about 1000 tasks, and modeled the

project from the design phase up to and including the integration and test phase. Using the

COCOMO model, an average staff size of34 people is established, along with a schedule of 38
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months. Rework is incorporated into the project and it is estimated that aftermonth 13,

management will look to hire additional staff in order to meet the scheduled completion date.

With the addition of rework, the project is not completed until month 41 .5 and is almost 2

million dollars over the estimated cost of $7,810,600.

Personnel turnover was also taken into account, and average employee commitment time

was estimated at 24 months. With these details considered, the project finished at 51 months,

and at a cost of $9,582,400.

Lastly, estimation error was introduced. When the project first began, the number of

tasks was estimated bymanagement to be 800. The actual number of tasks was 1000, which did

not result in further schedule delay, but did increase the project cost by over $200,000.

Abdel-Hamid andMadnick stress that the dynamic consequences of feedback loops for

complex software development projects are not intuitively obvious; hence simulations of such

complex feedback systems are needed (p. 334). The model also helps to prove that adding

people to a belated software project just lengthens the schedule time, and looks for other sources

of schedule-estimation problems.

Abdel-Hamid andMadnick again approach the solution for this and other problems

through the use of system dynamics in an article on the lessons they have learned from modeling

software development dynamics (1989). They developed a comprehensive model that provided

insight into the problems with project scheduling and other issues such as the 90% completion

syndrome and quality assurance effort.

When dealing with addingmore people to a late project, Abdel-Hamid andMadnick state

that often overhead from communication is ignored whenmaking the decision to higher

additional staff. Higher overhead can lead to a lower production rate, which can onlymake the
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project later. Schedule pressure also plays a role in the lateness in a project, for it may increase

productivity, but it may also increase the error rate, leading to an increased amount of time spent

on rework. Lastly, they comment that since software is intangible, managers must rely on

progress estimates given to them by developers. These estimates are not always accurate,

making the manager's task of schedule estimating more difficult.

The model used for this simulation consisted of four subsystems and is identical to the

model used in their later book (1991). A DE-A case study was conducted atNASA's Goddard

Space Flight Center. The project studied was 24,000 delivered source instructions (DSI) and

programmed in FORTRAN. The initial schedule estimate was 2200 man-days and schedule

slippage was not tolerated. The study showed that due to schedule pressure, developers worked

at a higher rate toward the final stages of the project, yet the net progress rate slowed at the end

of the project. The results of the studies were discussed in the 1991 article, which was discussed

earlier in this chapter.

Project scheduling practices ofU.S. minicomputer manufacturers where managers were

rewarded for accurate project schedules were also discussed in this article. A project whose size

was 64,000 DSI was initially estimated incorrectly at 43.88 KDSI. The project manager made

the schedule estimate using a safety factor and COCOMO estimates which led to a smaller

schedule estimation error.

Their research also showed that one of the causes of lower productivity at the end of a

project is the communication overhead from hiring toward the end ofa project. Overall their

research showed howmodeling can provide the insight needed to make accurate estimations.

In Software Project Dynamics: An IntegratedApproach, Abdel-Hamid andMadnick

devote a chapter to applying their system model in order to investigate Brooks's law. They
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modify their original model to include aspects such as lowered average productivity for new

employees and new employee assimilation rates. They also include a hiring delay of40 days and

an assimilation delay of 80 days and add variables that represent the management's willingness

to hire new developers depending on the estimated project time remaining. Abdel-Hamid and

Madnick repeat their claim that adding more people to a late project does not necessarily result in

a late project, for the cumulative effect ofnew hires does always create a substantial drop in

productivity (p. 218).

A recent study (Hsia, Hsu, & Kung, 1999) revisited Brooks's Law in order to determine

at what point in time more manpowermay be added to a late project without the project fimshing

late. In their experimentation using a system dynamics model, three factors ofBrooks's Law

were taken into consideration: time loss due to training ofnew staff, time loss due to teaching

new staff, and time loss due to communication overhead. The authors believed that to apply

Brooks's Law to a realistic situation, new people could be added only a few times during the

project and that a sequential constraint be present during software development.

The model the authors developed permitted hiring once during the project, and added a

sequential constraint. They then validated theirmodel against the data from the Abdel-Hamid

andMadnickmodel (1991). The results from the simulation showed that the sequential

constraint plays a significant role in project development, and that the optimal time for adding

people to a project "ranges from one-third to halfway into the project
development."

They

concluded that while it is always costly to add people to a late project, there is an optimal time

range to add people within which schedule delays can be eliminated or minimized.

Another study (Caulfield & Maj, 2002) looks at Brooks's Law and the importance of soft

variables when simulating software development projects. The project simulatedwas estimated
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to require 36 man-months, and had a schedule of six months. The project starts with five

developers, although it is known at the beginning of the project that six developers are needed,

and two of the five developers are new staff requiring about two months of training each.

Overhead is represented as "one hour per developer per week per communications
path"

(p. 29).

The authors discuss that soft variables, such as stress and the
stakeholders'

perception of

quality, must also be taken into consideration in order to get amore reliable schedule estimate

and that the use of system dynamics makes this possible (p. 30). The results from the

simulations proved that Brooks's Law is not always valid. As Abdel-Hamid andMadnick saw,

adding developers early on in a project will not always result in a late project.

These applications have shown how Brooks's Lawmay be applied to the development of a

software project through the use of a system dynamics model. Brooks's Law has also shown to

be true in many of the trials, yet trials byAbdel-Hamid,Madnick, and a few others have shown

that Brooks's Law does not always hold true. If additional manpower is added early enough, a

late schedule may be avoided. Through the use of system dynamics modeling, better schedule

estimates can be achieved bymodeling complex feedback systems with soft variables.
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CHAPTER 3

METHODOLOGY

Brooks's Law, popularized in The Mythical Man-Month, is a classic observation and

speculation in the software engineering field. Brooks's Law will be modeled using both Systems

Dynamics and Easel in order to compare and contrast the two simulation methods.

3.1 Introduction

The problem chosen formodeling is Brooks's law. The major model factors will be:

communication overhead, training ofnew employees, and assimilation ofnew employees.

3.1.1 Brooks's Law

In Fred Brooks's collection of essays (1995) depicting his experiences as manager of

IBM's OS/360 project, he discusses the analytical fruit that arose from his frustration with

management and scheduling which has long since been referred to as Brooks's law. Brooks's

Law states that "addingmanpower to a late software projectmakes it
later"

(p. 25). The

following is the foundation of this law: "Cost does indeed vary as the product of the number of

men and the number ofmonths. Progress does not. Hence the man-month as a unit for

measuring the size of a job is a dangerous and deceptive myth. It implies thatmen and months

are
interchangeable"

(p. 16). This law is oftenmisunderstood. Brooks's implies that adding

more people to a late project will onlymake the state of the project worse due to the fact that

men andmonths are not interchangeable.

Brooks provides several reasons whymen andmonths are not interchangeable. The first

of these is the idea of sequential constraints. Some tasks may only be accomplished by one

individual. Adding additional manpower can be useless in these situations. Secondly, tasks that
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can be broken down will result in communication overhead between developers.

Communication in this respect can be both framing ofnew staff and intercommunication. In

training, the new staffmember must be made aware of the technology utilized, the project

strategy, and goals (p. 18). Staffpreviously working on development must allocate time to train

the new staffwhich adds to communication overhead. Although training is timely, Brooks states

that intercommunication is more costly (p. 18). Coordination effort between developers working

on a divided task increases n(n-l)/2. Partitioning of tasks results in an increased amount of

development time spent solely on communication.

Brooks's Law warns managers about adding staff to a late project as a quick fix and his

assumptions are generally supported in the works of others. Brooks's Law has long since been

studied and applications ofBrooks's Law involving system dynamics are discussed in chapter 2.

3.2 Model Descriptions

Before creating simulations using bothmethodologies, the system must first be translated

into an appropriate model. The following section describes the models that will be the basis for

the simulations.

3.2.1 The System Dynamics Model

The initial model chosen for the system dynamics simulation was created byMadachy

(2003) and is shown in Figure 11.
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Figure 11 - SystemDynamics Brooks's LawModel: Flow Diagram

This model depicts the development of software through function points. The

development is not broken into phases; the scope primarily is on the development of the function

points. Therefore, testing and quality assurance, along with anymanager and client entities, are

not represented. This is a simple small-scale model that will be enhanced for experimentation.

This flow diagram consists of several levels. The requirements level holds the number of

function points required for the software project, while the developed software level includes the

number of completed function points. The new project personnel level and the experienced

personnel levels hold the number ofnew personnel and experienced personnel respectively.

There are two valves in the flow diagram. One valve is responsible for the software

development rate, while the other is responsible for the assimilation ofnew personnel which

controls the flow from new project personnel to experienced project personnel. Other influences

to the software development rate are shown as converters, or circles. There is a nominal rate

which is influenced by three other factors: experienced personnel needed for training,
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communication overhead, and training overhead. The three converters determine the software

development rate to control the flow from the requirement level to the developed software level.

The small-scale model is based on a 500-function-point project, where 20 experienced

employees are available at the start of the project. At the
100th

day, new personnel may be

added. This project is estimated to span 274 days with a constant staff of20 developers. If five

developers are added on the
100th

day, the project is estimated to span 271 days. If ten

developers are added on the
100th

day, the project is estimated to span 296 days. The day and

frequency at which new developers are added can be adjusted in addition to the number of the

requirements and the number ofnew employees being hired.

The model will also include a factor not previously incorporated by theMadachy (2003)

model. This addition will provide the capability to simulate the addition of new requirements

after a project has begun. The model for Brooks's Law is shown again below with an additional

valve that adds requirements throughout development in order to represent requirements creep.

requirements

-5h>

requirements

creep rate

developed software

experienced personnel

personnel allocation assimilation rate

Figure 12 - Brooks's Law with Requirements Creep
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Three project scenarios will be examined during experimentation. For both the small and

medium project, the above model will be used. To better represent a large system, where

developers are broken into teams and the amount ofoverall communication overhead is reduced,

the model will need to be further refined. The model will also include a team-size level to

represent the number of developers per team.

requirements developed software

personnel allocation rate

softwa

nominal productivity

neefjedfortrainiri

new project pers
/ \

xy$m\ experienced; pei

training overhead: f~~\

% FTE experienced
^-^

mentoring overhead %

assimilation rate

Figure 13 - Brooks's LawModel for Developers Broken into Teams

Since grouping the developers into teams will reduce the amount of communication overhead,

the team size will determine this overhead.

Another factor introduced into the large projectmodel is mentoring overhead percentage.

This overhead is needed to account for new team creation and training of the new team leader.

Experienced team leaders will reduce their productivity by spending a portion of their daily

activities training a new team leader for four weeks. The training overhead involved is
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determined by establishing the number ofmentors needed, and then factoring this figure into the

software development rate.

3.2.2 TheEaselModel

The Easel model is based on a software development simulation created by Christie and it

requires several enhancements to model Brooks's law. This model consists of several actors,

including amanager and several developers. The model also consists of several types, including

projects andmodules. Since types and actors are comparable to an object in object-oriented

languages, a class diagram of the model is shown in Figure 14.

sm: simulation

priListlist
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asslgn_new_mods_to_developers(slmiilatlon,project)

Figure 14 - Easel Brooks's Law Model: Class Diagram (with Enhancements)

The simulation type holds global variables that are easily accessible to other actors and

procedures. The manager actor is given a project which is divided into several modules. The

modules are established by a facilitator called the client. The managermay then allocate the
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modules to the developers. The manager observes the developers in order to determine the

completion of the project and assigns new developers to a project when needed. A developer

actor can be assigned more than one module. The developers must develop each module

assigned to them. Each developer has a state: occupied or free. If the developer's state is set to

free, the developermay begin working on an assigned module. The client actor is responsible

for creating the modules.

The project consists of several modules, and eachmodule has a development time and

state: unassigned, assigned, or completed. The module lengths may be set to variable or

constant. The simulation will continue until all modules are completed and ultimately the project

is in a completed state.

In addition to the elements established by Christie, other features will be developed in

order to observe Brooks's law. Currently, the model lacks the functionality needed to add new

developers after a project has begun. Allocated training time and reallocated project model

functionality will also be needed. As in the system dynamics model, this model will also allow

new requirements to be established after the project development has begun. As with the system

dynamics model, requirements creep will also be implemented along with the code required to

break developers into small teams. Mentoring ofnew team leaders by experienced team leaders

will also be a new functionality of this model.

3.3 Simulation Design

With models for both methodologies established, both simulations can now be created.

The next section discusses several experiment assumptions and how enhancements to existing

models are applied.
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3.3.1 System Dynamics Simulation

The model and equations required for the simulation have been created for the iThink

simulation development environment. This model makes the following assumptions:

New personnel are hired only once during development.

The assimilation time for new employees is on average 80 days.

A quarter of the experienced personnel will be needed to train the new

personnel.

The percentage communication overhead is calculated by squaring the

total number of employees andmultiplying that number by 0.06. This is

the calculation previously used by Abdel-Hamid (1991) to compute

communication overhead.

Nominal productivity is set at 1
,
while 0.8 and 1 .2 are used for

experienced personnel and new personnel productivity respectively.

A creeping requirements rate of2% a month (Jones, 1998) is set.

For the large project: The percentage of communication overhead is

calculated by squaring the number ofdevelopers in a team and then

multiplying that number by 0.06.

For the large project: Mentoring overhead is calculated by taking 20

percent of an experienced team leader's time for each new team leader.

Each experienced team leader will spend four weeks with the new team

leader, while gradually reducing the percent of time mentoring to 0

percent.
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The simulation was initially created by using a series ofdifferential equations. In order

to simulate the requirements creep rate, a new equation had to be added to the simulation. The

requirements creep rate was implemented using the PULSE functionwhich indicates that the

number of requirements is to first increase by two percent of the initial requirements at the 30.5

daymark, and is to be increased again by the same amount at a regular interval of 30.5 days.

requirements_creep_rate = PULSE(/nt/t/a/_Rer7t//remente*0.02,30.5,30.5)

Equation 2 - Requirements Creep

This then had to be added to the number of requirements initially stated in the requirement level

in order to indicate the number of requirements at any given time.

requirements(t)
=

requirements^
- dt) + (requirements_creep_rate -

software_development_rate)
*

dt

Equation 3 - Requirements with Creep

The new equation for the inflow and the modified equation for the level allow the simulation to

model requirements creep.

To add the team size feature, the amount for the team size had to be initially declared and

the communication overhead percentage had to be altered to include this figure. The team size

was again needed when determining the amount of time spent mentoring. The mentoring

percentage was first set to 20 percent. The number ofmentors needed could then be calculated

using the following equation.
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mentoring_overhead_%
- 20

mentors = ((new_project_personnel/team_size)*mentoring_overhead_%/l 00)

Equation 4 - Mentoring Overhead

The last addition was then to subtract the time dedicated to mentoring from the software

development rate.

software_development_rate = nominal_productivity*(l-

communication_overhead_%/100.) *(.8*new_project_personnel+l

(experienced_personnel-experienced_personnel_needed_for_training-
mentors))

Equation 5 - Software Development RateMinus Mentoring Overhead

The output can easily show the change of any equation variables over a period of time.

Two variables of interest in this simulation will be the software development rate and the amount

ofdeveloped software over a period of time. The equations for the entire simulation are found in

Appendix A.

3.2.2 Easel Simulation

The model and simulation were originally designed by Christie to simulate the software

development process. This simulation was modified in order to observe Brooks's law.

Additional procedures were added to provide the addition ofnew employees during software

development, including a procedure for training andmodule reassignment.

The same assumptions that were made for the system dynamics simulation apply to the

Easel simulation. In order to create this simulation, new functionality was added. It is assumed

that new developers are only added once throughout development. In order to simulate this, the

manager actor needed to observe the current time and then perform a new function based on that
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time. The code below expresses that the manager checks to see if the project is still active and

that if it is active at a certain period of time, new developers are to be hired.

if (prj_size!=0) then

# Check simulation clock time and other variables

if (s.skdr. clock > prjl.hireDate & hire = 0 & s.num_new_developers!=

0 ) then

hire := 1; # since hiring only occurs once -

set flag

new_developer_training(s, prjl) ;

Figure 15 - Manager Code for Hiring New Developers

In order to add new developers, the following procedure creates new actors and assigns each new

developer IDs andminimal productivity rates. This procedure is called the new developer

trainingmethod.

addDevelopers (s:sm, p:project, numOfnewbies : int) : action is

# Add specified number of developers to the project

new_id : int : =length ( s . devList ) ;

overhead_factor : int : = 0.06;

mod_list_len : int : = 0 ;

mod:module: =? ;

newDevList:: list := new list developer;

s.num_developers := s .num_developers + s
.num_new_developers;

# Initialize each new developer

for j:each 1. .numOfnewbies do

d: developer := new (s, developer (s) ) ;

new_id : = new_id + 1 ;

d.devID := new_id;

d.devT := p.hireDate; # time to bring in recruits

d.productivity_rate := 0.8; # low productivity rate

d.communication_overhead := (overhead_factor *

(s .num_developers)
* (s

.num_developers) ) ;

push(s.devList, d) ;

push(newDevList, d) ;

Figure 16 - Procedure for Adding New Developers

To reassign the modules, all modules not completed were collected from the previous developers

in a reassignment procedure. The modules that were not completed were then randomly

assigned using a method previously established by Christie.
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reassignModules (s: sm, p:project) : action is

# New developers or modules have been added, need reassignment of tasks

newModList: : list := new list module;

# Collect all the unfinished modules from developers

for d: every s.devList do

for m: every d.modList do

push (newModList, m) ;

d . num_mods : = 0 ;

emptyModList : : list := new list module;

d.modList := emptyModList;

# Set unfinished modules as new project list

p.modList := newModList;

# Call procedure responsible for assigning modules equally

assign_mods_to_developers (s,p) ;

Figure 17 - Procedure for Reassignment ofModules

The lastmethod was responsible for gathering experienced developers and allocating

their time to the training ofnew developers. The number of experienced developers gathered

was a quarter of the number of experienced developers. The developers were randomly chosen

and their rate was lowered to 0.8 during the twenty days designated to training. During the

eighty days, the new
developers'

productivity rate would slowly increase. At the end of the

training period, the experienced developers would again have a productivity rate of 1 .2.

assimilation (s :sm, trainerList : list) : action is

# This procedure is responsible for all training overhead

last_rate: : number :=0.0;

assim: :boolean:= true;

percent :: number :=0.0;

min :: number := 0.00001;

# Find amount of time needed for training

training_prod :: number := (s .num_new_developers/ (s .

num_developers-

s.num_new_developers) *0 .25*1.2) ;

# Begin the assimilation process

for every assim do

rate := rate- (rate/20) ;

percent := (l-rate/20) -

(last_rate) ;

outln("% for this round: ", rate) ;

for d: every s.devList do

# Locate experienced developers

if (d.devID > ( s . num_developers -

s.num_new_developers) & d.devID < s .num_developers+l) then

74



d.productivity_rate:=d.productivity_rate +

(0
.4*percent) ;

last_rate := last_rate + percent;

if rate < min then

assim: = false;

# Reduce productivity by certain percentage

for t: every trainerList do

t . productivi ty_rate : =t . productivity_rate +

(training_prod*percent) ;

wait 1.0;

Figure 1 8 - Assimilation Procedure Code

A method was also created in order to simulate the addition ofnew requirements during

development. This method adjusted the number ofrequirements every 20 days and then

allocated the new requirements to the developers with the shortest module lists. This was done

through the use of a client actor.

client (s : sm) : actor type is

# Initialize the client and create project with modules

i:int := 0;

p:project := new project;

p.proj ID := i;

push (s.projList, p) ;

for j:each 1 . .p.prj_modules do

m: :module := new module;

m . modID : = j ;

m.proj
:=

p;

push (p.modList , m) ;

# Add new requirements every 3 0.5 days

for every true do

if (p.prj_state !=
closed) then

if ( (mod (s.skdr. clock, 30.5)) < 1) then

assign_newmods_to_developers (s, p) ;

wait 1.0;

Figure 19 - Client Code

For the large group, team size andmentoring were added to the already existing

procedures. Team size was added to the simulation variables, while the mentoring was an

addition to the training and assimilation procedures. In order to achieve the team effect, all

developers were assigned a team number and each team was assigned a leader. When gathering
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the mentors needed, the list ofdevelopers had to be searched until a team leader was found. That

team leader's productivity rate was then reduced to reflect the time spent mentoring. The

productivity was then increased gradually over a period of4 weeks. To achieve this effect, new

features were added in both the procedure for adding new developers and the assimilation code.

The original simulation output was removed, and a new graphical output substituted for

it. The graph shows the team development rate (productivity) over time. The code provided for

this section and the entire simulation is found in Appendix B.

3.4 Experimental Design

Both simulations have common input parameters that can be altered. The simulations

will be run several times with various inputs. The values chosen are based on project size

estimates given by Capers Jones inEstimating Software Costs. Three projects, each ofdifferent

magnitudes, will be simulated. The input parameters for each experiment trial are provided in

Table 2.
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Project Size Parameter Value(s)

Small project

Number of experienced

employees

5

Number of function points 500

Number of new employees

hired

0,2,5,7,10

Team size Number of total

employees

Medium project

Number of experienced

employees

10

Number of function points 1000

Number of new employees

hired

0,5,10,15,20

Team size Number of total

employees

Large project

Number of experienced

employees

100

Number of function points 10000

Number of new employees

hired

0,25,50,100,150,200

Team size 5,10,15,20

Table 2 - Simulation Initial Parameters

Notice that the project developers will not be broken up into small teams for the first two

simulations, and that only in the large project will smaller teams be formed. The requirements

creep will only be implemented in the small and medium projects. These two projects will be

run first without the requirements creep and then with the requirements creep.

The simulations for each project size will first be executed with no hiring involved.

These results will serve as the default completion date for each project size. For the small and

larger project, hiring ofnew developers will take place at 3 different intervals. The intervals will

be determined by taking 25, 50, and 75 percent of the completion time. For the large project,

hiring will only take place at the date which is 25 percent of the default completion date.

Both simulations will be run with the same input parameter and the results gathered from

the output will be compared. Through the graphical output, information about the following
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output variables will be recorded: software development rate and project completion time. This

information will aid in comparing each simulation method and its effectiveness in representing

the software development process.
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CHAPTER 4

DATAANAYLSIS

In this chapter, analysis of the data gathered from the system dynamics and Easel

simulations ofBrooks's Law is discussed. The validity ofBrooks's law was tested across a

range ofdevelopment project sizes: a small project (500 function points and five experienced

developers), amedium-sized project (1,000 function points and ten experienced developers), and

a large-scale project (10,000 function points and 100 developers).

4.1 Definitions

In order to facilitate the reader's understanding of terminology used in this chapter, the

following definitions are provided. Additional information about specific rates and times can be

found in Chapter 3.

Development rate: Function points completed per day by a developer

Team development rate: Function points completed per day by a team

Developer: An experienced developer

New developer: An inexperienced developer

Default completion time: Number ofdays required to complete a project without new hiring

Default team development rate: Function points completed per day by a team without hiring

Hire time: Day when new hiring occurs
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4.2 Small Project Analysis

The experiment was conducted with the following initial parameters that represent a project

half the size of an average commercial software development effort:

500 function points (500 FP)

5 experienced developers

The development rate for experienced developers is initially set to 0.12 FP/day. Communication

overhead for a group of five developers is a constant 1.5 percent ofdeveloper time. The net

effective development rate for an individual developer is (0.12 FP/day)
*

(1-0.015) = 0.1 182

FP/developer day. Both simulationmodels were first executedwith the communication

overhead as the only negative factor impacting the development rate. Since no new developers

were hired, there was no effort required for training and no increase in communication overhead.

When measuring the default behavior ofboth simulations, the system dynamics simulation

finished at 846 days (approximately 3 years), while the Easel simulation completed at 847 days.

The resulting estimate of 3 years is consistent with Jones's minimum estimate ofnine months

development time for a project of this size (Jones, 106). Table 3 shows the results of each

experiment trial.
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2 90 645 649

2 212 675 678

2 423 735 742

2 635 793 800

5 90 495 499

5 212 550 554

5 423 652 653

5 635 753 754

7 90 440 449

7 212 507 510

7 423 622 624

7 635 737 740

10 90 385 395

10 212 462 496

10 423 595 601

10 635 722 728

Table 3 - Small Project Simulation Results

Completion times from both simulations disprove Brooks's law. Hiring an increasing

number ofdevelopers at any of the four hiring times resulted in a completion time shorter than

the default completion time. By doubling the number ofdevelopers early during development

time (at day 90), the previous development time of 3 years is reduced to approximately 1.5 years.

This shows that if additions to development staff are planned, it is more beneficial to add

developers earlier in the project than later in the project. In the case where the number of

developers was doubled late in the project (at day 635), the development time is reduced to

approximately 2.5 years.

The impacts ofhiring ofnew developers at different hiring are discussed in section 4.2.1.

4.2.1 HiringNewDevelopers Midschedule

In the first trial, new developers are added early during development. With a default

completion time of 846 days, the
212th

daymarks the first quarter of the project. Figure 20
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shows the software development rate at five different trials, each with a different number of

developers hired at each trial.

2.0D.

Team

development
-

rate

1.00-

0.591

0.00'

Default

Completion

Time

846 Days

Line

No.

New

Hires

1 0

2 2

3 5

4 7

5 10

0.00 250.00 500.00

Completion time (days)

Team Development Rate vs. Completion Time

750.00

2^3 i 5

1000.00

Figure 20 - SystemDynamics - Hiring at Day 212

The result of each trial was a project completion time shorter than the default completion

time. The communication overhead caused by addingmore staff reduces the software

development rate. This overhead caused the completion times of the last three trials to differ by

an average of40.5 days.

Following Madachy (2003), the team development rate for a team of five experienced

developers is calculated as Team Development Rate = Developer Rate * Number ofExperienced

Developers. In the present case, Team Development Rate = 0.1 182*5 = 0.591 . For the default

trial, this resulted in a team development rate of0.591 FP/day, as noted in Figure 20.

The communication overhead was not large enough to have a negative impact on the

team development rate. The rate did not fall below the initial rate of 0.591 FP/day regardless of

the number ofnew developers hired. Figure 21 depicts the communication overhead and
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training overhead as a function of the number ofnew developers hired. Small project training

overhead will have a greater impact on development rate than communication overhead in this

case. The larger value of the training overhead had only amodest effect because the training

lasted an average of 80 days, which is less than ten percent of the default completion date.
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Figure 21 - Overhead for Both Simulations

To demonstrate the effect ofhiring at amore realistic date, the system dynamics output

for hiring three months into the project is shown in Figure 22.
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Figure 22 - System Dynamics - Hiring at 3 Months
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The output shows the same pattern found when hiring new developers at day 212. By hiring

earlier in both simulations, the completion time was shortened from anywhere between 5 and 20

percent of the previous completion time, depending on the number ofnew hires.

In the Easel simulation, results also support the previously explained results. As shown

in Figure 23, the hiring ofnew developers produces a completion time shorter than the default

completion time.
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Figure 23 - Easel - Hiring 2 New Developers at Day 212

In Figure 4, the team development rate increases from 0.59 to 0.68 FP/day. The sudden

development rate increase is the result of the following: the increase in the rate due to the

number ofnew developers hired, the decrease in rate due to training overhead, and the decrease

in rate due to the communication overhead. The increase in team development rate due to the

addition of two new project developers is much greater than the two overheads involved,

resulting in an increase in the team development rate. For over 100 days, the training period for

new hires, the team development rate slowly increases until it reaches a steady rate of0.86

FP/day.
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Hiring five, seven, and ten new developers yields similar results as shown in Figure 24,

25, and 26.
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Figure 24 - Easel - Hiring 5 New Developers at Day 212
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Figure 25 - Easel - Hiring 7 New Developers at Day 212
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All three trials above show an initial increase in productivity, meaning that the communication

and training overheads were too small to have a negative effect on productivity. For the last

three Easel trials, the simulation depicted similar results, yet further along the project schedule.

A discussion of additional Easel trials results can be found in Appendix C.

As expected, hiring at a later time during project development does not result in the

accelerated completion times that we have observed in earlier hiring schedules. When hiring new

developers at a later time, the completion times begin to converge into a narrower range

compared to the completion time range observed when new developers are hired at an earlier

time. As shown in Figure 27, the completion times for the last three trials are separated by an

average of28.5 days, which is 26.5 days shorter than the period separating the last three trials

when hiring new developers at three months.
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Figure 27 - System Dynamics - Hiring New Developers at Day 423

Lastly, hiring even later during the development period generates similar results, as

shown in Figure 28. However, the difference between each completion time is now narrow and

demonstrates how hiring late in the project, regardless of the number ofnew developers, may not

result in schedule reductions. As shown below, there is only a month completion time difference

that results from hiring seven developers instead often developers.
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Figure 28 - System Dynamics - Hiring New Developers at Day 635

4.2.2 SmallProject with Requirements Creep

Requirements creep was added to selected simulations. The simulation involving hiring

new developers at three months showed an increase in the completion time from the addition of

new requirements throughout development. With no hiring ofnew developers the default

completion time for both projects was estimated at 1900 days.

2 645 649 1060 1116

5 495 499 687 720

7 440 449 580 604

10 385 395 483 503

Table 4 - Results from Hiring 3 Months into the Project (with andWithout Requirements Creep)

The completion time varied from between an estimated 100 to 400 days later than previous

results, showing that a project completion
time can be delayed an entire year because ofnew

requirements. Thirty new requirements have been established by the end of the thirdmonth. On
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average, a developer completes three FP permonth. With the addition often new requirements

permonth, doubling the number ofdevelopers produces the shortest completion time considering

that the effect from communication and training overhead is minimal.
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Figure 30 reveals that the same pattern results when requirements creep is added to another

simulation trial.

4.2.3 SmallProject Conclusions

A software project of this size with only ten experienced developers present at its start

does not face much risk of falling behind the default completion date as a result of the addition of

more manpower. This is true as long as new developers are not added too close to the default

completion time. Both simulations showed results supporting this claim with very similar

evidence. In both simulations, hiring ofnew developers late in the project narrowed the range of

difference in benefit gained by hiring 2,5,7, or 10 new employees, demonstrating how hiring late

in the project diminishes the positive effect of any amount ofhiring on the project's completion

time. With requirements creep present, the importance ofhiring earlier was evenmore evident.

4.3 Medium Project Analysis

The experiment was conducted with the following initial parameters that represent a project

that is the size of an average commercial software development effort:

1000 FP

10 experienced developers

The development rate for experienced developers is initially set to 0.12 FP/day. Communication

overhead for a group often developers is a constant 6 percent ofdeveloper time. The net

effective development rate for an individual developer is (0.12 FP/day)
* (1 -

0.06) = 0.1 128

FP/developer day. Both simulation models were executed with the communication overhead as

the only negative factor impacting the development rate. Since no new developers were hired,

there was no effort required for training and no increase in communication overhead. When
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measuring the default behavior ofboth simulations, the system dynamics simulation finished at

890 days (approximately 3.2 years) while the Easel simulation finished at 885 days. The

resulting estimate of 3.2 years agrees with Jones's minimum estimate of twelve months

development time for a project of this size (Jones, 106). Table 5 shows the results of each

experiment trial.

Hi^^^HHTi"ri-s -

.

~

mn<n.i>H SDRcmjIi 1 as.l RcSuWl
5 222 705 716

5 445 770 774

5 668 830 830

10 222 640 642

10 445 725 732

10 668 810 811

15 222 630 639

15 445 720 729

15 668 805 816

20 222 683 696

20 445 755 773

20 668 828 832

Table 5 - Medium Project Simulation Results

The results ofboth experiments again disprove Brooks's law. However, by doubling the number

ofdevelopers early during development time, the default completion time of3.2 years was not

cut in half, as observedwith the small project. The development time was reduced to

approximately 2.8 years. Due to the communication overhead involved, luring double the

amount of experienced developers was not effective at reducing the trial completion time by half

the default completion time. Yet doubling the number ofdevelopers at a later time results in a

completion time almost two months sooner than no hiring at all.

Hiring ten or fifteen new developers results in almost equal completion dates, while

hiring twenty new developers is equivalent to hiring five new developers. The Easel results

show thatwhen hiring ten or fifteen new developers, the resulting completion dates are anywhere
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from five to ten days apart. Evidence ofBrooks's law is found when hiring twenty new

developers results in a longer completion time thanWring ten or fifteen developers. As with

previous results, hiring developers early will result in a shorter completion time.

The hiring ofnew developers at different hiring times and their impacts on the

completion time and software development rate are discussed in section 4.3.1.

4.3.1 HiringNewDevelopersMidschedule

In the first trial new developers are added early during development. With the default

completion time of 890 days, the
222nd

daymarks the first quarter of the project. Figure 3 1

shows the software development rate for five different trials, each with a different number of

developers hired at each trial.
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Figure 31 - System Dynamics - Hiring New Developers at Day 222

Hiring two developers early resulted in a completion time approximately 200 days shorter

than the default completion time. By hiring five or seven developers, the completion time is

reduced by 65 to 75 days. When twenty new developers are hired, the completion time is 200

days shorter than the default time, yet hiring twenty developers results in a longer completion

time than hiring ten or fifteen new developers. For the first time, the training and communication

92



overhead involved had a negative effect on the overall software development rate. This is shown

in Figure 31 by line five's drop below line one (the default team development rate of 1.129

FP/day) at day 222. Figure 32 depicts the communication and training overhead involved. With

amedium project, the effects of communication and training overhead were large, unlike the

results from a small project where the effects of the communication overhead were minimal.
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Figure 32 - Overhead for Both Simulations

As mentioned earlier, the default development rate for experienced developers is 0.1 128

FP/day. The net effective development rate after hiring 10 new developers is 0.09 FP/day. The

net effective development rate after hiring 15 new developers is 0.075 FP/day. Following

Madachy (2003), the team development rate is calculated as Team Development Rate =

Developer Rate * Number ofTotal Developers. When hiring 10 new developers, Team

Development Rate = 0.09*20 = 1.8. When hiring 15 new developers, Team Development Rate =

0.075*25 = 1.875.

Figure 31 shows the similar team development rate, where a team with 10 new

developers (line 4) has a development rate of 1.8 and a team of 15 new developers (line 5) has a

development rate of 1.1875 FP/day.
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The same effect on the software development rate occurs when hiring at the midpoint ofa

default project schedule, day 446, and at the three-quarters point, day 668.
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Figure 33 - System Dynamics - Hiring New Developers at Day 445

The difference in completion time when hiring five developers and twenty developers is

anywhere from two to ten days. Figures 33 and 34 illustrate this difference.
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Figure 34 - System Dynamics - Hiring New Developers at Day 668
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The Easel simulation also provides some insight into why the last trial resulted in a later

completion date. The output from the first three trials reveals the communication and taining

overhead was not great enough to produce an initial drop in productivity. Instead, the effort

created by new developers produced a rise in productivity. This can be seen in the first three

trials.
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Figure 35 - Hiring 5 New Developers at Day 222
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Figure 36 - Easel - Hiring 10 New Developers at Day 222
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Figure 37 - Easel - Hiring 15 New Developers at Day 222

When hiring 5, 10, or 15 developers, the software development rate increased. When 20 new

developers were hired, the software development rate dropped slightly at day 222 because the

communication and training overhead created was larger than the effort added by the new

developers.
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Figure 38 - Easel - Hiring 20 New Developers at Day 22

A discussion of additional Easel trials results is found in Appendix D.

4.3.2Medium Project with Requirements Creep

Table 6 shows the impact ofrequirements creep when added to the medium project.

Without new manpower, the project completion time was estimated at 2100 days.
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5 705 716 1210 1274

10 640 642 990 1026

15 630 639 960 999

20 683 696 1120 1158

Table 6 - Results from Hiring at Day 222 (with andWithout Requirements Creep)

With a project of this size, 20 new requirements are added eachmonth, resulting in over 600 new

requirements being added before new developers are hired. Since the average developer

completes three FP/month, the requirements creep costs between 300 to 500 additional days.

Results produced in the requirements creep trials are similar to the results seen in

previous medium project results. The initial hiring of 5 new developers reduces the default

completion date by almost fifty percent. The impact ofhiring 20 new developers here produces

a longer completion time than hiring 10 or 15 new developers. Figure 39 shows the result of this

experiment trial.
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Figure 39 - SystemDynamics (with Requirements Creep) - Hiring New Developers at Day 222
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4.3.3 Medium Project Conclusions

The results from the medium project data suggest that while Brooks's Law does not hold

true in all cases, the communication and training overhead involved at times can outweigh the

increase in productivity from hiring new developers. In this experiment, hiring 10 new

developers achieves the same effect as hiring 1 5 new developers. The increase in productivity

when hiring new developers was found to be too small to outweigh the communication and

training overhead from hiring 20 new developers. For the first time, there was a drop in

productivity in both simulations that lead to a longer completion date than found in other trials.

Requirements creep here provided similar results to those seen in the small project simulations;

the pattern of the software development rate was the same while the completion date was later.

4.4 Large ProjectAnalysis

The experiment was conducted with the following initial parameters that represent a project

the size of a large system development effort:

10000 function points

100 experienced developers

Developers broken into teams of 5, 10, 15, or 20

Communication overhead was calculated using intragroup communication. Intergroup

communication, the overhead generated by the communication of the smaller groups, was not

truly represented by either simulation and only a slight penalty was added for each
new group, as

discussed in chapter 3. Both simulations models were first executed with the communication

overhead as the only negative factor impacting the development rate. Since no new developers

were hired, there was no effort required for training and no increase in communication overhead.
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All default completion dates agree with Jones's estimate of three to fives years development time

for a project of this size (Jones, 108).

Table 7 shows the result of each experiment trial where new developers are hired. New

developers are hiredmidproject on day 222.

MH^^^^^^B
Team size

- 5

Default Easel completion date - 848

Default SD completion date - 847

Estimated 3 years

25 731 732

50 647 648

100 547 549

150 485 491

200 442 452

Team size- 10

Default Easel completion date - 888

Default SD completion date - 890

Estimated 3.2 years

25 759 764

50 672 678

100 562 565

150 500 506

200 452 463

Team size- 15

Default Easel completion date - 953

Default SD completion date - 955

Estimated 3.4 years

25 811 811

50 720 725

100 597 599

150 527 536

200 480 492

Team size - 20

Default Easel completion date - 1098

Default SD completion date - 1098

Estimated 3. 9 years

25 899 907

50 793 800

100 667 676

150 577 585

200 525 539

Table 7 - Large Project Simulation Results

The behavior found in the medium system dynamics simulation is also found in the large

simulation. Figure 40 shows the completion date and team size for all simulations. The system

dynamics and Easel simulation completion dates were again nearly identical.
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Completion Date vs. Team Size
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Figure 40 - Results from the Large Project Simulations

In all cases, smaller teams produced the shortest schedules. The system dynamics output

for the large project simulation using a team size of 10 is shown below in Figure 41 . The pattern

shown was the pattern previously seen in the small project simulations. Hiring 50 new

developers reduces the completion date by 200 days. This pattern is similar since the

communication overhead involved is the same when dealing with a small team project.
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Figure 41 - System Dynamics Results for Team Size of 10

Figure 42 shows that the team completion date increases exponentially as the team size

increases. This is due to the communication overhead which increases exponentially

(communication overhead is the number of employees squared multiplied by 0.06). Later

completion dates are the result of larger team sizes.
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Team Size vs. Completion Date
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Figure 42 - Large Project - Hiring atDay 222

When comparing trials for each team size, the number ofdevelopers hired also played an

important role. As shown above in Figure 42, the curve for the completion date increases as the

team size grows larger. The number ofnew hires reduces this rate of change. This is to be

expected for two reasons. The first reason is that more developers can complete the work in less

time. The second reason is that the communication overhead never increases; new groups are

formed for the new developers.

The penalty added for new team leadermentoring was small and distributed over a

maximum of2 percent of the total project time. Requiring at most one-fifth of a team leader's

time over four weeks, combined with training and communication overhead, mentoring is too

small of a factor to significantly affect the completion date. Therefore adding a new group to the

overall system did not have a significant negative effect; it delayed the project from anywhere

between zero and five days.
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Both simulations supported the idea that smaller teams are more effective due to the

reduced amount of communication overhead. All the smaller teams completed projects at an

accelerated schedule, regardless of the number ofnew hires and new teams.

4.4.1 Large Project Conclusions

Initially, the default behavior ofboth simulations fell into the estimated project duration

of three to more than five years. Results showed that smaller teams completed the function

points in less time. Further investigation revealed that the rate of completion time change was

determined exponentially, which is due to the exponential nature of the communication overhead

involved. The number ofnew hires also played a factor and the exponential rate of change for

the completion date was slowed by the increasing number ofnew hires. The penalty

implemented for adding new teams was negligible, and realistically a penalty for introducing

additional teams would have a more noticeable effect. Overall, results between simulations

showed a variance ofonly a few days. The simulations demonstrated that smaller teams are more

productive than larger teams because the communication overhead is less.

4.5 Summary

Although it may prove more costly for managers of a late project to hire new developers,

hiring these developers does not always make the project later. Of the various trials for each

project size tested, no trial produced a completion date later than the default completion date.

Evidence supporting Brooks's Law first appeared in section 4.3. For a medium project with 10

experienced developers, hiring 10 developers midproject produced the same result as hiring two

new developers. With the hiring of 10 more developers, the communication overhead was large

enough to negatively affect the development rate. In order to determine what number ofnew

103



developers would cause the largest decrease in team development rate, further trials were

conducted. As Figure 43 reveals, adding 10 new developers is most detrimental to the team

development rate.

Team Development Rate vs. Number of New Developers
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Figure 43 - Team Development Rate for aMedium Project

The medium project results showed a decrease in completion time improvement when

hiring was done later, supporting the idea that if additions to the team are planned, it is beneficial

to add developers at an earlier date. As hiring is done later, the difference between each

completion time narrows and demonstrates how hiring late in the project, regardless of the

number ofnew developers, may not result in schedule reductions. The large project further

clarified the importance ofkeeping team sizes small.

Brooks's Law held true when the degree of communication and training overhead was

great enough to have a negative effect on the team development rate. When project team sizes

were kept less than or equal to 30 developers and new developers were introduced before or at

three quarters of the default completion time, hiring did not cause a late project to be completed

at a later time.
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CHAPTER 5

FINDINGS, CONCLUSIONS, AND FUTUREWORK

In this thesis, software project dynamics were simulated using both the System Dynamics

and Easel simulation techniques. Brooks's Law was used as the project dynamic example. The

goal of this work was to identify the relative advantages and disadvantages ofboth techniques

for the study of software project dynamics.

Small, medium, and large-scale projects were simulated using both simulation

techniques. The techniques consistently produced similar results, strongly suggesting that the

techniques were used correctly and that the resulting models were logically equivalent.

5.1 Findings

The simulation techniques provided insights into the dynamics ofBrooks's Law.

Although it may prove more costly for managers of a late project to hire new developers, hiring

these developers does not always make the project later. Of the various trials for each project

size tested, no trial produced a completion date later than the default completion date. Hiring of

new developers late showed that the difference between each completion times narrows,

demonstrating how hiring late in the project, regardless of the number ofnew developers, may

not result in schedule reductions. The results from the medium project data suggest that while

Brooks's Law does not hold true in all cases, the communication and training overhead involved

at times can outweigh the increase in productivity from hiring new developers. This was evident

when hiring two new developers resulted in the same completion time as hiring twenty new

105



developers. The large project simulation data suggested that smaller teams are more productive

than larger teams because the communications overhead is less.

The remainder of this section presents a comparison of the two techniques based on

background knowledge required, debugging difficulty, model maintainability, scalability, object

representation, and timing control.

5.1.1 Knowledge Required

Experience with object-oriented languages, such as Java and C++, is necessary to create

Easel simulations. As in any object-oriented language, every entity is an object with attributes

and procedures. Programmers will also find the syntax similar to an object-oriented language.

For example, after the properties and behaviors of an actor are established, an actor is declared

by first creating a name for the actor. To complete the declaration, the name is followed by a

colon and the object type. An instance of the actor is created by using the keyword "new
"

followed by the simulation name and a parameter, as shown in Figure 44.

/**
Defining the object **/ ####### Defining the Actor ###########

public class Developer developer (s:sm) : actor type is

{ devID : int : = 1 ; # Property

int devID = 1; //property

# Behavior

public Developer ( ) //behavior for every true do

{ outln (
"Working"

) ;

while (true)

System. out .println (
"Working"

) ; ####### Creating the Actor ######

}

}

d: developer := new developer (s) ;

/**
Instantiating the Class **/

Developer d = new Developer (s) ;

Syntax for creating an object in Java Syntax for creating an actor in Easel

Figure 44 - Comparison of Programming Languages

Dot-notation is used to reference properties of an actor and to call procedures. Experience with

multi-threaded programming is needed to programmatically manipulate the discrete behavior of

the threaded actors. Parallel execution ofactor behaviors requires the programmer to call
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methods that cause an actor to enter a wait mode for a designated period of time. This is

essential for replicating any timed behavior. Basic knowledge ofdata structures (i.e. stacks,

queues, and vectors) is needed for larger-scale simulations because these mechanisms are needed

to efficientlymanage a large numbers ofobjects. Beginning Easel programmers must adjust to a

few unique qualities ofusing this property-based language, such as setting up the simulation

environment, graphical environment, and depicting neighbor relationships. The reference

material provided with the Easel distribution describes all of these new aspects in detail.

The use of system dynamics simulation development environment does not require

programming skills in order to successfully create and run a simulation. The drag-and-drop

simulation development environments (i.e. iThink & Vensim) facilitate the creation of

simulations withoutwriting code and equations, therefore reducing the amount ofmathematical

knowledge required to an algebra level. These simulation development environments emphasize

the importance ofusing flow diagram symbols when creating amodel.

The details of the simulation are represented through a set of equations. Since

differential equations are the foundation for system dynamics models, knowledge ofdifferential

equations may be helpful in developing amodel. The number of requirements (uncompleted

function points) in the system dynamics Brooks's Lawmodel was determined using equation

5.1. The number of requirements at time t is determined by subtracting completed requirements

(the software_development_rate multiplied by the change in time) from the number ofprevious

uncompleted requirements (requirements(t-dt)).

requirements(t)
=
requirements^

- dt) + (-
software_development_rate)

* dt

Equation 6 - Modeling Number ofRequirements
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Experience with equations like the one above will aid those interested in understanding dynamic

systems.

5.1.2 Debugging

When developing the underlying code or equations, both simulation development

environments verify syntax. Easel uses the traditional compilermethod; it notifies the user ofa

compiler error using a caret to point to the error in the code and provides a small error

description. The descriptions provided are helpful. The iThink environment does not allow the

creation of the equation unless the model and the syntax are correct. It also provides helpful

descriptions of the syntax error through a dialog box.

Since any variable can be graphed using the iThink environment, it was at times easier to

debug problems with this software. While printing a variable value at different time intervals

was effortlessly accomplished with the Easel environment, no automatic graphing feature was

present. To provide the same visual output for the Easel simulation, new procedures were

created to print the visual display. Once these procedures were in place, the graphical output can

be duplicated.

A major difference between the simulation development environments is the method for

debugging logic errors. The Easel simulation allowed for debugging at an individual level, while

the debugging ofa system dynamics simulation took place at the system level. It was easier to

observe and debug the properties ofone developer than debug a single entity that represents all

the developers. Debugging at the system level could also take place within the Easel simulation

ifneeded.
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5.1.3 Maintainability

The graphicalmodel in the iThink environment facilitated code maintenance. Changes to

the Easel model required searching through text to identify a type (object) whose properties need

changing. Itmay be more time consuming to add new properties and behaviors to existing

objects in a system dynamics simulation. In Easel, properties may be declared as global

attributes. New levels, converters, and/or relationships must be established in system dynamics

to achieve the same effect. Figure 45 shows the addition of team size in both simulations. In the

system dynamics example, notice that every entity that requires information about the team size

must have a line connecting it to that level.

jveloped software

mentors

\ communication overhead %

i pers
irtrsfnin'

training overhead:

% FTE experienced

mentoring overhead %

#### Define Global Attributes #####

sm: simulation type is

projList:: list := new list project;

devList:: list := new list developer;

num_developers : : int := 100;

num_new_developers : : int := 25;

team_size ::int := 5;

dt : : number : = 1.0;

vw: : view := ?;

System Dynamics Easel

Figure 45 - Adding a Team Size Feature

5.1.4 Scalability

Both simulation techniques can work on a macro andmicro scale, although system

dynamics models are often created on a macro scale. In system dynamics models of large scale

systems, entities are often grouped together as one level. For example, in the Brooks's Law
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model, all experienced developers were represented by one level (experience personnel), as

shown in Figure 46.

new project (Mjsbnnel experienced personnel

personnel allocation
rate'

assimilation rate

Figure 46 - Personnel Levels

This model does not focus on an individual experienced developer. If each experienced

developer was represented by its own symbol in the model, the model and equations involved

would become increasingly complicated as the number of experienced developers increased.

This is why a level may be used to represent a large number of entities. The end result being that

every entity represented in this group will have the same behavior. With Easel, each individual

is represented separately, as its own threaded object. Since individuals are represented

separately, their attributes and behaviormay differ from other individuals.

Both simulation techniques can represent thousands of interacting objects. If a large

number of objects are needed and each object behavior may differ, the Easel simulation

technique may be a more suitable choice.

5.1.5 ObjectRepresentation

In large scale system dynamic simulations, objects are represented by a single level, with

converters or flows manipulating that level; all common objects (e.g., experienced developers)

are grouped together as one single entity. For example, the assimilation rate for new developers

was set using a flow between new developers and experienced developers, as shown in Figure

46. The number ofnew developers was changed as a function of time where the assimilation
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rate was the same for every new developer. This level acts like a black box, leavingmuch of the

object implementation detail hidden.

When simulating large systems, system dynamics does not allow the representation of

objects in a programming sense, and it is easier to translate real world objects into Easel types

(objects). All developers, modules, and projects were represented as Easel types within the

Brooks's Law simulation. Since Easel is a property-based language, types can be given several

attributes that represent the characteristics of one type. There is no practical constraint on how

detailed an entity can be modeled. The code in Figure 47 shows the properties of the Easel

Brooks's Law simulation developer. Each developer has properties thatmake it unique.

developer (s :sm) : actor type is

# developers implement modules

devID: int := ?;

mod: :module := ?;

num_mods : : int : = 0 ;

devT : : number : = 0.0;

modList: :list := new list module; # List of uncompleted modules

modListl:: list := new list module; # List of completed modules

dev_state:: dev_states:= free;

communication_overhead: : number : =0 . 0 ;

productivity_rate: : number := ? ;

tm : number : = 0.0;

Figure 47 - Easel Brooks's Law Code: Developer Properties

In large scale system dynamics simulations, the developers would share properties. For

example, each new developer is assigned a productivity rate. In system dynamics, this rate is the

same for all new developers. In Easel, the rate can be observed as the rate for that developer,

instead of the rate for all developers. The effect on one object can then be observed directly,

whereas in the system dynamics simulation the effect on a group ofdevelopers is observed.

In addition, Easel types can also create other types, which is not possible in system

dynamics where the model is fixed at execution time. The ability to represent each entity
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separately and change the model during execution time makes Easel a powerful simulation

technique.

Relationships between objects can be created in both simulations. The iThink

environment uses graphical depictions, such as arrows or flows, to show relationships between

levels and converters. Easel does not graphically display these relationships, but the construction

of the simulation reveals how the objects relate. One aspect that is unique to Easel relationships

is the ability to depict topographical relationship between objects. These types act as neighbors

that can see information relating to other objects. For example, a factor like communication

overhead might be reduced depending on distance separating developers.

The Easel simulation also provided the means by which to represent two other actors: the

client and manager. The client was responsible for implementing the requirements creep and the

manager was responsible for distributing modules and monitoring project progress. This proved

to be a more realistic representation of a software development system and would be easier to

translate the Easel model into real world situations.

5.1.6 Timing Control

Both the Easel and system dynamics simulations have a clock that simulates real time. In

the discrete Easel simulation model, each actor has its own thread. All actor threads run

concurrently. Schedulingmethods are available for placing delays, wait intervals, and other

controls on an actor's thread. In the Brooks's Law simulation, after the amount of time required

to complete a function point is calculated, an actor enters a wait state for that period of time.

This wait period represents a period ofdevelopment. During that time, if any changes are made

to the productivity rate of that actor, these
changes do not apply until the actor begins working on
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a new function point. Programmers are responsible for implementing wait intervals that

represent periods ofproductivity.

Time in the system dynamics simulations is continuous. The simulation technique uses a

clock that can also be manipulated by the use ofbuilt-in functions. In the Brooks's Law system

dynamics simulation, any changes to the productivity rate are implemented with the next tic of

the clock. Instead ofusing threads, actors and other entities are represented as equation variables

that change as a function of time. Although clock manipulation methods are available, they do

not need to be used to represent a period ofproductivity.

5.2 Conclusions

Both techniques may be used to simulate subsets of the software development process.

The implementation of each technique provided insight as to conceptually where one technique

applies more than another and how the techniques differ.

When beginning to build a simulation of a process, one starts with developing a model of

the system. The model focus is limited to the problem area and any contributing factors. With

system dynamics, the first step is to discover and document the feedback loops involved which

later provide the basis for a CLD. The CLD is then transformed to a flow diagram followed by a

mathematic representation of the model. This is the recommended procedure for developing a

system dynamics simulation. Currently, there is no preferred method for modeling a system

when creating an Easel simulation. Existing modeling techniques such as UMLmay prove

helpful, however Easel is not truly an object-oriented language therefore it can be difficult to

transform a UML model into an Easel simulation. The modeling standard established for system
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dynamics helps to facilitate simulation development, whereas Easel simulation developers may

find this step more difficult due the absence of a preferredmodeling technique.

As a programming language, Easel provides some flexibilitywhen simulating decision

making. System dynamics was not designed to be a programming language and therefore lacks

the proper control structures needed to simulate these actions. For example, to dynamically

determine the optimal number ofdevelopers to hire, an entity in the simulation would be

required to observe variables and execute appropriate statements after considering both the final

completion date predicted and costs involved. System dynamics was not created to handle such

situations since the model must be fixed at execution time. To reach the same conclusion, the

person running the simulation would have to execute it several times with different values for

input parameters. Easel does not require that the model be fixed at simulation time, allowing

dynamic changes to be made.

The view level depicted by each simulation is a key difference between the techniques.

With system dynamics, common entities are often grouped together. By grouping common

entities together as one entity, they share attributes and behaviors creating a high level view of

the system. Entities in Easel are represented independently and since every actor in Easel has its

own properties and behaviors, this provides a detailed and low level view of the system.

Consequently, this low level view makes it easier to validate andmap the behaviors of

actors to those of real world entities. With the Brooks's Law simulations, concepts like

repartitioning ofworkwould demonstrate
this. To simulate this action using system dynamics, a

number representing a period of time may
be used to depict the time delay required for

repartitioning. In Easel, removing all the function points from a developer's list, and then

redistributing them would represent this action. A certain period of time would also be allotted
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to this process. More work may be required to simulate this in Easel, but it would provide a

more realistic and detailed representation of the real world process.

Depending on the needs of the user, one simulation technique may be more suitable than

another. If the focus lies on the individual level and the need to simulate dynamic decision

making is present, Easel would be more suitable choice. However if simulation simplicity is

preferred, the abstract view created by the system dynamics technique may be the ideal. As one

might expect, the establishedmodeling standard and availability of commercial simulation

development environments for system dynamics makes itmore attractive for a wide range of

users. Yet Easel offers flexibility and a low level depiction which is often difficult to produce

with system dynamics.

5.3 Recommendations for Future Work

The experiments conducted provide many opportunities for further work to distinguish the

differences between system dynamics and Easel. A few possibilities are presented below.

Decisionmaking ofmanagers when determining when to hire new developers, and how

many to hire, could be explored. Many of the simulations showed little difference in the

completion dates where various amounts ofnew developers were hired. This decision

processes would be easier to implement using Easel due to its model flexibility during

execution.

In Easel, longer function point development periods may depict shortcomings ofdiscrete

simulationmodeling.

The Easel model could also bemodified to show the sequential constraint ofmodules or

function points. It would be easier to implement this in Easel considering the modules
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are represented as independent entities. Actors in Easel could communicate information

about modules currently finished, and the anticipated completion date ofothermodules.

In addition, communication overhead could be adjusted for neighbor relationships and

proximities in the Easel simulation.

The Easel simulation currently accounts for the redistribution ofmodules after new

developers have been hired, but no time is given to this task. To show the extensibility of

system dynamics models, this is an aspect, or delay, that could be added.

Validation of the system dynamics simulation may be attempted. It may prove difficult

to translate equations to real world behaviors.
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APPENDIX A

SYSTEM DYNAMICS SIMULATION EQUATIONS

ModelEquations without Enhancements

Madachy's (2003) basic Brook's Law model equations are provided below.

developed_software(t) = developed_software(t - dt) +

(software_development_rate)
* dt

INIT developed_software = 0

DOCUMENT: This level represents software function points that have been

implemented .

INFLOWS :

software_development_rate = nominal_productivity* (1-

communication_overhead_%/100 . )
*

( . 8*new_project_personnel+l .

2* (experienced_per

sonnel-experienced_personnel_needed_for_training) )

DOCUMENT: The development rate represents productivity adjusted for

communication overhead, weighting factors for the varying mix of personnel,

and the effective number of experienced personnel.

experienced_personnel (t) = experienced_personnel ( t
- dt) +

(assimilation_rate)
* dt

INIT experienced personnel =20

DOCUMENT: The number of experienced personnel.

INFLOWS :

assimilation_rate = new_project_personnel/2 0

DOCUMENT: The average assimilation time for new personnel is 20 days.

new_project_personnel (t) = new_project_personnel (t - dt) +

(personnel_allocation_rate -

assimilation_rate)
* dt

INIT new_project_personnel = 0

DOCUMENT: The number of new project personnel.

INFLOWS :

personnel_allocation_rate = pulse (10, 100, 999)

OUTFLOWS :

assimilation_rate = new_project_personnel/20

DOCUMENT: The average assimilation time for new personnel is 20 days.

requirements ( t ) = requirements (t - dt) + (-
software_development_rate)

* dt

INIT requirements = 500

DOCUMENT: The project size is 500 function points. This level represents

the number left to be implemented.

OUTFLOWS :
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software_development_rate = nominal_productivity*: (1-

communication_overhead_%/100 . )
*

( . 8*new_project_personnel+l .

2* (experienced_per

sonnel-experienced_personnel_needed_for_training) )

DOCUMENT: The development rate represents productivity adjusted for

communication overhead, weighting factors for the varying mix of personnel,

and the effective number of experienced personnel.

experienced_personnel_needed_for_training =

new_project_personnel*training_overhead:_%_FTE_experienced/100

DOCUMENT: Training overhead is the effort expended by experienced personnel

to bring new people up to speed. It is the number new personnel
* the

percent of an experienced person's time dedicated to training.

nominal_productivity
=

. 1

DOCUMENT: The nominal (unadjusted) productivity is .1 function

points /person-day .

total_personnel = experienced_personnel+new_project_personnel

training_overhead:_%_FTE_experienced = 25

DOCUMENT: Percent of full-time equivalent experienced person's time

dedicated to training new hires .

communication_overhead_% =

GRAPH ( (experienced_personnel+new_project_personnel) )

(0.00, 0.00), (5.00, 1.50), (10.0, 6.00), (15.0, 13.5), (20.0, 24.0), (25.0,

37.5), (30.0, 54.0)

DOCUMENT: Percent of time spent communicating with other team members as a

function of team size. This graph represents the nA2 law in this size

region, and was used in the Abdel-Hamid model.

Enhancements

Requirements Creep Simulation Equations

For the requirements creep simulation, the following code was added.

requirements_creep_rate = PULSE ( Intitial_J?eguirements*0 .02, 30. 5, 30. 5)

The equation for determining requirements was altered as follows:

requirements (t) = requirements ( t
- dt) + (requirements_creep_rate -

software_development_rate)
* dt

Large Project Simulation Equations

A team size variable was added to
Madachy'

s original model.

team_size = 5
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The following code was modified to simulate the development staffwhen divided into teams.

communication_overhead % =

IF (MOD(INT(experienced_personnel+new_project_personnel) , team_size) !=0)

THEN

( (INT(experienced_personnel+new_project_personnel) /team_size)
* (team_size*team

_size*0.06)+(MOD(INT(experienced_personnel+new_project_personnel) , team_size)
*

MOD(INT(experienced_personnel+new_project_personnel) , team_size) *0. 06) ) / ( (INT(

experienced_personnel+new_project_personnel) /team_size) +1)

ELSE (
team_size*team_size* 0 . 06 )

To simulationmentoring overhead, the following equationwas added.

mentoring_overhead_% =20

mentors = ( (new_project_personnel/team_size) *mentoring_overhead_%/100)

The software development rate then had to be altered to include this overhead.

software_development_rate =
nominal_productivity* (1-

communication_overhead_%/100. )
*

( . 8*new_project_personnel+l

(experienced_personnel-experienced_personnel_needed_for_training
-

mentors) )
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APPENDIX B

EASEL CODE

Small andMedium Project Code

##############################################################
# Based on a simulation written by Alan Christie, January 2002

# Copyright 2002, Carnegie Mellon University
#

# Modified by Alicia Strupp, February 2004

# Purpose: To simulate a software development organization in

# order to observe Brooks
'

Law

# ##############################################################

mod_states: type is enum(unassigned, assigned, completed);

prj_states: type is enum (unallocated, allocated, mods_completed, closed);

dev_states: type is enum (occupied, free);

# ######################## Define Global Attributes ########################

sm: simulation type is

projList:: list := new list project; # list of projects

devList:: list := new list developer; # list of developers

num_developers : int :=10; # number of experienced

developers

num_new_developers : : int :=2 0;

dt : : number : = 1 . 0 ; # dt = 1 day

vw: : view : = ? ;

experienced_rate :: number := 1.2; # experienced developer

productivity

inexperienced_rate : : number : = 0 . 8 ; # unexperienced developer

productivity

man_day_fraction :: number := 0.06; # used for communication

overhead

# ####################### Define Project and Modules Types #################

project: type is

modList:: list := new list module; # list of modules for a

project

modListCompleted: : list := new list module; # list of completed

modules

prj_state: :prj_states := unallocated;

proj_ID::int := ? ;

prj_modules: : int := 1000; # number of modules

prj number := (prj_modules *0.02); # number of

creeping requirements per month

hire_date : : int :=668; # date of hiring

module: type is
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# a project consist of multiple modules

mod_state: :mod_states :=
unassigned; # module state

mod_ID : : int : = 0 ;

dev_time:: number := 10.0; # for fixed dev time -

.1 function point

per day

startT:: number:=?; # time module is started

endT:: number?; # time module is completed

proj : : project : = ? ; # project the module belongs to

# ############### Define Actors: Developer, Manager, & Client ###############

developer (s:sm) : actor type is

# developers implement modules

dev_ID : : int : = ? ;

mod:: module : = ? ; # Module currently working on

num_mods:: int : = 0 ; # Number of module assigned

devT:: number := 0.0; # Developer time

modList:: list := new list module; # List of modules waiting to

be completed

modListl:: list := new list module; # List of modules completed

dev_state : : dev_states : = free ;

communication_overhead: : number :=0.0;

productivity_rate: : number := ?;

tm : : number : = 0.0;

# Complete modules waiting to be completed

for every true do

if (length modList) > 0 & devastate = free then # work on

next module

dev_state := occupied;

mod := pop modList; # get module

push (modListl, mod) ;

mod.startT := devT; # set start time

communication_overhead := (s .man_day_fraction
* (s

.num_developers)

* (s .num_developers) ) ;

mod . endT : =

devT+mod.dev_time/ ( (productivity_rate)
*

(l-communication_overhead/100) ) ; # get

end time

devT := max (mod. endT, tm) ;

num_mods : =num_mods-l ;

outln( "mod.dev_time: n, mod.dev_time, "new: ",

mod.dev_time/ ( (productivity_rate)
*

(l-communication_overhead/100) ) ) ;

outIn ("dev ID: ", dev_ID,
"

mod ID: ", mod.mod_ID,
"

productivity rate: ", productivity_rate) ;

outln("start time: ", mod.startT,
"

end time:

",mod. endT,
"

mods remaining ", num_mods) ;

outln(
" "

) ;

wait mod.dev_time/ ( (productivity_rate) * (1-

communication_overhead/100) ) ; # wait until completed

mod.mod_state:= completed;

dev_state := free;

else

tm:= tm+s.dt;

wait s.dt;

manager (s:sm) : actor type is

121



# managers assign modules

prj :project:=? ;

hire: int :=0;

numOfmodules : int : =? ;

prj_size : int : =?

# Assign modules and check status of modules

for every true do

for prj: every s.projList do

if prj .prj_state != closed then # observe progress

if prj .prj_state = unallocated then

assign_mods_to_developers (s, prj); #

get modules distributed

prj .prj_state
:= allocated;

else if prj .prj_state = allocated &

all_mods_completed(s, prj) then

prj .prj_state : = closed; #

mods_completed

outln("all mods completed for project

", prj .proj_ID,
"

Time: ", s . skdr . clock) ;

outln (
" "

) ;

wait s.dt;

prj_size := length(s .projList) ;

prjl-.project := s .projList [0] ;

# Hire more people at day 100 if needed

if (prj_size! =0) then

if (s. skdr. clock > prjl .hire_date & hire = 0 &

s .num_new_developers != 0) then

new_developer_training (s, prjl) ;

client (s: sm) : actor type is

# responsible for distributing modules and requirements creept

i : : int : = 0 ;

p: :project := new project;

p.proj_ID := i;

push (s .projList, p) ;

for j:each 1 . .p.prj_modules do # create all the modules

m: :module := new module;

m . mod_ID : = j ;

m.proj
:= p;

push (p.modList, m) ;

for every true do # Add creeping requirements every 30.5 days

if (p.prj_state != closed) then

if ( (mod(s. skdr. clock, 30.5)) < 1) then

assign_newmods_to_developers (s, p) ; #

allocate new modules

wait 1.0;

# ####################### Procedure for adding new developers ##############

addDevelopers(s:sm, p:project, numOfnewbies : int ) : action is

# add specified number of developers to the project

total_mods : int : = 0 ;

new_id : int : =length ( s . devList ) ;

mod_list_len : int : = 0 ;
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mod:module:=?;

s . num_developers := s .num_developers + s .num_new_developers; # add to

the number of developers

for j:each 1 . .numOfnewbies do

d: developer := new (s, developer (s) ) ; # create new actor

new_id : = new_id + 1 ;

d.dev_ID :=
new_id; # assign ID

d.devT :=
p . hire_date ; # time to bring in recruits

d.productivity_rate := s. inexperienced_rate; # set

productivity rate

d.communication_overhead := (s .man_day_fraction

*
( s . num_developers )

*
( s . num_developers ) ) ;

push (s.devList, d) ; # add to simulation list of developers

# ####################### Procedure for reassigning modules ################

reassignModules (s:sm, p:project): action is

newModList:: list := new list module;

# clear developer module lists and send modules for reassignment

for d: every s.devList do

for m: every d.modList do

push (newModList , m) ;

d . num_mods : = 0 ;

emptyModList:: list := new list module;

d.modList := emptyModList; # erase list

p.modList := newModList; # initialize project list with incomplete

modules

assign_mods_to_developers (s,p) ;

# ####################### Procedure for training of new developers #########

new_developer_training (s : sm, p:project) : action is

trainerList : : list := new list developer; # set up a list of trainers

id: : number := ? ;

found:: boolean:=true;

training_percent :: number := 0.2 5;

numOfTrainers : : int := trunc ( (s .num_new_developers)
*

training_percent) ; # get number of trainers required

# Get a trainers

for dev: each s.devList do

push (trainerList, dev) ;

dev . productivi ty_rate : =s . exper
ienced_rate-

(s .num_new_developers/ (s .num_developers) *training_percent*s . exper ienced_rate)

t

addDevelopers (s, p, s .num_new_developers) ; # add new developers

reassignModules (s, p) ; # reassign modules

assimilation (s, trainerList); # finish assimilation

assimilation (s:sm, trainerList : list) : action is

# Assimilation of new employees

rate:: number := 20;

last_rate:: number :=0.0;

assim:: boolean := true;

percent:: number :=0.0;

training_percent :: number := 0.25;
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min: : number := 0.00001;

training_prod : : number : = ( s . num_new_developers / ( s .

num_developers-

s.num_new_developers) *training_percent*s.experienced_rate) ;

# slowly increases developer productivity rate

for every assim do

rate := rate-

(rate/20) ;

percent := (l-rate/20) -

(last_rate) ;

for d: every s.devList do

if (d.dev_ID > (s.num_developers -

s.num_new_developers) & d.dev_ID < s
.num_developers+l) then

d.productivity_rate:=d.productivity_rate +

( (s.experienced_rate-s.inexperienced_rate) *percent) ;

last_rate := last_rate + percent;

if rate < min then

assim:= false;

for t: every trainerList do

t .productivity_rate : =t .productivity_rate +

(training_prod*percent) ;

wait 1.0;

# ####################### Procedure for checking project status ############

all_mods_completed(s:sm, prj: project): boolean is

for mod: every prj .modList do

if mod.mod_state != completed then return false;

for d: every s.devList do

if d.dev_state != free | (length d.modList) > 0 then return

false;

return true ;

# ####################### Procedure for assigning modules ##############

assign_mods_to_developers (s:sm, prj :project) : action is

min_mods : : int : = ? ;

devListl : : list := new list developer;

d: : developer :=?;

i : : int : = ? ; j : : int : = ? ;

for mod: every prj .modList do

min_mods : =1 0 0 0 ;

for dev: every s.devList do # smallest number of modules

assigned

modules

if dev . num_mods < min_mods then

min_mods : = dev . num_mods ;

d : = dev ;

i:= 0;

devListl :=
list'

[d] ;

d :=
pop devListl;

for devl : every s.devList do # find developer with least

if devl . num_mods = min_mods then

push (devListl, devl) ;

i:= i+1;

j : = rand ( 1 , i ) ;

d:= devListl [j-1] ;

d.num_mods :=d.num_mods+l; # increase module count

push(d.modList, mod) ; # add module to developer list
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mod.mod_state := assigned;

# ####################### Procedure for assigning new modules ##############

assign_newmods_to_developers (s : sm, prj :project) : action is

min_mods : : int : = ? ;

devListl :: list := new list developer;

d: : developer :=? ;

i : : int : = ? ; j : : int : = ? ;

# Assign modules fairly
for mod:each 1 .

.prj
.prj_creepPerMonth do

m: :module := new module;

prj .prj_modules := prj .prj_modules +1;

m.mod_ID := prj .prj_modules;

m.proj
:=
prj ;

push (prj .modList, m) ;

min_mods : =1 0 0 0 ;

for dev: every s.devList do

if dev.num_mods < min_mods then

min_mods := dev . num_mods ;

d:= dev;

i:= 0;

devListl :=
list'

[d] ;

d := pop devListl;

for devl: every s.devList do

i f devl . num_mods = min_mods then

push (devListl, devl) ;

i:= i+1;

j : = rand ( 1 , i ) ;

d:= devListl [j-1] ;

d . num_mods : =d . num_mods+l ;

push (d.modList, m) ;

m.mod_state := assigned;

# ####################### procedures for graphical view #####################

graphl (s:sm) : action is

# Development Time vs. Effort

yO:
number 100.0;

dy : : number : = 0.0;

xO : : number := 100.0;

dt: : number :=1 . 0;

first_flag: :boolean := true;

working: :boolean := true;

productivity:: number := 0.0;

prj:: project
:= s.projList [0] ;

wait 5.0;

# depicts a line showing team development rate

for every working do

productivity
:= 0.0;

for dev: every s.devList do

productivity
:= productivity + (dev.productivity_rate

-

dev.productivity_rate*

( (s.man_day_fraction

* (s.num_developers)
* (s.num_developers) ) /100) ) ;

125



if first_flag then yO : = 100 + (200-
productivity*10) ;

first_flag := false;

depict(s.vw, paint (polyline (2 . 0, xO, yO , xO + dt, 100 + (200
-

productivity*10) ) , (blue) ) ) ;

xO := xO + dt;

yO := 100 + (200 -

productivity*10) ;

wait 1.0;

if prj .prj_state = closed then # stop drawing

working := false;

depict(s.vw, paint (polyline (2 . 0, xO, yO , xO, 300),
(blue) )

dy :=
productivity;

displayGraphs ( ) : actor type is

sim.vw := new view(sim,
"***

SW process schedule ***", ivory, nil);
null make_window( sim.vw, 1) ;

displayEffort () ; # display effort (productivity graph)

displayEffort () : action is

# x axis

deptl: cee := paint (polyline (3 . 0, 100, 300, 1000, 300), (black));
depict (sim.vw, deptl);

# y axis

dept2: cee := paint (polyline (3 . 0 , 100, 300, 100, 50), (black));
depict (sim.vw, dept2);

# horizontal lines

dept3 : cee := paint (polyline (1. 0, 100, 200, 1000, 200), (gray)),-

depict (sim.vw, dept3 ) ;

dept4: cee := paint (polyline (1. 0, 100, 100, 1000, 100), (gray));
depict (sim.vw, dept4)

# vertical lines

dept5: cee := paint (polyline (3 . 0 , 300, 300, 300, 50), (gray));

depict (sim.vw, dept5) ;

dept6: cee := paint (polyline (3 . 0 , 400, 300, 400, 50), (gray));

depict (sim.vw, dept6) ;

dept7 : cee := paint (polyline (3 . 0 , 500, 300, 500, 50), (gray));

depict (sim.vw, dept7) ;

dept8: cee := paint (polyline (3 . 0 , 600, 300, 600, 50), (gray));

depict (sim.vw, dept8) ;

dept9: cee := paint (polyline (3 . 0, 200, 300, 200, 50), (gray));
depict (sim.vw, dept9) ;

deptlO: cee := paint (polyline (3 . 0, 700, 300, 700, 50), (gray));
depict (sim.vw, deptlO);

deptll: cee := paint (polyline (3 . 0 , 800, 300, 800, 50), (gray));

depict (sim.vw, deptll);

deptl2: cee := paint (polyline (3 . 0, 900, 300, 900, 50), (gray) ) ;

depict (sim.vw, deptl2);

graphl (sim) ;

# ####################### Procedure for beginning simulation ##############

SEprocess ( ) : action is

# initializes new manager, developers, projects and associated modules

s : : sm : = new sm ;
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for i:each 1.. s.num_developers do

d: developer := new (s, developer (s) ) ;

d . dev_ID : = i ;

d.productivity_rate := s.experienced_rate;

push (s.devList, d) ;

null new (s, client (s) ) ; # create client

null new(s, manager(s)); # create manager

null new(s, displayGraphs ( ) ) ; # used to display graph output

wait s;

# ####################### Call to start simulation##########################

SEprocess ( )

Large Project Code

# #############################################################

# Based on a simulation written by Alan Christie, January 2002

# Copyright 2002, Carnegie Mellon University

#

# Modified by Alicia Strupp, August 2004

# Purpose: To simulate a software development organization in

# order to observe Brooks
'

s Law

# ##############################################################

mod_states: type is enum(unassigned, assigned, completed);

prj_states: type is enum (unallocated, allocated, mods_completed, closed);

dev_states: type is enum (occupied, free);

dev_rank: type is enum(dev, teamLead) ; # enhancement - developers have a

rank

# ######################## Define Global Attributes ########################

sm: simulation type is

projList :: list := new list project; # list of projects

devList : :list := new list developer; # list of developers

num_developers : : int := 100; # number of experienced

developers

num_new_developers : : int := 25; # number of inexperienced

developers

team_size: : int := 5; # team size

dt : : number : = 1.0;

vw: :view := ?;

experienced_rate: : number := 1.2; # experienced developer

productivity

inexperienced_rate: : number := 0.8; # unexperienced developer

productivity

man_day_fraction: : number := 0.06; # used for communication

overhead

# ####################### Define Project and Modules Types #################

project: type is

modList: :list := new list module; # modules per project

modListCompleted: :list
:= new list module; # modules completed

prj_state: :prj_states
:= unallocated;
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proj_ID: :int := ? ;

prj_modules : : int := 10000; # number of function points

hire_date : : int := 222; # date to hire new hires

module: type is

# a project consist of multiple modules

mod_state: :mod_states :=
unassigned;

mod_ID : : int : = 0 ;

dev_time:: number := 10.0; # for fixed dev time-
.1 FP

per day

startT: : number := ? ;

endT : : number : = ? ;

proj : :project := ? ;

# ####################### Define Actors: Developer, Manager, & Client

##########

developer (s:sm) : actor type is

# developers implement modules

devID : : int : = ? ;

mod: :module : = ? ; # modules currently developing
num_mods : : int := 0; # number of modules assigned

devT:: number := 0.0; # development time

modList: .-list := new list module; # List of modules

waiting to be completed

modListl: : list := new list module; # List of modules

completed

dev_state: :dev_states := free;

communication_overhead: : number : =0 . 0 ;

productivity_rate: : number := ?;

tm : : number : = 0.0;

team_ID : : int : = ? ;

rank: :dev_rank := dev;

# Complete modules waiting to be completed

for every true do

if (length modList) > 0 & dev_state = free then # if free

and work needs to be done -

start developing
dev_state := occupied;

mod :=
pop modList; # get module

push (modListl, mod) ;

mod.startT := devT;

# determine overhead involved

if (rem(s.num_developers, s.team_size) = 0) then

communication_overhead := (s
.man_day_fraction

* (s
.team_size)

* (s . team_size) ) ;

else

communication_overhead :=

( (s.man_day_fraction
* (s . team_size)

* (s . team_size) )
* (floor

(s.num_developers/s. team_size) ) + ( (rem (s
.num_developers, s . team_size) )

* (rem

(s.num_developers, s. team_size) ) *s .man_day_fraction ))/( (floor

(s.num_developers/s . team_size) ) +1) ;

mod . endT : =

devT+mod.dev_time/ ( (productivity_rate)
*

(l-communication_overhead/100) ) ;

devT := max (mod. endT, tm) ;

num_mods : =num_mods-l ;
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outln( "mod.dev_time: ", mod . dev_t ime ,
"new: ",

mod.dev_time/ ( (productivity_rate) *
(l-communication_overhead/100) ) ) ;

outln("dev ID: ", devID,
"

mod ID: ", mod.mod_ID,
"

productivity rate: ", productivity_rate) ;

outln("

start time: ", mod.startT,
"

end time:
"

, mod . endT ,

"

mods remaining
"

, num_mods ) ;

outln (
"

"

) ;

# create module

wait mod.dev_time/ ( (productivity_rate)
* (1-

communication_overhead/100) ) ;

mod.mod_state:= completed;

dev_state := free;

else

tm:= tm+s.dt;

wait s.dt;

manager (s:sm) : actor type is

# managers assign modules

prj : :project := ?;

hire : : int : = 0 ;

prj_size: : int := ?;

# Assign modules and check status of modules

for every true do

for prj: every s.projList do

if prj .prj_state != closed then # if a project is

not complete, check status

if prj .prj_state
= unallocated then

assign_mods_to_developers (s, prj) ;

prj .prj_state
:= allocated;

else if prj .prj_state = allocated &

all_mods_completed(s, prj) then

prj.prj_state:=closed; # was

mods_completed

outln ("all mods completed for project

", prj .proj_ID,
"
Time: ", s . skdr . clock) ;

outln ( "-

wait s.dt;

prj_size := length(s .projList) ;

prjl:project := s .projList [ 0] ; # moved from loop below

# Hire more people if needed

if (prj_size!=0) then

if (s. skdr .clock > prjl .hire_date & hire = 0 &

s . num_new_developers ! = 0 ) then

hire : = 1 ;

new_developer_training(s, prjl) ;

client (s : sm) : actor type is

# Responsible for creating modules (requirements)

i : : int : = 0 ;

p: :project := new project;

p.proj_ID := i;

push(s.projList, p) ;

for j:each 1 .
.p.prj_modulesdo # create the modules (requirements)

m: :module := new module;
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m . mod_ID : = j ;

m.proj
:= p;

push (p.modList, m) ;

# ####################### Procedure for adding new developers ##############

addDevelopers (s : sm, p:project, numOfnewbies : int ) : action is

# add specified number of developers to the project

total_mods : : int : = 0 ;

new_id: : int :=length( s.devList) ;

mod_list_len: int := 0 ;

mod : :module : = ? ;

newDevList: :list := new list developer;

s .num_developers := s .num_developers + s . num_new_developers;

for j : each 1. .numOfnewbies do # create each new developer

d:developer := new (s, developer (s) ) ;

new_id : = new_id + 1 ;

d.devID := new_id;

d.devT := p.hire_date; # for now, time to bring in recruits

d.productivity_rate := s . inexperienced_rate;

d.communication_overhead := (s .man_day_fraction

* (s . team_size)
* (s . team_size) ) ;

push(s .devList, d) ;

push(newDevList, d) ;

# ####################### Procedure for reassigning modules ################

reassignModules (s:sm, p:project): action is

newModList :: list := new list module;

for d: every s.devList do # get modules not completed

for m: every d.modList do

push (newModList, m) ;

d . num_mods : = 0 ;

emptyModList:: list := new list module;

d.modList := emptyModList;

p.modList := newModList;

assign_mods_to_developers (s,p) ; # send uncompleted modules to be

dispersed

# ####################### Procedure for training of new developers #########

new_developer_training(s:sm, p:project): action is

# training of new developers and mentoring of new project team leaders

:list := new list developer;

list := new list developer ;

= f

found: : boolean := true;

num_of_mentors : : int := ceil ( ( s .num_new_developers / s . team_size) ) ;

counter : : int : = 0 ;

training_percent :: number := 0.25;

# Get a trainers

for dev: each s.devList do

push (trainerList, dev) ;

dev .
productivity_rate : =s . experienced_rate

-

(s.num_new_developers/ (s .num_developers) *training_percent*s . experienced_rate

);
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# Get Team Leads for Mentoring
for dev: each s.devList do

if ((counter < num_of_mentors) & (dev. rank == teamLead) ) then

dev.productivity_rate := dev.product ivity_rate -

(0.24) ;

push(mentorList, dev) ;

counter := counter + 1;

addDevelopers ( s , p , s . num_new_developers ) ;

reassignModules (s, p) ;

assimilation (s, trainerList, mentorList) ;

assimilation (s:sm, trainerList : list , mentorList : list) : action is

# training period of new developers

rate: : number := 20;

last_rate: : number := 0.0;

assim: :boolean := true;

percent : : number : = 0.0;

min : : number : = 0.00001;

days : : int : = 0 ;

training_prod: : number := (s .num_new_developers/ (s

s
.num_new_developers) *0 .25*s.experienced_rate ) ;

for every assim do

rate := rate- (rate/20 ) ;

percent := (l-rate/20) -

(last_rate) ;

for d: every s.devList do

if (d.devID > (s.num_developers -

s.num_new_developers) & d.devID < s.num_developers+l) then

d . productivi ty_rate : =d . productivity_rate +

( (s .experienced_rate-s . inexperienced_rate) *percent) ;

last_rate := last_rate + percent;

if rate < min then

assim: = false;

for t: every trainerList do

t.productivity_rate: =t .productivity_rate +

(training_prod*percent) ;

# mentoring only for 2 0 days

for m: every mentorList do

if (days < 20) then

m.productivity_rate := m.productivity_rate +

(0.012) ;

days : = days + 1 ;

wait 1.0;

# ####################### Procedure for checking project status ############

all_mods_completed(s:sm, prj: project): boolean is

for mod: every prj .modList do # check to see if modules have been

completed

if mod.mod_state != completed then return false;

for d: every s.devList do # check to see if all developers are

free

if d.dev_state != free | (length d.modList) > 0 then return

false;

return true;
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# ####################### Procedure for assigning modules ##############

assign_mods_to_developers (s:sm, prj :project) : action is

min_mods : : int : = ? ;

devListl: : list := new list developer;

d: : developer := ?;

i : : int : = ? ; j : : int : = ? ;

for mod: every prj .modList do

for dev: every s.devList do

if dev.num_mods < ( (length

prj .modList) /s .num_developers) then

d:= dev;

d . num_mods : =d . num_mods+ 1 ;

push (d.modList, mod);

mod.mod_state := assigned;

# ####################### Procedure for assigning new modules ##############

assign_newmods_to_developers (s :sm, prj :project ) : action is

min_mods : : int : = ? ;

devListl : -.list := new list developer;

d: : developer := ?;

i : : int : = ? ; j : : int : = ? ;

for mod:each 1 .
.prj

.prj_creepPerMonth do

m: :module := new module ;

prj .prj..modules
:= prj .prj_modules +1;

m.mod_ID :=
prj .prj_modules;

m.proj
:=
prj ;

push (prj .modList, m) ;

min_mods : =1000 ;

for dev: every s.devList do

if dev.num_mods < min_mods then

min_mods := dev . num_mods ;

d : = dev ;

i:= 0;

devListl :=
list'

[d] ;

d :=
pop devListl;

for devl: every s.devList do

if devl . num_mods = min_mods then

push (devListl, devl) ;

i:= i+1;

j : = rand ( 1 , i ) ;

d:= devListl [j-1] ;

d . num_mods : =d . num_mods+ 1 ;

push (d.modList, m) ;

m.mod_state := assigned;

# ####################### Procedures for graphical view #####################

graphl ( s : sm) : action is

# Development Time vs. Effort

yO: :number := 100.0;

dy : : number : = 0.0;

x0::number := 100.0;

dt : : number : =1 . 0 ;

first_flag: : boolean := true;
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working: : boolean := true;

productivity: : number : = 0.0;

prj::project := s .projList [0] ;

wait 5.0;

for every working do

productivity := 0.0;

for dev: every s.devList do

productivity :=

productivity + (dev.productivi ty_rate
- dev.productivi ty_rate* (dev.communication_overhead/100) ) ;

if first_flag then y0:= 100 + (200-
productivity);

first_flag := false;

depict(s.vw, paint (polyline (2 . 0, xO, yO , xO + dt, 100 + (200
-

productivity) ) , (blue) ) )

xO := xO + dt;

yO := 100 + (200 -

productivity);

wait 1.0;

if prj .prj_state = closed then

working := false;

depict(s.vw, paint (polyline (2 . 0, xO, yO , xO , 300),

(blue) ) )

dy := productivity;

displayGraphs ( ) : actor type is

sim.vw := new view(sim,
"*** SW process schedule ***", ivory, nil);

null make_window( sim.vw, 1) ;

displayEffort ( ) ;

displayEffort () : action is

# x axis

deptl: cee := paint (polyline (3 . 0, 100, 300, 1000, 300), (black));

depict (sim.vw, deptl);

# y axis

dept2: cee := paint (polyline (3 . 0, 100, 300, 100, 50), (black));

depict (sim.vw, dept2) ;

# horizontal lines

dept3 : cee := paint (polyline ( 1 . 0 , 100, 200, 1000, 200), (gray));

depict (sim.vw, dept3);

dept4: cee := paint (polyline (1 . 0, 100, 100, 1000, 100), (gray) )

depict (sim.vw, dept4) ;

# vertical lines

dept5: cee := paint (polyline (3 . 0, 300, 300, 300, 50). (gray));

depict (sim.vw, dept5) ;

dept6: cee := paint (polyline (3 . 0, 400, 300, 400, 50), (gray));

depict (sim.vw, dept6) ;

dept7: cee := paint (polyline (3 . 0, 500, 300, 500, 50), (gray));

depict (sim.vw, dept7);

dept8: cee := paint (polyline (3 . 0, 600, 300, 600, 50), (gray) ) ;

depict (sim.vw, dept8) ;

dept9: cee := paint (polyline (3.0, 200, 300, 200, 50), (gray));

depict (sim.vw, dept9) ;

deptlO: cee := paint (polyline (3 . 0, 700, 300, 700, 50), (gray) ) ;

depict (sim.vw, deptlO);

deptll: cee := paint (polyline (3 . 0, 800, 3 00, 800, 50), (gray) ) ;

depict (sim.vw, deptll);

deptl2: cee := paint (polyline (3 . 0 , 900, 300, 900, 50), (gray) ) ;

depict (sim.vw, deptl2) ;
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graphl (sim) ;

# ####################### Procedure for beginning simulation ##############

SEprocess(): action is

# initializes new manager, developers, projects and associated modules

s: :sm := new sm;

num_of_tearns : int := (s.num_developers/s . team_size) ;

counter : : int : = 1 ;

team : : int : = 1 ;

# create developers

for i:each 1.. s .num_developers do

d: developer := new (s, developer (s) ) ;

d.devID := i;

d.team_ID := team;

if (counter == 1) then d.rank := teamLead; # assign team

leads

if (counter == s . team_size) then

counter : = 1 ;

team := team + 1;

else

counter := counter + 1;

d.productivity_rate := s .experienced_rate ;

push(s .devList, d) ;

null new (s, client (s) ) ;

nul 1 new ( s ,
manager ( s ) ) ;

null new(s, displayGraphs ( ) ) ; # used to display graph output

wait s;

# ####################### call to start simulation##########################

SEprocess ( ) ;
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APPENDIX C

EASEL SMALL PROJECT RESULTS

Remaining Easel simulation results for the small project trials are provided below.
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Figure 58 - Easel - Hiring 7 New Developers at Day 635
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Figure 59 - Easel - Hiring 10 New Developers atDay 635
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APPENDIX D

EASEL MEDIUM PROJECT RESULTS

Remaining Easel simulation results for the medium project trials are provided below.
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Figure 60- Easel - Hiring 5 New Developers at Day 445
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Figure 61 - Easel - Hiring 10 New Developers atDay 445
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Figure 62 - Easel - Hiring 15 New Developers at Day 445
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Figure 63 - Easel - Hiring 20 New Developers at Day 445
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Figure 64 - Easel - Hiring 5 New Developers at Day 668
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Figure 65 - Easel - Hiring 10 New Developers at Day 668
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Figure 66 - Easel - Hiring 15 New Developers at Day 668
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