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CHAPTER 1

GENERAL OVERVIEW

Quantity measurement of the change in energy by a force from any dynamical

action has been used for modern dynamical mechanics. Newtonian mechanics need a

free body diagram to analyze positions, velocities, accelerations, and forces acting on any

dynamical systems. From a free body diagram, vectors are another thing that we have to

keep track of cross and dot products, so Newtonian mechanics is required to know the

analysis of vectors or vector mechanics. Momentum and forces are essential features in

vector mechanics. Unlike Newtonian mechanics, analyzing energy methods requires

knowledge of kinetic energy and potential function. Since kinetic energy, potential

functions, and work are scalar quantities, we do not have to analyze vector mechanics.

By analyzing energy along with variational calculus, Lagrangian Dynamics and

Hamiltonian Dynamics have been established. In Chapter 2, we review these two

dynamics systems in terms of how they were developed and how they were used in

mechanics.

Understanding of constraint would also help in modern dynamical mechanics. In

Newtonian mechanics, the constraint forces such as boundary conditions and initial

conditions are required to be known in addition to applied forces. Because coordinates

used are dependent on the system, we need to take account of all the constraint forces.

However, using generalized coordinates that are independent of the system (we will also

review in Chapter 2), we can embed constraint equations that will be seen in Lagrange's

Equations of Motion (Chapter 2). The number of degrees of freedom in generalized

coordinates is the same as the equation ofmotion. The number of degrees of freedom in



space is different than that in configuration space (collection of generalized coordinates).

For example, a freely moving particle has three degrees of freedom in space and six

degrees of freedom for generalized coordinates, three for position and three for

orientation, in configuration space. Having six equations of motion in configuration

space rather than three equations of motion and constraints in space, for Newtonian

mechanics, this particular example is embedding the constraint equation into the system

of equations. Therefore, it is easier to solve for the constraints because constraints in

configuration space are adjoined to the problem formulation as side conditions.

Thus we need to discuss briefly the classification of constraints. There are four

kinds of constraints: holonomic, nonholonomic, rheonomic, and scleronomic. There are

two forms of equations that will consider holonomic constraints; they are either surface

constant or time dependent.

fix\, x2, X3)
=
constant and /(xi, x2, X3, t)

=
constant

Nonholonomic constraints are constraints that cannot be expressed in form of

holonomic constraints. Some examples of the rate of changes are inequalities and

nonintegrable differential expressions.

g(xx, x2, x3, /) > 0

A\dxx +A2dx2 +A-idxT,
+Aodt= 0

Rheonomic constraints are constraints that time, t, appears explicitly at least in a

constraint for a given system of equations (like nonautonomous equations). Scleronomic

constraints are constraints that time, /, does not appear explicitly in any constraint for a

given system of equations (like autonomous equations). In this paper, we will look into



all kinds of constraints that are embedded into systems of equations and solve for them

numerically.

Once we get the solution from Lagrange's Equations ofMotion (Chapter 2), the

result describes a single point in the configuration space. Because analyzing energy

methods are based on kinetic energy and potential functions, we should have scalar

quantities such as the result was a single point. An infinite number of different solutions

may be encountered with different velocities at the same point. For example, a simple

spring-weight oscillator can have different velocities at a single position (slower and

faster velocities will be encountered at the same point in the middle of a spring while

oscillating). Therefore considering position and velocity independently will be much

more valuable. The motion of a point in the plane is analyzed by having one axis for the

position and the other for the velocity. This is called a phase space, and it is the logical

plane for analysis.

In later Chapters we will discuss numerical solutions of a system of equations by

Lagrangian, Hamiltonian, and First Integral solutions, like holonomic constraint system

(explained in later Chapters). Lagrangian systems are holonomic systems for which the

forces are derivable from a generalized potential function V(q,q,t), and so are

Hamiltonian systems. Again, since results are scalar quantities, we can take advantage of

solving them numerically. When compared with conventional numerical methods that

are applied to the equations of motion of classical mechanics, such quantities conserve

the total energy and momenta only in the order of the truncation error; round-off errors

are eliminated.



CHAPTER 2

BACKGROUND

2.1 INTRODUCTION LAGRANGIAN DYNAMICS

To systematize equations of motion, coordinates used should be independent of

the system. Thus, generalized coordinates are introduced. Although a freely moving

rigid body, as an example, has three degrees of freedom, it can be determined by six

coordinates: three coordinates is for the position of the center of mass of the body and

three others for the orientation of the body in space. Therefore, a freely moving rigid

body that is like two independent masses moving freely in space, requires a total of six

coordinate specifications. The details of units are not important as long as the six values

uniquely describe the configuration of the system. The collection of all possible points

with the coordinates is called configuration space.

Before we go into Lagrangian Dynamics, we need to discuss about the kinetic

energy of a system because both Lagrange and Hamilton analyzed dynamics based on

energy. A single particle moving in space has kinetic energy as,

T^^mj^xf (2.1.1)
1=1

In here, x is a total time derivative. Ifwe choose qx, q2, and qj, are generalized

coordinates, we must have transformation between the physical and generalized

coordinates as,

x,
=

Xj(qh q2, q% t) (2.1.2)



Taking total derivatives to the transformation with respect to time will be,

dx.

dqj
ai

dxi

~dt
(2.1.3)

Substituting absolute velocity of (2.1.3) into (2.1.1), the kinetic energy of a

particle becomes (using tensor analysis),

T = \m

-m

dx, .
dx

-Qi +
[

dq]
J

dt

. \

dx, . dx,

dqk dt
(2.1.4)

dxi dx, . . dx, . dx, dx, . dx,
-q,qk

+ q, + Qk

d<lj Sqk dq} dt dqk
'

dt Kdt j

2\

so that

where

= \m
dx, dx

i i

dq; dqk

. . dx, dx, .
.

oqi dt

dxt

3 3

T =

1ZZ ajk4j4k +Z PAi + y
j=X k=X ;=i

dx, dx. dx, dx,
a,

-- fi. - m
"'"' ""'

and y
-- \m

jk

dx,

~dtdq;. dqk
' '

dqj dt

Thus, the kinetic energy is transformed as a scalar function of the generalized

coordinates and velocities.

T = T(q,q-,t) (2.1.5)

which has total of three generalized coordinates and three generalized velocities.



Likewise, for an N particle system in three-dimensional space, absolute velocities

of the system are

x,
= '- = >

dt %

dx.

1j

dx
+ ^- (2.1.6)

dtdqj

Also, the total kinetic energy of iV-particle system in terms of the generalized coordinates

and velocities is,

3jV 3AT 3iV

;=1 k=X j=X

again,

T = T{qj,t) (2.1.8)

which has total of 3./V generalized coordinates and 3N generahzed velocities.

Grouping with respect to the powers of the generalized velocities, we can write

the total kinetic energy as,

T=T2 + T! + T0 (2.1.9)

Also generalized momentum, pt, is defined as the rate of change of the total

kinetic energy with respect to a particular component ofgeneralized velocity qt .

P,=~

(2.1.10)
dq,

Both Lagrangian Dynamics and Hamiltonian Dynamics are based on analysis of

energy along with variational methods. Therefore, instead of generating the equations of

motion from free body diagrams, we will analyze the variation of energy and the

minimum number of coordinates to characterize the dynamics of the system. The

formulation of the dynamics problems in terms of generalized coordinates is called

Lagrangian Dynamics.



The governing equation in vector form for the i-th particle is,

dp,
F

,

= m ,a

dt
(2.1.11)

We will now analyze the analytical mechanics. The time rate of change of the

generalized momentum corresponding to the -th-generalized
coordinate is,

d . . d

Pk=~dt{Pk)
=

Jt

r dT^

(2.1.12)

Because of the total kinetic energy of the system for TV-particles systems in

Cartesian coordinates is,

T = ^mi(xf+yf+zf) (2.1.13)

Thus pk becomes,

Pk
=

dT

Zw,
dqk dqk dqk

(2.1.14)

Using the transformation from (2.1.6) and taking partial derivatives with respect

to q becomes

dx
,

dx
,

d4k dak

Thus, equation (2. 1 . 14) becomes,

ffT
"

p. = = / m
Pk

dqk {
'

Also, taking time derivative becomes,

.

dx dy, . dzi

dqk dqk dqk

d_
dt

'

dT
"

^<ik ,

(2.1.15)

(2.1.16)

(2.1.17)



Pk = Z mi
1=1

N

.. dxi .. ^v, .. dz,
x: -+ yi -^-+ z.

Z w.
1=1

$<lk

'

dt

dqk
'

dqk

dxi

KdakJ

+ y,
d_
dt
\d(ikj

+ z.
d_
dt

f dz.^

dq\~ik j

(2.1.18)

According to Newton's Second Law, the first summation of (2.1.18) becomes,

m
,x;

F, m,y,

F.

For the second summation of (2. 1 . 1 8), we will again use equation (2.1.6)

dx
and replacing x with in the equation, and its derivative with respect of time will be

dlk

d_
dt

r dx,^

dqK^Vk J

"

d
z~

71 dl,

dx.

dq
ij +

y^'ik j

d_
dt

f dx,^

dq\^ik j

^ d2xt . d2x,
V '

q , + -

% dq}dqk dtdqk

d

dq,

J^ dx, . dx,
y -

q ,
+ -

%dq/J
dt

d_
dt

dxi

ydqk j

d r . l dx

lxi\
dq &<li

where n is the coordinates, and TV is number ofparticles.

Thus, equation (2.1.1 8) becomes,

Pk
= d_
dt

rdT^

dq
Qk+Tmi

\^ik J i=i

. dx, . dy, . dy,

&ik 3qk $qk



Qk +

d

dqk

Qk +

dT

Z
*= 1

2 2

+ ^, + z>!)

3qk

Therefore, the Lagrange's Equation ofMotion becomes,

f dT^

dt

dT

\dqk) dq
= Qk (2.1.19)

We will now briefly discuss three different types of Lagrangian Dynamic's

systems. They are Conservative, Non-conservative and Dissipative Lagrangian systems.

Conservative Lagrangian Systems

For a conservative system, L
= T - V

,
where Fis a generalized potential function

usually given as

V =V{q) (2.1.20)

Therefore,

Q,
dv

#qk
and

dV

dqk

as we have usually seen.

Thus, the Lagrange's Equation ofMotion becomes,

d_
dt

d_
dt

d_
dt

d(T(q,lt)-V(q))

dqk

dT(q,lt) dVjq)
- Sdk

~

-

<% $qk

d{T(qJj} -V(q))) d(T(q,jt)
-

V(q))

&Li

dL(q,q,t)\ dL(q,q,t)

Jqk

dq, dq^
= 0 (2.1.21)



Therefore Lagrange's equations ofmotions are,

Pk

d(T -V)
_

dL

dqk dqk

d d(T -V)
_

dT dV_ dL_
dt dqk dqk dqk dq k

(2.1.22a)

(2.1.22b)

Non-conservative Lagrangian Systems

For a non-conservative system, assuming generalized potential function V exists in a way

that is given as,

Q ~-^
dt

dV(q,q,0

dqk

dV(q,q,t)

dqk
(2.1.23)

Ifwe substitute the given generalized force into Lagrange's equations (2. 1 . 19), we have

d_
dt

dT(q,q,t)

dqk

dT(q,q,t)
_

d

dqk dt

dV(q,q,t)

dqk

dV(q,q,t)

Sqk
(2.1.24)

Since L(q, q, t) = T(q, q, t)
- V(q, q, t) , we get

d_
dt

dL(q,q,t)

dqk

dL{q,q,t)

dqk
(2.1.25)

We cannot say the above equation is conservative system although (2.1.25) is

similar to (2.1.21) because the generalized potential function does not depend on the

generalized coordinates only. Therefore a conservative system is a special case of a

Lagrangian system.

For the general non-conservative system, not assuming the generalized potential

function as (2.1.23) or not derivable from a generalized potential function, we can split

Qk as

10



Qk =
Qlom

+ Q,
none

k

dv

dqk
+ Qk (2.1.26)

where the conservative component is derivable from a potential function.

Thus, constructing the Lagrangian function L = T - V, we formulate the Lagrange's

equations ofmotion as,

d_
dt

SL(q,q,t)

Sqk

dL(q,q,t)

$qk

=Qn; fc=\,2,...,n (2.1.27)

where
Q"kc

are generalized forces which is not derivable from a potential function.

Dissipative Lagrangian Systems

Ifwe have dissipative systems as

FIX=~CXA

F --c v
iy yiSi

F =-c z.
IZ Z, I

The virtual work done by these dissipative forces under a set ofvirtual displacement is,

5W = YJF-br=
-Z(^i,^:, -r-c^fy, +czi,&J (2.1.28)

1=1

where

"
dx

5x,. = V -

5^ and 8r = 0

% dq,

11



Also, using equation (2.1.15),

dx
,

dx

dq k dqk

the virtual work done (2. 1.28) becomes

5W =

-Yj
k=X

V
d (

dq.
xf+cjf+cziz2)

k=\ ^Hk

%tk

Therefore in general we can split more on Qk as,

dV

where

Qk=Qcr +Qnr +d=-^-+q:+d
^k

D = \jlcxx2+cyiy2+c2tz2)
k=X

(2.1.29)

(2.1.30)

(2.1.31)

D is known as Rayleigh's Dissipation Function. The Lagrange's equations of motion

then is,

d_
dt

dL(q,q,t)

&Lk

dL(q,q,t)
|
dD(q,q,t)

dqk dqk
(2.1.32)

where Q*k is a generalized force which is not derivable from a potential function or a

dissipation function.

12



2.2 INTRODUCTION HAMILTONIAN DYNAMICS

Now we show how to transform Lagrangian Dynamics into Hamiltonian

Dynamics. We can review the Legendre Transformation for the connection between

Lagrangian and Hamiltonian functions.

If/(x) a twice-differentiable function which is strictly convex,

/"(x)>0 (2.2.1)

and let/? be a tangential coordinate defined as

P
= /'(*)

The Lagendre Transformation is given as

g(p)
=

xp-f(x)

so that

dg dx df dx

dp dp dx dp

and

(2.2.2)

(2.2.3)

PX
~

g(j>)
= px- (xp

-

/(x)) = f{x)

Therefore, Lagendre Transformation has a property thatp is the tangential coordinate for

g(p) and x is the tangential coordinate for/(x). Therefore is completely symmetrical.

, -r- / x i i dq>(x) ,. . 1 . loge
,

As an example, if(p{x)
= log x ,

then p
= = (loge)- so that x = and

dx x p

<p(x)
= log

p J

Thus finally, the Legendre transformation of (p{x) is

g(p)
= px-

<p(x)
= log e

-

log

= log

Cx \
loge

r
e

^

vloSey

V P J

+ logp = 0.7965 + logp

13



Now we can apply a Legendre transformation to a function of several variables.

Let/(xi, x2, . . .

, xn; y\,y2,... ym) be a function ofn + m variables where

det
d2f

dy,dy ,.

* 0 (2.2.4)

We introduce new coordinates

/'= 1,2, ...,m5 *~J
'

> (2.2.5)

Now we can define the Legendre transformation of/ with respect to the variables

ji,^2,...^mas

g(xh
x2,...,xn;zi>z2,...,zm)= Z^,2! -/

1=1

dg

dx .

IL
dx .

where
k= 1, 2,..., w.

(2.2.6)

(2.2.7)

Also,

/(xi, x2, . . .

, xn; zh zx . . .

, zm)
= Z>^,- "

g"

(2.2.8)

Again the transformations are completely symmetrical like in one-dimensional

case. There is one more property that is the variables xi, x2,..., xn do not actively

participate in the transformation.

Therefore, the dual function H, the Hamiltonian function transform from

Lagrangian function through Legendre Transformation then is

H = Xp,<ii-L
1=1

Lagrangian function can then be rewritten with the Hamiltonian as

(2..2.9)

14



=Zm,-# (221)
i=i

where

dq , dq .

Thus, if we want to write so-called Hamilton's Canonical Equations, similar to

Lagrange's equations, we have

p. = (2.2.12a)P'
dq,

but for the q i
notice the generalized coordinates qt are not transformed by (2.2.7),

therefore

dH
,

qt
= 2.2.12b

dpt

Thus we have a total of2n first-order differential equations.

An example ofHamilton's Canonical Equation ofMotion is given below.

H = + -PjLT + f". 2

-

+V(r,0J)
2m

2mr2 2mr2 sin2

9
v ' ,rj

The canonical equations are:

= cH=P^
cpr m

'

a
dH pe

dpg mr

1 m

0= :

P
*

mr2sin2

6

dH Pi Pi dV

dr
Pr

'

dr
mr3 mr3sin2

6

dH p}cos0 3V

Pe
'

dO

'

mr2sin3

6 d6

dH dV

15



For the Hamiltonian, one more property can be observed. Since both Hamiltonian

and Lagrangian both were established from kinetic energy expressing in terms of

generalized momenta and generalized velocities, we will look very closely on distinguish

the two expression. Hamiltonian is also a form of energy with expression in terms of the

generalized momenta instead of generalized velocities because generalized coordinates

are not transformed for the generalized velocities; we can compare (2.1.22) and (2.2.12).

Therefore, T\ from the (2.1.9) is zero. Therefore

h =YpA -l = (t2 +T0)h -(T2+T0 -V)l

1=1

H=T2-T0+V by (2.2. 11)

Furthermore, for natural systems, the kinetic energy is purely quadratic in the velocities.

That is

T=T2

and so the Hamiltonian is

and To = 0

H=T+V

which is the total mechanical energy of the system.

The time rate of change of the Hamiltonian is

(2.2.13)

dH

dt

dH dH
.

qt + ~z P.
dq, dp,

+
dH

dt

The summation represents the implicit dependence on t through the coordinates

and momenta. The last term represents the explicit dependence of the Hamiltonian on

time /. Ifwe substitute the canonical equations,

dH
. dH

q,
dp,

and Pt
=

dq,

16



we have

dH
"

x . . . .
-, dH

-aT=Zx[-p-q- +

q'p^-dT

dH dH
,

-Ji-^r
(Z214)

The total mechanical energy is conserved that is a special case for the

Hamiltonian (such as the conservative systems are the special case for the Lagrengian

Dynamics). Conservative in here means the autonomous system, time is not explicitly

express in the system of equations that is shown in (2.2.14). Therefore the interesting

statement is that the Hamiltonian functionH is a constant throughout the evolution of the

system. That is, the Hamiltonian is an integral of the motion (also called first integral of

equation, we will discuss on later sections), representing the conservation of some portion

of total energy.

Furthermore, since t is not active in the Legendre transformation, it follows from

the property (2.2.7) that

dH dL
,

^r--^r
(2215)

which means that the variable t appears in the Hamiltonian if and only if t appears in the

Lagrangian function.

If we consider the Hamiltonian as the velocity field of fluid in the Eulerian

description such that the vector fields are given as

*i =FM,Xi,()

X2 t<2\XX>X2>t)

17



The collection of curves that are tangent to the velocity field at any fixed instant

of time are called steamlineswhich can shown as =

Fx F2

If fluid is incompressible, there is no change in volume ofparticles moves along the flow

field; the shape may change during the motion. Thus the incompressibility of the fluid is

,. ,_ dFx dF2 _

div(y) = L+ - = 0

dxx dx2

Therefore, the Hamiltonian in a stream function for the flow of an imaginary fluid

in 2-dimensional space becomes

^v(v) =Z^L+Z^L=0 (2-216)
,=i dq,

~

dp,

where

Fx =q,= and F2 =

p,
= --

dp, dq,

so that

tt dp,dqf i=x dq,dp,

Therefore using Liouville's Theorem, we can build Hamiltonian (Example 2.2.2).

There is one thing to be noted that div (v)
= 0 does not necessarily means the

conservative system ofHamiltonian; it just means Hamiltonian can be easily built

(Example 2.2.2). In Chapter 3, We will discuss how to check analytically whether if the

given Hamiltonian is conservative or not.

Some examples of transforming from Lagrangian to Hamiltonian or vise visa,

verifying Hamiltonian
systems using Liouville's Theorem, and finding the Hamiltonian

and finding Lagrangian by given canonical equations will be shown below.

18



Example 2.2.1

If the Lagrangian is given as

using (2. 1.22a)

L =
-*-x

2
- \a>

2 x2
+ exx

2
- 5x

dL dL
. .

/> = = x = = 2 x + 2 xx

<?# <?x

and (2.2.9)

H-^PA -L=pq-L
= (2x +

2xx)x-\x2 +xx2

i=i

H=\x2 +\co2x2 +xx2

+
3c3

Thus the Hamiltonian can be determined.

Analyzing example 2. 2. 1, ifwe assume we have T =

\x2

+
exx2

andV -

\co2x2

+
dx3

,

conservative systemwith T2 and T\ = To = 0, then we can clearly define Lagrangian

system, L
= T- Fand HamiltonianH = T+V. See example 2.2.6.

Example 2.2.2

In order to determine if system of equations is Hamiltonian, we use Liouville's Theorem

on that system of equations of a particle in two dimension.

ydq,
| y

dp,
=
dx,

| dx2_=l 1 = Q

tra^, tr^, ax, ax2

19



Therefore Equations in example 2.2.2 satisfy Liouville's Theorem and it is a

Hamiltonian system. Thus, we can construct a Hamiltonian equation using potential

function approach.

xx=^Sr^=xx+x2
OX}

H(xl,x2)=xxx2A+F(xx) and ^^=x2+F(xl)
2 caq

Also,

Sf/fex,)
-x2=^r2l=-xx+x2

oq

Therefore,

F'(xl) = -xx and F(xx)=-^+C

Finally,

#(x1,x2)=x1x2+|--'|+C

We will use this example in later sections.

Example 2.2.3

x1=xx+2x2

*2 ~X, ~X2

Again using Liouville's Theorem to determine if the system of equations are

Hamiltonian,

tt dq, t=i dp, dxx dx2

Therefore the given system is not a Hamiltonian system

20



We can also use Liouville's Theorem for nonautonomous systems to find Hamiltonian

such as Example 2.2.4.

Example 2.2.4

X, =xxt-2x2

Again using Liouville's Theorem to determine if the system of equations are

Hamiltonian,

f^ + f^P=dxL+dx^=t + (2^0
1=1 dqi ,=, dp, dxx dx2

Therefore the given system is not a Hamiltonian system

Example 2.2.5

Xj =xit+2x2

Again using Liouville's Theorem to determine if the system of equations are

Hamiltonian,

fdq^+ydpi_=dx^+dx^=t_t = 0

tt dq, ,=x dp, ax, dx2

Therefore the given system is a Hamiltonian system

H(xx,x2)=xxx2t+x;+F(xl) and *^=^+F(j<)
oq
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Also,

Therefore,

9>q

F'(x1)=-x1r2

and F(xx)=-^-+C

Finally,

if(xXj)
=

x,x/+x^
- +C

Example 2. 2. 6

Consider a mass that only a spring attaches to the wall.

mx

Figure 2.2.1 Amass is attached to the wall only by a spring

Kinetic and potential energy of the system will be

T-\mx2

V^+^mx2

and because the system is conservative, the Lagrangian will be

L =T-V= \
mx2 l-mx2

or for our convenience,

L =
T-V=\mq2
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so that

dL .
dL

p- =

mq and p= =

-mq

dq
"

dq

H =pq-L =
mq2

~mq2)
=
\mq2 +\mq2

Therefore,

H=\mx2+\mx2=T+V

We can also prove that Hamiltonian is kinetic energy plus potential energy for

conservative systems.

Example 2. 2. 7

If one of the canonical equations for a single degree of freedom Hamiltonian system is

given as

p=p2-2q+2p

then, we can findHbecause

dH 2 n

p=-=p2-2q+2p

dq

H(qp)=-p2q+q2-2pq+F(p)

and

q
=^- =

-2pq-2q+F'(p) (2.2.17)
dp

Also, we can determine^ because it's a Hamiltonian system, so Liouville's Theorem has

to satisfy such that

tf dq, tt dp, dq dp dq
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dq

q
=

-2pq-2q + F(p) (2.2.18)

Comparing (2.2.17) and (2.2.18), we find that

F'(p)=F(p)

so that F(p) can be either exponential or zero.

If zero is simple, we can choose F(p) to be ep. Therefore,

q
=

-2pq
-

2q +
ep

and

H(q,p)=-p2q+q2-2pq+ep

also ifwe want to convertH to L, we need

qp
= -2p2q-2pq +

pep

Thus,

I{qp)=qp-H=-2p2q-2pq+-pi
+p2q-q2

+2pq-ep

+(p-\Y
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CHAPTER 3

ANALYTICAL PREDICATION OF CONSERVATIVE SYSTEMS

FROM THE HAMILTONIAN AND FIRST INTEGRALS

3.1 ENERGY PRESERVING ALGORITHMS

For the application of the Hamiltonian, we need to introduce the energy

preserving algorithms. The energy preservation shows some interesting properties of

conservation in Hamiltonian. It is given as

Man+x+K(dn+x) = Fn (3.1.1)

dn+x=dn+^At{vn+vn+l) (3.1.2)

v+i=v+!-Aa(a+0 (3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

where U is the potential that generates K , i.e., DU = K . This algorithm obeys the

identity

E(dn+l,vn+1) = E(dn,vn) + ^(dn+l -dJ(Fn+l +Fn) (3.1.7)

The energy-preserving algorithm (3.1. l)-(3. 1
.6)

can be defined for a general

Hamiltonian system (finite or infinite-dimensional) as well,

dp dq

by the following implicit scheme

25
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2[U(dn+x)-
U(d)]
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In which:

qn+l=q ^Si^J^kMA (3.1.9)
AT(P+X-Pn)

i" (qn+i-qn)

^ = ^r{ccqn+x+(l-a)qn,/Jpn+x + (l-P)pn) (3.1.11)

and;

^ =

(w+i
+ (i-r)^,^+i + a-^)A) (3.1.12)

where a, /?, /, ^are arbitrarily chosen in the interval [0,1].

For the proof of conservation of energy,

Equation (3. 1.9) becomes,

A

Take transpose to both side

then,

((^+i-l)-(P+i-A))
A/

Also (3.1.10) becomes

=H(qn+1,pn+x)-H(qn+x,pn) (3.1.13)

<H(qn+x,pn)-H(qn,pn))
At

=

-H(qn+l,pn) +H(qn,pn) (3.1.14)
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subtracting (3.1.14) from (3.1.13) becomes

(fart -g,)fori -Pn)J -{(Pr^X ~A)@^1 -qn)J _n_pre -
v
W-

-x

---"(4H.iAfi)--n(4,,/'J

so that

H(fLvPn+x)=H(qn,pn)

Example 3. 1. 1

Example in simple harmonic Oscillator

since n
=

1, one particle,

.
#/

.
a?/ ,

<i=-r=p and p=-r-=-a>q
dp dq

and we want to show the system is conservative using energy preserving algorithms. So,

dH
* =

~r-(aq+1
+ (1 -

a)qn,/3pn+x + (1 -

/?)/>)
dp

^ = /K+i+0 -/?)/> and ^r=l

and

then,

dH

p
=

^-(rqn+x
+ 0

-

r)qn,^Pn+x + 0
-

<?)/> )

y"
=

2(w+i + 0-r)?J and // = /;

= ,
^(H(qn+x,pn+x)-H(qn+l,pn))

(Pn+x~Pn)
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qn+x
=

qn + At

f ^2^,2 _2 '>\
< qn+x

,
ft+1

A ^,22 -2 A

l+Al

Pn+X~Pn

qn+x =qn +
2 Pn+X~Pn

At. .

qn+i
=

qn+(pn+x+Pn) (3.1.15)

ft+1 =p-to
(H(qn+x,Pn)-H(qn,pn))

(qn+x-qn)

Pn+X =Pn~At

f 2 2 2 A f 2 2 2 "N

g gg ft

2 2

4*+l
-

?

ft+1
=

ft
2 ?+1

-

?

ft+i=ft"

2-A/

(qn+x+qn) (3.1.16)

Now we have two finite difference equations such (3.1.15) and (3.1.16)

2 2 2

Ifwe can proof H(qna,pnhl)=H(qn,pn)= +=constant, the system will be conservative,

and the phase curve will be elliptical.

Thus,

^i,fti)=^+f

:

qn+^(PrX+Pn)

21 2 J

V ^
at-ti

pn (q^x+qJ
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CO-

tor s

&+^-(fti+ft)
+-

2
ft fe -i-^fom +ft)+^}

'

2

(A)2

^+^(fti +ft)+^(ft,+ft?

/
A,

^-fl?-A-A{22I-^(ftfl+jRl)}
4

^(A)2^ A

{2^^-(fti+ft)?

where
(A)2

0

Thus,

6J2

2 o^to.qn
ql+

-

2 2

ft2

(Pml+Pn)+~Or-^-P^n- col(toyPn
(ft+1 +Pn)

again
(A)2

0,

Therefore,

co2

2 dtStqn co2Atq
p2

, a

=

y^+^p^ Jr~rp-
2

'p"q-

o? 2
,
^a^, ^qn,p2n

4^^^-ft)+4
and we know from (3.1.16) that

ft+i "ft

<y2-A/

(<7,i+i +,)

Therefore

H(q^pn+x><Tn+-Y~
at-tt

(*+,)

^
Pi

o} , <a\tof<L( +n^_A
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since
(A)2

0,

3. 2

^q^P^ql+y
=H(qn,pn)=

constant.

Therefore we proved that the given simple Harmonic Oscillator Hamiltonian

system is conservative.

We will now find out whether the given Duffing equation is conservative or not

using energy preserving algorithms.

Example 3.1.2

We know the given Duffing equation does not have damping so that

x+x3+x=0

So we can write

x=y

y=-x-x3

By using Liouville's Theorem,

Y^l +v^ = ^+^Uo + o = o

tt dq, tt dp, dx dy

The system is Hamiltonian. Thus,

dH dH
y2

x =

q
= =

=p
=

y and H(x,y)=^-+F(x)
dp dy 2

M
F'(x)

also

ax

, .
dH dH

y
-

X + X
~

-p
=

dq dx
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Thus,

F'(x) = x +
x:

x2 x4

and F(x)- 1

2 4

Finally,

TT.

y2 x2 x4

H(x,y)=++

2 2 4

or for our convenience set,

where,

H(q,p)Ml+l

2 2 4

.
dH

.
dH ,

v=t:=p and -p=^-=q+q

dp dq

We now show that the system is conservative using energy preserving algorithms. So,

* = ~{ctqn+x+(\-a)qnJpn+x+(\-(3)pn)
dp

^ = /?ft+i+0-/?)ft and
X7

=X

and

air

/"

= (j?,+) + 0
-

r)q,#pn+x + 0
-

)ft)

/"=rfe+i+?l,)+0-r)(^+^)
and /"

= /*

then.

qn+x
= qn+At

(H(qn+l,Pn+x)-H(qn+x,pn))

(ft+i -ft)

qn+x=qn+tt

(2 4 2 ^
^n+1 . ^+l , ft+1

v
2

'

4

'

2
;

-

^2 4 2 >
#n+l , ^n+l . ft

V
2 4 2,

ft+1 -ft
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In+X qn +
^HpIx-pI)

2 ft+, -ft

qn+X=qn+(Pn+X+Pn) (3.1.17)

In here, do not try to solve
ln+X

_ l
At V

qn + (ft+i + ft ) and set
(At)2

0 . qn+x and pn
2 J

are to be solved simultaneously.

Pn+x=Pn-At-
(H(qn+X,pn)-H(qn,pn))

(qn+i-qn)

Pn+X =Pn~At

( 2 4 2 "\
^n+i . q+\ . fti

,242,

-

/ 2 4 2 >

q* +qn

+
pn

V2

'

4

'

2y

ft+1
=

ft
A4fe+i)-fc)l A/[fe+i)-fa)j
2 ^+i-<? 4 ?+1-tf

ft+i =P*~Y (q"+l +q")~~^ (^"+1 + q" )(^+1 + ^" } (3 l 1 8)

Now we have two finite difference equations such (3.1.17) and (3.1.18). Using these two

equations for the next point inH,

H(q^Pn+x)=^+
<L , <L , PrL
2 4 2

substituting (3 . 1 . 1 7) and (3 . 1 . 1 8) into (3.1.19)

(3.1.19)

f to Y J f
q+^iPn+X+Pn) +i (

\ 2 ; V

&+r(ftl+#l)

A A A A T A Y 2

ft (,+^-(fti+ft)+^)--fe+^(fti+ft)+^)k+^(fti +ft)J
+)

setting
(A/)2

0
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ite +toq,(Pn+x +p))+i(q2 +Atq,(p^x +pn)f

+-, Pn~(H)~Q4ni{ +toqn(Pn+l +Pn)}+C)

lk +toq,(p^ +Pn))+ik+TH<P*A +ft))

At
I2

ft ~toq --qn(2ql +tiq,(pn+x +pjj-4

=|fe+^4(fti +ft))+ife+2A^fe+1 +A))-4(r. "*4-^f

=

I fe+**(?,, +ft))+i (qi +2&&P,* +ft))+l
(ft2
-2AM -2A^)

=I^+-^>^i+ft)+i44+Y^(fti+ft)+ift2-Aft^-A^?^

Now, we substitute equation (3.1.18), so we get

,, A

4^+~4 ft
"-

(4+i
+4)--

(4+i +4)(42+, +42)+ft
1 w*

ft
~

(4+i +4)-- (4+i +4)(42+i +4")+ft

+i4

HPl-topAn-Atpd

again, setting
(A/)2

0

=i42+y4[2^J+i44+Y43[2ft]+lft2-A^^-A7J^

Wn+topqn+H+topdHpl-top^-^pd

Therefore,

2 4 2^242

L/Y^ \ ^"-1
i
^l

i
ft+! 4 . 4 . ft rr/ x ,^+i>ft+i)=++=y++Y=^(4>ft)=co5to/?/

Therefore we proof the given system ofDuffing equations is conservative. The

phase curves will be closed contours.
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Runge-Kutta, xdot=y, ydct=-x-xA3
0.03 r

0.02

0.01

-0.01

-0.02

-0.03

Figure 3.1.1 Runge-Kutta approximation for example 3.1.2
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Example 3. 1. 3

From example 2. 2. 2

H(xx,x2) =xxx2+^-5-+C

For our convince, let C
=

0,

H(qp)=qp+^--^-

To show the above Hamiltonian is conservative or not, we can again use energy

preservation algorithms,

So, it follows that:

and,

Then,

m
q==q+p and

dp

dH

. dH

-p==-q+p

dq

A =

(aqn+l+(l-a)qn,fi>n+l+(l-j3)pn)

dp

* =

4+i + 0
-

a)qn + /K+i + (1 -

P)pn with
XT

= X

dq

m
=

-m+1
- (i - r)4 + SPn,x +0

-

^)ft with
pr

-

p

4+i=4+A>
(H(qn+X,pn+X)-H(qn+X,pn))

(ft+i -ft)

4+i=4+^

f 2 2 >

t/+l Fn+X -

'

V
I I

j

-

( 2 2^

4'ft-^f
+
v

V
l l

j

Pn+X-Pn
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4+i
=

4 +
AKftVft2)

2 ft+i -ft

At
r

4+i =4+y(ft+i+ft) (3.1.20)

In here, do not try to solve
tn+X

_ i
A* V

4 + (ft+i + ft ) and set
(Ar)2

* 0 . qn+x and p+1
1 J

are to be solved simultaneously. Hence

.
AAH(qn+x,Pn)-H(qn,pn))

(4+1-4)

ft+1 =Pn~At

Vf 2 2> A 2 2 Al

4+i ft 4
+
ft

4,+,
ft,-

4,
ft-

v
2 2 J v

2 2 J

'n+l ft +

4+i
-

4

Mfc+J-fe)] A,(4+i~4)ft

2 4i+i
-

4i

!-A^-

fn+l 4

Aft N A

ft+i =ft+y(4+i+4)-A*ft

ft+i =ft+y((4+i+4)-2ft) (3.1.21)

Now we have two finite difference equations such (3.1.20) and (3.1.21). Using

these two equations for the next point in H.

H(qn+x,pn+x)=q,x-pK+x+^-Y (3.1.22)

substituting (3. 1.20) and (3. 1.21) into (3. 1.22)

( to V A/
4+-(fti+ft) ft+-((4+i+4)-2ft)

2 )\ 2

( a y r a

ft+-((4+i+4)-2ft) 4 4+-(fti+ft)
2 ; v 2

4
Y
1

y
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setting
(At)2

0

=4 P+-4((4+i +4)~2ft)+-ft(fti +ft)

+lfc +Atpn{(qnX +qn)-2pn))-l(ql +Atq,(pn+X +pjj

We again substitute (3.3.20),

A

=4 'ft+4
A

4+^(fti +ft)+4 -2ft l+-ft(fti +ft)
A

+:

/ A

A +top! 4+-(#*,+ft)+4 -2ft I -\(ql +toqn(PnA +pjj
V 2

A (
=4 -ft+4

+:

A^ ^ ^ 1 to
,

H +~^(Pmi +Pn)-2Pn\+Pn(Pn+X +ft)

A

/+%[24+-(fti +ft)-2ftjUfe +toq(pMX +Pjj

setting
(Ar)2

0

A

=4 'ft
+A-42

-AtqnPn +-pn(pn+x +p)

+\(pl +2JstqnPn -2Atf)-\( +lq,(pM +pjj

A

=4 'ft+^ -A-4P+-ft(ft+i +ft)

+

y
+^m

-

A^
-

^
~

4(fti +ft)

--qn-Pn+to+-Pn(Pn+X+Pn)

+f-A^-|-|4^i+ft)

A
=qn-Pn+toql+-Pn(P+X+Pn)

+^-topl~~qn(Pn,X+Pn)
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We now substitute (3. 1.21), so we get

=4 -ft+A4+p pn +-((4+i +4)-2ft)+ft
2 V 2

ft
41

A/. A,

+f
"

A^
-|
-dfl +-((4+! +4) -2ft)+ft

=4 'ft +A^+-/J 2p +-((qnhX +qn)~2pn)

Pn to. At,

+f
"

A^
-|
4l 2ft +-((4+i +4)-%J

again, setting
(Ar)2

0

2 2

--qn-Pn+toql+topl+^-titi-^-Atm

2 2

:4-ft+^f+A/4(4"ft)

Therefore

22 22

#(4+i,ft+i)=4+i "ft+i+^y
-

Y
=4 -ft+y-|+A^fe -a)*#(4,ft)

^constant

Therefore we proof the given system of equations is not conservative. The phase

curve will not have closed contours. In this example, we showed that conservative

systems are a special case of Lagrangian or Hamiltonian systems. Not all Hamiltonian

systems are conservative.
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10

Runge-Kutta, xdot=x+y, ydot=x-y
-i 1 r -i 1 r

8

7

6-

A

II

II O

3fc

as*.
^ *

5l6if *

ae* *

2K* *

5K* *

ftjtf****

J I 1 I 1 L

3456789 10

x=>

Figure 3.1.2 Runge-Kutta approximation for example 3.1.3
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3.2 FIRST INTEGRAL FROM EULER-LAGRANGE EQUATION

From Euler-Lagrange equation, we have

dy dx
dy'

where F is a functional, a function of a function, such as

F=F(x,y,y')

and we have second order equation

dy

fdF^

dx dy
dx + -

fdF^

\"s J dy \dy j
dy +

dy'

^dF^

dy

dy'

Vvy

There are two special cases from Euler-Lagrange equations.

Case I

IfF is a functional of function x and y
'

,

F = F(x,y')

then the Euler-Lagrange equation becomes

'(x,

dy

dF(x,y')
= constant

because

dF(x,y')

dy

= 0

Case II

Ifftis a functional of function v and
y'

,

F = F(y,y')

then the Euler-Lagrange equation becomes

(3.2.1)

(3.2.2)
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F(y,y')-y,<9F(X'y>}
= constant (3.2.3)

dy'

Equation (3.2.2) and (3.2.3) are first-order differential equations. One less

equation has to be integrated. Physically, a first integral represents the conservation of a

certain quantity. The left-hand sides of equation (3.2.2) and (3.2.3) represent the

quantities that are conserved.
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CHAPTER 4

NUMERICAL ODE SOLVERS THAT PRESERVE FIRST INTEGRAL

4.1 ORBITAL DERIVATIVES AND FIRST INTEGRAL

As we have discussed on page 2 ofChapter 1, equations in which the independent

variable / does not occur explicitly are called autonomous equations. A vector equation

of autonomous can be written as

x = f(x) (4.1.1)

In here, we call equation (4.1.1) an autonomous differential equation because t

does not explicitly appear in the equation.

A point in phase space with coordinates xi (t), x2 (t), ...

, xn (t) for certain t, is

called a phase point. In general, for increasing t, a phase point shall move through

phase-space. In carrying out the projection into phase space, we do not generally know

the solution curves of equation (4.1.1), but it is simple to formulate a differential

equation describing the behavior of the orbits in phase space.

Equation (4.1.1) can be written out in components as

x,
= /,(x)

;/'=

1, ...,

We now use one of the components of x, such as xi, as a new independent

variable. In order to get x\ to be such independent variable, fx ( x ) * 0 . Therefore

^=/,W and %=/*(*)
dt dt

and dividing dxx into dxk ,
we have

dxk
=

dfk(x)

dxx fx (x)
k = 2,...,n (4.1.2)
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Example 4. 1. 1

Harmonic oscillator x + x = 0

The equivalent vector equation in with x =

xx ,
x =

x2

The orbits ofgiven two dimensional Phase space are described by

dxx x2

Integration yields

x2

+
x2

= constant

Or using Liouville's Theorem,

fdq^ + fdP=^+^=0_0 = 0

ttdq, ttdp, dx, dx2

Therefore the system is a Hamiltonian system

_dH(xx,x2)_

m,*d=^+m and ^^=F(xi)
2 oq

Also,

Therefore,

_dH(xl,x2)_

-Xi-

-\

a^

x2

F'(x1)=xl and F(x1)=^+C

Finally,
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//(x1,x2)=|+|+C

H(x,x)-C=^-+~

2 2

Solutions of system (4.1.2) in phase space are called orbits. In equation (4.1.2),

time has been eliminated, so it can be integrated in a number of cases, producing a

relation between the components of the solution vector. Since simple harmonic

oscillator is conservative, H(xh x2)
= C is constant, differentiation with respect to t gives,

xx+xx=x(x+x)
= 0

Now we will introduce the concept of orbital derivative. Let ft be the orbital

derivative. Consider the differentiable function T
R"

^ R and the vector function x:

R-* R". The derivative L, of the function / along the vector function x, parameterized

by /, is

T T
dl

. dl
. dl

. dl
LJ = x = x, + x. + ... +

dx dx, <3x, dx
"

l L n

Ifwe consider the equation x = f(x) ,
x e D a R"; and if

ft/ = 0,

then I(x) is called first integral of equation. In example 4. 1. 1

_ __ dH . dH
, x

LtH =

Xj + x2
=

XjXj + x2x2
= xx + x(-x)

= 0

dxx dx2

Therefore, H in example 4. 1. 1 will be a first integral of equation /. If a surface is

constant or if the rate of changes are integrable, it means the system of equations involve

holonomic constraints.
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Example 4. 1. 2

Let us consider so-called Volterra-Lotka equations

x = ax -

bxy

y
= bxy -

cy

The equation for the orbits in the phase plane is

dy
_

x a -by

dx y bx c

Thus the equation is separable and integration yield

bx -

cln x + by - a In y = C = I(x,y)

We will now checkwith orbital derivative,

,
. dl .

dl
.

Lti = xh y =

dx dy

\-<-"

(ax -

bxy) +
f
b-

a

V y)

(bxy
-

cy)
V xj

= (bx -

c)(a
-

by) + (by -

a)(bx
-

c)
= 0

Therefore resultant 7 (x, y)is a first integral of the equation. This may also

involve holonomic constraints. However, Volterra-Lotka has some interesting properties

that ifwe now let/? = Inx> x =
ep

and q
= In v- y

= e?the equations can be observed

as Hamiltonian

x =
^- =

epp
=
(a-beq)ep

- p
= (a-beq)

dp dt
V r V '

y =^^- = eqq
=
(bep

-^q
=
(bep

-c)y

dq dt
V r V '

H(q,p) =
bep

-

cp +
beq

-

aq

So thatWhere the resultantH is Hamiltonian and
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dH
and q

=

dH

dq
'

dp

Another approach of finding a first integral is rather simple for conservative

problems. Consider example 3.1.2 and rewrite two system of equations into

x+ x +
x3

=0

Where we introduce/^) = x +
x3

So that multiplying by x becomes

xx + x(x + x3)
= 0 or \2x2)+ \(x + x3)dx = 0

dt dt

-fex2)+-

dtX2 '
dt

(2 4\
X X

+

2 4

Therefore the first integral of the equation is then

1 C-2

x2 x4

I = ~x h 1- = constant

That is just the advantage of finding the first integral equation in conservative systems.

Example 4. 1. 3

Let us now look at three-dimensional system of equations

Ax = (B -C)yz By = (C-A)zx Cz = (A-B)xy

The equations for the orbits in the phase plane are

dx_y(B-CV B ^

dy x A
. C-A_

((C -

A)A)x2

+ (B(C -

B))y2

= Ix (x, y)

'c-aY c
^

-> ((C - A)A)xdx = (B(B -

C))ydy

dz y B J A-B
-> ((A -

B)B)ydy = (C(C - A))zdz

((B -

A)B)y2

+ (C(C -

A))z2

= I2 (y, z)
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Now we have to construct in a three-dimensional differentiable function / = I(x, y,

z), so we have to use the so called Lyapunov function construction.. Ifwe let y
=
z
=

0,

then x becomes arbitrary such as x0. Then, I\ or L(x, y)- I\(x0, 0) is not sign definite in a

neighborhood of (x0, 0, 0) and I2 is semidefinite. One of the ways to construct a

Lyapunov function is

I(x,y,z) = [lJx,y)-IJx0,0)]2+I2(y,z)

= [AC-A)^ +B(C-B)y2
-A(C-A)x$ -^B^B-A)/

+C(C-A)z2

2."4

2

7(x, y, z) -2A2(C-A)2^x\ +B2(C-B)2y

+A2(C-Afx4

+5(5-^/ +C(C-A)z

We will now check with orbital derivative,

T T
dl . dl . dl

.

LtI = x h y H z

dx dy dz

(4.1.3)

x =
[4^2(C-y4)2x3

+
4A(C-A)B(C-B)xy2

-4A2(C-A)2xx20\^-^-

dx \ A

y
= \AA(C-A)B(C-B)^v-4^(C-5)V -4ARC-A)(C-B)^y+2B(B-A)y\

^^
dy \ B

yz

zx

z
= 2C(C-A)z

dz

((A T>\\

xy
(A-B)

V C j

LJ. = 4A(B-Q(C-A)2x3yz+4B(C-A)(C-B)(B-C)xy3z-4A(C-A)2(B-C)xx2xyz

+ 4A(C-B)(C-A)2x3yz-4B(C-A)(C-B)2xy3z -4A(C-A)2(C-B)xxlyz

+ 2(C-A)(B-A)xyz+2(C-A)(A-B)xyz

= 0

Indeed, the resultant / in (4.1.3) is a first integral of the equation and give

holonomic constraints.
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4.2 INTEGRAL-PRESERVING NUMERICAL INTEGRATOR SYSTEMS

In the last section we showed that the first Integral of the equation, I(x) is a

constant (4.2.1), and it is typically a holonomic constraint. A system of equations that

involves damping can be thought of as embedding of scleronomic constraints, because

time t is implicitly involved. Consider:

I(x) = constant (4.2. 1)

Taking the time derivative gives

dl dl dx cl dxn d dxn
= i-4- - + + - = 0

dt dxx dt dx2 dt dxn dt

_ = (v7). = (V/)-F(x) = 0 :-I(x)
= constant (4.2.2)

dt dt

If we know I(xn)=constant, we should be able to construct I(xn+X ) similar to the

energy preserving algorithms in Chapter 3. Therefore, as a first step we need to find a

skew symmetric matrix, S, that has property
(ST

=

-S), i.e.,

-S
=

S2X 0

Now we can convert the system to skew-gradientform:

[S(x)]\vi(x)]=^
= F(x) (4.2.3)

Multiplying with
(V7)r

to both sides will give

(V/)r

[s\VI) =
(V/)r

F(x) = (VI) F(x) (4.2.4)

Taking the transpose ofboth sides

((V/)r [S](VI))T
=

(VI)T[S]T

(VI) = (VI) F(x)

where ((VI)TJ = (VI) is obvious. Also because
ST
=

-S,
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(VI)T[S](VI) = (VI).F(X)

or

(VI)T[s](VI) = -iVI)-F(x)

Thus comparing (4.2.4) and (4.2.5), we have

(4.2.5)

VI-F(x)=-VI-F(x) or V/F(x) = 0 (4.2.6)

Equation (4.2.6) is the same as equation (4.2.2). Therefore the skew symmetric

matrix does not change the meaning of the first integral of the equation that is / is

constant. Therefore, we want to find such S, skew-symmetric as a first step.

The next step is splitting. The n- dimensional vector fields

F =YFk
k=x dxk

is split, using the skew-symmetry ofS, into essentially 2-dimensional vector fields

F=S.
V V

dl d dl d

dXj dxt dxt dXj

This is not splitting into 2n systems of equations. The components x, from the /

split into n two-dimensional vector fields. Each of the vector fields, Ftj, is equivalent to

the system of equations

dt
ij
dx.

dXj dl
Ht~~

,J~dx~,

dt

= 0 where k*i,j

(4.2.7a)

(4.2.7b)

(4.2.7c)
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It immediately follows that

FM^hSt
dl dl dl dl

dx. dxj bxi dx.
= 0

Therefore, I(x) is also a first integral for each of the system of ODEs (4.2.7)

similar to the operator, skew-gradientform, to (4.2.3).

The final step is to write down first-order integral-preserving numerical

integrators for the system similar to energy preserving algorithms. They are given by

I(x*,x*)-I(x*,Xj)
x, - x, +AtS

x,-x,

xJ=xJ-AtSiJ
/(x*,x;)-/(x;,x;)

x[=xk k*i,j

in which the asterisk (- ) represents the updated values

Note that

X = (Xf = Sv^-(ax; + (\-a)xi,/3x] +(\-B)x])

Sij^(ax;+(\-a)xPxj+(\-B)x])

Jl =
(jii)T

=

Sv ~(yx; + (1 -

y)x,.,&;
+ (1 -

S)x] )

Si]^-(yx;+(\-y)x5x) + (\-d)x])
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Example 4.2.1

We again take example 3.1.2

Xj =X2

<A"> Ai Xi

which has the Hamiltonian,

//(xi,x2)=i+^+^+C
2 4 2

is also a first integral of equations / because

. dH
.

dH
.

.

3, , 3x n

LtH = xx+

x2 =(x, +x1)x2+x2(-x1 -x,) = 0

oxx ox2

ThereforeH = I. Now we need to find the skew-symmetric matrix,

[s}-[vi]-
\o s12l

x1+x3

X2

-S2X 0
_ _x2 _-x,-xj

where
Sn= 1. After splitting the vector fields, the system of equations becomes

Xj Ojj Xj
Oj

dl

X2=-Sl2=-l(xx+X3)
=

-^

dq

Which is the same as the original system of equations in this case. Therefore a

first-order integral-preserving numerical integrators for the system are

Xj X, + ZV012
-

(xp2

{
(X;y

|

(x2-)2

Xj =Xj +
A-

(x1T
+

(x1T+(x1)2
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-

x, +A
-

((*2*)2-(*2)2)
x2 x2

* At .

,

xx =xx+(x2+x2) (4.2.8)

X*2 X2 Z\fi3-|2
7(x1*,x2)-/(x1,x2)

x2 =x2 -At

Ux;y
i

(x;)4

(

2 4 2

-

r^)2 ^x,)4

2

T

4 2

x2=x2 -At

((X;)2
-(xj)2) +(xj)2)

At, At,
xl=x2 +*i)-

(**
+
*i)-((**)2

+ (*i)2) (4.2.9)

Substituting (4.2.8) into (4.2.9)

A r a At At

Xj + (x2+x2) + x1 Xj + (x2+x2) + x, (x, +
(x*

+x2))2+(x,)
At, ,

setting
(A)2

0 (Without setting
(A)2

^0, is coupled and leads to cubic order terms

which are not separable. Thus, we will set
(A)2

0 only if it is necessary).

xl=x2--(2xl)-~{2xl)\(xx)2+Atxl(x2+x2)+(xl)2)

h=x2-toxx-{xx)-(2(xl)2)

x2=x2-Atx,-Atx3

(4.2.10)

Substituting (4.210) into (4.2.8)

At
,

.
.3 ,

Xj =x, H (x2 -Atxx
-

Atxx +x2)
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x*=x, +Ax2-^-(x1+xf) (4.2.11)

Finally, the system of equations from example 3.1.2 can not only predict that the

phase curves are close contours, conservative, but we can also predict the next value in

the phase plane at a given time step using first integral of equation or Hamiltonian in this

case. Figure 4.2.1a shows Adams-Bashforth approximation of above example. Figure

4.2.1b shows Integral-Preserving approximation of above example. Figure 4.2.1c shows

comparison between Runge-Kutta, Adams-Bashforth, and Integral-Preserving of above

example.
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0.03
Adams-Bashforth, xdot=y, ydot=-x-xA3

-0.03

-0.03 0.03

Figure 4.2.1a Adams-Bashforth approximation for example 4.2.1
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0.03

Integral-preserving, xdot=y, ydot=-x-xA3

0.02

0.01

A

II 0

-0.01

-0.02

-0.03

-0.03 -0.02 -0.01 0

x=>

0.01 0.02 0.03

Figure 4.2.1b Integral-Preserving approximation for example 4.2.1
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0.03

0.02-

0.01

RK,
*

, AB, + , IP, o , xdot=y, ydot=-x-xA3

-0.01

-0.02

-0.03

-0.03 0.03

Figure 4.2.1c Comparison between Runge-Kutta, Adams-Bashforth, and Integral-

preserving for example 4.2.1
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Example 4. 2. 2

We again take example 3. 1. 2

xx xx+x1

*2 ~XX~X2

which has the Hamiltonian,

H(xx,x2) =x1x2+^-^+C

is also a first integral of equations I because

dH 7)14

LtH =

xx
+

x2 =(x2 -x,)(x, +x2) + (x: +x2)(xj -x2) = 0

Therefore H = I. Now we need to find the skew-symmetric matrix,

[s].[vi]- J\2

S2X 0 Xj + X2

Xj + Xj

where
S\2= 1 . After splitting the vector fields, the system of equations becomes

-v &
*} ^12 - -*i +-*2

a<2

aq

Which is the same as the original system of equations in this case. Therefore a

first-order integral-preserving numerical integrators for the system are

Xj
=

x, +A

. \X2 ) \X\ )
Xj Xj + Xj Xj +

(X,)2 (Xj')2
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X,
=

Xj +A
Xj*(x2*-x2) + i((x2*)2-(x2)2)

x2 X2

Xj*=Xj+a(xj*+i(x2*+x2))

Xj*(1-A/)
=

x, + (x2 +x2)

X, +
At( .

V"2 X2 )

(I
-At)

(4.2.12)

X2 ~X2 -AtSX2

I(x*,x2)-I(Xl,x2)

Xj x2 +

x2 =x2
-At-

(x2)2 (xx)2

2 2

(x2)2

(xxf

2 2

x2
=

x2
- A

x2(xj*-x,)-i((x;)2-(xj)2)

x2=x2-A(x2-i(xj*+Xj))

x*2=x2(\-At)+(x;+xx) (4.2.13)

substituting (4.2.12) into (4.2.13)

/, A X
At

x2
=

x2 (1
-

A) +

tot
x, + \:

1

2
x2*+x2)

(1-A)
+ x,

x2*(l-A)
=
x2(l-A)2+

x1+ (x2*+x2)+Xj(l-A)
2, \ 2

f. At,
x2(l-A)

=

x2(l-A)2

+ 2xj + (x2 +x2j-XjA
2 V. 2

4x2*

(1 - A) = 4x2 (1
-

A)2

+ 4x,A +
(A)2 (x2*

+ x2 )
-

2Xj (A)
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4x*

(1 - At -
(At)2

) = 4x2 (1
- 2A +

(A)2

) +
(A)2

x2 + 4xxAt
-

2x,
(A)2

_
4x2 (1

- 2A) +
5(A)2

x2 + 4xtA
-

2x,
(A)2

4(1 -At -(At)2)

(4.2.14)

Substituting (4.2.14) into (4.2.12)

Xj 4
At

2\ "\

Xj
= -

4x2 (1
-

2A) +
5(A)2

x2 + 4xjA
-

2x,
(A)2

+ 4(1 - A -

(A)
2

)x

4(1-A-(A)2)

(1-A)

A f 8x2
- 1 2Atx2 +

(At)2

x2 + 4xjA
-

2x;
(A)2

4(1 -A
-(A)2)

O-Ar)

Xj +
8Ax2 -12(A)2x2 +(A)3x2

+4x,(A)2

8(1 -Ar-(A)2)

(TA)

X =
8Ax2 -12(A)2x2 +(A)3x2

+4Xj(A)2

+8Xj -8Axj -8(A)2Xj

(8-8A)(l-A-(A)2)

8Ax2 -12(A)2x2 +(A)3x2 +8xj -8Ax, -4(At)2xl
(4.2.15)

(8-8A)(l-A-(A)2)

Finally, the given system of equations can predict that the phase curves are open

contours by example 3. 1. 3, not conservative. Also, we can predict the next value in the

phase plane at a given time step using first integral of equation or Hamiltonian in this

case. Figure 4.2.2a shows Adams-Bashforth approximation of above example. Figure

4.2.2b shows Integral-Preserving approximation of above example. Figure 4.2.2c shows

comparison between Runge-Kutta, Adams-Bashforth, and Integral-Preserving of above

example
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Adams-Bashforth, xdot=x+y, ydot=x-y
10. 1 1 T

8

A

ii 5

2-
.
+^++T

+
++ T +

++ +

.
++ +

++ +

+++i^

+

++ +

1

.+_Vt T +

J.4-++J++

j.+

^^ ^
01 2 3456789 10

x=>

Figure 4.2.2a Adams-Bashforth approximation for example 4.2.2
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10

9

8

A

II

il 5

Integral-preserving, xdct=x+y, ydot=x-y

4h n

o

3h xd

2h

o o

0
o

1 H (temKKxrrrrV&^O0

J*

3456789 10

x=>

Figure 4.2.2b Integral-Preserving approximation for example 4.2.2
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RK,
*

, AB, + , IP, o , xdot=x+y, ydot=x-y

9 10

Figure 4.2.2c Comparison between Runge-Kutta, Adams-Bashforth, and Integral-

preserving for example 4.2.2
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Example 4. 2. 3

In order for us to understand splitting vector fields, we should study a three dimensional

problem.

dx
,

>- =
ex>

dt

dt

^=Be*+ex>
dt

Either the orbital derivative, LJ = 0 or (W) F(x) = 0 will give us the first integral

of the equations. That is,

(V/)-F(x) =^x1+|Lx2+|Lx3=0
oxx dx2 ox3

dxx dx2 dx^

dl dl , . dl ,_,

Let =a,
=b, and =c. Thus,

s^ ac2 a^

ae*

+
b(ex>

+eH)+
c(BeXi

+ ex>)
= 0

The parameters a, b, and c do not have to be zero.

(b +
Bc)eXl

+
cex%

+ (a +
fye*

= 0

Letting a + b = 0, we have

(b +Bc)eXl+cex>=0

-aex>+c(BeXl+ex>)
= 0

a = c(B + eXt~Xl)

we can choose c
= 1 for our convenience so that
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a-
_

dl

c\

= (B + *)

b-- .
dI

dx2

=
-B-ex':~*i

c-
.

dI

dx3

= 1

(4.2.16a)

(4.2.16b)

(4.2.16c)

Now we will solve three-dimensional potential form in order to find the first

integral of the equations, /. Integrating equation (4.2. 16a) with respect to xi gives

/(x1,x2,x3)-J8x1 +I(x2,x3) (4.2.17)

Take derivative to above equation with respect to x2 and compare with (4.2. 16b)

a/(xj,x2,x3)
= +

dl(x2,x3)
=b=B_

gx2-x,

3x, dxnv2

dl(x2,x3)_
B

dx2

Integrate the equation with respect to x2.

I(x2,x3) = -Bx2+I(x3) (4.2.18)

Take derivative to above equation with respect to x3 and compare with (4.2. 16c)

5/(x2,x3) S7(x3)

dx3 dx3

= c= \

Integrate the equation with respect to x3.

7(x3) = x3 (4.2.19)

Combining (4.2.17), (4.2.18), and (4.2.19),
we have the first integral of the equations.

7(x, , x2 , x3 ) = + B(xx -x2) + x3

Now we need to find the
skew-symmetric matrix, S,
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[4[w] = [f]
-s

12

13

0

-s.

^13

s.
23

23
0

yX2~Xl

-

e

+ B

B

e
3

eXl +eXi

BeXl +ex>

solving three equations and three unknowns yield

[S]= 0 (e^+e*1)

0

We will now split three two-dimensional vector fields so that we will have three

sets of systems of equations in which each set has two system equations. That is

For xi and x2 plane, S\2
= 0.

dt dxn

dt

For xi and x3 plane, Sn =
ex

dX2-=-s^=o
J\2

dx,

For x2 and x3 plane, 623 -
e*1

+ e

d^L =SxA =e-.l

dt dx3

^ =

-Sl3
=

(ex*-x>
+B)

dt dxx

^L =
S23-^- = (ex>+exi)-l

dt dx.

^L =S23
=

+ex>)(-ex*-x>

-B)

dt dx2

We will show how to find the new values from the xi
-

x2 plane in the next

example. Let us now choose x\
- x3 plane to solve new values of xi and x3. For that, we
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have to treat X2 as a constant. Using the first order integral-preserving numerical

integrators, we get

x -x l
^Xl~<+B(x;-x2)+x3)-(-e^+B(x;-x2) + x3)

=Xj +
At -x3

-x3

=

Xj +A

and

(->*
+B(x;

-

x2) + x,)
-
(-e^"

+B(xx
-

x2) + x3)
x3 x3 UJ.

t

Xj-Xj

substituting =x; +A into above equation yields,

x3=x3-A^ *

x3=x3+ex^(e-*'-\)-BAt

\-eM

x;=x3+e^^r--BAt

Now we can show the new value for xi and x3 in xi -

x3 plane. The same procedure

can be done for x2 -

x3 plane.
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Example 4.2.4

Consider: x1=x1+x2

x2 =X1-XjX2

which does not satisfy the Liouville's Theorem so that it is not an Hamiltonian system.

,=i dqt tt dp, dxx dx2

To find the first integral, we have to set the orbital derivative ofF to be zero.

r t
Qi

. di
. di

, ,
di

,

LJ=xi + *2
=^

(*i +x2) +
t

(*i ~xxx2) = 0

let = a and = b so that

dxx dx2

a(xx+ x2) + b(xx-xxx2)-0 and (a + b(l- x2))x: +ax2 = 0

let b = - a

(a -

a(l
-

x2 ))xj + ax2
= 0 and (ax2 )x: + ax2

=

ax2 (1 + Xj ) = 0

Therefore a = b = 0, and / is just an arbitrary constant. Therefore, the system of

equations may have involved a nonintegrable differential expression (nonholonomic

constraints may be embedded in the given system) that vanishes in the attempt to find the

skew symmetric, S. Then the skew-symmetric matrix can not be defined. Thus, still

preserving, the first integral, we cannot predict the next point in the phase space. Figure

4.2.3 shows Runge-Kutta approximation, and Figure 4.2.4 shows Adams-Bashforth

approximation of above example. One may find above two figures are not similar

because both are unstable systems, and the proof is beyond the scope of this thesis since

the integral preserving method would not give the
prediction.
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Runge-Kutta, xdot=x+y, ydot=x-xy

x==>

150

Figure 4.2.3 Runge-Kutta approximation for example 4.2.4
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Adams-Bashforth: xdot=x+y, ydot=x-xy

x=>

Figure 4.2.4 Adams-Bashforth approximation for example 4.2.4

150
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Up until now we have been given problems without damping. If the problem

have some damping, a dissipation function, or a generalized force that is not derivable

from a potential function or dissipation, we still can find the first integral of the system.

First integrals of these systems appear to be embedded scleronomic constraints (time

implicitness involves even after writing as system of equations).

Example 4.2.5

Consider

x+(l-x2)x=0

XX=X2

which does not satisfy the Liouville's Theorem so that it is not an Hamiltonian system.

f54+y^ = ^+ax^ = 0-i + x2*o

tt dq, tt dp, 5xj dx2

, ,
dl

.
dl .

dl .

,
dl . 2 , r

LJ =
-zr-

Xj +
-

x2
= (x2) +

~

(~x2 +xx x2)
= 0

Taking the orbital derivative and set ft/ to be zero gives

dl
.

dl .
dl

, ,
dl

dxx dx2 oxx ox2

--b sc

dxx dx2
let = a and = b so that

a(x2) + b(-x2 + Xj2x2)
= 0

a + b(-l + x2)
= 0

a = b(l-xx2)
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let b = 1 so that

a = = (1 -

Xj2

) and

axj dxn

Integrating a with respect to x\, we get

I =

*i-f
+ IM

Take derivative above equation with respect to x2 and compare with b.

dl

dx.
I'(x2) = b = \

Therefore, integrating with respect to xi gives

I(x2) = x2+C

Thus

I = x, - + x9 +C1

3
2

Then the skew-symmetric matrix is then

[s].[vi}=
'o X2

-SX2 0 1
2

Su becomes arbitrary and S12 = xx
-

x2 . Also, splitting the vector fields, the system of

equations becomes

x-S ^L-s -x
XX 12 ~ 12

~~

A2

fir.

*,=->S[2
=x,(x?-l)

A first-order integral-preserving numerical integrators for the system are
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Xj
=

Xj + AtSn
7(Xj*,x2)-7(x*,x2)

X2 X2

Xj
=

Xj + AX2
3

21

3
2

V

also,

Xj
=

Xj + Ax2 (4.2.20)

^"i -A"\ / \/ A.-,
7(x;,x2)-7(Xj,x2)

/

(*,)
*\3 A

"} ^t lVAi

3
v

J
j

<
x\

^

X, hX,

3
V

J
J

J*"j J\fy i_i^Vo

Atx2((X;y-x3)

3 (xJ-Xj)

substituting (4.2.20) into (4.2.21)

(4.2.21)

*\"^
~ ~

**"*)
iJj'*\'im\

Atx2
(x3

+3Afttj2x2
+3(A)2XjX2+x2(A)3

-x:3)

3 (Xj + Ax2
-

Xj )

Aa -

^o L^LJ\"j \

Ax2 (3AXj2x2
+3(A)2XjX2

+x3(A)3)

3 Ax,

x2
=

x2
-

Ax2 + A/Xj x2 + (A) XjX2 +
2 2

,
*2W

Figure 4.2.5a shows Runge-Kutta approximation of above example. Figure

4.2.5b shows Adams-Bashforth approximation of above example. Figure 4.2.5c shows

Integral-Preserving approximation of above example. Figure 4.2. 5d shows comparison

between, Runge-Kutta, Adams-Bashforth, and Integral-Preserving of above example.
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Runge-Kutta, xdot=y, ydot=-y+xA2*y

Figure 4.2.5a Runge-Kutta approximation for example 4.2.5
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Adams-Bashforth, xdot=y, ydot=-y+xA2*y
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Figure 4.2.5b Adams-Bashforth approximation for example 4.2.5
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2.5

Integral-preserving, xdot=y, ydot=-y+xA2*y
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Figure 4.2.5c Integral-preserving approximation for example 4.2.5
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RK,
*

, AB, + , IP, o , xdot=y, ydot=-y+xA2*y

Figure 4.2.5d Comparison between Runge-Kutta, Adams-Bashforth, and Integral-

preserving for example 4.2.5
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Example 4.2.6

Consider the next example of dissipation and a generalized force that is not

derivable from a potential function or a dissipation function.

x+(l-x2)x2=0

That is,

XX=X2

which does not satisfy the Liouville's Theorem so that it is not a Hamiltonian system.

y_54+y^=^ + ^=0-2x2+2x2x2*0
tt dq, tt dp, 5xj dx2

To find the first integral, we have to set the orbital derivative ofFto be zero.

dl
.

dl . dl
,

. dl
X, H X, = (X, H

dxx dx2 dxx dx

-=b so that

dxy dx2

T T
dl

.
dl . dl

,
. dl .

(

LJ = Xj H x2
= (x2) +

-

(-x2 +Xj x2)
= 0

let = aand =b so that

a(x2) + &(-x2 +Xj2x2)
= 0

a + bx2(-l + x2)
= 0

a = bx2 (1
-

xj2

)

we cannot let b = 1 because, if b
= 1

dl
n 2^ A u

dI
i

a = =

x2 (1
-

Xj ) and b = 1

axTj dx2

Integrating a with respect to xi, we get

I = xxx2
y- + I(x2)
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Take derivative above equation with respect to x2 and compare with b.

JL = Xl-?L + IXx2) = b = l

dx2 3

The above cannot be true or cannot be equalized. Therefore a = b must be zero.

Thus a first integral of the given system is an arbitrary constant similar to example 4.2.4.

I = constant

Then the skew-symmetric matrix can not be defined. The next point in the phase

space cannot be established. Also, conventional numerical methods show that the vectors

fields are approaching to a constant point like exponential. Figure 4.2.6a shows Runge-

Kutta approximation of above example. Figure 4.2.6b Adams-Bashforth approximation

of above example
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Runge-Kutta, xdot=y, ydot=-yA2+xA2*yA2

Figure 4.2.6a Runge-Kutta approximation for example 4.2.6

79



Adams-Bashforth, xdot=y, ydot=-yA2+xA2*yA2

Figure 4.2.6b Adams-Bashforth approximation for example 4.2.6
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We now need to discuss one last kind of constraint that are embedded in the system

of equations. That is, rheonomic constraints such as nonautonomous system of

equations. Now we will take example 2.2.5 for further studies. We will keep in mind

that the only difference between example 2.2.5 and example 2.2.4 is that one has a

Hamiltonian and one does not. We are now trying to find first integral of the equation

with time t explicitly shown in the system of equations.

Example 4.2.7

Xj =x1^+2x2

x2xit xf

Again using Liouville's Theorem to determine if the system of equations are

Hamiltonian,

fdq_+fdp=dxL+dx^=t_t = Q

tt dq, ,=1 dp, dxx 5x2

To find the first integral, we have to set the orbital derivative ofF to be zero.

r r
dl .

dl . dl
, ,

dl .

2 .

n

LJ =xx +x2 =-r(xxt + 2x2) +(xlt -x2t)
= 0

dxx dx2 dxx dx2

let = aand =b so that

dxx dx.
2

a(xxt + 2x2 ) +
b(xxt2

-

x2t)
= 0

(at + bt2)xx + (2a -

bt)x2 = 0

Ifwe let a = b
2

(a + bt)xx = 0
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which leads to

, bt
,

3bt
n , n

a + bt = + bt = = 0=>Z> = 0=>a = 0
2 2

Again the result shows that first integral of equation is an arbitrary constant, and

we cannot predict the next point in the phase space. It cannot also be predicted by

Runge-Kutta or Adams-Bashforth methods; it may be because the
'time'

step and the

explicit
'time'

shown in the equations may not be separated in the calculations (both h

and x will be
'time'

in the equations of appendix). One may find the details on

classifications of
'time'

and may predict the solutions for Runge-Kutta and/or Adams-

Bashforth, but again the results from Runge-Kutta and Adams-Bashforth are beyond the

scope of this thesis since the Integral Preserving method can not be predicted. Also,

embedding rheonomic constraints in the system of equations (time explicitness) behaves

like that of nonholonomic constraints. Essentially, there is no numerical solution for

rheonomic constraints or nonautonomous systems by Integral Preserving method.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

Lagrangian Dynamics and Hamiltonian Dynamics driven by kinetic energies and

momenta through generalized coordinates have been reviewed. The classification of

constraint forces is also reviewed. Round off errors are eliminated by preserving

energies. More accurate numerical solutions are believed to be solved by energy

preserving method with only truncation error. By preserving the first integrals, we have

interesting results such that for a system of equations whether we can predict numerical

solution more accurately or whether we cannot predict numerical solution at all (when the

first integral is an arbitrary constant) by energy preserving algorithms.

For a conservative Hamiltonian system (example 4.2.1), the Hamiltonian is the

same as the first integral (because it satisfies both Liouville's Theorem and orbital

derivatives), and it can have more accurate numerical solution. The solution matched up

with conventional numerical methods. Such system can be viewed as a holonomic

system because the surface is integrable and is a constant after preserving the first

integral. For non-conservative Hamiltonian system (example 4.2.2), the solution still

exists, and the Hamiltonian is again the same as the first integral. The solution matched

up with conventional
numerical methods; we can also assume the system was holonomic

system. For the particular example (example 4.2.2), the system is semi-stable. Integral

preserving may show better results by observing points (quantities) which are closer

packed than the ones from conventional methods.

For some non-Hamiltonian system (example 4.2.4), the first integral was shown to

be an arbitrary constant. We can clearly see this kind of system as nonholonomic system;

83



the potential functions from the set of equations cannot be integrated (non-integratable) to

find a first integral. There will not be any numerical solution by integral preserving

method for this kind of system.

For damping problems where time is implicitly involved, scleronomic systems, the

Hamiltonians are not usually the same as the first integrals (example 4.2.5 and 4.2.6). If

we find the first integral is constant, other than arbitrary one, scleronomic system can

have more accurate solution (example 4.2.5). If we find a first integral that is an

arbitrarily constant (example 4.2.6), scleronomic system can not have integral preserving

numerical solution.

For rheonomic system, where a system of equations has time explicitness, the

Hamiltonian may or may not be the same as the first integral. Rheonomic systems do not

have numerical solution by energy preservation algorithms because the first integrals

always give arbitrary constant.

Therefore, we can predict whether we can have integral preserving numerical

solutions (more accurate solutions) or not by preserving the first integrals because the

solutions exist only if we have non-arbitrary first integrals constants. In addition, we

know that sets of equations may be viewed as embedding constraint equations into the

problem formulation. In this way the constraint forces do not appear in the equations of

motion. By adjoining constraints to the problem formulation, some or all of the

constraint forces may be solved for after the generalized coordinates have been obtained.

The equations of motion for the configuration coordinates are free of constraint forces.

These forces are then expressed in terms of the motion of the system, based on

Lagrange's equations for the auxiliary constraint variables. Thus, constraints are not to
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be kept track as initial conditions or boundary conditions while solving numerical

solutions by energy preserving algorithm. Along with embedding constraints into

problem formulation, predicting the first integral (to find numerical solutions to be more

accurate without keeping track of initial conditions and boundary conditions) gives more

appealing method to use as a new and improved numerical method.
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Appendix

All the examples in this thesis have a time step ofO. 01s.

Runee Kutta Method for Two First Order Ordinary differential Equations

Given: dz/dx =
z'

=/(x y. z) with initial condition z
=

z; at x
=

x;

dy/dx =
y*

=

g(x, y, z) with initial condition y
=

yi at x
=

xj

K^h/CXi, y Zj) Ji
= hg(Xi. ft zi)

BCj
= h/Xi + h/2, y, +Jt/2, z, +K,/2) J2

= h^x, + h/2, y, + J,/2, zj
+ K,/2)

K3
=

h/Cx, + h/2. yt
--

V2, ZJ +K./2) J3
= hgfc + h/2, y: + Jj/2, Zj

+Kj/2)

K4
=

h/(xi + h,yi + J3, Zi +Kj) J4
= hg(xi + h,yi + J3, 2, +Kj)

z^
=

z,
+ (K, + 2K^ + 2K3 + K4)/6 yi+1

=

y, -KJi
+ 2J2 + 2J3 + J4)/6

AHams-Bashforth
4th

Order Formula for Two First. Order Simultaneous Equations

d2- = f(x,y,z);y(xl) = yf
dx

^- = g(x,y,z);z(xt) = zt

dx

yM=y,+<-/+37^
-59^-'?'>

r,.,
= r, +(-9s_, +37*.,

-59g,_, +55a)
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