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Abstract 

 

This study involves the design and fabrication of an Ion-Sensitive Field Effect Transistor 

(ISFET), which is aimed to be incorporated into the multisensory chips fabricated at RIT. 

ISFETs are used for various purposes in biomedical, medicine, and chemical applications 

and have advantages such as small size, low power consumption, robustness, and fast 

response time, over the ion-selective electrode (ISE) counterparts. The capability of 

fabricating ISFETs in a standard CMOS process let them to be used in sensor systems 

together with the dedicated signal processing circuitry which in turn makes portable 

applications possible. The ISFET fabricated in this study have a SiO2 gate oxide and on 

top of that a Si3N4 layer. The latter layer, in addition to passivating the device, serves as a 

pH sensitive membrane. The overall process has 5 mask levels and the electrical tests, 

which were performed using buffer solutions with varying pH values, indicated that the 

transistor can be employed to measure the pH of solutions. ISFETs were also tested 

against environmental conditions such as temperature, long term exposure to various pH-

valued solutions and it is found out that the FETs are quite robust in terms of temperature 

stability and long term drift. In addition to their pH sensing properties, these devices were 

also taken one step ahead to sense chloride ion (Cl-) concentration via preparing a Cl--

sensitive membrane stacked on top of the Si3N4 layer. Electrical tests, which were 

performed in solutions with various Cl- concentrations, showed that the modified ISFETs 

are also Cl- sensitive.     
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Chapter 1 

1.Introduction 

 

Measurement of pH (power of hydrogen) of solutions holds great importance for 

environmental and biomedical applications since a change in pH is one effective way to 

track chemical processes, which take place in nature. A common method to measure pH 

is the well-known glass membrane electrode which is shown in Figure 1.1; however, 

glass membrane electrode comes with some limitations such as the inability to operate at 

high temperatures, being a bulky device (which prevents its use in vivo monitoring), 

manufacturing difficulties, and low durability. However, development of Ion Sensitive 

Field Effect Transistor (ISFET) concept by P. Bergveld in 1970 [1, 2] introduced a 

remedy for these short comings. Since the introduction of ISFETs, hundreds of studies 

have been reported in literature exploiting various uses of the device. In addition to the 

pH sensing properties of the gate insulator of ISFETs, researchers also have shown the 

capability of the ISFET to sense other ions via using ion-specific membranes atop of the 

gate insulator [3].    
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Figure 1.1: Glass membrane electrode paired with a reference electrode. 

ISFETs are realized by removing the metal gate electrode of a Metal Oxide Field 

Effect Transistor (MOSFET). Therefore, the metal becomes a remote gate. The gate 

insulator, which is commonly silicon dioxide (SiO2), is exposed to an ionic solution 

(electrolyte), which modulates the threshold voltage, VT, of the transistor [1-3]. Figure 1.2 

is illustrating this modification to the MOSFET and the resulting ISFET structure. The 

modulation in device threshold voltage is explained as a result of the interaction of the 

insulating material with the ions in the electrolyte. The interaction reveals itself as a 

change in the conductivity of the underlying channel and hence in the current flowing 

through it.  
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Figure 1.2: Modifications to MOSFET. (a) A typical MOSFET structure. (b) Resulting ISFET device [3]. 

Aside from having a slightly different structure than a regular MOSFET; same 

equations could be applied to the ISFET with one exception. The threshold voltage 

equation had to be modified to include the effect of pH of the electrolyte [3]. Therefore, 

various studies followed this invention to understand the chemistry in the electrolyte-

insulator interface and to develop useful models that accurately characterize the change in 

the threshold voltage of the ISFET.  

This thesis reviews the fundamentals of ISFET concept by starting from the 

electrochemistry of electrolytes, the pH concept, pH sensing insulators employed on 

ISFETs, and their comparison. These are explained in this chapter. In chapter 2, 

electrolyte-insulator-semiconductor (EIS) structure is explained in detail with the 

chemical treatment of electrolyte-insulator interface by using the site-dissociation theory 

and the double layer theory of Gouy-Chapman-Stern [4, 5]. Also in chapter 2, the results 
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of the EIS analyses are used to derive a pH sensitivity expression for the ISFET. In 

addition, a method of changing the sensitivity of an ISFET to other ions by using 

dedicated membranes is also explained. Chapter 3 presents the theory of ISFET with 

fundamental equations which characterize its operation. Moreover, the ISFET structure 

employed in this study and the dedicated mask design with the process flow are also a 

part of Chapter 3. Chapter 4 talks about the electrical and environmental tests performed 

on the test structures and, finally, Chapter 5 presents conclusions on the results and their 

impact on RIT’s success in fabricating ISFETs.  

1.1. Electrochemistry of Ionic Solutions (Electrolytes) 

Investigation of ion activity (concentration) or chemical compounds are 

performed in electrolytes (ionic solutions). These solutions are prepared by dissolving 

chemical compounds in polar solvents such as water. Water is one of the most common 

solvent since its molecules are not symmetrically charged. Therefore, water has a certain 

dipole moment. This dipole moment weakens the chemical bonds of the compounds and 

has them dissolve. Dissolved ions are surrounded by as enough water molecules as to 

screen their charge. This mechanism changes the dielectric constant around the ions and  
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Figure 1.3: Dissolved free ions surrounded by water molecules [6].  

prevent them from being influenced by the electric fields in the surrounding. Therefore, 

the ions become free to move in the solution and conduct electric current [6]. Figure 1.3 

shows this mechanism for an electrolyte in which free ions of a dissolved salt exist. 

1.2. Concept of pH (Power of Hydrogen) 

In electrolytes, not only the compounds but the water molecules dissolve to some 

extent, as well. This mechanism is governed by the following equation which reaches to 

equilibrium in time: 

 

H 2 O                 H+ + OH -   (1.1) 
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Equilibrium constant in terms of molar concentrations, moles per liter, of the 

species for the chemical equation (1.1) is given as [6]: 

 

[ ]2

H OH

H Oeq
K

+ −      =      (1.2) 

 

Assuming the density of water constant, individual concentrations of hydrogen 

and hydroxyl ions can be calculated as given in equation (1.3), and by moving from this, 

dissociation constant, Kw, can be found as given in equation (1.4). 

 

H OH H OH

1 g/mL 1 mol/18 g 55.56 Meq
K

+ − + −              = =
×

   (1.3) 

55.56 H OH
w eq

K K + −   = × =        (1.4) 

 

Kw has a constant value of 10-14 at room temperature. However, in chemistry it is 

more convenient to work with these ion concentrations in terms of logarithmic values. 

Taking the logarithm of equation (1.4) results in the sum of powers of individual ions is 

equal to 14 as shown in equation (1.5).  
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( )10log H OH H+ OH=14p p
+ −    =        (1.5) 

 

In chemistry, solutions with a pH of 7 are defined as neutral. As the amount of 

hydrogen ions increase, acidity increases and solution becomes low in pH. On the other 

hand, as the amount of hydroxyl ions increase, concentration of hydrogen ions decreases 

due to the relationship given in equation (1.5). Therefore, solution becomes basic and has 

a pH value higher than 7. Solutions with very low pH values are named as strong acids 

while the solutions with very high pH values are named as strong bases. Understanding 

the concept of pH is crucial, since the concentration of these ions is what is affecting the 

operation of ISFET. 

1.3. pH Sensing Insulators  

In pH measurements, pH sensitive insulator plays the most important role. It is 

this layer that actually interacts with the electrolyte. A good pH sensitive insulator must 

possess linear response in a wide pH range, must show high selectivity to hydrogen ions 

and less selectivity other ions. It must have high sensitivity to concentration changes of 

hydrogen ions and also must exhibit low drift performance.  First pH sensitive insulator, 

which was used on the ISFET, was the SiO2. Actually, SiO2 was the already existing gate 
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dielectric of a regular MOSFET [1, 2]. Therefore, this resulted in comparisons with the 

glass membrane electrode, which was requiring its porous glass membrane be hydrated to 

allow hydrogen ion transfer to either sides of the membrane [3]. However, Matsuo [7] 

already used Si3N4 (stacked atop SiO2), which was an insulator that did not hydrate. This 

experiment showed that the pH sensitivity of the gate insulator was a result of pure 

surface phenomena occurring in the electrolyte-insulator interface. Therefore, researchers 

focused on this interface to explain this phenomenon and model it. Yates et al. [4] 

worked on the colloidal oxide-water interfaces and explained double layers formed in 

these interfaces with site-binding theory, which will be explained further in next chapter. 

Afterwards, Bousse et al. [5] applied those models to electrolyte/insulator/silicon (EIS) 

interfaces and developed a very accurate model with two parameters, namely pHpzc and β, 

which were the pH value of the electrolyte at which the insulator surface was neutral and 

surface buffer capacity of the insulator, respectively. The latter parameter was also 

explaining the reason for the low pH sensitivity when compared to Nernstian sensitivity 

of the glass membrane electrode which was 58.2 mV/pH at 20 °C. The buffer capacity of 

the insulator is different for each insulator and resulting in different sensitivities to pH 

[3]. Matsuo also tested different insulators such as Al2O3, Ta2O5 and concluded that these 
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two insulators were showing the best sensitivity which was close to the ideal Nernstian 

sensitivity. Table 1.1 is illustrating the measured sensitivities by Yuqing [8]. 

 

Table 1.1 Measured pH sensitivities of insulators [8]. 

Insulators Si3N4 Al2O3 Ta2O5 
Measurement pH-Range 2-12 2-12 2-12 

Measured Sensitivity  (mV/pH) 53-55 54-56 56-58 
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Chapter 2 

2.Electrolyte-Insulator-Semiconductor (EIS) Structure 

Figure 2.1 illustrates the potential and charge distribution at the electrolyte-

insulator interface of an ISFET. Inorganic oxides such as SiO2, Si3N4, Al2O3, and Ta2O5 

have amphoteric surface sites. These surface sites are the hydroxyl groups and they 

donate or accept H+ ions from the solution acting as an acid or a base, depending on the 

bulk solution pH [9]. As a result of this interaction with the electrolyte, the surface of the 

insulator now has a net charge of σ0 as shown in Figure 2.1. Moreover, the pH in the 

vicinity of the insulator surface differs from the pH in the bulk of the solution. The 

surface hydrogen ion concentration, [Hs
+] is related to the bulk hydrogen ion 

concentration [HB
+] through a Boltzmann relationship given by: 

 

 0
S BH H exp

q

kT

ψ+ + − 
   =     

 
 (2.1) 

 

Taking the minus logarithm of both sides of equation (2.1) allow us to represent the 

relation in terms of pH and given as: 

 

0
S BpH pH

2.3

q

kT

ψ
= +      (2.2) 
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Figure 2.1: Potential profile and charge distribution for insulator-electrolyte interface [10]. 

Due to charge neutrality, the net charge σ0 has to be compensated by the ions in 

the solution in the vicinity of the insulator surface. Typically, the ions in the solution 

have large radiuses and have a random thermal motion. Therefore, compensation of the 

surface charge can only be achieved by forming a diffuse layer of these charges 

extending to some distance from the insulator surface into the bulk of the solution [5].  

2.1. Gouy-Chapman-Stern Model for Insulator – Electrolyte Interface 

The potential drop ψ0, shown in Figure 2.1 and given in equations (2.1) and (2.2) 

drops across this diffuse layer also known as the Gouy-Chapman double layer [6, 11, 12]. 

An example illustration of this diffuse layer of ions is shown in Figure 2.2. 
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Figure 2.2: Gouy-Chapman double layer [6]. 

From Figure 2.1, it can be seen that the net surface charge σ0 is compensated by 

the double layer charge σDL and the potential ψ0 is actually the dropping over a diffuse 

layer capacitance, Cdf [9]. However, experimentally it was shown that Gouy-Chapman 

diffuse layer model, which was applied to insulator-electrolyte interface, was over-

estimating the diffuse layer capacitance and the interface charge [6, 11]. The reason for 

that was the treatment of ions in the solution as point charges which can approach the 

insulator surface to a distance lower than their large atomic radius. As explained in the 

first chapter, these ions are free to move in the solution with the help of the 

agglomeration of water molecules around them. This over-estimation in the treatment of 

insulator-electrolyte interface was mitigated by Stern [12]. Figure 2.3 presents a useful 

interpretation of the improved model, Gouy-Chapman-Stern model, for a metal-

electrolyte structure which is valid also for insulator-electrolyte as will be seen later in 

this chapter. 
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Figure 2.3: Representation of Gouy-Chapman-Stern model [6]. 

Here, the closest approach of an ion can be only its radial distance had it been not 

surrounded by water molecules. The first layer of ions is placed in the so called outer 

Helmholtz plane (OHP). The potential drops starting from the surface and becomes zero 

deep in the bulk solution. Between the insulator surface and the OHP there is no ionic 

charge and this results in a constant capacitance called Stern capacitance, Cst, which is in 
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series with the Gouy-Chapman double layer capacitance, Cdf. It has a constant value of 20 

µF/cm2 [13] and becomes the dominant capacitance with respect to Cdf  which is an order 

of magnitude greater than that. However, in the overall electrolyte-insulator-

semiconductor (EIS) structure, the series of these capacitance together with the insulator 

capacitance Cox results in a lower equivalent capacitor due to the respectively very low 

capacitance of the insulator layer. 

Gouy-Chapman double layer capacitance and the Stern capacitance are two out of 

the three components of the potential drop, ψ0, of the insulator-electrolyte interface. The 

last component is the net charge built on the surface of the insulator, σ0, as a result of the 

surface chemistry. Site-dissociation model has been used since 1970s to explain the 

charging mechanism of insulator surface and use in expressions for ISFET operation as 

will be seen in next Chapter 3.  

2.2. Site-Dissociation Model for Insulator Surface Charging 

According to this model, chemical reactions between the insulator surface and the 

electrolyte can only happen inside the OHP and the ions of the dissolved species (salts) of 

the electrolyte cannot approach to the insulator surface as explained in the previous 

section. The only species that can approach to the surface of the insulator is the hydrogen  
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Figure 2.4: Site-dissociation and binding model representation [6]. 

ions, H+, since these ions are small and not surrounded by water molecules or not 

hydrated by water molecules. Figure 2.4 illustrates this reasoning for the capability of 

only hydrogen ions to come contact with the insulator surface. The picture is given for 

SiO2 surfaces but is also valid for other inorganic oxides since they all have these surface 

amphoteric sites accepting and/or donating hydrogen ions from and to the electrolyte. 

Acid-base behavior of the surface of the insulator determines how sensitive the 

ISFET to changes in the pH of the bulk electrolyte. Chemical reactions which result in 

charging of the surface and different pH value in the vicinity of the insulator surface are 

given as: 
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 SA-OH  A-O  H
aK

− ++�  (2.3) 

S 2A-OH + H  A-OH
bK

+ +
�     (2.4) 

 

Dissociation constants which are intrinsic to an insulator are given as: 

 

[ ]
S

a

A-O H
K =

A-OH

− +            (2.5) 

[ ]
2

b

S

A-OH
K =

A-OH H

+

+

  
  

     (2.6) 

 

Ka and Kb define the acid-base behavior of the insulator surface [9]. [A-OH],    

[A-OH2
+], and [A-O-] are the number of neutral, positive and negative surface sites per 

cm2, respectively. These sites are randomly distributed over the surface of the insulator 

and their numbers are solely determined by the equilibrium constants and the pH of the 

bulk electrolyte which is given as pHB in equation (2.2). The number of the hydrogen 

concentration in the vicinity of the insulator interface is given by [HS
+] and also given in 

terms of its power in equation (2.2) as pHS. As mentioned earlier, [HS
+] is related to [HB

+] 

through Boltzmann relationship with the potential drop ψ0 across the interface as a result 

of the net charge formed on the surface through equations (2.3) and (2.4). 
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From equations (2.5) and (2.6), [HS
+] can be derived as: 

 

 
2 2a

S
b

A-OHK
H

K A-O

+

+

−

    =    
    (2.7) 

 

In addition to being an expression for [HS
+], equation (2.7) also gives information 

on another important parameter, namely, pHpzc which is also intrinsic to each type of 

insulator. This parameter is defined as the pH at point of zero charge which is the pH 

value of the bulk solution at which the surface of the insulator is neutral. The reasoning is 

that, if the surface of the insulator is neutral, then, then [A-OH2
+] must be equal to       

[A-O-]. In this case, σ0 is zero therefore, so is ψ0. From equation (2.7) 

 

a
S

b

K
H

K
+  =        (2.8) 

 

and from equation (2.1)  

 

       a
S

b

K
H H

KB

+ +   = =         (2.9) 
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and finally, pHpzc is given as: 

 

( ) a
pzc S

b

K
pH log H H log

KB

+ +
 

   = − = = −       
 

   (2.10) 

 

When the pH of the bulk solution differs than pHpzc, the response of the insulator 

surface to this change is an indicator of how pH sensitive it is. The sensitivity is 

expressed in terms of the buffer capacity of the surface and indicated with the symbol β. 

Buffer capacity is defined as the ability of the insulator surface to buffer the minuscule 

changes in the surface pHs. It is given as the ratio of the change in the number of the 

charged surface groups to the change in the pHs [9, 10]. Therefore, expressed as: 

 

 
[ ]

S

B

pH

d

d
β =  (2.11) 

 

where, [B] represents the amount of net charge on  the insulator surface and can be given 

as: 

 

 [ ] 0
2B A-O A-OH

q

σ− +   = − = −     (2.12) 
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Total surface sites, NS, can be given as the sum of the charged and the neutral sites 

as: 

 

[ ]S 2N A-O A-OH A-OH− +   = + +        (2.13) 

 

Using equations (2.5), (2.6), and (2.13) the charged sites can be expressed by the 

following equations as: 

 

a
S 2

a S b S

K
A-O N

K H K H

−

+ +
  = 

   + +   

   (2.14) 

2

b S

2 S 2

a S b S

K H
A-OH N

K H K H

+

+

+ +

    = 
   + +   

   (2.15) 

 

From equations (2.10), (2.11), (2.12), (2.14), and (2.15) the buffer capacity of the 

insulator surface can now be expressed as: 

 

[ ] [ ]

( )

S

S SS

2

a a b S b S

S S 22

a S b S

HB B
=

pH pHH

K 4K K H K H
    =2.3 H N

K H K H

dd d

d dd
β

+

+

+ +

+

+ +

  = ⋅
  

   + +    ⋅ ⋅ ⋅ 
   + +   

    (2.16) 
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Taking the logarithm of (2.1) results in an expression for ψ0 in terms of pHS and 

pHB. and given as: 

 

 ( )0 S B2.3 pH pH
kT

q
ψ = −  (2.17) 

 

 

ψ0 charges the equivalent capacitance, Ce, which is the series combination of Cdf 

and Cst. Therefore, the surface charge, σ0 can be expressed as: 

 

 0 0 e DL
Cσ ψ σ= − = −   (2.18) 

 

Equation (2.17) will be the key equation to formulating the final expression 

relating the ψ0  to changes in the bulk pH, which is pHB. However, the sensitivity of this 

potential  to changes in pHB is actually coming from the induced changes in pHS which is 

actually determined by the buffer capacity of the insulator and the equivalent capacitance 

over which this potential drops. Using equations (2.11), (2.12), and (2.18) the sensitivity 

of ψ0 to pHS can be written as: 

 

 0 0 0

S S 0pH pH
e

d d d q

d d d C

ψ σ ψ β

σ

−
= ⋅ =  (2.19) 
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Examining equation (2.16) and (2.19) results in important conclusions as to how 

the type of insulator used in an ISFET affects the final sensitivity of ψ0 to changes in pHS  

and finally  in pHB. Provided that Ceq is small a large sensitivity can be achieved with a 

high buffer capacity, β. A high β can be achieved with a large amount of surface sites, NS, 

and dissociation constants, Ka and Kb. In the following section, the final form of the 

sensitivity expression for insulator surface and, therefore, ISFET device is derived. The 

final sensitivity equation relates the changes in ψ0 to pH of the bulk solution and 

incorporates the effect of the chosen insulator type due to the parameters examined in this 

section. These effects are lumped into a sensitivity factor represented by α, which also 

explains the sub-Nernstian sensitivity of some insulators compared to glass membrane 

electrodes [3].  

2.3. pH Sensitivity of ISFETs  

Since ISFET concept was proposed, for the first time by Bergveld in 1970s, all 

attempts have been made to model the sensitivity of the potential drop ψ0 to the changes 

pH of the bulk solution. After all, assuming everything else is constant, any change in this 

potential drop has to be compensated by the semiconductor surface potential ψs, 

therefore, the threshold voltage of the FET. The reason is that during normal operation 
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ISFET is biased by a fixed gate potential. Thus, as will be seen in Chapter 3, an 

expression for sensitivity of ψ0 to pH has to be incorporated to the equations defining the 

ISFET operation. In order to do so, equation (2.17) can be used. Taking the derivative of 

ψ0 with respect to pHB results in 

 

0 S

B B

pH
2.3 1

pH pH

d dkT

d q d
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= − 

 
    (2.20) 

 

and, expanding the derivative of pHS with respect to pHB to make use of the relationships 

of the previous section gives 
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   (2.21) 

 

Rearranging (2.21) and using equation (2.19) results in the pH sensitivity equation of an 

ISFET device given as: 
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The term α is the sensitivity parameter of the ISFET gate insulator to pH of the bulk 

solution. It can have a maximum value of 1 depending on the insulator type chosen [3]. 

This is due to the fact that, α, involves the terms intrinsic buffer capacity and equivalent 

capacitance of the insulator-electrolyte interface. As mentioned earlier, buffer capacity is 

a function of the number of the surface sites ready to interact with the hydrogen ions in 

the vicinity of the surface, and it is also a function of the dissociation constants Ka and 

Kb. If the maximum sensitivity, the Nernstian sensitivity of 59.3 mV/pH at 25 °C, is 

needed, then, the insulator needs a very high buffer capacity so that α goes to 1. In 

addition to that, the value of Ce should be low irrespective of the ion concentration of the 

electrolyte since as the ion concentration increases the value of this capacitance tends to 

increase and reduce the sensitivity of the threshold voltage of the ISFET to pH.  

Measuring β and Ce individually is not an easy thing to do, however the 

sensitivity α can be extracted from the response plot of ISFET to pH. The sensitivity of 

these oxides and also the effect of ion concentration was investigated by Bergveld and his 
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group and it was found to be SiO2 was showing the lowest pH sensitivity and the 

sensitivity was affected adversely as the ion concentration of the electrolyte was 

increased. On the other hand, Ta2O5 had a very high buffer capacity such that, even when 

the ion concentration of the electrolyte was increased, the pH sensitivity of the ISFET 

was not changing much. Figure 2.5 shows the experimental plots generated as a result of 

these experiments on different insulator types.    

  
Figure 2.5: (a) ISFET response to electrolyte pH at constant ion concentration. (b) ISFET response to ion 

concentration at constant pH [3]. 
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2.4. Making ISFETs Sensitive to Different Ions 

So far, it has been discussed that the sensitivity of the insulator surfaces to the 

hydrogen ion concentration is what makes an ISFET useful for pH detection. However, 

the applications of ISFET are not limited to only pH detection but, over the years, 

ISFETs are employed for detection of different ions, as well. How this is possible is the 

topic of this section. After all, this thesis study also involves the fabrication of a chloride 

ion, Cl-, sensitive ISFET which can be employed in water quality sensory system here at 

RIT.  As mentioned earlier, large ions cannot approach to the surface of the insulator 

where chemical reactions can occur with hydrogen ions and the insulator surface. 

However, by preparing a selective reaction medium which will, ideally, only allow a 

specific ion to approach closer to the insulator surface and change the local hydrogen ion 

concentration is the solution for achieving ISFETs sensitive to different ions [6]. 

Therefore, after the invention of ISFETs, many researchers developed membranes which 

are selective to an ion of interest and deposited them o top of the gate insulator.        

Figure 2.6 is an illustration of this idea where a membrane on top of the insulator allows 

the ion of interest to approach to the insulator. Within the membrane, the ions, naturally, 

react with the water molecules and change the local pH of the interface. This practice 

results for the insulator surface to, indirectly, be sensitive to the concentration of the ion  
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Figure 2.6: Application of membranes for ISFETs sensitive to different ions [6]. 

 

of interest. In this study, this is also the same approach which was followed. A 

membrane, which is selective to chloride ions, was prepared with the recipe developed by 

[14] and deposited on top of the Si3N4 surface. 
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Chapter 3 

3.ISFET Operation and Technology 

3.1. ISFET Operation as an Electronic Device 

ISFET can be regarded as a MOSFET whose gate connection is replaced by the 

metal connection of a reference electrode, which is immersed in the electrolyte to be 

analyzed. The electrolyte includes the ions of interest and forms the conducting medium 

between the reference electrode and the membrane/gate-insulator stack. Figure 3.1 

illustrates the difference between a MOSFET and ISFET schematically [3]. As can be 

seen from Figure 3.1(c), both MOSFET and ISFET devices have the same electrical 

representation, however, unlike the case of a MOSFET, ISFET cannot be totally 

encapsulated. The gate has to be left open so that it is in direct contact with the electrolyte 

to be analyzed. Due to the similarity in the structure of the ISFET and MOSFET 

explained and illustrated in Figure 3.1(c), the operation of an ISFET starts with analyzing 

the theoretical description of a MOSFET. During normal operation, ISFETs are biased in 

non-saturated mode, since any change in ion concentration in the solution is assumed to 

modulate the threshold voltage which, in this mode of operation, exhibits a linear relation 

with drain current.    
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Figure 3.1:  (a) Schematic diagram of a MOSFET. (b) Schematic diagram of an ISFET. (c) Electrical 

representation of both MOSFET and ISFET [3]. 

 

Drain current of a MOSFET, in non-saturated mode, can be expressed as:  

 

 ( )' 21
2DS ox GS T DS DS

W
I C V V V V

L
µ

 
= − −  

 (3.1) 

 

where, Cox’ is the oxide capacitance per unit area, W and L are the channel width and 

length, respectively, µ  is the effective surface mobility, and VGS, VDS, and VT are the gate-
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to-source, drain-to-source, and threshold voltage, respectively. Threshold voltage of the 

MOSFET is expressed as: 

 

' '

' '
2M Si ox B

T FB

ox ox

Q Q
V

q C C
φ

 Φ − Φ
= − + − 
 

    (3.2) 

 

where, the term in the parenthesis is the flat band voltage VFB which is composed of the 

metal-semiconductor work function difference ФM and ФSi and any oxide charge/surface 

state per unit area introduced during the process. QB’ is the depletion charge per unit area 

and the φFB is the Fermi potential of the bulk silicon. 

For an ISFET manufactured with the same process, two additional terms are 

incorporated into the threshold voltage of equation (3.2). These terms are the reference 

electrode potential Eref and the interfacial potential at the electrolyte-insulator interface 

ψ0+χ
sol. In this study, an Ag/AgCl commercial reference electrode is used to bias the 

ISFETs. In addition, ISFETs are also biased with a gold (Au) wire in order to investigate 

the possibility of an integrated pseudo-reference electrode to be with for the ISFETs 

which are fabricated here at RIT. The Ag/AgCl electrode has a 0.205 V relative potential 

with respect to standard hydrogen electrode which forms the basis for all reference 
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electrodes. The standard hydrogen electrode has an absolute electrode potential of 4.7 V 

[15].  Thus, Eref (Ag/AgCl) =4.905 V. ISFETs are investigated using aqueous solution, 

thus the solvent is water. In equation (3.3), ψ0 is the potential drop across the electrolyte-

insulator interface and, as mentioned in the previous chapter, is a strong function of pH of 

the bulk electrolyte and χsol
 is the surface dipole potential of the solvent. The reported 

values for χsol
 have a range between 0.1-0.2 V [16]. The expression for the threshold 

voltage of the ISFET then becomes: 
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  (3.3) 

 

Figure 3.2(a) illustrates a family of curves generated by biasing an ISFET, 

immersed in an aqueous solution of pH=2, through a reference electrode (also immersed 

in the electrolyte). Id vs. VDs curves for various VGS values prove the operation of ISFET 

just like a MOSFET. In addition, in Figure 3.2(b), the same curves were generated with 

the reference electrode grounded (VGS=0 V) and the pH of the solution was varied. This 

result can be attributed to a change in threshold voltage, and from (3.3) it can be observed 

that the change is due to the potential drop ψ0 which is a function of pH.  
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Therefore, in ISFET applications, the main goal is to represent the relation 

between ψ0 to the pH of the solution. However, ψ0 is not only affected by the pHof the 

electrolyte but also, as explained in Chapter 2, the type of the membrane that is in contact 

with the electrolyte. 

 

 

Figure 3.2: (a) Family of curves with VGS varied at pH=2. (b) Family of curves at VGS= 0V and pH varied 

[3]. 
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As mentioned earlier, the first material used as a pH sensitive membrane was SiO2 

which was inherently a part of the MOSFET technology and doing so resulted in 

comparisons with other potentiometric ion sensors such as pH glass-membrane electrode.  

 In order for a pH glass-membrane electrode to become pH sensitive, the 

membrane requires to be hydrated. However, it was proved that implementing the 

membrane via using a Si3N4 membrane, which does not hydrate, was also possible [7]. In 

this case, not only the threshold voltage of the ISFET was sensitive to pH, but the 

sensitivity, ∆VT/ ∆pH, was closer to the maximum Nernstian sensitivity of 58.2 mV per 

decade at 20 °C (Nernstian sensitivity is the pH sensitivity of the conventional 

potentiometric ion sensors such as pH glass-membrane electrode and sets the maximum 

limit for the sensitivity for an ISFET. By applying different membranes, the sensitivity of 

an ISFET can be increased closer to this target). Original equation for Nernstian 

sensitivity is given in Appendix A in the context of pH glass-membrane electrode. From 

the nitride membrane results, it was concluded that one had to consider a pure surface 

phenomena at the solution/insulator interface. Using site-binding theory, a rather simple 

expression for ψ0, including the effect of different membrane types, was derived, and 

according to this model ψ0 can be expressed as: 
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where, k is the Boltzmann’s constant, T is the absolute temperature, q is the electronic 

charge, pHpzc is the pH value at which the membrane surface is electrically neutral. Here, 

β is a factor determining the final sensitivity of the membrane and, as explained in the 

previous chapter, is the buffer capacity of the insulator surface. 

 Taking the derivative of equation (3.4) results in the pH sensitivity relation of the 

ISFET, which is given by equation (2.2). However, it can be seen that the sensitivity 

parameter α is now replaced with β/ (β+1). This is due to the fact that, for a dilute 

electrolyte, the effect of the equivalent capacitor Ce can be ignored and the resulting 

sensitivity depends solely on the type of insulator through β. Examining equation (3.4), 

reveals that, if the membrane is perfect, the sensitivity parameter β goes to infinity, 

resulting the term, β/ (β+1) =1. If, now, one calculates the sensitivity of the threshold 

voltage to pH through ψ0 as: 
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Figure 3.3: Mask design for ISFET test structures. 

 

3.2. ISFET Fabrication 

Most ISFETs are processed using standard CMOS technologies; therefore, they 

are planar devices with source and drain connections at the same side as the gate. The 

only difference occurs, when it comes to selecting the gate dielectric since the actual 

sensitivity is determined by this layer. This layer is deposited usually on top of the 
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already existing gate oxide. In this study, as mentioned earlier, the choice of membrane is 

Si3N4 which is readily available in CMOS process here at RIT.  

Figure 3.3 illustrates the mask designed for fabricating the test structures. The 

chip size is 20x20 mm and includes 4 different sizes of ISFET structures having (W/L) 

[µm/µm] ratios of 400/20, 800/40, 1200/60 and 20,000/20 (interdigitated). In addition to 

these single ISFETs, a pair of each device was repeated in the mid-column of the layout 

together with integrated Au reference electrodes in between to accomplish fully 

integrated sensors. The last column of the mask includes MOSFET devices that are 

structurally same as ISFETs except there are metal gate electrodes on top. The ISFET 

process was realized using RIT’s MEMS process. It is composed of 5 lithography levels. 

The process-flow steps are provided in Table 3.1. The gate dielectric formed by a 150 Å 

of SiO2 with a 1000 Å of Si3N4 membrane. The final cross-section of the simulated 

device is illustrated in Figure 3.4. 
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Table 3.1: ISFET Process Flow 

 

# Process Step Recipes & Conditions 

1 P-type Wafers 6" (150 mm) wafers, p-type, 19.5 Ohm-cm 

2 RCA clean Normal 

3 Grow 500A pad oxide Tube 4, recipe 250, 1000C 

4 1500A LPCVD nitride Recipe FAC810 

5 Photo 1: Active Coatmtl.rcp, Devmtl.rcp, 200 mJ/cm2 

6 Etch 1500A nitride Lam 490. End point. FACNIT 

7 Channel stop implant B11, 8E13 cm-2, 100 keV 

8 Strip resist Branson asher, 6" Factory 

9 RCA clean Normal 

10 Grow 6500A LOCOS Tube 1, recipe 406, 1100C 

11 Wet etch 1500A nitride 60 sec HF dip, 45 min hot phos 

12 Etch 500A oxide 10:1 BOE, 1 minute 

13 Grow 1000A Kooi oxide Tube 1, recipe 311, 900C 

14 **Optional channel implant No mask, P31, 0 to 1E12 cm-2, 50 keV 

15 Photo 2: P+ P+ contact. coat.rcp, develop.rcp, 180 mJ/cm2 

16 P+ Implant B11, 2E15 cm-2, 50 keV. 

17 Strip resist Branson asher, 6" Factory 

18 Photo 3: N+ Drain/source. Coat.rcp, develop.rcp, 180 mJ/cm2 
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19 N+ Implant P31, 2E15 cm-2, 60 keV. 

20 Strip resist Branson Asher, 6" Factory 

21 RCA clean Normal 

22 Implant anneal Recipe 105, Tube 2, N2, 1000C 

23 Etch 1000A oxide 10:1 BOE, 2 minutes 

24 Grow 150A gate oxide Tube 4, recipe 215, 900C 

25 LPCVD nitride 1000A gate nitride. FAC810 

26 Photo 4: CC coat.rcp, develop.rcp, Dose=____? 

27 Etch 1000A nitride Lam 490. End point. FACNIT 

28 Etch 150A CC oxide BOE 10:1 w/surfactants, 30 seconds 

29 Strip resist Branson Asher, 6" Factory 

30 Special RCA clean RCA clean with extra HF dip at the end. 

31 Metal 1 - Gold Evaporate 2000A gold 

32 Photo 5: Metal coat.rcp, develop.rcp, Dose=180 mJ/cm2 

33 Etch 2000A gold Wet etch, chemicals? Etch rate? 

34 Strip resist Branson Asher, 6" Factory 

35 Test 
 

36 Sinter (optional) Recipe 101, 450C, H2N2, 30 min 
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Figure 3.4:  Final cross-section of the simulated ISFET device. 

 

The process simulation was performed in Silvaco’s Athena tool. The devices were 

processed on four 6˝ wafers, with an average resistivity of 19.5 Ω_cm, and each wafer 

received a different threshold adjustment implant. The transistors were laid out such that 

the drain/source contacts were extended away from the gate area as much as possible       

(2.5 mm), since the metal contacts had to be isolated from the sensing gate which would 

be in contact with the test solution. However, to decrease the series resistance of source 

and drain resistance these extended regions were implemented as wide as possible        

(1.8 mm) resulting in a lower sheet resistance. These dimensions are shown on a single 

ISFET device in Figure 3.5. In addition, to prevent any oxide breakdown upon contact 
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with the electrolyte, the devices were realized as depletion mode (normally-on) 

transistors [3].  
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Figure 3.5:  Single ISFET with dimensions illustrated for drain and source extensions. 

 

Figure 3.5 illustrate the layout of this source and drain extensions. These 

extensions are structurally identical for all ISFETs on the mask but the only thing that is 

changing is their corresponding channel widths. One other benefit of these extensions is 

that it allows a free working room during the epoxy isolation process, since on the trial 
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stage of these devices, the gate are is not isolated via using lithography. However, in 

future designs, it is recommended that an extra mask layer, that will cover the gate area 

and expose the rest of the structure for isolation process is added to the process flow. 
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Chapter 4 

4.ISFET Testing and Procedure 

4.1. Test Structure Preparation and Test Setup 

After the wafers are fully processed, individual ISFET test structures were 

selected to perform sample preparation prior to electrical testing. As shown in Figure 4.1, 

fully processed wafers were sawed. In order to determine the specific structures to use, 

the integrated MOSFET structures went through electrical characterization tests, and 

Id_Vd and Id_Vg charts were plotted. The tests were done on several MOSFETs across 

the wafer and it was seen that the threshold voltage of these devices were changing 

significantly. Later, it was concluded that this was most probably due to the fact that, the 

wafers had to be kept for a long time outside right after the gate oxide growth process. 

The CVD tool was not able to deposit the nitride layer right after the gate oxide step, and 

the wafer surfaces were probably contaminated and thus, introducing shifts in threshold 

voltages of the FETs across the wafers. This could have been prevented, had the wafers 

received a modified RCA clean by skipping the HF-dip step.  
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Figure 4.1: Processed wafers were sawed prior to sample pick up. 

 

ISFETs were picked from dice in which the integrated MOSFETs had the lowest 

threshold voltages. Doing so, helped the biasing of the ISFETs with lower voltages and 

not exceed ICS station capabilities. Afterwards, the samples were glued via epoxy on 

dedicated PCB boards, which were conveniently designed thin and long to aid in testing 

the structures in solutions. Figure 4.2 shows one of the test wafers on a PCB board after 

this procedure. The epoxy also served as an insulating layer to prevent the solution 

reaching the source and drain metal contacts of the ISFETs [17]. Because, if these 

contacts were not isolated, then, in time they will be corroded and more importantly, 

ISFETs would not be biased only by the reference electrode but also by the drain/source 

biases.  
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Figure 4.2: ISFET device glued on a dedicated PCB. 

In order, to be able to see the shift in the threshold voltages of ISFETs, the EIS 

system must have a constant and stable gate bias which is provided by the reference 

electrode, which is also the remote gate electrode of the ISFET. Only then, a change in 

the potential drop across the insulator surface-electrolyte interface can be compensated 

by the surface potential of the semiconductor. This is the mechanism that will result in a 

shift in threshold voltage of the device with respect to the changes in the pH of the bulk 

solution.  

In addition to isolating the source-drain contacts, the corners of the ISFET chip 

has to be insulated with epoxy as well. Ideally, the only part of the ISFET chip which is 

exposed to the test solution must be the sensing gate area. 
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Figure  4.3: Buffer Solutions for pH testing. 

Figure 4.3 is showing the buffer solutions which were used in pH sensitivity 

testing of the ISFET devices. These solution are dilute solutions and convenient to 

perform the initial tests on the ISFETs. Also, since they are buffer solutions, they are 

actually resistant to pH changes caused by temperature variations. This property of the 

buffer solutions came in handy during the temperature testing of the devices. Initially, 

there were three different buffer solutions, with pH values 4, 7 and 10. However, by 

mixing these solutions, it was possible to obtain solutions varying between pH 4 to 10. 

Employing a pH meter also helped monitoring the pH of the solutions during testing in 

real time. These solutions were also used in calibrating the commercial pH meter in a 2 

weeks period. To obtain accuracy in measurements, a 3-point calibration was performed 

instead of the usual 2-point calibration.  
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Figure 4.4: ISFET test setup. 

 

Figure 4.4 is an illustration of the test setup used in testing of the ISFETs. The test 

setup is comprised of HP4145 semiconductor parameter analyzer for biasing and curve 

extraction through ICS station software interface between the computer and the analyzer. 

In addition, a Ag/AgCl commercial reference electrode and a Au wire were used to bias 
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the ISFETs and compare whether, Au could be used as a biasing electrode and therefore, 

integrated on the chip together with the ISFETs. Test setup also included the pH meter, 

buffer solutions, beakers, lab-grade NaCl and NaNO3 salts for Cl- - sensitive membrane 

testing, DI water and magnetic stirrer to obtain homogeneity throughout the solution. 

4.2. pH Sensitivity Tests 

Prior to testing, epoxy-isolated ISFET test structures were taken to RIT SMFL 

facility, where they received a pre-treatment. The sensitive, nitride gate area of the ISFET 

was exposed to a 50:1 buffered HF solution for about 20 seconds to obtain a pure nitride 

surface. This is a one-time only treatment. As long as the ISFET structures were kept in 

DIW for 10 minutes and dried off, the sensitivity will not degrade in time. This was 

observed as a conclusion since the same ISFET structures were used throughout the 

project over and over again to obtain repeatability.  

Figures 4.5 to 4.8 illustrate the Id_Vg sweeps obtained from the integrated and 

single ISFET structures. Prior to testing, ISFETs were dipped in the solutions for about 

30 minutes to make sure a stable insulator-electrolyte interface was established. After that 

point, the devices can be removed and dipped in the solutions over and over again. Each 

curve on the graphs were obtained by waiting about 3 minutes between pH changes. 
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However, time-based testing results showed that the ISFETs are responding to pH 

changes faster than this time.  

Figure 4.5 is illustrating the Id_Vg sweeps performed on an interdigitated ISFET 

structure. Drain of the ISFET was kept at VD= 0.1 V and gate bias, VG, was swept while 

measuring the current. The voltage sweeps were performed at 5 different pH values and 

as can be seen, the resulting curves show that the ISFET is working same as a regular 

MOSFET device. In addition, the effects of the fringing fields are also obvious in this 

case, since this device has an interdigitated structure. As the pH value of the solution 

decreases, the hydrogen ion concentration in the vicinity of the insulator surface 

decreases. Then, the insulator surface buffer more hydrogen ion in the electrolyte 

resulting with a net surface charges which is negative. The negative surface charge is 

screened by more positive charge on the other side of the double layer and this 

mechanism result in an increased potential drop ψ0 across the interface. 
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Figure 4.5: Id_Vg sweeps on an interdigitated ISFET biased with a commercial Ag/AgCl 

electrode. 

Since VD is constant, for a constant value of VG, the increase in the ψ0 has to be 

compensated by a decrease in the surface potential, ψs, of the semiconductor. This 

mechanism results in a decrease on the threshold voltage as can be seen from the graph. 

The sensitivity of the ISFET threshold voltage to the changes in pH of the solution was 

calculated simply by extracting the threshold voltage at each curve for each pH and then 

by dividing the difference in threshold voltages to the difference in pH values. This 

resulted in a pH sensitivity of ~ 56.56 mV, which is very close to the Nerst sensitivity. 
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Figure 4.6: Id_Vg sweeps on a single ISFET biased with a commercial Ag/AgCl electrode. 

Figure 4.6 is the same experiment, repeated with a single ISFET biased by the 

commercial electrode. As can be seen, there are 4 curves extracted for the device at 4 

different pH values. Device is working just as a MOSFET device but the threshold 

voltage is shifting with respect to the changes in the pH of the solution. As mentioned 

earlier, as the pH value of the solution decrease, the threshold voltage of the ISFET is 

decreasing, as well. In addition, the sensitivity of the device threshold voltage is about the 
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Figure 4.7: Id_Vg sweeps on an interdigitated ISFET biased with an integrated Au electrode. 

same as the interdigitated device of Figure 4.5. Even though, these devices are coming 

from the same wafer, their threshold voltages are different. This is due to the fact that the 

devices were picked from different dice on the wafer, and as mentioned previously, there 

is a threshold variation across the wafers. 
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Figure 4.8:  Id_Vg sweeps on a single ISFET biased with an integrated Au reference electrode. 

Figure 4.7 is showing the curves extracted from an ISFET with an integrated Au 

reference electrode. The results from this test are important in a couple of aspects. First, 

Au metal is able to bias the ISFET same as the commercial reference electrode with a 

slight shift in the threshold voltages due to the work function difference. Second, the fact 

that the experiment is done with an integrated Au electrode on the wafer, shows that 

ISFETs can be fully integrated with signal conditioning circuits since there is no need of 

a bulky reference electrode. In a multisensory system, the ISFET provides full and 
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compact integration. Third, the threshold voltage sensitivity to pH is the same as in the 

case of Figure 4.5 since the work function is a constant parameter and therefore cancels 

out during sensitivity calculation. 

Finally, Figure 4.8 is illustrating the results obtained from the same single ISFET 

used in the case of Figure 4.6. Same comments would apply for these results too if the 

two cases were compared. Other than the slight shift in the threshold voltages, the curves 

are the same as well as the sensitivity of the threshold voltages to the changes in the pH 

of the bulk solution.  

4.3. Chloride Ion Sensitivity Tests 

As explained in Chapter 3, pH sensitive ISFETs can be made sensitive to other 

ions of interest with a dedicated membrane covering the pH sensitive insulator of the 

device. Therefore, the ISFET is made sensitive to the ion of interest which causes a local 

pH change in the membrane by reacting with the hydrogen ions.  

In order to achieve a Cl- -sensitive ISFET, a dedicated membrane was prepared 

and applied over the nitride gate area of the ISFETs. The membrane recipe of [14] was 

employed for this purpose only with a possible slight difference in the amount of 

reagents. The reagents used to prepare this membrane are given in Table 4.1. 
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Table 4.1: Cl- -sensitive membrane reagents and amounts. 

Reagent Function Amount 

RT 3140-Silicon Rubber Forms the membrane matrix 0.3 gr 

MnTPPCl-Ionophore 

Responsible for Cl
-
 transfer into the 

membrane 0.01 gr 

TDMACL-Ionophore 

Responsible for Cl
-
 transfer into the 

membrane 0.01 gr 

NPOE-Plasticizer Adhesion and durability promoter 0.1 gr 

Tetrahydrofuran-Solvent Required to dissolve the reagents 0.4 ml 

 

As can be seen in Figure 4.9, the membrane was prepared in clean room 

environment here at RIT. All the membrane reagents were mixed and dissolved in 

tetrahydrofuran and mixed with a stirrer. Afterwards, the prepared membrane solution 

was injected on top of the nitride gate area of the ISFETs and the devices were left in the 

clean room for 24 hours of solvent dry off. The ISFETs used for this experiment are 

different devices than the ones used in pH testing. Therefore, prior to applying the 

membrane the devices went through the same 50:1 buffered HF dip step.  

After the solvent dry off, devices were taken to the test lab for Cl- sensitivity 

testing. For these tests, lab-grade NaCl and NaNO3 salts were dissolved in DI water to 

prepare 0.1M and 1M solutions of Cl- solutions. Tests also were performed in a solution 

of 0.1M NaCl in which the same amount of NO3
- was added by dissolving NaNO3. This 

is done to make sure that the membrane is only and/or mostly sensitive to the Cl- ions. 

Prior to testing, devices were kept in the solutions for about 45 minutes. The longer time 
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compared to the pH testing case is due to the fact that only after this amount of time, 

Id_Vg and Id_Vd curves could be extracted. The extractions were performed in the “long 

integration mode” of the HP4145 semiconductor parameter analyzer. 

 

 

Figure 4.9: Cl- -sensitive membrane preparation steps. 

Figures 4.10 to 4.12 illustrate the Cl- sensitivity testing of a single ISFET with 

integrated Au reference electrode. As can be seen from Figure 4.10, the threshold voltage 

of the ISFET was shifted as the Cl- concentration was varied from 0.1M to 1M. As the Cl- 

concentration is increased, the amount of Cl- in the vicinity of the nitride surface. These 
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ions react with hydrogen ions and reduce their concentration, resulting in a basic solution 

here. Just like in the case of a pH sensitive ISFET, the threshold voltage of the device 

increases as the solution gets more basic or in other words, has a higher pH. 

 

 

Figure 4.10: Threshold voltage shift of ISFETs with respect to Cl- concentration change. 

Figure 4.11 illustrates the output characteristics of the Cl- -sensitive ISFET 

response. Output characteristics were plotted for both 0.1M and 1M Cl- solutions on the 

same plot. Here, the effect of threshold voltage shift can be observed extremely well by 

looking at the saturation currents. Saturation drain currents for the ISFET are higher for 

the 0.1M NaCl due to the lower threshold voltage which was observed in Figure 4.10. 

Threshold voltage sensitivity of the ISFET device was found to be ~100 mV/pCl. 
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Figure 4.11: Output characteristics of the ISFET in 0.1M and 1M NaCl solutions. 

 

Figure 4.12 is showing the results for the case where 0.1M of NO3
- ions was added to a 

solution in which 0.1M of Cl- ions resided. In this case, the change in the amount of 

saturation drain current is very little. One important observation is that, even though the 

amount of negative ions doubled, the saturation current is following an increasing 

behavior. If the membrane was actually allowing NO3
- ions to come close to the nitride 

surface, then one would expect the threshold voltage to increase even more, then, for 

which a lower current would be observed. One guess that needs to be proven is that, 

adding NaNO3
- salt to the solution is actually increasing the Na+ content, as well. It is 

possible that the excess Na+ is decreasing the Cl- content, therefore resulting in a lower 
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threshold voltage, which would explain the higher current. If this is really what is 

happening, then, the membrane is rejecting the NO3
- and the shift in the threshold voltage 

is only due to the change in the Cl- concentration. However, this theory needs to be 

proved through further experiments and research. 

 

Figure 4.12: Testing the membrane sensitivity to NO3
+. 

4.4.  Long-Term Drift Tests of the ISFET 

Long-term drift tests were performed to investigate whether the threshold voltage 

of the ISFETs would shift with respect to long-term exposure to test solutions. In order to 

do so, ISFETs were soaked in solutions with different pH values and biased at non-

saturation. Devices were biased at the middle of the linear portion of the Id_Vg curves. 



58 
 

Figure 4.13 and 4.14 illustrate the tests results of this experiment. As seen in Figure 4.13, 

ISFETs were dipped in solutions with pH 7 and 10. Due to poor isolation of one ISFET 

device, the curve for the case of a pH 4-solution could not be obtained. The metal 

connections of drain and source contact were exposed to solution thus, were biasing the 

solution together with the reference electrode. ISFETs were biased with the commercial 

reference electrode and their currents were monitored for 24 hours. Test results show that  

 
Figure 4.13: Long-term drift of the Ag/AgCl electrode-biased ISFET current in solutions with 

various pH values. 

the change in the current over a day is significantly low. Same conclusions apply to the 

results in Figure 4.14 where ISFETs were biased by the integrated Au reference 

electrode. Again, the change in the current is significantly low. This experiment is also 
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giving an idea about the quality of the nitride layer of the ISFETs. The small drift in the 

threshold voltage of the ISFETs can be explained by the highly stoichiometric and 

oxygen free characteristics of the CVD nitride.  

 
Figure 4.14: Long-term drift of the Au electrode-biased ISFET current in solutions with various 

pH values. 

4.5. Sensitivity vs. Temperature Tests of ISFETs 

Examining equation (2.22) reveals that, assuming a first order dependence, the 

sensitivity of the ISFET threshold voltage to temperature changes come from the 

sensitivity coefficient which include the thermal voltage term kT/q. Therefore, one would 

expect the sensitivity of the ISFET to pH to increase with temperature. In order to 

investigate this, ISFETs were dipped in solutions of different pH and placed in a box 
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oven. Temperature was increased and the current values of the ISFETs, biased in non-

saturation, were observed. During the current measurements, the instantaneous pH values 

of the solutions were also monitored by the commercial pH meter. In addition, since the 

test solutions were buffer solutions, their pH values were resistant to temperature changes 

and did not change significantly. This actually worked in favor of the experiment.  

 

Figure 4.15: Au wire-biased ISFET response to pH change at various temperatures. 
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Figure 4.16: Integrated Au electrode-biased ISFET response to pH change at various temperatures. 

 

Figures 4.15 and 4.16 illustrate the results of the temperature tests. For each 

temperature value, 20 current measurements were taken within 5-minute duration of time. 

As can be seen, as the temperature increases, the slope of the curve becomes steeper, thus 

indicating a higher sensitivity of the current to temperature. Also for each temperature 

and pH value, the variation of the current data stays extremely tight. Here, the figures 

were plotted only for a Au wire and integrated Au electrode cases. This is due to the fact 

that, the commercial Ag/AgCl reference electrode was broken during the experiments.  
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4.6. Time-Based Response of ISFET to pH Changes 

Figure 4.17 illustrates the time-based response of the ISFET current, therefore, the 

threshold voltage with respect to changes on the pH of the solution. For this test ISFET 

was dipped in a solution and a magnetic stirrer was used to provide a homogenous 

concentration throughout the solution. The pH of the solution was monitored by the 

commercial pH meter, as well. As can be seen, ISFET response to pH changes is within 

seconds if the concentration of the hydrogen ions immediately becomes homogenous 

throughout the solution after the pH adjustment. In real time applications, where there is 

not a magnetic stirrer, the response of the ISFET will follow the pace at which the sample 

solution pH stabilizes. On Figure 4.17, the boxes, which were drawn at transition points, 

represent the intervals in which the pH of the solution was being adjusted by mixing the 

solutions with buffer solutions of various pH values. It is seen that, as the pH of the 

solution increases the value of the current decreases. This result is agreeing perfectly with 

the theory such that the threshold voltage is increasing with increasing pH. In addition, 
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when the pH is recovered to the same value as before, the threshold voltage, as well as 

 

Figure 4.17: ISFET time-based current response to pH changes. 

the current, is being recovered to where they were used to be for that same pH. There 

might be some slight differences due to the fact the pH values that were recovered are not 

exactly the same values as they were, due to the tedious adjustment procedure. Finally, 

the graph is indicating fluctuations at current values with time; however, this is due to the 

magnetic stirrer noise and should be ignored.   
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Chapter 5 

5.Conclusions on the Study 

Test results presented in Chapter 4 show promising and very good results on this 

thesis study. ISFET devices fabricated here at RIT can be used in both pH and chloride 

sensing applications. Experimental results agree very well with the literature. For pH 

sensing applications, the sensitivity of the ISFETs are ~56.56 mV/pH and very close to 

the Nernstian sensitivity, which is 58.2 mV/pH at 20 °C. 

Chloride sensitive membrane, which is prepared at RIT SMFL facility is working 

extremely well and test results indicate a sensitivity of ~100 mV/pCl. In addition, since 

the ISFETs are working as pH sensitive devices, the application of these devices is not 

limited only to chloride ions but other ions can be also investigated with dedicated 

membranes.  

Long-term drift tests are also satisfying, since the drift in the current value over 

time is significantly low. This is also a proof of the quality of the nitride layer deposited 

on top of the silicon dioxide layer.  

Temperature tests are also agreeing with the theory, such that when the 

temperature is increased the sensitivity coefficient is also increasing with it. Using the 
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ISFETs together with a proper signal conditioning circuitry will result in high 

performance and accuracy applications.  

Time-based measurement results show that, as long as the pH value of the 

solution reaches to equilibrium, ISFETs respond to the pH change within seconds and 

give a stable signal output. Overall, this study is a success in its field and will open up a 

path to other thesis topics to follow here at RIT.  
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