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Abstract

Optical signals have two basic components that are power and phase, which

can be demonstrated in both time and frequency domains. The common di-

agonistics which are available in the market only measure power component

in time or frequency domain. However in certain areas phase measurements

are also required. The phase retreival techniques are used to calculate phase

measurements from different methods. There are a number of applications

where phase measurements are required like astronomy, wavefront sensing

technique (James Webb space telescope), x-ray crystallography, fiber optic

telecommunications etc. Various phase retreival algorithms have been used

in retrieving phase measurements in temporal and frequency domains.

Gerchberg Saxton Algorithm technique is an iterative phase retrieval tech-

nique which has been used in phase retrieval methods. This iterative process

involves iterative Fourier transformation back and forth between the object

and Fourier domains with applications of the measured data or known con-

straints in each domain.
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We worked on developing an iterative phase retrieval technique keeping

Gerchberg Saxton Algorithm as the basis of it and were able to successfully

demonstrate phase retrieval in both temporal and spectral forms for a) Gaus-

sian pulses having a wide range of initial educated guess phase; b) Chirped

Gaussian pulses having various amounts of chirp; c) Chirped Super Gaussian

pulses having various amounts of chirp. A metrics system was defined on

which phase retrieval technique’s success was based showing minimization

of power, phase and instantaneous frequency metrics. During the study we

found that chirped super Gaussian pulses of order 4 converge better than

the chirped Gaussian pulses and also explored a way to choose a good edu-

cational phase without knowledge of the actual phase. Thus, this research

provided a new foundation for further research on phase retrieval techniques

of Gaussian and chirped Gaussian pulses.
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Chapter 1

Introduction

Whenever certain measurements are made in certain instances, phase infor-

mation of the optical field is lost. This phase problem is observed in a number

of different areas and it is desired to calculate the phase of the light signal

as it also contains some necessary information. Phase retrieval is a process

of retrieving the phase of optical signal through certain algorithmic compu-

tational functions, but without directly measuring the phase.

Various algorithms have been applied over the years for phase retrieval.

Phase retrieval methods make use of an educated guess. The algorithm is

carried out several times until the phase converges. This model system is

then compared with the actual optical system having known data patterns,

from which the missing parameters of the optical system can be determined

correctly. It can be further used to calibrate actual optical systems [5].
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Some of the common areas where phase retrieval methods are employed

are discussed below.

1.1 X-Ray Crystallography

In x-ray crystallography, the crystals are exposed to a beam of x-rays. Inter-

ference is measured and as a result of which unique diffraction patterns are

observed. These diffraction patterns are unique for each crystal. In measure-

ments of these diffracted rays, only intensity measurements are made and

phase measurements, which can be used to specify the atomic positions in

a crystal, are lost in the experiment. Computing phase from these intensity

measurements is desirable and various algorithms have been developed over

the years to calculate phase through phase retrieval techniques [7].

1.2 Wavefront Sensing and Phase Retrieval

Wavefront can be described as a combination of points that have same prop-

erties for instance a combination of points having same phase. Wavefront

sensors are developed in order to measure the wavefront irregularities that

are found in an optical system which can relate to the quality of that optical

system [5].

Wavefront sensing techniques along with phase retrieval algorithms were

employed in the Hubble telescope initially to work on the wavefront aber-
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rations found in the telescope. Blurred images which were collected by the

Hubble telescope were corrected by the help of wavefront sensing techniques

using phase retrieval methods [5].

The same technology is also being planned by NASA to be used in the

James Webb Space Telescope (JWST to be launched in 2018). JWST con-

sists of a large mirror, i.e. 6.6 meters in diameter, which cant be sent in

space fully open. Therefore it will be folded and opened in outer space.

There are 18 hexagonal segments of the mirror which will unfold accurately

to their positions in the outer space. This would be accomplished by using an

image-based wave front sensing technique employing various phase retrieval

algorithms [5].

1.3 Transmission Electron Microscopy

Transmission Electron microscopy is a technique which is commonly used in

biological sciences and in physics. It is used to examine extremely fine de-

tail of a subject in question. It uses a beam of electrons that is transmitted

through the sample; the beam of electrons interacts as it passes through the

sample and as a result an image is formed. This image is then magnified

and is then focused onto any imaging device. Some information of the image

magnified is lost in between which can be reconstructed using various phase

retrieval methods. In most cases discussed above, phase retrieval work has

been done in space and with spatial frequency [3].
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1.4 Fiber Optic Telecommunications

A time dependent phase corresponds to a variation in instantaneous temporal

frequency, known as chirp and expressed as

ωi =
dθ

dt

where ωi is the instantaneous temporal angular frequency and θ is the

temporal phase. Chirp is often a problem because it leads to wide pulse

spreading via chromatic dispersion. So chirp characteristics are important.

Furthermore, the most advanced fiber-optic telecom systems use phase

modulation to encode data. For instance, Quadrature Phase Shift Keying

(QPSK) is used to achieve 100 Gb/s in the most advanced commercial sys-

tems. So it is important to have phase information.

However, the two most common diagnostics are the optical spectrum

analyzers (OSAs) and photodiode-oscilloscope used in telecommunications.

Neither common diagnostic measures the temporal phase of the optical sig-

nal. Because these diagnostics are common, we seek to use them as the basis

of phase retrieval.
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1.5 Phase Retrieval Technique

A number of different areas are discussed in the background section providing

an insight to applications of phase retrieval in certain areas. Phase retrieval

techniques have also been applied in astronomy.

In a number of these areas for instance in electron microscopy, wave front

sensing, astronomy, crystallography, and in other fields most of the cases

only intensity measurements are made however as discussed above one wants

to recover phase. One of the approaches which has been quiet successful is

to use the Gerchberg-Saxton algorithm, which is an iterative phase retrieval

technique [3].

The iterative algorithm involves iterative Fourier transformation back and

forth between the object and Fourier domains and application of the mea-

sured data or known constraints in each domain [3]. The iterative technique

of Gerchberg-Saxton, sometimes known as error-reduction algorithm, has

been used in a number of phase retrieval areas discussed in References [8],

[10] and [9].

1.6 Overview of Thesis

An iterative phase retrieval technique is established in the MATLAB envi-

ronment using Gerchberg-Saxton technique as the basis of it. The phase

20



retrieval technique established uses temporal and spectral power measure-

ments to retrieve the phase. Gaussian pulses are chosen to be tested on

the phase retrieval technique because of their unique behavior under going

Fourier transform. A brief overview of thesis documentation is given below.

In chapter 2 a Gaussian pulse is analytically Fourier transformed and

the unique behavior of Gaussian pulses is shown. A Gaussian pulse when

undergoes a Fourier transform, it gives another Gaussian pulse. Time and

frequency vectors are also defined for temporal and spectral forms. In chapter

3 a phase retrieval technique is established using the Gerchberg-Saxton iter-

ative approach as its basis. In chapter 4 metrics are defined which measure

the progress of the phase retrieval technique.

In later chapters a number of new areas are researched upon. In chapter

5, a binary segmentation vector technique is applied on the phase retrieval

technique to have a better phase convergence. The improved phase retrieval

technique is tested with a wide range of educated temporal phase guesses in

chapter 6 and it is shown that the phase retrieval technique works in all cases.

In the last two chapters, chapter 7 and 8, chirped pulses are studied.

The phase retrieval technique is applied on chirped Gaussian and chirped

super Gaussian pulses and some conclusions are made showing that phase

retrieval technique works for chirped Gaussian and super Gaussian pulses in

a particular range of educated temporal phase guesses.
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Chapter 2

Fourier Transform and

Gaussian Pulse

2.1 Fourier Transform

The Fourier Transform has been named after Joseph Fourier. The Fourier

Transform is a mathematical transform that has found extensive applications

in fields of physics and engineering.

The Fourier transform is a study that is driven by the study of Fourier

series. In Fourier series we observe how any periodic function can be written

as a sum of simple sinusoids. The same concept is applied and drawn-out for

the Fourier Transform, which is applied on non-periodic functions.

The Fourier Transform is a mathematical transform function which in
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common terms transforms a mathematical function having arguments in

time (a time-domain function) to a function having arguments in frequency

(a frequency-domain function). This new function now created after being

transformed from a time-domain function is known as the Fourier Transform

of the original time-domain function. There are a number of conventions

according to which a Fourier Transform is defined. The Following is one way

of defining Fourier transform.

Consider a time-domain function f(t) (which can be a complex or a real-

valued function) then its Fourier Transform F (s) is given as

F{f(t)}(s) = F (s) =

∞∫
−∞

f(t)e−i2πstdt. (2.1)

Where the variable t is defined as time (with units in seconds) and the trans-

form variable s is the frequency (with units in Hertz). This is also commonly

known as Forward Fourier Transform. In most cases F (s) is a complex valued

function and this complex value provides information for both the amplitude

and the phase of the resultant frequency components.

We can also perform an inverse Fourier Transform to get the actual func-

tion f(t) from its Fourier Transform F (s).

The inverse Fourier Transform is given as

F−1{F (s)}(t) = f(t) =

∞∫
−∞

F (s)ei2πstds. (2.2)
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In both equations i =
√
−1. The functions f(t) and its Fourier Transform

F (s) are known as Fourier Transform Pairs as both can be obtained by the

Fourier Transform and Inverse Fourier Transform. The Following notation

is generally used to show that both of these functions are Fourier Transform

Pairs.

f(t)⇔ F (s)

2.2 Analytic Fourier Transform of a Simple

Gaussian Pulse

A Gaussian Pulse is of the form

f(x) = ae

−(x− b)2

2c2 . (2.3)

where a, b, c are real constants. The Gaussian pulse provides a characteristic

graph which is in the form of a symmetric bell curve. In this symmetric bell

curve a provides the height of this curve, b gives the position of the center of

the peak and c provides the information about the width of the bell curve. A

symmetric bell curve of the the Gaussian pulse is shown in Figure 2.1. To un-

derstand the behavior of a Fourier Transform on a Gaussian pulse, a Fourier

Transform would be applied on the following simple form of a Gaussian pulse.

A simple Gaussian function in time t is expressed as

f(t) = e−πt
2

24



Figure 2.1: Gaussian Function Characteristic Symmetric Bell Curve

Applying Fourier Transform F according to (2.1) on the simple Gaussian

function f(t) yields

F{f(t)}(s) = F (s) =

∞∫
−∞

f(t)e−i2πsdt (2.4)

F (s) =

∞∫
−∞

e−πt
2

e−i2πsdt. (2.5)
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Differentiating both sides of (2.5) with
d

ds
yields

d

ds
{F (s)} =

∞∫
−∞

e−πt
2 d

ds
(e−i2πs)dt

F ′(s) =

∞∫
−∞

e−πt
2 − i2πte−i2πsdt.

Reshuffling the equation to set up the equation to apply integration by parts

formula yields

F ′(s) = i

∞∫
−∞

e−i2πs − 2πte−πt
2

dt. (2.6)

As we know that integration by parts formula is given as∫
udv = uv −

∫
vdu. (2.7)

Lets compare (2.6) and (2.7).

Therefore if we have

dv = −2πte−πt
2

dt

then

v = e−πt
2

.

Similarly if we have

u = e−i2πst

then

du = −2πise−2πistdt
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. Now using above made deductions in (2.6) we have

F ′(s) = i

∞∫
−∞

udv

which according to (2.7) can be written as

F ′(s) = i

(e−πt
2

e−2πst)∞−∞ −
∞∫

−∞

e−πt
2 − 2πise−2πistdt

 . (2.8)

As the limits are evaluated from −∞ to∞ the uv form goes to zero. So the

equation becomes

F ′(s) = i

− ∞∫
−∞

e−πt
2 − 2πise−2πistdt

 (2.9)

F ′(s) = i

−i ∞∫
−∞

e−πt
2 − 2πse−2πistdt

 (2.10)

F ′(s) = −2πs

∞∫
−∞

e−πt
2

e−2πistdt. (2.11)

Now using (2.5) we can write (2.11) can be written as

F ′(s) = −2πsF (s). (2.12)

Now this equation gives us a first order differential equation for F (S) and the

solution for such first order differential equation for F (s) is given as follows

F ′(s) = F (0)e−πs
2

(2.13)
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where we have

F (0) =

∞∫
−∞

e−πt
2

e−2πi0tdt (2.14)

F (0) =

∞∫
−∞

e−πt
2

dt. (2.15)

As according to Eulers Identity we know that

∞∫
−∞

e−πt
2

dt = 1

therefore

F (0) = 1. (2.16)

Putting value of F (0) in (2.13) we have

F (s) = e−πs
2

. (2.17)

Therefore (2.17) shows that Fourier Transform of a Gaussian pulse is another

Gaussian pulse.

F{f(t)}(s) = F (s) = e−πs
2

. (2.18)

2.3 FFT of a Simple Gaussian Pulse

In the last section it was shown analytically that Fourier Transform of a

simple Gaussian pulse (time domain) results in a Gaussian pulse in the fre-

quency/spectral domain. The same characteristic of a Gaussian pulse was

applied in the MATLAB environment to check if the MATLAB results are
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the same as the analytic results of Fourier transform of a Gaussian Pulse.

Similarly for MATLAB environment the following simple Gaussian pulse

is taken in the time domain

f(t) = e−πt
2

where the time vector is taken from −5 seconds to +5 seconds which results

in a temporal form of Gaussian pulse.

Figure 2.2: Gaussian Pulse temporal Form

A Gaussian curve with a Gaussian amplitude at 1 and center time at

zero. FFT is applied on this Gaussian curve according to the equation
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(2.4) in MATLAB environment which results in a Gaussian pulse in fre-

quency/spectral domain as expected as per the analytic results of Fourier

Transform of a Gaussian pulse by equation (2.18).

The Gaussian curve in spectral domain resulting from a Fourier Transform

has maximum amplitude at 0 Hertz frequency with a normal Gaussian pulse.

Figure 2.3 shows both spectral domains, one calculated from the analytic

calculation done in last section and other one through FFT.

Figure 2.3: Gaussian Pulse temporal Form
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2.4 Analytic Fourier Transform of a Complex

Gaussian Pulse

In previous sections, a simple Gaussian pulse was taken with its mean at

zero. However in this section, a relatively complex Gaussian pulse form is

taken which takes into effect its variance and mean factor into consideration

as well and a Fourier Transform is applied on it.

Consider following Gaussian pulse

f(t) =
1

σ
√

2π
e

−(t− µ)2

2σ2 (2.19)

where parameter µ is the mean of the Gaussian pulse, the parameter σ2 con-

trols the width of the Gaussian characteristic bell curve and is therefore the

variance and σ becomes the standard deviation.

As discussed in previous sections, the Fourier transform is defined in dif-

ferent forms. Previously a simple Gaussian function f(t) in time domain was

transformed into another Gaussian function in frequency domain F (s). In

this section the Fourier Transform given in angular frequency ω would be

applied on a Gaussian distribution function defined above in equation (2.19).
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The Fourier Transform pairs in angular frequency form are given as

F{f(t)}(ω) = F (ω) =

∞∫
−∞

f(t)e−iωtdt (2.20)

F−1{F (ω)}(t) = f(t) =
1

2π

∞∫
−∞

F (ω)eiωtdt. (2.21)

Now consider the Gaussian pulse defined above in (2.19) with mean at

zero given as

f(t) =
1

σ
√

2π
e

−(t)2

2σ2 (2.22)

where we also assume that Gaussian pulse is normalized i.e.
∞∫
−∞

f(t)dt = 1.

Now Differentiating both sides with respect to t yields

d

dt
(f(t)) =

d

dt

 1

σ
√

2π
e

−(t)2

2σ2

 (2.23)

f ′(t) =
1

σ
√

2π

d

dt

e−(t)2

2σ2

 (2.24)

f ′(t) =
1

σ
√

2π

−2t

2σ2
e

−(t)2

2σ2 (2.25)

f ′(t) =
−t
σ2

1

σ
√

2π
e

−(t)2

2σ2 . (2.26)

From equation (2.22) we have

f ′(t) =
−t
σ2
f(t). (2.27)

Taking the Fourier Transform on both sides of the (2.27) yields

F{f ′(t)}(ω) = F
[
−t
σ2
f(t)

]
(ω). (2.28)
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Now from the functional relationships of the Fourier Transform we have

F
[
dnf(x)

dxn

]
(ω) = (iω)F (ω) (2.29)

F{xnf(x)}(ω) = in
d

dω
{F (ω)}. (2.30)

And now using these identities in equation (2.28) we have

(iω)F (ω) =
−i
σ2

d

dω
{F (ω)} (2.31)

F ′(ω)

F (ω)
= −ωσ2. (2.32)

Now integrating both sides of the (2.32) we have

ω∫
0

F ′(ω′)

F (ω′)
dω′ =

ω∫
0

−ω′σ2dω′. (2.33)

As we know that ∫
f ′(x)

f(x)
dx = ln[f(x)] + c.

Therefore substituting in equation (2.33) we have

ln[(F (ω′)]ω0 = σ2

ω∫
0

−ω′dω′ (2.34)

ln[(F (ω)]− ln[(F (0)] = −σ2

[
ω′2

2

]ω
0

(2.35)

ln[(F (ω)]− ln[(F (0)] = −σ
2ω2

2
. (2.36)

As it is assumed that Gaussian pulse is normalized therefor F (0) = 0 thus

(2.36) can be re-written as

ln[(F (ω)] = −σ
2ω2

2
. (2.37)
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Now the equation can be written as follows if we apply exponential at

both sides

eln[f(ω)] = e
−
σ2ω2

2 (2.38)

F (ω) = e
−
σ2ω2

2 . (2.39)

Equation (2.39) shows that Fourier Transform (angular frequency form ω) of

a complex Gaussian pulse is another Gaussian pulse as well.

Now we can re-write equation (2.21) as

F{ 1

σ
√

2π
e

−(t)2

2σ2 }(ω) = F (ω) = e
−
σ2ω2

2 . (2.40)

This shows that Fourier Transform of a Gaussian pulse is another Gaus-

sian pulse. The same would be now shown in MATLAB environment that

FFT of a Gaussian pulse is another Gaussian pulse.

2.5 FFT of a Complex Gaussian Pulse

In the last section a complex form of Gaussian was taken and it was shown

analytically that Fourier Transform of a Gaussian pulse is another Gaussian.

The same characteristic would be shown in MATLAB environment and

analytic results would be checked in MATLAB.
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Consider the following Complex Form of Gaussian pulse from (2.19)

f(t) =
1

σ
√

2π
e

−(t− µ)2

2σ2 . (2.41)

Figure 2.4: Complex Gaussian Pulse - temporal Form

For simplification purposes lets assume µ is taken zero where as σ = 1.

The time vector taken for Gaussian Pulse is −20s to 20s having N = 214

number of points.

The Gaussian pulse generated in figure in temporal form shows that its

mean is at zero as assumed in the equation with its variance being σ.
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Figure 2.5: Complex Gaussian Pulse - spectral Form

FFT is applied on this complex Gaussian pulse and as it was shown in

last section that another Gaussian pulse in spectral form is generated. Figure

2.5 shows that analytic results are proven in MATLAB environment as well

that Fourier Transform of a Gaussian pulse is another Gaussian pulse.
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2.6 Inverse Fourier Transform (iFFT) back

into temporal Form of a Gaussian Pulse

In Section 1.1 it was defined in the Fourier Transform characteristics that the

Fourier Transform of a function and inverse Fourier Transform are Fourier

Transform pairs. As per equation (2.1) and (2.2) we have

F{f(t)}(s) = F (s) =

∞∫
−∞

f(t)e−i2πsdt (2.42)

F−1{F (s)}(t) = f(t) =

∞∫
−∞

F (s)ei2πtds (2.43)

f(t) ⇔ F (s). (2.44)

For showing this relation, please consider from equation (2.22) complex

form of a Gaussian Pulse with mean µ = 0 and σ = 1 given as

f(t) =
1

σ
√

2π
e

−(t)2

2σ2 .

As shown in Section 1.5 that the FFT of a Gaussian pulse in temporal do-

main is another Gaussian pulse in the spectral domain.

Now applying the inverse Fourier Transform (iFFT) on a spectral domain

brings back the Gaussian Pulse in the temporal Domain. As shown in Fig-

ure (2.6) the original Gaussian pulse in temporal domain is generated again

after applying the iFFT on the spectral domain Gaussian pulse. Therefore it
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Figure 2.6: Inverse Fourier Transform

is shown that the Fourier Transform and the Inverse Fourier Transform are

Fourier Transform pairs.

Moreover a scaling quantity is multiplied to FFT and iFFT to keep the

scaling of the function in check. That is why both the initial Gaussian pulse

and iFFT generated Gaussian pulse in temporal domain are both exactly the

same.
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2.7 Shift Theorem on Gaussian pulse

The FFT and iFFT have been shown to correspond to each other for a mean

value of the Gaussian pulse to be set at zero that is µ = 0 and σ = 1.

Figure 2.7: Shift Theorem Application

Consider equation (2.19) we have

f(t) =
1

σ
√

2π
e

−(t− µ)2

2σ2

now different values were considered µ and σ to check the shift theorem

on Gaussian pulse and to confirm that our FFT and iFFT application on

Gaussian pulse is correctly applied.
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A number of different examples were applied on the code taken µ = 2,−2

and σ = 2, 0.5 which shows that even the mean of the Gaussian pulse is

changed from zero to some other value, the iFFT works fine along with the

scaling factors.

Figure 2.8: Fourier Transform Pairs

Similarly changing σ values it is clearly seen how the width of the char-

acteristic bell curve changes along with the height of the curve changing

proportionally as well. These changes are seen as per equation (2.19) where

σ effects both a, which provides the height of this curve and c which provides

the information about the width of the bell curve. Moreover the time vector
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and frequency vector are kept same in all the examples i.e. time vector is

−20s to 20s having N = 214 number of points.

2.8 Time and Frequency Vector for FFT and

iFFT

The time vector and frequency vector for the FFT and iFFT are an impor-

tant part of Fourier Transform application in MATLAB. The time vector

and frequency vector are defined as such that give enough sampling points in

both temporal form and spectral form to generate a characteristic bell curve

for a Gaussian pulse.

The time vector for temporal domain chosen for FFT has tmin = −20

and tmax = 20. The time vector is set up

time = linspace(tmin, tmax,N)

where N = 214 Moreover a scaling factor dt is also calculated where dt =

2× tmax
N − 1

. The scaling factor dt is multiplied to the FFT for scaling purposes.

The Frequency vector chosen for spectral form is defined as

Freq = linspace(−fmax, fmax,N + 1)

where fmax =
1

2× dt
, and to have N number of points frequency vector is

again set as

Freq = Freq(1 : end− 1).
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For scaling purposes, a quantity df is created calculated as df =
2× fmax

N
and df is multiplied to iFFT term for scaling purposes.

In many cases of FFT and iFFT, multiplying by a scale quantity is not

necessary where only pulse shape is required however scaling the FFT and

iFFT provides an accurate result. The scaling of FFT and iFFT is evident in

Figure (2.8) which shows the iFFT maps back the temporal form calculated

from the iFFT to the initial pulse shape.
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Chapter 3

Phase retrieval technique by

Using power Measurements

3.1 Phase retrieval technique

The proposed Phase retrieval technique is to establish a technique which

produces temporal phase and spectral phase using only measurements of

temporal power and spectral power.

It is assumed that actual temporal power measurements and spectral

power measurements of an optical signal are known however there is no in-

formation of the temporal and spectral phase measurements. A schematic

illustration of phase retrieval technique is shown in Figure 3.1
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Figure 3.1: Phase Retrieval Technique

The initial temporal form of an optical signal is

E(t) =
√
Pm(t)eiθg(t)

where the high speed optical carrier frequency is neglected here.

The proposed technique starts with a temporal power measurement Pm(t)

of an optical signal E(t) and an educated guess of temporal phase θg(t). Start-

ing with this optical signal, a Fourier transform produces the spectral form of

an optical signal E(ω) having a calculated power Pc(ω) and calculated phase

θc(ω). The calculated power Pc(ω) is replaced by a measured power Pm(ω)

and then an inverse Fourier Transform produces a temporal form the optical

signal E(t) having a calculated power Pc(t) and calculated phase θc(t). The

calculated temporal power Pc(t) is then replaced by the same measured tem-

poral power Pm(t) used initially, and the entire process is repeated.
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The calculated phases θc(t) and θc(ω) are updated each iteration while

the powers are substituted for their measured value as shown in Figure 3.1.

A number of iterations are to be performed until the phase or power values

converge.

3.2 Establishment of Phase Retrieval Tech-

nique

The phase phase retrieval technique is established in MATLAB environment.

Gaussian pulses are selected for the study of the phase retrieval technique

because of their unique behavior under the Fourier Transform and inverse

Fourier Transform.

3.2.1 Establishment of Actual Temporal and Spectral

Optical Signals

An optical signal consists of two parts, its optical power and its optical phase.

The form of the optical signal being used in the phase retrieval technique is

given as

E(t) =
√
P (t)eiθ(t) (3.1)

where P (t) is the optical signal power and eiθ(t) is the optical signal phase.

The phase retrieval technique is applied on a Gaussian pulse. An optical

signal in temporal form E(t) is created. The Initial temporal power measured
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Figure 3.2: Measured temporal Optical Signal

Pm(t) is a Gaussian pulse of the form

Pm(t) =
1

σ
√

2π
e

−(t− µ)2

2σ2

where its mean value µ is taken as zero and σ = 1. The actual measured

temporal phase of this optical signal is also a Gaussian pulse of the form

θc(t) = e−πt
2

This gives the temporal Optical signal to be

E(t) =
1

σ
√

2π
e

−(t− µ)2

2σ2 × eie−πt
2

. (3.2)
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Figure 3.2 shows how both measured temporal power and measured tem-

poral phase offset is chosen to be Gaussian pulses.

Figure 3.3: Actual Spectral Optical Signal

The measured temporal optical signal is then used to find the spectral

form of the optical signal by applying the FFT on the Measured temporal

Optical signal.

E(ω) = F{E(t)}(ω). (3.3)

This gives the actual spectral Form of the optical signal, from which the

actual spectral power Pc(ω) and actual spectral phase θm(ω) are calculated.

Figure 3.3 shows the actual spectral Form of the optical signal. Moreover

the actual spectral phase offset is multiplied with a binary segmentation vec-
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tor created by a low threshold value of the measured spectral power. This

shreds off the unwanted information created by computer noise and leaves of

the measured spectral phase offset which would be further explained in later

chapters.

Time and frequency vectors for temporal and spectral domains respec-

tively are created as discussed in the previous chapter. FFT and iFFT ap-

plied in the establishment of the phase retrieval technique are also scaled by

appropriate parameters as already discussed in the last chapter.

3.2.2 Establishment of Retrieval Algorithm having Mul-

tiple Iterations

The creation of measured temporal and spectral optical signals provides the

measured power spectrum of temporal Pm(t) and spectral Pm(ω) forms which

would be used in the retrieval algorithm as discussed in Section 4.1.

Now a guess temporal optical signal is created using the measured tem-

poral power Pm(t) and an educated guess of the temporal phase offset θg(t).

This educated phase offset is an educated guess of the form of a Gaussian

pulse different from the one used in the measured temporal phase offset.

The educated phase temporal optical signal is transformed into spectral

form by FFT using the scaling factor as discussed earlier. spectral optical
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signal now consists of a calculated spectral power Pc(ω) and calculated spec-

tral phase θc(ω). The calculated spectral power is replaced by the measured

spectral power Pc(ω) as calculated in Section 3.2.1 and then an iFFT is ap-

plied on it to get a calculated temporal optical signal Ec(t) which consists of

calculated temporal power Pc(t) and calculated temporal phase θc(t). The

calculated temporal power is replaced by the measured temporal power Pm(t)

created in Section 3.2.1 and then FFT is applied on it to take it back into

the calculated spectral form.

The same process is repeated again to a certain number of iterations.

As we have created the measured optical signals therefore we can check the

calculated temporal phase values against the measured temporal phase values

and see if the retrieval algorithm actually converges the phase to its actual

known phase value.
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3.2.3 Calculated Temporal Optical Signal

Figure 3.4: temporal power Calculated and Measured

After a certain number of iterations (for instance 500) calculated tempo-

ral powers are plotted against measured temporal power. Figure 3.4 shows

all temporal power forms in one plot. The figure clearly shows that how the

temporal power is same for actual temporal power and calculated temporal

power.

Similarly calculated temporal phase is plotted against educated temporal

phase and actual measured temporal phase which is shown in Figure 3.5. The

plotted graphs show how there is constant phase offset between the actual
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measured phase and calculated temporal phase. It also shows that after a

certain number of iterations, how the educated temporal phase (shown in

green color in Figure 3.5 has mapped the actual temporal phase however it

follows the pulse shape but there is a constant offset in between the actual

temporal phase and calculated temporal phase.

Figure 3.5: Measured, Calculated and Educated Temporal Phase

3.2.4 Calculated Spectral Optical Signal

At the end of iterations, the calculated spectral power is also plotted with

actual spectral power. It can be seen from Figure 3.6 that calculated spectral

power just like the calculated temporal power spectrum maps to its measured
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spectral form completely.

Figure 3.6: Spectral Power Calculated and Measured

The spectral calculated phase is also plotted against educated spectral

phase offset and actual measured spectral phase. The green color educated

phase shows how a different educated guess is made and blue calculated spec-

tral phase follows the actual spectral phase however there is a constant phase

offset between calculated spectral phase form and actual spectral phase.
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Figure 3.7: Measured, Calculated and Educated Spectral Phase

3.3 Observations and Issues in Phase Retrieval

Technique

A detailed overview of the phase retrieval technique is given in the previous

section. However as we can see from the graphs plotted in the last sections

that calculated phase values of temporal and spectral form have certain is-

sues. There were a number of other smaller issues faced in creation of such

a technique however two important ones are discussed below.
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3.3.1 Constant Phase Offset

As it is seen in Figure 3.7 and Figure 3.5 there is a constant phase offset

between calculated temporal and spectral phase against their actual phase

forms. Similarly in temporal phase plotted graphs, there are a wings which

are created as we move farther from the mean value at each side.

The number of iterations was changed multiple times, giving different

number of iterations each time however it is found that their is a constant

phase offset between calculated temporal phase and actual temporal phase.

Similar constant phase offset is also observed in each case in spectral calcu-

lated phase and actual spectral phase.

3.3.2 Noise in Calculated Phase Forms

It is also further observed that there is some unwanted noise in the calculated

phase forms. In the temporal calculated phase there are creations of wings

which are seen as we move away from the mean of the Gaussian curve. These

wings are always there no matter how many iterations are run for retrieval

technique and each time gives rise to a different set of wings. These wings

can also be seen in Figure 3.5.

Similarly in spectral calculated phase, there are unwanted noise which

creates a difficulty in mapping out the required spectral phase values. As
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Figure 3.8: Unwanted Noise in Spectral Phase

shown in the Figure 3.8 the unwanted noise values are creating difficulty to

even map out required spectral phase values. This unwanted noise values are

in the frequency values where spectral power is zero therefore we also know

that these noise values are of no use to us.

3.4 Final Phase Retrieval Technique

The final phase retrieval technique developed can successfully map out the

actual measured phase, both in temporal and spectral form, after a certain

number of iterations (depending upon the educated guess phase).
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Figure 3.9: Final Phase Retrieval Technique - Temporal Optical Signal

Figure 3.9 shows how the issues faced in constant phase offset is com-

pletely cleared. The calculated temporal power successfully maps the actual

temporal measured phase. Moreover there are no wings at the edges of

the calculated temporal phase as well. The techniques applied behind these

remedies would be discussed in later chapters.
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Figure 3.10: Final Phase Retrieval Technique - Spectral Optical Signal

It can be seen how the spectral phase calculated maps successfully the

actual measured spectral phase and also there are no unwanted noise which

makes it easier to map out the required spectral phase values.
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Chapter 4

Phase Retrieval Technique

Metrics

The phase retrieval technique using spectral and temporal power measure-

ments has been discussed in detail in last chapter. There were various prob-

lems which were faced during the development of the phase retrieval tech-

nique, some of which were discussed briefly in last chapter, however we were

able to overcome those issues and come up with a phase retrieval technique

which successfully maps out the actual phase. However, we believe, that dur-

ing the phase retrieval algorithm there should be a mechanism which tells us

the algorithms progress after each iteration (i.e. FFT into spectral form and

iFFT back into temporal form) and in a way informs us that whether we are

moving in the right direction or not.

An important part of the phase retrieval technique is to make an educated
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guess about the required phase, and then applying the phase retrieval tech-

nique on the educated form of the optical signal. In order for us to observe

that whether our educated guess of the temporal phase was appropriately

chosen or not, we need to find a mechanism that informs us of our progress

in mapping out the actual temporal and spectral phase. That mechanism

will inform us that if we are getting closer to our main objective of retrieving

out the actual temporal and spectral phase information or if we are getting

even further away of our actual phase values.

This need for us to observe the progress of our phase retrieval algorithm

after each iteration lead us to use some algorithm progress metrics using cal-

culated power and phase measurements of spectral and temporal form. Each

metric defined in our algorithm will be explained below.

Metrics plotted below will be for the phase retrieval technique defined in

Section 3.4 where temporal power and phase measurements are shown in Fig-

ure 3.9 and spectral phase and power measurements are shown in Figure 3.10.

4.1 Power Metrics

We investigated different power metrics using both spectral power and tem-

poral power forms.
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4.1.1 Temporal Power Metric

Figure 4.1: Temporal Power Metric Mtpow1

The temporal power metric is given by the following formula [8]

Mtpow1(n) =

√∑
(Pc(t)− Pm(t))2∑

Pm(t)
. (4.1)

where Pc(t) is temporal power calculated vector after nth iteration and Pm(t)

is actual temporal power vector and n is nth number of iteration. At each

iteration this value is calculated.

This power metric is just taking a sum of the squared difference of the

calculated temporal power vector Pc(t) and measured temporal power vector
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Pm(t) and dividing it by the sum of actual measured temporal power vector.

Taking a square of the difference of calculated temporal power and measured

temporal power gets rid of the negative sign.

This temporal power metric is calculated after each iteration and it is

plotted against the number of iterations showing a progress of phase retrieval

algorithm in calculated temporal power. If the temporal power metric is

getting closer to zero that suggests that the educated guess is rightly chosen

and calculated temporal power is mapping the actual actual temporal power

in the start. The same is shown in Figure 4.1 where temporal power metric

Mtpow1 is continuously decreasing till 200 iterations after which the change

is negligible. This also shows that 200 iterations are probably enough for

phase retrieval algorithm to map out the actual phase in temporal or spectral

form.

4.1.2 Spectral Power Metric

The spectral power metric mspow1 is given as

Mspow1(n) =

√∑
(Pc(ω)− Pm(ω))2∑

Pm(ω)
. (4.2)

where we have Pc(ω) as spectral power calculated vector for nth iteration,

Pm(ω) as spectral power measured vector. Similarly n defines the nth itera-

tion.

The power metric for spectral power also finds a difference between the
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Figure 4.2: Power Metrics Mtpow1 and Mspow1

calculated spectral power vector of each iteration and actual measured spec-

tral power. The difference is squared to get rid of any negative signs in the

process. The sum of differences is then divided by the sum of actual spectral

power vector.

The spectral power metric is plotted for each iterations and shows the

progress of phase retrieval technique in spectral power form. As we can see

from Figure 4.2 that the spectral power metric is decreasing showing posi-

tive progress towards mapping out the actual spectral power, which in return

would likely mean that the calculated spectral phase would be similarly map-
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ping actual spectral phase.The total number of iterations are kept at 500 just

to show that a certain number of iterations are enough for mapping out the

phase as we can see in Figure 4.2 that 200 iterations are probably enough for

convergence of temporal and spectral power.

4.2 Phase Metrics

To check progress of calculated phase of optical signal, phase metrics are also

developed.

4.2.1 Temporal Phase Metric

There are two temporal phase metrics developed for the phase retrieval tech-

nique.

Temporal Phase Metric by Max Function The first temporal phase

metric is defined as

Mtpha1(n) = max{|(θc(t)× Pmbs(t))− ((θm(t)× Pmbs(t))|} (4.3)

where θc(t) is the temporal phase calculated vector for nth iteration, θm(t) is

the actual temporal phase, Pmbs(t) is the binary segmentation logical vector

created from a low threshold value of the actual temporal power Pm(t). Bi-

nary segmentation vectors would be defined in detail in next chapters. The

absolute value of the difference is taken to get rid of negative values.
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Figure 4.3: Temporal Phase Metric by Max Function Mtpha1

By using a MATLAB function max on the difference of calculated and

actual measured phase, it gives out a maximum value for nth iteration from

the vector created from the differences formula shown in equation (4.3). Thus

the maximum temporal phase value offset is plotted against total number of

iterations in Figure 4.3.

The figure clearly shows how the maximum difference between calculated

temporal phase θc(t) and actual measured temporal phase θm(t) is decreasing

and each iteration is actually bringing the calculated temporal phase closer

to the actual measured temporal phase value. After a certain number of
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iterations the difference becomes closer to zero.

Figure 4.4: Temporal Phase Metrics Mtpha1 and Mtpha2

Temporal Phase Metric by Summation of differences Formula

The second temporal phase metric Mtpha2 uses a summations of differences

formula which is given by

Mtpha2(n) =

√∑
([θc(t)× Pmbs(t)]− [θm(t)× Pmbs(t)])2∑

(θm(t)× Pmbs(t))
. (4.4)

where θc(t) is the temporal phase calculated vector for nth iteration, θm(t)

is the actual temporal phase, Pmbs(t) is the binary segmentation logical vec-

tor created from a low threshold value of the actual temporal power Pm(t).
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This temporal phase metric is created in the same way as the power

metrics. This temporal phase metric doesn’t point out any one point in the

calculated phase but makes a vector of the differences of the actual temporal

phase θm(t) and calculated temporal phase θc(t). The plotted Figure 4.4

clearly shows how the difference values is decreasing with increase in the

number of iterations and each iteration is making the calculated temporal

phase more closer to the actual temporal measured phase value. This metric

shows more detail than the temporal phase metric created with just the

max function as it takes into effect minute changes in the whole calculated

temporal phase. The binary segmentation vector helps in shredding off the

unwanted noise in the calculated temporal phase.

4.2.2 Spectral Phase Metric

There are two spectral phase metrics created.

Spectral Phase Metric by Max Function The spectral phase dif-

ference metric is given by

Mspha1(n) = max{|(θc(ω)× Pmbs(ω))− ((θm(ω)× Pmbs(ω))|}. (4.5)

where θc(ω) is the spectral phase calculated vector for nth iteration, θm(ω)

is the actual spectral phase, Pmbs(ω) is the binary segmentation logical vec-

tor created from a low threshold value of the actual spectral power vector

Pm(ω). The binary segmentation vector is used to shred off the unwanted

noise in phase vector.
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Figure 4.5: Spectral Phase Metric by Max Function Mspha1

Similarly in this spectral metric the max function of MATLAB gives out

a single maximum value between the calculated spectral phase θc(ω) and ac-

tual spectral phase θm(ω). The plotted Figure 4.5 shows how the difference

becomes smaller with each iteration and after a certain number of iterations

the difference is negligible.
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Figure 4.6: Spectral Phase Metrics

Spectral Phase Metric by Summation of Differences The spec-

tral phase metric by Summation of Differences is given by

Mspha2(n) =

√∑
([θc(ω)× Pmbs(ω)]− [θm(ω)× Pmbs(ω)])2√∑

((θm(ω)× Pmbs(ω))2)
. (4.6)

where θc(ω) is the spectral phase calculated vector for nth iteration, θm(ω)

is the actual spectral phase, Pmbs(ω) is the binary segmentation logical vector

created from a low threshold value of the actual spectral power vector Pm(ω).

The spectral phase value offset created shows the summation of differences

of all the points in the spectral phase showing how spectral phase calculated

θc(ω) is different from the spectral phase actual θm(ω). The metric is then
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plotted against each iteration showing clearly if there is an increase in the

difference or decrease in the difference. If we observe Figure 4.6 we can see

that how the spectral phase offset is decreasing continuously however it also

shows a dip at 150 iteration after which it settles down closer to the actual

spectral phase.

The Figure 4.6 shows how if there are some unique issues in our algorithm,

any unusual dips or spikes, we can observe them by using these metrics. By

using metrics in each temporal and spectral form and following spectral and

temporal power and phase values progress in each iteration we are able to

observe minute changes in our algorithm.

4.3 Instantaneous Frequency Metric

In addition to the metrics defined, an instantaneous frequency metric was also

defined based on the definitions of instantaneous temporal angular frequency.

Instantaneous angular frequency ωi is defined as

ωi =
dθ(t)

dt

where θ(t) is the temporal phase. Based on this formula of instantaneous

angular frequency the following metric has been defined.

Mif(n) = max|
[
dθm(t)

dt
− dθc(t)

dt

]
|. (4.7)
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Figure 4.7: Instantaneous Temporal Angular Frequency offse Mif

where θm(t) is measured actual temporal phase and θc(t) is calculated tem-

poral phase for nth iteration. Therefore it is a difference of the instanta-

neous angular frequency of calculated temporal phase and measured tempo-

ral phase. Max function of MATLAB is applied on the differences of the

these two which is plotted against the number of iterations.

As it is shown in Figure 4.7 that the value of instantaneous frequency

offset is continuously decreasing with number of iterations showing that our

algorithm is working fine for the phase retrieval case.
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In many cases of phase retrieval processes, the pulse shape is required

and hence such a metric defined accordingly with the change in phase value

with change in time. Alongside this metric, we have also plotted instanta-

neous angular frequency of calculated temporal phase and measured actual

temporal phase and is shown in Figure 4.8.

Figure 4.8: Instantaneous Temporal Angular Frequency (nth iteration)

Figure 4.8 is showing instantaneous angular frequency
dθ(t)

dt
of tempo-

ral measured and calculated phase values over each other showing how the

change in phase with time is the same for both calculated and measured

forms of temporal phase for nth iteration. Any iteration can be chosen in

the algorithm and can be plotted for as required and Figure 4.8 is the plot
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for n = 500.

4.4 Metrics Summary

A number of different metrics were developed using phase and power values

at different stages of the phase retrieval algorithm. All these metrics can be

used in various techniques. Bu developing metrics which follow algorithms

progress in both spectral form and temporal form has allowed us to use dif-

ferent metrics for different techniques. For instance, in some examples the

change in the temporal phase or spectral phase might not be enough to de-

duce any satisfactory results however the same change in temporal power

metric might be observed in unusual spikes. One such example was using

chirp phases signals in the algorithm which would be discussed in later chap-

ters.

Therefore all of these metrics are developed keeping in mind that different

metric can be used in different circumstances.
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Chapter 5

Constant Phase Offset in Phase

Retrieval Technique

It was discussed briefly in Chapter 3 that the phase retrieval technique al-

ways gave a constant phase offset in its final calculated temporal and spectral

phase. As shown in Figure 5.1 and 5.2 both the spectral and temporal calcu-

lated phase are having an offset from the actual spectral and temporal phase

respectively. This issue was observed constantly even if we keep on running

the iterations.

In addition to the constant offset, there is an unwanted noise for both

spectral and temporal phase as we move away from the mean value of µ = 0.

As we can also observe from Figure 5.1 and Figure 5.2 that in both cases of

temporal and spectral phase, the unwanted noise functions which are present

are in the areas where temporal power and spectral power are zero.
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Figure 5.1: Temporal Phase with noise and Constant Offset

Considering Figure 5.1 both plots have same x− axis values of time t(s)

showing that there is zero power (both Pm(t) and Pc(t)) before approximately

−2sec and after +2sec. If we consider the lower graph of temporal phase in

Figure 5.1 it can be seen the wings/unwanted noise starts where the value of

temporal power is zero.

Similarly if we consider Figure 5.2 we can see that values of the frequency

vector where spectral power (both Pm(ω) and Pc(ω)) are zero there are cer-

tain unwanted noise.
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Figure 5.2: Spectral Phase with noise and Constant Offset

The constant phase offset and noise values were both worked upon and

cleared through a technique of using a binary segmentation vector. The

techniques used will be explained in detail below.

5.1 Binary Segmentation Vector

The binary segmentation vector is a vector created by setting a low threshold

value of another vector. To work through the unwanted noise and constant

phase offset issues in the phase retrieval technique, binary segmentation vec-
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tors were created.

5.1.1 Temporal Power Binary Segmentation Vector

Figure 5.3: Temporal Phase with Binary segmenatation vector threshold =

0.001

A temporal power binary segmentation vector Pmbs(t) was created by

setting up a low threshold value of actual temporal power given as

Pmbs(t) = Pm(t) > threshold

where threshold is a low value set up accordingly. This results in creation of

a binary segmentation vector which has a binary value of 1 at all the points
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greater than threshold value and a binary value of 0 at all the points which

are less than threshold.

The resultant temporal power binary segmentation vector when multi-

plied with calculated temporal phase results in getting rid off all the phase

values other than where the Power is more than the threshold value. In this

way we get rid off the phase information which we don’t care about and keep

the phase information which is important to us.

Considering Figure 5.1 and multiplying calculated temporal phase with

the temporal power binary segmentation vector we get Figure 5.3 which

shows how the unwanted wings/noise is no more to be observed.

5.1.2 Spectral Power Binary Segmentation Vector

In the similar way a spectral power binary segmentation vector was also

created by setting a low threshold value of the actual spectral power given

as

Pmbs(ω) = Pm(ω) > threshold

where Pmbs(ω) is spectral power binary segmentation vector and threshold

is a threshold value set up accordingly for spectral power.

The spectral segmentation vector when multiplied to the calculated spec-

tral phase gets rid off all the phase noise values where the spectral power is
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less than the threshold value. Considering Figure 5.2 if we set up a spectral

power binary segmentation vector we get rid of all the noise phase and thus

we can just get the required results of phase as shown in Figure 5.4.

Figure 5.4: Spectral Phase with Binary segmenatation vector threshold =

0.008

Figure 5.4 and 5.3 show that we can get rid of noise by using binary

segmentation vectors in our plots.
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5.2 Constant Phase Offset Removal Technique

As it is observed in 5.1 that there is a constant phase offset which is there in

the temporal phase. However by use of the binary segmentation vector with

in our phase retrieval technique, we can get rid of this constant phase offset.

Figure 5.5: Temporal and Spectral Phase without Phase Offset threshold =

0.02

The technique defined for removal of a constant offset includes setting up

a low threshold value of the temporal power and creating a temporal power

binary segmentation vector in the start of the phase retrieval technique as

79



follows

Pmbs(t) = Pm(t) > threshold.

In the next step, to get rid of unwanted temporal phase information calcu-

lated temporal phase θc(t) is fine tuned as

θc(t)(n) = θc(t)(n).× Pmbs(t)

where n stands for nth iteration. By multiplying binary segmentation vector

Pmbs(t) with calculated temporal phase θc(t) in nth iteration, calculated tem-

poral phase is fine tuned and all unwanted phase/noise values are nullified.

This means that in ever nth iteration the unwanted noise values are nullified

in calculated temporal phase and the same noise values are not taken into

account again in nth+ 1 iteration.

Applying such technique removes the constant phase offset in both tem-

poral and spectral calculated phases. Considering phase plots in Figure 5.2

and 5.1, by applying this technique constant phase offset can be removed as

shown in Figure 5.5 where temporal phase calculated in every iteration is

fine tuned by a binary segmentation vector defined above.

Moreover a number of test cases were taken and total number of itera-

tions were increased as far as 4000 just to check that if the same technique

doesn’t give any unusual behavior once the calculated temporal phase maps

the actual temporal phase but no abnormality was found. It was observed

that a few number of iterations ranging from 50 to 200, depending upon the
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educated guess phase, were required for phase retrieval with this technique.

Any more number of iterations just keeps the retrieved phase the same, which

was confirmed by the phase metrics defined in last chapter.
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Chapter 6

Impact of Educated Guess

Phase on Phase Retrieval

Technique

The phase retrieval technique has been shown to achieve successfully the ac-

tual temporal and spectral phases after an improvised technique of binary

segmentation. However in previous chapters phase retrieval technique was

applied with only one educated guess of temporal phase. In this chapter dif-

ferent educated guesses of temporal phase would be tested against the phase

retrieval algorithm to check how it responds.

In all the cases that would be discussed in this chapter, the actual tem-

poral optical signal and spectral signal would be kept constant. However

different educated temporal phase guesses will be applied to check the phase

82



retrieval algorithm response. Figure 6.1 shows the actual temporal and spec-

tral power and phase.

Figure 6.1: Actual Temporal and Spectral Signals

Actual temporal optical temporal signal is given as

E(t) =
√
P (t)eiθ(t) (6.1)

where P (t) is the actual temporal power and eiθ(t) is the actual temporal

phase. Figure 6.1 shows that we have taken actual temporal power as a

Gaussian pulse of the form

Pm(t) =
1

σ
√

2π
e

−(t− µ)2

2σ2
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where its mean value µ is taken as zero and σ = 1. The actual measured

temporal phase of this optical signal is also a Gaussian pulse of the form

θa(t) = e−πt
2

.

The FFT of actual temporal optical signal gives us the actual spectral

power and phase as shown in Figure 6.1.

6.1 Educated Temporal Phase Guess - Nar-

row Phase Example

Figure 6.2: Phase Retrieval Temporal Form - Narrow Phase Guess: 2e−16πt
2

84



In the first test for phase retrieval algorithm, a Gaussian phase with the

same µ = 0 has been chosen but with double the height and smaller the

width, given in the form

θg(t) = 2e−16πt
2

.

Figure 6.3: Phase Retrieval Spectral Form - Narrow Phase Guess: 2e−16πt
2

Figure 6.2 shows the three phase forms.The green color educated tempo-

ral phase guess shows how it is different from the actual temporal pulse in

red color. However after the phase retrieval technique, it can be seen that

blue color calculated temporal form is mapping the actual phase pretty well.

The temporal Power plot shows how the temporal power actual and tempo-

ral power calculated are exactly the same. Total number of iterations for all
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convergence plots in this chapter is N = 500 which would be shown in metric

plots how the convergence takes place as a function of N .

Figure 6.4: Power Metrics - Educated Phase Guess: 2e−16πt
2

In the same way, Figure 6.3 shows how the spectral form of the optical

signal behaves. In lower plot of Figure 6.3 we can see how green color ed-

ucated spectral phase is all messed up. However the calculated and actual

spectral phase are exactly following each other. The binary segmentation

vector gets rid of the noise and makes it easier to follow spectral phase.

Figure 6.4 shows the power metrics for narrow phase example. Power

metrics were defined in previous chapters and it shows how the power con-
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Figure 6.5: Phase Metrics - Educated Phase Guess: 2e−16πt
2

vergence takes place in phase retrieval technique. We can see both spectral

and temporal power decrease with number of iterations and converge at al-

most 200 iterations.

Similarly Figure 6.5 shows spectral and temporal phase metrics. It shows

that convergence for both temporal phase and spectral phase metrics is al-

most the same for both. After 250 iterations, the change in phase metrics is

negligible showing phase has already converged.
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6.2 Educated Temporal Phase Guess - Broad

Phase Example

Figure 6.6: Phase Retrieval Temporal Form - Broad Phase Example

For our second example, we have chosen a broad temporal Gaussian phase

which is given as

θg(t) =
1

2
e
−
π

16
t2

.

The same is shown in Figure 6.6 in green color. The green color shows

a broad Gaussian phase for our temporal educated guess however after the

phase retrieval technique we can see that temporal phase calculated converges

to the actual temporal phase.
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Figure 6.7: Phase Retrieval Spectral Form - Broad Phase Example

The same is shown for spectral form in Figure 6.7 as well that even the

spectral educated phase maps out the actual spectral phase after the phase

retrieval technique. Green color shows the educated guess form and after the

phase retrieval technique, blue color calculated spectral phase converges to

actual spectral phase in red color.

The power metrics plot in Figure 6.8 show that how the actual powers

converge with number of iterations. It can be seen that power metric is

greater in the start but gradually settles down at a low value after power and

spectral power converge.
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Figure 6.8: Power Metrics- Broad Phase Example

The same can be seen in Figure 6.9 which show phase metrics for subject

example. It is observed how spectral and temporal phase converge gradually

to actual phase at around 200-250 iterations. These metric plots also show

how after first 200 iterations the change in phase is less and phase metric

plots are a straight line after 250 iterations. Total number of iterations has

been generally taken to be 500 however total iterations for convergence are

less than that.
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Figure 6.9: Phase Metrics - Broad Phase Example

6.3 Educated Temporal Phase Guess - Shifted

Phase Example

In all previous examples the educated guess phase was taken such that µ was

always zero. However in this example we take temporal educated Gaussian

phase at 2 given as

θg(t) = e−π(t−2)
2

.

So that temporal Gaussian educated guess is a shifted Gaussian at center 2.

Figure 6.10 shows the temporal form of the shifted Gaussian example. We

can see that temporal educated guess in green color is a Gaussian at center 2
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Figure 6.10: Phase Retrieval Temporal Form: Shifted Phase

and after phase retrieval technique the calculated temporal phase converges

to the actual temporal phase and both plots overlap each other.

Similarly in case of spectral phase we can see how the educated spectral

phase is different from the actual spectral phase. However the phase retrieval

technique maps the spectral phase to the actual spectral phase.

If we have a look at the power and phase metrics we can find out how

much iterations it took for shifted Gaussian phase to converge to the actual

phase. Power metrics in Figure 6.12 show that it takes around 250 itera-
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Figure 6.11: Phase Retrieval Spectral Form - Shifted Phase Example

tions for power forms to converge to actual power. Similarly a look at Figure

6.13 shows that initially the difference between calculated and actual phase

is large and with increase in number of iterations the difference gradually

becomes less and phase converges at around 250 iterations for both spectral

and temporal phase.

If we shift the temporal educated Gaussian phase on the other side that

is taking center of Gaussian pulse at −2, it has been confirmed that phase

retrieval technique is successful in mapping out the actual phase. Just like

this shifted Gaussian, it takes almost 250 iterations for the educated tempo-
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Figure 6.12: Power Metrics - Shifted Phase

ral phase to converge to the actual phase.

In the first few examples we were able to show that by taking different

Gaussian educated temporal phase, we can still map out the actual temporal

phase. The power metrics and phase metrics give us an idea about conver-

gence in each example. In the next example we are trying a super Gaussian

phase as an educated temporal phase guess.
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Figure 6.13: Phase Metrics - Shifted Phase

6.4 Educated Temporal Phase Guess - Shifted

Dissimilar Shape Example

Previously all examples had a different Gaussian phase as temporal educated

guess phase. In this example, we shifted the mean of the educated temporal

phase to −4 and made a super Gaussian phase as shown in Figure 6.14.

Super Gaussian Phase as educated temporal guess is given as

θg(t) = e
−
π

4
(t+4)10

.

We can see that a super Gaussian phase is created in green color in Figure

6.14 which is centered at −4 and is broader than the actual temporal phase.
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Figure 6.14: Phase Retrieval Temporal Form - Supper Gaussian Phase

Figure 6.14 shows that after the phase retrieval technique the super Gaus-

sian educated phase converges to the actual temporal phase and converged

plot shows actual and calculated temporal phases over lapping each other.

We can also see temporal power actual and calculated plots overlapped.

Similarly if we look at Figure 6.15 we can see that educated spectral phase

is all messed up shown in green color however after the phase retrieval tech-

nique, calculated spectral phase maps out the actual phase. Spectral power

plot also shows blue color calculated spectral power overlaps red color actual
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Figure 6.15: Phase Retrieval Spectral Form - Super Gaussian Phase

spectral power.

The power metric plot in Figure 6.16 shows that decrease in power met-

rics is drastic in the first few iterations and then gradually the decrease in

power metrics gets less as power forms come closer to converging to actual

power. After around 300 iterations the power metric shows that temporal

power an spectral power have converged.

Similarly if we look at phase metrics given in Figure 6.17 it shows that

temporal phase metric decreases drastically till 150 iterations and than change
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Figure 6.16: Power Metrics - Super Gaussian Phase

is gradual till 300 iterations at which point temporal phase converges. In case

of spectral phase metric the change is gradual continuously till 250 iterations

after which we see that spectral phase has converged to the actual spectral

phase.

These examples show that how different forms of temporal educated phase

guess have been applied on the phase retrieval technique and it works for a

wide range of temporal educated guesses. It was also shown with the help

of power and phase metrics that convergence is case dependent and phase

retrieval behaves accordingly.
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Figure 6.17: Phase Metrics - Super Gaussian Phase
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Chapter 7

Phase Retrieval Technique for

Chirped Pulses

The Phase retrieval technique discussed so far has been applied using Gaus-

sian phase. Gaussian pulses have been used in setting up actual temporal

phase, for educated temporal phase a different type of Gaussian has been

chosen. In last chapter it was shown even when shifted Gaussian and Super

Gaussian pulses were used for educated temporal phase, the phase retrieval

technique does map educated temporal and spectral phases to their respec-

tive actual phase. In this chapter, we are going to study chirped pulses and

the phase retrieval technique’s response.
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Figure 7.1: Temporal Optical Signal Power and Phase with C = 2

7.1 Defining Chirped Optical Pulse

Figure 7.1 shows a chirped actual temporal pulse which is being used for a

temporal optical signal. As we know that optical signal in time domain is

given by

E(t) =
√
P (t)eiθ(t)

where P (t) is the temporal power, θ(t) is the temporal phase. The high

speed optical carrier frequency is neglected here. For chirped pulses, actual

temporal phase is taken as following

θ(t) =
−C(t− µ)2

2σ2
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where C is the chirped parameters with values of−2,−1, 0, 1, 2 etc. Temporal

power is taken as a Gaussian given as

P (t) =
1

σ
√

2π
e

−(t− µ)2

2σ2

where its mean value µ is taken as zero and σ = 1.Figure 7.1 shows a temporal

optical signal power and phase with chirp parameter C = 2. The actual tem-

poral phase in Figure 7.1 is unwraped using the MATLAB unwrap function.

The MATLAB unwrap function is

θ(t) = unwrap(θ(t))

where the radian phase angles in a vector are corrected by MATLAB’s

unwrap function that is whenever absolute jumps between consecutive el-

ements of θ are greater than or equal to the jump tolerance which is set as π

radians as default, the radian phase angles are corrected by adding multiples

of 2π.

Figure 7.2 shows the spectral form of an optical signal after being trans-

formed by the FFT. The lower part of the graph points out the chirped actual

spectral form which is also unwrapped by the MATLAB unwrap function.

For the study of chirped pulses, the educated temporal phase is also a chirped

pulse but of a different order. The educated temporal phase guess is defined

as

θg(t) =
−D(t− µ)2

2σ2
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Figure 7.2: Spectral Optical Signal Power and Phase with C = 2

where D is defined as the order for chirp parameter used in educated guess

phase and values can be −2,−1, 0, 1, 2 etc.

7.2 Phase Retrieval on Chirped Pulse

For phase retrieval on a chirped pulse, the chirp parameter for actual optical

signal was chosen as C = 2 as shown in Figures 7.2 and 7.1 and the temporal

educated guess phase chirp parameter was taken as D = 1. The phase re-

trieval technique was applied on such an optical pulse as defined above and

satisfactory results were achieved.
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Figure 7.3: Spectral Optical Signal Power and Phase with C = 2, D = 1

Figure 7.3 shows that a green color educated phase chosen in temporal

form with D = 1 is applied with a phase retrieval technique and results are

shown with a blue color chirped calculated temporal phase. As we can see

that it maps out the actual pulse shape pretty closely. In the same manner

we can also look at Figure 7.4 where can see how the spectral phase comes

back to its actual spectral phase.

In Figure 7.4, the lower part of the figure shows chirped spectral phases

which are all unwrapped by the MATLAB unwrap function. It shows how
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Figure 7.4: Spectral Optical Signal Power and Phase with C = 2, D = 1

spectral calculated phase also maps out the actual spectral phase.

Figure 7.4 also shows a power graph for spectral form of the optical signal.

In this graph it clearly points out that there is a green form which is the

spectral power that is in educated guess phase created by FFT of a temporal

optical signal in educated guess phase consisting of temporal educated guess

phase and temporal actual power. The spectral educated guess phase shown

in green color maps out to the actual spectral power and it is shown Figure

7.4 where the blue lines maps out the red lines exactly. Converged plots in

Figure 7.4 and 7.3 are plotted after 100 iterations.
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7.3 Metrics of Phase Retrieval on Chirped

Pulses

As we have shown in last section how in case of chirped pulses, the phase re-

trieval algorithm works. Now some phase retrieval metrics defined in earlier

chapters will be checked for chirped pulses.

Figure 7.5: Temporal and Spectral Power Metric

For the chirped pulses defined above i.e. with actual temporal phase chirp

parameter C = 2 and temporal educated phase chirp parameter D = 1, Fig-

ure 7.5 shows the temporal power and spectral power metrics.
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We can see that both are decreasing with increasing number of iterations.

Power metrics undergo drastic change in the start however with increasing

number of iterations the change becomes less as well. However it shows that

first few iterations metric reduces more than the later part of the phase re-

trieval technique.

Figure 7.6: Temporal Phase Metrics

The temporal phase metrics are shown in Figure 7.6. We can see that

temporal phase metrics behavior is different in chirped pulses. In a few

beginning iterations temporal metric drastic jumps and then gradually settles
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down. The same was observed in power metric as well. This means that

calculated temporal phase jumps to closer to actual temporal phase in a

beginning and then fine tunes further in later iterations before settling down.

Figure 7.7: Spectral Phase Metrics

In Figure 7.7 spectral phase metrics are shown following the same trend

of other two metric shown previously. Spectral metric decreases drastically

in the start and then settles down in later iterations.

Figure 7.8 shows instantaneous frequency metric for the chirped pulse. As

we can show that instantaneous frequency metric is drastically decreasing in

the start and then settles down in later iterations. This is the same trend
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Figure 7.8: Spectral Phase Metrics

followed in all the other metrics shown earlier as well. This shows that for

chirped pulses, drastic changes are seen earlier in the algorithm and then in

later iterations calculated temporal and phase forms settle down.

7.4 Phase Retrieval Technique on Other Chirped

Pulses

Studying phase retrieval technique on chirped pulses we have found the phase

retrieval technique works for C = 2 and D = 1 however the next step was to
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study how the phase retrieval technique behaves if the difference between C

and D becomes greater.

7.4.1 Phase Retrieval on Chirped Pulse: C = 7 and

D = 2

Figure 7.9: Temporal Optical Signal Power and Phase with C = 7, D = 2

If we take an actual chirped temporal pulse with actual chirp parameter

C = 7 and educated guess temporal phase chirp parameter D = 2 then we

have a calculated temporal phase and power given as in Figure 7.9. Here we

see that in case of temporal power plot, the blue line indicating calculated

temporal power is getting wayward from the actual temporal power because
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of the huge difference between actual chirp parameter and educated guess

chirp paramter.

Figure 7.10: Power metric: Chirped Pulse with C = 7, D = 2

Similarly if we look at the lower plot of Figure 7.9 where we are plotting

temporal phase forms, it can be seen that calculated temporal form is having

a different phase and an unusual dip in the center as well which is not found

in actual temporal phase form.

Moreover we can study metrics in chirped pulse cases as they are showing

major changes indicating that phase retrieval technique has certain barriers

in which it works perfect for chirped pulses before going wayward. Consider
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Figure 7.11: Temporal Phase Metric : Chirped Pulse with C = 7, D = 2

Figure 7.10 which shows the temporal and power metric for both cases so far

discussed here in this chapter. As we can see from the Figure 7.10 that tem-

poral and spectral power metric are worse for scenarios where the difference

between C and D is greater and power metric is better for pulse with low

difference between the chirp paramters.

Figure 7.11 we have temporal phase metric showing temporal phase met-

ric for values of actual chirp parameter C and educated chirp parameter D.

We can see that for values of C = 7, D = 2 the temporal phase metric is quiet

large as compared to values of chirp parameters C = 2, D = 1. This shows
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Figure 7.12: Spectric Phase Metric : Chirped Pulse with C = 7, D = 2

that bigger the difference between the chirp parameters C and D the metric

is also getting bigger showing that temporal phase is not converging properly.

Similarly if we take a look at Figure 7.12 we can see that the same trend

is being observed here as well showing that spectral phase metric values are

greater for chirp parameter values of C = 7, D = 2. Figure 7.13 shows

instantaneous frequency metric for both cases of different chirp parameters.

For chirp parameters C = 7, D = 2 we can see that there is an unusual dip

in the start but after that instantaneous metric Mif settles down at a value

greater than the Mif metric for chirp parameters of C = 2, D = 1.
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Figure 7.13: Instantaneous Frequency Metric Mif : Chirped Pulse with

C = 7, D = 2

7.4.2 Retrieval on Chirped Pulse : C = −9 and D = −1

In this study, we are taking actual parameter of chirp C = −9 and educated

chirp parameter as D = −1 to check behavior of chirped pulses when chirp

parameters values are taken in negative.We have also used large difference

between the actual chirp parameter C and educated chirp parameter D. The

phase retrieval graphs which are plotted here show calculated temporal power

and phase after 100 iterations. After the phase retrieval technique phase and

power metrics would be plotted to see the results.
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Figure 7.14: Converged Temporal Form - Chirped Pulse with C = −9, D =

−1

In Figure 7.14 we can see how the temporal power calculated has gone

wayward considering the difference between the C and D parameter is large.

The temporal power is following the same trend which was seen when dif-

ference between C and D was made larger by taking positive values of chirp

parameters. This wayward behavior is also seen in temporal phase calcu-

lated. We can observe that temporal phase calculated is not mapping the

actual phase calculated which further shows that large differences in C and

D parameter result in wayward behavior of the phase retrieval technique for

chirped pulses.
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Figure 7.15: Power Metric : Chirped Pulse C = −9, D = −1

In Figure 7.15 it is shown that how the power metric behave in case of

choosing large differences in C and D parameter. A comparison of power

and spectral metrics is shown in Figure 7.15 and it can be clearly seen that

power metric show that phase retrieval technique is not working fine.

Figure 7.16 shows temporal phase metric for case where chirp parameters

C = −9, D = −1 and it is compared with the case where chirp parameters

are C = 2, D = 1. The difference between actual chirp parameter C and edu-

cated chirp parameter D becomes greater, calculated power and phase forms
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Figure 7.16: Temporal Phase Metric : Chirped Pulse C = −9, D = −1

don’t converge which is confirmed by metrics having large values. Same is

observed in temporal phase metric.

Figure 7.17 shows spectral phase metric graph. It follows the same trend

as of temporal phase metric and values of spectral metrics for C = −9, D =

−1 are quiet high as compared to other case of C = 2, D = 1. It confirms

that calculated spectral phase is not mapping out actual spectral phase.

If we take a look at instantaneous frequency metric Mif in Figure 7.18 it

shows calculated temporal phase is not mapping the actual temporal phase
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Figure 7.17: Spectral Phase Metric : Chirped Pulse C = −9, D = −1

for cases of C = −9, D = −1. Mif metric is messed up showing wayward

behavior of calculated phase.

In all the metrics shown above, the trend has been the same that if the

difference between actual chirp parameter C and educated chirp parameter

D is greater then the temporal and power forms do not map the actual forms

perfectly and the same is confirmed by checking power and phase metrics.
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Figure 7.18: Instantaneous Frequency Metric Mif : Chirped Pulse C =

−9, D = −1

7.5 Sweet Spot for Phase Retrieval technique

for Chirped Pulses

A detailed study was undertaken on chirped pulses in which different values

of actual temporal chirp parameter C and educated guess of temporal phase

chirp parameter D were taken. It was found that if the difference between

the actual chirp parameter C and educated guess chirp parameter D is large,

phase retrieval technique will not work perfectly hence larger the temporal

and spectral power metric. If the difference between these two parameters
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is less than the temporal power metric is less and phase retrieval technique

works as shown in earlier sections.

Figure 7.19: Sweet Spot for Phase Retrieval Technique for Chirped Pulses

Figure 7.19 actually points out the same relation. On the x− axis is the

difference between the actual chirp parameter C and educated chirp param-

eter D and on the y−axis is the temporal power and spectral power metric.

Power metric has been calculated for each case with a total number of itera-

tions set to 100. Figure 7.19 shows that if the difference between the actual

chirp parameter C and educated chirp parameter D is zero, power metric

is also zero showing that temporal and spectral power calculated maps out

the actual temporal power perfectly. If the difference is 4 the phase retrieval
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technique does work but there are some differences in the actual temporal

power and calculated temporal power and similarly in temporal phase forms

as well. However if the difference gets larger to 8 the phase retrieval technique

doesn’t respond well. This gives us a sweet spot right in the middle of the

Figure 7.19 showing that if the difference between actual chirp parameter C

and educated chirp parameter D is between 0 to 4 phase retrieval technique

will respond well otherwise it won’t give desired results.
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Chapter 8

Phase Retrieval of Chirped

Super Gaussian Pulses

In the last chapter we discussed about phase retrieval technique on chirped

pulses. We figured out the phase retrieval technique for chirped pulses works

well when the difference between the actual chirp parameter C and educated

guess chirp parameter D is small. In this chapter we are going to study the

phase retrieval technique on chirped super Gaussian pulses.

8.1 Chirped Super Gaussian Pulse

As we know that the optical signal in temporal domain is given by

E(t) =
√
P (t)eiθ(t)
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Figure 8.1: Chirped Super Gaussian Pulse: C = 3,M = 4

where P (t) is the temporal power and θ(t) is the temporal phase. The high

speed optical carrier frequency is neglected here. For chirped pulses, actual

temporal phase is taken as following

θ(t) =
−C(t− µ)2

2σ2

where C is the chirped parameter with values of −2,−1, 0, 1, 2 etc. Temporal

power is taken as a super Gaussian given as

P (t) =
1

σ
√

2π
e

−(t− µ)2M

2σ2

where its mean value µ is taken as zero and σ = 1. An example of a super

Gaussian pulse of higher powers of the Gaussian pulse is shown in Figure
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8.1. The actual temporal phase is unwrapped using the MATLAB unwrap

function.

Figure 8.2: Chirped Super Gaussian Pulse: C = 3,M = 4

Figure 8.2 shows the actual spectral form of the optical signal. The spec-

tral phase shown in lower plot is also unwrapped by the MATLAB unwrap

function.
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Figure 8.3: Coverged Phase Retrieval Technique:Super Gaussian Pulse: C =

3, D = 1,M = 4

8.2 Phase retrieval on Chirped Super Gaus-

sian Pulse

The Phase retrieval technique is applied on a chirped super Gaussian pulse.

We have chosen a chirped pulse as the actual temporal phase as shown Figure

8.1. Similarly a chirped pulse would be chosen for educated temporal guess

phase however the chirped pulse would be of a different chirp value. The

Educated temporal phase guess is given as

θg(t) =
−D(t− µ)2

2σ2
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where D is the temporal educated guess phase chirp parameter which can

have values of −2,−1, 0, 1, 2.

Figure 8.4: Coverged Phase Retrieval Technique:Super Gaussian Pulse: C =

3, D = 1,M = 4

We applied phase retrieval technique on actual chirp parameter of C = 3

and educated guess chirp parameter chosen of D = 1. The total number

of iterations for the phase retrieval technique in this application were 200

iterations.

Figure 8.3 shows a converged graph for the temporal optical signal. We
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can see that the temporal phase and temporal power are both converged.

The Calculated temporal phase and calculated temporal power are mapping

their respective actual forms completely. This shows that phase retrieval

technique works fine for super Gaussian pulses as when we have chosen such

actual and educated chirp parameters C and D.

Figure 8.5: Power Metrics:Super Gaussian Pulse: C = 3, D = 1,M = 4

The same can be observed in Figure 8.4 where a converged spectral optical

signals are plotted. We can see that spectral power is mapping out actual

spectral form quiet well. Spectral calculated phase is also mapping out the

actual spectral phase. This shows that for both spectral and temporal forms,
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phase retrieval technique is working.

8.3 Metrics of Phase Retrieval on Chirped

Super Gaussian Pulse

In the previous section we plotted actual and calculated forms of the chirped

super Gaussian pulse. In this section we will see how the different metrics

defined for our phase retrieval technique behave in the case of phase retrieval

on chirped super Gaussian pulse.

8.3.1 Power Metrics

We have defined two types of power metrics i.e. a temporal power metric

Mtpow1 and a spectral power metric Mspow1. Both of these are plotted in

Figure 8.5. We can see that both spectral and temporal power metrics are

decreasing in the start showing that power and temporal forms converge to

the temporal and spectral forms with very small metric values. Around after

150 iterations the power metrics gradually settle down.

8.3.2 Phase Metrics

In the same way we can have a look at the phase metrics of the phase retrieval

technique on a chirped super Gaussian pulse. We can see that the values of

both phase metrics are decreasing in the start and then after some iterations

they settle down. Both spectral and phase metrics are following the same
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Figure 8.6: Phase Metrics:Super Gaussian Pulse: C = 3, D = 1

trend. All four phase metrics defined are shown in this figure. These metric

show that after some iterations temporal phase and spectral phase metrics

converge however the metrics values show that convergence is not as good as

power forms converge.

8.4 Phase Retrieval on Other chirped Super

Gaussian Pulses

In this section we will study other super Gaussian pulses which have different

values of actual chirp parameter C and educated chirp parameter D. We can

129



choose any values of chirp parameter and see how the chirped super Gaussian

pulses behave.

8.4.1 Chirped Super Gaussian Pulse: C = 16, D = 1

Figure 8.7: Temporal Phase Retrieval Form:Super Gaussian Pulse: C =

16, D = 1,M = 4

In previous sections we tried values of actual chirp parameter and edu-

cated parameter as such that the difference between them was less. In this

example we are trying an actual chirp parameter C = 16 and educated chirp

parameter D = 1.
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Figure 8.8: Power Metrics:Super Gaussian Pulse: C = 16, D = 1

Figure 8.7 shows the temporal form of phase retrieval technique. We can

see that the difference between C and D is 15 and the result is that temporal

power and temporal phase are all messed up. The Phase retrieval technique

doesn’t work well in this case when the difference between the actual chirp

parameter and educated chirp parameter is large.

The Temporal phase plot in Figure 8.7 shows that how calculated tem-

poral phase is all messed up and not following actual temporal phase. The

Total number of iterations in this case were set to N = 200. In the same

number of iterations we saw that if the difference between the actual and
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educated chirp parameter was small, temporal power and phase mapped to

the actual power and phase.

Figure 8.9: Power Metrics:Super Gaussian Pulse: C = 16, D = 1

Power Metrics In Figure 8.8 we can see the power metrics. Power

metric values are high because the difference between the actual and cal-

culated temporal power is pretty high. The same response is also seen in

spectral power metric Mspow1.

Phase Metrics Phase metrics are also plotted for the case where actual

chirp parameter C = 16 and educated chirp parameter is D = 1. We can see
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that the phase metrics are also showing that for larger differences the phase

metrics values are also large because actual temporal and spectral phase

plots are not overlapping the calculated spectral and power phase as shown

in Figure 8.9.

8.5 Sweet Spot for Chirped Super Gaussian

Pulses

We have taken two cases so far and shown that if the difference between the

actual chirp parameter C and educated chirp parameter D is large, the phase

retrieval technique will not work well. However if the difference is less the

phase retrieval technique works perfectly well. In this study we have taken

chirped super Gaussian pulses and in last chapter we took chirped Gaussian

pulses. We were able to show in last chapter that if the difference between

the actual chirp parameter C and educated chirp parameter D is 4 or less,

phase retrieval technique will probably work quiet well.

The same trend is seen here in chirped Super Gaussian pulses. For smaller

values like C = 3, D = 1, the case which was discussed earlier, the phase re-

trieval technique applied on chirped super Gaussian pulse works better than

if applied on chirped Gaussian pulse. This was shown in the power metrics

as well.
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Figure 8.10: Power Metrics:Super Gaussian Pulse: C = 16, D = 1

Figure 8.10 shows relationship of difference between actual chirp param-

eter C and educated chirp parameter D and power metrics. if the difference

|C −D| is less than 5 then the power metrics show that the convergence of

phase retrieval technique on chirped Gaussian pulse is pretty good. However

there is an unusual spike at difference of |C −D| at 7. As the difference gets

larger the power metrics get large too showing that the converged temporal

power and spectral power are not overlapping actual temporal and spectral

power.

Figure 8.10 can be used as a reference when trying to choose for educated
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guess parameter D. If by choosing some value of D we end up with a larger

power metric, that means the difference between the actual chirp parameter

of a chirped super Gaussian pulse and our educated chirp parameter is large.

Therefore we need to use a different D.
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