
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2012

Providing public key certificate authorization and policy with DNS Providing public key certificate authorization and policy with DNS

Matthew Lidestri

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Lidestri, Matthew, "Providing public key certificate authorization and policy with DNS" (2012). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F7521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/7521?utm_source=repository.rit.edu%2Ftheses%2F7521&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Providing Public Key Certificate

Authorization and Policy with DNS

By

Matthew Lidestri

Thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Science in

Computing Security and Information Assurance

Rochester Institute of Technology

B. Thomas Golisano College

of

Computing and Information Sciences

February 28, 2012

Committee:

Charles Border (Chair)

Daryl Johnson

Yin Pan

Bill Stackpole

 II

Abstract

Public Key Infrastructure (PKI) instills trust in certificates commonly used to secure email, web

traffic, VPNs, file transfers, and other forms of network communication. Due to a number of

successful attacks against certificate authorities, malicious parties have illegitimately acquired

trusted certificates for widely used online services, government agencies, and other important

organizations. These incidents, and the potential for future attacks of a similar nature, present

notable risk to PKI and global security as a whole.

The proposed Certificate Policy Framework (CPF) offers a mechanism for organizations to

control which certificates are authorized to authenticate their services. This DNS-based protocol

allows organizations to publish an access control list for any given hostname, where each entry in

the ACL identifies a certificate and indicates whether the certificate should be blocked, warned

upon, or permitted. Similarly, any CPF-compatible application can query DNS for CPF records

to verify the integrity of the certificate from an authoritative viewpoint. In this work, we review

limitations in PKI and certificate-based security and review existing work in this area. We will

also discuss CPF in greater detail and demonstrate how it can be used to augment PKI to

strengthen this widely adopted technology.

 III

Table of Contents

Introduction ... 1

Background ... 2

Certificate Trust Errors are Ignored .. 5

Certificate Validation Vulnerabilities ... 5

PKI Reliability Issues .. 6

Background Conclusion .. 8

Existing Work .. 9

Overview of CPF ... 13

CPF Design .. 14

CPF Record Format .. 14

Publishing Policy .. 16

Accessing and Interpreting Policy .. 17

Evaluation .. 19

CPF-Compatible Browser Design ... 19

Environment Configuration .. 20

Reliability Results ... 22

Performance Results ... 23

Performance Impact from DNSSEC ... 24

Future Work .. 25

CPF Mechanism Expansion .. 25

Application Support .. 25

Integration with Convergence ... 25

Certificate Assurance Grading .. 26

Conclusion ... 27

 1

Introduction

We continue to enjoy the benefits of modern networks, which provide a medium for the fast and

reliable exchange of information. In conditions where security is desired or essential, we rely

upon encryption to ensure the confidentiality and integrity of data while in transit. In many cases,

public key cryptography is used to establish a secure connection over unsecured networks. This

crypto-system utilizes two unique, mathematically related keys – a private key and a public key.

The public key is often bound with identification information to form a certificate for

authentication. However, in order to use a certificate in this manner, we need to trust that the

identity information is accurate – that is, that the peer is who it claims to be. Without establishing

trust, data could be unintentionally shared with an unauthorized party impersonating the intended

peer.

Public Key Infrastructure (PKI) has been widely implemented as a foundation for instilling trust

in certificates [19]. PKI is a centralized trust model comprised of one or more certificate

authorities (CAs) run by trusted organizations, third parties, and governments. Operating systems

and third party applications support a number of CA certificates by default, thereby trusting them

and any certificates that they sign (endorse). Reputable certificate authorities abide by a set of

policies for verifying the information associated with a certificate prior to signing it; in some

cases these checks are initiated by a registration authority (RA) before being passed to the CA for

signing. These verification checks are in place to ensure that certificates will only be issued to

authorized requestors, providing credibility to the system.

While PKI has proven to be a scalable and manageable trust model, security professionals have

expressed concern over weaknesses [16][13]. In the past, highly regarded CAs have issued

certificates representing specific services to individuals having no affiliation with the domain

owners [9]. In addition to the risks associated with validation failures, computing resources

maintained by certificate authorities have also been compromised in the past. As a result of these

breaches, attackers were able to fraudulently acquire trusted certificates for numerous services.

These certificates could be used to intercept traffic destined for the target services via a man-in-

the-middle (MITM) attack, enabling the malicious party to view and manipulate data being

exchanged.

 2

These issues demonstrate a major problem with PKI – certificate authorities are trusted

unconditionally [10]. The organizations whose online services have been negatively impacted by

breaches at CAs had no way of preventing the certificates from being generated or trusted. Each

client application dictates which CAs are considered trustworthy, and will inherently accept any

certificate issued by a trusted CA. Due to this broad level of trust, the issuance of an illegitimate

certificate will allow a malicious party to falsely impersonate a service or organization without

warning.

In addition to the flaws with PKI, there are issues with certificate-based security. Application

warnings caused by certificate validity errors are often simple for users to bypass, providing little

protection. Also, if a service is compromised and the public/private key pair is exposed, the

attacker could launch a transparent MITM attack. These situations further challenge the ability

for PKI and certificates to properly secure traffic.

In order for PKI to be a viable trust model in the future, organizations must have the ability to

manage which certificates are authorized to identify its services. Additionally, client applications

must be able to access this information and enforce it. We believe that this can be accomplished

using a protocol designed to distribute certificate authorization rules and policy. This work

presents a new protocol called certificate policy framework (CPF), which allows organizations to

advertise authorized certificate signatures for a given hostname via the domain name service

(DNS). In addition, it will allow organizations to provide client applications with guidance on

whether to permit, warn, or block connections based on the certificate that it receives. The

enhancements introduced by CPF will complement the trust offered by certificate authorities,

reducing risk and strengthening PKI.

Background

Public key cryptography is commonly applied to networked services in order to conceal data

being exchanged between peers and to prevent the modification of data while in transit. This is

commonly achieved using X.509 certificates, a standard format for combining identity

information with a unique public key. Certificates are an integral part of encryption protocols

like Transport Layer Security (TLS) and its predecessor, Secure Socket Layer (SSL), and are

heavily leveraged to tunnel unencrypted protocols like SMTP (email), FTP (file transfers), and

HTTP (web browsing). Internet users most commonly interact with certificates while web

 3

browsing, as nearly everyone visits websites and web applications protected by HTTPS.

Common examples include online banking sites, stock/401k portfolio management sites, and

webmail services. Without TLS/SSL protecting these plaintext protocols, it would be trivial to

eavesdrop on the traffic. Given the right access, it would also be possible to intercept the traffic

in transit and manipulate it transparently.

Eavesdropping can occur using passive monitoring as data passes through a network. Network

taps, port mirroring, and wireless sniffing are common ways to capture data transparently as it

traverses network devices and transmission media. Packet capture tools like Wireshark or

TCPDump can be used to save and analyze pure network traffic streams, while more security-

driven tools like Cain & Able1 can be configured to sniff traffic and capture specific information

like account credentials. When encryption protocols are applied and comply with best practices,

the application data is concealed from exposure as cipher-text and cannot be accessed without

possessing the appropriate encryption key(s).

Figure 1: Example of third party eavesdropping on encrypted communications.

A MITM attack is an active effort by a malicious party to intercept network connections by

posing as the intended peer on both sides. In order to successfully orchestrate a MITM attack, the

network traffic must flow through a system controlled by the attacker. This can be done at OSI

layer 2 via an ARP poisoning attack, by receiving routed traffic, or by poisoning DNS to direct

traffic to a different IP address. By maintaining separate connections to the client application and

server and acting as a pass-through, the attacker gains the ability to both eavesdrop on

communications and manipulate the data in-transit. Encrypted protocols such as TLS/SSL and

1 http://www.oxid.it/cain.html

 4

SSH are also susceptible to MITM attacks, although it’s extremely difficult to intercept this

traffic undetected.

SSH uses a host key by default, which is the public key. The first time an SSH client like Putty2

connects to an SSH server, it stores the server’s host key locally as a reference for future

connections. If the client ever connects to the same resource and is presented with a different

host key, it will suspect a MITM attack and notify the end-user. This validation technique

employs “trust on first use” (TOFU) where the client assumes that the first time they connect to

an endpoint it is legitimate [12]. If the connection is being intercepted on first use, then the client

will remain unaware that the encrypted connection has indeed been compromised.

TLS-based connections are not generally susceptible to the risks associated with TOFU due to the

use of signed certificates and support for PKI. A TLS-enabled service authenticates itself to the

client application using an X.509 certificate that has been signed by a highly accepted certificate

authority, such as Symantec (VeriSign), Thawte, or Entrust. Client applications often trust these

and other CAs by default, and will implicitly trust any certificate that a trusted CA has signed.

Thus, the client is able to use its pre-shared trust relationship with the CAs to verify that the

certificate representing the remote service is truly legitimate.

 Figure 2: Example of a successful MITM attack on encrypted communications.

If the TLS connection is being proxied in a MITM attack, it’s likely that the attacker is using a

self-signed certificate or invalid certificate, which would not be trusted by default. This should

cause the client application to present an error to the user or refuse the connection.

2 http://www.chiark.greenend.org.uk/~sgtatham/putty/

 5

Certificates and PKI, paired together, effectively address the limitations of simple public key

exchanges and provide strong security. However, there are other challenges with certificate-

based security and PKI trust that introduce risk and are cause for concern.

Certificate Trust Errors are Ignored

One of the key purposes of PKI is to prevent a MITM attack from occurring transparently.

Certain applications, such as the Oracle Java Runtime Environment will fail when connecting to

an untrusted peer by default. Other applications will warn the user and require confirmation to

proceed. Although client applications may vary in their response to an untrusted certificate, they

should universally prevent a connection from occurring in a completely trusted context under

conditions that indicate otherwise.

Web browsers are among the most common applications that prompt the user to continue if a

certificate’s trust cannot be determined. Traditionally, browsers will generate warnings when

presented with a peer certificate that has not been signed by a trusted CA, has been revoked, has

expired and is no longer considered valid, or where the certificate common name does not match

the hostname provided in the URL. While the majority of certificates presented to users are valid

and trusted, there are situations where untrusted certificates are used to protect services and

applications on intranets, development networks, and Internet-facing devices for the sole benefit

of encrypting traffic. In these cases, the end-user must decide whether or not to trust the

connection. Certificate trust is a complicated matter, and studies indicate that a high percentage

of users don’t fully understand certificate warnings or the risks associated with trusting a

questionable certificate [18]. When a user decides to trust an unknown certificate and continue

with the connection, they may be unintentionally passing their data to a malicious endpoint.

Certificate Validation Vulnerabilities

As mentioned previously, public key certificates are the combination of a public encryption key

and fields containing identification information. Fields of interest often include (but are not

limited to) the “subject name”, “validity period”, “issuer name”, “basic constraints”, and “key

usage” [7]. In order for a certificate to act as an authenticator, applications must be able to

interpret this information and enforce security accordingly. However, there have been logic flaws

 6

in various applications that prevented them from properly applying certificate security, putting

their users at risk.

In 2009, a null prefix attack was publicly disclosed and impacted a number of applications, such

as popular web browsers, instant messaging applications, and email clients [11]. Due to a

validation bug when interpreting the subject name of a certificate, the inclusion of a “\0”

character would cause the application to treat this string as the end of the field content. For

instance, if a person owned the domain “example.com” and purchased a certificate for

“www.rit.edu\0.example.com”, a CA would legitimately issue an X.509 certificate as a

subdomain for “example.com”, but vulnerable applications would interpret the common name as

www.rit.edu.

In 2011, a similar vulnerability was disclosed affecting various devices produced by Apple Inc.

[8][14]. Apple’s data security component did not properly validate the “basic constraints” field

of all certificates in the certificate chain. Due to this bug, a certificate specifically designated for

server authentication could be used to sign another certificate just like a CA. When working

properly, software should check to ensure that the certificate used to sign another is a CA – if it is

not, then the certificate should not be trusted.

These types of application vulnerabilities provide attackers with an opportunity to circumvent

certificate security and intercept encrypted traffic in a completely trusted context. While code

flaws are unavoidable in applications, a defense-in-depth approach can significantly reduce the

impact of these deficiencies. Rather than relying solely on certificate validation, it would be

beneficial to have another mechanism in place to verify the legitimacy of the certificate.

PKI Reliability Issues

Certificate authorities and registration authorities are the catalysts for trust in PKI. They are the

bodies that are responsible for investigating the legitimacy of certificates and endorsing them. By

having a pre-shared trust relationship with specific CAs, the integrity of any given server

certificate can be verified easily by client applications. While CAs are an essential component for

trust in the digital world, vulnerabilities have been discovered that introduce major security

implications when successfully exploited.

 7

In the past, we have observed successful attacks against CAs by way of weaknesses in domain

validation processes. On December 29th, 2008 a registration authority associated with the

Comodo CA mistakenly issued a certificate for mozilla.com to an unauthorized researcher [9].

Comodo confirmed that this issue resulted from a failure in processes and had taken steps to

remediate the issue. However, this particular incident is important because the technical controls

proved to be ineffective, as opposed to being maliciously circumvented.

More recently, we have witnessed sophisticated attacks against CAs by way of bypassing controls

to fraudulently acquire certificates for important services and organizations. In March of 2011

an attacker was able to acquire valid certificates for popular online services managed by seven

different companies including Google, Microsoft, the Mozilla Foundation, and Skype via a

registration authority associated with Comodo Group. The fraudulent certificates were quickly

detected and revoked by Comodo, and browser vendors deployed application updates to blacklist

the malicious certificates. The login credentials for the registration authority had been

compromised, granting attackers access to generate certificates [22].

In July of 2011, StartCom’s StartSSL CA suffered a similar security attack that led them to take

their online services offline for a short period of time. StartCom confirmed that no fraudulent

certificates were issued as a result of the attack and their CA private keys were not exposed. [4]

While no specific details were posted about the attack, it raises concerns as attackers continue to

target PKI vendors.

In September of 2011, Dutch certificate vendor DigiNotar B.V. disclosed a major security breach

affecting its systems. As a result, attackers were able to generate 344 fraudulent certificates

successfully targeting domains for a variety of services. Impacted organizations included Google,

Microsoft, Facebook, Twitter, Yahoo, the United States Central Intelligence Agency (CIA), and

other major certificate authorities. An independent investigation indicates that the attackers had

full administrative control over numerous certificate servers operated by DigiNotar, and were

believed to be active for well over two months [15]. Computer forensics uncovered several

malicious applications resident on DigiNotar’s servers, developed specifically for use on their

systems. Several weaknesses were also discovered in DigiNotar’s “secure” computing

environment; the domain administrator password was identified as weak, facilitating compromise

on a larger scale. In addition, no antivirus or anti-malware solutions were installed, applications

were not patched, and critical services were not separated in accordance with best practices.

 8

These incidents raise major concerns regarding the security provided by certificate authorities.

As of July 2010, there are 1,482 certificate authorities run by 651 organizations worldwide that

are trusted by popular web browsers [3]. While this provides a wide degree of competition and

flexibility when choosing a PKI vendor, client applications are placing full trust in an

extraordinary number of organizations. Most certificate authorities are independently managed

and differ in policies and security posture. In the case of the DigiNotar breach, the company’s

PKI infrastructure lacked the most basic and essential security controls. With hundreds of

organizations running trusted certificate authorities, we must consider the possibility that other

PKI environments may not adhere to industry security standards and best practices.

With an increasing trend of attacks against certificate authorities, they may be exposed to greater

risk than in the past. PKI services are of great interest to parties that would benefit by being able

to intercept secure communications and possess the means to do so, such as state-sponsored

attackers. By gaining access to generate trusted certificates on-demand, attackers also gain the

ability to intercept secure communications on a wider scale undetected. In addition, the

previously discussed weaknesses in existing PKI services indicate that this infrastructure may be

more vulnerable than originally perceived. Due to the design of the PKI trust model, if any given

CA issues a fraudulent certificate then it will impact all applications that trust the CA without

confinement. In other words – the compromise of a certificate authority yields a high reward to

the attacker, and nearly the same results can be achieved regardless of which CA is targeted.

Essentially, PKI is only as strong as the weakest certificate authority or registration authority.

These issues pose considerable risk to PKI and limit its reliability as a trust model.

Background Conclusion

A malicious attacker can overcome the protection provided by PKI and certificate-based security

using a variety of methods that range in impact and scope, as shown in table 1. The most

damaging attacks allow traffic to be intercepted in a trusted context, such that the end-user or

system is not aware of the compromised connection and continues to exchange data that may be

sensitive in nature.

 9

Threat Impacted Audience Scope Context

Certificate Errors Ignored by User/App Specific peers (users) Limited Untrusted

Certificate Validation Vulnerabilities in Apps Specific applications Limited Trusted

Improper Certificate Issuance by CA Specific service Limited Trusted

Compromised CA Multiple services Broad Trusted

Table 1: Summary of threats that negatively impact the security provided by PKI.

All of these issues pose a threat to users, organizations, and systems. Fortunately this area

continues to attract more attention by the academic and security communities, and previous work

has provided potential solutions to address one or more of these threats.

Existing Work

As previously discussed, one of the challenges with public key certificates is that trust warnings

are not easily understood by users. The work of Sunshine et al [18] found that a significant

percentage of users do not understand the risks associated with SSL certificate warnings in

browsers, and often opt to ignore the potential danger. This behavior was most common with

warnings that are cryptic and easily disregarded (Firefox 2.x) or capable of being bypassed with

little effort (IE7). The Firefox 3 web browser introduced an SSL warning that requires multiple

steps to bypass, further improving user behavior. Although the design of the certificate warning

impacts its effectiveness, the authors of this study ultimately concluded “the best avenue we have

for keeping users safe may be to avoid SSL warnings altogether and really make decisions for the

users – blocking them from unsafe situations and remaining silent in safe situations”. We agree

with this assertion – it would be ideal to prevent users from accessing services protected by

certificates or public keys that pose a significant risk.

In order for applications to proactively protect users, they need to support alternative mechanisms

beyond PKI for assessing the risk associated with a certificate. Two works have examined the

concept of verifying the legitimacy of public keys by comparing them to other vantage points on

the Internet. Stone-Gross et all propose the VeriKey solution [17] to detect MITM attacks against

websites that use self-signed certificates. Wendlandt, Anderson, and Perrig propose a very

similar solution, Perspectives [20], to address the “trust on first use” issue with public keys to

prevent MITM attacks. These solutions work on the fundamental premise that all client devices

should be presented with the same public key when connecting to a service, regardless of

 10

geographic location or Internet Service Provider (ISP). If a particular client receives a public key

certificate that differs from everywhere else, there is an elevated risk that the traffic is being

intercepted. When connecting to a remote service that supports public key cryptography, the

client application queries a set of geographically distributed “verification servers” for their view

of the service’s public key. Upon receiving the hostname, a verification server connects to the

target service, receives the public certificate, and returns it to the requesting client for

comparison. If the public key presented to the verification server matches the public key seen by

the application, then the key is legitimate. However, if they do not match, then it’s likely that the

traffic is being intercepted.

Figure 3: Verification process for legitimate connection using an external public key comparison service.

 11

Figure 4: Verification process under MITM attack conditions using an external public key comparison service.

The concepts presented by Perspectives have been adopted and enhanced in Convergence3, a new

project that’s available to the general public. While the goal of previous solutions was to improve

authenticity for self-signed certificates and public keys, Convergence has been developed with an

expanded purpose – to replace certificate authorities as the trust point for services using public

key cryptography [12]. If successful, the replacement of PKI would lead to the elimination of CA

trust for server certificate authentication. Companies and organizations could simply apply a self-

signed certificate to their services in order to enable encryption, and Convergence would provide

verification that a client’s connection is truly secure. This notion has appeal and highly visible

upside, but introduces several concerns.

PKI has existed for decades and is integrated into many different operating environments as a

security standard. In addition to global PKI, companies and organizations may run an internal

certificate authority as a method of authenticating local services. In order to eliminate PKI, many

network applications will need to be updated. Web browsers and SSH clients come to mind

immediately, and we would expect these to have the greatest impact. However, many other

applications would also need to adopt Convergence - SMTP servers, FTP clients, VPN software,

and a variety of third-party applications.

3 http://www.convergence.io

 12

In certain cases, network visibility will be a hurdle for Convergence. It’s straightforward for

notary servers to verify the public keys on Internet-facing services so long as they are publicly

accessible. However, if a device is not available to the Internet, then the notary servers will not

be able to verify the public key. An alternative may be for companies to run an internal notary

server, which presents its own issues. A dedicated notary server is another service to maintain,

which can be inconvenient for smaller organizations which are limited in funding and technical

resources. In addition, notary servers using the preferred Perspectives backend require network

connectivity to any devices running secure services in order to verify the public key. This may

pose a dilemma for organizations enforcing strict network access controls, since the notary server

could be viewed as a central point to circumvent firewall restrictions.

It is also noteworthy that Convergence focuses its verification process on public keys, which are

the unique id and true identifier. However, X.509 certificates also include field information that’s

currently validated by certificate authorities (albeit the degree of review varies between CAs and

their certificate products). It is useful for certificates to include information like the “organization

name”, providing it is accurate. By ignoring these fields, it greatly reduces the ability for X.509

certificates to act as a true certificate of identity.

Rather than replacing certificate authorities, other efforts have explored opportunities to

strengthen PKI. Hallam-Baker, Stradling, and Laurie propose allocating a Certificate Authority

Authorization (CAA) resource record in DNS; this would allow domain owners to publish the

object identifier (OID) of approved certificate authorities for their domains [5]. In turn, whenever

a CA receives a certificate signing request, a CAA record check would be required as part of its

verification procedures. If the record exists but the CA’s OID is not listed, then the request

should be rejected due to insufficient authorization. In effect, this will allow organizations to

indirectly control which CAs can sign certificates for its services. It also imposes a new layer of

accountability on CAs; if a certificate is signed illegitimately even though a CAA record is

present, then this would indicate bigger issues with the offending CA’s security controls and may

warrant global revocation of trust.

A relatively new IETF working group, DNS-based Authentication of Named Entities (DANE),

has also begun working on approaches to provide greater trust in networked communications [2].

The purpose of this group is to provide DNS administrators with the ability to bind identification

 13

information with specific services securely using DNSSEC, for the purposes of distribution and

authentication. They are currently overseeing the development of a protocol for linking

certificates and certificate associations with domain names for use in TLS connections [6]. The

initial specifications allow certificates, public keys, and CAs to be linked to a service via DNS for

trust. The details of this protocol are still under development, but show promise and are bound to

be a significant contributor in this area. Conceptually, it shares similarities with the CPF

protocol, although it is more geared towards the publication of trust points rather than distributing

detailed policies. As a result, the protocol can dictate what is considered trusted but cannot offer

any greater granularity or guidance to a client application.

Overview of CPF

The recent attacks against certificate authorities are a clear indication that we cannot continue to

rely upon these entities as the sole proprietors of online trust. Furthermore, application-specific

X.509 certificate validation vulnerabilities, certificate warning ineffectiveness, and similar issues

have contributed to the reduced effectiveness of certificate-based security. Foreseeing this as an

opportunity to develop a more comprehensive solution, Certificate Policy Framework (CPF) is

intended to address a number of these limitations.

The CPF protocol defines a lightweight means of publishing, retrieving, and interpreting

certificate policies for a network service. CPF policy is comprised of a set of authorization rules

for certificates and public keys. Each policy entry defines a certificate based on its hash digest

and indicates how client applications should react if matched. The policies are published in DNS

as text-based resource records, and are specific to each fully-qualified hostname as it appears in

DNS and in either the certificate common name or subject alternative name.

CPF empowers organizations with the ability to control the authorization of certificates

representing its services. This approach establishes dual-control shared between the CAs and

authoritative organizations, effectively limiting trust in CAs. The use of PKI and CPF together

promote greater security than either can provide independently. CAs will still be responsible for

verifying the legitimacy of a certificate signing request and then signing the certificate, thereby

providing a level of assurance from a third party. CPF offers a certificate verification mechanism

from the perspective of the authoritative entity, which is inherently the most knowledgeable party

and is ultimately responsible for the security of its services.

 14

CPF Design

The foundation of CPF is derived from Sender Policy Framework (SPF), a widely implemented

DNS-based protocol that allows domain owners to publish a list of mail servers that may send

email on behalf of a given domain [21]. The use cases for SPF and CPF are very similar; a given

Peer2 receives information from Peer1, but Peer2 is not confident that Peer1 is trustworthy. In

turn, Peer2 contacts the DNS server controlled by the organization responsible for the alleged

Peer1 to verify legitimacy and authorization (if available). In the case of SPF, an SMTP server is

interested in verifying that the client server’s IP address is authorized to forward mail on behalf of

the sender’s domain. Similarly, a CPF-compatible client application is interested in verifying the

legitimacy of a peer’s public key before exchanging data.

The full specifications for the CPF protocol have been documented as an RFC-style draft

included in the appendix of this work. The RFC discusses the CPF protocol and how it should be

applied and interpreted in great detail. The full specification was used to architect CPF and has

been incorporated in our experiments. This section discusses key aspects of CPF in a detailed

albeit less comprehensive manner. We’ve broken down the overview of CPF into three sections –

defining the CPF record format, publishing the policy, and accessing/interpreting policy.

CPF Record Format

CPF records adhere to a standardized format to ensure that CPF-compliant client applications can

parse the information properly and consistently. The record is a single, case-insensitive string of

text that is processed from left to right with fields delimited by spaces. The first field in the

record indicates the protocol version, and is followed by one or more directives. Consider the

example below:

v=1 hash_sha1:938ca8e9a284355ce1a7ff7621c1d2d876ab2543 ~all
_/ __/ ___/
 | | |
Version Directive 1 – hash mechanism Directive 2 – “all”

 with default qualifier of “+” mechanism with “~”
 qualifier

Each directive is a single rule comprised of both a mechanism and a qualifier. Each mechanism

is an identifier for a certificate, or for a supported DNS resource record that may identify a

 15

certificate. If matched, the client application should enforce the policy much like an access

control entry (ACE) in a firewall. Supported mechanism types are as follows:

hash: Defines a hash of a target certificate or public key. The directive is officially

denoted as hash_<algorithm>, followed by a “:” and the full hash value.

Supported hash algorithms include SHA1, SHA256, and SHA512.

include: Used to refer to another CPF record for policy. This results in an additional DNS

query to fetch the target CPF record.

all: Matches everything, and is used to define the default policy when previous

directives do not match.

The qualifier is a single symbol at the beginning of the directive that indicates the action to

execute if the directive is matched. If no qualifier is specified, then the default qualifier “+” is

applied. The list of acceptable qualifiers and their associated actions are as follows:

+ Pass: Permit the connection.

- Fail: Block the connection, and do not offer the user with a means to override

˜ SoftFail: Warn the user, but allow them to override the error at their discretion

? Neutral: Permit the connection and log the result. This qualifier is provided for

testing purposes, and does not indicate trust. When the connection is allowed

based on a “?” qualifier, it is treated with the same level of trust as a service

that does not have a CPF record published.

One of the most important concepts of CPF is the distinction between the “ - “ and “ ~ “

qualifiers. The “ ~ ” indicates a “SoftFail” condition where the certificate is not trusted, but may

be permitted by the client application if the user chooses to bypass certificate warnings. The “ -“

instructs the client application to hard-block the connection without allowing the typical user to

override. This feature allows organizations to prevent users from bypassing certificate security

for its services, reducing the risk of unintended data exposure. We anticipate that the “ - “ will be

commonly used to protect connectivity with online banking services, trading and brokerage sites,

healthcare sites, hosting providers, remote access solutions, and other services where a high level

of security is critical.

 16

Publishing Policy

DNS is used to distribute CPF information since it is a natural fit in many ways. DNS

infrastructure is already established and highly scalable, with the proven capacity to handle high

volumes of queries quickly and efficiently. The CPF policy text is likely to be very short for

most situations, thus it can be exchanged easily in a standard DNS UDP packet. In addition, a

legitimate server certificate should almost always correlate to a fully qualified hostname such as

“host.domain.tld”, and thus will be resolvable in DNS. It is also logical to manage CPF

information in the same service as the hostname rather than relying upon completely independent

systems. The use of an external system would require new infrastructure and dependencies,

whereas DNS servers are already deployed and maintained with little overhead. DNS also

supports the DNSSEC protocol for digital signing of DNS responses, which can prevent MITM

attacks against DNS queries and responses [1].

CPF information is published in DNS as TXT records for the purposes of this work. In the event

that this protocol is adopted on a wider scale, it will be ideal to use a dedicated resource record

such as “CPF” to identify certificate policy records rather than the generic “TXT” record. The

RFC requires the use of a dedicated “CPF” record type, thus only one CPF record may be

published for each hostname. The “include” mechanism may be used to refer to another CPF

record, which will result in additional DNS queries. The RFC imposes a maximum limit of ten

DNS queries when resolving the CPF policy for a hostname; this is in place to prevent abuse by

blocking CPF records with an excessive number of includes, or recursive includes that may result

in an infinite loop.

Other special conditions to consider:

 Wildcard certificates represent any hostname under a domain, not a specific hostname.

The reserved hostname “_wcc_cpf” is used by CPF when looking up hashes for a

wildcard certificate. For example, if a CPF-compatible application is presented with a

certificate for “*.example.com” but the URL hostname does not match, then the

application will request the CPF information for “_wcc_cpf.example.com”.

 Subject Alternative Names are used for services accessed via multiple hostnames. This

attribute allows a single certificate to identify both the common name and alias addresses.

The CPF record for the subject alternative name will likely be the same as the CPF record

 17

for the common name, thus the “include” mechanism may be used to link one to the other

for simplified administration.

Accessing and Interpreting Policy

Most applications support DNS resolution, which means that they can easily access CPF records.

A CPF-compatible application simply needs to query DNS for the CPF record associated with a

remote service and then be able to interpret the policy and enforce it. The application must first

determine the hostname to query, the source of which may vary depending upon the

circumstances.

1. Generally the application will connect to a URL like https://www.example.com and the

hostname will match the certificate common name or a subject alternative name. In this

case, the application will query for the hostname specified in the URL.

2. On occasion, the hostname in the URL does not match any of the names assigned to a

certificate. This typically occurs if the wrong certificate has been assigned to a service, if

the service is being accessed by IP address rather than hostname, or if the hostname in the

URL is an alias that is routed properly via DNS but does not match the certificate

information. This condition results in the generation of a certificate hostname mismatch

error. Most applications warn the user when this occurs and should continue to do so.

However, the application should also query for the hostname specified in the certificate

common name as a precaution. In the event that a certificate public/private key pair has

been compromised, the domain owner could potentially advertise that the certificate is no

longer trusted and to block it using the “-“ qualifier. This will allow the client application

to detect the issue and protect the user from the potentially malicious resource.

3. Wildcard certificates are formatted as “*.example.com” where “*” can represent any

hostname. As long as the hostname in the URL is represented correctly by the certificate,

the CPF lookup should be conducted against the URL hostname. If the certificate does

not match the URL hostname, then it will be handled as a certificate mismatch error. In

this case, the client application will query the CPF record for the hostname “_wcc_cpf”

rather than “*”.

 18

When processing the CPF information, one of seven possible CPF results will be returned:

 None – no CPF records were published for the target hostname or that the peer address is

not eligible for CPF lookups. Ineligible addresses include IP Addresses and unqualified

hostnames. The client software cannot ascertain whether or not the peer is authorized

using CPF.

 Pass – the domain owner has authorized the certificate to represent the services hosted at

the given hostname. The client application can trust that the certificate is deemed

legitimate from the perspective of the organization operating the service.

 Neutral – The domain owner has explicitly acknowledged the existence of a certificate

and its association with a specific hostname, but cannot or does not want to assert

whether or not the certificate is officially authorized. This is primarily allocated for

testing purposes, and should be treated like “None”.

 SoftFail – Similar to “Fail” but with the distinction that the client application may decide

how to handle this condition. It may be configured to log the failure and continue, warn

the end-user and require approval to continue, etc. A client application MUST reflect the

reduced level of trust in a connection when the “SoftFail” result is returned.

 Fail – an explicit statement that a certificate is not authorized to represent the peer

hostname. The client application must abort the connection.

 TempError – the client application encountered a transient error while performing the

DNS query. Checking software can choose to accept or temporarily reject the

connection.

 PermError – occurs when the CPF record for the hostname could not be correctly

interpreted. This signals an error condition that requires manual intervention to be

resolved by the domain owner, as opposed to the TempError result. The client

application should treat this as either “Fail” or “SoftFail”.

When the client application receives a response to the DNS query, it must parse the results into a

list of directives much like an access control list (ACL). Each directive is treated as an access

control entry (ACE), and they are processed from first to last and executed on a “first hit” basis.

The application must compare the certificate’s hash value to each entry for matching criteria. If

there is a match, then the qualifier’s corresponding CPF result is returned to the client application.

If a match is not found, the default response of SoftFail (~) is applied.

 19

Evaluation

In order to demonstrate the usage and effectiveness of the CPF protocol, we have provided a

basic text-based web browser that adheres to the CPF RFC. The browser was subjected to

twenty-four tests to calculate compatibility and effectiveness with CPF, and to determine any

delay incurred due to processing and network performance overhead. Each of the tests is run in

two phases – three trials at LAN speed, and three trials in an Internet-simulated environment.

CPF-Compatible Browser Design

The proof-of-concept (POC) web browser is programmed using Java 1.6.x and Perl 5.12. The

Java application “CPF-POC.jar” accepts a URL as a command-line argument, connects via

HTTPS, and fetches the server’s public key certificate. It then extracts the common name and

subject alternative names from the certificate and compares them to the hostname specified in the

HTTPS URL. Once the application verifies the validity of the certificate, it will pass the

appropriate hostname to a Perl-based CPF resolver.

The custom Perl resolver “cpf-fetch.pl” leverages Net::DNS to conduct a series of DNS queries

related to CPF, with additional logic to follow CPF-specific mechanisms like “includes”. It also

validates the final CPF information to ensure that errors are properly detected and handled.

Finally, it prepares the policy in an ACL format, notes any errors, and returns the results back to

the Java browser for interpretation and enforcement.

The browser’s CPF interpreter parses the output from the Perl script and determines whether the

CPF ACL needs to be processed. If no CPF record was present or an error was returned during

the CPF resolution/validation process, then the CPF interpreter will issue a result immediately.

Otherwise, the hashes of the peer’s certificate will be compared to each ACL entry. When a final

result is determined, the application will act on this information by allowing the connection,

blocking the connection without the ability to override, or warning the end-user and prompting

for approval to continue.

 20

Environment Configuration

The test environment is composed of three Linux virtual machines – a workstation (vPC1), a web

server (THS-Web1), and a DNS server (THS-DNS1). The web server hosts a sample website via

HTTPS using Apache2, and the DNS server acts as both a recursive and authoritative nameserver

for our tests using Bind 9. The hosts are all directly connected over a 1 Gbps link to an Ethernet

switch. In the first phase of each test, all three devices are connected via the same network

switch for a “LAN-based test” as shown in figure 5. This environment minimizes latency and

delays, allowing us to observe protocol performance under optimal conditions.

In the second phase of each test, we deployed a WAN emulation virtual appliance on the network

running WAN-Bridge LiveCD4. This device acts as a layer-2 Ethernet bridge between the PC

and servers as shown in figure 6, restricting bandwidth to 3072 Kbps and adding 20 ms of latency

to each Ethernet frame that traverses it. This “Internet simulation” allow us to better gauge the

end-user experience when using CPF over the Internet.

Figure 5: Network diagram of environment for LAN-based testing

4 http://code.google.com/p/wanbridge/

 21

Figure 6: Network diagram of environment for Internet simulation testing

The DNS protocol does not natively provide authenticity or integrity, two key elements that

prevent DNS traffic from being transparently manipulated. Although DNS is the only functional

requirement for the CPF protocol, some form of digital signing or encryption must be applied in

order for CPF to provide seamless protection under a MITM attack. The DNSSEC protocol

extends DNS to offer these features, although it is not widely implemented to date.

A limited test has been devised to explore the potential performance impact when combining CPF

with DNSSEC. The environment is similar to previous experiments, except that a dedicated DNS

resolver “THS-DNSResolver” has been added (figure 7) to conduct recursive DNS queries and

validate the DNSSEC responses. Server THS-DNS1 is running a cryptographically signed

version of the zone used in experiment #7, as noted in table 2. In this experiment, the workstation

vPC1 directs all DNS queries to THS-DNSResolver, which is configured to forward queries for

covertpacket.com to THS-DNS1. The “named” service on THS-DNSResolver has been

configured to use the public key of THS-DNS1 as a DNSSEC trust anchor, allowing it to validate

the responses and detect unauthorized changes.

 22

Figure 7: Network diagram of Internet simulation environment with DNSSEC applied to experiment #7

Reliability Results

Our web browser was subjected to twenty-four unique experiments listed in table 2, to confirm

that it will behave in accordance with the CPF RFC. These tests target key features and

functionality related to the detection and handling of errors, the ability to work with other

protocols, successful interpretation of policy, and proper enforcement of results. We found that

the web browser successfully completed all tests with the anticipated results. This data indicates

that the CPF protocol can be implemented in third-party applications with relative ease and

predictability.

Description Result
1 Demonstrate that the “-” qualifier is properly interpreted and enforced per RFC Pass
2 Demonstrate that the “~” qualifier is properly interpreted and enforced per RFC Pass
3 Demonstrate that the default “~all” directive is enforced when a CPF record is returned

but no directives are matched.
Pass

4 Demonstrate that the “+” qualifier is properly interpreted and enforced per RFC Pass
5 Demonstrate that the hostname from the certificate common-name is used for the CPF

lookup when a certificate hostname mismatch occurs.
Pass

6 Demonstrate that default qualifier “+” is applied on directives lacking an explicit qualifier Pass
7 Demonstrate that the “-“ qualifier will be enforced on the hash mechanism Pass
8 Demonstrate that the “~“ qualifier will be enforced on the hash mechanism. Pass
9 Demonstrate that the “?“ qualifier will be enforced on the hash mechanism. Pass
10 Demonstrate that CPF will default to “~all” (SoftFail) when directives are available but

none are matched.
Pass

11 Demonstrate that the CPF interpreter will detect a malformed hash mechanism Pass
12 Demonstrate that CPF validates the protocol version Pass
13 Demonstrate that the CPF interpreter will detect multiple CPF records for a hostname and Pass

 23

result in protocol failure.
14 Demonstrate that the CPF interpreter will detect an invalid mechanism Pass
15 Demonstrate that SSL connections are permitted when a CPF record is not advertised Pass
16 Demonstrate that CPF follows “include” mechanisms Pass
17 Demonstrate that the CPF interpreter limits the number of DNS queries per RFC Pass
18 Demonstrate that CPF resolver will conduct lookups based on the URL hostname when

the service is identified by a valid wildcard certificate.
Pass

19 Demonstrate that an “include” can be used to link a host’s CPF information to a
corresponding wildcard certificate

Pass

20 Demonstrate that large CPF records (>512 bytes in size) will be resolvable via DNS
using TCP

Pass

21 Demonstrate that CPF resolver will conduct lookups based on the URL hostname when
the service is identified by a certificate subject-alternative-name.

Pass

22 Demonstrate that CPF resolver will conduct lookups based on the certificate common
name when a hostname mismatch occurs between the URL hostname and the certificate

Pass

23 Demonstrate that the CPF resolver checks for a corresponding A-record before conducting
a CPF lookup.

Pass

24 Demonstrate that CPF resolver will conduct lookups based on the wildcard certificate’s
domain when the remote service’s hostname is not valid for a wildcard certificate.

Pass

Table 2: Summary of tests executed by CPF-compatible browser, and whether or not the final result complied with
RFC specifications.

Performance Results

In order for CPF to be a practical solution, it must improve security without significantly

hindering the end-user’s browsing experience. Since the protocol builds onto existing browser

functionality, the minor increase in network and computational overhead will have some impact

on content delivery. Our tests measure the time it takes to resolve and process CPF records under

a variety of common circumstances. These measurements exclude the time required to load the

application into memory, as this will vary between applications.

In order to resolve a basic CPF record consisting of a single SHA1 hash and an “all” mechanism,

approximately 495 bytes of data is exchanged as indicated in tests 7-9. The time needed to

acquire, validate, and process CPF information ranges between 6 ms and 8 ms in a LAN

environment, and 93 ms to 106 ms in the Internet-simulated environment. These delays and

bandwidth needs are negligible, and would not be noticed by end-users in either situation. The

timings observed in CPF are similar to those experienced when using VeriKey, which range

between 204 ms and 885 ms for lookups against notary servers in the same geographic region

[17].

 24

Overall bandwidth needs increase when fetching CPF records that are larger in size or employ the

“include” mechanism. In addition, numerous DNS queries extend the total duration of time

needed to fetch and process CPF policy due to the compounding effects of network latency. For

example, test 17 follows a recursive CPF “include” ten times before reaching the maximum

lookup count, resulting in a total of 11 DNS queries. This resulted in the exchange of 2,733 bytes

of data, and averaged 505 ms to process in the Internet-simulated environment. Similarly, test 20

specifies a CPF record with 13 different SHA1 hashes, which exceeds 512 bytes in length and

forces DNS to renegotiate transport protocols from UDP to TCP. In this unusual scenario, 1,330

bytes are exchanged and processed in an average of 186 ms. Both of these tests complete in well

under one second, despite the uncommon data requirements and communications needs

associated with the CPF policies used in these particular tests.

The performance results of CPF are promising in both the LAN environment and Internet-

simulated environment, and the tests demonstrate that a fast response can be expected in both

common-sized policies and large policies. This was expected, since a CPF record is generally

comparable in size to a query for a CNAME or a zone’s MX records, which are routine queries.

Based on these results, we are confident that CPF can be implemented with little impact to the

end-user experience.

Performance Impact from DNSSEC

When DNSSEC is applied in the LAN environment, the average DNS resolution time is 12 ms

compared to 6 ms without DNSSEC. Similarly, in the Internet-simulation environment, we found

that the average DNS resolution time is approximately 105 ms as opposed to 97 ms without

DNSSEC. Based on these results, the average delay incurred by using DNSSEC is 8 ms – a

minimal delay. The DNS payload size for CPF with DNSSEC is substantially larger at 1,211

bytes, from 495 bytes without DNSSEC. This increase can be mainly attributed to the inclusion

of the signed hashes for both the target resource record (TXT or A) and the NS resource record in

each DNS response.

The true overhead introduced by DNSSEC may vary based upon a number of variables. The size

of the DNS data exchange is most dependent upon the length of the DNSSEC zone-signing key

(ZSK) and the length of the domain name. The DNS resolver may introduce additional latency

when fetching DNSSEC-related resource records, validating the chain of trust, and returning the

 25

DNS response. However, it can also leverage caching to improve performance. It’s also worth

noting that DNSSEC is required to secure all DNS responses, not just CPF records. Therefore,

similar overhead would be experienced when resolving common resource record types, such as

A-records and MX records. The overhead of DNSSEC on CPF records would be comparable to

other records. While all the conditions related to DNSSEC are difficult to predict, our testing

generally suggests that DNSSEC does not substantially impact response time. We do not believe

that it will significantly affect DNS queries for CPF records in a manner that would be noticeable

to the end-user.

Future Work

CPF Mechanism Expansion

The current list of mechanisms supported in CPF accommodates most common situations and use

cases. It would be worthwhile to explore the expansion of mechanism definitions to include other

DNS record types. For example, if the CAA record continues to mature and gain industry

support, it would be beneficial to use this information to verify certificate authorization based on

the signing CA. This will provide a more flexible approach to authorization, with reduced

maintenance requirements as compared to publishing hashes for specific public key certificates.

Application Support

Applications, services, and operating systems will need to be updated to support CPF. This work

provides the necessary information and a proof-of-concept example to aid in the development

process. In addition, the use of DNS as a distribution model simplifies the integration process. It

will be beneficial to add CPF support to any application that exchanges public keys or public key

certificates, such as web browsers, SSH clients, proxy appliances, and SMTP servers. DNS

services will also need to be updated to support a new “CPF” resource record type.

Integration with Convergence

CPF and Convergence approach certificate verification in different ways, both of which have

advantages and disadvantages. CPF offers an authoritative answer as specified by the service

owner, which we consider to be a more trustworthy indicator. Likewise, Convergence allows the

 26

user to select notaries for verification, which assures consistency of the public keys provided by a

service. One of the advantages of Convergence is that it provides end-users with enhanced

security for public services regardless of the service owner’s support, whereas CPF requires the

service owner to maintain a set of records for certificate authorization. However, CPF offers a

way to authenticate public keys without direct network access to the service by

verification/notary servers.

Convergence notaries have the ability to support multiple verification backends, such as

Perspectives, DNSSEC, and CA PKI [12]. It may be worthwhile to develop a CPF backend for

Convergence; this would allow Convergence end-users to benefit from CPF when it is available

for a hostname, but have the ability to fall-back on an alternate backend when CPF records have

not been published. As an additional benefit, the CPF lookups would be conducted from an

independent network, ensuring consistency. While DNSSEC is recommended with the use of

CPF, verifying the public key via a CPF backend in Convergence would offer additional security

for unsigned DNS responses. Since DNSSEC has not been widely adopted thus far, this would

be a welcome alternative.

Certificate Assurance Grading

Most applications identify a certificate as being either “trusted” or “untrusted”. However, in the

real world people tend to grant trust in varying levels based on their knowledge of an individual

and his or her actions, appearance, credentials, background, etc. As new verification methods

continue to progress and we move away from a system solely managed by CAs, it may be

beneficial to assign connections a “trust grade” based on the application’s level of assurance that

the connection is secure and authentic. This would allow users to judge the level of trust when

conducting different actions online. For example, a basic 2048-bit SSL certificate signed by a

CA may be trusted, but offers a low degree of assurance. This may be acceptable for a website’s

contact form or a specialized web application, but users may exercise greater caution when

exchanging sensitive information. In comparison, a 2048-bit certificate that’s fully validated by

the CA, only accepts strong TLS/SSL ciphers, and has a published CPF record offers a high

degree of assurance that is more appropriate for use with webmail applications, remote access

solutions, and online banking.

 27

Conclusion

Digital trust is an important aspect of network security that millions of people depend upon on a

regular basis. PKI plays a vital role in this area, and we believe that the Internet community will

continue to rely upon this trust model for the foreseeable future. However, in order for PKI to be

a reliable solution, the vulnerabilities related to trust confinement must be resolved.

In this work, we present CPF as a unique and effective approach that allows network service

owners to publish certificate authorization policies using the existing DNS infrastructure. As a

result, organizations gain the ability to control authentication for its services, creating a second

viewpoint external to CAs that counteracts many of the negative repercussions resulting from a

compromised CA or from fraudulent certificates. In addition, the CPF protocol allows for greater

granularity to protect end-users transparently, enhancing the security of certificates and public

keys on a broad level.

In recent years, researchers have made significant progress identifying weaknesses in PKI and

certificate-based security, and many have contributed thoughtful ideas and solutions for these

issues. The CPF protocol was developed with many of the same issues in focus, and embraces

the same common goal of improving online trust. We believe that the previous and ongoing

efforts discussed earlier in this work offer valuable solutions, and respectfully propose CPF as a

complementary solution rather than as an alternative. CPF is able to work collaboratively with

Convergence/Perspectives, CAA records, TLSA records, and browser certificate inspection as an

additional layer of security, offering greater overall protection.

We have discussed the goals, design, and implementation of CPF throughout this work, and

demonstrated that it is capable of enhancing certificate-based security while maintaining an

acceptable level of performance. Our work has the potential to benefit a great number of

organizations and individuals. We hope that industry leaders will consider it as a solution or as a

basis for further improvements.

 28

References

[1] Arends, R., Austein, R., Larson, M., Massey, D., & Rose, S. (2005, March 1). DNS

Security Introduction and Requirements. IETF Tools. Retrieved July 5, 2011, from

http://tools.ietf.org/pdf/rfc4033

[2] DNS-based Authentication of Named Entities (dane) - Charter. (n.d.). IETF Datatracker.

Retrieved July 13, 2011, from http://datatracker.ietf.org/wg/dane/charter/

[3] Eckersley, P., Burns, J. (2010, July 30). An Observatory for the SSLiverse [PDF slides].

Retrieved August 14, 2011, from http://www.eff.org/files/DefconSSLiverse.pdf

[4] Goodin, D. (2011, June 21). Web authentication authority suffers security breach. The

Register. Retrieved July 15, 2011, from

http://www.theregister.co.uk/2011/06/21/startssl_security_breach/

[5] Hallam-Baker, P., Stradling, R., & Laurie, B. (2011, May 10). DNS Certification

Authority Authorization (CAA) Resource Record. IETF Tools. Retrieved June 20, 2011,

from http://tools.ietf.org/pdf/draft-hallambaker-donotissue-04.pdf

[6] Hoffman, P., & Schlyter, J. (2011, July 25). Using Secure DNS to Associate Certificates

with Domain Names For TLS. IETF Tools. Retrieved July 29, 2011, from

http://tools.ietf.org/id/draft-ietf-dane-protocol-09.txt

[7] Housley, R., Polk, W., Ford, W., & Solo, D. (2002, April). Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile. IETF Tools.

Retrieved October, 2011, from www.ietf.org/rfc/rfc3280.txt

[8] Keizer, G. (2011, July 27). Sniffer hijacks secure traffic from unpatched iPhones.

Computerworld. Retrieved July 29, 2011, from

http://www.computerworld.com/s/article/9218676

 29

[9] Leyden, J. (2008, December 29). CA issues no-questions asked Mozilla cert. The

Register. Retrieved July 17, 2011, from

http://www.theregister.co.uk/2008/12/29/ca_mozzilla_cert_snaf/

[10] Lopez, J., Oppliger, R., & Pernul, G. (2005). Why Have Public Key Infrastructures Failed

so Far? Internet Research, 15(5), 544–556.

[11] Marlinspike, M. (2009, July 29). Null Prefix Attacks Against SSL/TLS Certificates.

Retrieved October 1, 2011, from www.thoughtcrime.org/papers/null-prefix-attacks.pdf

[12] Marlinspike, M. (August 2011). SSL and the Future of Authenticity [Video file]

Retrieved on September 7, 2011, from

http://www.youtube.com/watch?v=Z7Wl2FW2TcA

[13] Mike Burmester and Yvo G. Desmedt. 2004. Is hierarchical public-key certification the

next target for hackers?. Commun. ACM 47, 8 (August 2004), 68-74.

DOI=10.1145/1012037.1012038 http://doi.acm.org/10.1145/1012037.1012038

[14] National Vulnerability Database (NVD) National Vulnerability Database (CVE-2011-

0228). (2011, August 29). National Vulnerability Database Home. Retrieved October 1,

2011, from http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-0228

[15] Prins, J. R. (2011). DigiNotar Certificate Authority Breach - Operation Black Tulip. The

Netherlands: Fox-IT BV. Retrieved September 13th, 2011 from

http://www.rijksoverheid.nl/bestanden/documenten-en-

publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-

operation-black-tulip-v1-0.pdf

[16] Schneier, B., & Ellison, C. (2000). Ten Risks of PKI: What You’re not Being Told about

Public Key Infrastructure. Computer Security Journal, 16(1), 1-7. Retrieved May 8,

2011, from http://www.schneier.com/paper-pki.pdf

[17] Stone-Gross, B., Sigal, D., Cohn, R., Morse, J., Almeroth, K., & Kruegel, C. (2008).

VeriKey: A Dynamic Certificate Verification System for Public Key Exchanges.

 30

Detection of Intrusions and Malware & Vulnerability Assessment (pp. 44-63). New York:

Springer Berlin / Heidelberg.

[18] Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., & Cranor, L. F. (2009). Crying

Wolf: an Empirical Study of SSL Warning Effectiveness. Proceedings of the 18th

Conference on USENIX Security Symposium (pp. 399 - 416). Montreal: USENIX

Association.

[19] Weise, Joel (2001). Public Key Infrastructure Overview. Sun Blueprints Online.

Retrieved May 2, 2011, from http://www.sun.com/blueprints/0801/publickey.pdf

[20] Wendlandt, D., Andersen, D., & Perrig, A. (2008). Perspectives: Improving SSH-style

Host Authentication with Multi-Path Probing. USENIX 2008 Annual Technical

Conference on Annual Technical Conference (ATC'08), 321-334. Retrieved September 5,

2011, from http://www.cs.cmu.edu/~dga/papers/perspectives-usenix2008.pdf

[21] Wong, M. W., & Schlitt, W. (2006, June). RFC 4408 - Sender Policy Framework (SPF)

for Authorizing Use of Domains in E-Mail, Version 1. IETF Tools. Retrieved June 13,

2011, from http://tools.ietf.org/pdf/rfc4408

[22] Zetter, K. (2011, March 23). Hack Obtains 9 Bogus Certificates for Prominent Websites;

Traced to Iran. Wired.com. Retrieved May 9, 2011, from

http://www.wired.com/threatlevel/2011/03/comodo-compromise/

Appendices

 Certificate Policy Framework Request for Comment (RFC) Draft

 Logic Diagram for Proof-of-Concept HTTPS Browser

Certificate Policy Framework Request for Comment (RFC) Draft

UNASSIGNED M. Lidestri
Request for Comments: DRAFT-UNASSIGNED August 20 11
Category: Experimental

Certificate Policy Framework (CPF) for Distributing
Certificate Authorization/Policy, Version 1

Status of This Memo

This memo defines an experimental protocol for the Internet
community. It does not specify an Internet standar d of any kind.
Discussion and suggestions for improvement are requ ested.

Version

Ver 1.3 DRAFT

Table of Contents

1. Introduction....................................... 3

1.1. Terminology.. 3
2. Operation.. 3

2.1. Publishing Authorization........................... 3
2.2. Checking Authorization............................. 4
2.3. Interpreting the Result............................ 4

2.3.1. None 4
2.3.2. Pass 4
2.3.3. Neutral 4
2.3.4. SoftFail 4
2.3.5. Fail 5
2.3.6. TempError 5
2.3.7. PermError 5

3. CPF Records.. 5
3.1. Publishing... 5

3.1.1. DNS Resource Record Types 6
3.1.2. Scope 6
3.1.3. Multiple DNS Records 6
3.1.4. Multiple Strings in a single DNS Record 6
3.1.5. Record Size 7
3.1.6. Wildcard Certificates 7
3.1.7. Subject Alternative Names 7
3.1.8. CPF Record Caching and TTL 7

4. Client Lookups..................................... 7
4.1. Arguments.. 7
4.2. Initial Processing................................. 8
4.3. Record Validation.................................. 8
4.4. Record Processing.................................. 8
4.5. Default Result..................................... 9
4.6. Lookup Methodology................................. 9

4.6.1. Order-of-Operations 9
4.6.2. Pre-fetching Data 10

5. Mechanism Definitions.............................. 10
5.1. “all”.. 10
5.2. “include”.. 10
5.3. “hash” (hash_ <algorithm>)................................... 11
5.4. Future expansion................................... 11

6. Considerations..................................... 11
6.1. DNS Security....................................... 11
6.2. Local Attacks...................................... 11
6.3. Compromised DNS Services........................... 12
6.4. Compromised Certificate Management Services........ 12
6.5. Transparent SSL Interception....................... 12
6.6. Self-Signed Certificate Authorization.............. 13
6.7. Complimenting CRL/OCSP............................. 13

7. Acknowledgements................................... 13
8. References... 14

1. Introduction

Public Key Infrastructure (PKI) has been widely imp lemented as a
solution for instilling trust in public key certifi cates. However,
one significant risk with PKI is the unconditional trust granted to
certificate authorities (CAs). Applications and op erating systems
consider a CA as untrusted or completely trusted, w ith no further
granularity. This means that any certificate issue d by a trusted CA
will be considered legitimate.

This document defines a protocol for publishing cer tificate controls
to client applications and services using the domai n name service
(DNS). Domain owners may authoritatively offer cer tificate policy
and authorization information for a given hostname using the CPF
resource record. Likewise, client applications may acquire
certificate policy by querying DNS for the CPF reco rd of the
hostname provided, which may then be compared to a certificate’s
attributes.

The CPF record is an access-control list for certif icates; it may
identify both specific certificates and certificate s with certain
attributes, and dictates how each entry should be h andled. CPF
policy information will enable applications to dete rmine the
legitimacy of a certificate authenticating a servic e from the
perspective of the authoritative organization. Thi s offers a
greater level of assurance than that of a third par ty CA, which has
no direct authority over the service. In addition, it allows the
service owners to dictate how client applications s hould behave when
presented with an untrusted certificate, further pr otecting
themselves and their customers, clients, partners, and users.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHAL L", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and " OPTIONAL" in this
document are to be interpreted as described in [RFC 2119].

Common Name – X509v3 certificate attribute which de clares the
primary identity. In the context of this document, the common name
is always a fully qualified domain name (FQDN).

Subject Alternative Name – x509v3 certificate attri bute which
declares secondary/alias identities related to the common name.

Domain Owner – the individual(s) responsible for ma naging DNS zone
information.

2. Operation

This section describes how CPF should be published and handled, at a
high level. The details of the protocol syntax are further
documented in sections 3 and 4.

2.1. Publishing Authorization

A CPF-compliant hostname must advertise a CPF recor d, as described
in section 3. This record identifies certificates that may
represent services located at a given hostname, and indicates how a
client application should react to a given certific ate.

If domain owners choose to publish CPF records, it is RECOMMENDED
that they end in “-all” or “~all” so that a definit ive determination
of authorization can be made. If a final action is not defined, the
default action should be enforced by the client app lication as
defined in section 4.5.

2.2. Checking Authorization

A CPF-compatible application may perform CPF lookup s for protocols
protected using certificates, such as SSL-enabled s ervices including
HTTPS, SMTPS, LDAPS, etc.

2.3. Interpreting the Result

2.3.1. None

A result of "None" means that no CPF records were p ublished for the
target hostname or that the peer address is not eli gible for CPF
lookups. Ineligible addresses include IP Addresses and unqualified
hostnames. The checking software cannot ascertain whether or not
the peer is authorized.

2.3.2. Pass

A "Pass" result means that the domain owner has aut horized the
certificate to represent the services hosted at the given hostname.
The client application can trust that the certifica te is deemed
legitimate from the perspective of the organization operating the
service.

2.3.3. Neutral

The domain owner has explicitly acknowledged the ex istence of a
certificate and its association with a specific hos tname, but cannot
or does not want to assert whether or not the certi ficate is
officially authorized. A "Neutral" result MUST be treated exactly
like the "None" result; the distinction exists only for
informational purposes to facilitate testing.

2.3.4. SoftFail

A “SoftFail” must be treated as a “Fail”, with the distinction that
the client application may decide how to handle thi s condition. It
may be configured to log the failure and continue, warn the end-user
and require approval to continue, etc. A client ap plication MUST
reflect the reduced level of trust in a connection when the
“SoftFail” result is returned.

This option has been created to allow a domain owne r to permit a
bypass mechanism in the event of a failure. Use of this option is

not recommended, especially for services which are accessed over
public or untrusted networks.

2.3.5. Fail

A "Fail" result is an explicit statement that a cer tificate is not
authorized to represent the peer hostname. The cli ent application
must abort the connection. This action prevents th e software or
end-user from bypassing the failure and exchanging data over an
untrusted and potentially compromised connection.

If the domain owner does not wish to hard-block use rs from a
hostname on certificate authorization failure, then he may configure
the CPF record to result in a “SoftFail” instead.

2.3.6. TempError

A "TempError" result means that the client applicat ion encountered a
transient error while performing the DNS query. Ch ecking software
can choose to accept or temporarily reject the conn ection.

2.3.7. PermError

A "PermError" result means that the CPF record for the hostname
could not be correctly interpreted. This signals a n error condition
that requires manual intervention to be resolved by the domain
owner, as opposed to the TempError result. The cli ent application
should treat this like a “Fail” or “SoftFail” from a behavioral
standpoint.

3. CPF Records

A CPF record is a DNS resource record (RR) used to publish
certificates that are, or are not, allowed to repre sent services
located at a specific hostname.

A CPF record is a single, case-insensitive string o f text, processed
from left to right. Please consider the following example:

v=1 hash_sha1:6a0e9a60583c365eedafad7f4010965515dc0 14a –
hash_sha1:42ac0d3e30198c893a1f301939ace903019355ec ~all

This record has a CPF protocol version of “1” and t hree directives:

1. Allow certificate with SHA-1 hash of
6a0e9a60583c365eedafad7f4010965515dc014

2. Fail on certificate with a SHA-1 hash of
42ac0d3e30198c893a1f301939ace903019355ec.

3. Soft-fail on any other certificates representing th is
hostname.

3.1. Publishing

CPF-compliant services must have CPF records publis hed for
applicable hostnames by the domain owner.

The example above in Section 3 might be published v ia these lines in
a domain zone file:

 www.example.com. IN CPF “v=1
hash_sha1:6a0e9a60583c365eedafad7f4010965515dc014a –
hash_sha1:42ac0d3e30198c893a1f301939ace903019355ec ~all”

mail.example.com. IN CPF “v=1
hash_sha1:938ca8e9a284355ce1a7ff7621c1d2d876ab2543 –all”

CPF records are comprised of text-based content, an d can be lengthy
depending on the hash algorithms used and number of certificate
hashes contained in a given record. Large records may cause
problems with size limits; this is documented furth er in section
3.1.5.

3.1.1. DNS Resource Record Types

This document defines a new DNS RR of type CPF, (CO DE TBD). The
format of this type is identical to the TXT RR [RFC 1035]. The
character content of the record is encoded as [US-A SCII].

The TXT RR is a common method for distributing text -based
information via DNS. However, since the TXT resour ce record is used
generically for multiple purposes, its use may lead to unnecessary
bandwidth usage and processing. The CPF RR has bee n designated in
order to avoid this caveat. The TXT RR must not be used to
distribute CPF record information.

3.1.2. Scope

A CPF record MUST be applied to a specific DNS host name, with the
exception of wildcard certificates (discussed in 3. 1.6). A
networked service is traditionally identified by ho stname, and as
such CPF records should be matched one-to-one with this.
Certificates traditionally authenticate a service b y hostname as
either the “Common Name” or “Subject Alternative Na me” attribute.

3.1.3. Multiple DNS Records

A hostname MUST NOT have multiple CPF records publi shed. In the
event that more than one record is returned, the re sult “PermError”
should be issued.

3.1.4. Multiple Strings in a single DNS Record

As defined in [RFC1035] sections 3.3.14 and 3.3, a single text DNS
record can be composed of more than one string. If a published
record contains multiple strings, then the record M UST be treated as
if those strings are concatenated together without adding spaces.
For example:

 IN CPF "v=1 first" "second string..."

MUST be treated as equivalent to

 IN CPF "v=1 firstsecond string..."

CPF records containing multiple strings are useful in constructing
records that would exceed the 255-byte maximum leng th of a string
within a single CPF RR record.

3.1.5. Record Size

The published CPF record for a given hostname SHOUL D remain small
enough that the results of a query for it will fit within 512
octets. This will keep even older DNS implementatio ns from falling
over to TCP. Since the answer size is dependent on many things
outside the scope of this document, it is only poss ible to give this
guideline: If the combined length of the hostname a nd the text of a
CPF record is under 450 characters, then DNS answer s should fit in
UDP packets. Records that are too long to fit in a single UDP packet
should fail to TCP. In the event that the entire r ecord cannot be
retrieved, the PermError result should be returned.

3.1.6. Wildcard Certificates

Wildcard certificates are commonly used to represen t any hostname
under a given domain, where the common name attribu te resembles
“*.example.com”. From a security perspective it’s not ideal to use
wildcard certificates, but there are practical use cases for them.

A CPF resource record for wildcard certificates MUS T be applied
using a special, reserved hostname “_wcc_cpf” (for “wildcard
certificate CPF). In order to enable CPF for a ser vice using a
wildcard certificate, the service’s hostname should advertise a CPF
record similar to “include:_wcc_cpf.example.com”.

3.1.7. Subject Alternative Names

Subject Alternative Names are used for services whi ch are accessed
via multiple hostnames. This attribute allows a si ngle certificate
to identify both the common name and alias addresse s.

The CPF lookup SHOULD be initiated for the hostname requested by the
application in order to support multitasking lookup s. The CPF
record for the Subject Alternative Name will likely be the same as
the CPF record for the common name. The domain adm inistrator may
use the “include” mechanism to link one to the othe r, allowing for
simpler management.

3.1.8. CPF Record Caching and TTL

CPF records are subject to caching, just like any o ther DNS resource
record. Since CPF information reflects certificate authorization
and access controls, it’s ideal to refresh this inf ormation on a
more regular basis. It is recommended to set the t ime-to-live (TTL)
for these records between 20 minutes and 4 hours.

4. Client Lookups

4.1. Arguments

In order to query the CPF record via DNS, the clien t application
SHOULD be provided with a fully-qualified hostname, such as
mail.example.com . IP addresses are not DNS-resolvable and thus are
not supported by CPF. It is NOT RECOMMENDED to con duct CPF lookups
on unqualified names where a domain name is not pro vided.
Certificate name attributes should always be fully- qualified for
security reasons, and CPF embraces this practice.

4.2. Initial Processing

If the hostname is malformed per [RFC1034] name spa ce specifications
or is not fully qualified, or if the DNS lookup ret urns "domain does
not exist" (RCODE 3), the client application must r eflect the result
as “none”.

Mechanisms like “include” will require DNS lookups to fetch
additional CPF information. A maximum of ten (10) DNS queries may
be executed as part of a CPF lookup, including the initial CPF
query. If this limit is exceeded, then the applica tion should abort
the lookup and return a “PermFail” result.

4.3. Record Validation

After one CPF record has been returned, the client application must
validate the syntax, and if successful will process the directives.
If there is a syntax error in the CPF record, then the application
will treat the result as “PermError” and discontinu e processing.

CPF entries are space-delimited, and read from left to right. The
first entry MUST be v=#, where “#” is the CPF proto col version.
Each following entry is a directive comprised of a mechanism, and
optionally a qualifier preceding it. The last entr y should consist
of the “all” mechanism, with the desired qualifier. Please see the
example below.

 v=1 hash_sha1:938ca8e9a284355ce1a7ff7621c1d2d876ab 2543 ~all
 _/ ___ ___/ ___/
 | | |
 Version Directive 1 – hash mechanism Directive 2 – “all”

 with default qualifier of “+” mechanism with “~”
 qualifier

Mechanisms and qualifiers are documented in greater detail in
section 4.4

4.4. Record Processing

The CPF record is interpreted one entry at a time, on a “first hit”
basis much like an access control list. If the ent ire record is
processed without any explicit matches, then the de fault result will
be applied as documented in section 4.5.

Each mechanism is an identifier for a certificate, or another DNS
resource record identifying a certificate. Qualifi ers specify the
action to take on a specific mechanism. The combin ation of the

mechanism and qualifier is a directive, which CPF-c ompatible clients
are able to enforce.

The possible qualifiers, and the results they retur n are as follows:

"+" Pass
"-" Fail
"˜" SoftFail
"?" Neutral

The qualifier is optional and defaults to "+" if un specified.

The general syntax is:

[+|-|~|?]<mechanism>:<data>

For example:

 cpf:example.com
 ~hash_sha1:6a0e9a60583c365eedafad7f4010965515dc014 a

4.5. Default Result

If none of the directives match and there is no “al l” directive, then
the application SHOULD implicitly enforce this as “ ~all”.

4.6. Lookup Methodology

This section offers guidelines for an application t o conduct
lookups, to ensure the most practical and secure im plementation.

4.6.1. Order-of-Operations

An application should conduct CPF lookups using a h ostname provided
from one of two sources:

- Destination string (sub-component of URL)
- Certificate “common name” attribute

The following order of operations is RECOMMENDED:

//Part 1 – lookup by destination string (preferred)
IF the destination string is a hostname
 THEN initiate CPF lookup on destination string.
END IF

//Part 2 – lookup by certificate common-name (fallb ack approach)
IF the destination string is an ip-address OR the c ertificate name
attributes do not match the destination string (hos tname mismatch)
 THEN initiate CPF lookup on certificate common nam e
END IF

This approach is optimal because the destination st ring should
always match a certificate name attribute for a leg itimate service.
This also allows multi-threaded applications to con duct the CPF
lookup and download the remote service’s certificat e simultaneously,
minimizing delays.

In the case that a hostname mismatch occurs, the ce rtificate SHOULD
be looked up independently. Some applications, suc h as web
browsers, display a warning when a name mismatch oc curs. However,
by conducting this additional CPF lookup, we may le arn that the
domain owner for the certificate common name has bl ocked the
signature for the provided certificate. This may h appen if the
public/private key pair has been compromised. In t he event that the
CPF lookup on the “common name” attribute returns a soft-fail or
fail result, this SHOULD be enforced by the applica tion. Other
results (pass, neutral, etc.) may be ignored and th e default
application settings for certificate mismatches sho uld be enforced.

4.6.2. Pre-fetching Data

A remote service that is CPF-compatible MUST be ver ified prior to
the exchange of application data in order to minimi ze the risk of
data exposure.

Some applications may wish to download content befo re the identity
of the remote service has been verified via CPF, an d then process
the cached data if approved. This behavior is ofte n implemented in
order to accelerate content delivery and improve th e user’s
experience. However, certain information may be ex posed to an
untrusted party unintentionally. For example, an H TTP GET request
is used to download content, but may include a quer y string with
sensitive variables such as a session ID.

5. Mechanism Definitions

5.1. “all”

The “all” mechanism is a default that will match an ything, and is
the last mechanism evaluated in the record. This a cts as a default
directive, which will take effect if no previous cr iteria are
matched.

For example:

 v=1 hash_sha1:6a0e9a60583c365eedafad7f4010965515dc 014a -all

This entry will allow a certificate matching the sh a-1 signature
specified, and deny all other certificates.

5.2. “include”

The "include" mechanism allows a CPF record to link to the CPF
record of a different hostname. This is useful whe n services
accessed at a specific hostname are being represent ed by wildcard
certificates, or if the hostname is a subject alter native name for
the service.

All directives of an included CPF record are proces sed except the
“all” mechanism (if present). Matches must be hono red, regardless
of the qualifier applied to the directive.

For example, www.example.com is identified by a wildcard
certificate:

www IN CPF “v=1 include:example.com –all“
IN CPF “v=1 hash_sha1:
6a0e9a60583c365eedafad7f4010965515dc014a –all

This will direct the client to query the CPF record for example.com
as well, and apply it to the hostname www.

5.3. “hash” (hash_ <algorithm>)

The “hash” mechanism provides the hash value of a p ublic key
certificate. The mechanism suffix specifies the ha sh value selected
by the domain owner. A fixed number of hash algori thms will be
supported by CPF, to ensure greater compatibility a nd security. The
following hash mechanisms are currently supported:

hash_sha1: SHA1 hash of certificate
hash_sha256: SHA256 hash of certificate (RECOMMENDE D)
hash_sha512: SHA512 hash of certificate

The hash value should be generated from the PEM for mat of a
certificate, with all new-line characters removed (carriage return,
line feed, etc). This will ensure that the hash va lue is generated
properly regardless of operating system or applicat ion.

5.4. Future expansion

There are several DNS resource record types emergin g for identifying
certificates; one example is the CERT record define d by RFC draft-
hallambaker-certhash-00, or the CAA record defined by RFC draft-
hallambaker-donotissue-03. If adopted by the global IT community,
these could be used as mechanisms in the CPF protoc ol.

6. Considerations

6.1. DNS Security

CPF records are exchanged via DNS, which is an unen crypted protocol
by default. This makes it susceptible to a network -based man-in-the
middle (MITM) attack, where the DNS packet can be a ltered to
neutralize CPF. The use of DNSSEC is recommended to assure the
integrity and authenticity of DNS traffic, includin g CPF traffic.

6.2. Local Attacks

CPF can mitigate network-based (MITM) attacks in mo st circumstances.
However, its benefits are limited against local att acks. If malware
infects a machine, it can potentially manipulate an application or
operating system. Potential attacks include, but a re not limited
to, the following:

- Compromise an application and alter its behavior to see every
CPF lookup as a non-failing result like “none” or “ pass”. A
man-in-the-browser (MITB) attack would be one examp le of this.

- Compromise an operating system and act as a shim to intercept
API calls for DNS queries, and always return a non- failing
result.

6.3. Compromised DNS Services

If a DNS server were compromised, the attacker may gain the ability
to alter DNS records including CPF. By itself, thi s type of
incident does not significantly impact the potentia l to misrepresent
a service since a certificate still needs to be iss ued by a valid
CA. However, it could be used to launch a denial-o f-service attack
by changing the CPF record to “-all”.

6.4. Compromised Certificate Management Services

A number of certificate authorities provide web-bas ed portals for
certificate management, protected by username/passw ord
authentication. These portals typically allow user s to create,
revoke, or re-issue certificates.

If a certificate management account were compromise d, the attacker
could gain the ability to order new certificates or revoke/re-issue
an existing certificate. Depending on the validati on checks
conducted by the CA, a valid certificate may be iss ued to the
correct account, but under the control of an illegi timate
individual. This would enable the attacker to depl oy services and
identify themselves with legitimacy, endangering an y client system
initiating the connection.

CPF-compliant hostnames will have less exposure tha n hostnames
lacking a CPF record. So long as the client applic ation supports
CPF lookups, it will compare the re-issued certific ate to the CPF
record and detect that it is not authorized by the domain owner.

6.5. Transparent SSL Interception

A growing number of organizations are implementing network security
solutions including data-loss prevention, intrusion
detection/prevention, web filtering, antivirus scan ning, etc. In
some cases these countermeasures are configured to transparently
intercept encrypted traffic in order to scan for le gitimate
purposes. This is accomplished via man-in-the-midd le interception
using an internal PKI with a custom certificate aut hority that each
client device is configured to trust. When using C PF, client
applications will see all certificates signed by a proxy appliance,
which will not be in the CPF record for the associa ted domain.
While it’s generally good for CPF to act against un authorized
certificates, this situation presents challenges.

When client applications implement CPF, it may be b eneficial to
include a local setting which allows specific CAs t o override CPF.
Also, the software/appliances transparently proxyin g connections
should support the CPF protocol and have logic to p rotect client
applications.

Alternatively, organizations may be able to reconfi gure the
transparent device to act as an explicit proxy. Th is resolves the
issue by forcing the client application to establis h connections
directly with the proxy device.

6.6. Self-Signed Certificate Authorization

Certificate authorities are an essential component of PKI, and
provide the valuable function of validating a certi ficate
requestor’s legitimacy. CPF is intended to provide an additional
layer of protection, and must not be viewed as a re placement for
CAs. If a certificate is not signed by a trusted i ssuer, then CPF
must not be evaluated. Rather, the application sho uld enforce a
specific policy for these conditions on a global an d/or case-by-case
basis.

If CPF were allowed to override CA trust, it would introduce a
dangerous condition where a malicious individual co uld manipulate
both network connections and trusts via DNS (either by compromise or
MITM). Consider the situation where an organization ’s DNS server is
compromised – the attacker could redirect network t raffic to a
controlled device with a self-signed certificate. In addition, the
attacker could add a CPF record for the self-signed cert, allowing
it to appear as trusted by the client application. By allowing this
functionality, it would provide an easy mechanism f or attackers to
fake PKI security.

6.7. Complimenting CRL/OCSP

Certificate Revocation Lists (CRLs) are used to pub lish certificates
which have been revoked by the certificate authorit y and are no
longer considered trusted. Online Certificate Stat us Protocol
(OCSP) is a newer method for delivering similar inf ormation on a
certificate-by-certificate basis, offering better p erformance and
faster distribution than CRLs.

CPF offers the ability to block certificates matchi ng specific
signatures using the “fail” qualifier. This functi onality has been
included as a secondary method for domain owners to block
illegitimate or compromised certificates. This mec hanism is
intended to compliment CRLs/OCSP, not to replace th em. Certificates
MUST still be revoked through a certificate authori ty, and
applications MUST continue to fetch CRLs and OCSP i nformation.

7. Acknowledgements

The CPF protocol was modeled to be very similar to Sender Policy
Framework (SPF) [RFC4408]. SPF has been widely acc epted as a method
of authorizing mail servers, and has led to notable improvements in
email security. Similarly, the intention of CPF is to accomplish
the same goal for certificates and PKI security.

8. References

[RFC1035] Mockapetris, P., "Domain Names - Implemen tation and
Specification", STD 13, RFC 1034, November 1987.

[RFC1034] Mockapetris, P., "Domain Names - Concepts and

Facilities", STD 13, RFC 1034, November 1987.

[RFC2119] Bradner, S., "Key words for use in RFCs t o Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4408] Sender Policy Framework (SPF) for Authori zing Use of

Domains in E-Mail, Version 1. M. Wong, W. Schlitt. April
2006.

Logic Diagram for Proof-of-Concept HTTPS Browser

Connect to host:

- TCP handshake

- TLS negotiation, key

 exchange

Start
Is destination host resolvable

and accessible?
No Exit

Yes

Is peer certificate signed by a

trusted CA?

Yes

No Exit

Is certificate valid for host

address specified in URL?

Yes

CPF check on host

specified in URL

CPF check on host

specified in certificate CN

No

Conduct CPF lookup on host

What is CPF result?

None Neutral Soft-Fail FailTempError PermError

Warn and

prompt user

Exchange

data

Log

Exchange

data

Does user

accept?
No

Yes

Exchange

data

Pass

Exchange

data

CPF-Compatible Browser HTTPS Logic

Author: Matthew Lidestri

Version: 1.1

Date: 09/13/2011

Exit

Warn

See CPF

Analysis Logic,

page 2

Start
Is hostname resolvable to IP

address via DNS?
No

CPF Analysis Logic

Author: Matthew Lidestri

Version: 1.1

Date: 09/13/2011

Return result

TempError

Query DNS for CPF

record on hostname

Yes

Is CPF record returned?

Yes

No
Return result

None

Was only one record

returned?
No

Return result

PermError

Yes

Does CPF information pass

validation?
No

Return result

PermError

Yes

Parse CPF data, build into ACL

Does certificate identity match

criteria in current directive

Yes

Identify qualifier +

~

?

-

Return result

Neutral

Return result

Pass

Return result

SoftFail

Return result

Fail

Last ACE?

Process

next entry

Yes

Return

default result

SoftFail

No No

Yes
Process ACL iteratively,

first-hit basis

	Providing public key certificate authorization and policy with DNS
	Recommended Citation

	Microsoft Word - Thesis-MattLidestri-final

