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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

Degree: Doctor of Philosophy  Program: Microsystems Engineering  

Author’s Name: Burak Baylav 

Advisor’s Name: Dr. Bruce W. Smith 

Dissertation Title: REDUCTION OF LINE EDGE ROUGHNESS (LER) IN INTERFERENCE-LIKE 

LARGE FIELD LITHOGRAPHY  

Line edge roughness (LER) is seen as one of the most crucial challenges to be 

addressed in advanced technology nodes. In order to alleviate it, several options were 

explored in this work for the interference-like lithography imaging conditions. 

The most straight forward option was to scale interference lithography (IL) for 

large field integrated circuit (IC) applications. IL not only serves as a simple method to 

create high resolution period patterns, but, it also provides the highest theoretical contrast 

achievable compared to other optical lithography systems. Higher contrast yields a 

smaller transition region between the low and high intensity parts of the image, therefore, 

inherently lowers LER. Two of the challenges that would prohibit scaling IL for large 

field IC applications were addressed in this work: (1) field size limitations, and (2) 

magnification correction (i.e., pitch fine-tuning) ability.  

Experimental results showed less than 0.5 nm pitch adjustment capability using 

fused silica wedges mounted on rotational stages at 300 nm pitch pattern. A detailed 

discussion on maximum practical IL field size was outlined by considering the 

subsequent trim exposures and optical path difference effects between the interfering 

diffraction orders. The practical limit on the IL field size was assessed to be 10 mm for 

the conditions specified in this work. 

One of the contributors of LER is the mask absorber roughness. To mitigate it, 

two methods were explored that are also applicable to scanners working under 

interference-like conditions: (1) aerial image averaging via directional translation, and (2) 

pupil plane filtering. Experiments on pupil plane filtering approach were performed at 

Imec in Leuven, Belgium, on the ASML:NXT1950i scanner equipped with FlexWAVE 

wavefront manipulator. Utilizing an optimized phase filter at the pupil plane and a 

programmed roughness mask, the transfer of 200 nm roughness period to the wafer plane 

was eliminated. This mitigation effect was found to be strongly dependent on the focus.  
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1. INTRODUCTION TO LITHOGRAPHY 

Since the invention of the transistor more than 60 years ago, semiconductor 

industry has witnessed significant progress in device manufacturing. The developments 

resulted in more powerful and sophisticated products that are also cost effective. Some of 

these recent developments can be listed as realization of strained silicon, low-k insulators 

and high-k gate metal. More recently, Intel announced their 22 nm technology node 

which uses a tri-gate transistor to boost the gate control over the short channel, instead of 

the conventional planar transistors [1, 2]. 

In integrated circuit (IC) manufacturing process, the photolithography step is 

repeated several times; hence, it accounts for about 30% of the cost of manufacturing [3]. 

In addition, it is also the photolithography step that limits the critical dimension of the 

printed features; hence, the speed of transistors. The reduction in device scales has 

resulted in the trend of doubling of number of transistors on a chip approximately every 

two years, which is widely known as Moore’s law [2]-[4].  

Figure 1.1 shows a simple projection lithography system set up composed of a 

deep-UV (DUV) source, a condenser lens, mask, and an objective lens located at the 

pupil plane with a size defined by the numerical aperture (NA) of the system. The 

projection system creates an aerial image that is approximate to the patterns defined in 

the mask, but at a fixed reduction ratio (usually reduction factor of 4). The aerial image 

subsequently exposes a photo-reactive medium called “photoresist.” Depending on the 

chemical makeup of the material and the developer utilized, the process can result in 
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either positive tone or negative tone imaging, where the former requires removal of the 

photoresist materials that corresponds to the transparent parts on the mask [3, 5]. 

 

Figure 1.1: A simplified schematic of a projection lens system. 

 

1.1 Background of Lithography 

The main goal of semiconductor manufacturing has been to produce smaller, 

faster and more sophisticated devices, which is achievable by reducing the feature sizes 

through lithography processes. For periodic features, the minimum resolution of an 

imaging system is characterized by the “Rayleigh’s criterion”, which is given as 

  
   

       
 

   

  
                                                       (1.1) 

where critical dimension, exposure wavelength, refractive index of imaging medium, half 

angle subtended by the objective lens, and numerical aperture of the system are denoted 

by R, λ, n, θ, and NA, respectively [6]. The process dependent factor is shown as k1, 
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which can be pushed close to its theoretical limit of 0.25 by utilizing resolution 

enhancement techniques (RET) [7, 8]. Some of the resolution enhancement techniques 

that have been pursued for further improvements can be listed as optical proximity 

correction (OPC) [9, 10], phase shifting mask (PSM) [11], off axis illumination [12, 13], 

and source mask optimization (SMO) [14, 15]. 

Another criterion that is important in characterizing the performance of the 

lithography system is called the “Depth of Focus” (DOF), given as [3] 

     
    

  
      (1.2) 

where k2 is another process dependent factor. Rayleigh’s criterion shows that in order to 

reduce the critical dimension, one can shift from longer wavelength to shorter 

wavelengths, increase the numerical aperture of the objective lens or improve the 

lithographic process. Over the past decades, the illumination wavelength has been 

reduced from mercury lines (436 nm g-line and 365 nm i-line) down to deep-ultraviolet 

(DUV) wavelengths of KrF (248 nm), ArF (193 nm), and F2 (157 nm). The wavelength 

reduction trend is concluded at immersion 1.35 NA ArF. As a next step, major tool 

providers are investing extensively on infrastructures of 13.5 nm wavelength extreme UV 

(EUV) lithography [16].   

Immersion ArF lithography (sometimes combined with pitch splitting approach) 

is the workhorse of current production lines. Currently, down to 40 nm features can be 

resolved with state-of-the-art water immersion projection lithography employing 193 nm 

ArF excimer laser source with 1.35 NA catadioptric projection optics [17]. When 

combined with pitch splitting, resolution can be pushed even below that [16, 17].  
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Aside from reducing the minimum device dimensions, the tolerances on the 

fidelity of the lithography defined patterns are becoming much more stringent. The 

impact of sidewall roughness on photoresist lines, usually referred to as the line edge (or 

width) roughness has been shown to impact the electrical performance of the 

semiconductor devices significantly. If it is not addressed, it might limit the useful 

resolution [3]. The ideas presented in this work, such as aerial image averaging via 

directional translation [18] and pupil plane filtering [19], might help reduce the roughness 

seen in interference-like lithography conditions. 

 

1.2 Excimer Laser Review 

The source is one of the most crucial parts of illumination systems in optical 

lithography. It determines the coherency of imaging, quality of patterns, and throughput 

of the whole system. Therefore, it is important to understand important properties of the 

illuminating source. 

 Excimer laser lithography systems are superior to e-beam writers in terms of 

throughput. Since 1988, through the trials for 64 Mbit DRAM, excimer lasers have 

become the main choice in commercial high volume manufacturing (HVM) [20]. 

There are certain differences between a mercury lamp and excimer lasers, which 

are related to the characteristics of the short wavelength excimer lasers and high power 

pulse energy with short pulse durations (i.e., pulsed lasing). Sometimes, such large power 

peaks might change material properties or even damage might occur. Other important 
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differences between the excimer laser and mercury sources can be listed as the small 

divergence values and pulse to pulse energy fluctuations [20].   

The natural linewidth (full width half maximum-FWHM) of excimer lasers is 

usually between 0.3 nm and 1 nm. Such bandwidth values at nm levels are too large for 

chromatic aberrations in a lens system and needs to be reduced below 3 pm by utilizing 

line narrowing modules, such as etalons, dispersive prisms, gratings or their combinations 

in the cavity of the laser [20, 21].  

Line narrowing through two etalons with different gap thicknesses in the cavity of 

the laser provides high efficiency and sufficiently narrow bandwidths. Using prisms, 

instead, provides high thermal stability and high damage threshold, at the cost of low 

dispersion efficiency. Therefore, it is quite common to use combination of prisms and 

gratings as dispersive elements in current lasers. Using such techniques, spectral 

bandwidth of the laser can be as low as 1.0 to 1.5 pm [21-28].  

 Wavelength stability is crucial for the performance of imaging since even a 1 pm 

drift in central wavelength might lead to more than 0.1 μm shift in focal plane for a 

typical chromatic lens [29]. Therefore, wavelength is monitored continuously by 

techniques such as observing the fringe formation by a monitoring etalon [22, 23, 25, 28], 

or measuring the wavelength difference of the absorption line of a gas cell [20, 26]. 

Narrowing the linewidth increases the temporal coherence of the beam. It also 

increases the spatial coherence due to the reduced divergence angle. However, increased 

coherence might result in unwanted interference effects and speckle patterns, which are 

detrimental to the illumination uniformity of the beam [20, 30]. 



 

6 

 

The excimer lasers are pulsed and the output energy of varies from pulse to pulse 

[20, 31]. This fluctuation is problematic when a fixed number of pulses were 

accumulated to reach the required dose at the wafer plane. In order to guarantee a certain 

amount of dose accuracy (A), one can define the minimum number of pulses to be 

accumulated (N) as follows [20] 

  [
    

 
]
 

      (1.3) 

where ∆P/P defines the pulse to pulse energy stability. For a scenario requiring 0.5% dose 

accuracy and 5% fluctuation from pulse to pulse, more than 100 pulses are required [20].  

 

1.3 Next Generation Lithography (NGL) Approaches 

Fig. 1.2 shows the 2011 edition of ITRS [32], summarizing applicable 

technologies for next technology nodes starting from 2011 up to 2026. For the 32 nm 

node, ArF lithography is sufficient enough by utilizing pitch splitting techniques. 

However, for more advanced nodes, the process complexity and the demands increase.  

For instance, Intel recently revealed its 22 nm node 3D transistors to enable 

improved control of the channel below the gate region. The gate surrounds the silicon 

channel in three directions, which provides significant energy efficiency [1]. For sub-22 

nm DRAM technologies, introduction of non-optical lithography approaches is seen as a 

necessity to sustain Moore’s law and satisfy industry demands [32]. 



 

7 

 

 

Figure 1.2: Lithography exposure tool potential solutions for MPU and DRAM [32]. 

 

1.3.1 Double patterning (DP) technology 

In order to push k1 beyond its theoretical limit of 0.25 and achieve smaller 

devices, two basic processes known as “Pitch Splitting (PS)” and “Spacer Patterning 

(SP)” can be utilized [33-36]. PS is achievable via Litho-Etch-Litho-Etch (LELE) or 

Litho-Freeze-Litho-Etch (LFLE) processes [37]. The latter is also known as Litho-

Process-Litho-Etch (LPLE). The spacer patterning approach multiplies the pitch by 

sidewall spacer formation to the sides of the mandrel layer [34, 38]. Though, it has one 

critical lithography step, it requires a critical deposition and etch step very similar to 

spacer-like processes. Subsequent cut (trim) mask lithography is needed to remove excess 

parts of the layer. In a Litho-Etch-Litho-Etch method a sacrificial hard mask is used to 

transfer the image from each litho-etch step; however, the cost of ownership (CoO) of 
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this method is proportional to the complexity of processing it [39]. Fig. 1.3 shows the 

basic process flows for the pitch splitting and spacer multi-patterning approaches [32-34, 

36, 38]. 

 

Figure 1.3: Process flows for DE, DP, and SP approaches [32]. 

 

1.3.2 EUV lithography technology 

Improvement of low k1 values is troublesome and hard to achieve. From 

Rayleigh’s criteria, the next logical option to improve minimum resolution is the 

wavelength reduction. Therefore, EUV is currently viewed as a strong candidate as far as 

the NGL options are concerned [40]. However, there exist many problems in terms of 

masks, material properties, and available source power [41-43].  

The wavelength of EUV is fourteen times smaller than the deep-UV (DUV) 

wavelengths. By utilizing 0.25 NA EUV and a modest k1 value of 0.6, a 32 nm half pitch 

pattern is easily achieved [16]. 
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Fig. 1.4 shows the benefit of using EUV instead of DUV in terms of image 

fidelity, by comparing 45 nm line-end structure aerial images. With a 1.30 NA ArF 

immersion tool, the image is not well defined. However, due to EUV’s inherent capacity 

to print smaller features, image fidelity is high even with a small NA value of 0.25 [40]. 

The main obstacle for EUV to be ever used in HVM is the dim source power resulting in 

less than the desired throughput levels in a HVM environment. 

 

Figure 1.4: Comparison of DUV and EUV aerial images for 45 nm line end structures 

[40]. 

 

1.3.3 Maskless lithography technology 

Maskless lithography (ML2) is another option proposed for sub 22 nm nodes and 

most of the time refers to patterning photoresists without optical illumination, such as 

zone-plate-array lithography [44], and focused-ion-beam (FIB) lithography [45, 46].  

E-beam lithography [47, 48] is the most common maskless method, where a 

focused electron beam is scanned on a photoresist material to create high resolution 

patterns with good accuracy. Single beam writing systems have extremely slow writing 

times; therefore, multiple-beam writing approaches have been implemented to overcome 

the low throughput issues [49].  
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Some of such maskless lithography systems where multitude of beams are 

coordinated with respect to their size, dose and placement can be listed as Multiple 

Aperture Pixel by Pixel Enhancement of Resolution (MAPPER) [50, 51], Projection 

Maskless Lithography (PML2) [52], and Reflective Electron Beam Lithography (REBL) 

[53] (shown in Fig. 1.5). However, these direct write technologies still provide far less 

throughput than what is required by any HVM technology [16]. 

 

Figure 1.5: Comparison of electron beam lithography techniques for single and multiple 

beam approaches [49]. 

 

1.3.4 Nanoimprint lithography technology 

Nanoimprint lithography (NIL) is another NGL method gaining more popularity 

due to its simplicity, high throughput, and high resolution capability without the need for 

a complex projection lithography set up. It is listed as one of the potential solutions for 
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22 nm, 16 nm and 11 nm technology nodes in ITRS reports. The basic flow of NIL is 

shown in Fig. 1.6 (a) which consists of mold press, mold removal and anisotropic etch to 

remove the residual resist material [54]. The mold imprint step requires baking the resist 

(e.g., poly-methyl-methacrylate-PMMA) above the glass transition temperature where it 

becomes thermoplastic and viscous enough to flow. Fig. 1.6 (b) and (c) show the SEM 

images of a sample mold/template and corresponding PMMA profile (70 nm wide) 

before the etch step. The durability of the mold and repeatability are seen as key 

challenges to extend NIL to HVM [54].   

 

Figure 1.6: (a) Schematic of simple NIL process showing mold imprinting and RIE. The 

SEM images of the (b) mold and (c) resulting PMMA profiles before RIE [54]. 
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A modified version of this basic process is called step-and-flash imprint 

lithography (SFIL), where a photo-polymerizable solution between the mold and the 

substrate is cured with UV light coming through the backside of the transparent template. 

Sub-60 nm features have been shown with SFIL approach [55]. 

Since the pattern resolution is defined by the template, this is a 1X process. The 

concerns for NIL is common to any contact printing process and can be listed as overlay, 

alignment, defect control and repair, throughput, and template lifetime [16]. In order to 

ensure the pressure and pattern uniformities of full wafer nanoimprint processes and 

prolong the mold lifetime, a pressing method utilizing isotropic fluid pressure, named Air 

Cushion Press (ACP) has been developed and utilized by commercial nanoimprint 

systems [56]. NIL is utilized in a variety of niche markets such as medicine, 

environmental sciences, LED, hard disk, and photonics. 

 

1.3.5 Directed self-assembly technology 

Directed Self Assembly (DSA) is a fairly recent addition to the NGL approaches 

and offers great benefits in terms of resolution and ease of implementation [16, 57]. It is 

also utilized in contact hole shrink applications [58, 59]. This method relies on the 

thermodynamic micro-phase segregation of two immiscible polymers (usually 

polystyrene and poly methyl methacrylate) mixed in a solution. Each polymer forms 

micro-blocks that will give equilibrium of minimum interfacial energy. Nanophases such 

as spheres, cylinders, gyroids and lamellae are results of the segregation [57, 60].  
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The high resolution self-assembly pattern can be directed to achieve long range 

order by guidance of a topographic (Grapho-epitaxy) or chemical pre-patterning [61-63]. 

The research on self-assembly took significant momentum after showing 193 nm 

compliance [16].  

A process of record (POR) for 300 mm baseline process was shown using 12 nm 

half-pitch PS-b-PMMA lamellae block copolymer in [64]. In that paper, a successful 

defect density test vehicle was discussed with high sensitivity to detect DSA specific 

defects, e.g., “dislocations” and “disclination,” resulting from imperfect phase-separation 

or lack of enough thermodynamic force to drive the perfect epitaxial registration of the 

lamellae between the pre-patterned structures. The authors observed zero dislocation and 

disclination defects for < 26/cm
2
 upper limit, with a very wide process window related to 

the immersion pre-pattern [64]. The defect test results of their work are given in Fig. 1.7. 

 

Figure 1.7: Defect classification results for the process of record by [64]. Out of 91 

randomly selected defects for SEM review, zero was classified as a fundamental DSA 

polymer phase separation defect [64]. 
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1.3.6 Interference lithography 

Interference lithography (IL) generates regular 1D line/space patterns by 

combining two or more coherent beams of illumination without the need for expensive 

projection lithography lens systems [65-70]. Contacts/holes can also be generated by 

utilizing four-beam interference approach [71-73]. Due to its simplicity and ease of 

manipulation, IL has been used extensively to test photoresist materials [74-77] and in 

production of many components such as nanowires [78, 79], polarizers [80], and photonic 

crystals [81, 82].  

Compared to conventional projection lithography, it offers significant benefits 

such as imaging at the ultimate resolution limit with very high contrast and large DOF 

depending on the state of the polarization. The process dependent parameter k1 is 

assumed to be fixed at 0.25 [16].  

IL has been a cost effective solution for EUV experiments, since alpha demo tools 

are very expensive [83, 84]. Throughout the years, many types of IL configurations have 

been used at universities and research centers, either splitting the wavefront or the 

amplitude. Fig. 1.8 shows a few common IL setups [85].  
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Figure 1.8: Different IL setups utilized in literature (reproduced from  [85]). 

 

Fig. 1.8(a) shows an amplitude dividing interferometer [86] with a partially 

transmitting mirror, serving as a beam splitter. Since different parts of the beam are 

recombined at image plane, this set up calls for very high spatial coherence. This problem 

can be overcome by including another mirror to flip one of the beams as suggested in 

Fig. 1.8(b); however, now the system will suffer from alignment difficulty and optical 

path length (OPL) difference between the combining beams, thereby degrading the 

temporal coherence. Fig. 1.8(c) depicts Fresnel reflection/refraction based beam splitter, 

which suffers from difficulty of precisely aligning many optical elements [87]. 

Achromatic approaches [88], such as Fig. 1.8(d), do not require a line narrowed source; 

but, the image pattern pitch is fixed at half of the grating pitch and the gap control 

between the grating stack needs to be very accurate. The direct interferometer shown in 
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Fig. 1.8(e) also suffers from the fixed pitch problem [89, 90]. In addition, extending these 

achromatic approaches to immersion lithography is troublesome. The reduction Talbot 

approach (Fig. 1.8 (f)) has the ability to change the spatial frequency of the image pattern 

by use of mirror tilting, and as long as the wafer plane is placed at an optimum location, 

the poor spatial coherency will not be a problem. Extending this approach for liquid and 

solid immersion has already been shown [16, 65, 69, 85].  

IL can print patterns with half pitches down to 37 nm at 1.35 NA with 193 nm TE 

polarized light. Adopting double patterning would bring this limit down to 19 nm. 

Utilizing sapphire and high index fluid (HIF) with refractive indices greater than 1.65 

enables imaging at 1.6 NA that yields 30 nm half pitch (15 nm ¼ pitch). Further increase 

in NA could be achieved via evanescent wave coupling [16, 91]. 

It should be pointed out that not all types of lasers will work for any kind of IL 

configuration; however, by choosing the right set up, one can alleviate the requirements 

for source coherency. For instance, Talbot set up is very suitable for excimer laser, as 

shown in Table 1.1. 

Table 1.1: Comparison of Excimer and Solid State Lasers (modified from  [92]). 

 

Excimer (193 nm) Solid State (Actinix) 

Power High power (90 W) 0.25 W (can scale to 1 W) 

Spatial Coherence Medium (~2 mm) High 

Temporal Coherence 0.35 pm or better <0.13 pm 

Rep. Rate 6 kHz 1-4 MHz 

Configuration/Issues 

Talbot suitable (preservation of 

coherence). Difficult for Michelson type 

approaches. 

Suitable for most configurations, 

coherence artifacts. 



 

17 

 

In the context of this work, interference-like lithography refers to imaging 

conditions of periodic line space patterns with commercial scanners and coherent light 

sources. When interference-like conditions are utilized, some unconventional approaches 

can be pursued in order to mitigate LER.  

 

1.4 One Dimensional Regular Design Approaches 

Recently, conversion of 2D random designs into 1D gridded regular layouts, 

through “Gridded Regular Design” approaches, gained significant attention. The goal is 

to eliminate the hassle of 2D proximity effects by benefiting ease of 1D regular 

patterning [38]. This is especially desirable for complex logic devices where there are 

many decomposition conflicts, compared to memory chips [16, 93]. With “Gridded 

Regular Design (GRD)” approaches, complex layout designs become very regular.  As an 

example, comparison of 2D random design and 1D regular design for six transistor (6T) 

SRAM poly layer is shown in Fig. 1.9. Three problematic locations on 2D design are 

pointed out with numbers [94]. 

        

Figure 1.9: 6T SRAM. Left: GRD. Right: 2D design with 3 problematic locations [94]. 
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Conversion of 2D structures to 1D regular design allows use of some not-so-

common methods such as DSA and IL to generate the high resolution grid patterns 

instead of the expensive conventional methods. The combination of IL lithography with 

trimming exposures allows a simple and cheap way of generating regular sub 32 nm 

patterns as shown experimentally in Fig. 1.10 [95, 96]. 

 

Figure 1.10: SEM images showing experimental hybrid optical maskless approach results 

in which IL and trim exposures were performed in the same resist [96]. 

 

1.5 Problem Statement  

Line edge roughness (LER) present on the photoresist patterns is seen as one of 

the most important challenges for advanced technology nodes. There are many 

contributors to LER that can come from the aerial image or resist processing. While 

stochastic resist kinetics and processing remain the dominant roughness contributors, the 

roughness originating from the mask is gaining more attention, since its contribution in 

the low frequency (LF) range is particularly detrimental to the electrical device 

performance by causing variations in electrical device characteristics [19, 97].  
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In order to depict the importance of LF roughness, Fig. 1.11 shows a single line 

that serves as a gate to multiple transistors. The low frequency roughness present on the 

line will results in different gate lengths for each transistor. While the roughness with 

periodicities larger than the gate width can cause gate threshold voltage variations on the 

same chip, roughness with periodicities smaller than the gate length will affect the 

leakage currents [98].  Both are undesirable attributes that should be minimized.  

 

Figure 1.11: Effect of LWR and LER on gate width variations [98]. 
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The leakage current is shown to increase exponentially with increased roughness. 

For the 65 nm technology node, it has been found that a 3σ LWR value of less than 10% 

gate CD results in up to 2% degradation in device performance [99]. The ITRS restricts 

the LF LWR to be less than 8% of the corresponding technology’s CD [32].  

Since IL set ups such as reduction Talbot design provides much higher theoretical 

contrast compared to conventional lithography techniques, and considering the current 

interest in converting 2D random designs into 1D regular layouts, it would be beneficial 

to scale cost effective IL for large field IC applications and thereby reduce LER. 

However, some challenges need to be addressed in order to accomplish this task.  

In addition, because the mask roughness is one of the contributors to low 

frequency wafer LER [97], it would be utmost valuable to find new approaches to 

mitigate the mask roughness transfer in projection lithography systems, under 

interference-like lithography conditions. These are the goals of the research conducted 

herein. 
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2. THEORY AND BACKGROUND 

 

2.1 Coherent Image Formation 

Interference-like imaging produces periodic patterns by combining two or more 

coherent laser beams. In projection lithography, aberration free lens system captures 

maximum range of diffraction orders. However, in case of interference lithography, 

usually only two diffraction orders are combined, which eliminates the need for 

expensive projection optics. In case of reduction Talbot IL set up, the NA of the imaging 

system can easily be adjusted by use of a varying angle mirror system [16].  

References [100, 101] give rigorous vector based calculations of two-and three- 

beam interference imaging. In this work, two-beam imaging was performed for the IL 

experiments; therefore, relevant results are included for completeness.  

Fig. 2.1 shows interference of two monochromatic plane waves with the same 

polarization state. The intersection line is set as the x axis with origin at the center of the 

beams. The half angle of the interference is depicted as θ. If the light is TE polarized, 

electric fields are parallel to each other; therefore, vector summation of the fields actually 

becomes a scalar summation.  
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Figure 2.1: Monochromatic plane waves intersecting at the origin with half angle of θ. 

 

Neglecting time dependence, the two electric fields (left beam E1, right beam E2) 

interfering at the origin can be shown as [101] 

   |  | 
                 (2.1) 

   |  | 
                  (2.2) 

where k is the propagation vector, given as 2nπ/λ. The summation of these two fields at 

the intersection can be calculated as [101] 

        |  | 
  (        )  |  | 

  (         ) 

 [|  |  |  |]    (        )   [|  |  |  |]    (        )  (2.3) 

The resulting intensity (I) is calculated from the square of the total electric field 

amplitude as [101] 

  | |  |     |
  |  |

  |  |
   |  ||  |                      (2.4) 
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The intensity distribution along x direction is a sinusoidal pattern with a spatial period (p) 

given as [101] 

  
 

       
 

 

        
          (2.5) 

For|  |  |  |, the intensity distribution is simplified to [101] 

             |  |
 [                ]   |  |

                    (2.6) 

If the light is TM polarized, the total intensity needs to be calculated by vector 

summation,  

             |  |
 [                       ]           (2.7) 

Comparing equations (2.6) and (2.7), it is seen that the intensity modulation for TM case 

is dependent on the interfering angle between the two beams [101].  

The image achieved from interference of two beams with intensity of I0 can also 

be written in terms of the fringe period and contrast as [102]
 

      [      (
   

 
)]       (2.8) 

 

where the contrast (C) is  

  
         

         
      (2.9) 

 

Imax and Imin are the maximum and minimum intensity values [102]. The contrast metric is 

defined for only equal line and spaces and it is a useful metric only for patterns near the 

resolution limit. Another drawback of using contrast as an image quality metric is that it 

samples the aerial image at the wrong location. The edge of the aerial image is where the 

transition between the low and high intensity takes place and thereby is the most 
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important location [3]. Therefore, just like in any conventional lithography approach, we 

can utilize a more general and suitable aerial image metric known as “normalized image 

log slope” (NILS) for IL as 

       
     

  
     (2.10) 

Taking the derivative of Ix in equation (2.8) with respect to x and selecting the 

intensity that gives equal line and spaces, NILS of a periodic image can be found closely 

related to C as [102]  

             (2.11) 

Exposure latitude (EL) is a processing metric which gives information regarding 

relative dose variation that leads to 10% dimensional variation from the nominal size. For 

periodic dense patterns near the dose to size, exposure latitude is given as [102]
 

   
    

 

   

  
    

    

 
    

 

 
     (2.12) 

 

2.1.1 Effect of partial coherence on imaging 

The coherency of illumination source has significant impact on imaging. The 

previously shown formulae are valid for coherent light, meaning the incident light on the 

mask (or beam splitter) is coming from one direction only. In projection lithography 

tools, there is usually an angular distribution to the source which is defined by the partial 

coherence factor, σ, given as [3, 5] 

  
               

             
 

   

   
 

           

   
     (2.13) 
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A result of high coherence (i.e., small σ) after impinging upon any hard edge is 

called “ringing”. Partial coherence of the illuminating source has a detrimental effect on 

the extent of ringing. In Fig. 2.2, a schematic definition of partial coherence and its effect 

on imaging is shown for conventional illumination and an isolated line.  As it is seen, the 

smaller the sigma (i.e., the more coherent the light), the longer the ringing progresses. 

Line narrowed excimer lasers have small divergence angles; hence, resulting in ringing 

issues at field edges and point defect printing even for IL systems [16]. 

 

Figure 2.2: (a) Definition of partial coherence. (b) Effect of partial coherence on imaging 

for an isolated 500 nm wide line.  
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2.1.2 Effect of aberrations on imaging 

Aberrations also impact the imaging behavior of lithography systems. Sources of 

aberrations can be grouped as design, construction or user originated. The aberrations of 

design are inherent to the imaging system and the goal of a lens designer is to reduce 

these aberrations as much as possible by including an optimum amount of optical 

elements into the system [3]. 

The magnitude of aberrations can be measured experimentally by interferometric 

tests or predicted by lens design software tools. The deviations in the paths of the rays 

from the ideal paths are expressed as optical path difference (OPD) and give magnitude 

of aberrations. Several measurements are taken across the entire image field to get 

enough sampling. That way, the aberrations in an optical system can be characterized 

through an OPD map [3].  

There are many ways to mathematically express the lens aberrations. Most 

common method is to decompose the optical wavefront, W(r, φ), defining the aberration 

into orthogonal polynomial series called Zernike polynomials, as shown below 

       
   

 
 ∑           

         (2.14)  

where W represents the OPD normalized to the wavelength, and Zi represents the Zernike 

term with a coefficient of ai. Because Zernike terms are orthogonal to each other, they 

behave independently; hence adding or removing one polynomial term does not affect the 

best fit for coefficients of other Zernike terms [3].  
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Aberrations have unique effects on imaging. For example, tilt aberrations (Z2, Z3) 

will induce position shifts in x and y directions and astigmatism-like aberrations (Z5, Z6) 

will induce an orientation dependent focus shift. The amount of each Zernike coefficient 

determines the impact of each aberration [3]. 

In three-beam imaging, 0 and ±1 orders are used to create the aerial image. If 

there is defocus aberration in the system, the electric field at the image plane is given as  

            
            ⁄      (2.15) 

Therefore the intensity of the aerial image with defocus becomes 

       
                      ⁄      

 [            ⁄ ]     (2.16) 

where the defocus is denoted as ΔΦ and modulates the main cosine term in the above 

equation [3]. As the defocus is increased, the first diffraction orders will go out of focus 

relative to the zero order and the interference contrast will diminish if the defocus 

becomes a quarter of a wave [3].  

 

2.1.3 Effect of vibration on imaging 

Vibration and its effects on image have been studied extensively since the late 

60s, especially for the photographic applications such as aerial imaging [103] and X-ray 

imaging [104]. Image vibration and relative motion between the image and photographic 

film results in degradation of image quality and can be included into the final image 

calculation in terms of an extra transfer function. This degradation can be in longitudinal 
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(along the optical axis) or transverse (perpendicular to the optical axis) direction and is 

represented with a unique transfer function depending on the type of the motion [105].  

The effects of object-to-image vibration in an optical projection system were 

studied by [106, 107] with the purpose to quantitatively define maximum acceptable 

vibration level as a function of resolution and process latitude parameters. Instead of a 

transfer function in frequency domain, time domain histograms are used to characterize a 

vibration environment. It was shown to be very useful to utilize a vibration histogram to 

reveal the amount of dwelling at a specific location during exposure. The range of 

resolution studied was changing from 0.48 to 1.2 λ/NA [106, 107]. 

 An example of measured vibration between the mask and wafer of an optical 

stepper is given in Fig. 2.3 (a) with its corresponding histogram (b). The histogram can be 

approximated to a more familiar function such as triangular shaped function in 

Fig. 2.3 (c), which has a peak dwelling time of 1/ATVH and normalized to have an area of 

1 [106, 107].  

 

Figure 2.3: (a) Measured time vibration data for an optical stepper. (b) Corresponding 

histograms based on 5-s and 60-s intervals. (c) Triangular vibration histogram 

approximation to (b) [106, 107]. 
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If the vibration has a dominant sinusoidal nature with single frequency component 

(see Fig. 2.4 (a)), the dwelling time will peak at the two extreme positions as shown in 

Fig. 2.4 (b). Time histograms of triangular shape and single frequency conditions are 

considered as the two extreme cases, where the latter represents the pessimistic case [106, 

107].  

 

Figure 2.4: (a) Sinusoidal vibration of a single frequency. (b) Its histogram [106].  

  

In order to mathematically model the effect of vibration (or translational image 

averaging) on an image, the static image needs to be evaluated initially. Vibration effect 

can be introduced according to the mathematical formulation below 

          
 

           
∫ [                     ]  

    

    
        (2.17) 

where Iv and Is are the vibrated and static image intensity distributions, respectively; xs 

and ys are static coordinates in the image plane and xv and yv are the perturbations to 

static coordinates caused by vibration source [106, 107]. In case of a sinusoidal vibration, 

                           (2.18) 
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and 

                          (2.19) 

where Vx and Vy are the vibration amplitudes, fx and fy are the vibration frequencies. 

When the histogram method is utilized, the vibrated intensity distribution can be 

evaluated simply as 

          ∑                        
 
         (2.20) 

The histogram of vibration, T(xi, yi), should be normalized such that   

∑            
             (2.21) 

Table 2.1 shows the vibration tolerances calculated by [107] in normalized and 

physical parameters as a function of the actinic wavelength and the lens NA, at k1=0.64 

and σ=0.8, for optimistic and pessimistic cases. The triangular vibration histogram 

amplitude is found to be a factor of 2 more tolerable than the sinusoidal amplitude [107].   

Table 2.1: Summary of vibration tolerance at k1=0.64 and σ=0.8 [107]. 
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2.2 Reduction Talbot Specific Derivations 

Using the nomenclature shown in Fig. 2.5, important relationships between the set 

up parameters are derived for the reduction Talbot design such as diffraction angle, beam 

size, and mirror tilt angle with output parameters such as interfering angle, pattern pitch, 

exposure field size, and optical path differences across the field. Beam divergence is 

excluded in these calculations. 

In Fig 2.5, the first order diffraction angle is denoted as θ, which can be calculated 

from illuminating wavelength (λ) and grating pitch (pgrating) as follows 

       
 

        
       (2.22) 

 

Figure 2.5: Schematic of reduction Talbot IL setup for important derivations. 
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The mirror tilt is denoted as α and the angle between the normal of mirror and the 

diffraction order impingent upon it is denoted as β. The relationship between θ, α, and β 

can be calculated from the triangle KDE1 as 

             (2.23) 

The beam size is defined as |AC|, which is also equal to |E1L|. Using the law of 

sines for E1LG1 triangle    

|    |

         
 

|   |

         
 

|  |

         
      (2.24) 

and from (2.24), the relationship between the beam size and its projection along the tilted 

mirror can be defined as 

|    |  |   |  
         

         
 |   |  

      

      
 |  |  

      

        
    (2.25) 

The interfering angle (   can be calculated from BIF2 triangle as  

              (2.26) 

By using law of sines on E1MG1 triangle, and noting that |HJ| = |G1M| 

|    |

         
 

|   |

         
 

|  |

         
      (2.27) 

and from (2.27), the relationship between the exposure field size |HJ| and its projection 

along the tilted mirror can be defined as 

|   |  |  |  |    |  
         

         
 |    |  

      

      
 |    |  

        

         
   (2.28) 
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From (2.28), by using (2.25) for |E1G1|, we can derive the relationship between 

the exposure field size and beam size as given in equation (2.29). The field size defined 

here actually corresponds to the field length that is in perpendicular direction to the lines. 

The field height at the wafer plane will be the same as the input beam height impingent 

upon the grating, 

|  |  |    |  
        

         
 |  |  

      

        
 

        

         
 |  |  

      

         
   (2.29) 

From (2.29), it can be observed that if mirrors are not tilted (α=0°), exposure field is 

equal to the beam size. As the mirror tilt is increased, exposure field gets larger than the 

beam size. 

The interference pattern pitch is determined by the source wavelength (λ), the 

refractive index of the interfering medium (n) and the interfering angle    as  

  
 

        
 

 

           
         (2.30) 

The left and right handedness is preserved in the Talbot design. There exists a location at 

the image side where two orders completely overlap with each other, which can be 

interpreted as the “focal plane” of the IL system. At this location, each point in the image 

plane is resulted from the same point source diffracted from the grating. This alleviates 

the spatial coherence requirements, if operating at the focal plane [101].  

On the other hand, temporal coherence plays a critical role for large field IL 

printing. This strongly relates to the spectral width of the excimer laser and its coherence 

length. The reduction in image contrast is a result of the “beating” phenomenon. The 

detrimental effect of having a broad band source is the gradual shift of the intensity peaks 
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corresponding to each wavelength away from each other; as moved away from the field 

center. Eventually, summation of these intensity values will wash away the fringes and 

contrast will reduce to zero. Some type of wavelength dispersive optical elements such 

etalons, diffraction gratings, or prisms can be introduced in the resonating chamber in 

order to narrow down the spectral line to picometer levels [101]. 

Even with line narrowing, the high contrast region is still on the order of few 

millimeters. The beating frequency, which defines useful image area, is related to the 

source temporal coherence length and set up parameters. Lowering the beating frequency 

increases the useful imaging area and increases the beating period, L. If mirrors in the 

Talbot design are not tilted, wavelength dependence on pattern pitch is eliminated and the 

system becomes achromatic [101].  

For chromatic IL systems, temporal coherence length (lc) of the laser is very 

important. It depends on the mean wavelength (λ) and the source bandwidth (Δλ) as  [21] 

       ⁄         (2.31) 

A 193 nm laser source with a spectral width of 0.5 pm will have a coherence length of 

about 75 mm. Considering the maximum field size defined in ITRS is 26 mm by 33 mm, 

this coherence length might suffice for large field applications. However, there will be 

contrast degradation moving away from field center to field edge [101]. 
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2.2.1 Effect of OPD on field size 

Aside from beating, another factor that reduces the contrast in reduction Talbot 

design with tilted mirrors is the optical path difference (OPD) between two diffraction 

orders. It can easily be understood by looking at the problem in Fourier perspective [108], 

as shown in Fig. 2.6.  

 

Figure 2.6: Effect of optical path difference (OPD) on interference of correlated wave 

groups (modified from[108]). 

 

When the mirrors are tilted, +1 and -1 orders will travel different path lengths. 

The difference will increase as the distance away from the field center is increased. If a 

source point diffracting from the grating is assumed to be composed of several wave 

groups, as long as the OPD between the orders is less than the temporal coherence length, 

correlated wave groups will interfere with each other at the image plane. If the OPD is 

greater than the coherence length; then, uncorrelated wave groups will arrive at the image 
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plane to interfere at the same time and their ability to constructively and destructively 

interfere will be much reduced [108].   

Fig. 2.7 shows the degradation of image contrast when moving away from field 

center both due to beating and OPD. For large IL fields, need for a line narrowed laser is 

evident from the figure. OPD increases the rate of contrast degradation in addition to the 

beating effect. The theoretical derivation of OPD for reduction Talbot design based on set 

up parameters is given in Appendix A. It should be noted that the mirror tilt has a strong 

effect on OPD. 

 

Figure 2.7: Effect of OPD and source bandwidth (i.e. beating) on image contrast 

degradation across the field for 193 nm ArF laser. Three different source bandwidths are 

considered: broadband, 100 pm FWHM, and 2 pm FWHM.  
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2.3 Line Edge Roughness (LER) 

LER is defined simply as the sidewall deviations of a printed line from a straight 

line fit [109]. There are several contributors to LER such as chemical/optical shot noise, 

random nature of acid diffusion, development process, and concentration of acid 

generator/base quencher [18, 19, 110]; but, they can be divided into two categories as:  

(1) Chemical properties and processing of the resist related, and  

(2) Aerial image related (containing optical properties of the mask and stepper). 

  It can be measured as a single 3σ value; however, power spectral density (PSD) 

is a better metric to distinguish the contribution of different roughness frequencies on the 

overall LER [19, 98]. The specifications for LER is usually about 5% of the nominal CD 

value; however, LER values of 4 nm and larger are very common [111]. 

ITRS defines the LF LWR requirements, as shown in Table 2.2 [32]. By 2015, LF 

LWR of less than 1.8 nm is demanded from the process. Such low LER/LWR values are 

extremely difficult to achieve with state of the art resist/processing techniques. 

Table 2.2: 2011 Edition ITRS LWR requirements (generated from data of [32]) 

Production year 2011 2013 2015 2017 2019 2021 

DRAM hp (nm) 36 28 23 18 14 11 

Low frequency LWR (nm, 3σ) 2.8 2.2 1.8 1.4 1.1 0.9 

 

In reference [110] a proposed framework for LER/LWR modeling is given as in 

Fig. 2.8. The top group listed under sources of LER is resist material and processing 
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related contributors, and the bottom group consists of optical effects, mask roughness and 

others that do not belong to the first group [110]. 

As far as resist-internal LER sources are concerned, the first one is the stacking of 

finite size molecules, which gives a white noise spectrum. However, the amplitude can be 

ignored because its contribution is mainly in high frequency range which is filtered out in 

the processing. Random absorption of photons gives a white noise spectrum, which also 

gets low pass filtered during the PEB via diffusion. Acid diffusion will reduce the high 

frequency component of the photon noise; however, it adds new high frequency 

randomness due to erratic behavior of random walk and deprotection by small number of 

acid molecules. The smoothing function becomes dominant and gives a high frequency 

roll off above around 10 cycles per μm (45-65 nm hp). This is approximately the same 

high cut off frequency for the mask related LER in most cases [110].   

There have been attempts to develop a comprehensive stochastic model for LER 

based on approximate expressions for variances and correlations that occur at every step 

of the lithographic process, starting from photon shot noise [112]. From such a study, it is 

concluded that there is an optimum acid diffusion length that minimizes LER and that the 

development step has a significant impact on it. The effect of speckle was excluded from 

this study; however, other groups reported their results regarding the effect of speckle on 

LWR. 
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Figure 2.8: LER framework proposed by [110]. 

 

For example, Fig. 2.9 shows the contribution of speckle in the overall LWR for 5 

different type of resists reported by [113]. Speckle results in non-uniform illumination of 

the reticle, therefore, crucial in definition of edge in transitions between high and low 

intensities. On the same figure, ITRS requirements for LWR throughout the years are 

depicted as well. By looking at the results for resist A, it can be seen that speckle-induced 

LWR is more than 15% of the total LWR. However, this number should not be taken as 

is for different conditions; since, the speckle contribution depends on the coherency of 

source (more on temporal coherence than the spatial), illumination wavelength, and 

distribution of source image on the pupil plane. Nevertheless, speckle induced LWR is 
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found to be observable and should not be ignored while extending ArF optical 

lithography toward more advanced technology nodes [110, 112, 113].     

 

Figure 2.9: ITRS LWR roadmap, shown with total LWR (3σ) and contribution of speckle 

for 5 different resists. Resist A is highlighted for discussion [113]. 

 

Speckle can be divided into two groups: (1) dynamic speckle, and (2) static 

speckle. The former is of concern for partially coherent pulsed laser source applications. 

It is a result of incomplete time averaging of the instantaneous intensity over one or 

several pulses [110].  

The variation of static speckle from pulse to pulse is very small (or nonexistent); 

therefore, it is usually excluded in the LER models. Static speckle can change due to 

thermal variations or turbulence in the environment. Scrambling or time delaying parts of 

the beam can be utilized to reduce the static speckle [110].  

Another factor that affects LER is the thickness of the resist film. It has been 

showed LER significantly depends on the thickness of the photoresist material under 
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similar processing conditions [114, 115]. The effect of resist thickness on LER can be 

seen in Fig. 2.10 for two resist materials (resist B having 2.5 times more photo-acid 

generator than resist A) and thicknesses varying from 60 nm to 250 nm. As it seen from 

the figure, LER is significantly higher for thinner film thicknesses. It has also been 

observed by the authors that increasing photo-acid generator concentration decreased the 

LER for the same resist thickness, probably due to reduced chemical shot noise [114].  

 

Figure 2.10: SEM images depicting LER for varying resist thicknesses and for two resists 

with different sensitivities. Resist B has 2.5X more photo-acid generator concentration 

than resist A [114].  
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The effect of aerial image modulation (contrast) on LER is shown in [116, 117] 

for a variety of resist systems including negative and positive tone resists, chemically 

amplified and chain scissioning resists, aqueous and solvent developable resists, and also 

for different lithography systems. For all materials, it was observed that as aerial image 

contrast is decreased, LER increases due to widening of the intermediate transition 

region. From these studies, it was concluded that higher contrast leads to lower LER. It 

was also noted that UV6 resist is more sensitive to aerial image modulation than the 

chain scissioning PMMA resist [116]. These results are given in Fig. 2.11.  

 

Figure 2.11: LER degradation as a function of contrast loss shown for (a) UV6 

chemically amplified resist, and (b) PMMA chain scissioning resist [116]. 

 

Under same conditions, there is no lithography technique that would achieve 

higher theoretical image contrast than IL. Therefore, IL systems result inherently in lower 

LER values compared to conventional lithography techniques. A group investigated this 

by comparing imaging performance of an immersion scanner (ASML Twinscan / 1150i) 

with IL system of different modulations on 90 nm dense line/space pattern. The details of 



 

43 

 

their study can be found in [118]; however, one of their important findings is included 

here in Fig. 2.12. From this figure, it can be seen that IL imaging results in lower LER 

than the projection system, even though the former is deliberately demodulated (56% 

modulation) and the latter is performing at best focus [118]. 

  

Figure 2.12: LER comparison of 90 nm dense line/space pattern for an IL system 

(Amphibian) and ASML /1150i [118].  

 

LER and LWR have significant impact on device performance and reliability 

[98]. The effect of LWR for sub-100 nm NMOS devices for low power SRAM were 

investigated experimentally by fabricating 80 nm node transistors of varying gate length, 

width, and roughness values [119]. One of the findings of the research is that the effect of 

roughness becomes visible for critical dimension (CD) values less than 85 nm.  Fig. 2.13 

shows these results, where the variation in electrical device parameters such as threshold 

voltage (Vth) and off-state-current (Ioff) are more evident for small CD values. The 

variation in Ioff can be 4 orders of magnitude for CD less than 75 nm [119].  
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Figure 2.13: The effect of LWR on (a) Vth, (b) Ioff variability [119]. 

 

A simulation study was performed by [120] on 16 nm FinFET devices and the 

results are given in Fig. 2.14 where each data point corresponds to device variability for a 

100 member FinFET device population with a single spatial roughness period. As it is 

easily seen, low frequency roughness has a more dominant impact on the device electrical 

variability and Ioff has a higher sensitivity than other parameters. It is also noted that the 

reliability requirements push the critical frequency range to include more frequencies 

[120].  
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Figure 2.14: The FinFET device performance variability as a function of roughness 

frequency for the same amplitude [120]. 

 

Recently, mask roughness is gaining significant attention as one of the 

contributors to wafer LER [19, 97, 121-127]. Its influence region can be seen in Fig. 2.15 

(a). In the mask making process, there are high frequency and low frequency roughness 

contributors. The former is a result of the stochastic nature of electron beam exposure, 

chemically amplified reaction-diffusion, and etching process with length scales of less 

than 100 nm [97].  

The mask writer induces low frequency roughness, due to errors in shot 

placement or rotation, which can pass as long as the frequencies are below the cut-off, 

especially in high MEEF regions of the image [97]. In some cases, mask induced 

roughness might be as large as the full resist LER budget. Therefore, improved masks are 

a must for advanced technology nodes [128].  
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Figure 2.15: (a) The mask roughness influence region [129]. (b) Mask roughness 

contribution as a function of resist quality and optical system cut off frequency [126]. 

 

Fig. 2.15 (b) shows the effect of improved optical process on mask roughness 

contribution by comparing ASML’s ADT and NXE EUV tools. By utilizing a larger NA 

system (NA=0.32, σ=0.5) with a tool such as NXE3300, the mask roughness contribution 

gets larger compared to ADT (NA=0.25, σ=0.5) [126].   
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2.3.1 Mask roughness transfer 

In Fig. 1.1, a simplified version of a projection lithography set up was shown. The 

objective lens location corresponds to the pupil plane, where the diffraction information 

of the mask is present. As an example, the diffraction information from an ideal mask 

with vertical line space pattern is shown in Fig. 2.16 (a). The objective lens is large 

enough to capture the 0
th

 and the first diffraction orders for conventional illumination 

with a finite partial coherence. If the mask absorber edges exhibit roughness, the 

roughness diffraction information from a non-ideal mask will lie perpendicular to the 

main diffraction information of the smooth vertical line space patterns, as shown in 

Fig. 2.16 (b) for the main 0
th

 order. Depending on the roughness frequency, first order 

diffraction can be fully captured, partially captured or not captured at all. This frequency 

dependent transfer of mask roughness to the wafer plane can be best described by LER 

Transfer Function (LFT); a simplified LTF function is shown in Fig. 2.16 (c) [19, 123, 

125].  

Assuming a mask layout with a line edge on the x axis, mask LER can be defined 

by the fluctuation function in the x axis as hmask(x). When the mask is exposed, this 

roughness will be transferred to the wafer side as hwafer(x). Since it is conventional to 

define transfer function in frequency domain, LTF can be defined as the ratio of Fourier 

transforms of hwafer(x) and hmask(x) as [125]
 

                                  (2.32) 
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where Hwafer(fx) and Hmask(fx) corresponds to the Fourier transforms of wafer and mask 

roughness. Assuming a reduction ratio of 4, both x axis and h(x) are normalized by 

4λ/NA for mask and λ/NA for wafer.   

 

Figure 2.16: (a) Ideal mask diffraction information at the pupil plane. (b) Roughness 

diffraction order filtering by the optical system. (c) Simplified LTF definition. 
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The maximum frequency that can be passed by the NA limit of the system is 

NA(1+σ)/λ, where σ defined the partial coherence of the conventional illumination. The 

lowest frequency is shown as zero, and the LTF amplitude for that case is equal to the 

mask error enhancement factor, MEEF. Therefore, high frequency part of the mask 

roughness is filtered out by objective lens NA and the low frequency part is amplified by 

the MEEF of the system [19, 97, 125]. These two extreme conditions are shown as  

           for                    (2.33) 

       
         

        
           (2.34) 

NILS is an important parameter since to the first order; wafer LER will be 

inversely proportional to the NILS of that feature. High NILS makes a feature less 

sensitive to the random variation that induces LER. Due to the NA limit, roughness with 

frequencies above cut off will not be transferred to the wafer. However, they can cause a 

reduction in NILS and indirectly cause an increase in LER of the printed image. The high 

frequency roughness around the mask edge can be treated as a gray boundary covering 

that edge with a width of wr. NILS can be easily calculated for the case of dense line 

space pattern with nominal width, w, and imaging with coherent illumination as [97] 

             (
   

  
)         (2.35) 

where       is the NILS when roughness is excluded (wr=0), and pattern is assumed to 

be formed by 0 and ±1 orders. If wr<<w, cosine term can be expanded by using Taylor 

series and keeping the first terms as [97] 
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          [  (
  

    
)
 

]       [  (
  

  
)
 

] where a=0.9  (2.36) 

Above equation shows that NILS will reduce quadratically as the amplitude of 

high frequency roughness is increased. This formula is derived for coherent illumination; 

however, quadratic fall of NILS for annular, dipole, and quadruple were verified by 

simulations for 0.9 < a < 1. It is noted in [97] that as long as wr<0.1w (where wr is 3σrms 

of mask roughness), NILS will reduce only 1%. So, if the high frequency mask roughness 

is low enough, its degrading effect on NILS can be ignored [97]. 

For EUV lithography, mask roughness induced LER is a result of two sources: 

(1) mask absorber roughness, and (2) multilayer replicated surface roughness (RSR). 

Fig. 2.17 shows schematic depiction of these two sources [130].  

 

Figure 2.17: Schematic of two main sources of mask induced roughness for EUV: 

absorber roughness and replicated surface roughness [130]. 
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The first contributor is easily understood by use of LTF, in a similar sense to the 

conventional optical lithography. However, the latter contributor is EUV specific and less 

obvious at first. It comes from the phase roughness in the clear regions of EUV mask, and 

due to the extremely short wavelength of EUV light, might have a significant effect. This 

roughness will couple with the intensity dependent variations through speckle and be 

more dominant than the absorber roughness [130].   

Replicated surface roughness (RSR) fundamentally originates from the substrate 

and propagates to the surface during conformal deposition of multilayers. There is 

inherent low pass filtering during this process. The phase roughness due to RSR can be 

calculated as follows [130] 

                      
  

    
       (2.37) 

 

2.3.2 Previous LER mitigation attempts 

Many techniques have been utilized to mitigate wafer level pattern sidewall 

roughness such as hard-bake [131], plasma treatment [132], special rinses and ion beam 

sputtering [133]. Such techniques can be performed during or after the lithography 

process and have unique advantages and disadvantages. Post-lithographic rinses and 

solvent vapor smoothening have been shown to be useful for mitigating MF and HF 

roughness to some degree [133]. However, in order to reduce device parameter 

variations, mitigation of the LF roughness is much more desired. Fig. 2.18 (a) shows the 

effect of surfactinated rinse (SR) followed by a hard bake on LER PSD, when a SR is 

used instead of deionized water (DIW) rinse [134]. The ITRS specification is also shown 
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on the plot. Both UV-vapor and plasma treatments showed significant improvements in 

the LF/MF region, at the expense of CD loss in nanometers [133, 134]. 

 

 

Figure 2.18: Effect of (a) special rinse, and (b) ion beam smoothing techniques on LER 

PSD [134].  

 

The ion beam smoothing technique is usually performed at the implanter under 

grazing incidence for one directional features. Fig. 2.18 (b) shows its effect on 40 nm LS 

patterns defined by EUV process. Even though some reduction in roughness is observed, 

the drawback is 10 nm CD shrink due to the ion induced shave off [134].  
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2.4 Speckle Theory in Imaging 

The speckle theory in optical lithography has been studied previously [135, 136]. 

Excimer lasers used in optical lithography have limited source bandwidths and finite 

pulse lengths, resulting in stochastic illumination fields [135]. This is one of the reasons 

for dose non-uniformity issues at the wafer plane, ultimately contributing to LER [135, 

136]. Increasing the pulse duration with respect to the laser coherency time (τc) will result 

in a smoother intensity distribution as shown in Fig. 2.19, due to accumulation of several 

speckle fields. When the pulse duration is extended to 10 (Fig. 2.19 (b)) or 100 

(Fig. 2.19 (c)) times the laser coherency time, the intensity fluctuations (W/<W>) are 

significantly reduced compared to the short pulse duration case (Fig. 2.19 (a)) [135]. 

 

Figure 2.19: Effect of increasing pulse duration with respect to the coherence time. 

Integrated dose (W) has less of a variation for longer pulses. T<<τc corresponds to the 

conventional (static) pattern [135].  
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In [113], the speckle effect (non-uniform dose delivery on reticle) for ArF 

lithography and its influence on line width roughness was investigated in details. The 

laser bandwidth, i.e. temporal part, and the laser pulse duration were found to be the 

dominant factors for speckle seen in ArF optical lithography. The spatial distribution of 

the speckle pattern was shown to be dependent on the source distribution at the pupil 

plane. They also reported the strong dependency of speckle induced LWR spatial 

frequency content on the experimental illumination conditions. Following a very similar 

approach to the previous method, speckle contrast resulting from Npulses with temporal 

coherency time of τc was calculated as [113] 

         √
  

                 
 

 

       

  

   

 

√                    
      (2.38) 

where             is the effective solid angle of the angular intensity distribution of the 

laser, and Afield is the ratio of the square of intensity integration over the field to the 

integration of squared field intensity. Its equivalent in time domain is “TIS”, which is the 

ratio of square of time integration of intensity to the integration of intensity square [113].  

Eqn. (2.38) was derived for a static imaging system; however, in reality, 

exposures are done in a scanning fashion. Therefore, for each laser pulse, different parts 

of the speckle pattern will deliver light to the same location on the reticle, resulting in an 

averaging effect. In order to account for this, calculated speckle contrast (Cspeckle) should 

be multiplied by the following term 

 

√         
 √

     

                     
       (2.39) 
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where repetition rate is       , effective slit width is                 and scanning speed is 

      [113]. 

For translating the contrast of the speckle pattern at reticle level to the line width 

variation at the resist plane, we need to multiply the speckle contrast with the sensitivity 

on dose (reflecting amount of linewidth change in nm when changing the exposure dose, 

with same amount across the entire field), and Kspeckle (a parameter that defines the 

correlation between the edges, it varies between 1 and   √ , depending on the edge 

correlation). The unit of dose sensitivity is nm CD change per percent dose change and 

can be determined by either simulations or experimentally from the focus exposure 

matrix (FEM). The conversion formula is given as follows [113] 

                                               (2.40) 

From comparison of measured LWR to the theoretical speckle calculations, it is 

concluded that about 10% of LWR fluctuation can come from speckle for normal scanner 

operations [113]. The contribution depends on actual experimental conditions. 

From these discussions, it can be concluded that lower dose sensitivity and 

smaller coherency time would result in less speckle effects. The latter case calls for wider 

source bandwidth, which is usually not desired. The reduction in speckle contrast can be 

achieved by increasing the repetition rate and accordingly reducing energy of each pulse, 

or by using passive pulse stretchers [137]. However, reducing LWR through changes in 

the exposure equipment will probably sacrifice throughput, since exposing field is 

attenuated and the required exposure time is expanded to span across a larger number of 

coherency times (τc).    
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2.5 Pupil Filtering Applications 

The effect of pupil filtering on mask roughness transfer is a big part of this 

research. Pupil plane filtering (either in amplitude or in phase) has historically been used 

for other applications such as increasing DOF [138], enhancing minimum resolution 

[139] and more recently for compensating mask 3D effects [140]. For each application, 

an optimized filter design was generated that enables an additional plane for optimizing 

the lithography performance, in addition to mask and source planes.  

Fig. 2.20 and 2.21 show examples of increasing the DOF and increasing the 

resolution. As shown in Fig. 2.21, pattern half pitch of 22 nm was resolvable only by use 

of a transmission pupil plane filter for resist A [139]. 

 

Figure 2.20: Pupil filtering idea. Left: No filter case, right: with filter case [138].  
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Figure 2.21: Enhancing resolution of EUV ADT tool by using a pupil plane amplitude 

filter at 22 nm half image pitch for resist A [139]. 

 

2.6 Previous Large Field IL Attempts 

There have been many attempts to generate large fields with IL. For instance, 

stitching of periodic submicron fringes by utilizing step-and-align interference has been 

investigated, where an exposure system was developed to fabricate large area periodic 

submicron structures by stitching unit exposure area step by step [141].   

The quasi-flat-top region of the expanded beam was impingent upon a metal mask 

with transparent window in the center. The two dimensional dual actuator is capable of 
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2 nm precision in movement for the stitching. Gratings with 700 nm period were 

successfully stitched along two directions. However, the linewidths at the overlapping 

regions have shrunk due to multiple exposures they receive; micrographs of the stitched 

regions are shown in Fig. 2.22 [141].   

 

Figure 2.22: Micrographs of stitched areas by optical and scanning electron microscope 

[141]. 

 

Another approach generating large fields using IL is called” “Scanning Beam 

Interference Lithography (SBIL)”, which produces large area periodic patterns by use of 

phase locked scanning beams [142-144]. Small, mutually coherent breams are phase 

locked by high-bandwidth electro-optic components and forced to overlap and interfere, 

generating a small fringe pattern. The image pattern is raster-scanned (either parallel 

scanning or Doppler scanning) over the substrate by use of a high precision 



 

59 

 

interferometer-controlled air bearing stage as shown in Fig. 2.23. With SBIL, they were 

able to achieve resolution down to 200 nm period over large areas [142].  

 

Figure 2.23: (a) Parallel SBIL, (b) Doppler SBIL [142]. 

 

Just as for any other scanning lithography system, SBIL requires tightly 

controlled environmental conditions to minimize disturbant effects coming from 

vibration, thermal expansion, and air turbulence [142-144]. 

Some groups worked on achromatic approaches to create large IL defined image 

fields [88, 145-147]. The need for small bandwith no longer holds true for achiving high 

resolution with such methods. An example set up is shown in Fig. 2.24. Using this set up, 

100 nm period gratings were printed over exposure areas of  ≈ 10 cm
2
, at the expense of 

fixed pitch and need for precise gap control [145]. 

Even though, there have been many attempts to increase the field size defined by 

interference lithography, it is still unclear how large should the IL field size be. In 

addition, there haven’t been many attempts to limit the field size based on practical 

constraints. It is one of the goals of this work to give insight to such considerations.  
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Figure 2.24: Schematic of achromatic IL set up for 100 nm period image pattern [145].  

 

2.7 Translational Image Averaging: Characterization and Measurement 

Translational image averaging, which may occur dynamically during imaging, is 

generally regarded as detrimental. Vibration during patterning is a prime example of such 

averaging, which is simply the result of dynamic processes that excite structures in an 

environment and ranges from low to high frequency levels. Relative motion along a beam 

path can deviate electron beams from their intended projection or cause blurring in 

imaging, therefore poses a problem [148].  

Vibration can be measured by converting translational motion into an electric 

signal by use of a transducer, such as piezoelectric accelerometer [149, 150]. Its units can 

be of displacement, velocity or acceleration. Table 2.3 shows comparison of three 

different techniques to measure vibration and their advantages and drawbacks [150]. 
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Table 2.3: Acceleration measurement methods and properties [150]. 

Sensor 

Type 

Advantage Drawback 

Piezo-

resistive 

Measures acceleration Resistive noise causes limited resolution 

 

Good for low and mid frequency bands 

Supply voltage needed 

Electro-

dynamic 

- Good for low frequency measurements 

Capacitive Measures acceleration 

Low cost 

manufacturing 

Fragile 

 

Limited resolution 

 

The idea of standardization of vibration criteria for industries such as 

microelectronics manufacturing and pharmaceutical was presented at SPIE in 1991 by 

Gordon through use of Vibration Criteria Curves (VCC). They are now widely accepted 

as a basis to design and continuously monitor the performance of microelectronics 

manufacturing facilities to ensure minimization of the vibration effects on the operation 

of most sensitive equipment per each category [151].  

The rms velocities of VC curves from A to E are overlaid in Fig. 2.25 for a typical 

toolset used to fabricate device dimensions between 250 nm and 700 nm. These curves 

are usually very conservative, meaning that facilities designed for a certain technology 

node following the VCC approach might still satisfy the requirements for the next 

technology node. Table 2.4 shows the explanation and applications of the VCC shown in 

Fig. 2.25. Also shown in that table is the International Standards Organization (ISO) 

guideline for the effects of vibration on people in different buildings [151].  
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Figure 2.25: Examples of vendor specifications of a typical toolset used in 250 nm to 700 

nm fabrication and VC curves from A to E [151]. 

 

As it can be seen in Fig. 2.25, vibration criteria curves extend from 4 Hz to 80 Hz, 

since the equipment at the time the work was published exhibited negligible sensitivity to 

the lower frequency contributions. However, pneumatic isolation systems such as air 

springs are being widely used nowadays and they can exhibit resonance frequencies less 

than 4 Hz. Therefore, there might be a possibility that the operation can be affected from 

the low frequency range as well. Concerns about frequencies above 80 Hz are assumed to 

be less significant [151]. Nevertheless, depending on the applications and demands from 

processes, these requirements need to be updated over time.  
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 Table 2.4: Application and interpretation of the generic VCC as shown in Fig. 2.25 [151].  

Criterion 

Curve  

Max Level (1) 

micrometers 

per sec, rms 

Detail Size 

(2)   microns 
Description of Use 

Workshop 

(ISO) 
800 N/A 

Distinctly feelable vibration. Appropriate to 

workshops and non-sensitive areas 

Office 

(ISO) 
400 N/A 

Feelable vibration. Appropriate to offices and non-

sensitive areas 

Residential 

Day (ISO) 
200 75 

Barely feelable vibration. Appropriate to sleep areas in 

most instances. Probably adequate for computer 

equipment, probe test equipment, and low power (to 

20X) microscopes. 

Operating 

Theatre 

(ISO) 

100 25 

Vibration not feelable. Suitable for sensitive sleep 

areas. Suitable in most instances for microscopes to 

100X and for other equipment of low sensitivity. 

VC-A 50 8 

Adequate in most instances for optical microscopes to 

400X, microbalances, optical balances, proximity and 

projection aligners, etc. 

VC-B 25 3 

An appropriate standard for optical microscopes to 

1000X, inspection and lithography equipment 

(including steppers) to 3 micron line widths. 

VC-C 12.5 1 
A good standard for most lithography and inspection 

equipment to 1 micron detail size. 

VC-D 6 0.3 

Suitable in most instances for the most demanding 

equipment including electron microscopes (TEMs and 

SEMs) and E-Beam systems, operating at their limits. 

VC-E 3 0.1 

A difficult criterion to achieve in most instances. 

Assumed to be adequate for the most demanding of 

sensitive systems including long path, laser-based, 

small target systems and other systems requiring 

extraordinary dynamic stability. 

 
Notes for Table 2.4: (1) As measured in one third octave bands of frequency over frequency range 8 

to 100 Hz. (2) The detail size refers to the line widths for microelectronics fabrication, the particle 

(cell) size for medical and pharmaceutical research, etc. The values given take into account the 

observation that the vibration requirements of many items depend upon the detail size of the process  

[151]. 
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Adding new tools to a manufacturing site will generally result in increased 

vibration amplitudes, depending on the quality of noise isolation for the added tools and 

their accompanying components. Fig. 2.26 shows the example of “before” and “after” 

environment for both “narrow band” (bandwidth is 0.375 Hz) and one-third octave band 

spectra (bandwidth is 23 percent of center frequency) [151].  

 

 

Figure 2.26: Comparison of pre- and post- startup vertical vibration for (a) narrow band 

data, (b) one third octave data [151]. 



 

65 

 

3. APPROACH AND EXPERIMENTAL 

PROCEDURE 

 

3.1 IL Specific LER Mitigation Studies 

As pointed out in the previous sections, mask roughness is one of the contributors 

for LER. The roughness of the mask will be translated to the aerial image that will 

subsequently expose the photoresist. Because interference-like lithography is used to 

define one directional periodic patterns, mitigation approaches specific to interference-

like lithography conditions can be investigated. Two methods are explored in this work. 

The first one is aerial image averaging via directional translation, and the second one is 

pupil plane filtering [18].  

 

3.1.1 Translational image averaging for LER smoothing  

3.1.1.1 Approach 

It has been shown that the effect of vibration or any kind of motion results in a 

shift between the aerial image and the recording plane (i.e. photoresist). The resulting 

“translated” or “image averaged” profile can easily be calculated as a convolution of the 

static image (i.e., image in the absence of any vibration) and “time dwelling” histogram 

function of the translation or vibration [106, 107].  

It is important to note that the translation should be applied longitudinally along 

the lines. Any transverse shift will result in widening of the transition region from low to 
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high intensity; thereby degrade the contrast and NILS of the image [152], as shown in 

Fig. 3.1 for a sinusoidal type and uniform type image motion with respect to the resist.  

 

Figure 3.1: Contrast loss due to transverse shift error for uniform and sinusoidal type 

motions. 

 

Fig. 3.2 (a) shows a rough mask used in the simulations to verify the idea. The 

roughness period for Line1 and Line3 is 500 nm and the roughness is random for Line2. 

The corresponding single pass exposure top-down aerial image calculated with KLA-

Tencor PROLITH
TM

 [153] (in vector image mode) is shown in Fig. 3.2 (b). Significant 

non-uniformity in the intensity distribution of the lines is evident. If the exposure is split 

into two passes and a translational shift of 250 nm was applied along the lines, the 

resulting aerial image intensity is much more uniform as shown in Fig. 3.2 (c). Therefore, 

even though the ideal situation would be a continuous translation between the aerial 

image and the recording medium during exposure; image averaging can also be applied 
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by splitting a single pass in to multi-pass exposures and apply a directional shift along the 

lines between the passes.   

 

Figure 3.2: (a) Mask with anti-correlated (L1), random (L2), and perfectly correlated (L3) 

rough lines. (b) Aerial image from single pass exposure. (c) Aerial image from double 

pass exposure. Simulations performed with KLA-Tencor PROLITH
TM

. 

 

 

3.1.1.2 Experimental procedure 

The experiments for this part of the work were done on both a KrF (248 nm) 

interference lithography set up and on a commercial ArF (193 nm) scanner. In the 

interference imaging set up, the aerial image averaging via directional translation along 

the lines was achieved by use of fused silica wedges. The apex angle of the wedge prisms 

was 1.05°, resulting in a deviation of 0.55º for a normally incident 248 nm beam [18]. 
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 Fig. 3.3 (a) shows the basic interference lithography set up used for image 

averaging experiments. The KrF laser utilized in the experiments was a line narrowed 

ELS 4600 laser with a bandwidth of 0.7 pm. In order to reduce the damaging effect of the 

high laser beam power on optical components, the beam was bounced back and forth 

between a couple of silicon mirrors. Beam homogenization was performed by spatial 

filtering just before the phase shifting mask (with 600 nm pitch) that was used as a beam 

splitter. The beam splitter diffracted the homogenized beam into many orders. The zero 

order was blocked in the system and the first diffraction orders were collected by use of 

high quality aluminum enhanced UV mirrors to be directed towards the wafer plane to 

interfere. The wedges were placed between the wafer plane and the mirrors, and shifted at 

mid exposure in x direction to achieve image translation in y direction (i.e., along the 

lines) as shown in Fig. 3.3 (b) [18]. The applied shifts were 250 nm, 500 nm and 750 nm. 

 

Figure 3.3: (a) Interference lithography set up for the aerial image averaging experiments 

[18]. (b) Translation approach: the wedge is moved in x direction at mid exposure, 

resulting in shift of the image in y direction (along the lines). (c) Co-processed nominal 

and translated dies on the same wafer piece to minimize processing related variations.  
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The set up shown in Fig. 3.3 is widely known as the reduction Talbot IL 

configuration. Unlike achromatic approaches, it has the capability of NA adjustment by 

rotating the two mirrors used to collect the first order diffractions. In order to alleviate the 

alignment difficulties the mirrors were not tilted, resulting in 300 nm pattern pitch at the 

wafer plane. Furthermore, the nominal and image averaged dies were processed on same 

wafer piece as shown in Fig. 3.3 (c) to minimize processing related variability [18]. 

The silicon wafers were initially dehydration baked at 200°C for 2 minutes. After 

cooling, AZ KrF 17B-100 BARC was coated at 3000 rpm, resulting in less than 2% 

reflectivity at the photoresist/BARC interface. The BARC was baked at 200°C for 90 

seconds. Subsequently, JSR ARX 2928 JN-7 photoresist was spin coated at 2500 rpm 

resulting in 70-75 nm thick film and baked at 110°C for 90 seconds. Post exposure bake 

was performed at 110°C for 60 seconds. The development was performed in CD26 

TMAH developer solution for 30 seconds followed by 30 seconds deionized water rinse. 

Finally a hard bake was performed at 120°C for 60 seconds.    

 Following the resist processing, SEM images of nominal and image averaged 

cases were taken at 42kX magnification by the SEM/FIB Zeiss-Auriga located at 

University of Rochester. This magnification ensured capturing of lines longer than 2µm 

with a wide field of view. LER analysis was done on the SEM images through SuMMIT 

software [154] (an SEM image analysis tool from EUV Technology Corporation). The 

results were averaged over 24 lines at around the die field center. Appendix B gives a 

sample LER processing routine created in MATLAB [155] that can be customized and 

used to calculate the roughness of a single edge. This routine was validated by comparing 
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the calculated 3σ LER values to the SuMMIT outputs. The results will have some 

variations depending on the selected parameters to smoothen the line on the SEM images, 

quality of the images and also on the line segment length [18]. 

A commercial 193 nm scanner was utilized in the projection lithography version 

of the aerial image averaging experiments. To apply the image averaging, exposures were 

divided into two or three passes and some amount of shift was applied along the line 

space direction. The NA of the objective lens was 0.93 NA, which resulted in 9.3/µm cut 

off frequency for the mask roughness transfer, under these experimental illumination 

conditions. The mask used in the experiments had dense line space features at 130 nm 

and 150 nm pitch, and semi-dense periodic features at 140 nm pitch. The film stack was 

120 nm thick photoresist coated on 85 nm ArF bottom anti-reflective coating (BARC). 

Under these conditions an exposure module of 8 dies (shown in Fig. 3.4) was exposed 

with 6 repetitions across the wafer [18].  

The first die corresponds to the single pass, nominal case. The second die has two 

passes, with no shift between them. Its purpose was to serve as an indicator of the 

alignment error between the superimposed passes. Dies 3, 4, 5 and 6 all have 2 passes; 

where the second pass was shifted 600 nm, 500 nm, 400 nm, and 300 nm with respect to 

the first pass. Dies 7 and 8 have 3 passes, where the second pass was shifted 300 nm with 

respect to the first one for both, however the shifts between the third and the first passes 

were 100 nm and 200 nm, respectively. It should be noted here that, a large amount of 

shift divided into many passes (with no alignment error) would be a more ideal case [18].  
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After the exposure and processing, CD-SEM was utilized to capture SEM images 

with 3 µm long resist lines. SEM images were processed using SuMMIT in batch mode 

with a calibrated recipe for the process [18]. 

 

Figure 3.4: Exposed module on the scanner and imaging conditions for each die [18]. 

  

3.1.2 Pupil plane filtering 

3.1.2.1 Approach 

An ideal 1D mask with vertical line space features illuminated with coherent light 

will have diffraction orders lying along the x-axis of the pupil plane, as shown in 

Fig. 3.5 (a). For the sake of discussion, the objective lens is large enough to collect the 

zeroth and the first order diffractions to create the aerial image. However, the mask 

absorber is not perfect and exhibits sidewall roughness. This roughness will result in 

additional diffraction orders in perpendicular direction to the main diffraction orders 
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coming from the ideal pattern, as shown in Fig. 3.5 (b). As mentioned in the theory 

section, these roughness orders will be collected by the objective lens in addition to the 

main diffraction orders, as long as their frequency is less than a cut off frequency 

dependent on the experimental factors such as the illumination source shape, the 

wavelength, and the numerical aperture of the system. Fig. 3.6 (a) shows the nominal 

case photoresist profile resulting from a constant threshold resist model and using the 

rough mask shown in Fig. 3.5 (b). The roughness present on the pattern is correlated to 

the mask roughness. For the interference-like lithography conditions, the small partial 

coherence of the illumination source allows some seperation between the main and 

roughness diffraction orders. Using this property, a transmission filter can be inserted at 

the pupil plane to block unwanted diffraction orders. The resulting photoresist profile 

exhibits much less roughness, as shown in Fig. 3.6 (b) [19].  

 

Figure 3.5: (a) 1D mask with smooth vertical line space features and corresponding 

diffraction information. (b) Mask with absorber roughness and corresponding diffraction 

information. Dashed regions: main diffraction orders coming from smooth vertical 

features [19]. 
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Figure 3.6: Collection of (a) many diffraction orders or (b) just the main diffraction 

orders at the pupil plane. Top down views of photoresist profiles generated with a 

constant threshold resist model are shown for each case [19]. 

 

Historically, photolithographic tools do not posses the amplitude (i.e., 

transmission) filtering capability due to the fact that it decreases the available intensity 

that would otherwise be utilized in exposing the photoresist. But, phase filtering 

capability is already avaible on some commercial scanners, such as ASML’s high 

resolution wavefront manipulator called “FlexWAVE” [156], shown in Fig. 3.7. Because 

of this, the experiments in this work were performed by using phase filtering approach 

instead of transmission filtering. 
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Figure 3.7: ASML’s FexWave wavefront manipulator [156]. 

 

In order to come up with an optimum wavefront shape for the phase filter, an 

aerial image simulation study was performed using a programmed roughness mask in 

PROLITH
TM

 (in vector imaging mode). Fig. 3.8 (a) shows the programmed defect on one 

directional line/space pattern and the two cutline locations where the CD was measured 

on the aerial image. The illumination source was the optimized dipole shown in 

Fig. 3.8 (b) and the CD difference (i.e., ΔCD) between CL1 and CL2 was used as the 

roughness transfer indicator. The effect of different types of aberrations on ΔCD was 

shown in Fig. 3.8 (c). The coefficient of Z5 and Z6 were selected as 0.2 waves and the 

phase difference between the orange and blue sections of the “step” wavefront signature 

was 0.2 waves. It is easily seen that the “step” wavefront shape results in minimum ΔCD 

(i.e., 3.2 nm compared to 8.9 nm). Even though astigmatism-x (Z5) results in some 
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reduction of ΔCD, there is also degradation in NILS due to the overlap between the main 

diffraction orders and the aberrations [18, 19].  

Therefore, the selected phase filter wavefront should have astigmatism-like shape 

and introduce some amount of phase difference between the roughness orders and main 

diffraction orders at the pupil plane. That way, at the best focus of the main diffraction 

orders, the roughness information will be defocused and the mask roughness transfer will 

be degraded [19]. 

 

Figure 3.8: (a) Programmed defect mask and the measurement locations along two 

cutlines. (b) Diffraction pattern of the mask with optimized dipole. (c) Effect of different 

aberrations on the aerial image profile and ΔCD along two cut locations. 
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In order to find the optimum amount of phase shift between the main and the 

roughness diffraction orders, a simulation study was performed using the anti-correlated 

roughness mask shown in Fig. 3.9 (b). The corresponding smooth mask and roughness 

mask programmed in correlated fashion are also given in Figures 3.9 (a) and (c) for 

comparison. The period and amplitude of the roughness are denoted as “P” and “A”. For 

the simulations, main feature (i.e., vertical) pitch was fixed at 128 nm and the roughness 

amplitude was fixed at 2 nm per edge. The roughness period was changed from 200 nm 

up to 700 nm, and the inserted phase difference between roughness and main orders were 

varied from 0 waves (nominal case) up to 0.3 waves. The ArF illumination source shape 

was an optimized dipole-X with σ=0.1. The roughness transfer at the programmed 

roughness period (i.e., ΔCD) was plotted against the phase difference in Fig. 3.10 (a). At 

0.25 waves, the transfer of the programmed roughness was eliminated.   

 

Figure 3.9: (a) Definition of an ideal (smooth) mask with vertical line space pattern, and 

corresponding (b) anti-correlated and (c) correlated programmed roughness masks [19]. 
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Figure 3.10: (a) Roughness transfer as a function of introduced defocus. (b) Optimized 

pupil plane phase filter for vertical line space patterns. 

 

Therefore, the ideal phase filter for one directional vertical periodic features will 

look like in Fig. 3.10 (b), which will introduce a quarter wave phase difference between 

the main and roughness diffraction orders to force the latter be defocused at the best 

focus of main vertical features [19]. 

The transferred roughness from the mask can come from a broadband of 

frequencies. Therefore, it is beneficial to observe the effect of ideal phase filter on a 

white noise mask. Fig. 3.11 (a) and (b) show a white noise mask generated using 

SuMMIT and its corresponding diffraction information at the pupil plane for an 

optimized dipole. The mask roughness frequencies interacting with the orange sections of 

the phase filter (shown in Fig. 3.10 (b)) are out of focus at the aerial image. When the 

nominal and phase filtered aerial images shown in Fig. 3.11 (c) and (d) are compared, the 
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latter has more uniform intensity distribution. The 3σ LER for the nominal and phase 

filtered cases are 2.47 nm and 0.64 nm, respectively.   

 

Figure 3.11: (a) White noise mask. (b) Diffraction information at the pupil plane with 

optimized dipole illumination. Resulting aerial images for the (c) nominal case, (d) phase 

filtered case.  

 

The top-down views of nominal aerial image intensity distributions for the anti-

correlated and correlated masks with roughness period of 250 nm programmed on 

128 nm vertical pattern pitch are shown in Fig. 3.12 (a).  Fig. 3.12 (b) shows the 

top-down view of the common filtered aerial image distribution when the optimized 

phase filter is inserted at the pupil plane. The comparison of aerial image intensities along 
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CL1 and CL2 are given in Fig. 3.12 (c). The CL1 and CL2 distributions for phase filtered 

cases are identical, thereby on top of each other. 

 

Figure 3.12: (a) Top-down aerial image intensity distribution for nominal anti-correlated 

and correlated masks. (b) Corresponding phase filtered distribution. (c) Comparison of 

intensity distributions along the cutlines. 

 

A final set of simulations were performed on the anti-correlated roughness mask 

and the smooth mask to observe the through focus and exposure dose behavior with and 

without the phase filtering for 250 nm roughness period. The focus was varied 
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from -0.3 µm to 0.3 μm and three aerial image thresholds were used (0.25, 0.30 and 

0.35). Bossung curves were evaluated for both smooth mask and roughness mask at CL1 

and CL2. Fig. 3.13 (a) shows these Bossung curves with and without the phase filter. For 

the nominal case, the CD values at vertical feature best focus is different between the 

smooth and rough masks. However, at the presence of the phase filter, the CD values are 

identical. As a side effect due to phase filtering, there is also a tilt to the curves. The filter 

induced roughness mitigation is more evident in Fig. 3.13 (b), where ΔCD goes to 0 nm  

at the vertical feature best focus for the phase filtered case, independent of the exposure 

dose.   

 

Figure 3.13: (a) Aerial image Bossung curves for nominal and phase filtered cases at two 

cutlines, (b) ΔCD between the two cutlines for nominal and phase filtered cases. 

“Nominal” refers to without the filter case. 
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This focus dependence behavior was validated by performing simulations at 

various roughness frequencies, yielding similar results. Experimental results were 

expected to follow these simulated trends, therefore, further experiments with a large 

focus range were not pursued in this study.  

 

3.1.2.2 Experimental procedure 

For the experiments, a 6% attenuated phase shift mask with dense (i.e., 1:1 duty 

ratio) vertical line space patterns was utilized. On the mask, the roughness features were 

programmed on the edges of 64 nm line/space features in both correlated and anti-

correlated fashions. The scanner was ASML:NXT1950i equipped with FlexWAVE 

wavefront manipulator located at Imec, in Leuven, Belgium. The objective lens NA was 

1.35 and the 193 nm illumination source was dipole-X with σin/σout of 0.55/0.65. The 

roughness periods that were investigated are 200 nm and 500 nm, and the amplitudes 

were changing from 0 nm up to 9 nm per edge. The diffraction information for these 

roughness periods with the optimized dipole are shown in Fig. 3.14 [19]. 

 

Figure 3.14: Diffraction information for 200 nm and 500 nm roughness periods. 
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Initially, the phase filter wavefronts for the two roughness frequencies were 

created using a MATLAB and PROLITH
TM

 co-optimization routine (a modified version 

from [157]) that minimized the ΔCD at two extreme cutline locations on the aerial image. 

In the optimization routine, only astigmatism-y aberrations were utilized to save the 

computation time. The resulting optimized wavefronts for 200 nm and 500 nm roughness 

periods are shown in Fig. 3.15 as W1 and W2 with corresponding Zernike combinations 

to create them. However, some combinations of Zernike coefficients (such as W1 and 

W2) each in the order of 0.2 waves did not pass the safety thresholds of the scanner. 

Therefore, the following approach was utilized instead.  

 

Figure 3.15: Optimization of phase filters for 200 nm (W1) and 500 nm (W2) roughness 

periods and corresponding Zernike combinations to create them. 
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As explained in Fig. 3. 10, the ideal phase filter should introduce a quarter wave 

phase difference at the pupil plane between the main feature and roughness diffraction 

orders. Therefore, for a given illumination condition and a programmed roughness mask, 

the ideal phase filter can easily be created. Once the wavefront filter shape is known, a 

surface fitting routine can be programmed in MATLAB to calculate the coefficients of 

Zernike terms to generate the desired phase filter. The schematic flow of such a routine 

created for this work is given in Fig. 3.16 (a), and the detailed flow is included in 

Appendix C. As an example, a known target filter was realized in PROLITH
TM

 with more 

than 10 Zernike coefficients. The program successfully calculated the Zernike 

combination that was input to PROLITH
TM

 and outputted the wavefront shape created 

using that “best-fit” combination.  

 

Figure 3.16: (a) MATLAB surface fitting routine. (b) Effect of cost function inclusion on 

the fit efficiency. 
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The user can define the Zernikes to be included in the surface fitting optimization. 

The code generates a synthetic wavefront using the user selected Zernike combination 

and compares it to the target wavefront which is input to the program. The Zernike 

coefficient combination that gives the minimum root mean square (rms) error and the 

best surface fit are outputted. User can also include a cost function to improve the fit at 

certain parts of the pupil plane. For example, in Fig. 3.16 (b), the four dashed boxes are 

defining the pupil locations where the rms error is desired to be minimized. Looking at 

the plot scales, it is easily seen that using the cost function significantly improves the fit 

at the desired locations.  

For this study, the target roughness period for mitigation was selected as 200 nm. 

The optimum Zernike combination to create that wavefront was found by the custom 

surface fitting code described above. Fig. 3.17 (a) shows the target phase filter and the 

experimentally generated FlexWAVE filter. The coefficients of Z4 through Z37 used to 

create the target filter and the experimental filter are shown in Fig. 3.17 (b). This 

approach required combinations of Zernike coefficients each less than 0.2 milliwaves.  

In the ASML scanner, a focus-exposure-matrix (FEM) was created where the 

exposure dose was varied between 18.5 and 25.5 mJ/cm
2
 with increments of 0.5 mJ/cm

2
 

and the focus was varied between -40 nm and +40 nm with increments of 10 nm. Two 

wafers were exposed with this FEM, one with the FlexWAVE generated phase filter and 

one without it. The film stack was 105 nm JSR AIM5484 photoresist coated over 95 nm 

ArF BARC (Brewer Nissan ARC29). Following exposures and processing, SEM images 

were captured by Hitachi CG5000 with pixel sizes of 0.879 nm by 5.38 nm in X and Y 

directions, at a field of view of 0.450 μm by 2.755 μm. The LER analysis was done by 
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EUV Technology Corporation’s SuMMIT and results were averaged from four dies in 

best focus and best dose conditions [19]. 

 

Figure 3.17: (a) Target and experimental filters (ΔΦAB ≈ 0.25 waves). (b) Zernike 

coefficients for the target and experimental filters. 

 

3.2 Magnification Correction Studies for Machine Mix and Match 

Since IL provides the highest theoretical contrast compared to other lithography 

techniques, it would be beneficial to scale it for large field IC applications and reduce 

edge roughness. However, one of the challenges to achieve this goal is lack of pitch fine 

tuning for exposed image pattern. In the Talbot set up at RIT’s Nanolithography labs; 

image pitch can be coarsely adjusted by using the rotational stages that have the mirrors 

on them. However, ability in achieving finer pitch adjustment needs to be implemented. 
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Because, as shown in Fig. 3.18, even modest pitch errors in picometer levels at the field 

center will accumulate to large image placement errors in nanometer levels at the field 

edge when thousands of lines are placed next to each other. This will impose a problem, 

especially for machine mix and match when interference lithography is a part of the layer 

definition. The image placement error between IL and subsequent trim exposure is to be 

kept as small as possible.  

 

Figure 3.18: Effect of pitch error in overlay of subsequent exposures. 

 

3.2.1 Approach 

In the reduction Talbot design, the pitch of image at the wafer plane is dependent 

on both the diffraction angle from the mask and the mirror tilt. Initial experiments on 

tilting the mask revealed asymmetric change in diffraction angle of the first diffraction 

orders, with respect to the 0
th

 order; therefore it was not acceptable. 
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The pitch fine tuning was achieved via fused silica wedges that have been placed 

on rotational stages between the mirrors and the wafer plane, as shown in Fig. 3.19 (a). 

This way, the interference angle becomes a function of the deviation angle from the 

prism and additional degrees of freedom are inserted into the system. The relationship 

between the deviation angle (δ), the refractive index of the prism material (n) and the 

incident angle (θi) can be given as follows [108] 

            [        √                            ]  (3.3) 

 

Figure 3.19: (a) Talbot set up with wedges for pitch fine tuning. (b) The definition of 

deviation angle from the wedge prism. (c) Deviation angle as a function of incident angle 

for the wedge prism with apex angle of 1.05°. 
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The schematic of this relationship is shown in Fig. 3.19 (b). The relationship 

between the deviation angle and the incidence angle for the actual prism (n248 nm=1.55) 

used in the experiments is plotted in Fig. 3.19 (c). As the wedges are rotated, the 

incidence angle changes; however, even a large change of incidence angle will result in a 

small change in the deviation angle, especially at around the minimum deviation point in 

Fig. 3.19 (c).  

 

3.2.2 Experimental procedure 

For the experiments, the modified reduction Talbot set up shown in Fig. 3.19 (a) 

was utilized. The rotation angles (θ) of the stages housing the wedges were 

simultaneously changed from -10° to +50° with respect to the plane parallel to the wafer 

plane. Using the IL experimental conditions described in section 3.1.1.2, 9 dies were 

exposed over various rotation angles, hence through various deviation angles. 

SEM images with more than 10 line space pairs in field of view were captured at 

32kX magnification as shown in Fig. 3.20 (a). The intensity along the perpendicular 

direction to the lines were calculated for each case to find the extent of 10 line/space pairs 

as shown in Fig. 3.20 (b). The pattern pitch was extracted by dividing that number by 10. 
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Figure 3.20: (a) Dies exposed over various θ, (b) Line-outs measured over 10 line/space 

pairs across the SEM field to calculate the pitch. 

 

3.3 Effect of OPD on Field Size 

In the reduction Talbot design, the OPD is dependent on the field size. It increases 

linearly as one moved away from the field center. This linear relationship was calculated 

theoretically in Appendix A, as shown in equation (A8). The comparison of theoretical 

values to the simulation results calculated at the field edge of increasing beam size is 

given in Fig. 3.21. For the simulations, free ray tracing software programmed in 

MATLAB called “Optical_bench” [158] was utilized. 
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Figure 3.21: Comparison of theoretical OPD calculations with simulated results. 

 

Aside from OPD between the interfering arms, practical limitations should also be 

considered on the field size when IL is a part of a machine mix and match process to 

define a critical device layer. Image placement error (IPE) criterion can be utilized for 

this purpose.  

The image placement error, defined as the maximum deviation (X or Y) of the 

image array relative to a predefined grid, is roughly about 11 % of the half pitch for a 

node [159]. Table 3.1 shows the tolerable IPE values for various DRAM nodes and the 

maximum field sizes calculated for 100µº (1.745μrad) and 50µº (0.873μrad) residual 

uncorrectable errors in the interfering angles of an IL set up. For the conservative case 

(i.e., assuming larger residual error), the usable field size changes between 4 and 8 mm. 
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Therefore, trying to print fields greater than 10 mm would not be practical for the 

imaging conditions studied herein. 

Table 3.1: IPE tolerances for DRAM nodes (adapted from 2007 edition of ITRS [159]) 

Year 2004 2006 2008 2010 2012 2014 

DRAM (hp, nm) 90 70 57 45 36 28 

Image Placement   

Error (nm) 

9.9 

(Estim.) 

7.7 

(Estim.) 
6.5 5.2 4.1 3.3 

IL defined pitch 180 140 104 90 72 56 

Max field length (mm), 

(res. error=100µº) 
7.2 8.3 6.3* 6.7* 6.5

+
 4.7

γ
 8.2

γ
 

Max field length (mm), 

(res. error=50µº) 
14.3 16.6 12.5 13.5 13.1

+
 9.4

γ
 16.1

γ
 

*Immersion medium water (n193 = 1.44) 

+
 High index fluid  (n193 ≥ 1.65) 

γ 
Evanescent wave imaging (sapphire prism) 

 

3.3.1 Approach 

In order to systematically introduce OPD between the interfering orders, a 

maskless IL set up similar to the one shown in Fig. 1.8 (b) was utilized. The actual 

schematic is shown in Fig. 3.22 (modified from [160]). Such maskless IL configurations 

have been previously utilized in literature [147].  
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The incoming beam from ELS 4600 laser was split by a polarization independent 

~50% beam splitter. After that, the two interfering beams follow different paths. With 

reference to the figure, optical path length (OPL) taken by one of the beams is given as 

(a+b), and the other is given as (c+d+e). Therefore, the OPD between the two is given as 

                      (3.4)  

The interfering angles on both arms are equal to ζ with respect to wafer plane 

normal, and the beam paths “a” and “d” are parallel to each other. Under these 

circumstances, the law of sines can be invoked to come up with following relationships 

 

       
 

 

       
       (3.5) 

 

       
 

   

       
       (3.6) 

where, y is the distance from M1 to the wafer plane. Putting the relationships in (3.5) and 

(3.6) into OPD definition in (3.4) 
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  ]  (3.7) 

From (3.7), it is seen that the OPD is dependent on the interfering angle and the 

distance c. If c was equal to 0, the OPD between the arms would also be equal to 0. OPL 

matching can be done by moving the beam splitter and mirror together left to right, as 

highlighted with the dashed red box.  
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Figure 3.22: Maskless IL set up for studying OPD effect on contrast loss. 

 

3.3.2 Experimental procedure 

The experiments were performed on the maskless IL set up by using the same 

processing conditions as previous IL experiments. The image pitch was 300 nm; 

therefore, the interfering angle was about 24°. From equation (3.7), the OPD at the initial 

point is equal to 0.55c, where c is between 4 and 5 cm approximately. By using the 
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micrometer translational stage housing the beam splitter and mirror 1, OPD was changed 

between the two interfering beams and the SEM images were taken at the field center.  

The initial plan was to correlate the CD changes with the contrast loss due to 

OPD; however, the intensity instability of the ELS4600 laser prohibited any quantitative 

discussions. Therefore, only qualitative discussions were included in the results.  
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4. RESULTS AND DISCUSSIONS 

4.1 IL Specific LER Mitigation Studies 

4.1.1 Aerial image averaging via directional translation 

4.1.1.1 Interference lithography results 

Initial problems observed with the image averaging IL experiments were edge 

ringing and pattern collapse as shown in Fig. 4.1 (a) and (b), respectively. The former is a 

result of the large coherence length of the ELS 4600 laser (Δλ=0.7 pm) and was fixed by 

inserting a spatial filter after the field aperture as shown in Fig. 4.1 (c). The pattern 

collapse issue was resolved by optimizing the BARC/photoresist thickness. 

 

Figure 4.1: Initial problems associated with the interference lithography experiments: (a) 

ringing issue and (b) pattern collapse issue. (c) Spatial filtering. 
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In order to get enough data population, LER values were averaged from SEM 

images taken at 3 locations around the field center. The exposed IL field is very small 

(diameter less than 3 mm), therefore locating the field center was proven to be very 

difficult. The process related variability between the image averaged and nominal cases 

was minimized by consecutive exposures, and co-processing on the same wafer piece as 

shown in Fig. 4.2 (a). Figures 4.2 (b), (c), and (d) show the comparison of nominal and 

image averaged LER PSD for 250 nm, 500 nm, and 750 nm shifts respectively.    

 

Figure 4.2: (a) Co-processing of static (nominal) and image averaged (translated) dies. 

Comparison of nominal case LER to image averaged case LER with translation amounts 

of (a) 250 nm, (b) 500 nm, and (c) 750 nm.  

 

Significant fluctuations in the laser dose were observed during use, attributed to 

the heating/cooling cycles of the laser. The chiller attached to the laser was not the 

original chiller for the ELS 4600. Therefore, it was difficult to select a consistent dose to 

size during the exposures.  
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From post-lithography SEM image analysis, 5.1 nm CD difference was observed 

between the nominal die (i.e., no aerial image averaging) and the corresponding shifted 

die processed on the same wafer piece. In addition, significant amount of increase in 

roughness with frequencies greater than 2/µm was observed as it can be seen in Fig. 4.2. 

As a result, the image averaged 3σ LER was 1.9 nm higher than the nominal case on 

average. These were attributed to the undesired shift in transverse direction, hence, 

reduction in overall image contrast [18].  

The effect of contrast loss on wafer LER was investigated by introducing DC 

through flood exposure following the 2-beam imaging. The DC values were changed 

from 0% (no flood exposure, only 2-beam imaging with highest contrast), up to 10% 

(highest contrast loss case) by keeping the total accumulated dose delivered to the 

photoresist constant. The results of this study, given in Fig. 4.3 for 139 nm and 75 nm 

resist thicknesses, show that the LER is strongly dependent on the image contrast [18].  

 

Figure 4.3: Effect of contrast loss through flood exposure on LER PSD (a) for 139 nm 

thick resist, (b) for 75 nm thick resist [18]. 
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Since there are no alignment marks in the IL defined image field, it is impossible 

to locate the same location for SEM measurements across different dies. This prevents 

the ability to compare the roughness values calculated for the same line and along the 

same segment. Hence, there is going to be some amount of variation between the inter- 

and intra-field LER values calculated from different SEM images. This can be better 

understood through Fig. 4.4 (a), where the SEM images taken from 3 different locations 

around the field center of a nominal die are shown. There is a systematic error present in 

only Location 1 SEM image. In Fig. 4.4 (b), the problematic locations of the beam 

splitting mask utilized in the IL experiments are shown as well. Such imperfections will 

cause inconsistent data due to coherency artifacts. The LER values of 8 central lines from 

these three locations are given in Fig. 4.4 (c). The location dependency of LER 

measurements is evident when comparing the LER values calculated from the SEM 

images taken from three locations on the same die, as shown in Fig. 4.4 (c). 

The most crucial conclusion for this part of the study is that LER experiments by 

utilizing an IL set up is proven to be very risky due to the factors mentioned above. One 

should refrain from using IL set ups as much as possible while comparing LER values of 

different materials, or processing conditions. In order to eliminate the location 

dependency of results, further image averaging experiments were performed on a 193 nm 

scanner [18]. 
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Figure 4.4: (a) Location dependency is observed for IL experiments. (b) Imperfect mask 

is one of the sources of variations. (c) Intra-field LER values [18]. 

 

4.1.1.2 Scanner results 

As mentioned before, die 2 in the scanner experiments was included as an 

alignment error indicator between the superimposed passes; therefore, the aerial image 

averaged case results were compared to both the die 1 (nominal die) and die 2 results in 

this section. Even though expected to be very small, there will always be some amount of 

misalignment error between overlaid passes.  

The 3 µm long SEM images taken from die 1 at pitches of 130 nm, and 140 nm 

are shown in Fig. 4.5 (a), and (b). The 150 nm pitch SEM images of die 1, die 2, and 

die 8 are shown in Fig. 4.15 (c), (d), and (e), respectively. Such long images were 

required to capture as much of the LF roughness as possible. 
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Figure 4.5: SEM pictures of 3 µm long patterns for the pitches of (a) 130 nm (Die 1), 

(b) 140 nm (Die 1), (c) 150 nm (Die 1), (d) 150 nm (Die 2), and (e) 150 nm (Die 8). 

 

The 3σ LER values of all 8 dies are shown in Table 4.1, for all frequencies and 

also for just the low frequency range. The inter-field LER variation was less than 0.1 nm 

(1σ) for the same die. Because the mask roughness contributes to the low frequency 

region more dominantly, LER mitigation was expected in the low frequency range. 

However, the differences between the LER values were not significant especially when 

compared to the 1σ inter-field LER variation of 0.1 nm, possibly due to small mask LER 

contribution to the overall wafer LER, and the non-ideal way of the applying the image 

translation. For almost all image averaged dies, the LER value was between the nominal 

die (die 1) and die 2 [18]. 
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Table 4.1: LER (3σ) values for all frequencies and low frequencies (S: static, P: pass). The 

amount of shift between passes is given in Fig. 3.4. The inter-field LER variation is 0.1 nm (1σ) 

[18]. 

Low 

frequency 130 nm 140 nm 150 nm 

Die 1 (S, 1P) 3.51 3.54 3.36 

Die 2 (S, 2P) 3.57 3.74 3.36 

Die 3 (2P) 3.57 3.52 3.31 

Die 4 (2P) 3.56 3.54 3.39 

Die 5 (2P) 3.51 3.62 3.36 

Die 6 (2P) 3.57 3.56 3.31 

Die 7 (3P) 3.56 3.59 3.31 

Die 8 (3P) 3.55 3.58 3.21* 

 

The best case low frequency LER mitigation was 0.15 nm, observed for die 8 

compared to the nominal die at 150 nm pitch. Comparing the aerial image averaged dies 

to die 2, the best case low frequency mitigation corresponds to 0.22 nm, achieved for die 

3 at 140 nm pitch [18].  

Fig. 4.6 shows the LER PSD of dies 3 and 8, compared to dies 1 (solid black line) 

and 2 (green dashed line), for the three pattern pitches. The best case mitigation for die 8 

is highlighted with a dashed box around it. As it can be seen from this figure, there isn’t 

significant difference between the LER PSDs between the nominal and image averaged 

cases. To conclude this study, aerial image averaging did not significantly change LER. 

In order to draw more conclusive discussions, a mask with known roughness frequencies 

and amplitudes would be needed [18].   

All 

frequency 130 nm 140 nm 150 nm 

Die 1 (S, 1P) 5.52 6.07 5.44 

Die 2 (S, 2P) 5.63 6.33 5.54 

Die 3 (2P) 5.65 6.11 5.42 

Die 4 (2P) 5.61 6.18 5.57 

Die 5 (2P) 5.62 6.23 5.48 

Die 6 (2P) 5.58 6.15 5.44 

Die 7 (3P) 5.69 6.11 5.50 

Die 8 (3P) 5.60 6.13 5.37 
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Figure 4.6: Effect of aerial image averaging on LER PSD for die 3 and die 8. Best case 

mitigation was for die 8 and highlighted with dashed box [18]. 

 

4.1.2 Pupil plane filtering 

Fig. 4.7 shows the roughness transfer of the nominal and phase filtered wafers 

through aerial image simulations for three different aerial image thresholds (T). The 

actual experimentally generated FlexWAVE filter was utilized for the latter case. Even 

though the filter targets 200 nm period, it also reduces the roughness transfer for 500 nm 

period at the best focus of vertical features. 
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Figure 4.7: Comparison of roughness transfer for nominal and filtered cases through 

focus for 200 nm and 500 nm roughness periods.  

 

The best fit of the experimental filter to the target filter was achieved at the slit 

center; therefore, the highest mitigation effect was expected to be around the slit center. 

In order to observe the dependency of mitigation effect on the accuracy of the fit between 

the desired and experimental filters, the roughness modules were repeated several times 

across the scanner slit.  

Figures 4.8 (a) and (b) depict the slit center SEM images obtained from the 

nominal and phase filtered wafers for 200 nm roughness periods in anti-correlated and 

correlated fashions, respectively. The roughness amplitude (A) was changed from 

1nm/edge up to 9nm/edge. The comparison of SEM images clearly shows the mitigation, 

even at large amplitude of 9nm/edge. The mitigation was found to be independent of the 

correlation type between the edges, verifying the simulation results. The corresponding 

SEM images for 500 nm period are shown in Fig. 4.9. The mitigation for 500 nm period 

was less obvious from the SEM images, compared to 200 nm period images. 
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Figure 4.8: Nominal and phase filtered SEM images for 200 nm roughness period in (a) 

anti-correlated and (b) correlated fashions.  
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Figure 4.9: Nominal and phase filtered SEM images for 500 nm roughness period in (a) 

anti-correlated and (b) correlated fashions.  
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Figures 4.10 (a) and (b) show the through slit 3σ LWR values for nominal and 

phase filtered cases for 200 nm and 500 nm roughness periods, respectively. As expected, 

the mitigation was at maximum around the field center.  

 

Figure 4.10: Through slit LWR values for the nominal and wavefront cases programmed 

with periods of (a) 200 nm and (b) 500 nm, in both correlation types. Error bars 

correspond to average 1σ LWR variations. 
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When roughness is correlated, its amplitude will not have significant effect on 

LWR. But, the effect will be visible in LER plots, as shown in Figures 4.11 and 4.12 for 

two different frequency ranges. The latter includes only the LF roughness, which is more 

crucial for the device electrical performance. 

 

Figure 4.11: Through slit LER values for the nominal and phase filtered cases 

programmed with periods of (a) 200 nm and (b) 500 nm, in both correlation types. Error 

bars correspond to average 1σ LER variations. 
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These figures show that the systematic mask contribution to the wafer LER 

increases for large programmed roughness amplitudes. However, the phase filter reduces 

this contribution significantly, especially for the target period of 200 nm. The slit center 

has the highest roughness mitigation (shown separately in Fig. 4.13).  

 

Figure 4.12: Through slit LF LER values for the nominal and wavefront cases 

programmed with periods of (a) 200 nm and (b) 500 nm, in both correlation types. Error 

bars correspond to average 1σ LER variations. 
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Figure 4.13: Slit center LER values for (a) 200 nm, and (b) 500 nm roughness periods at 

the slit center. Both correlation types are considered [19].  
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The effect of phase filtering on LER power spectral density is shown in Fig. 4.14, 

for amplitudes of 1nm/edge and 5nm/edge programmed in anti-correlated fashion. The 

peaks at 5/μm in (a) and (b) correspond to the 200 nm roughness period, and the peaks at 

2/μm in (c) and (d) correspond to 500 nm roughness period. The peak at 5/μm frequency 

is significantly reduced as evident from Fig. 4.14 (a) and (b). The rest of the LER PSD 

seems unchanged.  

 

 Figure 4.14: LER PSD of nominal and phase filtered wafers. Comparison for 200 nm 

roughness period with amplitudes of (a) 1nm/edge and (b) 5nm/edge. Comparison for 

500 nm roughness period with amplitudes of (c) 1nm/edge and (d) 5nm/edge. 
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The LER and LWR are related to each other through the correlation between the 

two edges. The following describes this relation mathematically [98] 

    
        

        
                     (4.1) 

where -1<CF<1. When there is a correlation between the edges (either in perfectly 

correlated or anticorrelated fashions), the amplitude of CF will reach 1. If there is no 

correlation between the edges, the CF will be around 0 [98]. The former case corresponds 

to the situations, where there is more systematic contributions to the wafer LER (such as 

mask roughness). Therefore, as shown in Fig. 4.15, the CF goes to either 1 or -1 for 

increasing values of roughness amplitude for the nominal cases. The phase filter reduces 

the magnitude of CF, indicating mitigation of the systematic contributions to the wafer 

LER. As expected, the impact is more visible for the 200 nm period roughness.    

Since the mask roughness is not a major contributor to the wafer LER, the effect 

of phase filtering on reference lines with no programmed roughness (A=0) was expected 

to be very small. Fig. 4.16 (a) verifies this expectation by plotting 3σ LER values for 

smooth features through mask bias.  

It has been aferomentioned that the HF filtering effect on mask roughness does 

not translate directly to LER; however, when the amplitude is large enough (e. g., >10% 

of CD), it starts to degrade NILS and indirectly increase the roughness [97]. Fig. 4.16 (b) 

shows this phenomenon where simulated NILS reduction is overlaid on top of the 

measured resist LER of the phase filtered case, for various roughness amplitudes. The 

decrease in NILS is greater than 1%  when the amplitude is greater than 10% of the CD 

and the 3σ LWR starts to increase.  
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Figure 4.15: Experimentally calculated CF for (a) 200 nm, (b) 500 nm roughness periods. 
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Figure 4.16: Effect of filtering on (a) smooth line 3σ LWR through bias. (b) NILS 

reduction and LWR increase through roughness amplitude for the filtered case. 

 

In case of the HF filtering of the optical system, diffraction orders are always 

outside the resolution limit of the system; therefore, they cannot be translated to the aerial 
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image directly. This kind of filtering will always result in reduction of the NILS and 

deterioration of LER, to a very small extent.  

However, in the situations where the orders would actually be captured at the 

pupil plane; if the filter is not utilized, it is easily seen from Fig. 4.13 that the direct 

transfer of these roughness orders results in much higher roughness values. For instance, 

when the anti-correlated roughness amplitude is 9 nm per edge, the reduction in NILS is 

2.6% due to filtering resulting in a 3σ LER of 4.05 nm; yet, the nominal case would have 

a 3σ LER value of 9.5 nm for the same amplitude.  

 

4.2 Magnification Correction Results 

The main objective of pitch fine tuning was to show the ability of changing the 

pitch in a reduction Talbot IL set up by less than 1 nm accuracy. Fig. 4.17 shows the 

pattern pitch at wafer plane as a function of the rotation angle. Through the full available 

span of angles (a range of 60°), the maximum change in the pitch is 4.5 nm.  

 The minimum deviation from the wedges was achieved at about θ=24º, where the 

beam passing through the prism is parallel to the base of the wedge. As it is seen, in the 

vicinity of minimum deviation point, i.e., 10º<θ<30º, less than 0.5 nm pitch adjustment is 

achieved. For finer adjustments, wedges with smaller apex angles can be utilized.     
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Figure 4.17: Pitch fine tuning via change in rotational angle of the wedge prism holder. 

Dashed line corresponds to a trend line fit to the experimental data points shown with 

blue diamonds. 

 

4.3 Maskless IL Results 

Maskless IL experiments were performed to see the qualitative effect of OPD on 

the image fidelity. The ELS4600 laser has 0.7 pm laser bandwidth, therefore the temporal 

coherence length is about 87 mm. When OPD between the interfering beams become 

comparable to the coherence length, the ability of the constructively and destructively 

interfering is diminished.  

Figure 4.18 (a) shows the field center SEM images for different amounts of OPD 

values introduced between the two interfering beams. The image pitch was 300 nm and 

the SEM magnification was 32kX. Initially, there was a mismatch between the intensities 

of interfering orders, which effectively resulted in 25% DC. The intensity matching 
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between the orders was achieved by making small adjustments in the beam splitter and 

M3 rotations. The remaining effective DC value was around 2%.  

Figures 4.18 (b), (c), and (d) shows the field center of 2% DC die at a 

magnification of 6kX. The pattern fidelity is degraded due to the increased OPD. 

Assuming the pattern quality of (b) and (d) are acceptable, the max field size of the 

300 nm pitch IL pattern would be less than 10 mm. Further quantitative discussions 

cannot be pursued due to the dose instability of the ELS 4600. 

 

Figure 4.18: Effect of OPD on image quality as a function of DC. 
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5.  CONCLUSIONS 

Line edge roughness is seen as one of the most crucial challenges to be addressed 

in advanced technology nodes. In order to alleviate this problem, several options were 

explored in this work for the interference like lithography imaging conditions.  

The most straight forward option was to scale IL for large field integrated circuit 

(IC) applications and benefit from the inherent LER mitigation due to the high image 

contrast. However, there are challenges that would prohibit this approach. Two of the 

challenges were addressed in this work: (1) theoretical and practical field size limitations, 

and (2) magnification correction (pitch fine-tuning) ability. 

The effect of OPD on image fidelity was shown qualitatively with a maskless IL 

set up at 300 nm image pitch, where the OPD between the two interfering arms was 

changed systematically with a micrometer translation stage. The image fidelity degraded 

significantly for OPD values greater than 5 mm. Therefore, the large field for this 

particular case should be less than 10 mm. A practical limit on the field size was set by 

the image placement error (IPE) between the IL defined periodic grid and a subsequent 

trim exposure. The practical IL field sizes were calculated to be less than 9 mm, 

assuming 100µº uncorrectable (residual) interference angle error, for the DRAM half 

pitches down to 28 nm. 

The magnification correction capability for the reduction Talbot IL set up was 

achieved by inserting two fused silica wedges mounted on rotational stages between the 
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wafer plane and the first diffraction order collecting mirrors. Less than 0.5 nm pitch 

adjustment was successfully shown at around the minimum deviation angle of the prism.  

In addition, two other LER reduction approaches, which are also applicable to 

projection lithography under interference-like conditions, were explored through 

mitigating the mask absorber roughness contribution: (1) aerial image averaging via 

directional translation, and (2) pupil plane filtering.  

LER experiments by utilizing and IL set up showed daily variations and location 

dependent results. Therefore, scanner experiments were pursued for the mask roughness 

mitigation part of the research. Aerial image averaging via directional translation results 

showed that there wasn’t a significant amount of LER change between the nominal and 

image averaged dies. In order to yield more conclusive results, a 1D mask with 

programmed roughness of known frequency and amplitudes was needed (not available at 

the time). 

Pupil plane filtering technique served better for the purpose of mask roughness 

mitigation. A target phase filter was realized by ASML’s FlexWAVE wavefront 

manipulator to mitigate 200 nm roughness period programmed on 64 nm vertical 

line/space patterns through various roughness amplitudes. The experimental results 

showed the transfer of mask roughness at the target frequency was eliminated when the 

optimized phase filter was utilized. There was some amount of reduction for the transfer 

of 500 nm roughness period as well. The focus dependency of the mitigation can be 

overcome by performing transmission filtering instead of the phase filtering. 
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6. APPENDIX A 

Since it is one of the goals of this research to increase field size of IL exposure as 

large as possible, OPD should be characterized and its dependence on the system 

parameters needs to be understood. In order to calculate the OPD for the source point 

originating from point C (field edge) and interfering at focal plane, optical path lengths 

(OPL) of ±1 orders need to be found. 

The optical path length of (-1) order, OPLc(-1), can be calculated from two 

triangles: CE1R and SE1J, giving the following relationships, respectively 

|   |  
|  |
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So, optical path length of (-1) order can be given as the summation of above two 
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Similarly, the optical path length of (+1) order, OPLc(+1), can be calculated from 

two triangles, CG2P and OG2J, giving the following relationships, respectively 
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So, optical path length of (+1) order can be given as 
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Optical path length difference between ±1 orders is OPDC(±1)=OPLC(-1)- OPLC(+1), 

and equal to 

         |  |  [
 

    β  α 
 

 

    β  α 
]  

|  |

    β  α 
  

                   |  |  [
 

    β  α 
 

 

    β  α 
]  

|  |

    β  α 
 

                                           

 [|  |  |  |]  [
 

    β  α 
 

 

    β  α 
]                                   

By using the following relationships  
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Finally yielding  
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Following same approach, we can calculate the OPD as a function of source size 

|AC| for a point source A, which is on the opposite site but same distance away from the 

origin as 
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 It can be seen from equations (18) and (19) that optical path difference is 

increasing linearly as we move away from the field center, with same amount but 
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opposite signs on opposite sides of the beam center. The magnitude of the OPD can be 

derived in terms of the exposure field size as follows 

          |   |  |  |  
       

        
 [

 

      
 

 

         
]

 |  |                                                                                                   

where OPDCoefficient is a lumped parameter that has angular dependencies. It 

should be also noted that the mirror tilt has a stronger effect on OPDCoefficient than the 

grating angle. 
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7. APPENDIX B 

%% Uncomment below to calculate convolved images.       

%% Last Edit:11/8/12 by Burak Baylav 
clear all; 
close all; 
clc; 
% Option 1: If want to filter out the noise in the initial image 
  Q=imread('Amphibian full mod_Cont_25pLess.bmp'); % Load image 
  T=double(rgb2gray(Q));  
  wndwSize = 1;  
  h = ones(1,wndwSize)/wndwSize;    % Moving average window  
  R0 = filter(h,1,T); 
 

% Enter the pixel size in nm as “scale” term below 
scale=0.5; %pixel size  
 

% The displacement functions are given below 
% g1-Gaussian (~Triangular) type displacement 
% g2-Sinusoidal type displacement 
% g3-Uniform type displacement 
% The size of the displacements (length of g's) is scale*lenght(g) (nm) 
% Option 1: If want to have a short smearing, invoke below g's 
% Option 2: If want to have a medium size smearing, invoke below g's 
g1= [(1:131)';(130:-1:1)']; 
g2= [(14:-2:2)'; ones(247,1); (2:2:14)']; 
g3= ones(261,1); 
disp('amount of P-P displacement (in nm) applied is:'); 

disp(length(g1)*scale); 
 

% In order to make the original SEM same size with the convolved images 
% need to remove some of its elements. Hence, R is the static image. 
R=R0; R(1:(length(g1)+1)/2,:)=[]; R((end-(length(g1)+1)/2+1):end,:)=[]; 
figure(1); imagesc(R); % initial image 
 

% Converting grayscale images to binary image (B/W) 
% Assume a threshold brightness that is middle way between darkest and 
% brightest pixel of the static image (50% Waveform Threshold) 
THR=((max(max(R))+(min(min(R)))))/2; 
H_R =R(:,:)>=THR; 
k=1; 
y_R=zeros(size(H_R,1),1); 
for i=1:1:size(H_R,1); 
    for j=1:1:size(H_R,2); 
        if H_R(i,j)==1; 
            y_R(k)=j; 
            break; 
        end 
    end 
     k=k+1; 
end 
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unconv=detrend(y_R); %remove mean and trend in pixels 
% Image rotation is performed here, if the SEM picture is tilted 
tilt=(y_R-mean(y_R))-unconv; 
tilt_angle=atan((max(tilt)-min(tilt))/size(tilt,1)); 
w=ceil(max(tilt)-min(tilt)); 
s=imrotate(R,sign(tilt(1))*tilt_angle*180/pi,'crop'); 
s(1:(w+1),:)=[]; 
s((end-w+1):end,:)=[]; 
s(:,1:(w+1))=[]; 
s(:,(end-w+1):end)=[]; 
s(:,(end-w+1):end)=[]; 
figure(2); imagesc(s); % tilt removed image 

  
R=s; R(1:(length(g1)+1)/2,:)=[]; R((end-(length(g1)+1)/2+1):end,:)=[]; 

  
% Colvolving the original picture with some sample displacement 

functions 
% Also, some of the first and last elemnts are removed to discard 

transient 
P1=conv2(s,g1/sum(g1)); P1(1:length(g1),:)=[]; P1((end-

length(g1)+1):end,:)=[]; 
P2=conv2(s,g2/sum(g2)); P2(1:length(g2),:)=[]; P2((end-

length(g2)+1):end,:)=[]; 
P3=conv2(s,g3/sum(g3)); P3(1:length(g3),:)=[]; P3((end-

length(g3)+1):end,:)=[]; 

  
%converting grayscale images to binary image (B/W) 
% Assume a threshold brightness that is middle way between darkest and 
% brightest pixel of the static image (50% Waveform Threshold) 
THR=((max(max(R))+(min(min(R)))))/2; 
H_R =R(:,:)>=THR; 
H_P1=P1(:,:)>=THR; 
H_P2=P2(:,:)>=THR; 
H_P3=P3(:,:)>=THR; 

  
% Option 1: If want to see the effect of convolution for 3 different 

displacments 
figure(3); subplot(2,2,1); imshow(H_R); title('Static Image 

(Is)','Fonts',16);hold on; 
           subplot(2,2,2); imshow(H_P1);title('Gaussian Displ. 

Image','Fonts',16);  
           subplot(2,2,3); imshow(H_P2);title('Sinusoidal Displ. 

Image','Fonts',16); 
           subplot(2,2,4); imshow(H_P3);title('Uniform Displ. 

Image','Fonts',16); 
           hold off;  

            
% Option 2: If want to see the effect of convolution for uniform 

displacements 
% figure(3); subplot(1,2,1); imshow(H_R); title('Static Image 

(Is)','Fonts',16);hold on; 
%            subplot(1,2,2); imshow(H_P3);title('Uniform Displ. 

Image','Fonts',16); 
%            hold off; 

  
% Performing horizontal cutlines at center of each un/convolved image 
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cut_H_50_R=R(ceil(size(R,1)*0.50),ceil(size(R,2)*0.3):ceil(size(R,2)*0.

75)); 
cut_H_50_P1=P1(ceil(size(P1,1)*0.50),ceil(size(P1,2))*0.3:ceil(size(P1,

2))*0.75); 
cut_H_50_P2=P2(ceil(size(P2,1)*0.50),ceil(size(P2,2))*0.3:ceil(size(P2,

2))*0.75); 
cut_H_50_P3=P3(ceil(size(P3,1)*0.50),ceil(size(P3,2))*0.3:ceil(size(P3,

2))*0.75); 

  
% Calculating cut lines  
figure(4); plot(cut_H_50_R,'k','LineWidth',2); hold on; grid on;  
           plot(cut_H_50_P1,'r','LineWidth',2);  
           plot(cut_H_50_P2,'g','LineWidth',2);  
           plot(cut_H_50_P3,'b','LineWidth',2); hold off; grid off; 
           title('Cutline across the images','Fonts',16); 
           legend('Static Image (Is)', 'Gaussian Disp. 

Image','Sinusoidal Disp. Image','Uniform Disp. Image'); 
           set(legend,'FontSize',14); 
           xlabel('Pixel indices along horizontal 

direction','Fonts',16); ylabel('Pixel Brightness','Fonts',16);  
% Calculating the normalized variance (wrt static image) for Columns 
V_var_RN=var(R,1,1); 
V_var_R=V_var_RN/max(V_var_RN); 
V_var_P1=var(P1,1,1)/max(V_var_RN); 
V_var_P2=var(P2,1,1)/max(V_var_RN); 
V_var_P3=var(P3,1,1)/max(V_var_RN); 
%Plotting the normalized standard deviations (wrt R) for Columns 
figure (5); plot(sqrt(V_var_R),'k','LineWidth',2); hold on; grid on; 
            plot(sqrt(V_var_P1),'r','LineWidth',2); 
            plot(sqrt(V_var_P2),'g','LineWidth',2); 
            plot(sqrt(V_var_P3),'b','LineWidth',2); hold off; grid off; 
            title('Normalized pixel brightness std. dev. (wrt. 

Is)','Fonts',16) 
            legend('Static Image (Is)', 'Gaussian Disp.','Sinusoidal 

Disp.','Uniform Disp.'); 
            set(legend,'FontSize',14); 
            xlabel('Pixel indices along horizontal 

direction','Fonts',16);  
            ylabel('Standard Deviation (a.u.)','Fonts',16);  

  
figure(6);   subplot(2,2,1); hist(V_var_R); title('Static Image 

(Is)','Fonts',16); grid on;  
             xlabel('Standard Deviation Bins','Fonts',16); 

ylabel('Counts','Fonts',16); 
             subplot(2,2,2); hist(V_var_P1);title('Gaussian Disp. 

Image','Fonts',16); grid on; 
             xlabel('Standard Deviation Bins','Fonts',16); 

ylabel('Counts','Fonts',16); 
             subplot(2,2,3); hist(V_var_P2);title('Sinusoidal Disp. 

Image','Fonts',16); grid on; 
             xlabel('Standard Deviation Bins','Fonts',16); 

ylabel('Counts','Fonts',16); 
             subplot(2,2,4); hist(V_var_P3);title('Uniform Disp. 

Image','Fonts',16); grid on; 
             xlabel('Standard Deviation Bins','Fonts',16); 

ylabel('Counts','Fonts',16);  
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%% Uncomment Below to calculate the edge roughness.     Last 

Edit:5/1/12 
close all; 
k=1; 
y_R=zeros(size(H_R,1),1); 
for i=1:1:size(H_R,1); 
    for j=1:1:size(H_R,2); 
        if H_R(i,j)==1; 
            y_R(k)=j; 
            break; 
        end 
    end 
     k=k+1; 
end 
k=1; 
y_P1=zeros(size(H_P1,1),1); 
for i=1:1:size(H_P1,1); 
    for j=1:1:size(H_P1,2); 
        if H_P1(i,j)==1; 
            y_P1(k)=j; 
            break; 
        end 
    end 
     k=k+1; 
end 
k=1; 
y_P2=zeros(size(H_P2,1),1); 
for i=1:1:size(H_P2,1); 
    for j=1:1:size(H_P2,2); 
        if H_P2(i,j)==1; 
            y_P2(k)=j; 
            break; 
        end 
    end 
     k=k+1; 
end 
k=1; 
y_P3=zeros(size(H_P3,1),1); 
for i=1:1:size(H_P3,1); 
    for j=1:1:size(H_P3,2); 
        if H_P3(i,j)==1; 
            y_P3(k)=j; 
            break; 
        end 
    end 
     k=k+1; 
end 
% Converting pixels into nm via multiplication of scale; 
y_R=scale*y_R; 
y_P1=scale*y_P1; 
y_P2=scale*y_P2; 
y_P3=scale*y_P3; 

  
% Option 1:If remove the mean value and the trend (slope) from each of 

them: 
% for untilting purposes 
% unconv=detrend(y_R-mean(y_R));  
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% conv_1=detrend(y_P1-mean(y_P1)); 
% conv_2=detrend(y_P2-mean(y_P2)); 
% conv_3=detrend(y_P3-mean(y_P3)); 

  
% Option 2: If remove just the mean value from each of them: 
unconv=(y_R-mean(y_R));   %in nm 
conv_1=(y_P1-mean(y_P1)); %in nm 
conv_2=(y_P2-mean(y_P2)); %in nm 
conv_3=(y_P3-mean(y_P3)); %in nm 

  
% Image statistics in nm 
Three_sigma_y_R=3*std(unconv); 
Three_sigma_y_P1=3*std(conv_1); 
Three_sigma_y_P2=3*std(conv_2); 
Three_sigma_y_P3=3*std(conv_3); 
Three_sigma_all=[Three_sigma_y_R, Three_sigma_y_P1, Three_sigma_y_P2, 

Three_sigma_y_P3]; 
roughness_range_Y=max(unconv)+abs(min(unconv)); 
roughness_range_P1=max(conv_1)+abs(min(conv_1)); 
roughness_range_P2=max(conv_2)+abs(min(conv_2)); 
roughness_range_P3=max(conv_3)+abs(min(conv_3)); 
Roughness_all=[roughness_range_Y, 

roughness_range_P1,roughness_range_P2, roughness_range_P3]; 
All_statistics=[Three_sigma_all; Roughness_all]; 
figure(7); bar(All_statistics,'Grouped'); grid on;  
legend('Static Image','Gaussian Disp.','Sinusoidal Disp.','Uniform 

Disp.'); 
set(legend,'FontSize',14); 
title('3 Sigma LER (1) and Roughness Range (2)','fonts',18);  
ylabel('Value (nm)','fonts',18); 

  
% if want to use filtered (smoothened) data, uncomment below 
% wndwSize = 20;  
% h = ones(1,wndwSize)/wndwSize;      % equiv to a moving average 

window  
% unconv_smooth=filter(h, 1, unconv); 

unconv_smooth(1:wndwSize)=[];unconv_smooth(end-wndwSize+1:end)=[];  
% conv_1_smooth=filter(h, 1, conv_1); 

conv_1_smooth(1:wndwSize)=[];conv_1_smooth(end-wndwSize+1:end)=[]; 
% conv_2_smooth=filter(h, 1, conv_2); 

conv_2_smooth(1:wndwSize)=[];conv_2_smooth(end-wndwSize+1:end)=[]; 
% conv_3_smooth=filter(h, 1, conv_3); 

conv_3_smooth(1:wndwSize)=[];conv_3_smooth(end-wndwSize+1:end)=[]; 
% unconv=unconv_smooth; 
% conv_1=conv_1_smooth; 
% conv_2=conv_2_smooth; 
% conv_3=conv_3_smooth; 

  

  
figure(8); 
edge=(1:length(unconv))'*scale; 
subplot(2,2,1); plot(edge,unconv,'-k*','MarkerSize',3,'LineWidth',1); 

legend('Original LER')%hold on; plot(y_R_smooth,'-r','LineWidth',2); 

%camroll(-90); 
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xlim([0,max(edge)/2]); ylim([-

(max(abs(unconv)))*1.2,(max(abs(unconv)))*1.2]); grid on; title('Static 

Image LER','fonts',16); 
xlabel('Edge Distance (nm)','fonts',16); ylabel('Roughness 

(nm)','fonts',16); 
subplot(2,2,2); plot(edge,conv_1,'-r*','MarkerSize',3,'LineWidth',1); 

legend('Triangular VH LER')%hold on; plot(y_P1_smooth,'-

r','LineWidth',2);%camroll(-90); 
xlim([0,max(edge)/2]); ylim([-

(max(abs(unconv)))*1.2,(max(abs(unconv)))*1.2]); grid on; 

title('Gaussian Disp. LER','fonts',16); 
xlabel('Edge Distance (nm)','fonts',16); ylabel('Roughness 

(nm)','fonts',16); 
subplot(2,2,3); plot(edge,conv_2,'-m*','MarkerSize',3,'LineWidth',1); 

legend('Sinusoidal VH LER')%hold on; plot(y_P2_smooth,'-

r','LineWidth',2);%camroll(-90); 
xlim([0,max(edge)/2]); ylim([-

(max(abs(unconv)))*1.2,(max(abs(unconv)))*1.2]); grid on; 

title('Sinusoidal Disp. LER','fonts',16); 
xlabel('Edge Distance (nm)','fonts',16); ylabel('Roughness 

(nm)','fonts',16); 
subplot(2,2,4); plot(edge,conv_3,'-b*','MarkerSize',3,'LineWidth',1); 

legend('Uniform VH LER')%hold on; plot(y_P3_smooth,'-

r','LineWidth',2);%camroll(-90); 
xlim([0,max(edge)/2]); ylim([-

(max(abs(unconv)))*1.2,(max(abs(unconv)))*1.2]); grid on; 

title('Uniform Disp. LER','fonts',16); 
xlabel('Edge Distance (nm)','fonts',16); ylabel('Roughness 

(nm)','fonts',16); 

  
%Overlay plot of all roughnesses is given below  
figure(9); 
plot(edge,unconv,'-ko','MarkerSize',3,'LineWidth',2); hold on; 

plot(edge,conv_1,'-r*','MarkerSize',3,'LineWidth',2); 
hold on; plot(edge,conv_2,'-mx','MarkerSize',3,'LineWidth',2);hold on; 

plot(edge,conv_3,'-b+','MarkerSize',3,'LineWidth',2); 
xlim([0,max(edge)/2]); ylim([-

(max(abs(unconv)))*1.2,(max(abs(unconv)))*1.2]); grid on; hold 

on;plot(1:size(unconv,1),0,'LineWidth',4,'Color','r') 
title('Overlay of Different Disp. LERs','fonts',18); 
legend('Static Image LER','Gaussian Disp. LER','Sinusoidal Disp. 

LER','Uniform Disp. LER'); 
set(legend,'FontSize',14); 
xlabel('Edge Distance (nm)','fonts',18); ylabel('Roughness 

(nm)','fonts',18); 

  

  
%% Calculating PSD via Periodogram (preferred over Correlogram)  5/1/12 
% Estimate the PSD 
% 1) Trend should be removed from the data (mean=0) 
close all; 
NSAMP  = ceil(size(unconv,1)/4); % 2) Select segment length 
NSHIFT = ceil(size(unconv,1)/100); % 3) Select shift between segments 
% 4) Compute fft for each segment 
% 5) Compute PSD by averaging fft values of each segment 
S = zeros(1,NSAMP); %unconv 
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R = zeros(1,NSAMP); %conv_1 
U = zeros(1,NSAMP); %conv_2 
V = zeros(1,NSAMP); %conv_3 
% for the unconv case 
n1 = 1; n2 = n1 + NSAMP-1; k = 0; 
while n2 <= size(unconv,1); 
k = k+1; 
S(k,:) = abs(fft(unconv(n1:n2))).^2; 
R(k,:) = abs(fft(conv_1(n1:n2))).^2; 
U(k,:) = abs(fft(conv_2(n1:n2))).^2; 
V(k,:) = abs(fft(conv_3(n1:n2))).^2; 
n1 = n1+NSHIFT; 
n2 = n1+NSAMP-1; 
end 
S = S/NSAMP; 
Savg = mean(S,1); %unconv 
R = R/NSAMP; 
Ravg = mean(R,1); %conv_1 
U = U/NSAMP; 
Uavg = mean(U,1); %conv_2 
V = V/NSAMP; 
Vavg = mean(V,1); %conv_3 

  
f = 2*(0:NSAMP-1)/NSAMP/scale; %per nm 
nf = floor(NSAMP/2); 
figure(10); 
loglog(f(1:nf),Savg(1:nf),'k','LineWidth',2);  
hold on; loglog(f(1:nf),Ravg(1:nf),'r','LineWidth',2); 
hold on; loglog(f(1:nf),Uavg(1:nf),'m','LineWidth',2); 
hold on; loglog(f(1:nf),Vavg(1:nf),'b','LineWidth',2); 
grid on; 
title('LER PSD','fonts',18) 
xlabel('Frequency','fonts',18) 
ylabel('Power (a.u.)','fonts',18) 
legend('Static Image LER','Gaussian Disp. LER','Sinusoidal Disp. 

LER','Uniform Disp. LER'); 
set(legend,'FontSize',14); 
% axis([0.01 1 0.001 1000]); 
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8. APPENDIX C 

function burak_Zernike_FINAL_w_CostFunct(desiredPUPIL)  

%Last edit: 04/24/2013 by Burak Baylav 
% clc; 
% close all; 
% clear all; 
resol=1/((size(desiredPUPIL,1)-1)/2); 
[X,Y] = meshgrid(-1:(resol):1,-1:(resol):1); 
costfilter=double(abs(X)<=1&abs(Y)<=1); % for no cost function 
%costfilter=double(abs(X)>=0.28 & abs(X)<=0.76 & abs(Y)<=1); % cost 

filter for 500nm period 
[a,r] = cart2pol(X,Y); 
% filter=double(r<=1); 
filter=costfilter.*double(r<=1);% maybe I can use these filters for 

assigning weight on cost function across pupil locations 

  
% % Select Zernike's to be fitted here: 
% S4=1;   S5=1;   S6=1;   S7=1;   S8=1;   S9=1;   S10=1;  S11=1; 
% S12=1;  S13=1;  S14=1;  S15=1;  S16=1;  S17=1;  S18=1;  S19=1; 
% S20=1;  S21=1;  S22=1;  S23=1;  S24=1;  S25=1;  S26=1;  S27=1; 
% S28=1;  S29=1;  S30=1;  S31=1;  S32=1;  S33=1;  S34=1;  S35=1; 
% S36=1;  S37=1;  S38=1;  S39=1;  S40=1;  S41=1;  S42=1;  S43=1;   
% S44=1;  S45=1;  S46=1;  S47=0;  S48=0;  S49=1;  S50=1;  S51=1;   
% S52=1;  S53=1;  S54=1;  S55=1;  S56=1;  S57=1;  S58=1;  S59=1;   
% S60=1;  S61=1;  S62=1;  S63=1;  S64=1; 
% %%%%%%%%%%%%%%% 

  
% Select Zernike's to be fitted here: 
S4=1;   S5=1;   S6=1;   S7=1;   S8=1;   S9=1;   S10=1;  S11=1; 
S12=1;  S13=1;  S14=1;  S15=1;  S16=1;  S17=1;  S18=1;  S19=1; 
S20=1;  S21=1;  S22=1;  S23=1;  S24=1;  S25=1;  S26=1;  S27=1; 
S28=1;  S29=1;  S30=1;  S31=1;  S32=1;  S33=1;  S34=1;  S35=1; 
S36=1;  S37=1;  S38=0;  S39=0;  S40=0;  S41=0;  S42=0;  S43=0;   
S44=0;  S45=0;  S46=0;  S47=0;  S48=0;  S49=0;  S50=0;  S51=0;   
S52=0;  S53=0;  S54=0;  S55=0;  S56=0;  S57=0;  S58=0;  S59=0;   
S60=0;  S61=0;  S62=0;  S63=0;  S64=0; 
%%%%%%%%%%%%%%% 

  

  
% Define Zernikes below,  
Z4=2*(r.^2)-1;  a4=0; 
Z5=(r.^2).*cos(2*a);    a5=0; 
Z6=(r.^2).*sin(2*a);    a6=0; 
Z7=(3*(r.^3)-2*r).*cos(a);  a7=0; 
Z8=(3*(r.^3)-2*r).*sin(a);  a8=0; 
Z9=(6*(r.^4)-6*(r.^2))+1; a9=0; 
Z10=(r.^3).*cos(3*a);   a10=0; 
Z11=(r.^3).*sin(3*a);   a11=0; 
Z12=(4*(r.^4)-3*(r.^2)).*cos(2*a);  a12=0; 
Z13=(4*(r.^4)-3*(r.^2)).*sin(2*a);  a13=0; 
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Z14=(10*(r.^5)-12*(r.^3)+3*r).*cos(a);  a14=0; 
Z15=(10*(r.^5)-12*(r.^3)+3*r).*sin(a);  a15=0; 
Z16=20*(r.^6)-30*(r.^4)+12*r.^2-1;  a16=0; 
Z17=(r.^4).*cos(4*a);   a17=0; 
Z18=(r.^4).*sin(4*a);   a18=0; 
Z19=(5*(r.^5)-4*(r.^3)).*cos(3*a);  a19=0; 
Z20=(5*(r.^5)-4*(r.^3)).*sin(3*a);  a20=0; 
Z21=(15*(r.^6)-20*(r.^4)+6*(r.^2)).*cos(2*a);   a21=0; 
Z22=(15*(r.^6)-20*(r.^4)+6*(r.^2)).*sin(2*a);   a22=0; 
Z23=(35*(r.^7)-60*(r.^5)+30*(r.^3)-4*r).*cos(a);    a23=0; 
Z24=(35*(r.^7)-60*(r.^5)+30*(r.^3)-4*r).*sin(a);    a24=0; 
Z25=70*r.^8-140*r.^6+90*r.^4-20*r.^2+1; a25=0; 
Z26=r.^5.*cos(5*a); a26=0; 
Z27=r.^5.*sin(5*a); a27=0; 
Z28=(6*(r.^6)-5*(r.^4)).*cos(4*a);  a28=0; 
Z29=(6*(r.^6)-5*(r.^4)).*sin(4*a);  a29=0; 
Z30=(21*(r.^7)-30*(r.^5)+10*(r.^3)).*cos(3*a);  a30=0; 
Z31=(21*(r.^7)-30*(r.^5)+10*(r.^3)).*sin(3*a);  a31=0; 
Z32=(56*(r.^8)-105*(r.^6)+60*(r.^4)-10*(r.^2)).*cos(2*a);   a32=0; 
Z33=(56*(r.^8)-105*(r.^6)+60*(r.^4)-10*(r.^2)).*sin(2*a);   a33=0; 
Z34=(126*(r.^9)-280*(r.^7)+210*(r.^5)-60*(r.^3)+5*r).*cos(a);   a34=0; 
Z35=(126*(r.^9)-280*(r.^7)+210*(r.^5)-60*(r.^3)+5*r).*sin(a);   a35=0; 
Z36=252*(r.^10)-630*(r.^8)+560*(r.^6)-210*(r.^4)+30*(r.^2)-1;   a36=0; 
Z37=(r.^6).*cos(6*a);   a37=0; 
Z38=(r.^6).*sin(6*a);   a38=0; 
Z39=(r.^5).*(-6+7*(r.^2)).*cos(5*a);   a39=0; 
Z40=(r.^5).*(-6+7*(r.^2)).*sin(5*a);   a40=0; 
Z41=(r.^4).*(15-42*(r.^2)+28*(r.^4)).*cos(4*a);   a41=0; 
Z42=(r.^4).*(15-42*(r.^2)+28*(r.^4)).*sin(4*a);   a42=0; 
Z43=(r.^3).*(-20+105*(r.^2)-168*(r.^4)+84*(r.^6)).*cos(3*a);   a43=0; 
Z44=(r.^3).*(-20+105*(r.^2)-168*(r.^4)+84*(r.^6)).*sin(3*a);   a44=0; 
Z45=(r.^2).*(15-140*(r.^2)+420*(r.^4)-504*(r.^6)+210*(r.^8)).*cos(2*a);   

a45=0; 
Z46=(r.^2).*(15-140*(r.^2)+420*(r.^4)-504*(r.^6)+210*(r.^8)).*sin(2*a);   

a46=0; 
Z47=r.*(-6+105*(r.^2)-560*(r.^4)+126*(r.^6)-

1260*(r.^8)+462*(r.^10)).*cos(a);   a47=0; 
Z48=r.*(-6+105*(r.^2)-560*(r.^4)+126*(r.^6)-

1260*(r.^8)+462*(r.^10)).*sin(a);   a48=0; 
Z49=1-42*(r.^2)+420*(r.^4)-1680*(r.^6)+3150*(r.^8)-

2772*(r.^10)+924*(r.^12);   a49=0;  
Z50=(r.^7).*cos(7*a);   a50=0; 
Z51=(r.^7).*sin(7*a);   a51=0; 
Z52=(r.^6).*(-7+8*(r.^2)).*cos(6*a);   a52=0; 
Z53=(r.^6).*(-7+8*(r.^2)).*sin(6*a);   a53=0; 
Z54=(r.^5).*(21-56*(r.^2)+36*(r.^4)).*cos(5*a);   a54=0; 
Z55=(r.^5).*(21-56*(r.^2)+36*(r.^4)).*sin(5*a);   a55=0; 
Z56=(r.^4).*(-35+168*(r.^2)-252*(r.^4)+120*(r.^6)).*cos(4*a);   a56=0; 
Z57=(r.^4).*(-35+168*(r.^2)-252*(r.^4)+120*(r.^6)).*sin(4*a);   a57=0; 
Z58=(r.^3).*(35-280*(r.^2)+756*(r.^4)-840*(r.^6)+330*(r.^8)).*cos(3*a);   

a58=0; 
Z59=(r.^3).*(35-280*(r.^2)+756*(r.^4)-840*(r.^6)+330*(r.^8)).*sin(3*a);   

a59=0; 
Z60=(r.^2).*(-21+280*(r.^3)-1260*(r.^4)+2520*(r.^6)-

2310*(r.^8)+792*(r.^10)).*cos(2*a);   a60=0; 
Z61=(r.^2).*(-21+280*(r.^3)-1260*(r.^4)+2520*(r.^6)-

2310*(r.^8)+792*(r.^10)).*sin(2*a);   a61=0; 
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Z62=r.*(7-168*(r.^2)+1260*(r.^4)-4200*(r.^6)+6930*(r.^8)-

5544*(r.^10)+1716*(r.^12)).*cos(a);   a62=0; 
Z63=r.*(7-168*(r.^2)+1260*(r.^4)-4200*(r.^6)+6930*(r.^8)-

5544*(r.^10)+1716*(r.^12)).*sin(a);   a63=0; 
Z64=-1+56*(r.^2)-756*(r.^4)+4200*(r.^6)-11550*(r.^8)+16632*(r.^10)-

12012*(r.^12)+3432*(r.^14);   a64=0; 

  
simPUPIL=zeros(size(X,2),size(Y,1)); 
lowlim=-0.1; highlim=0.1; res=0.01;  kk=(lowlim:res:highlim); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if S4==1; % optimization for Z4 is wanted, otherwise a4=0; 
k=1; Error=zeros(1,length(kk)); 
for a4=(lowlim:res:highlim); 
    simPUPIL=a4*Z4+a5*Z5+a6*Z6+a7*Z7+a8*Z8+a9*Z9+a10*Z10 ... 
    

+a11*Z11+a12*Z12+a13*Z13+a14*Z14+a15*Z15+a16*Z16+a17*Z17+a18*Z18+a19*Z1

9+a20*Z20 ... 
    

+a21*Z21+a22*Z22+a23*Z23+a24*Z24+a25*Z25+a26*Z26+a27*Z27+a28*Z28+a29*Z2

9+a30*Z30 ... 
    

+a31*Z31+a32*Z32+a33*Z33+a34*Z34+a35*Z35+a36*Z36+a37*Z37+a38*Z38+a39*Z3

9+a40*Z40 ... 
    

+a41*Z41+a42*Z42+a43*Z43+a44*Z44+a45*Z45+a46*Z46+a47*Z47+a48*Z48+a49*Z4

9+a50*Z50 ... 
    

+a51*Z51+a52*Z52+a53*Z53+a54*Z54+a55*Z55+a56*Z56+a57*Z57+a58*Z58+a59*Z5

9+a60*Z60 ... 
    +a61*Z61+a62*Z62+a63*Z63+a64*Z64; 
    diffPUPIL=filter.*(simPUPIL)-filter.*(desiredPUPIL); 
    Error(k)=sqrt(mean(diffPUPIL(:).^2)); 
    k=k+1; 
end 
[~,I]=min(Error); 
a4=lowlim+(I-1)*res; % optimum a4 is found 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Section Z start %%%%% 
if S5==1; 
k=1; Error=zeros(1,length(kk)); 
for a5=(lowlim:res:highlim); 
    simPUPIL=a4*Z4+a5*Z5+a6*Z6+a7*Z7+a8*Z8+a9*Z9+a10*Z10 ... 
    

+a11*Z11+a12*Z12+a13*Z13+a14*Z14+a15*Z15+a16*Z16+a17*Z17+a18*Z18+a19*Z1

9+a20*Z20 ... 
    

+a21*Z21+a22*Z22+a23*Z23+a24*Z24+a25*Z25+a26*Z26+a27*Z27+a28*Z28+a29*Z2

9+a30*Z30 ... 
    

+a31*Z31+a32*Z32+a33*Z33+a34*Z34+a35*Z35+a36*Z36+a37*Z37+a38*Z38+a39*Z3

9+a40*Z40 ... 
    

+a41*Z41+a42*Z42+a43*Z43+a44*Z44+a45*Z45+a46*Z46+a47*Z47+a48*Z48+a49*Z4

9+a50*Z50 ... 
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+a51*Z51+a52*Z52+a53*Z53+a54*Z54+a55*Z55+a56*Z56+a57*Z57+a58*Z58+a59*Z5

9+a60*Z60 ... 
    +a61*Z61+a62*Z62+a63*Z63+a64*Z64; 
    diffPUPIL=filter.*(simPUPIL)-filter.*(desiredPUPIL); 
    Error(k)=sqrt(mean(diffPUPIL(:).^2)); 
    k=k+1; 
end 
[~,I]=min(Error); 
a5=lowlim+(I-1)*res; % optimum a5 found 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Section Z end %%%%% 

 

Section Z repeated for Zernikes Z6 through Z63 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if S64==1; 
k=1; Error=zeros(1,length(kk)); 
for a64=(lowlim:res:highlim); 
    simPUPIL=a4*Z4+a5*Z5+a6*Z6+a7*Z7+a8*Z8+a9*Z9+a10*Z10 ... 
    

+a11*Z11+a12*Z12+a13*Z13+a14*Z14+a15*Z15+a16*Z16+a17*Z17+a18*Z18+a19*Z1

9+a20*Z20 ... 
    

+a21*Z21+a22*Z22+a23*Z23+a24*Z24+a25*Z25+a26*Z26+a27*Z27+a28*Z28+a29*Z2

9+a30*Z30 ... 
    

+a31*Z31+a32*Z32+a33*Z33+a34*Z34+a35*Z35+a36*Z36+a37*Z37+a38*Z38+a39*Z3

9+a40*Z40 ... 
    

+a41*Z41+a42*Z42+a43*Z43+a44*Z44+a45*Z45+a46*Z46+a47*Z47+a48*Z48+a49*Z4

9+a50*Z50 ... 
    

+a51*Z51+a52*Z52+a53*Z53+a54*Z54+a55*Z55+a56*Z56+a57*Z57+a58*Z58+a59*Z5

9+a60*Z60 ... 
    +a61*Z61+a62*Z62+a63*Z63+a64*Z64; 
    diffPUPIL=filter.*(simPUPIL)-filter.*(desiredPUPIL); 
    Error(k)=sqrt(mean(diffPUPIL(:).^2)); 
    k=k+1; 
end 
[ss,I]=min(Error); 
a64=lowlim+(I-1)*res; % optimum a64 found 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
        fprintf('Coefficient of Z4 is %6.3f \n', a4) 
        fprintf('Coefficient of Z5 is %6.3f \n', a5) 
        fprintf('Coefficient of Z6 is %6.3f \n', a6) 
        fprintf('Coefficient of Z7 is %6.3f \n', a7) 
        fprintf('Coefficient of Z8 is %6.3f \n', a8) 
        fprintf('Coefficient of Z9 is %6.3f \n', a9) 
        fprintf('Coefficient of Z10 is %6.3f \n', a10) 
        fprintf('Coefficient of Z11 is %6.3f \n', a11) 
        fprintf('Coefficient of Z12 is %6.3f \n', a12) 
        fprintf('Coefficient of Z13 is %6.3f \n', a13) 
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        fprintf('Coefficient of Z14 is %6.3f \n', a14) 
        fprintf('Coefficient of Z15 is %6.3f \n', a15) 
        fprintf('Coefficient of Z16 is %6.3f \n', a16) 
        fprintf('Coefficient of Z17 is %6.3f \n', a17) 
        fprintf('Coefficient of Z18 is %6.3f \n', a18) 
        fprintf('Coefficient of Z19 is %6.3f \n', a19) 
        fprintf('Coefficient of Z20 is %6.3f \n', a20) 
        fprintf('Coefficient of Z21 is %6.3f \n', a21) 
        fprintf('Coefficient of Z22 is %6.3f \n', a22) 
        fprintf('Coefficient of Z23 is %6.3f \n', a23) 
        fprintf('Coefficient of Z24 is %6.3f \n', a24) 
        fprintf('Coefficient of Z25 is %6.3f \n', a25) 
        fprintf('Coefficient of Z26 is %6.3f \n', a26) 
        fprintf('Coefficient of Z27 is %6.3f \n', a27) 
        fprintf('Coefficient of Z28 is %6.3f \n', a28) 
        fprintf('Coefficient of Z29 is %6.3f \n', a29) 
        fprintf('Coefficient of Z30 is %6.3f \n', a30) 
        fprintf('Coefficient of Z31 is %6.3f \n', a31) 
        fprintf('Coefficient of Z32 is %6.3f \n', a32) 
        fprintf('Coefficient of Z33 is %6.3f \n', a33) 
        fprintf('Coefficient of Z34 is %6.3f \n', a34) 
        fprintf('Coefficient of Z35 is %6.3f \n', a35) 
        fprintf('Coefficient of Z36 is %6.3f \n', a36) 
        fprintf('Coefficient of Z37 is %6.3f \n', a37) 
        fprintf('Coefficient of Z38 is %6.3f \n', a38) 
        fprintf('Coefficient of Z39 is %6.3f \n', a39) 
        fprintf('Coefficient of Z40 is %6.3f \n', a40) 
        fprintf('Coefficient of Z41 is %6.3f \n', a41) 
        fprintf('Coefficient of Z42 is %6.3f \n', a42) 
        fprintf('Coefficient of Z43 is %6.3f \n', a43) 
        fprintf('Coefficient of Z44 is %6.3f \n', a44) 
        fprintf('Coefficient of Z45 is %6.3f \n', a45) 
        fprintf('Coefficient of Z46 is %6.3f \n', a46) 
        fprintf('Coefficient of Z47 is %6.3f \n', a47) 
        fprintf('Coefficient of Z48 is %6.3f \n', a48) 
        fprintf('Coefficient of Z49 is %6.3f \n', a49) 
        fprintf('Coefficient of Z50 is %6.3f \n', a50) 
        fprintf('Coefficient of Z51 is %6.3f \n', a51) 
        fprintf('Coefficient of Z52 is %6.3f \n', a52) 
        fprintf('Coefficient of Z53 is %6.3f \n', a53) 
        fprintf('Coefficient of Z54 is %6.3f \n', a54) 
        fprintf('Coefficient of Z55 is %6.3f \n', a55) 
        fprintf('Coefficient of Z56 is %6.3f \n', a56) 
        fprintf('Coefficient of Z57 is %6.3f \n', a57) 
        fprintf('Coefficient of Z58 is %6.3f \n', a58) 
        fprintf('Coefficient of Z59 is %6.3f \n', a59) 
        fprintf('Coefficient of Z60 is %6.3f \n', a60) 
        fprintf('Coefficient of Z61 is %6.3f \n', a61) 
        fprintf('Coefficient of Z62 is %6.3f \n', a62) 
        fprintf('Coefficient of Z63 is %6.3f \n', a63) 
        fprintf('Coefficient of Z64 is %6.3f \n', a64) 

        
            simPUPIL=a4*Z4+a5*Z5+a6*Z6+a7*Z7+a8*Z8+a9*Z9+a10*Z10 ... 
    

+a11*Z11+a12*Z12+a13*Z13+a14*Z14+a15*Z15+a16*Z16+a17*Z17+a18*Z18+a19*Z1

9+a20*Z20 ... 
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+a21*Z21+a22*Z22+a23*Z23+a24*Z24+a25*Z25+a26*Z26+a27*Z27+a28*Z28+a29*Z2

9+a30*Z30 ... 
    

+a31*Z31+a32*Z32+a33*Z33+a34*Z34+a35*Z35+a36*Z36+a37*Z37+a38*Z38+a39*Z3

9+a40*Z40 ... 
    

+a41*Z41+a42*Z42+a43*Z43+a44*Z44+a45*Z45+a46*Z46+a47*Z47+a48*Z48+a49*Z4

9+a50*Z50 ... 
    

+a51*Z51+a52*Z52+a53*Z53+a54*Z54+a55*Z55+a56*Z56+a57*Z57+a58*Z58+a59*Z5

9+a60*Z60 ... 
    +a61*Z61+a62*Z62+a63*Z63+a64*Z64; 
  filter=double(r<=1); 
                finalPUPIL=(filter.*simPUPIL); 
                diffPUPIL=filter.*(desiredPUPIL)-filter.*(simPUPIL); 
RMSsimPUPIL=std(finalPUPIL(:)) 
RMSdesiredPUPIL=std(desiredPUPIL(:)) 
RMSerror=std(diffPUPIL(:)) 
figure; 
      subplot(1,2,1); surf(X,Y,(filter.*desiredPUPIL)); 
      subplot(1,2,2); surf(X,Y,finalPUPIL); 
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