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ABSTRACT 
 

While originally developed to deploy air bags for the automotive industry, 

Microelectromechanical Systems (MEMS) based accelerometers have found their way 

into everything from video game controllers to cells phones. As prices drop and 

capabilities improve, it is expected that the use of accelerometers will further expand in 

the coming years. Accelerometers currently have the second highest MEMS sales 

volume, trailing only pressure sensors [1]. In this work several single and three-axis 

accelerometers are designed, fabricated, and tested under a variety of conditions.  

The designed accelerometers are all based off of the piezoresistive effect, where 

the value of a resistor changes with applied mechanical stress [2]. When accelerated, the 

inertia of a suspended proof mass causes stress on piezoresistors placed on support arms. 

The corresponding changes in these resistor values are then converted to an output 

voltage using a Wheatstone bridge. To sense acceleration independently in all three axes, 

structures with three distinct modes of vibration and three sets of Wheatstone bridges are 

used.  

Devices were fabricated at the Semiconductor and Microsystems Fabrication 

Laboratory (SMFL), located at RIT. A modified version of the RIT bulk MEMS process 

was used, consisting of 65 steps, 7 photolithography masks, bulk silicon diaphragm etch, 

and top hole release etch [3].  

Unfortunately the finished chips show poor aluminum step coverage into contact 

vias and over polysilicon lines. This results in open circuits throughout the chip, 

prohibiting proper operation. Process corrections have been identified, and with proper 

fabrication the designs are still expected to yield working devices. Since the finished 
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accelerometers were not functional, several commercial accelerometers have been tested 

to characterize sensitivity, linearity, cross-axis sensitivity, frequency response, and device 

lifetime. 
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Chapter 1 

Introduction 

1.1 Motivation 

Microelectromechanical Systems (MEMS) is currently one of the fastest growing 

fields in the microelectronics industry. Accelerometers in specific have the second 

highest sales volume after pressure sensors [1], and sales continue to increase as more 

applications emerge. One of the original driving forces of MEMS based accelerometers 

has been the automotive industry, which uses accelerometers for stabilization, 

suspensions, and most importantly their air bag deploying systems. In addition to 

automotive applications, accelerometers are now being used in consumer electronics, 

including but not limited to game controllers, laptops, and cell phones. Accelerometers 

are widely used in machine health monitoring, where early vibration detection can signal 

a faulty part before catastrophic breakdown. Highly sensitive accelerometers can be used 

to measure extremely precise quantities such as gravitational field strength and small 

earthquakes. Many of these applications are not possible with conventional non-MEMS 

based accelerometers due to size and cost, as it would not be practical to put a 

conventional accelerometer in a cell phone. 

One useful MEMS device that could be fabricated is a multi-sensor chip that 

contains several sensors on the same die, including temperature, humidity, acceleration, 

stress, and pH. The current RIT bulk MEMS process is capable of making all of these 

devices on the same chip [2]. Combining these sensors along with the required 

electronics onto a single die will save money, add functionality, and reduce the overall 

footprint of the device. 
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While this project is primarily based upon microelectronic engineering principles 

that are used to fabricate the device, it also requires several other disciplines. Mechanical 

engineering is required to describe the motion and forces within the system. Electrical 

engineering is needed to condition, amplify, and output a readable signal. Finally, good 

communications skills are needed to share results with other engineers. 

 

1.2 Partnership with Impact 

Several military agencies have recently shown an increased interest in MEMS 

sensors [3]. Predictions of the remaining life of a system can be greatly aided with 

historical temperature, humidity, vibration, and stress data. RIT has partnered with 

Impact Technologies on several prognostic sensors, most of which would benefit from a 

three-axis accelerometer. It is possible that future projects at both RIT and Impact could 

benefit from this work. Other military projects, such as the Compact Kinetic Energy 

Missile (CKEM), require high performance accelerometers capable of operating through 

launch accelerations as high as 1000 gs [4]. Proprietary and non-public information on 

these projects will not be discussed in this document. 



- 3 - 
 

Chapter 2 

Current Technology and Research 

 

2.1 Piezoresistive Technology 

Most piezoresistive designs consist of a proof mass (m), elastic spring (k) with an 

attached resistor, and damping medium (b), usually air [1], [5]. These forces can be 

modeled as an under-damped simple harmonic oscillator, with the force balance given by 

Equation 1, where a is acceleration and x is displacement. When acceleration is applied to 

the sensor, the inertia of the proof mass applies force to the spring. The spring then 

deforms, exerting stress on an attached resistor. The resistor changes resistance due to the 

applied stress, which can be converted to a readable voltage using a Wheatstone bridge. 

The system then oscillates in a sinusoidal manner until damping returns it to equilibrium. 

Figure 1 shows an example of a basic cantilever approach, capable of detecting 

acceleration in one direction, while Figure 2 shows a design capable of independently 

detecting all three axes of acceleration. The three-axis accelerometer is able to 

independently oscillate up and down to sense z-acceleration, rotate left and right to detect 

x-acceleration, and rotate forward and backwards to detect y-acceleration. 

 
 

       1 

 

m
d 2x
dt 2

+ b
dx
dt

+ kx = ma
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Figure 1 – Basic cantilever model for 1-axis detection [6] 

 

Figure 2 - Monolithic three-axis accelerometer from Takao et al. [7] 
 

The main attraction of piezoresistive sensors is the simplicity of their design and 

fabrication, with one specific process using only a single mask [8]. Readout circuitry is 

often much simpler and based off of a resistive bridge and amplifier. Piezoresistive 

accelerometers suffer from larger temperature variation and lower sensitivity compared to 

capacitive based designs. This suits piezoresistive sensors to high-g and low-sensitivity 

applications. For example, piezoresistive sensors may be better suited for an airbag 

deploying system, while capacitive sensors may work better for motion controlled input 

devices. 

The first commercial MEMS accelerometer was piezoresistive based and used a 

bulk micromachining process. The structure, shown in Figure 3, was developed in 1979 

by Roylance et al. [9]. It is capable of sensing one-axis of acceleration from 0.001 to 

50 g, with a 100 Hz bandwidth.  
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Figure 3 - First commercialized MEMS accelerometer from Roylance et al. [9] 

 
Table 1 gives a summary of recent academic papers published on multi-axis 

piezoresistive accelerometers. Sensitivities in the µV/gV range indicate that amplification 

is needed to accurately read the output signals. The linearity, cross-axis sensitivity, and 

bandwidth values give a good indication of the possible uses of these devices. All of the 

accelerometers are capable of simple applications such as deploying an airbag, but would 

be unsuited for high precision applications such as a motion activated video game 

controller. 

 

Group Axes Range 
[±g] 

Sensitivity 
XY, Z [mV/gV] 

Linearity 
[%] 

Cross-Axis 
Sens. [%] 

Bandwidth 
[kHz] 

Kwon, 1998 [10] 2 ? 0.23 ,  0.79 ? 4 6.56 

Kal, 1995 [11] 2 13 0.004, 0.11 0.25 ? 1.65 

Takao, 2001 [7] 3 ? 31, 168* < 1.0 2 to 7 ? 

Doa, 2004 [12] 3 ? 0.09, 0.11 1.0 5.5 4.3 

Amarasinghe, 
2005 [13] 

3 10 0.10, 1.78 1.3 4 2.1 

Plaza, 2001 [14] 3 ? 0.09, 0.02 0.59 8.8 0.72 

Chen, 2008 [15] 2 ? 0.90* 0.05 ? 0.67 
* Supply voltage not given, units of [mV/g] 

Table 1– Sample of current academic piezoresistive accelerometer research 
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Lynn Fuller, Burak Baylav, and Ivan Puchades have previously fabricated several 

piezoresistive accelerometers at RIT [16]. The device and results, shown in Figure 4, 

have been demonstrated to work. The signal to noise ratio looks low, partially due to low 

amplification applied after the signal has traveled through several feet of wiring, along 

with it’s high-g design. It is the goal of this project to improve upon RIT’s accelerometers 

and generate a clean signal under both low and high accelerations. 

 

 
Figure 4 – RIT Fabricated accelerometer and results [16] 

 

2.1.1 Strain Fundamentals 

Mechanical stress can be described as the average amount of force exerted per 

area within a deformable body in which internal forces act. The SI unit for stress is the 

pascal, where 1 Pa = 1 N/m2. When stress causes an expanding force on an object it is 

said to be under tensile strain, when the stress causes a shrinking force it is said to be 

under compressive strain. Young’s Modulus is the ratio of stress to strain, and is given by 

Equation 2 where σ is stress, ε is strain, and E is the Young’s Modulus. Equation 3 shows 

the elastic deformation of an object related to strain. The Young’s Moduli for silicon and 

germanium are 185 GPa and 103 GPa, respectively.  
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2 

3 

Piezoresistance coefficients are a way to quantify the change in resistivity as a 

function of strain. This is shown in Equation 4, where ρ is resistance and π is the 

piezoresistive coefficient. When dealing with strain in crystals, carrier mobility can no 

longer be considered constant for bulk material. Each conduction direction has it’s own 

set of effective masses and scattering properties, so both parallel (π||) and perpendicular 

(π⏊) piezoresistance coefficients are needed. 

4 

Table 2 shows both the π|| and π⏊ coefficients for bulk silicon in the <110> 

direction, first reported by Smith et al. in 1954. From this table it can be shown that hole 

mobility is increased with uniaxial compressive strain and decreased by uniaxial tensile 

strain, while electron mobility is decreased by uniaxial compressive strain and increased 

by uniaxial tensile strain [17], [18]. 

 

Polarity	   π||	   π⏊	  
N	   -‐31.6	   -‐17.6	  
P	   71.8	   -‐66.3	  

Table 2 - Piezoresistance coefficients for the <110> direction, units of 10-11 Pa-1 [17] 

 

E =
!
"

X final = Xinitial!

!" = #$"
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The values given in Table 2 do not take two-dimensional transport behavior, temperature, 
doping, or electric field into account. The true piezoresistance coefficient is given by 

Equation 5, where P(N,T) is the piezoresistance factor, N is doping concentration, and T 
is temperature [19]. Multiplying the piezoresistance factor N, shown in Figure 5 for p 

type silicon, and the room temperature piezoresistance coefficient shown in  
Figure 6, gives the final piezoresistance coefficient as a function of temperature 

and doping. 

5 

 
Figure 5– Piezoresistance factor P(N,T) for p-Si as a function of doping and 

temperature [19]. 

 
 

 
Figure 6 – Piezoresistance coefficients at room temperature for the (001) plane of p-

Si [19]. 
 

!(N ,T ) = P(N ,T )!(300K)
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The effects of strain on electron mobility are more widely known due to the 

conduction band structure being less complicated than that of the valance band.  Both 

uniaxial and biaxial tensile strain in silicon induces splitting of the six-fold conduction 

band degeneracy between the in-plane and perpendicular valleys. This results in the 

reduction of intervalley electron scattering along with a decrease in the electron effective 

mass, both of which increase mobility. For holes, uniaxial compressive strain induces 

band warpage and the splitting of the light and heavy hole bands, both increasing 

mobility [20]. Figure 7a shows the three valance bands in unstrained silicon, containing 

heavy holes, light holes, and split-off holes.  Under biaxial strain, Figure 7b shows all 

three bands rising in energy. It also shows that the light hole band narrows and raises to 

have the highest energy. Figure 7c shows that when uniaxial strain is applied all bands 

increase different amounts of energy, but there is no band narrowing like that seen with 

biaxial strain. 

 
Figure 7 - Valance band warping and splitting under strain [17]. 

 

In addition to resistance change based on mobility, physical deformation also 

changes the overall resistance. A common metric used is the gauge factor (GF), given by 

Equation 6, where ε is strain. Equation 7 gives the change in resistance, where ν is the 

Poisson’s ratio of the material and ρ is resistivity [5], [21].  
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6 

7 

 
Gauge factors in metals are typically around 2, while lightly doped 

semiconductors can have factors on the order of 100 [5]. Heavily doped polysilicon 

typically has lower gauge factors than single crystal silicon due to the low gauge factor of 

grain boundaries dominating the high gauge factors of the actual grains themselves. 

Heavily doped polysilicon with large grains can have gauge factors as high as 30 [22]. 

 

2.2 Capacitive Technology 

Capacitive accelerometers operate with the same mass, spring, and damper model 

that piezoelectric accelerometers use, but instead of measuring the change in resistance 

they measure the change in capacitance between parallel plate capacitors. Equation  

8 gives the capacitance between two parallel plates, where A is the area, ϵ is the 

permittivity between the plates, and t is distance between plates. Figure 8 shows a 

capacitive three-axis accelerometer. Acceleration in the X and Y direction is detected by 

the variation in t, while Z acceleration is detected by the variation in A.  

 

8 

  

!R
R

= (1+ 2")# + !$
$

GF =
!R
R
1
"

C =
A!
t
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Figure 8 – Three-axis capacitive accelerometer from Eklund et al. [23] 

 
Capacitive devices have several advantages over piezoresistive technology. They 

usually have high precision, low noise, low drift, low temperature sensitivity, and low 

power consumption. They are however, susceptible to electromagnetic interference, must 

have more complicated capacitance reading circuitry on chip, and require a more 

complicated and precise surface micromachining manufacturing process [24]. 

While piezoresistive sensors typically output a voltage, capacitive sensors have 

the option of outputting a variable frequency. An inductive-capacitive (LC) oscillator can 

be created using the variable capacitor to vary frequency, shown in Equation 9, where L 

is inductance and C is capacitance [25]. 

 

9 

 Capacitive accelerometers are among the most widely implemented sensors for 

consumer electronics. Companies such as Analog Devices offer three-axis low-g 

accelerometers at prices of $2.38 in quantities of 1000 or more [26]. The devices have a 

wide variety of ranges, varying from ±2 to ±16 g depending on the model. A small form 

factor of 4x4 mm and wide operating temperature range of -40 to 85°C make these 

F =
1
LC
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sensors attractive for cell phones and game controllers. Higher g models are also 

available, sensing up to ±70 g in one or two axes [27]. Analog Devices is not the only 

company to produce accelerometers, devices are also available from Silicon Designs, 

Endevco, Bosch, Freescale, and more. Beliveau et al. shows that these capacitive devices 

usually have very high mechanical stability [28]. The Silicon Designs Inc 1220 

accelerometer has a maximum g-sensing level (MGSL) of 3,600 to 5,400 g, while 

independent tests show first signs of failure past 70,000 g. 

 

2.3 General Accelerometer Considerations 

The resonant frequency is an important factor to consider when choosing an 

accelerometer. MEMS accelerometers are designed to operate below their resonant 

frequency, where they provide consistent output independent of frequency. As the device 

approaches resonance even small vibrations will cause the amplitude of the proof mass 

oscillation to grow considerably, making any output response meaningless. 

 Variations in temperature can have a large effect on piezoresistive sensors. The 

Temperature Coefficient of Offset (TCO) is an offset voltage caused by the change in 

resistance of resistors due to temperature. As long as the Wheatstone bridge is 

symmetrical, changes cancel and TCO does not pose a problem. The Temperature 

Coefficient of Sensitivity (TCS) has a much greater influence on performance, and is a 

result of piezoresistive coefficients being dependent on temperature. Figure 9 shows 

simulated outputs at varying temperatures. As temperature goes up, sensitivity goes down 

[29]. This effect must be compensated for, either by analog or digital correction. If the 

accelerometer is part of a multi-sensor chip, the easiest way is to digitally correct the 

measured acceleration voltages using data from the temperature sensor. 
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Figure 9 – Simulated Coefficient of Sensitivity (TCS) results, sensitivity decreases as 

temperature increases [29]. 

 

The Finite Element Method (FEM), also referred to as Finite Element Analysis 

(FEA), is a powerful tool that can be used to simulate accelerometers. After a mesh of the 

device is constructed and boundary conditions are set, computer simulations solve a set of 

simultaneous partial differential equations to an acceptable degree of error. From these 

simulations strain, stress, displacement, and other physical parameters can be modeled 

over the entire mesh. Similar methods are used to simulate process design and electrical 

simulations using software such as Silvaco’s Athena and Atlas packages. 

In addition to piezoresistive and capacitive sensors, several other types exist. 

Piezoelectric accelerometers are similar in structures to piezoresistive ones, but a special 

piezoelectric material in place of the piezoresistor generates its own voltage when 

strained. These devices suffer in that they cannot read steady sources of acceleration, 

such as earth’s gravitational field. Resonant devices actuate at their resonance frequency, 

stress changes this natural frequency, which is then measured. Optical accelerometers use 

mechanical movement of a proof mass to modulate light. Light intensity can be measured 
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and converted to acceleration. Tunneling devices use a feedback loop to maintain a 

constant current between a tunneling tip and proof mass. Figure 10 shows examples of an 

optical and tunneling accelerometer. 

 

 
Figure 10 – Examples of optical and tunneling accelerometers [5].
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Chapter 3 
Simulation 

3.1 Finite Element Analysis 

Several commercial software packages are capable of simulating MEMS devices, 

such as ANSYS, COMSOL Multiphysics, and Solidworks to name a few. COMSOL 

Multiphysics has been chosen due to its capabilities, simplicity, and built in MEMS 

module designed specifically for simulating MEMS devices. All models have been 

simulated with 1 g of acceleration in all three directions, as well as analyzed for the first 

several modes of vibration. 

Three different device are designed are investigated, including the dual 

rectangular structure, monolithic structure #1, and monolithic structure #2. The dual 

rectangular structure has been through two design-fabrication iterations, while the 

monolithic structures have only been through one. 

 Figure 11 shows the designed three-axis accelerometer half structures for the dual 

rectangular structure. Each of the six support beams is fixed to the bulk of the 

surrounding chip. Two of these structures, placed perpendicular to one and other, are 

required to sense acceleration in all three axes. Figure 12 shows the stress distribution of 

the first two modes of vibration when the model is deformed under 1 g of acceleration in 

both the Z and Y directions. Maximum stress, strain, and sensitivity values from these 

simulations are summarized in the next chapter. 
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Figure 11 – Dual rectangular design 

 
 

 

 
Figure 12 – Simulations of the dual rectangular structure at 1 g of acceleration in the Z 

(left) and X/Y (right) directions. 

 

Figure 13 and Figure 14 show the monolithic accelerometer structures under their first 

three modes of acceleration. The first mode has the lowest frequency and corresponds to 

acceleration in the Z direction. The second and third mode, both of same frequency, 

corresponds to acceleration in the X and Y directions. The second and third modes of 

vibration have slightly higher frequencies than the first mode. 
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Figure 13 - Simulations of the monolithic structure #1 at one g of acceleration in each 

direction. 

 

 
Figure 14 – Simulations of the monolithic structure #2 at one g of acceleration in each 

direction. 

 

 To measure the acceleration using these structures, three Wheatstone bridges are 

formed on top of the areas of highest strain. The bridges are setup so that each bridge 

only outputs a voltage when acceleration in the correct direction is applied, and output no 

voltage when acceleration in the other two directions are applied. For example, the Y-

bridge will output a voltage when the device is accelerated in the Y direction, but will 

outputs no voltage when accelerated in the X and Z direction. This is achieved through a 

combination of design symmetry, proper piezoresistor placement, and correct 

configuration of all Wheatstone bridges. All bridge and acceleration combinations are 

explained in the next chapter and also shown in Appendix 2.  

 Linearity is a required characteristic of any accelerometer, so output voltage 

should be directly proportional to acceleration. This is achieved by operating in the 
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elastic deformation zone of the silicon springs, where stress on the piezoresistors is 

directly proportional to force applied. 

 
3.2 Process Simulation 

 To achieve the highest sensitivity levels, the piezoresistive coefficient must be 

maximized. Maintaining a reasonable doping level around or below 1018 cm-3 ensures 

that ionic scattering does not significantly degrade the piezoresistive coefficient. 

Silvaco’s Athena software package is used to model all process steps that effect the final 

dopant distribution. Both narrow (10 µm) and wide (640 µm) p+ diffused resisters are 

simulated, with dopant profiles shown in Figure 15 and Figure 16, respectively. These 

profiles are from the Athena deck shown in Appendix 3. Both simulations result in 

piezoresistor sheet resistances of around 525 Ω/�, with peak boron concentrations 

around 3x1018 cm-1. 

 
 

 
Figure 15 – Silvaco Athena simulations of a 10 µm wide p+ diffused resistor. 2D profile 

(left) and vertical cutline (right). Simulations predict a sheet resistance of 523 Ω/⃞. 
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Figure 16 - Silvaco Athena simulations of a 640 µm wide p+ diffused resistor. 
Simulations predict a sheet resistance of 538 Ω/�. 



- 20 - 
 

Chapter 4 

Design 

4.1 Device Designs 

 Several device parameters are investigated, including physical dimensions, 

diaphragm thickness, additional proof mass, center of gravity, and piezoresistors material. 

Diaphragm thickness is controlled by the duration of the backside KOH etch, and verified 

with optical and scanning electron microscopy. Thinner diaphragms should lead to more 

sensitive devices at the expense of lower mechanical shock resistance. Additional mass 

glued to the existing silicon proof mass should make the device more sensitive while 

adding manufacturing complexity and removing design symmetries if the masses are not 

perfectly aligned. To maximize X and Y axis sensitivity it is important to maintain a large 

center of gravity, so masses should only be added to one side of the diaphragm. Finally, 

the piezoresistor material must be taken into account. On a separate 1-axis accelerometers 

being co-fabricated, two identical cantilever accelerometers designed with both n+ 

polysilicon and p+ silicon piezoresistors will be tested. Both materials may exhibit a 

large gauge factor due to the band structure changes induced by stress. This increase in 

gauge factor may be negated in the polysilicon resistor due to small crystal grain size and 

high doping concentrations, so a side by side comparison will be useful in determining 

which material works best.   

A layout of the all of the chips combined onto one contact lithography mask is 

shown in Figure 17. Twelve unique 10x10 mm dice, including one-axis accelerometers, 

three-axis accelerometers, and test structures, are spread over the four-inch wafer. Each 
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wafer holds sixty total chips. Table 3 shows the colors of each layer for this layout along 

with all future layout figures. 

 

 
Figure 17 – 4” Contact alignment mask layout with all device designs and alignment 

marks. 

 
P+ Silicon Green 
N+ Silicon Orange 

N+ Polysilicon Red 
Contact Grey 

Aluminum Blue 
Diaphragm Purple 
Top Hole White 

Table 3 – Schematic layers and colors 

 
 One of the twelve designs contains several test structures, shown in Figure 18. 

These structures are useful in calculating the sheet resistances of the substrate, p+ silicon, 

n+ polysilicon, and aluminum layers. Two p+ silicon layers of constant length and 

varying widths are used to measure the effects of lateral diffusion. 
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Figure 18 – 4x4 mm test structure. Includes connections over the n- substrate, p+ implant 

(narrow and wide), n+ polysilicon, and aluminum layers. 
 

4.1.1 Dual Rectangular Structure 

The first three-axis accelerometer design is shown in Figure 19, with additional 

wafer alignment marks in the upper right hand corner. Figure 20 shows the rectangular 

structures with Wheatstone bridge resistors overlaid on top of the model. Each of the six 

support beams is fixed to the bulk of the chip.  
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Figure 19 – Mask layout of the original dual rectangular structure, designed in the winter 

2009-2010 quarter. 
 

 
Figure 20 – Dual rectangular design with Wheatstone bridge resistor overlays 

 
 

This design was the first and only design fabricated in the winter of 2009-2010, 

and two major design errors were encountered during testing. First, several of the contact 

pads overlap the diaphragm area, resulting in shattered dice during the wire bonding 

process. Second, the diaphragm area was drawn to aggressively so that the KOH removed 

too much of the silicon proof mass, dramatically lowering sensitivity. These two issues 

have been fixed, with the new design shown in Figure 21. In addition the metal lines and 

spaces in between are larger to improve yield, and the two rectangle structures were 

placed further apart to help reduce any cross talk between the two structures. 
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Figure 21 - Mask layout of the improved dual rectangular structure, designed in spring 

2010. 

 
4.1.2 Monolithic Structure #1 

One possible improvement to the dual rectangular structure is to combine both 

structures into a single proof mass with only four support beams. This allows for more 

sensitive devices because of a larger mass to spring constant ratio. This could also be 

beneficial to chips with integrated electronics, as all of the devices can be placed on the 

single proof mass instead of two. The first structure designed, shown in Figure 22, has a 

single square proof mass with four short rectangular arms supporting it. The three 

Wheatstone bridges are shown in Figure 23, with the horizontal arms supporting the X 

and Z bridges and the vertical arms supporting the Y bridge. 
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Figure 22 – Mask layout of the high sensitivity monolithic structure #1. A lower 
sensitivity version with wider support arms and polysilicon piezoresistors is also 

fabricated. 

 
Figure 23 - Monolithic structure #1 with three Wheatstone bridges overlaid 
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4.1.3 Monolithic Structure #2 

One possible improvement to increase sensitivity involves lowering the effective 

spring constant of the system by increasing the length to width ratio of the support beams. 

This is done in Figure 24, which is the same as Figure 22 with the exception of newly 

designed support arms. The Wheatstone bridges are almost identical, Figure 25 shows the 

resistors overlaid over the design.  

 

 
Figure 24 - Mask layout of the low sensitivity monolithic structure #2. A higher 

sensitivity version with more narrow support arms and p+ diffused piezoresistors is also 
fabricated. 
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Figure 25 – Monolithic structure #2 with three Wheatstone bridges overlaid 

 
4.2 Piezoresistor Bridge Configuration 

All of the above designs are based on the principle that each of the three bridges 

outputs a voltage only when the correct direction of acceleration is applied. Figure 26 

visually shows the change in each bridge when the correct direction of acceleration is 

applied.  Table 4 and Table 5 show the response of each resistor in all three Wheatstone 

bridges when all three directions of acceleration are applied. While both tables are similar 

and give the same final results, there are a few subtle differences. Table 4 shows the 

response of the dual rectangular structure while Table 5 shows the response of both 

monolithic structures. 
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Figure 26 – Bridge configuration for all three axes. See Appendix 2 for the other 

acceleration conditions 

 
 X Bridge Y Bridge Z Bridge 

Acceleration Rx1 Rx2 Rx3 Rx4 ΔVx Ry1 Ry2 Ry3 Ry4 ΔVy Rz1 Rz2 Rz3 Rz4 ΔVz 
X + - - + + 0 0 0 0 0 0 0 - - 0 
Y 0 0 0 0 0 + - - + + + + 0 0 0 
Z - - + + 0 - - + + 0 - + + - + 

Table 4 – Dual rectangular bridge resistor changes under X, Y, and Z acceleration. 

 

 X Bridge Y Bridge Z Bridge 
Acceleration Rx1 Rx2 Rx3 Rx4 ΔVx Ry1 Ry2 Ry3 Ry4 ΔVy Rz1 Rz2 Rz3 Rz4 ΔVz 

X + - - + + 0 0 0 0 0 + + - - 0 
Y 0 0 0 0 0 + - - + + + + 0 0 0 
Z - - + + 0 - - + + 0 - + + - + 
Table 5 – Monolithic structure #1-2 bridge resistor changes under X, Y, and Z 

acceleration. Differences from Table 4 in Z bridge under X acceleration 

 

4.3 Physical Dimensions, Materials, and Sensitivities 

All of the physical dimensions of the accelerometers affect the total mass of the 

system, effective spring constant, and damping coefficient. These factors ultimately 

determine the sensitivities and resonant frequencies of the devices. Table 6 shows the 

characteristics of all six versions of the three-axis accelerometers. Variables include 

whether or not the resistor is made up of n+ polysilicon or p+ diffused silicon, along with 

support beam dimensions after lateral etching from fabrication. Piezoresistive coefficients 
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are estimated from the material type and doping levels, theoretical sensitivities are then 

calculated with the maximum strains from the FEA simulations.  

Description 
Resistor 

Type 
Proof Mass  

[µm] 
Supports 

[µm] 

Piezo. 
Coefficient     

[Pa-1] 
Z Strain 

[g-1] 
Z Sens. 

[mV/gV] 

XY 
Strain 
[g-1] 

XY Sens. 
[mV/gV] 

Dual Rect #1 Poly 3500 x 2000 540 x 180 1.18E-11 2.5E-06 0.005 4.0E-07 0.001 
Dual Rect #2 p+ 4200 x 1100 860 x 320 5.00E-10      
Monolithic #1 p+ 5000 x 5000 420 x 280 5.00E-10 5.0E-06 0.425 1.2E-06 0.102 
Monolithic #1 Poly 5000 x 5000 420 x 480 1.18E-11 2.5E-06 0.005 5.0E-07 0.001 
Monolithic #2 p+ 5000 x 5000 2600 x 160 5.00E-10 1.0E-04 8.500 1.6E-05 1.360 
Monolithic #2 Poly 5000 x 5000 2600 x 320 1.18E-11         

Table 6 – Theoretical piezoresistive coefficients and sensitivities for the fabricated 
accelerometers. Unlisted sensitivities were not simulated and should be lower than the 

less aggressive versions. 

 
While the monolithic #2 structure with p+ silicon shows a very high sensitivity of 

85 mV/gV, it comes at a price. Table 7 shows that the resonant frequency of this device is 

151 Hz, potentially limiting it to low frequency applications. The other devices have 

resonant frequencies from 3500 to 8200 Hz, more in the range of current commercial 

capacitive accelerometers. 

 

Description 
Proof Mass  
[µm] 

Supports 
[µm] 

Z Resonance 
[Hz] 

XY Resonance 
[Hz] 

Dual Rectangular #1 3500 x 2000 540 x 180 4067 8164 
Dual Rectangular #2 4200 x 1100 860 x 320    

Monolithic Design #1 5000 x 5000 420 x 280 3582 4750 
Monolithic Design #1 5000 x 5000 420 x 480    
Monolithic Design #2 5000 x 5000 2600 x 160 151 231 
Monolithic Design #2 5000 x 5000 2600 x 320     
Table 7 – Device dimensions along with simulated resonant frequencies. Unlisted 

frequencies were not simulated but should be higher than the less aggressive versions. 

 
4.4 Process Constraints 

 Mask designs are drafted in Mentor IC Station, where each mask layer is drawn 

exactly to scale. This is the same software used to design custom integrated circuits, and 

is more than capable of laying out MEMS devices. Because design rules have not been 
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defined for the MEMS fabrication process, detail must be paid to all aspects of the layout 

to ensure the finished chips operate correctly. 

 Figure 27 shows the cross section of a finished MEMS device using the RIT bulk 

MEMS process. Etch undercutting must be taken into account for both the backside KOH 

and top hole etches. KOH etches along the (100) crystal plane, forming an angle of 

54.74° with the back of the wafer. With a 525 µm thick wafer the diaphragm must be 

drawn 352 µm larger. The top hole is created with an isotropic silicon etch, so the top 

hole must be drawn 30 µm smaller than the finished design. 

 

 
Figure 27 – Cross-section after RIT bulk MEMS processing [2] 
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Chapter 5 

Fabrication 

5.1 Bulk MEMS Process Flow 

 Fabrication was completed at the Semiconductor and Microsystems Fabrication 

Laboratory (SMFL), located at RIT. Processing was initially done along with the winter 

MEMS class using Fuller’s bulk micromachining process [2]. This process includes a 

backside KOH diaphragm etch and front side top hole. In addition, it includes both n+ 

and p+ diffusion layers with one layer of n+ polysilicon and aluminum. Due to the 

relatively large features and the goal of low manufacturing costs, contact lithography was 

used with conservative design rules of λ = 10 µm.  

 Full process details are listed in Error! Reference source not found., and Figure 

27 shows a cross-section of what a finished device should look like. Figure 28 through 

Figure 39, drawn by Ivan Puchades, show cross sections of the device at various points 

throughout the process [30]. 

 The RIT bulk MEMS process starts with 4” n-type <100> wafers. The wafers are  The RIT bulk MEMS process starts with 4” n-type <100> wafers. The wafers are 

initially thinned from 525±25 µm down to 300 µm using a wafer grinding tool, followed 

by Chemical Mechanical Planarization (CMP) for a mirror surface on both the front and 

back side of the wafer. This mirror finish is needed for the backside KOH etch later in the 

process. After a decontamination and RCA clean, 5000 Å of SiO2 is grown at 1100° C. 

This oxide is then patterned with the first photolithography step and etched in Buffered 

Oxide Etch (BOE). Borofilm 100 is then spun onto the wafer, shown in Figure 29 (not to 

scale). 
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Figure 28 – RIT Bulk MEMS Process – Ready for p+ diffusion 

 
 Next the wafers are put into a diffusion furnace to dope the exposed areas with 

boron. During the last portion of the diffusion step, water vapor is introduced to grow an 

additional 1000 Å of oxide over the exposed areas. This creates a topographical step that 

is used to align all future photolithography layers. Once the diffusion step is complete, all 

of the Borofilm and existing oxide is etched away using BOE. The same steps are then 

repeated to dope the n+ region with phosphorus, and afterwards the wafers look like 

Figure 29. 

 

 
Figure 29 – RIT Bulk MEMS Process – After n+ diffusion 

 
 After all surface doping is completed, a 500 Å stress relief oxide layer is grown 

followed by a 1500 Å Low Pressure Chemical Vapor Deposition (LPCVD) of Si3N4. This 

nitride will be used in the future to protect select areas on the back of the wafer from 

KOH. The nitride on the front of the wafer is removed by protecting the back and sides of 

the wafer with photoresist, then plasma etching the nitride and wet etching the pad oxide. 

Next the photoresist can be removed, and after a RCA clean a 5000 Å layer of thermal 

oxide can be grown on the front of the wafer to act as an ILD (Inter Level Dielectric). 

The wafer progress is now shown in Figure 30. 
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Figure 30 – RIT Bulk MEMS Process – Backside nitride deposited 

 
 The backside diaphragm photolithography step requires additional work since the 

Karl Suss 150A contact aligner only supports front side alignment. After coating the 

backside of the wafer with photoresist, a single drop of water is placed on the front of the 

wafer and the photo-1 mask is aligned as usual. When contact is made from the photo-1 

mask to the wafer, the water acts as temporary glue and holds the wafer and mask 

together. The pair can then be flipped over, where the diaphragm mask can manually be 

aligned to the photo-1 mask. Once aligned, the two masks are clamped together. Finally, 

the backside is exposed under the Karl Suss, with the results shown in Figure 31. 

 

 
Figure 31 – RIT Bulk MEMS Process – Backside alignment 

 
 Once the photoresist is developed, the front and side of the wafer must be 

protected with photoresist so that the back can be etched. This etch consists of a BOE 

oxynitride etched, followed by a plasma nitride etch, finished with a final BOE pad oxide 

etch. Before the patterned resist is stripped the wafers look like Figure 32. 
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Figure 32 – RIT Bulk MEMS Process – Diaphragm hard mask etched 

 
 Next, 6,000 Å of polysilicon is deposited in the LPCVD tool. This puts down un-

doped small grain polysilicon, which is then doped using phosphorus spin on glass in the 

furnace. After etching the spin on glass off of the polysilicon, the wafers look like Figure 

33. 

 

 
Figure 33 – RIT Bulk MEMS Process – Doped polysilicon deposited 

 
 After the polysilicon is deposited and doped, it is then patterned and the front is 

side plasma etched. The polysilicon is left on the back of the wafer to protect the nitride 

diaphragm hard mask, and will be removed later in the process. 10,000 Å of Low 

Temperature Oxide (LTO) is then deposited on the front and back of the wafer in the 

LPCVD tool. This layer of oxide serves as the second ILD on the front, and will later be 

removed on the back. The wafer is now shown in Figure 34. 
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Figure 34 – RIT Bulk MEMS Process – ILD2 deposited 

 
 Contacts are then wet etched to both the polysilicon and silicon surfaces. After 

contacts are made, and an RCA clean is performed, the first layer of metal is deposited. A 

10,000Å layer of aluminum is sputtered onto the front of the wafer and into the contact 

cuts, shown in Figure 35. 

 

 
Figure 35 – RIT Bulk MEMS Process – Metal1 deposited 

 
 The first layer of metal is then patterned using an aluminum wet etched. A third 

ILD of 10,000Å LTO is then deposited onto both sides of the wafer using the LPCVD 

tool. A second layer of aluminum is then sputtered onto the front of the wafer, now 

shown in Figure 36. This second layer of metal is not used for electrical purposes, but as 

a hard mask to the future top hole silicon etch. 
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Figure 36 – RIT Bulk MEMS Process – Metal 2 deposited 

 
 The second layer of aluminum is patterned and etched in the same way as the first 

layer. Next a final layer of LTO is deposited to promote adhesion of the forthcoming 

PROTek layer. PROTek is a spin on plastic used to protect the front of the wafer from hot 

KOH. The PROTek is spun coat at 1500 RMP, followed by a 200° C bake for 20 

minutes. Next the diaphragm is etched into the backside of the wafer. First the LTO on 

the back of the wafer is etched away with BOE. The wafers are then placed in a 75° C 

KOH bath, which etches the protecting polysilicon layer and then into the bulk silicon. 

KOH Etches along the <111> silicon plane, so on a <100> wafer this makes a 54.74° 

angle, as shown in the bottom of Figure 37. Since there is no etch stop for the KOH, the 

etch depth and etch rate must be measured and calculated half way through the etch step. 

Using this etch rate along with the wafer thickness, current etch depth, and desired 

diaphragm thickness, the remaining etch time can be calculated. The wafers now look 

like Figure 38. 
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Figure 37 – Lateral KOH etch (bottom) and Reactive Ion Etch (RIE) (top). λ = 10 µm, 

diaphragm thickness = 30 µm. 

 
 

 
Figure 38 – RIT Bulk MEMS Process – Diaphragm etched 

 
 
 After the diaphragm is complete, the PROTek layer is removed using a special 

solvent stripper. PROTek often sticks to the substrate, so an O2 plasma etch, also known 

as photoresist ash, can be used to remove any remaining PROTek. Next, the adhesion 

promotion oxide layer must be removed with pad etch. Pad etch is used because normal 

HF and BOE attack aluminum, while pad etch is more selective to the underlying 

aluminum layer. This etch step also goes through any oxide not protected by the top 

aluminum layer, exposing the silicon surface in select areas. 
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 At this point the wafers must be diced into individual die before further 

processing. This inconvenience is necessary because the wafers will be too brittle to dice 

after the top hole etch. After the wafers are diced they go through the SF6 plasma top hole 

etch. This etches all way through the silicon diaphragm wherever the second layer of 

aluminum is not present, releasing the devices. The last step is to then remove the second 

metal layer and the underlying ILD using wet chemistry. The finished devices, shown in 

Figure 39, are now ready to be wire bonded and tested. 

 

 
Figure 39 – RIT Bulk MEMS Process – Finished devices 

 
The RIT bulk MEMS process was completed twice for this project. The first time 

the chips were fabricated along with the winter 2009-2010 MEMS class, and included the 

first iteration of the dual rectangular structure in from Figure 11. The second batch was 

performed from March until May 2010, and used a slightly different process. Differences 

in the spring process include ion implant p+ and n+ regions, omission of the wafer 

grinding step, and using TEOS from the P5000 Plasma Enhanced Chemical Vapor 

Deposition (PECVD) tool instead of LTO on some of the later IDL steps. 

 

5.2 Processing Issues 
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Several issues were encountered during processing, which ultimately led to the 

failure of all devices. These processing issues must be resolved before new devices are 

fabricated to ensure that the same problems won’t resurface. Issues encountered include 

poor aluminum step coverage, diaphragm etch protection layer delamination, and pad 

etch attacking aluminum. 

The CVC 601 magnetron-sputtering tool was used to deposit all aluminum layers. 

This is a form of Physical Vapor Deposition (PVD) where energetic argon ions bombard 

an aluminum target, dislodging aluminum atoms, which are then collected onto the 

surface of the substrate. This form of deposition is capable of depositing a uniform layer 

onto flat topology, but issues arise when trying to uniformly cover large and steep 

topography steps. In the RIT bulk MEMS process, the 10,000 Å metal-1 layer of 

aluminum must cover a via step of 5,000 Å and a polysilicon step of 6,000 Å. Figure 40 

shows images of the poor aluminum coverage over polysilicon and into a contact via on 

one of the finished devices. The voids are present throughout the entire die and wafer, 

causing all finished circuits to test open. 
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Figure 40 – Secondary Electron Micrograph (SEM) of poor aluminum step coverage over 

polysilicon lines (left) and into a contact via (right). 

 
 Several solutions exist to remedy this issue. The simplest solution is to make the 

aluminum film thick relative to the steps so that the aluminum completely covers any 

topography. This is analogous to a large snowstorm completely covering a staircase, once 

enough snow accumulates all topography over the stairs is smoothed over. Problems with 

this method do exist, so it is not always a viable solution. First, highly stressed materials 

will eventually hit a critical stress level, causing defects in the film. Second, this method 

is not sustainable for designs with many layers of metal. The films would need to be 

continually thicker, eventually causing issues with high aspect ratios features and 

deposition tool throughput. 

 Another possible solution includes the use of substrate heating during deposition, 

which has been shown in Figure 41 to improve aluminum step coverage [31]. This is due 

to surface atoms mobility at elevated temperatures. For aluminum, the substrate must be 

heated to at least 250 °C to see any noticeable effects. One drawback of heating the 

substrate is that the average grain size of the deposited film increases. This causes the 

aluminum to look hazy, often creating difficulty in photolithography alignment and 

causing poor photoresist adhesion due to increased surface roughness.  
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Figure 41 – Aluminum step coverage without (left) and with (right) a heated substrate 

[31] 

 
 A partially heated sputter was used on the final wafer processed during the second 

fabrication run. Ten minutes before deposition a heat lamp was turned on and set to 

300 °C. The first two minutes of deposition was done with the heat lamp on, while the 

remaining 30 minutes were finished with the lamp off to reduce surface roughness. 

Testing after the following photolithography and aluminum etch steps showed that all 

circuits were complete and that the aluminum step coverage issue has been resolved. 

 

 
Figure 42 – Aluminum step coverage without (left) and with (right) a 75V RF bias sputter 

[31] 
 

Another potential solution to the step coverage issue includes the use of bias 

sputtering. In this technique, a RF bias is applied to the wafer during deposition. This 

causes the wafer to acquire a negative self-bias, which accelerates ions towards the 

surface. These ions then collide with the deposited film, ejecting atoms from the surface 
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onto any near sidewalls. Aluminum could also be deposited with other techniques such as 

Metal Organic Chemical Vapor Deposition (MOCVD) and Atomic Layer Deposition 

(ALD). Finally, CMP could be used to flatten all topography before metal deposition. 

Another issue encountered during processing involved the front surface protection 

layer during the backside diaphragm KOH etch. Brewer Science’s ProTek B3 coating 

was used to protect the front surface for 6-8 hours in the 75° C KOH bath [32]. Even with 

an adhesion promoting oxide layer and a surface treatment before applying the ProTek, 

the etched wafers showed signs of surface damage in areas where the protection layer 

delaminated. This issue was more present on the wafer that was continually measured for 

etch depth, indicating that each cycle in and out of the KOH induces more defects. One 

possible cause is that the bottle of ProTek B3 used expired over three years ago, 

sometime in 2007. Using a new unexpired bottle may help stop delaminating, reducing 

front surface damage. 

In addition to using new ProTek, the use of an etch stop layer could also improve 

this process step. KOH is known to etch both p+ silicon and silicon dioxide hundreds to 

thousands of times slower than lightly doped silicon [24]. The use of an etch stop would 

allow for the wafers to remain submerged in KOH from the start until the end of the etch, 

reducing defects associated with rinsing, measuring, and reintroducing the wafer to KOH. 

The addition of an etch stop is unlikely to be viable for this design, as the ideal 

diaphragm thickness for the accelerometers is much thicker than the etch stop could 

support through the use of either a p+ ion implantation or Silicon On Insulator (SOI) 

substrates. 
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One final issue encountered while processing was pad etch attacking the 

aluminum metal-1 lines after the overlying oxide had been fully etched. Pad etch is a 

combination of 5 parts Buffered Oxide Etch (BOE) and three parts glycerin, and is used 

to etch on top of aluminum. Hydrofluoric Acid (HF) and BOE are known to attack 

aluminum as well as oxide, but the glycerin in the pad etch helps protect the aluminum. 

While pad etch is significantly better than BOE or HF, it still attacks aluminum at a 

slower rate. It is believed that while etching the oxide over the metal-1 layer, the pad etch 

eventually attacked the aluminum lines. This caused open circuits at the weakest points in 

the devices, where the aluminum crosses polysilicon lines and goes into contact vias. 

Micrographs of the final wafer, the one with the heated aluminum sputter, look similar to 

those in Figure 40. 

Two relatively simple solutions exist to fix this problem. Pad etch can still be 

used, but care must be taken to prevent the aluminum from etching after the oxide is 

cleared. Step coverage of the aluminum must be further improved, and the etching of the 

oxide over aluminum must be more precise. Different oxides types and different 

temperatures cause different etch rates, so the exact etch rate and time must be calculated 

for the specific oxide layer being etched. This could be done using a dummy wafer to 

measure the initial oxide thickness and etch rate. 

An alternate solution is to replace the wet pad etch step with a dry plasma oxide 

etch. Silicon dioxide is typically etched in a fluorine-based gas such as SF6, while 

aluminum is typically etched with a chlorine-based gas such as Cl2 [33]. This allows for 

the oxide to be selectively etched, leaving the underlying aluminum untouched. Plasma 
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etching also has several other advantages, such as being able to etch into smaller features 

and allowing for higher aspect ratios.  

 

5.3 Finished Devices 

 Figure 43 shows two completed three-axis accelerometers, each composed of 

several micrographs stitched together using image editing software. Appendix 4 shows a 

high-resolution image of the monolithic #2 design, zoomed in to show the three resistor 

bridges. In addition to the three-axis accelerometers, Figure 44 shows two of the one-axis 

accelerometers fabricated on the same wafers. The black areas show the top hole thru-

etch, and the white lines represent both aluminum and polysilicon. The diaphragm, p+ 

diffused, and n+ diffused layers are not visible on the micrographs. The speckles present 

on all of the images are ProTek residue, which can be totally removed with an O2 plasma 

etch. 

 

  
Figure 43 – Finished three-axis accelerometers. Monolithic structure #2 (left) and dual 

rectangular structure (right). The black area represents the top hole release etch. 
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Figure 44 – One-axis accelerometers also fabricated on the same wafers. 
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Chapter 6 

Testing 

6.1 Introduction 

 Because of the aluminum step coverage and pad etch issues mentioned in Chapter 

5, none of the finished chips yielded working devices. Instead of testing the designed 

accelerometers as proposed in the project proposal, commercial accelerometers were 

instead tested. Table 8 shows a list of the investigated accelerometers, also pictured in 

Figure 45. The ST Microelectronics LIS331DL is the current accelerometer in the Apple 

iPhone 3GS smart phone, and was interfaced with the AccelPlot application from 

Innovative Applications [34]. The Analog Devices ADXL30 accelerometer is currently 

used in the Nintendo Wiimote controller, and was interfaced using a Bluetooth 

connection and the open source DarWiinRemote application [35]. Both of these 

accelerometers are low-g and record digital signals with sample rates up to 100 Hz. 

 
Company Name Type Packaging Axes 

Analog Devices ADXL30 Capacitive Nintendo Wiimote 3 
ST Microelectronics LIS331DL Capacitive Apple iPhone 3 
Analog Devices ADXL278 Capacitive SMD 2 
Measurement Specialties Minisense 100 Piezoelectric Packaged 1 
Analog Devices ADXL330 Capacitive SMD 3 
Bosch BMA 140 Capacitive SMD 3 

Table 8 – Tested accelerometers 

 

  
Figure 45 - Tested Accelerometer, listed from left to right, ADXL30 in the iPhone, 
LIS331DL in the Wiimote, ADXL278, Minisense 100, ADXL330, and BMA 140. 
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 Two analog voltage output accelerometers were also investigated. The Analog 

Devices ADXL278 device is a two-axis high-g accelerometer capable of detecting ±70 g. 

The Measurement Specialties Minisense 100 is a one-axis piezoelectric high-g 

accelerometer that generates its own output voltage. This is beneficial in that it requires 

no power supply, but detrimental in that it is incapable of measuring steady state 

acceleration of frequencies below one Hertz.  

 The Analog Devices ADXL330 and Bosch BMA 140 sensors are low-g 3-axis 

accelerometers with analog voltage outputs. Because the digital 3-axis accelerometers 

and analog one and two-axis accelerometers were successfully tested, duplicate tests on 

these two backup accelerometers were not performed. 

 

6.2 Methods 

 In preparation for the finished chip, Printed Circuit Boards (PCBs) have been 

designed and fabricated. Copper contact pads must be located near the correct chip pads 

so that wire bond connections can be made. Since the finished chip involves moving 

silicon parts, a 7x7 mm hole was drilled through the PCB area where the finished chip is 

placed. Since the accelerometer must be amplified in order to measure a strong signal, the 

PCB connecting pins are setup in a way to easily connect to the amplifier 

 Once the chip is connected to the PCB and wire bonded, testing can begin. 

Several techniques are used to measure acceleration and compare it to both theoretical 

models and existing commercial accelerometers. The simplest measurement technique 

involves the use of a cantilever beam, shown in Figure 46. Equation 10 shows the 

resonant frequency of the cantilever (fo), where E is the Young’s modulus, I is the 

moment of inertia, L is the length, and m is the mass of the cantilever. Equation 11 then 
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gives the acceleration, where Yinitial is the initial deflection at the end of the cantilever. 

The two cantilever beams test structures at RIT are capable of outputting up to 15 and 

100 g of acceleration.  

 

10 

11 

 
Figure 46 – Low g accelerometer testing units [6]. 

 

 Another way to generate acceleration is to use an amplified audio speaker, shown 

in Figure 47. Driving the speaker with a sine wave in the form of Equation 12 leads to an 

equation for velocity and acceleration given by Equations 13-14, where Y is current 

displacement, Ymax is maximum displacement, ω is the frequency in radians per second, t 

is time, V is velocity, and A is acceleration. Placing a ruler near the speaker and taking a 

long exposure photograph while driving the speaker at a known frequency, shown in 

Figure 48, can measure the maximum displacement used to calculate maximum 

acceleration.  

  

fo =
1
2
! 3EI

L3m

A = Yinitial (2! fo )
2
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12 

  

13 

 

14 

 
Figure 47 – Speaker accelerometer testing unit 

 

 
Figure 48 – Measuring maximum displacement of the speaker to calculate theoretical 

acceleration 

 

Y (t) = Ymax sin(!t)

V (t) = dY
dt

= Ymax! cos(!t)

A(t) = d 2Y
dt 2

= !Ymax"
2 sin("t)
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 An alternative to using an audio speaker driven by an amplifier is to use a 

Permanent Magnet Shaker (PM-Shaker). Figure 49 shows a commercial shaker that 

operates on the same electromagnetic principles as a speaker, and is capable of outputting 

up to 500 lbs of sinusoidal force. 

 

 
Figure 49 – Permanent Magnet Shaker 

 
 The most basic measure of cross-axis sensitivity involves rotating the 

accelerometer 360° around each axis. While rotating around the x-axis, acceleration in 

the y and z directions are also measured. Theoretically, acceleration in the y direction 

should be at a maximum when acceleration in the z direction equals zero. This method 

may prove ineffective if the device is sensitive to only high accelerations, and typically 

requires a sensitivity of 0.001g [36]. Figure 50 shows the test setup and possible results. 

The two sinusoidal waves show both y and z acceleration, while the noise represents 

possible cross talk from the X-axis. 
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Figure 50 – Rotation test around the x-axis and sample results. The two sine waves show 

Y and Z acceleration while noise shows possible X acceleration due to axis cross talk 

 
 A better method to test cross-axis sensitivity involves using two orthogonal PM-

Shakers, as shown in Figure 51. The shakers must be configured so that they are rotated 

exactly 90° from each other, and aligned horizontally so that there is no z component of 

acceleration. The shakers can them oscillate independently in the x and y direction. By 

shaking 90° out of phase circular motion can be achieved. 

 

 
Figure 51 – Two orthogonal PM-Shakers for cross-axis sensitivity measurement [36] 

 
 The linearity of acceleration can be measured by comparing output voltage to 

known accelerations. This can be accomplished by either using a calibrated acceleration 
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source, or by using a commercial accelerometer reference that is known to be highly 

linear. Alternately, linearity can be measured using a cantilever and highly linear velocity 

sensor. If the accelerometer is truly linear, velocity should be out of phase with 

acceleration by 90° and proportionally related by a constant factor. If the proportionality 

factor varies as testing begins to damp and comes to a rest, than the accelerometer is not 

linear. Figure 52 shows two possible theoretical examples of non-linearity using the 

previously described methods. 

 

           
Figure 52 – Possible examples of non-linearity using the testing methods above 

 

 In the event that the accelerometer is only sensitive to very high accelerations, 

two options are available to increase sensitivity. First is to increase the amplification 

factor. The main issue with this solution is that the signal to noise ratio may drop 

significantly. Another alternative is to glue lead balls to the proof mass in the 

accelerometer. This not only increases the overall mass, but also moves the center of 

gravity, additionally benefiting X and Y acceleration detection. Potential drawbacks 

include imperfect mass alignment, which can lead to higher cross-axis detection. Figure 4 

shows a mass attached to a previously RIT fabricated one axis accelerometer. 

 Device reliability is a critical measure of performance. The device needs to be 

both insensitive to shock and extended use. Subjecting the device to short impulses of 
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high accelerations up to 1000 g will simulate a sudden shock event. Previous devices 

have incorporated over-range protection to prevent the device from physically breaking 

[5], showing reliability up to 70,000 g [28]. Long-term reliability can be predicted by 

accelerated testing under high stress conditions. Devices must be run at excessive supply 

voltages while being exposed to high levels of acceleration on a PM-Shaker for an 

extended period of time. 

 The resonant frequency of the accelerometer is also an important specification, as 

the device will only operate correctly below this frequency. By applying a square wave 

acceleration source, the device will naturally oscillate at its resonant frequency. 

 

6.3 Amplification 

With sensitivities measured in µV per g of acceleration, high quality amplification 

it is needed. Figure 53 shows a custom three-channel instrumentation amplifier along 

with one of several chip carrier boards with an accelerometer attached. Each channel has 

variable gain and contains the INA101 high precision instrumentation amplifier chip [38]. 

Gain (G) is given by Equation15, where Rg is the reference variable resistor. 

 

15 

 

G = 1+ 40k!
RG
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Figure 53 – Custom built three-channel instrumentation amplifier PCB (left) along with 

one of several carrier boards (right). Each channel has variable gain and contains the 
INA101 high precision instrumentation amplifier chip [38]. 

 

 Prior to device testing, each channel of the amplifier has been tested to 

characterize both gain and linearity. Figure 54 shows the actual gain for each channel 

based on the value of RG. All three channels exhibit behavior consistent to Equation 15. 

Figure 55 shows the frequency response of the amplifier while operating with a gain of 

1000 V/V, ensuring that the amplifier works at that gain up to 2 kHz. 

 

 
Figure 54 – Gain as a function of reference resistor value for each channel. Follows 

Equation 15 
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Figure 55 – Frequency response of the amplifier set to 1000X gain. 20dB/decade roll off 

starts at 2 kHz 
 
 
6.4 Sensitivity 

To test the Wiimote accelerometer for sensitivity, both the Wiimote and iPhone 

were attached to the speaker setup. Care was taken to align both devices to the speaker 

face, and then to align the speaker face to earth’s gravitational field. The iPhone was 

arbitrarily chosen as the reference acceleration, and the peak-to-peak accelerations were 

simultaneously measured at various speaker powers levels with an 8 Hz sinusoidal input 

signal. Figure 56 shows that the Wiimote has a sensitivity of 2.16 g/g. This is not 

expected, if both devices are fully calibrated the resulting sensitivity should be 1.00 g/g. 

Since third party software was used to measure the acceleration levels in each device, the 

most likely explanation is that one of the software packages incorrectly converts the 

digital signal to the representative acceleration level.  
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Figure 56 – Wiimote accelerometer measured with reference to the iPhone accelerometer. 

Measured at 8 Hz on the speaker setup 
 

 
 In addition to sinusoidal input signals, both square wave and half sine impulse 

trains were recorded at various amplitudes. Figure 57 shows low amplitude 1-millisecond 

half sine inputs on both accelerometers. This is a representative example of all of the half 

sine and square wave tests of varying amplitude and frequency. Two things are of interest 

in these figures. First, even when driving the speaker with low amounts of power, both 

devices clip at their upper acceleration limits. The iPhone clips at ±2 g of acceleration, 

while the Wiimote clips at ±3 g. Second, even at the highest data-sampling rate, the event 

occurs to quickly to accurately plot the response. The iPhone records 100 data points per 

second, while the Wiimote records 50 points per second. The Analog Devices and 

ST Microelectronics chips inside are capable of much higher sampling rates, but because 

Apple and Nintendo have no need for such high sampling rates, they end up limiting to 

100 and 50 Hz. 
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Figure 57 – Impulse event of a half sine wave at 1000 Hz on the iPhone (left) and 

Wiimote (right). 
 

 
 To get around these issues, the Minisense 100 has been tested against the 

ADXL278, both having analog voltage outputs. A new issue regarding AC power supply 

noise was encountered, as shown by the steady state response of the Minisense in Figure 

58. Even while stationary, the Minisense shows almost a 700 mV peak-to-peak voltage 

swing at 60 Hz. This was a result of an AC power cord interfering with the unshielded 

signal wires. Removing the power cord and adding a 10 MΩ resistor in parallel with the 

oscilloscope probe reduced the noise to a reasonable level. 

 

 
Figure 58 – AC Power noise while measuring the idle Minisense 100. 

 
 Both the Minisense and ADXL278 were measured simultaneously on the speaker 

setup with a constant 40 Hz sinusoidal signal. Figure 59 shows both accelerometer 
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outputs as a function of speaker signal voltage. After around 20 g of acceleration the 

ADXL278 still maintains consistent results, but the Minisense starts to exhibit slight 

signal spiking on the oscilloscope, making accurate peak-to-peak measurements difficult 

to read. 

 

 
Figure 59 – Output voltages of the Analog Devices ADXL278 and Minisense 100 

accelerometers while driven at 40 Hz. 

 
By taking the acceleration of the ADXL278 as a reference, Figure 60 shows the 

sensitivity of the Minisense to be 0.69 V/g. This is close to the datasheet’s expected 

sensitivity of 1.1 V/g [39], but differs for two main reasons. First, is because of the 

10 MΩ resistor placed in parallel with the oscilloscope probe and Minisense. This resistor 

lowers the overall impedance between the two terminals of the Minisense, allowing for 

the charge generated by the piezoelectric film to disperse more quickly. Second, is that 

the datasheet gives an expected sensitivity for low frequency measurements. At 40 Hz, 

the device is approaching the measured resonant frequency of 63 Hz, discussed later in 

Chapter 6.7. 
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Figure 60 – Minisense 100 sensitivity at 40 Hz 

 
 In addition to the speaker test setup, the cantilever test setup can be used for these 

measurements. Figure 61 shows the iPhone attached to the cantilever, and accelerated to 

±2 g peak-to-peak. This cantilever test structure is usually capable of testing ±10g, but 

the additional weight of the iPhone has slowed down the cantilever beam to a much lower 

frequency, resulting in lower levels of acceleration. 

 
Figure 61 – iPhone under acceleration from the cantilever setup. A truly sinusoidal 

response is measured. Shown again with a closer view in Figure 62 
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6.5 Linearity 

The Minisense 100 data sheet suggests a linearity of ±1 %. From the data in 

Figure 60, each data point is an average of 1.02% off of the line of best. When looking at 

the digital accelerometer data from Figure 56, the average nonlinearity of the Wiimote is 

3.61%, much higher than the datasheets predicted value of < 0.2% [40]. This is due to 

measurement variation, which is especially high around the low g readings where eight 

bit quantization errors play a large role in measurement error. 

One of the proposed methods for measuring linearity involves comparing 

acceleration to the derivative of velocity. This method assumes a perfectly linear velocity 

sensor, which is not present in Figure 62. The velocity portion of the graph looks similar 

to a ramp function, while the measured acceleration looks similar to the expected sine 

wave.  

 

 
Figure 62 – Acceleration and vertical velocity of the iPhone when tested on the 

cantilever. Entire plot shown in Figure 61 
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6.6 Cross-Axis Sensitivity 

Independent of any stationary accelerometers orientation, the combined 

magnitude of the XYZ accelerations should always be 1 g. For the iPhone sitting on a flat 

table, the average XYZ acceleration values from Figure 63 of 0.032, 0.009, and -1.033 g 

give a combined magnitude of 1.034 g, 3.4% larger than expected. This could be caused 

by axis cross talk, where acceleration in one direction is also measured in the other two 

directions. This could also be caused by poor software data conditioning, as the 

LIS331DL sensor predicts < 1.0% axis cross talk [41]. 

 
Figure 63 – Acceleration measurements of the iPhone sitting flat on a level table 

 
 Figure 64 shows measurements taken to calculate the axis cross talk while 

rotating the device over the Y-axis (top) and X-axis (bottom). On the left side 

acceleration is plotted over a two second rotation period. On the right the overall 

magnitude minus 1 g of acceleration is plotted over the same time frame. Theoretically 

this should yield 0 g, independent of time. The graphs, however, show that this is not the 

case. Rotating around the Y-axis yields an average cross-talk level of 3.18%, while 

rotating around the X-axis yields an average of 0.67%. This may be partially due to the 

acceleration caused by physically rotating the device. Care was given to rotate slowly and 
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around the center of the accelerometer, but even small amounts of rotational acceleration 

can be picked up during the measurement. 

 

 
Figure 64 – Acceleration measurements (left) and cross-axis sensitivity levels (right) of 

the iPhone being rotated around the y-axis (top) and x-axis (bottom) 

 
  In addition to axis cross talk associated with the sensor itself, the testing setup 

can actually introduce additional cross talk. Improper alignment of the accelerometer to 

the speaker or cantilever structure will result in all three of the axes showing acceleration 

when the test structure is actuated. The amount of acceleration is proportional to the sine 

of the misalignment error, so even small amounts of misalignment are measurable. If the 

accelerometer is not properly fastened down, stray resonant vibrations can cause the 

accelerometer to read acceleration in unintended axes. 

After attaching the Wiimote and iPhone accelerometers to the speaker in Figure 

65, steady state values show misalignment to earth’s gravitational field. Calculations 
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show a gravitational alignment error of 0.85° around the Y-axis and 1.23° around the X-

axis. This can be corrected for by adjusting the accelerometers and speaker until the X 

and Y axes show no acceleration and the Z axis shows the full 1 g of acceleration. 

 

 
Figure 65 – Speaker with attached Nintendo Wiimote and Apple iPhone 

 
 
 Even with all precautions taken, the cantilever test structure can naturally 

introduce axis cross talk at high amplitudes due to it’s movement nature. This is shown in 

Figure 66, where the initial XY coordinate systems shifts to an X’Y’ system once the 

beam starts to move. With dimensions of L = 45 cm and H = 1 cm, the resulting angle ϴ 

is equal to 1.27°. At the peak amplitude, where acceleration is at a maximum, this should 

result in the accelerometer reading an X value 2.2 % of the total acceleration. 

Experimental data shows the maximum X acceleration to be 6.6% of the total 

acceleration, indicating that the accelerometer was misaligned around the Z-axis by 

around 4.4°. Maximum acceleration in the Z direction was 2.0% of the total acceleration, 

indicating a misalignment around the X-axis of 1.1°.  
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Figure 66 – Cantilever introducing axis cross talk at high amplitudes 

 
 
6.7 Frequency Response 

All of the commercial accelerometers except the Minisense have built in filters to 

prevent outputs at or past their resonant frequency, typically in the 500-5000 Hz range. 

The Minisense, however, can be tested against frequency because it has no built in filters. 

Figure 67 shows the expected frequency response from the manufacturer’s datasheet, 

which predicts a resonant frequency around 75 Hz [39]. 

 
Figure 67 – Frequency response of the Minisense accelerometer as shown by the 

manufacturer [39] 

 
 Figure 68 shows the measured frequency response while using a low amplitude 

sinusoidal signal on the speaker setup. The actual resonant frequency is measured to be 

61 Hz, lower than the data sheet predicts. One reason this is off is that the test actually 

confounds the frequency response of the speaker into the measured frequency response of 

 
MiniSense 100 Vibration Sensor 

MiniSense 100 Vibration Sensor Rev 1 www.meas-spec.com 11/03/2008 
 2 of 4 

performance specifications 

 

Typical properties/specifications 

Typical Properties (at 25 °C)  
Parameter Value Units 

Voltage Sensitivity (open-circuit, baseline) 1.1 V/g 

Charge Sensitivity (baseline) 260 pC/g 

Resonance Frequency 75 Hz 

Voltage Sensitivity (open-circuit, at 
resonance) 

6 V/g 

Upper Limiting Frequency (+3 dB) 42 Hz 

Linearity +/-1 % 

Capacitance 244 pF 

Dissipation Factor 0.018 (none) 

Inertial Mass 0.3 gram    
Environmental Specifications  

Storage Temperature -40 to +80 deg C 

Operating Temperature -20 to +60 deg C 
Minisense 100H 0.5 gram 

Weight Minisense 100V   0.6 gram  
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the Minisense. The speaker used is a car sub-woofer, which has its own resonant 

frequency somewhere in the bass range, below 100 Hz.  

 

 
Figure 68 – Measured frequency response of the Minisense accelerometer. Resonance 

occurs at 61 Hz. Tested on the speaker setup with 100 mV of sinusoidal input 

 
 When stimulating an accelerometer with a square wave, it will naturally vibrate at 

its resonant frequency. Figure 69 shows the Minisense excited with a high amplitude 

square wave. Measuring the time between several cycles reveals a more accurate resonant 

frequency of 63 Hz. 

  

 
Figure 69 – Impulse on the Minisense reveals a resonant frequency of 63 Hz 
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The frequency response of the speaker setup with the attached iPhone and 

Wiimote is shown in Figure 70. A constant low power sinusoidal input was used, with 

frequencies varying from 1 to 120 Hz. As shown before, the iPhone outputs around twice 

the acceleration of the Wiimote.  

 
Figure 70 – Frequency response of the speaker-accelerometer system. iPhone shows 

distinct beats near the half and full sampling frequency, as shown in Figure 71. 

 
Two interesting result from the iPhone frequency response are the dips, one near 

49 Hz and another near 96 Hz. This is due to the low sampling rate of 100 Hz. Figure 71 

shows the acceleration as the frequency was scanned from 1 to 120 Hz over a 

120 seconds interval. Around the sampling frequency of 100 Hz and the half frequency of 

50 Hz, the same part of the sin wave was sampled at every point. This gives the false 

impression of low peak-to-peak voltages, the Wiimote graph in Figure 70 gives a better 

picture of the frequency response. This issue can be solved with higher sampling rates. 
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Figure 71 – Beats near the sampling frequency (100 Hz), distorting the frequency 

response results. 

 
 
6.8 Mechanical Stability 

To test mechanical stability, the Minisense 100 was placed on the speaker setup 

and continually run for twenty-four hours. A large sinusoidal signal was fed to the 

speaker at the resonant frequency of 63 Hz, resulting in initial peak-to-peak accelerations 

of 51.6 ± 0.8 g. After twenty-four hours the accelerometer showed 52.4 ± 0.8 g of 

acceleration. Both responses are shown in Figure 72, and both responses are consistent 

within the margin of error. These results are expected as there are no known degradation 

mechanisms at work, such as hot carrier effects in MOSFETs [42]. This is true only if the 

accelerometer is working in the elastic deformation range. 

 

 
Figure 72 – Output voltage of the Minisense accelerometer while excited at ±23.6 g for 

24 hours. No difference measured 
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Chapter 7 

Conclusion 

7.1 Introduction 

 Several accelerometers were designed, simulated, and fabricated from the fall of 

2009 through the summer of 2010. While no fully working devices were demonstrated, 

commercial accelerometers were tested so that the procedures could be reproduced with 

devices fabricated in the future. The processing knowledge gained will be invaluable for 

future projects using the RIT bulk MEMS process, and is not just limited to benefiting 

accelerometers. Even though processing issues prevented the chips from working, the 

accelerometer designs are still believed to be solid. 

 

7.2 Future Work 

 After correctly fabricating working devices, future work could include scaling the 

die size down from 10 mm square to 2-4 mm square. Scaling the critical dimension down 

from 10 µm would require processing improvements at every step, but a small die size is 

still possible with a critical dimension of 10 µm if the proof mass size is reduced. Several 

processing steps still need improvement, mostly relating to the aluminum interconnects 

and diaphragm etch. Additionally, integrating a CMOS amplifier onto the chip would 

eliminate the need for a custom instrumentation amplifier board, reducing integration cost 

and complexity. The testing techniques used on the four tested accelerometers could also 

be used to characterize the backup ADXL330 and BMA140 chips. A printed circuit board 

has already been designed, shown in Figure 73. 
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Figure 73 – PCB Schematic to test the Analog Devices ADXL330 and Bosch BMA140 

accelerometers 
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Chapter 8 

Appendices 

 

Appendix 1 - RIT Bulk MEMS Process Flow 
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Appendix 2 – Full bridge behavior under all acceleration conditions 
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Appendix 3 – Silvaco Athena Simulations 
 
#Initialize 
line x loc=0.00 spac=0.3 
line x loc=20 spac=0.3 
line y loc=0.00 spac=0.015 
line y loc=2.00 spac=0.15 
init silicon c.phosphor=2.0e15 orientation=100 
 
#Mask oxide 5000a 
diffus time=100 temp=1000 weto2 
etch oxide start x=5.0 y= -2.0 
etch cont x=5.0 y= 2.0 
etch cont x=15.0 y= 2.0 
etch done x=15.0 y= -2.0 
 
#Implant/Grow Alignment Mark 
implant boron dose=3.0e14 energy=90 tilt=7 rotation=45 crystal 
diffus time=54 temp=1000 dryo2 
etch oxide all 
extract name="Rs" p.sheet.res material="Silicon" mat.occno=1 x.val=10 region.occno=1 
 
#Nitride Pad oxide 
diffus time=54 temp=1000 dryo2 
etch oxide all 
 
#5000A oxide recipe 353 (350 added here) 
diffus time=100 temp=1000 weto2 
 
#Poly doping 
diffus time=15 temp=1000 nitro 
 
#Poly oxidation 
diffus time=54 temp=1000 dryo2 
 
#Extraction 
extract name="Oxide" thickness material="Oxide" mat.occno=1 x.val=10 
extract name="Resistance" p.sheet.res material="Silicon" mat.occno=1 x.val=10 
region.occno=1 
 
etch oxide start x=5.0 y= -2.0 
etch cont x=5.0 y= 2.0 
etch cont x=15.0 y= 2.0 
etch done x=15.0 y= -2.0 
 
tonyplot 
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Appendix 4 – Micrograph of the three-axis accelerometer 
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