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Abstract 

 

Throughout history, cushioning material has been used widely in protective 

packaging design. Various cushioning materials included wood, paper, cloth, 

paperboard, molded pulp, plastic, and metal. However, the most popular and most 

effective since the last century is polymer plastic foam as protective cushioning 

packaging material. It has been comprehensively used for high-shock, compression, 

and vibration-sensitive products. 

 

Over the past 60 years, scientists and engineers have a come a long way in both 

packaging-related academics and industries. A new series of testing standards was 

developed (ASTM D1596 and ASTM D4168) building up the cushion curve in terms 

of various foam materials, density, thickness, and drop height. Along with these 

standards came sophisticated engineering-cushion-design methods (Lansmont Six 

Step Method for Cushioned Package Development) that were developed to achieve 

the optimal and cost-effective transport solution. 

 

However, due to the testing limitation of 90-degree shock impact, traditional 

cushion-curve methods lacked consideration of both the hidden bearing area in the 

corner-cushion design as well as the realistic and economical cushion material. 
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The following study, comparing the shock test performance between corner- and 

flat-cushion foam, qualitatively proved that the hidden bearing area does exist in the 

particular cushion geometry by conducting a dynamic acceleration-level response 

comparison between these two types of cushion design. It explored the possibility of 

a new experiment method for quantitatively formulating the hidden bearing area in 

the future. The shock test result recorded by accelerometers as G’s response will 

provide packaging engineers with solid evidence of hidden bearing area existence, 

which needs to be considered for improving design accuracy and cost effectiveness 

by the traditional cushion curve. By conducting the measurement acceleration 

difference between the two types of cushion design, this study qualitatively proves 

that the hidden bearing area exists in this particular cushion geometry. This study 

explores the possibilities of new experiment methods that could be used as a 

guideline for protective cushioning design in both institute and industry for future 

use. Whatever the result may be, it will provide packaging engineers with solid 

evidence of the hidden bearing area’s existence and improve both design accuracy 

and cost effectiveness. 
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Chapter 1 Introduction 

For centuries people have been using various materials, such as wood, hay, fabric, 

paper, metal, and plastic, as cushion materials offering protection to our food, arms, 

and goods. After industrial polymerization was developed in the late 1800s, polymer 

plastic foams, such as Expanded Polystyrene (EPS), Polyurethane (PU), and 

Polyethylene (PE), gained their popularity fairly quickly. They were the most 

effective and reliable packaging cushion materials for high-shock-sensitive products, 

including large electronic equipment, optical electronic products, and military 

products [6]. 

 

The use of more sustainable packaging material has become increasingly popular 

over the past few decades, forcing engineers to become even more innovative than 

in the past. Modern cushion materials were developed and commercialized as an 

alternative to the original polymeric plastic foam. These new materials include 

molded pulp, thermoforming plastic, corrugated paperboard, and honeycomb board. 

However, polymeric plastic foam is still considered to be the most effective and 

reliable cushion material for products with high-shock sensitivity. It is superior in 

moisture resistance to high temperature and humidity during sea container 

transportation, as well as warehouse stacking durability, in comparison to paper- or 

wood-based cushion material. As discussed in Chapter 2, packaging engineers 
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recommended polymeric plastic foam above all others because of its multiple-shock 

performance. Polymeric plastic has an advanced shock resistance for complex 

transportation and rough-handling conditions. 

 

Globalization is happening faster than ever, and, as a result, a large percentage of the 

U.S. market is purchased, manufactured, packaged, and distributed worldwide. The 

majority of our commodities are even transported across the globe, increasing the 

need for sturdy and reliable packaging. 

 

In Chapters 3 and 4, it is not only important to achieve the goal of optimizing usage 

of material but also to control both the cushion thickness and the overall package 

dimension. This has now become a critical objective for both a company’s 

profitability and environmental sustainability. 

 

In Chapter 5, given the brief design guidance by traditional foam-cushioning-curve 

methodologies ASTM D1596 – 97(2011) “Standard Test Method for Dynamic Shock 

Cushioning Characteristics of Packaging Material” [2] and ASTM D4168 - 95(2008)e1 

“Standard Test Methods for Transmitted Shock Characteristics of Foam-in-Place 

Cushioning Materials” [3], a hypothesis of hidden bearing area existed in certain 

geometries of cushion design (corner and edge), which may have had a negative 

influence on both accuracy and predictability. A study that compared G’s response to 
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flat- and corner-cushion designs was then initiated and comprised of three method 

design experiments. One was selected by the shock tester and eventually performed. 

Finally, data analysis from the test results showed that there was a horizontal shift 

between the rebuilt cushion curve of the flat and corner designs, proving the 

hypothesis of the existing hidden bearing area. 

 

The meaning of this study and the significance behind it can be found in Chapter 6. 

For packaging professionals looking to broaden their research, experimental 

methodologies and further possibilities are provided for discussion on this topic. 
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Chapter 2 Cushion Material 

2.1 Traditional cushion material and the materials of today 

Before polymeric plastic was discovered and compounded in the 1800s, people had 

been using a variety of natural cushion materials, such as wood, hay, cotton, fabric, 

and paper packing, and securing anything fragile [1].  

 

Popular polymeric plastic foams, such as 

Polyethylene (PE) in Figure 1, Expanded 

Polystyrene (EPS) in Figure 2, and Polyurethane 

(PU), Polypropylene (PP), and inter-polymer 

(PS/PE), began to be used as protective packaging 

material since Dow Chemical first commercially 

manufactured Expanded Polystyrene in 1954 [2]. 

Since then consumers have seen, touched, recycled, 

and/or discarded a great percentage of plastic 

foam used as protective-cushion-packaging 

material, for everything from auto parts to food. 

Because of the relatively new concern about our 

environment, packaging engineers around the world have begun to design “greener” 

Figure 2 PE cell 

Figure 1EPS cell 
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packaging—the more reusable and recyclable, the better. Many companies have 

started to use alternative cushion materials, as molded pulp, corrugated paperboard, 

honeycomb board, and plastic air pillows have replaced polymeric foam in many 

areas due to their cost effective, biodegradable, and easily recyclable nature. For 

example, large photography companies like Nikon have started to package even their 

most expensive DSLRs in molded pulp and corrugated board structure; in the 1980s 

hardly anything was used except EPS. Only time will tell if polymeric foam will 

become extinct in the near future [5]. 

2.2 Why polymeric foam still cannot be replaced in certain 

locations 

First, as stated previously, polymeric foam has superior durability in 

cross-geometric transportation, whether domestic or international. Figure 3 

portrays the temperature and humidity data that was captured in early September 

2012 from a 53-foot truck trailer on its journey from Mexico to Memphis, TN. The 

products in this study were Honeywell Air Purifiers, some packaged with EPS and 

others with molded pulp, both in 45ECT BC double-wall retail packages. Engineers 

and technicians met the truck as it arrived on the dock to evaluate the condition of 

the packages. They found that the air purifiers packaged in molded pulp showed 

more levels of displacement and degradation than those packaged in EPS. It is 

interesting because this phenomenon typically only happens in the dry, cool 
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conditions of the winter season. A similar situation happened when packaging of the 

same caliber was stacked and stored in a warehouse for 6–18 months. 

 
Figure 3 Environmental data from Mexico to Memphis, TN 

 

Secondly, this collected data only reinforces that polymeric foam is still the most 

reliable form of cushioning in terms of G’s response. Scientists continue to work on 

strengthening the pulp-based curve design, but because of the nature of the material 

itself, it is subject to different temperature and moisture levels. 

 

Thus, polymeric foam still cannot be replaced in many locations around the world, 

since alternatives such as molded-paper pulp become defective in extreme humidity 

and moisture. Many products with high-shock sensitivity need superior protection 

and cannot be compromised by a weak packaging material. Discussions about 

whether or not polymeric foam should be used at optimum volumes and sizes have 

become a critical topic and will continue to be debated for years to come.  
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Chapter 3 Protective Packaging 

Development Process 

 

3.1 Shock as hazard in transportation 

In today’s highly industrialized world, commodities are manufactured and 

distributed in an increasingly complicated way. In order to reach the consumer, the 

product is usually manufactured, assembled, and packaged overseas, then 

transported to a warehouse, and finally distributed to a company before the 

consumer even has a chance to view it. The retail packages are placed in a master 

carton, which is then placed in an outer shipper with others of its kind. All outer 

shippers are put onto a sea container to then be shipped by rail and truck to a 

warehouse. Depending on where the goods are being delivered, they are then either 

delivered to a retailer’s distribution center or a small parcel shipment company, such 

as FedEx or UPS. Shock is one the major transportation hazards during the entire 

complex logistic process, along with compression, vibration, temperature, moisture, 

chemicals, and electronic magnetic interference [1]. 
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Figure 4 ISTA drop height chart courtesy of ISTA 

 

According to an established ISTA study as shown in Figure 4, shock from various 

transportation methods are quantified in different severity levels in terms of weight 

and dimension. The transportation methods compared are handling, lifting, and 

equipment lifting. This study provided a valuable guideline for packaging engineers 

when analyzing and evaluating hazards during the distribution process. It also 

added insight when setting up appropriated packaging-testing criteria, making it 

easier to gather data on future projects [7]. 

 

3.2 Lansmont Six Steps of Protective Packaging Design Method 

Safety and cost effectiveness are two factors that packaging industries are always 

striving to improve. Scientists and engineers alike put tremendous effort in 

developing design methodologies to enhance them. As one of the most remarkable 

achievements, Lansmont “Six Step Method for Cushioned Package Development” 
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became the most prevalent and useful cushion-package design, a reliable and 

well-tested method in the current packaging academy and industry. With guidance 

from its established practice, packaging engineers could control the balance of 

damage impact from inadequate package versus cost impact from over pack and less 

container-cube efficiency as much as possible [8]. 
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Chapter 4 Cushion Curve 

4.1 Traditional Method of Cushion Curve: ASTM D1596 and 

ASTM D1468 

Traditionally cushion curves can be tested by two approaches: the guided platen 

method (GPM) as ASTM D 1596 Standard Test Method for Shock Absorbing 

Characteristics of Package Cushioning Materials, as shown in Figure 5, and the 

enclosed test block (ETB) method used as ASTM D 4168 Standard Test Methods for 

Transmitted Shock Characteristics of Foam-in-Place Cushioning Materials, as shown in 

Figure 6. In the first method, ASTM D 1596, the polymeric foam is prepared in a 

certain way, measuring to 4” x 4”. After this preparation, it is placed on a massive 

platform and dropped from a predetermined height. As it falls, the peak acceleration 

value is captured and recorded by a specific program. Density and thickness, 

respectively, of cushion foam can be varied in testing for building response; drop 

height and various masses can be adjustable in order to perform different static 

loadings. As shown in Figures 5 and 6, a standard cushion tester and one 2.2 pcf 

polyethylene, 12-inch impact cushion curve is tested by the ASTM D 1596 approach. 

Because this test method allows for the assumption that the cushion has to be a 

certain size (4” x 4”), it is at a great disadvantage in comparison to the ASTM D 4168. 

While in theory it works, in reality the cushion cavity always has to accompany the 
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product industrial design [2]. 

 

Figure 5 The guided platen method (GPM) ASTM D1596 

 

 

         

Figure 6 The enclosed test block (ETB) ASTM D4168 

                    

 

ASTM D 4168, also known as “foam in place” testing, has taken into consideration 

the practicality of reality. This test standard was developed specifically for 
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improving the accuracy of foam-cushion properties. You can also see in Figure 6 

above that the adjustable mass and sensor-recording-peak-acceleration value is 

placed in a foam-in-place system, and the shock test is performed on the whole 

system rather than separately. The second test method is more commonly used, 

mostly due to how much closer it is to how the product would be placed in a 

cushioned package during actual manufacturing. However, it does still lack a few key 

components of the real world. It does not take into account that both material 

consumption and static loading need to be adjustable in order to perform the 

highest-quality shock absorption [3]. 

 

4.2 How to design shock-resistance cushion using Cushion Curve 

 
Figure 7 Product Fragility Level courtesy of ISTA 
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Once the distribution environment (drop height), product-fragility level (the G’s 

requirement), and the best applicable cushion-foam density is known, the equation 

for the most effective cushion-bearing area (A) is as follows: 

                    
            

                    
 

 

   
 

 
        

 

 
     

 

By understanding the cushion curve, known by the optimized G’s value that 

corresponds with the static loading ( ) and total mass of the product (M), the 

calculation for the optimized-bearing area becomes available (A) (1). 

 

 
Figure 8 Design by cushion curve 

s
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Chapter 5 Exploring Hidden Bearing Area 

5.1 Motivation for exploring hidden bearing area 

 

As a packaging engineer, I primarily develop, 

design, and test protective packaging systems 

for consumer electronics products. During 

years of cushion-package-design experience, I 

sometimes have packaging performance 

issues during shock and vibration validation 

tests, when I tried designing PE and/or EPS 

foam cushion under the guideline of the 

cushion curve provided by manufacturers. In 

detail, cushion sets are designed at optimum 

foam thickness; static stress and bearing area, 

however, do not always perform at what was 

indicated by the corporate cushion curve in 

terms of peak acceleration value. In some cases, the actual peak acceleration 

measured through drop testing exceeds the acceptable product-fragility level, which 

somehow causes product failure in functionality and/or appearance. In order to 

Figure 10 Purification Unit 

Figure 9 1.8pcf foam courtesy of Sealed Air 
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avoid this scenario, I have to utilize extra cushion thickness providing additional 

protection, which is not preferable because it not only increases the usage of cushion 

material and secondary packaging material (such as corrugated board), but it also 

means higher freight costs due to the reduced pallet and container quantity. 

 

Using one of my previous product-packaging designs as a good example, with a 

purification unit weight of 14.5 lbs and the fragility level at 85 G’s, the product was 

drop tested at height of 20 inches according to ISTA 1A procedure. Initially, 1.8 pcf, 

1.5 inch thickness PE foam was selected by the guideline of the existing cushion 

curve. The estimated peak acceleration value was supposed to be 75 G’s when the 

optimum static stress of 0.4 psi was chosen. However, the product was damaged and 

the actual measured acceleration value was over 100 G’s during the preliminary 

packaging drop test. Eventually, cushion thickness was upgraded from 1.5 inches to 

2 inches in order to provide adequate protection to the product. A negative impact to 

the overall distribution process is not only using more material but also shipping 

less quantity in the container. In a 40-ft high cube sea container, the actual quantity 

is 644 (2” cushion) versus the estimated 736 (1.5” cushion). As a result, the shipping 

cost increase is 14%. 
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Figure 11 40ft HQ container loading 

 

5.1 Hypothesis of hidden bearing area existence 

As discussed in Chapter 4, the bearing area theoretically is the area where the mass 

(product) comes into contact along the impact direction. The cushion shape is hardly 

designed as a perfect 90 degree angled block; in fact, it usually comes in the shape of 

a corner pad, edge pad, and/or edge cap, as shown in Figures 9 and 10. These shapes 

actually offer the most potential, as there may be some bearing area hidden inside 

[4]. 

 

 
Figure 12 Corner cap 



 17 

 

Figure 13 End cap 

 

The significant difference between a flat cushion and a corner cushion is that the 

corner cushion has tensile strains presented within the area between product edge 

and the inner side of the cushion. As shown in Figures 11 and 12, though major 

compression stress is applied on the vertical direction, part of the inner-corner 

cushion is still involved with the reaction; refer to FEA simulation for a corner 

cushioning under a vertical dynamic stress done by Mills and Masso-Moreo [6]. 

 

 

Figure 14 The FEA predicted deformation of the corner PE cushioning under the vertical dynamic 

compression 
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Figure 15 The FEA predicted deformation of the edge PE cushioning under the vertical dynamic 

compression [6] 

  

 

In order to build a corner-cushion curve utilizing the traditional cushion curve 

developed by the GPM (ASTM D1596) method, foam blocks need to be a certain 

thickness and square shape. The corner-cushion structure was bridged as a 

flat-block cushion (cushion B, bridge cushion) with identical thickness and extra 

surface, which represent a hidden bearing area in the corner cushion. 

 

 

Figure 16 Flat cushion vs. Corner cushion 

 

Cushion B 
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As in Figure 14, the existing flat curve is shown in blue. Because  

         (∆A is hidden bearing area) 

Known that,    
 

  
        

 

  
 

         
 

  
 

 

  
     

Assuming hidden bearing area (∆A) exists and ∆A>0, that 
 

  
 

 

  
   

M>0 

So, 
 

  
 

 

  
           . 

             

In the GPM (ASTM D1596) method, G’s performance is correlated with σ at a certain 

cushion size. Therefore, in order to generate equivalent B cushion (corner cushion) 

to G’s response value, we should use a reduced-static-stress value on the 

flat-cushion curve, shown as green and blue dashed lines in Figure 13. The 

B-cushion curve should have a right-direction shift rather than an existing 

flat-cushion curve; the value of shift on static stress is equal to ∆σ. 
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Figure 17 Hidden bearing area courtesy of Sealed Air 

 

5.2 Design of experiment 

 

 

Figure 18 Flat cushion in experiment 
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Figure 19 Corner cushion in experiment 

Extruded polyethylene foam at a 1-inch thickness and 2.2 pcf density was selected as 

a popular cushion in consumer electronics since it is inexpensive and easily 

prototyped. Figures 15 and 16 are photographs of both a 3” x 3” flat cushion and a 3” 

x 3” corner cushion with 1-inch wall thickness provided by Orcon Industry. After 

samples are cut by an ESKO Kongsberg Cutting Table to achieve sample quality and 

reduce the variables or prototyping, the corner cushions are heat glued with a 

manufacturing foam heat gun specifically sold for this purpose. With four cushions 

per set, over 150 sets of each design are prepared for testing this way. The weight of 

the smooth, solid steel varies from 2-53 lbs, all professionally prepared by Eastman 

Kodak Company and RIT Dynamic Laboratory, which were both a great help. The 

wood frame and the steel rod fixture keep both the cushions and their weight in the 

intended position. 

 

In total, there are three proposed experimental methods: the cushion test as ASTM D 

1596, the drop test, and the shock test. As a first attempt, the exact cushion tester as 

ASTM D 1596 was proposed for testing. Because it was used for the traditional 
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cushion curve that minimizes variables between different testing equipment, it 

made for an ideal initial testing method. However, several concerns were raised: 1) it 

is difficult to control whether or not the steel mass will land on the entire bearing 

area of cushion that is placed on the base and particularly unrealistic to control 

whether or not it will hit the corner cushion; and 2) because the main objective of 

the experiment is to prove that the hidden bearing area exists in real-world 

packaging design, the test needs to be designed as closely as possible to what the 

product will be going through during manufacturing. 

 

The second experiment is done by the drop tester and is intended to simulate 

product free falls during mishandling. The main problem, however, is that it needs to 

be packed in a box. Whether it is a corrugated board (as thin as E-flute) or 

paperboard, the variable weight can cause unexpected errors in the data. 

 

In the final experiment, the shock tester was 

selected as the final solution. Not only does it have 

highly controllable programs, but it also has a 

flat-steel plate that is the most appropriate for 

mounting cushion samples and fixtures, ensuring 

even shock impact. 

Figure 20 Shock Tester 
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5.3 Analysis based on experimental results 

 
Figure 22 Flat and corner curve from experiment 

 

Because of the close dimension between the flat- and corner-foam cushions, there is 

a slight right shift from the flat-cushion curve to the corner-cushion curve, as 

Figure 21 Weight, sensor, and fixture 
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hypothesized in Chapter 5.1. In detail, the flat cushion reached its minimal G’s level 

of 28.25G’s at a static loading of 0.5703psi, whereas the corner-cushion curve held 

its lowest G’s level of 29.02G’s at a greater static loading of 0.6394psi. Regarding its 

minimal G-value difference, the static loading has a shift of 0.0691psi, which is 

equivalent to an 11% bearing area increase [4]. 

 

As illustrated in Figures 19 and 20, there are three regions segmented by two- 

cushion curves in G’s level response in terms of static loading stress. 

 
Figure 23 Three regions 

Also from the experiment, the hidden bearing area value (percentage) varies with 

regard to different levels of static stress, as shown in Figures 21 and Figure 22. 

Cushion curves are divided into three sections according to static stress levels: 

1. Zone I: under optimum static loading 

2. Optimum point: the lowest G’s value 

3. Zone II: over optimum static loading 

 

  

  
 

        

  
 

 
 

  
 

 

  
 

  
  

  

  
      (4) 

 

Region Static Loading Stress G’s Level Response

Ⅰ 0.18-0.62psi Corner cushion G-value generaly higher than flat cushion

Ⅱ 0.62-0.76psi Corner cushion and flat cushion G-value generaly keep same value

Ⅲ 0.76-1.76psi Corner cushion G-value generaly lower than flat cushion
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In Zone I, ∆A keeps increasing along with static stress σ and reaches its peak of 

56.67% of Af, then decreases gradually to 10% in Zone II. This result is significant in 

that neither ∆A nor ∆σ stay the same for different shock levels. The static stress 

value chosen by the packaging designer around the optimum point on the cushion 

curve, since it is the first and best solution, might miscalculate the hidden bearing 

area (∆A) by as much as 56.67%. 

 

 
Figure 24 Zone I, Optimum point, and Zone II 
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Figure 25 Hidden bearing area ∆A percentage 

For example, the tested cushion curves of both the flat and corner foam are shown as 

black horizontal lines, assuming that a cushioning package with a fragility level of 

32G’s will need to be developed. There are a total of four intersections between the 

black lines and the two cushion curves. In the right portion, the horizontal line 

meets the flat-cushion curve at a static stress of 1.04psi and a corner cushion at 

1.35psi. Based on our calculation in (1), the difference of bearing areas between the 

two intersections will be shown in the calculation below: 

 

 

                               
 

    
 

 

    
        ;               (5) 

 

M = Product Weight 

 

Compared to the original bearing area   , the increased bearing area in percentage 
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can also be calculated as follows: 

 

Bearing area increase in percentage =  
  

  
=  

      

      
     = 23.8% (6) 

 

Based on the existing cushioning curve in the industry that measured from flat to 

geometry, the 23.8% of the bearing area should be taken into consideration when 

designing a cushioned package using a corner configuration. Indeed, the hidden 

bearing area existed in the corner cushioning that provides more bearing area than 

a flat cushioning with the same bearing area to a product. The hidden bearing area 

existed in the corner cushioning, providing more bearing area than a flat cushioning 

with the same bearing area. The equation can be calculated as follows: 

 

                                
 

    
 

 

    
           (7) 

M= Product Weight 

Compared with the original bearing area     , the increased bearing percentage can 

also be calculated as follows: 

 

Hidden bearing area in percentage = 
  

  
=  

      

      
     = 36.3 % (8) 
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Chapter 6 Conclusions 

I discovered from the shock test study that flat- and corner-foam cushions have very 

similar geometry. The results of the experiment particularly proved that the hidden 

bearing area has become a factor that cannot be ignored and, therefore, needs to be 

taken into consideration during the cushion-design process.  

 

6.1 Experiment result proved existence of hidden bearing area 

From the cushion curve built by the experimental result, we can clearly see there is a 

right shift on the corner-cushion-curve base on the flat-cushion curve, which proved 

the Chapter 4 “Hypothesis of hidden bearing area” quantatively. Both curves reached 

their optimum point at around 29 G’s at their optimum static stress levels, 

respectively, which showed the evidence that the corner cushion will not influence 

overall cushion thickness; it only affects static stress due to its additional hidden 

bearing area. In other words, if you cannot use the flat-cushion curve to meet the 

minimal G’s level requirement when doing packaging design, you will not get any 

extra protection from the thickness from corner-cushion structure. 
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6.2 Quantitative difference ∆A between flat cushion and corner 

cushion structure 

From experimental results, ∆A variation is not simply a fixed value through all of the 

static stress ranges. It actually varied from 9.68%, gradually increasing with 

increasing static stress σ in Zone I until it reached its greatest of 56.67% at the 

curve’s optimum point; then it started decreasing gradually to 7.55% in Zone II. In 

this scenario, the corner cushion from the experiment is different than the dashed 

corner-cushion curve proposed in Chapter 4, because it is a complex-variable value 

rather than a fixed value. In addition, it reached its most significant value of as much 

as 56.67% at the optimum point, which normally is chosen as the best performance 

and most cost-effective solution. 

6.3 Importance of hidden bearing area study 

Disregarding the difference between the flat and corner cushion may lead to high 

risk or even damage to product due to inadequate protection provided by the 

package. Additional bearing areas hidden inside the corner cushion, as proved by 

the study, will consequently cause the decrease of static stress σ, assuming there is 

no weight change. This static stress decreases, especially in Zone II; under optimum 

static stress it might provide the packaging designer with incorrect corresponding 

acceleration data and might increase the risk of damage if the actual peak 
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acceleration value equals or exceeds the minimum product-fragility requirement. 

  

For example, in Figure 23, 50 G’s is the product-fragility requirement, and the 

cushion design is a corner structure. Targeting the flat-cushion optimum point 

(static stress= 0.8 psi) seems to offer the best result at about 40 G’s (target G’s value). 

However, the peak acceleration value of the corner cushion will be as high as 60 G’s, 

which is significantly over the product minimum requirement of 50 G’s. The product 

will be damaged by disregarding the hidden bearing area in the corner cushion. 

 

  

Figure 26 Incorrect calculation causes damage 
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G's
Flat Static 

Stress

Corner Static 

Stress
Δstatic stress

ΔA Persentage 

of Af

92 0.140 0.155 0.015 9.68%

90 0.143 0.159 0.016 10.06%

88 0.148 0.162 0.014 8.64%

86 0.150 0.165 0.015 9.09%

84 0.152 0.168 0.016 9.52%

82 0.155 0.170 0.015 8.82%

80 0.158 0.172 0.014 8.14%

78 0.160 0.175 0.015 8.57%

76 0.162 0.178 0.016 8.99%

74 0.166 0.181 0.015 8.29%

72 0.170 0.185 0.015 8.11%

70 0.171 0.188 0.017 9.04%

68 0.175 0.190 0.015 7.89%

66 0.178 0.192 0.014 7.29%

64 0.180 0.196 0.016 8.16%

62 0.182 0.208 0.026 12.50%

60 0.187 0.215 0.028 13.02%

58 0.190 0.225 0.035 15.56%

56 0.192 0.233 0.041 17.60%

54 0.195 0.244 0.049 20.08%

52 0.208 0.252 0.044 17.46%

50 0.215 0.261 0.046 17.62%

48 0.228 0.271 0.043 15.87%

46 0.238 0.283 0.045 15.90%

44 0.250 0.294 0.044 14.97%

42 0.259 0.305 0.046 15.08%

40 0.274 0.324 0.050 15.43%

38 0.289 0.370 0.081 21.89%

36 0.304 0.410 0.106 25.85%

34 0.328 0.472 0.144 30.51%

32 0.361 0.568 0.207 36.44%

30 0.420 0.720 0.300 41.67%

Optimum 

Opint 29 0.520 1.200 0.680 56.67%

30 0.780 1.250 0.470 37.60%

32 1.070 1.362 0.292 21.44%

34 1.256 1.477 0.221 14.96%

36 1.380 1.562 0.182 11.65%

38 1.501 1.650 0.149 9.03%

40 1.605 1.736 0.131 7.55%

Zo
n

e
 I

Zo
n

e
 II

ΔA Persentage of Af
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