
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

1994 

Stability of parametrically forced linear systems Stability of parametrically forced linear systems 

Andrew J. Leccese 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Leccese, Andrew J., "Stability of parametrically forced linear systems" (1994). Thesis. Rochester Institute 
of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F7379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/7379?utm_source=repository.rit.edu%2Ftheses%2F7379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Approved by:

Stability of Parametrically
Forced Linear Systems

Andrew J. Leccese

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

MASTER OF SCIENCE
in

Mechanical Engineering

Prof. J. s. Torok (Thesis Advisor)

Prof. H. Ghoneim

Prof. C. W. Haines (Department Head)

Department of Mechanical Engineering
College of Engineering

Rochester Institute of Technology

May 1994



Pennission Grant

1, Andrew J. Leccese, hereby grant pennission to the Wallace Memorial Library of the
Rochester Institute of Technology to reproduce this thesis in whole or in part. This
pennission is extended as long as no reproduction will be used for commercial use or
profit.

Date: 6-7-q~



Abstract

The stability analysis of constant-coefficient linear systems is extended to systems

with periodically-varying coefficients. Although this theory is mathematically
well-

understood, little work has been done regarding its application to physical problems. All

previous results are based on asymptotic analysis. A review of the theory of

parametrically-forced linear systems will be presented, followed by a detailed stability

analysis of a pendulum with a harmonically moving base.
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List of Symbols Used

A,B,... - capital letters generally denote matrices
- square brackets are placed around the

letter when needed for clarity

ay by,...
- element in the matrix using the same letter of the alphabet

x'

, y
'

-

vectors, denoted with arrow, superscript used where necessary for clarity

Xj.yi,...
-

generally elements of vectors, denoted with subscript

X -

eigenvalue, also called a characteristic factor or characteristic multiplier

v -

generally an eigenvector (modal vector)

r,
- characteristic exponent as defined by X- = eP" =

eTr'
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CHAPTER 1

Introduction: Stability Theory

An acceptable and physically-realizable dynamic system must satisfy the three basic criteria of stability,

accuracy, and a satisfactory transient response. Of these criteria, stability is the most important

specification of a system. If a physical system is unstable, other properties such as transient response

and steady-state errors are only secondary, if they are relevant at all. A specific transient response or

steady-state error requirement can not be predicted for an unstable system. There are many definitions

of stability, depending upon the kind of system or the point of view. In this investigation, stability was

taken as a bounded response as time approaches infinity.

A linear time-invariant system is stable if the natural response approaches zero as time approaches

infinity. This definition is also known as asymptotic stability. Since the total response is the sum of the

forced and natural responses, the definition of stability implies that only the forced response remains as

the natural response approaches zero. A linear system with time-varying system parameters is said to

be stable if the response, for all initial conditions, remains bounded as time approaches infinity.

A linear system is said to be unstable, if the response grows without bound as time approaches infinity.

If the system response neither decays nor grows, but remains constant or oscillates, then the linear

system is referred to as marginally stable.

Physically, an unstable system can cause damage to the system, to adjacent property, or even to human

life. Thus the criterion of stability is even more important than its quality of performance.

In fact, some unstable systems are not even physically-realizable, such as trying to balance a pencil on

its tip.

In order to effectively analyze the stability of dynamic systems, it becomes necessary to formulate

precise definitions of the notion of stability. Since dynamic systems are mathematicallymodeled using

differential equations, stability is characterized by the nature of the associated solutions.

Ideally, one would like to explicitly compute all solutions to a differential equation or a system of

differential equations. However, there are actually very few equations ( beyond linear equations with

constant coefficients ) that allow explicit solution in terms of analytic functions. In this investigation,

we study some of the qualitative aspects of the solutions
of differential equations. The objective will be

to analyze the properties of the solutions without explicitly solving for them. These ideas were first

advanced by the independent work of two mathematicians, AM. Lyapunov and Henri Poincare at the

turn of the century. Their ideas remain very applicable to this day.

Numerical analysis allows calculation of a specific solution to a differential equation. The

computations only give results corresponding to a
specific set of initial conditions. This is fine ifwe

desire information on only one specific solution. However, in many problems, for example, in the

design of complex systems, automatic controls, and so forth, we want to extract information of a

qualitative nature about all the possible solutions to a set of differential equations.
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Moreover, we often want to know whether a certain property of these solutions remains unchanged if

the system is subjected to various types of changes (usually called perturbations). For such purposes,

the computer and the calculation of a few specific solutions do not provide a satisfactory answer.

These qualitative studies are also important from the practical point of view, because in most problems

(including simple spring-mass or pendulum problems) the differential equations and the measurement

of initial values and various other data involve approximations. Indeed, in almost every mathematical

model of a physical problem a number of effects have been neglected. It is therefore important to study

how sensitive the particular model is to small perturbations or changes in initial conditions and of

various parameters. Another drawback in the use of numerical approximation is that often it is of

interest to show that a solution of a differential equation tends to zero as t -*. While a numerical

approximation method may suggest that this is true, it cannot be used to prove it.

One qualitative phenomenon of interest of great importance is the notion of stability of a certain

solution of a differential equation. This investigation is devoted primarily to the study of this property

and conditions under which a solution is stable. This concept will be motivated and precisely defined in

the next section.

The objective will be to concentrate on dynamic systems with periodically-varying coefficients. A full

discussion of systems with variable coefficients is beyond the scope of this work. Besides, many

interesting and complicated dynamic systems known as parametrically-excited systems are modeled by
differential equations with periodically-varying coefficients. One example is a standard pendulum with

a periodically-moving base. Such systems are mathematically well-understood, but very few engineers

are exposed to such analysis.

The discussion begins with a review of linear systems theory. For completeness, the stability of

constant coefficient systems will also be reviewed. The stability of systems with periodic coefficients

will be treated as two separate cases. The one-dimensional theory will be discussed in detail to provide

insight to the higher-dimensional theory. For clarity of exposition, the two-dimensional case will be

representative of the theory in higher dimensions. Finally, a detailed analysis of a parametrically forced

pendulum will be documented.
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CHAPTER 2

2. 1 Fundamental Solutions of Linear Systems

As a background for the discussion to follow, we will start with the system

x =A x

where x is an n-dimensional vector with variable components which are real numbers,

which can be expressed explicitly as:

x=i

x.(t)

x2(t)
'

and x = -

x2(t)

A(t). *_(tr.

Also, A is an n by n matrix in which each component ay (l<i,j<n) may be either constant

or a continuous function of time, that is,

a,j=a,j(t) with (l<i,j<n)

Since this is a linear homogeneous system, two solutions x
'
and x

2
which satisfy the

relations
x1

=
Ax1

and
x2

=
Ax2

can be combined to form the solution
ccx1

+
fix2

which

will also satisfy the relation
(ax1

+
[_x2

) =
A(ax'

+
(3x2

) .

dt
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2.2 Fundamental Solutions

A collection of vectors
v',v2,...,v"

are called linearly independent if

c,v'+cA+...+cv

=0

only when

ci = c2 = ... =cn = 0

In other words, any one vector can not be written as a linear combination of the others.

Since we have a n-dimensional system, there will be n linearly independent solutions.

Now let
x\x2,...,xn

be the n linearly independent solutions of the system x = Ax.

Therefore
x1

=

Ax1

for each i and x'(t),x2(t),...,x"(t) are linearly independent for all

time. Then
jx1,^2,...,^"

j is a fundamental set of solutions to x = Ax. When arranged

as columns,

x(o=[x1(t) ; x2(t) ; ; ru)]

is called a fundamental matrix of x = Ax (or the fundamental solution if the system is one

dimensional). Since
x',x2xn

are linearly independent, det(X(t))^0 for all t.

Therefore
X(t)~

will exist for all t.

Suppose that:

X(0)=Iaxn^

1

which means that:

x'(0)=e'=i

0

0
i\ x2(0)

=
e2

xn(0)
=
en

=

fo]

0

1
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When this is true then X(t) is not only a fundamental matrix, it is also referred to as the

principal fundamental matrix.

In general, if X(t) is a fundamental matrix, then the matrix defined by
X.t)-X(O)"1

will be a

principal fundamental matrix. Additionally, any matrix defined by X(t)C will also be a

fundamental matrix provided that C is a non-singular matrix (det(C)*0).

Also it should be noted that the fundamental matrix X(t) is commonly written as <_>(t) with

columns denoted as <j)'(t) instead of
x'

(t) . For completeness <_> can be written as

*(t) =
[$1 <DJ

i ?']

For any system with constant coefficients of the form:

x=Ax

the principal fundamental matrix is defined as:

X(t)=e
At

The meaning of e raised to the power of a matrix is explained in the Appendix.

For time varying coefficients, the fundamental matrix can be determined by the following
procedure. First a general solution with n constants must be found:

x(t)
= i

cc,f,(t)

a,f,(t)
.

o,f_(t)J

then choose the constants ctk such that
x'

(0) =
e1

or in other words:

x(0H=i

1

1

Now X(t), the principal fundamental matrix, is known so any solution (depending on

arbitrary initial conditions x(0)) is given by:

__(_)

= X(t)-x(0)

2-3



2.3 Examples of First Order Linear Systems

1 ) A one dimensional system with a constant, instead of a time dependent, coefficient

would be x=ax.

The fundamental matrix (or the fundamental solution in this case) would be:

X(t)=e^dtc=eA.

Now pick c such that X(0)=1. Substituting t=0 results in c=l to satisfy this condition.

Therefore x(t)=X(t)x(0)=eatx(0). This results in the fundamental solution
X(t)=ea

.

2) Now look at the system x = Ax where A is an n by n constant matrix. IfX(t) is the

principal fundamental matrix, then:

X(0)=el

1

Al

it is also true that X(t)=e =exp[At].

3) Now consider the following system:

[1 1]
X =

lj

= A3_

x.

The two equations of interest are:

The general solutions are:

X i=Xi+X2

X 2=4Xi+x2

2-4



or for each of the n linearly independent solutions (2 in this case):

x, | I
c,e3t

-i-c.e

'

x.

__. Ml_| M

x,
2c,eJt

For such a system we want

x'(0)
=

e'

which results in the relations:

X (0)
2c, -2c.

"

Ol

for
x1

the results are:

and:

For
x"

the results are:

and:

and

"=A,H.

c,=0.5 J0.5J
c. = |0.5

,

0.5e3A0.5eM

X =

e*-e-

Cl=0.25

J
0.25 j

c. =-0.25^1-0.25

"1 +0.5A+0.5A
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Therefore the fundamental matrix is:

X(t)=

0.5e3A0.5e_l 0.25e3t

e -e

0.5e3t+0.5e"

4) Now consider a 1 by 1 system with a variable coefficient, x = a(t)x. In a one

dimensional system, the general solution is always:

X(t) = eJa,t)dtc

where c is a constant

Since the system is one dimensional, n=l and the fundamental matrix is simply the scalar:

X(t) = ejaU)dtc

If c is chosen such that X(0)=1, then x=X(t)x(0) is the solution which will satisfy the

given differential equation and initial conditions.

5) Let, for example, the system be x=cos(t)x. Again, as shown in the last example, for a

one dimensional system the fundamental solution is:

X(t)=e^("c = esm<t,c

Again we want X(0)=1 so setting ec=l results in c=l. This results in X(t)=esmlt), which is

the principal fundamental solution. Therefore x(t)=X(t)x(0)= esmlt,x(0).

6) Next, consider the following system:

sin(t) 0

0 cos(t). x,

=A(t)x

The two equations of interest are:

x,=sin(t)xi

x1=cos(t)x2
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Since each equation is one dimensional the general solutions will be:

-

cos ( t )
xi(t)=e ""ll'c,

x2(t)=esml,,c2

or for each of the n linearly independent solutions (2 in this case):

fx, 1 e'^'A,

x. esm(,A

For such a system we want
x1

(0) =
e'

which results in the relations:

For x the result is:

"ArHii
and

c1=e 1|

c, = 0
^

lo]

and:

f (-co_(0+l)

x'

=

For x 2 the result is:

c, =0 01

cAbJ

and:

-
X '

|esm(t)

Therefore the fundamental matrix is:
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X(t)=

-cos(t)+l

0
esin(t)

7) Finally, consider the following system:

A.

cos(t) 0

sin(t) -l + cos(t). A.

where the equations of interest are:

X[=COS(t)Xi

x,=

sin(t)x1+(-l+cos(t))x2

The first equation is one dimensional resulting in the general solution:

x1(t)
=

esm,,)c1

substituting this back into the second equation results in:

x2 =c1esm(,A(-l + cos(t))x2

which can be solved yielding:

x2=e-,+s,n(t)c,+
cie'

['
eu-.in(u) esm,u)

du
^0

a more detailed procedure to get the above result is shown in Appendix A. The result is:

x2=e-t+sm<t,c2 + c.
e,+sin(t) [

eu

du

x,=c,esm,,,+cx-l+sm|,0)

which is the general solution of the second equation. Therefore for each of the n linearly

independent solutions (again, 2 in this case) we have:

sin(t)

I c,e

le^HcAcA'),

For such a system we want x'(0)
=
e; ,

which results in the relations:

x'(0)
=

'x.(O) 1

x2(0)j lcAc3j lJ
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and

A0)4X'(0)L(
c> }_(01

lx2(0)J jc1+c3r if

For
x1

the result is:

:::Hu
and:

gSin(t)

*

~{e-W(i-e-')i

For
x2

the result is:

and:

C=0 0

c,+c3 = l (ij

-t+si_(t)

Therefore the principal fundamental matrix is:

esm(t)

of asin'"

le^'d-e-') e"t+s,n(t)
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CHAPTER 3

3. 1 Constant Coefficient Systems

Consider a system of differential equations of the form:

x = Ax

A is a matrix of constant coefficients but x and x are both functions of time, hence the

dot on x denoting a derivative with respect to time. Therefore the system could be

written as:

x(t) = Ax(t)

The time dependent nature should be understood and will frequently not be expressed
explicitly.

The eigenvectors, or modal vectors and the solution of the given system of differential

equations are both dependent on each other. Therefore, with this in mind we can look at

the form of the coefficient matrix. For the previously given system:

x = Ax

which, for a two-dimensional system, could also be written is the following form:

x^aiiX!-. a]2X2

X2=a2]X2+a22X2

In order to determine the stability of systems such as these one needs to investigate the

eigenvalues and eigenvectors of the system. Eigenvalues are the values, denoted as X or

X,, which satisfy the relation:

Ax=A,x

for some non-zero vector x .

A necessary and sufficient condition for the existence of such a solution is the relation:

det(A->.I)=IA-Xll=0

As long as this relation is true, the system will have a non-trivial solution.

To be sure that this is clear, here is an example of finding the eigenvalues for an arbitrary 2

by 2 system:

3-1



Let:

AM

4 -5

2 -3

[A-Xl]=

4-X -5

2 -3-X

|A-XI| =
(4-A.)(- 3->l)-(-

5)(2) = A.2->.-2 = 0

The roots of this equation are:

Xx=2

X2=-\

Eigenvectors are then found by substituting one eigenvalue at a time back into the system

[A->d] x =0 and then solving for a vector in terms of an unknown parameter. Here is an

example continuing with this same system:

[A->J]x =
4-X -5

2 -3-X x.

|o|

lol

For Xl=2:

(4-2)x1-5x2=2x1-5x2=0

2x,+(-3-2)x2=0

This results in two identical equations:

2xr5x2=0

Finding a relation between x< and x2 it is found that x2=0.4x! which results in the

eigenvector:

vi
=
ii.ol

10.41

Any multiple of this eigenvector is also a
valid eigenvector. This is a relatively standard

form since it is maximum normalized, the largest term is forced to be positive 1.

The same procedure can be performed using the second eigenvalue X2=-\. This results in

the eigenvector:
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v,

This is a general procedure for finding the eigenvalues and eigenvectors for a 2 by 2

system of equations. However, we want to transform the equations somewhat. Since the

eigenvectors corresponding to different eigenvalues are all linearly independent, we can

investigate the dynamics of the system:

x = Ax

by examining the dynamics of the solutions corresponding to different eigenvalues and

eigenvectors.

We want to change from the coordinate system x to the coordinate system y through the

linear transformation:

x = Py

This matrix P is composed of the eigenvectors arranged as columns. Substituting the

above equation into our original set of equations results in the following equation:

Py = APy

Since P is the modal matrix, is will be non-singular, therefore
P"1

will exist. Now pre-

multiply both sides by
P"1

which results in:

y
= P_1APy

By renaming the matrix
P"1

AP as a new matrix B, the transformed system can be

represented as the following:

Y
= By

or

y(t)
= By(t)

Again the time dependent nature should be understood and will frequendy not be

expressed explicitly. This will become our new system which will reveal the dynamics of

each eigenspace. The matrix B will be as simple as possible (in canonical form) and will fit

into one of six possible cases. The system will have initial conditions defined as:

y0
= P"%

Proceeding, we look for solutions of the form:
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y
=
y(t) = ce"=y

e-

Where the values denoted as c, are constants

Knowing the expected form of the solutions, we will take a closer look at all of the six

possible forms which these solutions can take for such a system.

3.2 Examples of Possible Cases

As mentioned previously, using such a 2 by 2 system, the matrix B will fit into one of six

cases as follows.

Casei)

B=
X o

0 X,

where X2<X\<0

or 0<X2<X!

Here Xi and X2 are the two eigenvalues. The eigenvectors are:

<.= Hand^=r,
A phase plot consisting of yi versus y2 can be constructed to help demonstrate whether the

system is stable or not. As a side note, in cases where the 2 by 2 system is a set of

coupled first order equations which was derived from a single second order equation, y2

will actually by the first derivative of the variable yi.

For the case where X2<^i<0 the phase plot will appear like figure 3.1 below:

(Fig. 3.1)
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For such a system the solutions are of the form:

y(t) yi(t)l =
Jyi(0)e

.y2(t)J

jy2(0)e^

Since^i and X2 are both negative in this instance the solutions will decay exponentially
and approach zero as t . . Therefore this solution is inherently stable.

When 0<A,2<Xi the phase plot will appear like figure 3.2 shown here:

(Fig. 3.2)

Again the solution has the same form:

y(t)
= 'y,(t))=

y,(0)ev

j2(t)J
1y2(0)ex''

However since Xx and X2 are both positive in this instance the solutions will grow

exponentially and will become unstable.

Case ii)

B=
'X 0

0 X

where X>0

or X<0

Here X is the repeating eigenvalue. As
before the eigenvectors are:

4>i = A and(t>2
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When X>0 the phase plot looks like Figure 3.3:

(Fig 3.3)

The solution would have the form:

y.

y(t) =
y1(t)l

=

ly1(0)ex

72 (0 J
1y2(0)eA

Since X is positive the solutions will increase exponentially, therefore the system is

unstable. Since both yi and y2 increase at the same exponential rate, the resulting phase

plot shows a linear relationship between these two variables.

When X<0 the phase plot looks like figure 3.4:

(Fig. 3.4)

Again the solution would have the form:

?>

y(t)
=

y.(0)el

J2(0)P
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Since Xi X2 are both negative, the solutions converge to zero as
t> as can be seen in the

phase plot. Therefore this solution will be stable. Again since both variables decrease at

the same exponential rate the lines on the phase plot show a linear relationship between

them.

Case iii)

B=
X o

0 x2

where

Xi and X2 are the eigenvalues and again the eigenvectors are:

AH andA

In this case the phase plot looks like figure 3.5

y

y>

(Fig. 3.5)

The solution will have the form:

y(t)
=

'yi(0

y2(t)

Since Xl is positive the system will be unstable. As t->~ one or the other of the two

variables will also approach
infinity.

3-7



Case iv)

B=
'X 1

0 X

where X>0

or X<0

Again X represents the repeating eigenvalue (repeats twice). However this time
eigenvectors appear as:

Here the solution has the form:

*i=^}and*2=r

y(t)

yi(0)e^+y2(0)te'

Negative values of X will result in stable solutions and results in the phase plot shown in

Figure 3.6. As you might expect, positive values of X will result in unstable solutions. For

such a situation the arrows on the phase plot would be reversed.

Case v)

(Fig. 3.6)

B=
a v

-v a

where o,v*Q

and a>0 or o<0

For this case the eigenvalues are much different. Here:
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Xi=G+vi

and

X2=c-vi

which are not as readily apparent as in other cases. Also not so obvious are the

eigenvectors which are:

Here the solution has the form:

y(t) =
y_ (t) 1

_

Jy,
(0)em

cos(v t) + y2
(0)em

sin(v t)

^2 (OJ jy, (0)em sin(v t) + y2
(0)em

cos(v t).

This case will be unstable when the real part of the eigenvalues (o) is positive. This is the

situation shown in the phase plot shown in figure 3.7. When o is negative the directions

of the arrows on the phase plot would be reversed and the solutions would converge to

zero as
t

. .

(Fig. 3.7)

Case vi)

B=
0 v

-v 0

v*0

In this case the eigenvectors are A,i=vi and X,2=-vi. Once again the eigenvectors are:
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1

(J),
= \P and 0- =

The solution of this case has the form:

y(t)
Vi (t) 1 fyi (0) cos(v t) + y2 (0) sin(v t)

y2(0 -y, (0) sin(v t) + y2 (0) cos(v t)J

Since die eigenvalues are purely imaginary the system is stable for any real value of v.

The system does not decay down to zero as other stable systems do but its response

repeats over and over through the same cycle. Since it is bounded it is then stable.

In this case the phase plot looks like figure 3.8:

(Fig. 3.8)
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CHAPTER 4

4. 1 Time Varying Systems

Attention will now be focused on linear systems which have time varying coefficients

instead of constant coefficients. The general theory of systems with time varying
coefficients is beyond the scope of this investigation. For concrete results, we restrict

ourselves to systems with periodically-varying coefficients. Such systems represent an

important class of systems regarded as parametrically-forced systems. This definition

results from the fact that certain forcing may result in time-varying system parameters.

4.2 Roquet Theory for One Dimensional Systems

Start with a system of the form:

x(t)=a(t)x(t)

which can also be written simply as:

x=a(t)x (4-1)

The coefficient a(t) wtil be periodic, with a period of T, so that a(t+T)=a(t).

The fundamental solution is any solution to (4-1) for which x(0)=l.

Examples of various one dimensional linear systems are as follows:

i) For the system x =ax,
'a'

will be a constant. A solution to such a system will be

x(t)=eat. Since this satisfies the condition x(0)=l, this will be a fundamental solution.

ii) For the system x=cos (t)x, a solution will be x(t)=esin(t). Again this satisfies the

condition that x(0)=l, so this solution is also a fundamental solution.

iii) For the system x=(l-sin(t))x, a solution will be
+cos(t

. Once again this does

satisfy the condition that x(0)=l,
therefore this wdl again be a fundamental solution.

Now let x(t) be any solution. The system
given by (4-1) will hold for all t, so:

4[x(t+T)]=a(t+T)x(t+T)
dt
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but since a(t+T)=a(t) it follows that:

dt
[x(t+T)]=a(t)x(t+T)

therefore x(t+T) is also a solution of (4-1).

But any solution of (4-1) is a multiple of the fundamental solution. Therefore:

x(t+T)=x(t)c

where c is constant (and a scalar since this example is a one dimensional system). This

follows because a(t) is periodic. Hence, such systems have a very important multiplicative

property. This concept can be seen in the sketch below:

As can be seen in this sketch, values separated by the period, T, differ by a factor of c and

values separated by a factor of 2T differ by a factor of c2.

Stated differently, the solution in any time interval of length T is c times the solution at the

corresponding point in the previous interval. Therefore, it is only necessary to solve

x=a(t)x over a single period 0<t<T.

Stated explicidy, x(t)=x(F +nT)=x( t
)-cD

for 0<F <T where t is the location in any given

period as shown in the following figure:

/ .

t

t
*

2T

.

where

t=1.5T=0.5T+T=F+T
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Now if x(t) is a principle fundamental solution then x(0)=l so x(T)=x(0)-c=c, x(2T)=c

, x(nT)=cn. If x(t) is any (fundamental) solution, but not a principal fundamental

x(T)
solution, then c= .

x(0)

The factor c is defined as the characteristic multiplier. Now set . Therefore

rT=ln(c), and r=ln(c)/T which can be complex when c<0. The number r is referred to as

the characteristic exponent.

4.3 Proof of Roquet's Theorem (One-Dimensional)

Let x(t) be any solution of x=a(t)x, where a(t) is a continuous periodic
function with

period T. Then there is a periodic function p(t) such that .

Proof:
-rt -rt

Construct p(t)=x(t) . p=x -r-x(t) =x -rp

1) is a solution of (4-1) as shown here:

/ /_.
ru rt rt

(p(t)e )= pe =rpe

dt

substituting p
=
xert-r-p

^-(p(t)ert)=(xe'rt-r-p)ert+rx
dt

d rt rt

(p(t)e )=x-rp-e +rx

dt

substituting x =a(t)x and

d
(p(t)e )=a(t)x-rx+rx

dt

therefore

(p(t)en)=a(t)x

dt

which verifies that is a solution of x=ax
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2) Now show that p(t) is periodic.

p(t+T)=x(t+T)e-r(t+T)

p(t+T)=c-x(t)e"VrT

p(t+T)=c-x(t)eV
p(t+T)=x(t)e-rt

p(t+T)=p(t)

therefore p(t) is periodic

Onic)
''

Again, the Floquet decomposition is given by x(t)=p(t)e"=p(t)exp t

V i J

Thus, since p(t) is periodic and continuous, it is bounded. Therefore, stabtiity is

determined by the characteristic exponent r.

Recalling that

ln(c)
r=

T

stability of the system wdl be determined as follows:

r<0 stable

r>0 unstable

r=0 neutrally stable (periodic/bounded)

Therefore, reiterating Roquet Theory, the solution x(t) of a system such as x=a(t)x wdl

be equal to p(t)ert. Here p(t) is a periodic function and
ert

will cause x(t) to exponentially

decay, grow, or remain the same depending on the value of r. Shown graphically below

the function p(t) is periodic:
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When multiplied by the function e":

The product is the modulated function x(t):

which is now an exponentially decaying response, since r is negative in this case.
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4.4 One-Dimensional Examples

As an example of a one dimensional system, let

x = a(t)x

where a(t) is periodic, therefore:

a(t+T)=a(t).

As shown in chapter 2 the fundamental solution is given by:

X(t)=e'amdt

Now x(t) can be rewritten as:

Ja(t)dt

e

or

, , r
fa(t)dt-bt bt

x(t)=[eJ
]ebt

Furthermore, the characteristic multiplier can be written as:

x(T)=cJA)dt

x(0)

so that the characteristic multipher (eigenvalue) is:

c=exp ja(t)dt

The corresponding characteristic exponent is:

ln(c)
r=

T

or

1 rT

r
= fa(t)dt
j Jo

which is the average value of the variable coefficient a(t), over the period T. Therefore,

the stabtiity of x =a(t)x is completely determined by the average value:
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1 rT

a

i f
- fa(t dt
J"

JO

In summary, solutions to x =a(t)x are:

stable if a <0

periodic if a =0

unstable if a >0

As another example using actual functions, consider the following system:

x = cos2(t)x

with the solution:

(AAi|
x(t)=el24 '

Since this is a 1 by 1 system, the coefficient
"matrix"

A is simply the scalar cos2(t) which

by definition has a period of T. This is the requirement of the coefficient (matrix). Also

the fundamental matrix X(t) is the scalar x(t) as shown above. Therefore x(t+T) must be

equal to a scalar multiple of x(t), or x(t+T)=cx(t). Substituting t+T, where T is equal to k

for cos2(t), into the above solution wdl result in:

1 t Tt 1 t

cos(f) sin
(.)++

cos(Osi_(0+T
e2 - '

= c
e~

where c will be equal to
sP1

or approximately 4.8105 which is the characteristic multiplier.

Therefore, the fact that x(t+T) is a scalar multiple of x(t) has been verified.

si_2t t

x(t)=e~-e2

Also, as expected, x(t) has been expressed as
x(t)=p(t)ebt

, where p(t+T)=p(t).

This can also be tilustrated using Van der Pol's equation on the following pages.
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4.5 Van der Pol Equation

An important and often-occurring equation in non-linear mechanics is the Van der Pol
equation:

z + (z2-l)z + co2z = 0 (4-2)

in which co and e are real parameters. This equation has no analytical solution, but it is
well known to have a limit cycle, that is, an isolated periodic solution.

The analysis proceeds by writing (4-2) in state variable form:

i x2

x2=-co2x1+e(l-Xl2)X2
(4"3)

In order to analyze the limit cycle, we introduce the polar variables

xL=p sin(co0)

and

x2=pcocos(co0)

to obtain:

0=1- (l-p2sin2(co0))sin(2co0) (4-4)

p
=
e(l-p2

sin2(co0))pcos2(co0) (4-5)

Let p_, denote the trajectory of the limit cycle. Then, on the limit cycle, the solution to

(4-4) and (4-5) may be expressed as:

P(t)=p-(t)

which is a periodic function of period T=27r/a>. Integrating (4-4) with respect to 0 and

ignoring the higher harmonics results in 6=1. Note that this is equivalent to averaging the

angular velocity 0 over the limit cycle. Substituting 0=t into (4-5) results in:

p
=
e(l-p2sin2

(ox))- p-
cos2

(ox) (4-6)

Equation (4-6) is still a non-linear equation, but we proceed to analyze the stability of the

limit cycle.

Computing the variation of equation (4-6), we obtain:
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(8p)'

=
e(8p-3p2

5psin(ox))cos2(cot)

resulting in:

(Sp)*

=
e(cos2

(cot)
-

3p2

sin(cot)
cos2

(cot)) 8p

Here the variation 8p represents a perturbation of the limit cycle solution p_

Now, if we let

p=pc_+r(

and ignore higher order terms, we obtain the perturbation equation

t\
-

e(cos2(cot)-3pj
sin2

(ox)
cos2

(cot))-
r\

that is,

r|
=

ecos2(cot)U-3pM2
sin2

(cot))-
r|

We now have a linear equation in the perturbation, r|(t), with a variable coefficient

a(t)=ecos2(ox)( 1 -3poS_n2(cot))

of period 2k/'co.

As shown in the previous section, the stability of the solution of this equation is governed

by the average value:

a=E

1 3(0 f-
-> . i

p" sin"

(cot)
cos"

(cot)dt
2 2k

a = 3e p
"

sin"(2TCu)cos"(2Ttu)du

2 Jo

Integrating over the limit cycle

fp,,/
sin2

(2tiu)
cos2

(2rcu)du = 4484

Here, the average-value parameter
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a=-.8452e

This analysis verifies that for e>0, the limit cycle is stable, and nearby solutions converge

to the limit cycle at a rate of

^at -8452a

e = e

A nearby solution for which x(0)=2.5 and x (0)=0 is plotted. It can be clearly seen that the

solution converges very quickly to the limit cycle. This plot appears below:

Using x(0)=2.5 Van der Pol Equation Quickly Converges to Limit Cycle

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 4-1
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Using initial conditions of x(0)=2 and x (0)=0 the solution a very special case which begins

very close to the limit cycle as seen in the following plot:

Limit Cycle for Van der Pol Equation

-0.5 0 0.5 1.5 2 2.5

Figure 4-2

Finally a plot of a variety of
solutions with different initial values of x(0) is shown below,

all of which also converge quickly to the limit cycle as shown before in Figure 4-1.
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Various Solutions of the Van der Pol Equation

Figure 4-3

4.6 Floquet Theory for Systems

Now let's take a look at a system of the form:

y
= A(t)y (4-7)

where A(t) is a continuous periodic n by n matrix of period T. Due to the periodic nature

of the matrix, A(t+T)=A(t).
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Now there exists a set of n linearly independent solutions x, , x2 ,. . . , xn which ad satisfy
(4-

7). Arranging these vectors as columns of a matrix denoted as X(t) results in a matrix of

the form X(t)=[x1,x2,...,xJ. X(t) will now be a fundamental solution matrix of (4-7),

therefore:

^[X]=[A(t)]X
dt

Since (4-7) is true for all time, it is true that:

^-[X(t+T)]=A(t+T)[X(t+T)]
dt

Since A is periodic, A(t+T)=A(t). Therefore this equation can be rewritten as:

^[X(t+T)]=A(t)[X(t+T)]
dt

So X(t+T) must also be a fundamental solution matrix.

From the general theory of differential equations it is true that:

X(t+T)=X(t)C (4-8)

where C is a constant nonsingular matrix. In other words, a constant multiple of a

solution of a linear system is also a solution.

Now, from linear algebra, ifC is nonsingular, there is a matrix
R= log(C) such that

eTO=C, where T is a scalar and R is a matrix.

We can assume that X(T) is the principle fundamental solution, in which:

1

X(0)=| "-.

Since X(t) is a fundamental matrix, det[X(t)]*0

Then from (4-8),
X(T)=era

as was explained in chapter 2.
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4.7 Roquet's Theorem for n-Dimensions

Let A(t) be a continuous periodic n by n matrix of period T for which A(t+T)=A(t) and

X(t) is a fundamental solution matrix of (4-7). There is a periodic matrix P(t) of period T

and a constant matrix R such that X(t)=P(t)etR.

Corollary: By setting y=[P(t)]u, (4-7) is transformed to a constant coefficient system:

u=Ru (4-9)

tR-.

The solution of (4-9) is ii (t)=e u0 . However, it should be noted that these results require

complete knowledge of the matrices P(t) and R.

Restricting this discussion to 2-dimensions, there are 3 generic forms mat the matrix R can

have. In equation (4-8), C is a constant matrix, so C is similar to one of 3 generic matrices

denoted as G. That is, there is a change of basis matrix Q such that:

Q 'CQ =G

or

C=QGQ

Furthermore, log(C)=Q[Log[G]]Q_1.

Case 1:

If C has distinct eigenvalues Xi and X2 then:

G=
X,

Xj.

then

Log[G]=

logX,

0 1

0

ogX2.

If either of Xi and X2 is negative, its log is not real. However

L0g[G]l 0
log(X2)2

is real. Thus,
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RJ;l0g C=Q

log A.;

T

0

0

logA2

T J

so:

e,R:

iQ

=e

T

0

0

log/.,

T .

Q~

t

e*=Qe

log^i
T

0

0

logA.2

T JQ"1

e*=Q

log..,

e
T

0
logA,

Q1

L o T

Case 2:

If C has equal eigenvalues, X\=X2=X (and taO), then:

GH
X 1

0 X

then,

r .
i

logGJ10^ X
L 0 log A..

Thus,

R=-logC=Q
T

^

logA J_ 1

XT L-i
log A

Q

T J

T

0

so,
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Qt

<_*

e =e

T XT

iog^

T .

0

e =Qe

logX 1
l~

A

o JsSh.
T

Q"

etR=Qi

IL o

T
0
log/v. AT !

LO 1 J
fQ

Case 3:

If C has complex eigenvalues:

then,

Ai=a+i(_

A2 =a-ip

and,

thus,

so,

G=\
a -(3

P a.

logG=

log(a2

+ p2)

t ~^)tan

1/2
/ft \

-tan

va;

log(a2+p2)
1/2

R=-log C=Q
T

^

log(or + p2)
,\l/2

tan

tan (P]
T

log(a2

+ p2)
1/2
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Qt

e**e

log^+p2)

etR=Qe

tan

T

\a 1

log(a

T

~4 \1'-

tan

T

log(o.
+|_-

t_n"

T

logfaft+p2

t-

Q

The eigenvalues of the matrix
C=eTO

are defined as characteristic multipliers.

Furthermore, the eigenvalues of the matrix

R=l/Tlog(C)

are known as characteristic exponents. It should be noted that characteristic exponents

are the generalization of eigenvalues of constant-coefficient systems.

Based on Floquet's Theorem, the stability of a system with periodic coefficients is

governed by the characteristic exponents. This follows from the fact that:

tR

X(t)=P(t)e

where P(t) is periodic and continuous, and hence, bounded.

4.8 HiU's Equation

We can now move on to the study of Hill's Equation which is:

y + p(t)y
= 0

again with a periodic coefficient p(t) resulting in the fact that p(t+T)=p(t). This equation

can be changed into a set of two coupled first order equations by setting xi=y and x2=y .

The resulting system will appear as:

x,

0 1

-p(t) o

Let X be the fundamental matrix satisfying X(0)=I. In other words,

X(t)=
'y i (0 y2(t)

y.(t) y2(0.
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where yi(t) and y2(t) are solutions to HiU's Equation which satisfy:

yi(0)=l y2(0)=0

y,(0)=0 y2(0)=l

or

X(0)=I

In the previous chapter we saw that X(t+T)=X(t)C. Therefore for t=0 we know that:

C=X(T)=
Y.(T) y2(T)

y.(T) y2(T)

The characteristic multipliers of this matrix would be the roots of the equation

det[C-A_I]=det[X(T)-A.I]=0

Written explicidy this equation is:

X2
- (y, (T) + y2 (T))A + y2 (Dy, (T)

-

y2 (T)y. (T) = 0

or

A2-(yi(T) + y2(T))A + det(C) = 0

If A and X are n by n matrices and X=AX then it is true that |x|=tr(A)|X|. For Hill's
dt

equation tr(A)=0, where tr is the trace of a matrix, or the sum of the diagonal elements.

Therefore for |X|=tr(A)|X| to be true, Ixl must be a constant. However, for this to be
dt

the case the equation |X(t + T)|
= |X(t)|-|C| implies that |C| must equal 1.

Going back to the characteristic equation above and substituting |C|=1 we get the result:

X2-(y1(T) + y2(T))>. + l = 0

This is of the form X2+ZX+ 1=0, which can be factored into (A-Ai)(A- A2)=0 which could

then be multiplied back out into the form
A2

+-(Ai+A.2)+AiA2 =0. Therefore with Ai and X2

as the roots of this equation (the characteristic factors), they must satisfy A,iA.2=l. Since

the characteristic exponents are defined by
Ai=eTr'

and A2
=eTr:

then l=A,iA,2 =eT(r'+A

Using the complete definition of the logarithm for a complex number z, ln z=ln r+i(0 + 2k

n), it can easily be found that co(ri+r2)=27t i n where n is an integer. Therefore ri+
r2= n.

4-18



Remembering the condition AiA2 =1 there are the following results:

(1) If A.i5*A,2 then
Htils'

Equation has two linearly independent solutions, these can be

expressed as:

yi(t)=erA(t)

y2(t)=er;tf2(t)

where ri=r2 and f,(t) has period T.

(2) If A,i=A.2 =1 then Hill's Equation has a solution of period T.

(3) If Ai=A2 =-1 then Hill's Equation has a solution of period 2T.

Proof of the first result, was shown earlier in this chapter for a one dimensional system.

The same result wid apply here since the system is composed of two (coupled) one

dimensional equations.
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4.8 The Mathieu Equation Form of Hill's Equation

A special form of Hill's Equation occurs when p(t)=a+b cos(t). This is known as the Mathieu

Equation and has the following form:

0+(a+ bcos(t))0 = O

This type of equation would be encountered in a parametrically excited pendulum as shown in

the following figure:

4.
S

& s=A sin(Qt)

The equation of motion can be determined using Lagrange's Equation:

dt ydQj

3L
19=

Where L=T-V, T represents kinetic energy, and V represents potential energy. Additionally,

the system is assumed to be conservative (no friction is present).

The resulting equation of
motion is:

0+
g

AQ2

cos(Qx) 3 = 0 (4-10)

now make the substitution that

therefore

t=Qx

dt=Qdx

and
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results in:

An
dx dt

Q:
d^0

du:
+

g
Ail2

h+"h
cos(t) 3 = 0

d^0

dt2
+ T + COs(t) 0 = 0hQ1

h

now let:

a=-
g

h_T

and

A
b=

Substitution yields:

0+(a+ bcos(t))0 = O

which is the Mathieu Equation as stated earlier. This is the form ofHill's Equation which we

will analyze in the next chapter.
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CHAPTER 5

5.1 Analysis ofMatheiu's Equation

Now we turn our attention to the equation ofmotion for the parametricaUy excited

pendulum derived in the last chapter which has the following form

0 + (a + bcos(t))0 = O (5-1)

This equation can be transformed into two coupled first order equations by assigning

Assign the variables q, = 0, q2
= 0, leading to the system of first order equations

qi=q2

q2 =-(a + bcos(t))q,

Let the matrix

<&(*) =
0i (0 <M0

l<mo <j>2a).

(5-2)

represent the principal fundamental solution of (5-2). This means that

"l

KO)-l0 ,

Note, the principal fundamental solutions wdl be denoted as <j)i instead of q* which

represents any arbitrary solution. By the previous section, and since the period of the

coefficients of (5-1) is T=2k, the characteristic multipliers are the eigenvalues A,; of:

<D(2j.) =
<>i(27c) 4>2 (2tt)

L<M2ji) 02 (2k).

Furthermore, the characteristic exponents are

1

r,
= InA,.

1

2k

(5-3)

In equation (5-3), the complex-valued logarithm is assumed. Consequently, the

characteristic multipliers satisfy the characteristic
equation:

X2
-

trace[<K27.)] A+ det[<K2ii)] = 0 (5-4)
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By Abel's formula,

det[<Kf)] = det[<K0)] traceU)__.l (5"5)

Hence:

det[<K.)] = det[<K0)]
= 1

Therefore, the characteristic equation (5-4) is:

A2

-[<(, (2k)+<$>2(2k)]X+\ = 0 (5-6)

Unfortunately, we can only numerically solve for the fundamental solutions <|>.(t) and 4>2(t).

The system:

0 + (a + bcos(t))<t> = O

must be integrated twice, once with initial conditions:

<J>X(0) = 1, (()1(0) = 0

and once with initial conditions:

<t>2.0) = 0,<j>2(0) = l

The characteristic equation (5-6) is obtained by integrating these initial conditions up to

the final time t = 2k, to determine the trace of [<_X23t)] . By solving the characteristic

equation (5-4), for the characteristic multipliers A, the stability of the solutions are

determined with respect to the parameters a and b. These parameters, of course, relate

back to the physical parameters g/hQr and A/h respectively as shown in Chapter 4.

In the following, let:

S(a,b) = trace[0(2Tc)]

= <t>,(2TC) + <j>2(27.)

The characteristic equation becomes:

A.2-S(a,b)A+l = 0

5-2



hence the characteristic multipliers are:

S 1
A-u=--Vs^4

The characteristic exponents are:

r, ,
= ln

1,2

271
S-^4
2 2

5.2 Illustrative Examples

Three cases will be discussed in detail, with different values of a and b depending on the

values of S(a,b) where S(a,b) is the stability surface.

The stability of the Mathieu Equation depends on S(a,b). The areas in which the value of

S(a,b) results in a stable system can be sketched as in the following Strutt diagram. The

hatched regions are areas for which the equation will be stable.

Strutt Diagram - Figure 5-1
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This surface is plotted out in three dimensions using the collection ofMATLAB programs

related to RUNPTS.

The following figure is one such plot for the area where 0<a<2.5 and 0<b<.25:

Stability Surface for Mathieu Equation

2.5

b values
0 0

a values

Figure 5-2
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Note as can be seen in Figure 5-1, the stabdity surface wdl be symmetric about the _

therefore to save considerable computing time, the surface is only plotted in the first
quadrant.

a-axis

Another plot of the stabdity surface appears in the next figure, this time with 0<a<2.5 and
0<b<2.5:

Stability Surface for Mathieu Equation

b values
0 0

a values

Figure 5-3

The large magnitudes for larger values of
'b'

make the details along the a-axis harder to

see than in Figure 5-2 but the larger magnitudes encountered away from the a-axis are

made apparent.
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The Runge-Kutta algorithm used to numerically solve for the fundamental solution at each

point on these stabdity surface plots is a built-in function on MATLAB accessed through

the command ode45. As implied by the name, the algorithm uses fourth and fifth order
Runge-Kutta formulas. Accuracy of the solution is determined by the variable

*tol*

within

MATLAB. The default value for 'tol', and the value used for all stability surface plots in
this thesis, was l.e-6, or 0.000001. Therefore, the surface plots are accurate to within

plus or minus 0.000002 since S is the sum of the two fundamental solutions.

The unstable regions in Figure 5-1 can be shown in the following plot. It was made using
the MATLAB program called DOTS. DOTS finds the value of S(a,b) and if its magnitude
is less than 2.0 that point is marked as stable, otherwise it is marked as unstable. This
particular region is mostly stable, as can be seen in the plot. A larger region with more

signdicant unstable regions wid be shown on the following page.
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2.5

This final plot is starting to resemble the Strutt diagram (Figure 5-2). Although it would

be theoretically possible to reconstruct the
entire plot using the MATLAB programs used

here, the solutions are extremely calculation intensive and would require enormous

amounts of time and computing power to calculate with any
appreciable resolution.
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Note that when b = 0:

S(a,0) = 2cos(27w).

This case corresponds to the equation:

which has fundamental solutions

and

0+a0 = O

<t).(t) = cosvat

<t>-j(t) = -7=sinVat
Va

resulting in the principal fundamental matrix:

1

r^y 4,
cosVat -?= sinVat

[<Kt)J= Va

cosVat

Thus, the characteristic multipliers are the eigenvalues of:

IX27C)] =
cos(Va2Tc) -7=sin(Va27c)

Va

-Vasin(Va2rc) cos(Va2Tc)

The characteristic equation is:

with solution

A? -2cos(2TcVa)A.-. 1 = 0

A. = cos 2kVa i sin 2rcVa

In order to understand the more general case, b * 0, the above can also be realized by the

following:

We start with:

[<D(2tc)] = exp(2TcR)
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where:

R= ln[<K2T.)]
IK

Next, we obtain the modal matrix, Q, which has the eigenvectors of [<(2tc)] as its
columns.

Thus:

where:

[<K2tc)] =
Q.G-Q-

cos(2T.Va) -sin(2rcVa)

sin(27cVa) cos(27rVa)

The eigenvalues of G are the characteristic multipliers:

X -

exp(i27wa)

To compute the characteristic exponents, we note that:

ln[<D(2Tc)] =
Qln[G]Q-1

Which results in:

R=^_Qln[G]Q-

The characteristic exponents are given by:

1
= (eigenvalues of ln[G])
IK

So that:

= iVa
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By making a slicing plane through the stability surface where b = 0 the curve, S(a,b) which
appears in Figure 5-4 can be seen. When increasing b to .25 and then to

.5, the stability
surface expands outward. For small values of

'a'

it expands downward, outside of the
stable range between -2 and positive 2. These additional slices through the stability
surface can also be seen in Figure 5-4.

S(a,c)

Figure 5-6
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Setting a = 0, thus looking along the b-axis, the values of S(0,b) which appears in Figure
5-5 below. The stable range is in the band -2 < S < 2 which is marked on the graph. As
can be seen, the system is only stable for a very restrictive number of values of b when a

-

0.

S(0,b)

co-20-

Figure 5-7
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To emphasize how unstable the system becomes, the value of Log( I S(0,b) | ) has been

plotted up to b = 15. This appears in Figure 5-6.

Log(|S(0,b)|)

b values

Figure 5-8
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RecaU the characteristic equation:

5.3 General Cases

A2-S(a,b)A.+ l = 0

and the eigenvalues:

A.U=||VSA4

Depending on the value of S, the solution wiU fall into one of three different cases.

Cases:

Case 1) IS(a,b)l < 2

Again, the eigenvalues, or characteristic multipliers are:

S 1
A^-ti-V^S2

=
e"

and the characteristic exponents are:

r12
=

(ia)

ia
~

2k

Therefore,

ln[G] =
0 -a

a 0

and the resulting Q matrix is:

Q =

QA

27.

a

0

ol

lj

a

2k

0

0

1
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Using the relation:

the matrix R is found to be:

R=-^-Qln[G]Q1

2tc

R =

0^
a2

4tc2

And then by manipulation:

e*=e

0 t

a2'

.tR

cos-

at

2k

2k . at

sin

a 2k

a . at

sin

2k 2k

cos-

at

2k

Note that

e*=

a 2k . a

cos t sin t

2tc a 2k

a .
a a

sin t cos t

2tc 2jt 2k
_

is the principal fundamental solution of the system:

x =

0 1

L
4k'

or

jA-=o
4k2

In this case the period of these solutions is Ta =
47t2

a

The principal fundamental solution of the original system is
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[<Kt)] = [P(t)]exp(tR)

a
where [P{t)] is periodic of period T = 2k. Thus, we only find a periodic solution if is

2k

rational.

In particular, if S = 0, a = and rl2
=
-

and we obtain a period-4 solution. That is, the

solution has period 8k!

Case 2) S(a,b) = 2

The roots of the characteristic equation are

Ai = K2 = 1

For the case of equal eigenvalues, [<_>(2jr)] is similar to either

G =

"l
or G =

"l f

1. 1.

In the former case,

R =

0 0

0 0

and [<_)(.)] = [/'(.)] is periodic with period 2k.

In the latter case,

R =

0 1

0 0

and

. .

1

exp(tR) = Q
IK

0 t

0 0
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Hence the system has at least one periodic solution, as long as the initial condition is a

multiple of the sole eigenvector of [<K2tx)] , that is, a multiple of the first column of the

modal matrix Q.

Case 3) IS(a,b)l > 2

The roots of the characteristic equation

A2-S(a,b)A+l = 0

are both real. But since the product of the roots is

X\-X2 = 1

This implies that at least one of them has magnitude strictly greater than one.

Here

A, 0

0 A,

and

InG

In A, 0

0 lnA.,

Thus the characteristic exponents are

r, ,
= ln A

'1,2
2tc

which may be
complex-

valued, but at least one of them wiU have a positive real part.

This implies that the solutions wiU generaUy be unbounded.
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5.4 Numerical Examples

A series of sample plots were created using MATLAB to demonstrate how stability

depends on the values of a and b and how these patterns correspond to the Strutt diagram

and the stabdity surfaces which were looked at earlier.

These plots are included in the Appendix. One can observe that
'a'

and
'b'

for stable and

unstable cases corresponds with the stable and unstable regions in the Strutt diagram.

5.5 Effects ofDamping

Having understood how the parameters of the Mathieu equation affect its stabdity, we

now add damping to the system. The modified equation men becomes

0 + 2c0 + (a + bcos(t))0 = O

Here the damping coefficient is related to the original system parameters by

Q. Vh

where is the viscous damping ratio.

In state variable form, we have

<_i=q2

q2 =-(a + bcost)q, -2cq2

or

q
=

o 1

-(a + bcost) -2c

The analysis now proceeds as before. First, a principal fundamental matrix is computed.

As previously, this matrix is denoted by <_>(_).

One signdicant difference is that

trace[A(t)]
= -2c

Recall that Abel's theorem states that
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Hence

det[<Kt)] = det[<KO)] expff tr(A)dt

det[<D(2K)] = exp(-4Kc)

Therefore, the characteristic multipliers, which are the eigenvalues of <_>(2tc), are the roots

of

A2-5(a,_>)A+ exp(-4rtc) = 0

As in the undamped case, the stability of the solutions depends on the magnitude of the

characteristic multipliers A,< and X2. In particular, if

|a,|>i

then the solutions are unstable. The characteristic exponents are given by

r,=-LogA,

Thus, the system is stable, if and only if, the real parts of r, are negative.

Returning to the characteristic multiplier equation

X2

-S{a,b)X+ exp(-4Kc) = 0

it is easy to show that |A] < 1, provided that

|S(a,b)|<2cosh(27Cc)-e"
-2tcc

or

cosih(2rcc)

|S(a,b)<2

Note that this equation is a direct generalization of the undamped case.

Once again, by Roquet's Theorem, the general
solution is given by

Qi

q2

[P(t)]exp[tR]
q_(0)

.q2(0)J
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where

R = ^Log(<_>(2jT))

and P(t) is a continuous and 2jr-periodic matrix.

To see the effect that light damping has on the shape of the stability surfaces, the

following stability surface plots have been constructed using theMATLAB programs

related to RUNPTS. The cases plotted here include damping constants of 0, 0.1, 0.2, 0.3,

0.4 and 0.5. As can easily be seen, the larger the damping the flatter the stabdity surface,

thus the larger the stable range of
'a'

and 'b'. This is intuitive since a more heavdy
damped system would be expected to be more stable.

Stability Surface for Mathieu Equation

2.5

b values
0 0

a values

Figure 5-9
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Stability Surface for Damped Mathieu Equation (c-.1)

0.15

0.1

0.05

b values

0.5

0 0

Figure 5-10

1.5

a values

2.5
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Stability Surface for Damped Mathieu Equation (c-.2)

2.5

0.15

0.1
1.5

0.05
0.5

b values
0 0

Figure 5- 1 1

a values
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Stability Surface for Damped Mathieu Equation (c-.3)

2.5

0.15

0.1
1.5

0.05 0.5

b values
0 0

Figure 5-12

a values
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Stability Surface for Damped Mathieu Equation (c=.4)

0.2

0.15

0.1

0.05

b values

0.5

0 0

Figure 5-13

1.5

a values

2.5

5-23



Stability Surface for Damped mathieu Equation (c-.5)
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0.05

b values
0 0

0.5

1.5

a values

2.5

Figure 5-14
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Another MATLAB program called DOTS was utilized to gain a clearer picture of the

effect of light damping on our system. The results are a two-dimensional view of the a-b

plane in which each node in an 1 1 by 1 1 grid was analyzed for stability. This criterion was

that the absolute value of the value of the stabdity surface at that point must be less than

2.0. As expected, as the damping is raised, the size of the stable areas in increased.

Although the resolution on these plots is limited, the trend is unmistakable.

C--0

o stable x unstable

10f * * 9-

o

3*xxxxxxo

8<-xxxxxxo

7>(r xxxxxxx

e^xxxxxox

75 5* x x x o x o o
>
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4f(r xxxoooo

S-rXOXOOOO

^rxoooooo

Dir x o o o o o o

03 6 & <9 & 6 6 6 -

o o

4 5 6 7 8 9 10

a values

Figure 5-15
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C'-OA
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Figure 5-16
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o stable x unstable
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The changes in the shape of the stability surface can also be seen in the cross sectional cuts

made through the b=0 plane for a few cases of damping. This plot is also included to

demonstrate this effect. The maximum limits of the Stability Surface at b=0 is greatly
reduced as damping is increased. This effect along the a-axis is representative of the effect

that damping has on the entire stability surface.

S(a,0) with damping

co 0

-0.5-

5 6

a values

8 10

Figure 5-18
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5.6 Summary

The foUowing outlines the procedure required to analyze the stability of linear systems

with periodic coefficients.

Let q
= A(t)q be defined, where A(t) is continuous and has period T.

1 . Determine the principal fundamental matrix [<_>(.)]. If [X(t)] is any fundamental

matrix, then [<_>(_)] =
[X(t)][X(0)]_1

2. Determine the eigensystem

Q1[0>(T)]Q = G

where G is in canonical form. The characteristic multipliers, Ai, are the eigenvalues

of 0(231) and G.

3. The characteristic exponents are given by

r. =-LogA;

which are the eigenvalues of

R =
^Q[logG]Q"1

1

as well as the eigenvalues of logG .

4. By the Floquet Decomposition Theorem,

<_>(.) = [P(t)]exp(tR)

in which [P(t)] is a periodic matrix.

Solutions are stable if IA,I < 1 or Re(r,) < 0,

unstable if IA,I > 1 or Re(r,) > 0.

Solutions are marginally stable, or periodic,
if

lA.il = 1 or Re(r,) = 0.
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Chapter 6

Conclusions and Recommendations

A physically-realizable dynamic system must satisfy the criterion of stability for it to be observed in

nature. Stability is an extremely important system specification. If a system is unstable, then it is

useless, and possibly even dangerous. The concept of stability has been discussed from the point of

view of linear systems.

The stability of linear constant coefficient systems is governed by the eigenvalues of the coefficient
matrix. Such systems are stable as long as the real parts of the eigenvalues are negative. Although this

notion is simple conceptually, the question of stability is still a formidable one if the system is large.

Moreover, if the system parameters are only approximately known, care must be taken to ensure that

the eigenvalues are bounded away from the positive half of the complex plane.

The stability of systems with
time-

varying coefficients is an immense topic in itself. In this

investigation, systems with periodically-varying coefficients were analyzed. It was shown that even

under such restrictive conditions on the coefficients, the system can give rise to quite a diverse set of

responses. No longer are the eigenvalues (which are not constant) the sole determining factor with

regard to the stability of the system.

However, an amazingly beautiful set of results known as Floquet Theory allows one to decompose the

general response as the matrix product of a periodic part and an exponential-type part. Further, the

stability of the solutions is characterized not by the usual eigenvalues, but by certain values known as

characteristic multipliers. In principle, such systems can be converted to constant coefficient systems

under an appropriate change of variables.

These concepts were illustrated on an example of a parametrically excited pendulum. This problem is a

favorite choice for the illustration of Lagrange's equations of motion. Nevertheless, few thorough

analyses of the system are available. The stability diagram, known as the Strutt Diagram, is found in

the literature. For the first time, however, the actual stability surface has been mapped out in full three

dimensions. As was demonstrated, the stability of the system was governed by the values of the

stability surface. Perhaps in the near future, an analytical
expression for the stability surface can be

obtained. This would be a milestone in the analysis of such problems.

More work also needs to be done with respect to coupled systems of parametrically-forced oscillators.

Although the theory is complete, more investigation needs
to be done with regard to specific examples.

This would entail more efficient computation of the characteristic multipliers and in general the

stability surfaces.
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APPENDIX A

Solution of first order linear systems of the form:

x=a(t)x+f(t)

which can be rearranged into the form:

x-a(t)x=f(t)

using an integrating factor of:

-Ja(t idt

results in:

e-la(',dt]x-a(t)fe-ja,t)dt)x=fe-ja(t)dt|l(t)

which is of the form:

dt

-Ja(t)dt

e x f (t)

changing t to u and integrating with respect to u from 0 to t results in:

-Ja(u)du

,
A

' f'
-Ja(u)du ,.

,

e x(u)| =J e f(u)du
u=0

solving for x(t):

Ja(t)dt Ja(t)dt
x(t)=e c + e

L*0

-Ja(u)du -. . ,

e f (u)du

Note: By substituting t=0 into this expression, it is found that c=x(0). However, in the

example in Chapter 2 which utdizes this integral, the constant c (denoted as c2) is

combined with other constants forming c3.
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APPENDIX B

In this thesis a commonly occuring operation involved raising e to the power of a matrix, such as

eAt. Although such an operation can be easily performed using MATLAB, the meaning of such an

operation will be explained using an illustrative example.

If we were dealing with a scalar form such as eat, the following series would be the solution we
would be looking for:

at ,

(at)2 (at)3 (at)n

e =l+at + + +-. +

2! 3! n!

(B-l)

therefore in matrix form this equation would be:

-At

A2t2

AV
e = I + At + +

++-

2! 3!

AV
+ (B-2)

This alone explains the meaning of e raised to the power of a matrix. However, this is a very

computation intensive method, which would require a very large number of calculations to yield

an acceptable level of accuracy.

Therefore, the following alternate procedure can be used to get the desired results.

First, recall that the modal matrix, P, for a set of equations with a coefficient matrix A is

composed of the eigenvectors arranged as columns.

Next, note that a matrix A can be diagonalized by premultiplying by the inverse of the modal

matrix and postmultiplying by the modal matrix such as:

D = P
'
A P

or altematly:

A = P D P (B-3)

Note, the elements of the diagonal matrix D will be the eigenvalues denoted as A such that:

A,
D =

L
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Substituting equation B-3 into equation B-2 results in the following of relations:

t2 t3 tn

eAt

=
l+PDP"1t+PD2P"1

+
PD3P_1

+--.+PDnp-1+

2! 3!

D2t2 D3t3

e =P I + D + +

DV

2! 3!

+-++-

Therefore,

eAAp +

\
A,

A

t +

A2

A,2

V,

t
+

2!

which can be written as:

eAt

= P

{ ,
XP

1 +
X,t+-

v
91

J-<-

(
XP2

xp
1 +
X,t+^r

++

v
2! n!

xp1

x;c
l +
A+^+---^+

?! n!

P'

You should recognize the diagonal terms from the scalar case shown earlier in equation B-l. This

results in:

<? =

and finally:

At

_ p
ea p-i

= p

,K<-

which again defines what is meant by raising e to the power of a
matrix.
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APPENDIX C

After looking at a Strutt diagram as well as the three-dimensional plots of the stability
surface the patterns of stable and unstable combinations of coefficients can be seen. To

demonstrate this stabdity and instability for different choices of
'a'

and
'b'

the following
series of plots was produced using MATLAB.

For all plots, the horizontal axis represents increasing time starting from the same initial

conditions of 0(0)= 1 and 6 (0)=0. The solid line represents 9 and the dashed line

represents 0 . The corresponding values of
'a'

and
'b'

appear in the title of each plot.



a=0.5 b0.5



a-1.0 b-0.5



a1.5 b=0.5



a-2.0 b-0.5



a2.5 b=0.5



a=0.5 b-1.0



a=1.0 b=1.0

800

600

400-

200-

-200-

-400-

-600



a-1.5 b-1.0



a-2.0 b-1.0



a=2.5 b-1.0



x10 a-0.5 b-1 .5



x10
a-1.0 b-1.5



a-1.5 b-1 .5



a=2.0 b-1 .5



a=2.5 b-1.5

0

-2

-6

0 10 20 30 40 50 60 70



x10
a-0.5 b-2.0



x 10
a-1.0 b-2.0



12

10

8

6

4

2

0

-2

-4

a- 1.5 b-2.0

-8

1
1

1 1 1 i

i

i

-

' L

i

i

i

/A

/ A

i
\\

\P \\

i

i

-

\ / i i
-*

'

-

-

1 1 1 1 1 i

10 20 30 40 50 60 70



a-2.0 b-2.0



a-2.5 b-2.0



a=0.5 b-2.5



x 10
11

a-1.0 b-2.5



8
x 10 a-1.5 b-2.5

-2-

-4-

I I 1 1
1

1

-

-

-

1 A

-

""N '/ l\ |

-
-

1 1 1 1 1 i

-

10 20 30 40 50 60 70



a-2.0 b-2.5



a-2.5 b-2.5



APPENDIX D

These are the major MATLAB programs which were used to generate the plots of the

stability surfaces for the Mathieu Equation.

The program POINTS2 created the arrays of points
,

'hor'

and 'ver', at which the value of
the stabdity surface will be solved for.

%

% POINTS2.M

%

% First define amax - the lower horizontal limit in parameter space
% amax - the upper horizontal limit in parameter space
% bmin - the lower vertical limit in parameter space

% bmax - the upper vertical limit in parameter space

%

% N - the GRID SIZE
, i.e. number of points in each

% direction of the a-b plane.

%

delta_a= (amax-amin).(N-l)
delta_b= (bmax-bmin).(N-l)
%

hor = (amin:delta_a:amax)
%

ver = (bmin:de_ta_b:bmax)

%

clear values

clear S

%

The program RUNPTS does the actual calculation of the value of the stability surface at

each point in the
'hor'

and
'ver'

arrays by cading the program RUN.M.

%

% RUNPTS.M

%

% This program actuaUy determines the stabdity value

% S = phil(2pi) + phi2'(2pi)

%

% It calls the program RUN.M, which solves for the fundamental

% solutions, at each of the desired parameter values.

%
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% fl and f2 represent the fundamental solutions.

%

values=zeros(l,N);

%

fori= 1:N

forj= 1:N

xi=[l,0,hor(i),ver(j)]';

run

fl=x(length(t),l);

xi=[0,l,hor(i),ver(j)]';

run

f2=x(length(t),2);

values(i,j)=fl+f2;

end

end

%

% Rotate matrix to align horiz and vert

%

S=rot90(values);

%

% Once the program is run , the
"

surface
"

S(a,b) can be

% plotted.

The program RUN cads the ODE45 program to solve Hill's Equation which is contained

within the program HILL. ODE45 numericady solves ordinary differential equations using

fourth and fifth order Runge-Kutta formulas with an accuracy of l.e-6.

%

% This program RUN.M calls the ODE-solver ode45

%

%

ti=0.0;

tf=2*pi;

%

[t,x] = ode45('hdl',ti,tf,xi);

%

%

%

%

% Note that it calls the defining function program HILL.M

%

%
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The program HILL defines Hid's Equation which is used by ODE45.

% HILL.M

%

% This program defines Hill's equation
y"

+(a +b*q(t))*y = 0

% to be used in ode45 . The parameters are able to be

% inputted ( artificially ) by setting them equal to

% x(3) = a and x(4) = b, as "initial
conditions"

(clever).

%

function xdot = vce(T,x)

v% parametric oscillator

xdot(l) = x(2);

xdot(2) = -x(3)*x(l) -x(4)*cos(T)*x(l);

xdot(3)=0.;

xdot(4)
= 0.;

end;
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The program ICON sets the initial conditions and the constants for the program HILL

(listed here again for completeness) which solves the Mathieu equation. The input of
'a'

and
'b'

is done using a clever method which will be discussed on the next page.

After calculations are done, a plot of 9 and 0 versus time is made with 0 being a solid line

and 0 being a dashed line. The response of the system as shown using this program will

verify if the system is stable or unstable as previously determined.

%

% icon.m

%

% This program adows setting initial conds and constants in

% the Mathieu equation solver HILL.M .

%

% xl = theta, x2 = theta_dot, x3= a ,
x4 = b

% Total time is given by 2*mult*pi ,

% so MULT = number of forcing periods

%

% OPTIONAL : surf = S(a,b), cm = [ characteristic multipliers ]

% ce = [ characteristic exponents ]

%

clear x

theta = ');

yO=input(
'

th_dot = ');

x3=input(
'

a =
'

);

x4=input(
'

b =
'

);

mult= input(
'

Enter INTEGER multiple of 2*pi : ');

%

vals=[x0,y0,x3,x4];

%

[t,x]=ode45('hdl',0,2*mult*pi,vals');

xl=x(:,l);

x2=x(:,2);

%

NN=length(t);

surf=xl(NN)+x2(NN);

%

cm=[surf/2.+sqrt(surfA2-4.)/2., surf/2.-sqrt(surf*2-4.)/2.] ;

ce=log(cm);

%

plot(t,xl,t,x2,'-')

%
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The program HILL defines Hdl's Equation which is used by ODE45. The values of
*a'

and
'b'

are allowed to be changed for each program run by inputting them as the initial

conditions x3 and x4 and then setting the derivatives of these variables equal to zero.
This

makes x3 and x4 constants as is desired.

%

% HILL.M

%

% This program defines Hdl's equation
y"

+(a +b*q(t))*y
= 0

% to be used in ode45 . The parameters are able to be

% inputted ( artificially ) by setting them equal to

% x(3) = a and x(4)
= b, as "initial

conditions"

(clever).

%

function xdot = vce(T,x)

% parametric oscillator

xdot(l)
= x(2);

xdot(2)
=
-x(3)*x(l) -x(4)*cos(T)*x(l);

xdot(3)=0.;

xdot(4)
= 0.;

end;
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