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ABSTRACT 

Solid-state lighting (SSL) is an emerging technology that is projected to provide substantial 
energy savings over conventional lighting sources by 2025.  There is a growing concern over the 
consequences of climate change, largely attributed to anthropogenic emissions of carbon dioxide 
(CO2; a greenhouse gas) from fossil fuel combustion.  Currently fossil-fuel combustion accounts 
for 70% of electricity produced in the U.S., and end-use lighting applications alone consume 
approximately one-fifth of this electricity. Therefore, replacing conventional lighting sources 
with energy-efficient SSL has the potential to significantly reduce electricity consumption which 
can in turn reduce CO2 emissions.  
 
However, previous research has shown there is a so-called “energy-efficiency gap” between the 
energy-efficient technologies that are available at a point in time, and those that are actually 
used.  Thus, while the innovation of new energy-efficient lighting holds the potential to reduce 
the intensity of energy use in buildings, this savings will not be realized unless these energy-
efficient technologies are adopted by consumers.  This research has two primary objectives: (1) 
to quantify the reductions in carbon dioxide emissions which can be achieved through the 
diffusion of SSL through the commercial building sector, and (2) to explore how policies might 
be used to accelerate the diffusion of SSL technology into the commercial building sector.  
 
This thesis uses simulation modeling to explore SSL technology diffusion in the commercial 
building sector.  A solid-state lighting commercial market penetration (SSL CMP) model is 
constructed in STELLA, a graphical dynamic simulation software tool. The SSL CMP model 
simulates the process of SSL technology diffusion between 2005 and 2025, and calculates the 
CO2 emission reductions which will accompany the adoption of this new technology. The model 
is based on a probit model of technology diffusion, but will also incorporate the epidemic theory 
of diffusion.  
 
Policy instruments are tested using the SSL CMP model to demonstrate how they can affect the 
diffusion of SSL and the CO2 reductions which can be gained through such efforts.  The policy 
instruments used in this analysis include: research and development (R&D); an electricity tax; a 
rebate; and an information program.  Combinations of these policy instruments are used in six 
different scenarios. These scenarios are simulated by incorporating these policies into the SSL 
CMP model and simulating technology diffusion through 2025. In this analysis, Scenario 3 
(Accelerated R&D) generates the most significant environmental benefit – a 45% reduction from 
projected CO2 annual emissions due to commercial lighting in 2025.  Scenario 2 (Medium R&D) 
is able to achieve a 23% reduction of emissions by this year. The rebate policy is found to 
generate earlier SSL market adoption and emission reductions, by approximately two years. The 
information program is able to accelerate the rate of market adoption.  Finally, the vast majority 
of energy savings are found to be from one sector of the commercial building lighting market: 
the very high color rendering index (VH CRI) bin, indicating that incandescent lighting should 
be the focus of policy efforts to replace conventional lighting with SSL.  
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CHAPTER I. INTRODUCTION 

 

Solid-state lighting (SSL) is an emerging energy-efficient lighting technology that has the 

potential to revolutionize lighting markets. The energy-efficiency potential of SSL has been a 

major driving force to develop this innovative technology.  Today, scientific consensus is 

growing over the threat posed by global climate change.  Anthropogenic activities are increasing 

the atmospheric concentration of greenhouse gases (GHGs).  The heat-trapping property of these 

GHGs – primarily carbon dioxide (CO2), methane, nitrous oxide and chloroflorocarbons – are 

undisputed.  As these GHGs accumulate in the atmosphere, they are causing surface air 

temperatures and subsurface water temperatures to rise (NRC, 2001).  According to the 

Intergovernmental Panel on Climate Change (IPCC), the increase in the surface temperature in 

the Northern Hemisphere during the 20th Century is likely greater than any increase over any 

century in the last one thousand years (IPCC, 2001).  

 

Currently, energy-related activities account for an overwhelming 82% of U.S. anthropogenic 

GHG emissions, and lighting as an end-use is a significant consumer of energy (EIA, 2003a). 

Developing cleaner energy technologies and diffusing them through the market is vital for 

lowering emissions of CO2, the primary GHG.  Yet, an abundance of research conducted over 

the last two decades has consistently shown that cost-effective energy-efficient technologies 

experience very slow rates of adoption (Brown, 2001; Jaffe & Stavins, 1994b).  Therefore, while 

SSL holds significant energy-efficiency potential, simply developing this technology will not be 

sufficient. The environmental benefits of greater energy-efficiency will only be realized if SSL is 

widely diffused through lighting markets.  
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The purpose of this research is to explore the following questions: 

 

 (1) What reductions of CO2 emissions can be achieved through the diffusion of SSL into 

 the commercial building sector? and; 

 

 (2) What policies might be used to accelerate the diffusion of SSL technology into the 

 commercial building sector?  

 

Global climate change is one of the most serious environmental problems facing this and future 

generations.  Average global temperatures have risen by approximately 0.6 °C (1.1 °F) in the last 

century, and this trend is expected to continue and even accelerate over the 21st century (IPCC, 

2001).  As the warming continues, the effects of climate change are likely to have adverse 

impacts on environmental and socio-economic systems throughout the world, although the extent 

of these impacts is highly sensitive upon the rate and the magnitude of the climate change over 

the next century (IPCC, 2001).  According to the U.S. Environmental Protection Agency (EPA), 

the U.S. will likely experience greater and more intense precipitation, and changes in local 

climates as a result of a rising global temperature (EPA, 2000).  These changes could have wide-

reaching impacts on natural systems such as coastal zones, water resources, mountains and 

forests, and deserts, as well as on human health and the economy.  For example, New York State 

could be 4.0 ˚F higher in the winter and spring, and slightly more in the fall and summer by 2100 

(EPA, 1997). The frequency of extremely hot days in the summer could increase, which in turn 

would lead to a higher number of heat-related deaths and incidents; for example the EPA 
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estimates that a 1.0 ˚F change in temperature could increase the number of heat-related deaths in 

New York City over a typical summer from 300 today, to over 700 (EPA, 1997).  

 

There is growing consensus in the scientific community that this warming trend is a result of 

rising atmospheric concentrations of GHG (NRC, 2001).  The U.S. currently emits more GHGs 

per person than any other country, and in 1998 was responsible for 25% of the worldwide GHG 

emissions (EPA, 2004).  In the U.S., fossil fuel energy sources (including coal, natural gas, and 

oil) are used to generate approximately 70% of U.S. electricity (EIA, 2004a).  When fossil fuels 

are burned to extract energy, CO2, one of the primary GHGs is released into the atmosphere.  

According to the U.S. Energy Information Administration (EIA), 39% of total U.S. CO2 

emissions were attributed to electricity generation from fossil fuels in 2002 (EIA, 2003a). 

 

Innovative energy technologies can play an important role in curbing emissions of CO2.  Solid-

state lighting is one example, which has received considerable attention in recent years. This 

lighting technology has the potential to become significantly more energy-efficient than lighting 

technologies currently used (e.g., incandescent and fluorescent).  Presently in the U.S., 

approximately 22% of the electricity generated is used for lighting.  Put into a broader context, 

the Department of Energy (DOE) estimates that 8.3% of U.S. primary energy consumption goes 

to lighting (DOE, 2002).  Solid-state lighting has the potential to significantly reduce the 

electricity needed for lighting.  Estimates for lighting energy savings potential have been as 

optimistic as a 50% reduction by 2025, which would decrease total U.S. electricity consumption 

by about 10% (Tsao, 2004).   Recent analysis conducted by the DOE using a SSL market 
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penetration model found that by 2025, SSL use for general illumination in the U.S. could reduce 

the amount of electricity used for lighting by 33% (DOE, 2003b).  

 

Policies that promote technological innovation are an important strategy for reducing GHG 

emissions.  Well-designed policies to develop and diffuse new environmentally-benign 

technologies have the potential to play an important role in reducing the emission of GHGs and 

mitigating the impacts of climate change.   These technological advancements can be realized by 

(1) increasing the efficiency of energy using technologies in order to reduce energy demand; (2) 

substituting high-carbon energy technologies with low- or zero-carbon technologies; (3) 

sequestering the carbon either before or after it enters the atmosphere; and (4) developing 

technology which reduces the emissions of GHGs other than CO2 (Alic, Mowery, & Rubin, 

2003).   

 

Solid-state lighting is an emerging energy-efficient technology with the potential to fulfill the 

first of the four technology pathways identified above.  Research and development (R&D) is 

currently ongoing throughout the world to develop white SSL suitable for general illumination.1 

The DOE and SSL industry have recognized this opportunity and are pushing for a national 

initiative to accelerate the development of this promising technology (Haitz, Kish, Tsao, & 

Nelson, 2000).  Solid-state lighting is eventually expected to become approximately twice as 

efficient as fluorescent lighting, and up to ten times as efficient at incandescent lighting.  

 

                                                 
1 General illumination is the lighting required to perform tasks, and is commonly divided into three types: ambient, 
task, and accent lighting. See Appendix A for further information.  
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Despite the promising potential of SSL, the benefits of this technology will only be realized 

when this technology is widely adopted through the market, replacing less efficient incumbent 

lighting technologies.  Realizing these widespread benefits will require three steps:  

 

• invention – the development of a new technological idea;  

• innovation – the transformation of that new technological idea into a commercial 

product or product; and  

• diffusion – the gradual adoption of this new commercial product or process by 

potential users (Jaffe & Stavins, 1991).  

 

This research focuses on the diffusion process of SSL to better understand how alternative policy 

scenarios can affect the diffusion trajectory, and thus ultimately impact U.S. CO2 emissions.  A 

solid-state lighting commercial market penetration (SSL CMP) model is built using STELLA,2 a 

systems modeling software tool. The SSL CMP model simulates the market penetration of SSL 

into the general lighting market in the U.S. commercial building sector.  This model is used to 

test the effect that alterative policies have on the diffusion of SSL and consequentially, CO2 

emissions.  These policies are incorporated into six scenarios and these scenarios are then 

simulated over a 20 year time period from 2005 until 2025.  

 

 

 

 

                                                 
2 STELLA® software version 8 is used in this analysis and  is produced by isee systems, inc. found online at 
http://www.iseesystems.com/  
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The rest of this thesis is structured as follows:  

 

Chapter II provides a comprehensive literature review on incumbent lighting technologies and 

the energy they consume in the U.S.  This literature review includes a high-level technology 

assessment of the technical, economic and market potential of SSL.  An overview is given on the 

widely debated “energy-efficiency gap,” and the barriers to realizing a higher level of energy-

efficiency.  An overview of the gradual process of technology diffusion as it relates to all new 

technologies is provided.  The government’s role in promoting energy-efficient technologies is 

discussed.  

 

Chapter III explains the methodological approach of systems modeling chosen for this study.  A 

brief overview of energy-economic modeling is provided in the first section of the chapter.  The 

rest of the chapter provides a detailed explanation on the structure of the solid-state lighting 

commercial market penetration (SSL CMP) model, including data sources and the relationships 

between elements of the model.  Finally, the chapter concludes with an overview of the six 

policy scenarios created and tested using this model.  

 

Chapter IV presents the results from simulating the six policy scenarios described in Chapter 

III, using the SSL CMP model.   The energy and CO2 impacts under each scenario are analyzed.  

The epidemic dynamic and its role in diffusion SSL are also discussed.  Finally, the results from 

a sensitivity analysis are explained in order to better understand how sensitive the outcomes are 

to particular inputs and assumptions used in the model.     
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Chapter V summarizes the findings of the six scenarios tested using this model.  Conclusions 

are drawn as to impact different policies will have on the rate of SSL diffusion into the general 

illumination market for the U.S. commercial building sector, and several policy 

recommendations are made.  Limitations of this analysis are discussed and based on the research 

conducted in this study, future research directions are suggested.  
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CHAPTER II. LITERATURE REVIEW 

 

1. Chapter Overview 

This chapter reviews the background literature necessary for modeling how solid-state lighting 

(SSL) will penetrate the market and what policy mechanisms might be used to accelerate market 

diffusion.  First, to estimate future SSL market adoption, it is necessary to gain a sense of the 

current lighting market for general illumination.  The next section provides a brief description of 

each main type of lighting technology – in particular, how they are used in the U.S. commercial 

building sector.  The annual energy consumption of lighting is then discussed, followed by an 

overview of the carbon dioxide (CO2) emissions that are released to generate this energy.  

Section three provides an overview of SSL technology and the drivers for, and barriers to, its 

widespread use in general illumination. The fourth section discusses several conceptual models 

used to describe how new technologies are diffused through the market.  Finally, the fifth section 

discusses the well documented “energy-efficiency gap,” and potential for policy interventions to 

close this gap and accelerate the diffusion of new energy-efficient technologies.  

 

2. The U.S. General Illumination Market   

Artificial lighting is an essential service in the modern world, and provides people with the light 

necessary to perform a wide variety of visual tasks.  Solid-state lighting has the potential to 

become a revolutionary lighting technology by ushering in an entirely new lighting paradigm. 

One major benefit that is propelling this transition forward is the potential for energy savings 

from the development and adoption of highly efficient SSL.  Lighting can be thought of as 
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serving two distinct purposes: indication and illumination.  The former is viewed directly by 

people, for example a traffic light, or the indicator light on a computer.  The latter is instead used 

to illuminate objects, which are then viewed.  It is the latter of these – illumination – on which 

this thesis is specifically directed.  

2.1 Overview of Lighting Technologies  

Today, there exists a large and diverse portfolio of technologies which provide illumination 

service.  These lighting technologies can be broadly classified into four main groups: 

incandescent, fluorescent, high-intensity discharge (HID), and most recently, SSL.   The first 

three of these lighting technology groups are currently used in the commercial building sector, 

which is the focus in this study.  

 

Below are brief overviews of these four groups of lighting technologies.3  Solid-state lighting is 

discussed in much greater detail in the following section of Chapter II.  Definitions of lighting 

terminology used throughout this thesis can be found in Appendix A. 

 

Incandescent 

The incandescent lamp was invented in the late 1800s by Thomas Edison in America and 

simultaneously by Joseph Swan in England, and today these lamps provide most of the 

light used by households. They are also widely throughout commercial buildings (Vorsatz, 

Shown, Koomey, Moezzi, Denver, & Atkinson, 1997).  Incandescent lamps are very 

inefficient because 90-95% of the emissions are in the infrared (thermal) rather than the 

                                                 
3 These four classifications of lighting technologies all include a number of different sub-classifications of lamp types. These sub-
classifications are found in Appendix B.   
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visible range of the electromagnetic spectrum.  Incandescent lamps today have efficiencies 

or “efficacies,” ranging from 13-25 lumens per watt4 (DOE, 2003b). 

 

Incandescent lamps operate by passing electrical current through a metal filament that is 

heated to the point of incandescence.  Today, these metal filaments are most commonly 

made of tungsten. Very recent technological advances have shown that with further 

research, a nanotube filament composed of carbon nanotubes might one day be used as 

more energy-efficient filament for incandescent lamps (Wei, Zhu, & Wu, 2004).  

 

Despite the inefficiency of incandescent lamps, they provide several important advantages 

over other light sources. These advantages include: an excellent color rendering index 

(CRI)5 and a warm color, the ability to be easily dimmed, inexpensive, small and 

lightweight, compatibility with inexpensive fixtures, and the simplicity of purchasing, 

installation, maintenance, and disposal (Atkinson, Denver, McMahon, Shown, & Clear, 

1995).  These lamps are the most prevalent in the residential sector, accounting for an 

estimated 86% of the lamps used by households and consuming 90% of the electricity used 

for household lighting (DOE, 2002). Incandescent lamps are also widely used in the 

commercial sector, representing approximately 22% of the installed lamps and consuming 

32% of the electricity used for lighting in the commercial sector (DOE, 2002).  

 

                                                 
4Lumens are a basic unit measurement of light.  A lumen is defined as the amount of light given out through a solid angle by a 
source of one candela [unit of luminous intensity] radiating out equally in all directions.   “Efficacy” is the terminology used to 
express the energy-efficiency of lighting, and is calculated by dividing the quantity of light emitted from the lamp (in lumens) by 
the power input to the lamp (in watts).  
5 The color rendering index (CRI) of a lamp is a measure of how surface colors appear when illuminated by the lamp, compared 
to how they appear when illuminated by a reference source of the same temperature.   The CRI scale extends from 0 up to 100, 
with 100 representing the “best,” indicating that the light in question is able to render the color of the object  very well.  
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Fluorescent 

Fluorescent lamps were first produced in the U.S. in the late 1930s, and came into general 

use by the 1950s (Atkinson et al., 1995).  Fluorescent lamps produce light by applying a 

high voltage across two electrodes, initiating an electric arc discharge that ionizes the 

evaporated mercury in the lamp.  The ionized mercury emits mostly ultra-violet (UV) 

radiation, which strikes and excites the phosphorus coating on the tube causing 

fluorescence and producing visible light.  These lamps must operate in conjunction with a 

ballast. The purpose of the ballast is to limit the incoming current to a certain value and to 

provide the needed start-up and operating lamp voltages.  The most common fluorescent 

lamps are tubular and four-feet long.  The efficacies of fluorescent lamp (including ballast 

losses) range between 60-90 lm/W.  The efficacies of fluorescent lighting also depend on 

the type of ballast used: efficiencies are higher with electronic ballasts than with magnetic 

ballasts.  A significantly smaller version of the fluorescent lamp – the compact fluorescent 

lamp (CFL) – was introduced in the early 1980s as a more energy-efficient and longer 

lasting alternative to incandescent lamps. Compact fluorescent lamps have efficacies of 

approximately 55 lm/W.  

 

Fluorescent lamps are most commonly used in the commercial and industrial sectors. In 

the commercial sector they account for 77% of the installed lamps and consume 56% of 

the total electricity for lighting used in the commercial sector.  In the industrial sector they 

account for 93% of the installed lamps and consume 67% of the electricity that goes to 

lighting (DOE, 2002).   On the other hand, fluorescent lighting is limited in the residential 

sector and when used, it is generally restricted to kitchens, bathrooms and utility areas 



 19

(Vorsatz et al., 1997).   Compact fluorescent lamps have been on the market since the 

1980s but initially experienced very slow adoption rates.  In recent years CFLs have begun 

to gain greater market share within market of retail screw-based lamps, with national sales 

reaching 2.1% of this market by the end of 2001 (Calwell & Zugel, 2003).  

 

High-Intensity Discharge 

High-intensity discharge (HID) lamps operate similarly to fluorescent lamps in that they 

initiate an arc discharge though a mixture of gases, and they require a ballast to regulate 

their voltage and current.  However, HID lamps differ from fluorescent light sources in that 

they operate at very high temperatures and pressures. The three primary types of HID 

lamps are mercury vapor (MV), metal halide (MH), and high-pressure sodium (HPS). 

These lamps are the most effective when used in applications with limited start-ups and 

shut-downs because of the time they require for starting, which can vary from 2-15 

minutes depending on the lamp type and whether it is starting (cold start) or restriking (hot 

start).  Including ballast losses, the efficacies of these three HID technologies are: mercury 

vapor lamps (25-50 lm/W), metal halide lamps (46-100 lm/W), and high-pressure sodium 

(50-124 lm/W) (Atkinson et al., 1995).  Generally HID lamps are used where the color of 

the light is not a high priority.   

 

HID lamps are most widely used in the outdoor stationary sector, as well as in commercial 

and industrial sectors.6  In the outdoor stationary sector, they account for 75% of lamp 

installations, and consume 87% of the electricity used for lighting in this sector (DOE, 
                                                 
6 This “stationary outdoor” sector was used in the 2002 report US Lighting Market Characterization commissioned by the 
Department of Energy.  This sector includes lighting installations such as street lighting, airport runway systems, traffic signals 
and billboard lighting.  Outdoor lighting from mobile sources such as automobiles is not included.  
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2002).  In the commercial and industrial sectors, HID lamps account for 2% and 5% of 

lamp installations. They consume 11% and 30%, respectively, of the electricity used for 

lighting in the commercial and industrial sectors (DOE, 2002).  

 

Solid-State 

Solid-state lighting is an emerging and promising lighting technology, which uses either 

light-emitting diodes (LEDs) or organic light emitting diodes (OLEDs) as a light source. 

To date, LED technology is further advanced than OLED technology, and thus is expected 

to be the first to enter into the market for general illumination (Tsao, 2004).  However both 

are expected to eventually play a role in the lighting market. The advantages of light-

emitting diode solid-state lighting (LED-SSL) over more conventional lighting 

technologies include their low energy consumption, longer lifetime, ruggedness and 

durability, compactness, safety from a low operating current, fast “on” time, operability in 

low temperature applications, dimmability, easy installation, and directionality.  

 

Many of these inherent advantages of LEDs over conventional lighting sources have 

already allowed them to penetrate into the market for niche application lighting.  For 

instance, LEDs inherently produce monochromatic light and hence are a natural choice for 

indication applications such as traffic lights and exit signs, which require colored light.  In 

these cases, the need to use an incandescent light coupled with a filter to convert white 

light to colored light (an inefficient process), is eliminated.  Niche lighting applications in 

which the compactness, ruggedness, and longevity of LEDs provide a comparative 

advantage have also been penetrated by LEDs.  Creating truly white energy-efficient SSL 
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to be used as general illumination is the greatest challenge of all, but experts are optimistic 

that in time it will be accomplished.   The challenges facing SSL in the general 

illumination market are discussed in the next chapter.  

 

In this study, incandescent, fluorescent, and HID technologies are the incumbent lighting 

technologies that SSL unseats to gain market share.  Within the model that has been built for this 

study, the lighting market is broken down into four CRI bins: very high CRI (91-100); high CRI 

(76-90); medium CRI (41-75); and low CRI (0-40).   Each individual lighting technology has 

been placed in one of these four bins, depending on its CRI value. The very high CRI (VH CRI) 

bin encompasses all incandescent lighting technologies, while fluorescent technologies either fall 

into the high CRI (H CRI) or medium CRI (M CRI) bin.  HID technologies tend to have low CRI 

(L CRI) values and thus are predominately found in the L CRI bin.  The breakdown into CRI 

bins is consistent with the method used in the DOE SSL market penetration model (DOE, 

2003b).  Further detail on the data and the methodology used to develop the model for this study 

has been included in Chapter III.  

2.2 Energy Consumption  

The Department of Energy (DOE) recently commissioned a multiyear study to evaluate lighting 

in the U.S. and identify opportunities for energy savings (DOE, 2002).  The report from this 

study contains the most up-to-date data on U.S. lighting patterns and consumption. The first 

phase of the study, U.S. Lighting Market Characterization: Volume I - National Lighting 

Inventory and Consumption Estimate found that lighting for general illumination in the U.S. 

(taking into account generation and transmission losses) consumed a total of 8.2 quads of 
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primary energy in 2001, which is equivalent to 765 Terawatt-hours (TWhr) at the building site 

(DOE, 2002). 7 

 

To understand the significance of lighting as an end-use consumer of electricity and identify 

energy-efficiency opportunities, it is helpful to put this figure into a broader context.  In 2001, 

the total amount of energy consumed by the U.S. was approximately 98.3 quads of energy, more 

than a third of which – 37 quads, was used to generate electricity.  Of this electricity generated, 

lighting as an end-use accounted for approximately 22% of electricity consumption.8  This 

translates into lighting consuming approximately 8.3% of the national primary energy 

consumption in 2001.   

 

In Figure II-1 the commercial sector is seen to be by far the largest consumer of electricity for 

lighting, with substantial energy consumption by incandescent, fluorescent and HID 

technologies.  The commercial sector’s energy demand in 2001 was 391TWhr and accounts for 

just over 50% of the total electricity consumed for lighting in the U.S. in that year.9  The 

residential sector is the second largest lighting energy consumer, consuming 27% or 208 

TWhr/yr. The industrial and outdoor stationary sectors consume 14% and 8% respectively, of the 

electricity used for lighting.   The commercial sector was chosen to be the focus of this study 

because of its significance as an end-consuming sector of energy for lighting.      

 

 
                                                 
7 The conversion factor (incorporating generation, transmission and conversion losses) used for site-use energy to primary energy 
consumed at the generating power plant was 10,768 BTU/kWh for the year 2000. See Appendix C for a complete list of 
conversion factors and units used in this thesis.  
8 In addition, the excess heat given of by lighting systems leads to additional electricity consumption.  Researchers have 
estimated that 3-4% of national electricity can be indirectly attributed to lighting systems, due to the air conditioning electricity 
consumption that is needed to cool off the buildings from the heat generated from lighting. (Atkinson et al., 1995) 
9 The prefix “tera” denotes 10^12, and hence 1 TWhr = 1,000,000,000,000 Whr.  
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Figure II-1. U.S. Energy Consumption for Lighting in 2001  
(Per Sector by Lamp Type) 

 

 
              Source: (DOE, 2002) Figure ES-1 

 

Energy consumption data for lighting is an essential component to planning effective lighting 

research and development activities.  Due to current lighting inefficiencies there is a high 

potential for electricity savings through the use of more energy-efficient lighting technologies, as 

well as more advanced lighting designs and control strategies (Atkinson et al., 1995).  Of the 

total primary energy consumed by the commercial sector, lighting as an end-use accounts for 

approximately 25%.   Lighting is by far and away the largest end-user of electricity in this sector 

(Interlaboratory Working Group, 2000).  The commercial building sector lighting data used for 

this study will be discussed in further detail in the following chapter.   

2.3 Environmental Impact  

The adoption of energy-efficient technologies allows for the same level of energy service to be 

carried out, with less energy input. Environmentally, this has important benefits because of the 

environmental externalities which are associated with producing energy.  This thesis focuses on 
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CO2 emissions from electricity generation.  While there are additional environmental and social 

impacts that accompany energy use, an analysis of these impacts falls outside the scope of this 

study. 

 

Currently in the U.S., approximately 70% of electricity is generated from fossil fuel sources 

(EIA, 2004c).  The production of energy from fossil fuel sources releases a significant quantity 

of airborne pollutants, including CO2, nitrous oxides, sulfur dioxides, and mercury.  In particular 

the emissions of CO2 have drawn significant attention because growing concerns over global 

climate change.   There remain scientific uncertainties over climate change – for instance – 

exactly how much of the warming in the last century can be attributed to anthropogenic activities 

and how much is a result of natural fluctuations in temperature.   But despite uncertainties, the 

Intergovernmental Panel on Climate Change (IPCC) wrote in 1996 that “the balance of evidence 

suggests there is a discernable human influence on climate change” (IPCC, 1996).  

 

Although many greenhouse gases (GHG) occur naturally in the atmosphere, anthropogenic 

activities add to the concentrations of some of these gases in the atmosphere, including CO2, 

methane, nitrous oxide, and ozone.   Human activities alone have also added additional GHG to 

the atmosphere, including hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride. When 

GHG accumulate in the atmosphere, they trap outgoing radiation and warm the earth’s 

atmosphere.    

 

By convention, each GHG is converted via its global warming potential (GWP), so that the 

potency of each gas’s contribution to global warming can be comparatively assessed. The GWP 
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is a ratio of the warming from one mass unit of a GHG, to that of one mass unit of CO2 over a 

specific time period.  Since 1992 the U.S. Environmental Protection Agency has prepared an 

annual report, Inventory of U.S. Greenhouse Gas Emissions and Sinks, in accordance with the 

United Nations Framework Convention on Climate Change (UNFCCC). This emissions 

inventory details the characteristic and physical identity of pollutants, types of activities which 

release emissions, and the time period over which emissions occur for all human-generated GHG 

emissions in the U.S. (EPA, 2002).  In the U.S., when all GHG are converted to metric tons of 

carbon dioxide equivalent, energy-related CO2 emissions in 2002 comprised 82.8% of total GHG 

emissions (EIA, 2003a).  Of the 5,786 million metrics tons (MMT) of CO2 emissions in 2002, 

approximately 38% was from the U.S. electric power sector (EIA, 2003a).10 Lighting consumes 

22% of all electricity generated in the U.S. (DOE, 2002), and therefore accounted for roughly 

420 MMT of CO2 2002.  Hence, commercial lighting which accounts for just over 50% of total 

lighting energy consumption was responsible for approximately 215 MMT CO2 in 2002.  

 

Policies that promote technological innovation are an important strategy for reducing CO2 

emissions.  Well-designed policies to encourage the development and diffusion of new 

environmentally benign technologies will be an important contributor to reducing the emissions 

of CO2 and mitigating climate change.   SSL is one example of an emerging technology, which 

promises to consume considerably less energy than other lighting technologies while delivering 

the same, or even improved, lighting service. However, while SSL could reduce energy 

consumption, the actual carbon emissions reductions realized from higher energy-efficiency will 

depend on additional factors. These factors include the thermal efficiency of power plants as well 

                                                 
10 The electric power sector as defined by the EIA includes utilities, independent power producers, and combined 
heat and power facilities whose primary business is the production and sale of electricity. (EIA, 2003a) 
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as distribution losses as electricity is transported over the grid, and the mix of energy sources 

used to generate the electricity.   In this study, the thermal efficiency and distribution losses will 

be held constant. However the mix of energy sources (oil, natural gas, coal, nuclear, and other) 

used to create electricity will be incorporated into the model as a variable.  

 

Fossil fuels, including natural gas, coal, and oil, have different carbon intensities.  Therefore, 

each fuel produces a different amount of carbon per unit of energy content.  Coal for instance is 

the most carbon-intensive, while oil produces about 25% less carbon per unit of energy content, 

and natural gas about 45% less.  In this study, the carbon emissions factors of energy sources are 

built into the model, to link the adoption of SSL to specific reductions in CO2.   The model has 

been built so that a user can change the particular mix of energy sources used to generate 

electricity, or can even vary this fuel mix over time. Additional air pollutants released from 

electric power plants include nitrous oxides, sulfur dioxides, and mercury – however these 

pollutants and their emissions factors will not be incorporated into the model at this time.   

 

3. Technology Assessment of Solid-State Lighting 

Scientists and industry experts are predicting that SSL will likely become a revolutionary force 

in the lighting industry (DOE, 2003b; Johnson, 2000; NRC, 2002).  This emerging lighting 

technology has potential to become significantly more energy-efficient than lighting technologies 

that are currently used (e.g., incandescent and fluorescent lighting).    
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The term “solid-state lighting” is used to encompass both organic light-emitting diodes (OLEDs) 

and inorganic light-emitting diodes (LEDs). 11  Currently, LED technology is more advanced and 

projected to enter into the market first (Tsao, 2004).  However it is expected that both 

technologies will eventually play a role in SSL applications.  It is important to note that a market 

penetration model used by DOE (2003a) takes into account both LEDs and OLEDs under a 

combined general set of future cost and performance characteristics.  Two sets of future cost and 

performance trends (one under an accelerated investment scenario and one assuming a moderate 

investment scenario) were developed in consultation with SSL industry experts.  These cost and 

performance trends have been incorporated into the model used in this thesis.   

 

Below is a description of LED technology, including the underlying science and a brief historical 

timeline of the development of LEDs.  The  focus has been placed on LED technology rather 

than OLED technology, because the former is currently further advanced and is projected to 

enter the market for general illumination first (Tsao, 2004).  

3.1 Overview of Light-Emitting Diodes  

Light-emitting diodes are based upon the scientific principles of injection luminescence, in 

which electrons and holes combine (also known as radiative recombination) within the active 

region of semiconductor materials, and emit photons (e.g., light). The most basic structure of an 

LED is that of a semiconductor diode, in which the active region where the electrons and holes 

recombine is the junction between the n-type and the p-type semiconductor materials.  Most 

LEDs use compound semiconductors and varying the particular semiconductor materials used 

                                                 
11 Organic lighting emitting diodes (OLEDs), which are based upon flexible plastic materials (polymers) have their 
own set of technical challenges. However OLEDs also expected to be a player in the general illumination market 
particularly because they don’t need to be manufactured in (costly) semiconductor fabrication facilities.  
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changes the wavelength (color) of the emitted light.  In the basic LED structure, electrodes are 

fixed to the LED chip, and the chip is encapsulated within a dome shaped lens. 

 

Semiconductor materials have been used to generate light for over forty years.  In 1962 the first 

LED was invented by Nick Holonyak Jr. at General Electric (NRC, 2002). Six years later LEDs 

were commercially introduced by Monsanto and Hewlett-Packard (Haitz et al., 2000).  The first 

application of LEDs was as indicator lights on electronic devices, with later applications 

expanding to the dots and bars seen on alphanumeric displays in the first electronic watches and 

calculators (Zukauskas, Shur, & Gaska, 2002).  Subsequent gradual improvements in efficiency 

and longevity, as well as the technological breakthrough creating a blue LED in the mid-1990s, 

have enabled the development of “white” solid-state lighting to become a reality.  Today, high-

brightness LEDs (HB LEDs) operate on higher currents than older generation LEDs which 

remain prevalent – for example, as small indicator lights on consumer electronic devices. These 

HB LEDs are able to generate greater light (or lumens) output, which has allowed LED 

technology to be extended to lighting applications that require greater luminous output.  Because 

of their inherent monochromatic nature, LEDs have been tremendously successful in a number of 

niche applications that require colored light such as traffic signals and exit signs.  In these 

markets, it is estimated that by 2002 LEDs had captured 30 and 70% respectively, of these two 

niche markets (DOE, 2003a).   The basic structure of the tradition LED and the structure of a 

LED which is commonly used for illumination purposes are depicted below in Figures II-2 and 

II-3, respectively.  
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Figure II-2. Basic Structure of an Indication LED 

                  
                      Source:(Bierman, 1998)      

 

 
 

Figure II-3. Structure of an LED Typically Used for Illumination       

 

      Source: (Bullough, 2003) 
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The ambition to create truly white LEDs for use in general illumination applications is a 

challenge and accordingly, has been dubbed the “Holy Grail” by the SSL industry.  Today, most 

of the so-called “white” LEDs on the market are made by combining a blue LED chip with a 

phosphorus coating.  The phophors absorbs some of the blue light emitted and down convert it to 

a yellow light: the mix of blue and yellow light create a rough approximation of white light.  The 

human eye however, perceives this combination of yellow and blue light as more of a “dirty” 

white, than the familiar warm glow of an incandescent lamp (Martin, 2001).   

 

There are several other technology pathways available to create a better white LED, including 

coupling a UV LED chip with several phosphors, as well as placing the three primary color 

LEDs (blue, red, and green) close enough so their colors mix and appear white.  More recently, 

technology developments using UV light with nanosized quantum dots appears to be a highly 

promising option for creating white SSL (Sandia National Laboratory, 2003).   

 

One of the most well known lighting technologies – the incandescent bulb which Thomas Edison 

developed in the late 1800s – today remains the most pervasive source of light in residential 

settings.  These lamps operate extremely inefficiently by passing electricity through a metal 

tungsten filament, with only approximately 5-10% of the energy converted to light and the rest 

dissipated as heat. Incandescent lamps, along with other sources of light more commonly used in 

commercial and industrial settings (such as fluorescent and high intensity discharge lamps), are 

expected to begin to be gradually replaced over the next few decades by SSL.  However SSL 

must first surmount a number of technical challenges. These include reducing the cost and 

improving the performance of SSL technology, allowing it to be cost-competitive with existing 
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technologies in the general illumination market.12  Furthermore, there will be challenges on the 

road to wide-spread adoption including the creation of common standards and a supporting 

infrastructure for SSL technology, as well as consumer sensitivity to the higher upfront capital 

cost of SSL.  

 

The performance of SSL is expected in time to become far superior to that of conventional 

lighting technologies.  Experts in the field anticipate that SSL will eventually become highly 

efficient – on the order of 150-200 lumens per watt (lm/W), which is approximately ten times 

more efficient than incandescent lighting – typically 15-20 lm/W, and twice as efficient as 

fluorescent lighting – typically 60-85 lm/W (DOE, 2003b).  Solid-state lighting is also expected 

to eventually achieve a much longer lifetime than conventional lighting – up to approximately 

100,000 hrs, as opposed to incandescent lighting which on average has a lifetime of 1,000 hr, and 

fluorescent lighting whose lifetime ranges from 15,000-20,0000 hr.  Other favorable 

characteristics of SSL include its durability, compactness, and dimmability, as well as the 

potential to change the color of light through the flip of a switch.  These options could open up a 

new range of creative architectural possibilities.  However, presently using LEDs for general 

illumination comes at a very high cost.  Currently, costs for SSL in dollars per lumen are a full 

two orders of magnitude above conventional lighting technologies.  Furthermore, efficacies 

presently border only around 20-30 lm/W for commercially available devices, although 

laboratory prototypes have reached close to the efficacy of fluorescent lamps.  Color quality and 

stability over the lifetime of SSL are two other essential attributes which must be competitive 

                                                 
12 Competitive on a life-cycle basis which includes a combined cost of the upfront capitol cost and the costs of 
operation (e.g., the cost of the electricity consumed).  
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with conventional technologies in order for SSL to become widely used in the general 

illumination market.   

 

Since 1999 there has been a series of collaborative activities between government and industry to 

study and promote the potential of SSL as future energy-efficient and cost-saving technology in 

the general lighting sector.  In 2001 the first technology roadmap for SSL was developed jointly 

by the DOE Building Technologies Program and the Optoelectronics Industry Development 

Association (OIDA), to accelerate the development and commercialization of SSL for general 

illumination ("The Promise of Solid State Lighting for General Illumination: Light Emitting 

Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs)," 2001). 13  This published roadmap 

provides a highly optimistic outlook for SSL, and estimates that by 2025 SSL could reduce the 

global amount of energy consumed for lighting by 50%.  

 

However the roadmap also discussed numerous and significant technical hurdles which must be 

overcome before this technology is able to come to fruition. The roadmap was subsequently 

updated in 2002 at which point the experts in the SSL community came together to further focus 

their vision and define key technical challenges which must be address for general illumination 

SSL to become a reality (Tsao, 2002).   In this roadmap, performance and cost targets for SSL 

were established through the year 2020.   These roadmap targets with updated modifications 

from Tsao are shown below in Table II-1.  On the right hand side of the graph, performance 

attributes and costs of conventional lighting technologies are provided for comparison.   The 

performance improvements and cost reductions necessary for LED-SSL to be competitive with 

traditional technologies are far from trivial, yet industry experts are optimistic that they are 
                                                 
13 Both organic and inorganic solid-state lighting technologies were included in this roadmap.   
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feasible.  However, it should kept in mind that these scenarios below were established with the 

expectation that a significant national investment in SSL would begin in 2002; the scenario could 

play out differently under an alternate investment scenario (Tsao, 2004).   

 

Table II-1. Roadmap Targets for SSL-LED Technology in  
Comparison to Conventional Lighting Technologies 

 SSL-LED 2002 SSL-LED 2007 SSL-LED 2012 SSL-LED 2020 Incandescent Fluorescent HID 
Lamp Targets        
Luminous Efficiency (lm/W) 20 75 150 200 16 85 90 
Lifetime (hr) 20,000 20,000 100,000 100,000 1,000 10,000 20,000 
Flux (lm/lamp)  25 200 1,000 1,500 1,200 3,400 36,000 
Input Power (W/lamp) 1.3 2.7 6.7 7.5 75.0 40.0 400.0 
Lamp Cost (US $/klm) 200.0 20.0 5.0 2.0 0.4 1.5 1.0 
Lamp Cost (US $/lamp) 5.0 4.0 5.0 3.0 0.5 5.0 35.0 
Color Rendering Index 
(CRI)  70 80 80 80 100 75 80 
Lighting Markets Penetrated Low-Flux Incandescent Fluorescent All    

Source: Data from (Tsao, 2004, 2002) 
Note: The costs are in “street costs,” estimated approximately 2 times higher than the original equipment manufacture costs.  
 

A workshop was convened by the National Academies in 2001 with participants from industry, 

academia and government, to explore the potential of SSL (NRC, 2002). The report addressed 

current and potential applications, current and potential operational advantages, the potential 

advantages of widespread use of this technology, and the core challenges faced by industry in 

bringing this technology to market.  Three core challenge areas that were addressed in this report 

include: remaining technical hurdles, the need to develop the new lighting infrastructure, and the 

psychological barriers to market acceptance. 

3.2 Drivers & Challenges  

There are a number of important drivers propelling the development and diffusion of LED-SSL 

into the general illumination market. These drivers are discussed below and have been grouped 

into six broad categories: environmental, performance and human interaction, safety, economic, 

energy, and potential spin-offs.   
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Environmental.  One of the most important environmental benefits of SSL is its 

potential to yield significant energy savings, and hence reduce CO2 emissions.  

Furthermore, SSL contains no mercury, a toxin that is found in all fluorescent and many 

HID lighting technologies. Finally, the relative compactness and longevity of SSL 

compared with conventional technologies, offers the potential to reduce the waste stream.  

 

Performance and Human Interaction.   SSL has the potential to create a new lighting 

culture, significantly changing how we use and interact with light (Tsao, 2002).  This 

technology offers an array of exciting and new innovative architectural possibilities 

including the ability to continuously vary the color of light, the ability to dim the lighting 

without loosing efficiency, and the potential to design unobtrusive and architecturally 

blended luminaires and fixtures.  It has been hypothesized that SSL might even have a 

positive impact on the level of human comfort and productivity in the workplace, which, 

in it and of itself, could provide significant economic benefits (Tsao, 2002).  For 

example, a dynamic SSL system could allow the intensity and color of the light to be 

changed to suit the particular user and/or their mood or level of activity.   Balancing the 

ratio between task (direct) lighting and diffuse (indirect) lighting could also have an 

impact on the human interaction with lighting.   

 

Safety.   Safety is an important consideration for new technologies. One inherent 

advantage of LEDs is that they are low power devices.  Since LEDs operate at low 
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voltages, they can provide simpler installation and a higher level of safety for the installer 

(Ton, Foster, Calwell, & Conway, 2003).  

  

Economic.  The energy-savings potential estimated by the DOE (2003b) market 

penetration model reveals that end-use customers will save approximately $130 billion 

dollars (undiscounted), cumulatively between 2005 and 2025 on their electricity bills 

from the development and adoption of efficient SSL.  Furthermore, there is an important 

national economic and innovation advantage of creating a strong SSL industry within the 

U.S. (Romig, 2002).  

 

Energy.  Solid-state lighting has the potential to deliver improved lighting service at a 

fraction of the energy required by conventional lighting technologies. In the U.S. as well 

as other developed countries throughout the world, artificial lighting has become an 

essential component of modern life.  The transition from conventional technologies to 

SSL offers the potential to dramatically reduce the energy consumed for lighting. One 

important benefit of SSL is that its higher efficiency can lessen the strain on the 

electricity grid during peak hours of demand because lighting is a peak-load consumer of 

electricity. 

 

Potential Spin-offs.  The materials systems found in LED chips are compound 

semiconductor materials such as aluminum gallium indium nitride (AlGaInN). These 

materials systems are also used in a number of technologies critical to national security 

(Tsao, 2002).  For instance, such technologies include high-powered electronics for 
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wireless and radar applications, solar-blind detectors used to detect missile launches, and 

as UV light sources for detecting biological and chemical agents. 

 

There are a number of challenges to be overcome before SSL expands from niche applications 

into being widely used for general illumination.  These challenges, sometimes also referred to as 

“barriers,” have been identified and grouped into three categories: technical, infrastructure and 

market barriers.  

 

Technical. There are a host of technical barriers that must be surmounted before a new 

lighting “paradigm” based on SSL comes to fruition.  The SSL research and development 

(R&D) initiative by the DOE is currently focused in six critical technical areas: quantum 

efficiency, packaging, longevity, infrastructure, stability and control, and cost reduction 

(DOE, 2004).   A detailed discussion of the technical barriers can be found in (Tsao, 

2002).  

 

Infrastructure. It is uncertain as to whether future LED-SSL devices will be direct 

replacements for existing lighting sockets or whether an entirely new lighting 

infrastructure will be created, independent of the “bulb culture” (Tsao, 2002).  On one 

hand, accelerating near-term adoption could be accomplished by making LED-SSL 

devices that come with the necessary circuitry and are able to fit directly into existing 

sockets.  In fact a few such Edison-socket LED bulbs are commercially available today.14   

In addition, many of the energy-savings estimates have been predicated on the 

assumption that SSL will be able to be used in existing sockets (DOE, 2001, 2003b; 
                                                 
14 See http://ledmuseum.home.att.net/ for a wide overview and review of currently available LED products.   
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Drenner, 2001). Energy-savings in general illumination lighting over the next two 

decades could be significantly lower if LED-SSL is only available for new building 

construction or large lighting retrofit projects.  On the other hand, creating a new lighting 

infrastructure based on the unique and innovative characteristics of SSL could be a 

critical driver of SSL success in the general illumination market.   

 

The revolutionary nature of LED-SSL in the lighting market will necessitate that 

accompanying codes and standards be developed alongside this new technology.  New 

guidelines for installation and product codes and certifications (for instance the “UL” 

label provided by the Underwriters Laboratory) must be developed.15   

 

Unless new metrics are developed and embraced by the lighting community, it is likely 

that final users will compare LEDs to conventional lighting technologies as well to other 

LEDs, using CRI and CCT.   Because these metrics are not well suited for LEDs, it is 

possible that using them could actually impede the diffusion of LED-SSL.   Standardizing 

other metrics for LEDs (such as the rated lifetime of the LED-SSL device) will be 

important so that end-users can comparatively evaluate LED-SSL products from different 

manufactures, as well as compare LED-SSL to traditional lighting technologies.   

 

Market.  Since LED-SSL promises to be a highly innovative and energy-efficient way of 

providing lighting service, it will likely be a disruptive technology in the existing general 

illumination market that is dominated by incandescent, fluorescent and HID lamps.   

                                                 
15 The Underwriters Laboratory has evaluated LED lighting systems and components for applications such as exit signs, traffic 
lights, and general lighting. For more information see:  http://www.ul.com/lighting/led.html  
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However, displacing older lighting technologies is likely to be challenging, in part 

because of the vertically integrated structure of the mature lamp industry.  Many of these 

industries are not set up to buy their components from third parties, and none of them 

currently manufacture the LED chips that are the heart of LED-SSL.  Furthermore, many 

end-users now require highly specialized lighting products, which have resulted in a 

highly fragmentized lighting industry.    

 

In January 2004, a conference entitled “LEDs: Meeting the Design and Performance 

Challenges” was held.(Whitaker, 2004)  This gathering was slated towards lighting 

designers and end-users in the industry, but also brought in some LED manufactures. The 

meeting highlighted a disconnect between these two communities, revealing that more 

communication between them will be important for realizing the potential of LED-SSL.  

Important issues voiced by lighting designers included uncertainty on how to incorporate 

LEDs into their products and designs, and a difficulty at computing the costs and benefits 

of using LEDs over conventional technologies, particularly because of a lack of 

standardization. 

 

Finally, the high upfront capital cost (on a $/klm basis) of SSL when compared to 

incumbent lighting technologies will be a significant barrier for the adoption of SSL. (See 

Table II-1)  Currently, LED-SSL is penetrating niche markets (e.g., traffic signals, exit 

signs, and automobile lighting) in which the inherent characteristics of the technology 

(e.g., its monochromatic nature, longevity, ruggedness, or compactness) can provide a 

unique advantage over traditional lighting technologies.  Eventually as the performance 
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improves and costs are reduced, SSL will be able to compete with conventional 

technologies on a simple payback, or life-cycle costing basis.   

3.3 DOE Market Penetration Model  

Estimates for the future global energy savings achievable from SSL have been as optimistic as a 

50% reduction by 2025, which would in turn decrease total electricity consumption by about 

10% (Tsao, 2004).  In the U.S., a recent analysis by the DOE (2003b)using a SSL market 

penetration model found that by 2025, SSL in general illumination applications could reduce the 

amount of electricity needed for lighting by 33%. This analysis was based on a spreadsheet 

model, which simulated consumer lighting purchasing decisions over a twenty year time period 

in order to estimate the market penetration of SSL and the subsequent energy savings.16  Below 

is a brief description of the DOE model. For a complete overview of the methodology used in 

constructing the model, the report is available from the DOE website.17  Much of the basic 

framework used to create the DOE model was carried over to build the STELLA model used in 

this thesis.  However, there are several important distinctions which will be further discussed in 

the following chapter when the modeling methodology is described.   

 

 

                                                 
16 There are several other models and reports what have estimated the energy savings potential of solid-state lighting (see 
Drenner, 2001 and DOE, 2001).  The DOE  (2003b) model is believed to be the most recent and detailed model available.  
17 This report is found on the DOE Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 
accessible at http://www.netl.doe.gov/ssl/  
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DOE Model Description 
 
The projected lighting demand is based on new construction estimates used in the National Energy 
Modeling System (NEMS) and the Annual Energy Outlook (2003). The DOE U.S. Lighting Market 
Characterization report (2002) is used to provide the baseline inventory of installed lighting technologies 
and their characteristics. The market includes four sectors: residential, commercial, industrial and outdoor 
stationary. The inventory of the lighting stock is broken down into four bins by color rendering index 
(CRI) value.18  The CRI is used as a proxy for the lighting quality required for a certain application and 
the four bins created include: low, medium, high and very high CRI.  
 
The model is constructed to simulate the purchasing decision of new lighting technologies.  When 
purchasing decisions are made, there is market turnover in which SSL has the potential to be adopted. 
The market turnover occurs via three different routes: new installation (new construction), replacement 
lamps, and retrofitted lighting systems.  The performance and costs of conventional technologies were 
projected to improve minimally, on a linear basis.  The SSL performance improvements (efficacy and 
lifetime) and cost reductions were developed in consultation with industry experts for two scenarios: an 
accelerated scenario ($100 million annual national investment) and a moderate scenario ($50 million 
annual national investment).  The SSL technology improvements over time followed an s-curve, in which 
first exponential progress gives way to linear improvements, and finally the curve levels off as the 
technology asymptotically reaches its maturity.   It is important to note that for simplification purposes an 
aggregate set of SSL curves, which encompass both LEDs and OLEDs for SSL, were developed and used 
in the model.  
 
Due to the competition from SSL, the conventional lighting technologies are assumed to improve 
modestly, but the improvement potential is limited because they are relatively mature technologies.  
Three different conventional technology improvement scenarios are given: low, medium and high 
baseline, although the medium baseline scenario is used as the default throughout the analysis.  
 
The SSL competes against the conventional lighting technologies, and the model awards market share to 
various technologies based on simple-payback. Simple payback is the ratio of the first year incremental 
capital cost to the first year incremental savings, expressed in years. Using market penetration curves for 
simple payback developed by Arthur D. Little Inc., the number of year’s payback determines the 
percentage market share awarded to SSL.  For instance, in the commercial sector if the payback period is 
two years SSL will gain a 30% market penetration, while if instead the payback period is four years, the 
market penetration will only be about 8%.    
 
Source: (DOE, 2003b) 

 

Figure II-4 captures the results of the aggregate energy-saving possible between 2005 and 2025, 

in the three scenarios used in the model.  In the reference scenario, energy consumption for 

lighting is projected out to 2025 assuming that there is no SSL market penetration. The 

conventional lighting technologies are assumed to improve only modestly; the performance 

                                                 
18 The CRI of a lamp is a measure of how surface colors appear when illuminated by the lamp, in comparison to how 
they appear when they are illuminated by some reference light source of the same color temperature.  
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improvements and cost reductions are minimal because it is assumed that these technologies are 

relatively mature.  The modest investment assumes that industry and government work together 

to develop SSL, but with only a modest investment ($50 million per year), the technology is not 

developed quickly enough to yield significant energy savings. In the accelerated scenario, the 

national investment is twice that of the modest investment ($100 million per year).  It is assumed 

that this higher level of R&D is able to achieve better SSL performance (efficacy and lifetime) 

and lower costs, and thus this scenario yields the most significant energy savings. 

Figure II-4. U.S. Primary Energy Consumption – Three Scenarios 
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               Source: (DOE, 2003b) 

 

In the reference scenario seen in Figure II-4, lighting consumes 10.47 quads of primary energy in 

2025.  The moderate investment scenario saves 1.23 quads in 2025, or approximately 12% from 

the reference scenario.  The accelerated investment scenario yields a higher energy savings of 

3.51 quads, or approximately 33%.19   Cumulatively between 2005 and 2025, the modest 

                                                 
19 The uncertainly given for the moderate investment scenario is +/- 0.2 quads, and for the accelerated investment scenario is +/- 
0.5 quads.  
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investment scenario saves 5.44 quads of primary energy, while the accelerated investment 

scenario saves 19.9 quads.   

 

The total undiscounted savings across all sectors of the economy for the accelerated investment 

scenario is approximately $130 billion dollars.  When these savings are broken down by sector as 

depicted below in Figure II-5, the commercial sector would see the bulk (72%) of these savings.   

In this analysis, by 2025 SSL has penetrated into all four of the market sectors.  However, the 

majority of the energy savings accrue from replacing inefficient incandescent lighting in the 

residential and commercial sectors.   It is also interesting to note that the commercial and the 

outdoor stationary sectors are shown to be the earliest adopter of this SSL technology, with 

adoption beginning in roughly 2012.  Penetration into the residential sector does not begin until 

considerably later in 2019.  

 
Figure II-5. Electricity Savings from SSL by Sector 

 
                 Source: (DOE, 2003b) 

 

The future market penetration potential of SSL in this model is driven largely by the 

technological characteristics of SSL which in turn determine the economics of SSL in terms of 

initial price, efficacy, lifetime, and operational costs (DOE, 2003b).   However, while economics 
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will be a very important factor in the penetration of SSL into the lighting market, it is critical to 

remember that it is not the only factor. The lighting market is a complex entity (Vorsatz et al., 

1997).  Whether or not consumers purchase SSL will also depend on their awareness of this new 

technology and its advantages, the aesthetic appeal of this new lighting, and if they are able to 

conveniently purchase it.   Furthermore, in organizations there is a combination of cultural, 

institutional, macro-social/economic and technical factors that can shape the behavior of firms 

(Lutzenhiser, 1994), which would in turn affect the lighting purchasing decisions made in the 

commercial building sector.  

 

Despite the rapid pace of technology advancement in SSL, currently the technology is too 

immature for use in most general illumination applications. Furthermore, although SSL appears 

to be a highly promising technology it is important to keep in mind that there are a number of 

efficient and cost-effective lighting technologies as well as energy-savings lighting designs and 

controls that are currently available on the market.  If adopted, these too could result in 

significant energy savings. Atkinson et al. (1992) determined that if cost-effective lighting 

technologies already on the market were installed, electricity consumption for commercial 

interior lighting could be reduced as much as 50-60%, and residential interior and exterior 

electricity consumption could be reduced by as much as 20-3%.  Hence, while SSL efficacies of 

150-200 lm/W have the technical potential to be twice as efficient as fluorescent lighting and up 

to ten times as efficient as incandescent lighting, there is reason to be cautious of highly 

optimistic estimates of national energy-savings. To understand the energy-efficiency potential of 

SSL one needs to take into account things such as: the gradual diffusion of all new technologies, 

barriers which are often common to energy-efficient technologies, as well as the drivers and 
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challenges that will shape the development and market penetration of SSL.   The gradual 

diffusion process that all new technologies experience is discussed in greater length in the 

following section. 

 

4. Technology Diffusion 

The diffusion of innovation was defined by Everett Rogers as “the process by which an 

innovation is communicated though certain channels over time among the members of a social 

system” (Rogers, 1995).  Most innovations have a rate of adoption which follows an s-shaped 

curve, as seen below in Figure II-6 (Rogers, 1995).  That is, early on in the introduction of a new 

technology there are relatively few adopters.  As time progresses, more and more people begin to 

adopt the technology and the curve rapidly rises. Eventually, the number of new adopters 

declines and the curve asymptotically reaches market saturation.  

Figure II-6. The S-Curve of Diffusion 
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4.1 Models of Diffusion 

Research on the diffusion of innovations has crossed a multitude of disciplines, including 

sociology, anthropology, education, public health, marketing and economics (Rogers, 1995). 

Geroski (2000) surveys the literature on alternative models of technology diffusion.  Most of the 

conceptual models have been constructed to explain the stylized fact that the usage of a new 

technology over time follows an s-shaped, or ‘sigmoid’ curve over time.  

 

Why does the usage of a new technology follow this s-shaped curve over time?   Empirical 

studies, beginning with the pioneering case study of the diffusion of hybrid corn by Griliches 

(1957) have consistently found that the pattern of technology diffusion follows the shape of an s-

curve.  Different models have been created to account for this diffusion pattern and each of these 

models embody a distinct, but often complementary, explanation for the gradual diffusion. 

Geroski (2000) cites that the epidemic model is the most commonly used. This model is 

predicated upon the spread of information about a new technology throughout society. Just as an 

infectious disease can be transmitted throughout population when “infected” individuals come 

into contact with healthy individuals, the diffusion of a new technology can be likened to 

technology “users” spreading information about the new innovation to non-users.  The 

information about a new innovation is communicated though social networks.  

 

However Geroski (2000) makes the distinction between pure information and information about 

a new technology.  He reasons that pure information can be passed on to many people from a 

central source, but actual technology adoption usually takes longer to spread than pure 

information – for instance – a breaking new story. This is because there is a certain kind of 
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information that can only build up from using a technology; this tacit knowledge is transmitted 

from person to person, much like an infection disease can be passed on from an “infected” 

individual to those that are healthy.  Hence there are two distinct paths that information can be 

transferred: from a central source, and by word-of-month.  Despite that the epidemic model is 

commonly used, Geroski (2000) explains that this model begins to break down when one 

considers that the adoption of a new technology does not only involve information about the 

technology, but also persuasion to adopt the technology.    

 

The leading alternative to the epidemic model is the probit model, which attempts to model the 

choice made to adopt a technology by an individual decision maker. Geroski (2000) provides the 

following simple explanation of how this model works. Consider that there is a population of 

individuals that differ in some characteristic xi, and that they are distributed across some 

population in the normal distribution function f (x i) pictured in Figure II-7.   Suppose that 

individuals with levels of xi larger than x* chose to adopt, but the others don’t. If x* was to 

sweep from right to left at a constant rate, then one can imagine the rate of adoption will 

gradually rise and then fall, creating an s-shaped curve.   In this case, the shape of the s-curve 

would depend on how the xi are distributed, and the rate at which x* changes over time.  The 

variable of xi might represent for instance, firm size.  
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Figure II-7. Normal Distribution of Variable (xi) 
 

 
 

Suppliers on the other hand are agents that can affect the costs and benefits associated with a 

new technology, and thereby affect how x* changes over time (Geroski, 2000).  How well these 

suppliers take into account the preferences and needs of their potential customer base, their 

pricing and servicing policies for the technology, and the flow of information (e.g. marketing) 

they facilitate about the technology are all determinants of the rate of diffusion.  Technological 

expectations are also likely to influence the rate of diffusion: when expectations are high that 

there will be a near-term improvements in the technology (either the old or the new), diffusion is 

likely to be slower (Geroski, 2000).  

 

Geroski (2000) cites a number of additional factors that can drive diffusion including: learning 

and search costs, switching costs, and opportunity costs. Learning and search costs pertain to the 

uncertainties that surround the decision to adopt a new technology. Initially, it is oftentimes 

difficult to gauge the benefits of a new technology with high certainty. But over time, 

information becomes more readily available and depending on how quickly the firms update 

their old information (learning), they can reassess their decision to adopt the technology.   

f (xi) 

 x*
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Switching costs can affect the decision to adopt a new technology, because there are a number of 

different factors that might lock-in an existing technology.  Finally, there could be opportunity 

costs which are created by previous investments in technology that hasn’t fully depreciated.  For 

example, if a firm purchased new computers only two years ago, they would be less likely to 

purchase the latest computer model than a firm using six-year old computers.   

 

Innovations can diffuse rapidly throughout society, in which case they have a steep rate of 

adoption. On the other hand, innovations can also diffuse more slowly, and in this case the slope 

of the s-curve is less steep.  Either way, it is important to note that in neither case is the diffusion 

of a new technology instantaneous.  The period from when the first user adopts a new technology 

until the technology is used by (for example) 90% of the market, can extend anywhere from five 

to fifty years (Mansfield, 1968). 

 

Case studies have historically been used to empirically investigate the determinants of the 

diffusion process. For example, the early work of Griliches (1957) analyzed the diffusion of a 

new hybrid corn variety and found that the rate of diffusion was the most rapid in geographic 

areas in which the economic return to adopting the hybrid corn was the greatest.  Mansfield 

(1968) found that the rate of diffusion was also dependent on the size of the adopting firm, the 

absolute magnitude of the investment and the perceived riskiness of the new technology.   The 

diffusion process has also been studied from the view of why certain firms adopt early and others 

adopt late.  Differences among potential users does not necessary have to be based on the size of 

the adopting firm; rather the crucial component is that potential adopters be heterogeneous across 
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some dimension that will affect the value of the innovation, and hence their adoption decision 

(Jaffe & Stavins, 1991).  

4.2 Justification for Policy Intervention 

The process of technological change can be characterized by the Schumpeterian trilogy: 

invention – the generation of a new idea; innovation – the development of those ideas into a 

marketable technology; and diffusion – the spread of the technology across its potential market 

(Stoneman & Diederen, 1994).  The time path of adoption of an innovation is the result of 

interacting supply and demand factors.  Policy initiatives to affect the process of technological 

change have predominantly focused on the first two processes, invention and innovation, by 

focusing on the science and R&D end of the spectrum.  Both public policy and research have 

historically tended to neglect the diffusion process (Jaffe & Stavins, 1991; Stoneman & 

Diederen, 1994)  However more recently there has been a greater focus on diffusion policies for 

energy equipment, because of concerns surrounding global climate change (Jaffe & Stavins, 

1994a).  Policies designed specifically to promote and accelerate the diffusion of energy-efficient 

equipment are discussed later in this chapter.  

 

Stoneman & Diederen (1994) provide an overview on why policy intervention into the diffusion 

process may be desirable, and if so, what form it might take. Assuming that the development 

path of a new technology is predetermined and fixed,20 Stoneman & Diederen (1994) state that 

the optimal path of technology diffusion can be thought of as “that path on which at any point in 

time the social benefit to be gained from the adoption of the technology by the marginal user in 

                                                 
20 However, there is a feedback loop in which profits generated early on in the diffusion path are fed back into R&D, which then 
improve production processes and the technology itself.  This feedback loop considerably complicates the specification of this 
welfare optimal diffusion path (Stoneman & Diederen, 1994).  
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time t (as opposed to earlier or later) will equal the marginal social cost of producing the capital 

goods that embody that technology in time t.”  In other words, a technology’s optimal path of 

diffusion over time can be thought of as a one in which the net social benefits are maximized at 

every point in time.   

 

This definition of a welfare optimal path of diffusion implies that the actual rate of diffusion can 

deviate from it in two ways: the actual diffusion can either be too fast, or too slow from the 

optimal path.  This is generally caused by what is known as a market failure. Three primary 

types of market failures can affect the diffusion process: imperfect information, market power 

and externalities (Stoneman & Diederen, 1994).     

 

First, the efficiency of a market for a new technology is constrained by information asymmetries 

and deficiencies, more so than other markets.  This is because at a fundamental level, technology 

can be thought of as information and markets for information are notorious for their 

imperfectness (Arrow, 1962).   The information about a new technology could be imperfect 

because the characteristics or costs of a new technology are not well known, or information that 

supplies future expectations (for example the future performance or cost) of a new technology 

might be inaccurate.  Accordingly, Stoneman & Diederen (1994) suggest that policy intervention 

in terms of providing information is desirable up to the point at which the marginal social cost of 

supplying the information is equal to the marginal social benefit gained from the information.   

In addition to providing information, the government might also correct a market failure 

stemming from imperfect information is by either shifting the burden of risk to the government, 
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or by reducing uncertainty in the market by “creating” information in the form of technical 

standards (Stoneman & Diederen, 1994).  

 

The second main market failures identified by Stoneman & Diederen (1994) is market power, 

which can apply to either the supplying industry or to the using industry. While the literature 

does not elucidate which market structure will always generate optimal diffusion, in general, a 

view widely held is a monopoly on the supply side will slow the diffusion path (Stoneman & 

Diederen, 1994).   

 

Stoneman & Diederen (1994)  discuss both positive and negative externalities as the third major 

market failure. Negative externalities can occur when the adoption of a technology by one firm 

negatively affects the profits of another firm.  For instance, if a new technology is adopted by 

one firm that subsequently give it an advantage over competing firms, these competitors will be 

negatively affected.  Energy-use also creates negative externalities because of the CO2 emissions 

and other pollutants that are created through energy production and use.  Positive externalities of 

technology diffusion can also occur.  For example, a firm’s decision to adopt a new technology 

can create a flow of information that spills over other firms. In other instances, as in the case 

with network technologies (e.g., telephones or fax machines), the benefits of adopting a 

technology can increase with the number of users.   Finally, other positive externalities can occur 

through private sector R&D, new job creation, and technology spill-overs that enhance national 

security.  
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4.3 What Can Government Do? 

Although there may be a limited number of policies in use aimed specifically at tuning the rate of 

diffusion, there are a considerable number of public policies that have other primary objectives 

but also have a major impact on the diffusion process (Stoneman & Diederen, 1994).  Such 

policies include R&D policies, industrial policies, education policies, infrastructure and 

transportation policies, environmental protection, accounting rules such as depreciation.  

Nonetheless, disappointment over the slow diffusion rates of new energy technologies, has 

generated interest in the determinants of the rate of technology diffusion (Jaffe & Stavins, 1991). 

Designing effective policies to accelerate the diffusion process requires an understanding of the 

process itself.  

 

The spread of information is central to the epidemic model, and therefore improving the 

mechanism through which information spreads in the economy is one way in which public policy 

can directly affect the diffusion process (Geroski, 2000).  Policymakers can accomplish this by 

becoming the central source of objective information about a new technology.  Policymakers can 

also identify key actors with an stake in a new technology, and either provide them with 

subsidies or bring these actors together in a forum setting where they can communicate with each 

other thereby enhancing the epidemic effect.   

 

Government procurement where the government leverages its significant purchasing power to 

become an early user of a new technology is another policy that can accelerate diffusion. 

Governments are large, generally well informed and relative cost insensitive, and can therefore 
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be important agents for diffusion (Geroski, 2000).  In addition, public policies such as standard 

setting and direct regulation can also promote the diffusion of new technologies. 

 

A probit model was used in the DOE SSL market penetration models, to simulate the decision 

making process that guided the diffusion of SSL (DOE, 2001, 2003b).  These models were based 

on a predefined simple payback period: a certain percentage of the market would adopt SSL if 

the payback period from the investment was below a certain threshold payback period measured 

in years. However, Geroski (2000) points out, one weakness of probit models is that they don’t 

account for the gradual amount of information available to users which builds up, leaving out the 

important social epidemic aspect of innovation diffusion.   

 

This research forges a link between the strengths of these two models. By building a model that 

simulates the decision making processes according to the rules of simple payback, the diffusion 

of SSL is based on a decision process on a micro-economic level according to simple payback 

either to adopt SSL or not adopt SSL. The advantage of building this model in STELLA as 

opposed to a spreadsheet is that using STELLA software allows the builder to think through the 

links between numerous variables which affect the diffusion process. This allows the model to be 

built in such a way that it takes into account the dynamics which occur due to the epidemic 

effect, such as spread of information and awareness as more and more users adopt SSL, which in 

turn is likely to influence more consumers to adopt the technology.   
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5. Energy-Efficiency & Lighting 

There has been a substantial body of literature on the so-called “energy-efficiency gap”; that is, a 

widespread gap between the energy-efficiency of products which consumers buy and use, and 

the apparently cost-effective level of energy-efficiency which is available on the market.  In this 

section the energy-efficiency gap will be further examined.  Further focus is placed on the 

commercial building sector and the energy-efficiency gap as it pertains specifically to lighting 

technologies.   Finally, the chapter concludes with why public policy should be considered to 

promote and accelerate the diffusion of energy-efficient lighting technologies in the commercial 

building sector.  

5.1 The “Energy-Efficiency Gap”  

In the ample collection of literature available that focuses on the energy-efficiency gap, much of 

the discussion has centered around the posit that consumers seem to be using high implicit 

discount rates when they evaluate investments in energy-using technologies   These implicit 

discount rates are much higher than other interest rates in the economy; but the real question is 

why are these rates are so high for consumers?  Do these high discount rates truly represent real 

costs to the consumer or are the result of a market failure?   When high discount rates represent 

real costs and not market failures, Jaffe & Stavins (1994b) argue that public policy intervention 

should not be used. On the other hand, if the discount rates are attributed to market failures, these 

failures could potentially be amenable to public policy.   

 

There have been a number of documented cases in which the consumers chose not to purchase 

highly-efficient and economical energy technologies (Brown, 2001).  Brown (2001) articulates a 

number of the market failures and barriers which inhibit consumer investment in energy-efficient 
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technologies.  Market failures occur when there are flaws in the way the market operates.  Brown 

cites examples of market failures including misplaced incentives; distorted fiscal and regulatory 

policies; unpriced costs; unpriced public goods including education, training and technological 

advances; and insufficient and inaccurate information.  Brown then goes on to differentiate 

between market barriers from market failures.  She argues that market barriers are not market 

failures per se, but nevertheless contribute to the slow diffusion and adoption of energy-efficient 

innovations.  Market barriers according to Brown (2001) include the low priority of energy 

issues among the public, capitol market barriers, and incomplete markets for energy-efficiency.   

 

To determine the right measure of the energy-efficiency gap, Jaffe & Stavins (1994b) cite that 

it’s necessary to understand and draw a distinction between market failures and non-market 

failures.  (These non-market failures are similar to what Brown (2001) terms market barriers.)  

According to Jaffe and Stavins, both market failure and non-market failures contribute to 

explaining the so-called “paradox” of the gradual diffusion of energy-efficient technologies (also 

referred to above as the energy-efficiency gap).  It has been called a “paradox” because 

technologies which are energy-efficient and appear to be cost-effective are only gradually 

adopted.  Jaffe & Stavins (1994b) however correctly point out that the notion that a paradox 

exists for energy-efficient technologies is somewhat diluted, when one takes into account that all 

new technologies experience only gradual diffusion.   

 

Jaffe & Stavins (1994b) go on to list several specific sources of market failures that may affect 

the adoption rates of energy-efficient technologies: information which has public good attributes 

tends to be underprovided in the market; the act of adopting a technology creates a positive 
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externality for which the adopter is usually not compensated; and the principle-agent problem in 

which the person purchasing the technology is not the party that pays the energy bills.  For 

instance, consider an example of the principle-agent problem: If a landlord pays the electricity 

bill while a renter purchases the light bulbs, the renter has no incentive to purchase a more 

energy-efficient (and more expensive) CFL over the incandescent bulb, because the renter 

doesn’t pay the electricity bill and will therefore never recoup the savings from higher level of 

energy-efficiency.   The principle-agent problem is an example of what Brown (2001) referred to 

as misplaced incentives.  

 

Non-market failures are said to explain why the observed behavior is actually optimal from the 

point of view of energy users.  Jaffe & Stavins (1994b) discuss examples of non-market failures 

that represent additional (and real) costs for consumer.  These costs include: uncertainty about 

future energy prices combined with the irreversible nature of the technology investment; 

qualitative attributes of energy-efficient technologies that make them less desirable than existing 

technologies; and the heterogeneous nature of the population (e.g., although the technology 

might be cost-effective for the average consumer it won’t be for every consumer).  

5.2 The Building Sector  

Each end sector is unique in its assortment of market failures and barriers that prevent the use of 

cleaner energy technologies (Brown, 2001).  This is largely because each sector has a different 

market structure for delivering new technologies.  In the residential and commercial building 

sector, this market structure is made up of building contractors, engineering firms, and architects 

and designers, while in the transportation sector the market structure is dominated by a few large 

manufacturers.  Because the market structure in the residential and commercial sectors is made 
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up of multiple actors, yet another variation of the principle-agent problem (discussed earlier for 

the case of the landlord and renter) can arise.   

 

In the building sector in particular, a unique barrier to greater energy-efficiency is the 

information gap that prevents the energy-efficient features of a building to be reflected in the real 

estate price (Brown, 2001).   There is also a limited flexibility to change in response to fuel price, 

which is partially limited by the lifetime of equipment.  For instance, shorter technology 

lifetimes will create quicker turn over and thus more opportunities to respond to the price signals 

from energy costs.   Furthermore, different sectors of the economy have varying R&D capacities 

to respond to market signals and energy prices.  While many industries on average spend about 

3.5% of their sales on R&D, it is estimated that the construction industry on the other hand 

spends less than 0.2% (Brown, 2001). 

 

While most of the discussion to this point has concentrated on assessing energy-efficiency from 

either a technologist or economic viewpoint, there have been a number of studies in the social 

sciences which have focused on the factors which affect energy use (Poortinga, Steg, Vlek, & 

Wiersma, 2003).  This work has involved studies which look at the social and psychological 

factors related to energy-saving behavior, social processes, as well as the effect of information 

and feedback on energy-saving behaviors.  The social sciences in particular can help to 

illuminate behaviors and social processes which are to a large extent ignored in economic models 

of energy use and technology adoption (Stern, 1986).  For instance, Lutzenhiser (1994) focuses 

on the role of organizational networks in the shaping the diffusion process of an innovation 
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(Lutzenhiser, 1994).  In this work, she emphasizes the role that industry organizations have on 

impeding energy-efficiency innovation in the housing sector.  

5.3 Lighting Technologies 

In the lighting sector, there has been research which has explored the hurdles which energy-

efficient lighting technologies face in the marketplace. Hurdles that contribute to the slow 

diffusion of new lighting technologies include the crudeness of the early technology and the 

comparative advantages held by older entrenched technologies such as increasing returns to scale 

and cumulative learning (Menanteau & Lefebvre, 2000).   In particular, when compact 

fluorescent lamps (CFLs) were introduced in the early 1980s, one of the most important barriers 

that CFLs faced was their high upfront cost. This high capital cost served as a psychological 

barrier to consumers.  Furthermore, many residential consumers were not used to thinking in 

terms of life-cycle costing and had very high implicit discount rates (Menanteau & Lefebvre, 

2000).   

 

For the lighting market in particular, previous case studies of markets for efficient lighting – for 

example magnetic fluorescent ballasts (Koomey, Sanstad, & Shown, 1996) and CFL (Menanteau 

& Lefebvre, 2000) –  have provided evidence of the slow diffusion of new energy-efficient 

lighting technologies. In an engineering-economic analysis, Koomey et al. (1996) found that 

efficient magnetic fluorescent ballasts represented a good investment for 99% of the commercial 

building stock, and a moderately good investment for 0.7% of the commercial building stock.21 

This efficient magnetic fluorescent ballast technology was first developed and introduced on the 

market in the 1980s, but this technology faced very slow adoption rates; only commensurate with 
                                                 
21 In their analysis, Koomey et al. (1996) defined a good investment as an internal rate of return (IRR) of 20% real 
and higher, and a moderately good investment as an IRR of between 6 and 20% real.    
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the rate at which states implemented efficiency-technology standards. They argue that this 

evidence for the under-adoption of the more efficient ballasts proves there is an economic 

inefficiency in the market for energy-efficiency.  Koomey et al. (1996)  conclude that market 

mechanisms are not adequate for promoting cost-effective improvements in energy-efficiency, 

and that there are benefits in establishing minimum efficiency regulations to counteract this 

failure.  

5.4 Policy Intervention  

Market failures and barriers which prevent socially optimal levels of investment in energy 

efficiency are the primary reason to consider government intervention.  Brown (2001) cites that 

in many case, public policies can be implemented to eliminate or compensate for market 

imperfections, hence enabling the markets to function in a more socially optimal manner.  But in 

other instances, policies might not be able to eliminate the failure or the costs to do so might 

outweigh the benefits to be gained.  

 

There are a number of policies in a policymaker’s toolbox for promoting greater levels of energy 

efficiency.  Early efforts to reduce energy-use in all sectors of the U.S. economy were initiated in 

the 1970s in response to concerns over U.S. energy security (OTA, 1992).   Federal programs 

designed to promote energy-efficiency in buildings have included financial incentives (tax 

credits, loan guarantees, weatherization grants); Federal leadership providing public recognition 

for voluntary energy savings; research, development and demonstrations; codes and standards; 

and information provision (technical assistance, appliance labels and energy audits) (OTA, 

1992). 
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Programs at the state and utility level have also promoted greater energy-efficiency. Utility 

demand-side management (DSM) programs and integrated resource planning (IRP) programs 

have been used by utilities and states under the recognition that enhanced consumer building 

efficiency can be a financially attractive option to building new power plants. Furthermore, these 

programs are supported by policy makers who see untapped economic and energy potential for 

speeding up the adoption of energy-efficient technologies in all sectors (OTA, 1993). 22    

 

In later years, utility DSM programs entered into a new era in which the focus is on so-called 

market transformations.  Market transformations are a process by which energy-efficient 

technologies are introduced into the market and over time, capture a large portion of the eligible 

market leaving lasting changes in the level of energy-efficiency (Nadel & Geller, 1996).  Market 

transformations seek to apply lasting changes to the market through the cooperative efforts of 

many organizations and by attempting to identify and address the barriers that inhibit widespread 

energy-efficiency.23  

  

The U.S. government at both the state and national level has been active in promoting energy-

efficient lighting.  Programs and policies have included providing objective information on 

technical options and cost-effectiveness; R&D on lamps, fixtures, design tools and human factors 

of lighting; product rating and labeling; supporting electric utility programs and planning; 

government procurements of energy-efficient lighting technologies; legislated mandatory 

efficiency standards; and voluntary programs and incentives (Mills, 1995).   Several of these 

                                                 
22 For an overview on DMS and IRP programs see (OTA, 1993). 
23 For a review of market transformation programs see (Geller & Nadel, 1994). 
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types of programs have been chosen to be tested in this analysis. These chosen policies have 

been integrated into five policy scenarios, which will be described in the next chapter.    
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CHAPTER III. METHODOLOGY 

 

The methodological approach used in this analysis is a simulation model of technology diffusion.  

A solid-state lighting commercial market penetration (SSL CMP) model is constructed in 

STELLA, a dynamic simulation software tool.24  The SSL CMP model simulates SSL diffusion 

through the U.S. commercial building sector over a twenty year time period.  This model 

provides a unique approach to modeling the epidemic behavior of technology diffusion and 

different policy options, and exploring the CO2 emission reductions and energy savings from a 

lighting market transformation to SSL. The advantages of this model include:  

 

• Building the SSL CMP model using the STELLA simulation modeling software 

facilitates a systems approach to modeling the process of technology diffusion; 

 

• The SSL CMP model is a richer model for simulating the process by which an 

innovation is diffused through the market because epidemic-type dynamics can be 

included; and  

 

• Using the SSL CMP model to explore policy instruments will create a better 

understanding of how these instruments can affect the diffusion process.   

 

This chapter will begin with a brief introduction to energy-economic modeling, including a 

summary of simulation modeling and an example of an energy-economic model currently used 

                                                 
24 The STELLA software is available from: www.iseesystems.com. 
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in U.S. energy policymaking. Next, an overview of the methodology of building the SSL CMP 

model is provided along with assumptions made in building this model.  Finally, the six 

scenarios that are tested using the SSL MP model are summarized. 

 

1. Introduction to Modeling 

 

“All models are wrong, but some are useful” -George Box 

 

A model can be thought of as representation of some part of the real world, usually in a different 

medium – and with differences in scale or simplification.  A simulation model attempts to mirror 

the interrelationships and processes of a real-world system; hence the changes that occur in a 

model are said to simulate the changes that would occur in the real word system.  How closely 

the model is able to mirror the real world system though, is heavily dependent on the 

assumptions used and the structure of the model.  Models are particularly important analytical 

tools for policy analysts, who must often make policy recommendations in the face of complex 

interactions that surround an issue (Stokey & Zeckhauser, 1978).   

 

The Department of Energy (DOE) uses the National Energy Modeling System (NEMS), a 

computer-based energy-economic model, to generate forecasts of energy demand, supply, 

imports and forecasts for the mid-term (20 to 25 years out in time).25  This model is also used to 

project the economic, energy and environmental impacts from alternative energy policies or 

other influences.  It is important to understand that the forecasts created using the NEMS model 

(and by any other model for that matter) should not be interpreted as a statement of what will 

                                                 
25 For an overview of the structure and methodology used in the NEMS model see (EIA, 2003b). 



 64

happen in the future; rather they should be used as a guideline to what could happen, given the 

assumptions and methodology used to create the model (EIA, 2003b).  The NEMS model (with 

minor variations) was recently used to explore the potential of public policies to foster clean 

energy technology solutions to the nation’s energy and environmental problems.  This study was 

an interagency report entitled “Scenarios for a Clean Energy Future” commissioned by the DOE 

Office of Energy-Efficiency and Renewable Energy (Interlaboratory Working Group, 2000).26    

 

In this thesis, modeling with STELLA provides a unique advantage in that it allows the user to 

gain a better understanding of the dynamics of a complex system.  The model simulation allows 

for a clear accounting of feedback, dynamics, and consequences from policy decisions.   

 

2. Model Construction 

Building a model using the STELLA simulation modeling software allows the technology 

diffusion of SSL to be studied using a systems approach. The SSL CMP model has been built to 

simulate the process of the technology diffusion of SSL in the U.S. commercial building sector.   

The commercial building sector was chosen because of its significance as an end-consumer of 

energy for lighting; in 2001 the commercial building accounted for 51% of primary energy 

required for lighting, while the residential sector followed with 27%, and the industrial and 

stationary outdoor sectors 14% and 8%, respectively (DOE, 2002).  

 

                                                 
26 The interagency group was comprised of scientists from Argonne National Laboratory, Lawrence Berkeley National 
Laboratory, the National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National 
Laboratory. This report analyzed portfolios of approximately 50 policies, in three different scenarios: a business as usual 
scenario, a moderate scenario, and an advanced scenario. Critical policies for the building sector in particular included efficiency 
standards for equipment, and voluntary labeling and deployment programs.   
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In the SSL CMP model, commercial building lighting demand is projected from 2005 until 2025. 

In the year 2005, a portfolio of different conventional lighting (CL) technologies meet this 

demand, and there is no SSL in use.  The model simulates the market penetration of SSL to 

estimate how SSL will displace CL in the twenty year time period under study.  The “engine” of 

technology choice is simple payback; defined as when the characteristics of SSL (e.g., lifetime, 

cost, and efficacy) become such that the higher initial investment of SSL can be recouped in a 

certain number of years time, then a certain percentage of the lighting market purchases that 

month will go to SSL.  The structure of the SSL CMP model is partially based on the modeling 

approach used in previous DOE SSL modeling reports (DOE, 2001, 2003b).  (An overview of 

the DOE (2003b) model was given in Chapter II.)   The SSL CMP model differs from this DOE 

model in a number of different ways, and these distinctions will be highlighted throughout the 

next section of this chapter.  One of the prominent differences is the scope of the models. While 

the DOE models estimated SSL market penetration in four sectors (commercial, residential and 

industrial buildings, and outdoor stationary) of the U.S. economy, the model used in this thesis 

encompasses only the commercial building sector.  Furthermore, the SSL CMP model integrates 

the epidemic effect of technology diffusion into the model, whereas this effect was not accounted 

for in the DOE models.  

 

The model can be broken down into three primary components:  

   (1) Lighting Stocks & Lumen Demand;  

   (2) Payback Calculation; and  

   (3) Carbon Dioxide Emissions & Energy Consumption.  
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Each of the three components is described below.  Further detail on the structure of the SSL 

CMP model has been incorporated into a table with all model elements, their units, and an 

abbreviated description of each element; this table has been included as Appendix D.  For full 

transparency of the SSL CMP model, the STELLA modeling code is found in Appendix F.  In 

Figure III-1, a diagram of the first and second components of the SSL CMP model is shown.  

 

Figure III-1.SSL CMP Model – Components One & Two 
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2.1 Component One – Lighting Demand & Lighting Stocks  

The first major component of the SSL CMP model (located in the top half of Figure III-1) 

handles lighting demand and the lighting stocks.  First, the commercial sector demand for 

lighting service, or lumen demand, is projected from 2005 to 2025.27  This demand is found by 

multiplying the monthly lighting intensity by the total commercial building floor space.  The 

lighting demand grows 1.5% annually, directly corresponding to the rate at which the 

commercial building floor space is projected to grow (EIA, 2004a).  It is assumed that the annual 

lighting intensity of 307 kilolumen-hour per square foot (klm-hr/sq-ft) for the commercial 

building sector (taken from the DOE (2003b) analysis) remains constant throughout the analysis. 

 

Projecting Lighting Demand through 2020 

According to the DOE (2002), commercial building lighting demand in 2001 was met by a 

number of different CL technologies from all three primary lighting technology groups: 

incandescent, fluorescent and HID.  In the SSL CMP model, it has been assumed that the same 

distribution of lighting technologies used in the commercial building sector in 2001 is also 

present in 2005 – the first year accounted for in the model.  This assumption does not take into 

account the dynamic nature of the market (e.g., some technologies have likely gained market 

share in the commercial sector, while others have been retired and have lost market share) in this 

four year time span.  Nevertheless, DOE (2002) contains the most recent national lighting data 

available; it is believed that this is the best available data for this analysis.  In 2005, lighting 

demand is entirely met by CL and there is no installed SSL.   

 

                                                 
27  For modeling convenience, the SSL CMP model is broken down by monthly time periods rather than years; hence the model 
runs through 252 months. 
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Lighting Stocks 

In the SSL CMP model there are two stocks – a SSL stock and a CL stock – that fulfill the 

commercial building sector lighting demand.  The SSL and CL stocks are quantified in terms of 

the hours of lighting service they provide each month, and when added together must fulfill the 

total required lighting service for that month.  For instance, if a total of 150 Teralumen-hours 

(Tlm-hr) of lighting service is required in one month, then the CL stock might contain 125 Tlm-

hr and the SSL would then contain 25 Tlm-hr.   

 

Disaggregating the Lighting Market by CRI 

In the actual marketplace, lighting technologies are selected by consumers based on a number of 

criteria. Such criteria include: efficacy, lifetime, quality of light, aesthetic appeal of lamp design, 

and convenience of purchasing and maintenance. To realistically model the purchasing decisions 

made in the lighting market, one needs to take into account how lighting technologies compete 

against one another.  Different types of visual tasks require certain qualities of light.  One metric 

that captures fundamental differences between the qualities of light emitted from different 

lighting technologies is the color-rendering index (CRI). The CRI is a measure of how surface 

colors appear when illuminated by the lamp, compared to how they appear when illuminated by 

a reference source of the same temperature.   (See Chapter II for a description of CRI.)   

 

In the SSL CMP model, lighting in the commercial building sector has been broken down into 

four groups, or bins, based on the quality of light that is required.  These four bins are named: 

very high CRI; high CRI, medium CRI and low CRI.   This approach to modeling the lighting 

market using CRI bins was also used in the DOE (2003b) SSL model.  Table III-1 explains the 
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breakdown of these four CRI bins by their CRI values, and the specific lighting technologies that 

fall into each bin in the commercial building sector. 

 

Table III-1. Conventional Lighting Technologies by CRI Bin 
CRI Bin CRI Values1 Commercial Lighting Technologies 2 

Very High CRI 100-91 
 
Incandescent: Standard general service & reflector, Halogen 
Quartz, Halogen-reflector low voltage, low wattage 
 

High CRI 90-76 
 
Fluorescent: T8 <4feet, T8-4feet , T8 U-bent, T12 >4feet, 
Compact plug-in, Compact screw base  
 

Medium CRI 75-41 
 
Fluorescent: T12 <4feet, T12 -4feet, T12- U-bent, Circline 
HID: Metal halide 
 

Low CRI 40-0 
 
HID: Mercury vapor, High pressure sodium, Low pressure 
sodium 

 
 1CRI bin breakdown based on (DOE, 2003b). 
 2 Lighting technologies placed in CRI bins based on CRI value given in (DOE, 2003b)  Table 2-1.  
 
 
In the SSL CMP model there are four SSL bins and four CL bins, for a total of eight bins.   

Solid-state lighting and CL only compete against one another on a bin-to-bin basis. For instance, 

VH CRI SSL can only compete against VH CRI CL.   One of the major assumptions made in this 

thesis, as well as in (DOE, 2003b), is that lighting demand in each CRI bin will remain in that 

CRI bin between 2005 and 2025.  Hence, if VH CRI lighting is required today for a certain 

purpose or task, only VH CRI lighting technologies will be able to supply that need in 2025.  

There are some general problems with breaking down the lighting market by CRI, particularly 

for SSL (see Chapter II, Section 2 for a discussion of the problems with using CRI for SSL). In 

spite of this, it is believed that CRI is currently the best metric of lighting to provide the 

desegregation necessary for this model.   
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Characteristics of SSL & CL  

Each of these eight bins (four SSL and four CL bins), has a unique set of performance 

characteristics (efficacy and lifetime) and cost characteristics, which change exogenously over 

time in the SSL CMP model.  Forecasts have been gathered from DOE (2003b) as to potential 

performance improvements and cost reductions of SSL and CL technologies and these are 

described below.    

 

Currently many different CL technologies supply lighting service in the commercial building 

sector.  Due to time and resource constraints, each of these technologies could not be modeled 

independently in this thesis. Therefore, a weighted-average for the efficacy, lifetime and cost 

were created for each CRI bin, based on DOE lighting data.  To accomplish this, all of the CL 

technologies are placed into one of the four CRI bins based on its CRI value.  Average 

characteristics (performance and cost) for CL technology were found using data found in (DOE, 

2002, 2003b).  A weighted-average (weighted based on the distribution of lumens supplied in 

2001, by lighting technology) is taken to determine aggregate characteristics for each of the four 

CRI bins.28  The four CRI bins and their mean cost and performance characteristics are displayed 

in Table III-2.  In the SSL CMP model these values represent CL technologies in 2005, and 

provide the baseline from which future improvements in the technology are projected.  The CL 

costs are expressed in constant 2005 dollars.  A detailed table of all CL technologies and their 

characteristics incorporated into the weighted-averages is included in Appendix B.  

 

                                                 
28 The distribution of annual lamp output by lamp type (measured in Tlm-hr per year) for the commercial sector is found in 
(DOE, 2002) Table 5-8.  
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Table III-2. Average Characteristics of CL Technology in 2005 

CRI Lighting Type Wattage (W) Efficacy (lm/W) Lamp Life 
(khr) 

Cost 
($/klm) 

Very High CRI  105.5 15.2 2.6 1.01 
High CRI 55.0 80.4 16.0 0.67 
Medium CRI  129.5 71.6 18.3 0.15 
Low CRI  278.2 85.5 19.9 0.93 

 

According to the DOE (2003b), CL technologies are relatively mature and therefore have limited 

potential for improvement. But at the same time, these technologies are not standing still; to 

account for this, the medium improvement scenario established by DOE (2003b) for CL 

technologies has been incorporated into the SSL CMP model.29  Table III-3 shows these 

relatively modest performance improvements and cost reductions that are assumed to take place 

linearly between 2005 and 2025.  These improvements are applied to the 2005 cost and 

performance characteristics of CL which are shown in Table III-2.   

Table III-3. CL Technology Improvements between 2005-2025 
 Very High CRI High CRI Medium CRI Low CRI 

Efficacy 5% 10% 10% 20% 

Lifetime 10% 10% 10% 20% 

Cost -10% -10% -10% -10% 

       Source:(DOE, 2003b)  

 

The improvements of SSL in terms of performance (efficacy and lifetime) and cost, are based on 

the DOE (2003b) technology improvement projections.  These improvements were established 

assuming that there was a national annual investment in SSL of $50 million over ten years, 

funded by government and private industry.   The SSL industry expects the performance 

characteristics and cost to follow a widely-recognized s-shaped trend of technology improvement 

                                                 
29 DOE (2003b) established possible CL improvement scenarios: a low, medium and high improvement scenario.  In the SSL 
CMP model only the medium improvement scenario was incorporated into the model.  Furthermore, these improvements were 
projected for incandescent, fluorescent and HID lighting technologies; for this analysis the improvements were needed by CRI 
bin. Therefore, incandescent improvements were applied to VH CRI, fluorescent improvements were applied to both H CRI and 
M CRI, and HID improvements were applied to L CRI.    
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(DOE, 2003b).  This trend is characterized by an s-shaped curve where at first a technology 

improves exponentially, then linearly, and finally asymptotically.  In Figures III-2, 3, and 4, 

these performance improvements (efficacy and lifetime) and cost reduction are depicted. These 

technology improvements are broken down by bin; in general, the higher the CRI bin the lower 

the final target is for performance improvements.   This reflects the trade-off that exists between 

color quality and performance.  Furthermore, research on higher CRI SSL began more recently 

and in earlier stages than research on low CRI SSL, and creating higher CRI SSL entails greater 

technical complexity and more hurdles (DOE, 2003b).  

 

The technology improvement curves used in this analysis were generated by the DOE (2003b), 

in which a major simplifying assumption was made that combined the characteristics of OLEDs 

and LEDs.30   Hence, the following SSL curves encompass both LED and OLED SSL. 

 
Figure III-2. SSL Efficacy Improvements by CRI Bin 
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30 For a discussion of the trade-offs that accompany this simplifying assumption, see(DOE, 2003b).  
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Figure III-3. SSL Cost Reductions by CRI Bin 
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Figure III-4. SSL Lifetime Improvements by CRI Bin 
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Forecasting the improvements of a new technology, particularly out twenty years in time is 

inherently fraught with uncertainly. Nevertheless, to estimate how a new technology will 

penetrate the market requires educated estimates on future performance and cost be formulated. 
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The performance improvements and cost reductions used in this analysis are directly from DOE 

(2003b). This DOE analysis in turn relied upon the performance and cost targets established in 

the SSL industry roadmaps ("The Promise of Solid State Lighting for General Illumination: 

Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs)," 2001; Tsao, 

2002); these roadmap targets are mainly used as guides represents the final target the s-curve 

asymptotically approaches in the DOE model.   The slope and shape of the s-curves were 

estimated by DOE (2003b)  based on consultation with experts in the SSL community, analysis 

of SSL research to date and on the performance and cost trends of similar technologies.  Finally, 

it is important to recognize that these technology s-curves were built largely based on the SSL 

industry roadmaps that assumed a significant national investment into SSL was forthcoming; to 

date, this significant investment has not materialized (although some level of SSL R&D is 

ongoing).   Hence, under a different investment scenario these performance trends might not be 

attained (Tsao, 2004). 

 

Lighting Purchases 

The two lighting stocks correspond to the installed base of SSL and CL technologies that provide 

lighting service. At the outset, all of the lighting demand is supplied by lighting in the CL stock; 

the SSL stock is set at zero.31  As the model runs from 2005 until 2025, some of this lighting in 

the CL stock is displaced as SSL penetrates the market. The model calculates new purchases 

made on a monthly basis.  In the model, new lighting purchases can be made via three different 

routes: new building construction; retired lighting, and lighting retrofits.   

 

                                                 
31 In 2004 the use SSL in commercial buildings is limited, and hence for the purposes of this thesis assumed to be zero.   
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 New Building Construction. The rate at which lighting is needed for new building 

 construction depends on the rate of growth of commercial building floor space.   

 

Retired Lighting. The retired lighting includes lighting technologies that reach the end of 

their useful lifespan and must be replaced.  The stocks of lighting are retired at a rate that 

depends on the lifetime of the technology and the number of hours they are used per 

month.  

 

Retrofit Lighting. The lighting retrofits from the commercial sector represent lighting that 

is retired before its useful life ends.  In this model, the following two reasons for retrofits 

are accounted for:  

 

(1) Some constant percent of retrofits occur every year, for example because of a 

building renovation. These retrofits occur at a relatively low constant rate; only 5% 

of an installed lighting stock is retrofitted each year according to (DOE, 2003b). In 

the SSL CMP model this annual retrofit rate is represented as a monthly retrofit rate 

of 0.042%.    

 

(2) The second component of retrofits in this model is attributable to the epidemic 

effect.  These epidemic retrofits are based on the assumption that as an increasing 

percentage of the installed stock of lighting shifts to SSL, the epidemic effect (see 

Chapter II, Section 4) will further enhance SSL diffusion. In this model, the 

epidemic rate is set to rise from zero to 0.04% per month, as the percentage of the 
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market that is captured by SSL goes from 0 to 100%.  This relationship was 

estimated based on the assumption that if more SSL there was in use, more people 

would retire their CL early and switch to SSL.  Zero was chosen as the lower limit of 

the epidemic rate because it was assumed that no epidemic effect would occur when 

no SSL was used.   An upper limit of 0.04% per month was estimated under the 

assumption that the epidemic rate would not become greater than the 5% annual rate 

at which retrofits occur on a normal basis.  This epidemic dynamic incorporated into 

the SSL CMP model represents an endogenous feedback loop, in that more 

technology adoption creates a feedback that generates further technology adoption.  

 

The epidemic rate and the retrofit rate are combined, together providing the total rate of monthly 

retrofits.  Of these retrofits, those attributed to the epidemic effect are automatically fed into the 

new SSL purchases that month.  The rationale behind this is that if new retrofits are undertaken 

explicitly because consumers are persuaded to retire their stock early and adopt SSL, the model 

should reflect this in channeling the new lighting purchase directly to SSL.  The remainder of the 

lighting retrofits (due to solely the retrofit rate) move into the large pool of new lighting needed 

in each month.  From this pool, the payback “engine” (which is discussed in the following 

section) determines how much SSL and CL, respectively, are purchased.   

 

The new lighting needed each month is equal to the total monthly lighting demand plus the 

amount of lighting that is retired or retrofit that month, and minus the installed stock of SSL and 

CL. Of the new lighting that is needed each month, this demand must be met by either 

purchasing SSL or purchasing CL.  The SSL competes against CL in each of the four bins.  For 
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instance, VH CRI SSL only competes against VH CRI CL.  The market share that is awarded to 

SSL each month is based on a payback calculation which will be described in the next section.  

The remainder of the purchases in that month goes to CL.  

 

To represent the eight bins throughout the thesis, and for simplicity purposes, many of the 

converters, stocks and flows used in the SSL CMP model have been converted to one-

dimensional arrays.  Thus, the market penetration of SSL and the displacement of CL are tracked 

throughout the model based on their respective CRI bin.  This feature has the additional benefit 

of allowing particular segments of the commercial building lighting market for SSL to be further 

analyzed, by tracking SSL diffusion in each CRI bin.   

 

One important assumption made in both the DOE (2003b) report and in this analysis, is that SSL 

will be available that fits into existing light fixtures. As discussed in the previous chapter, there is 

still uncertainty as to whether SSL will compete with CL as a drop-in replacement “bulb,” or 

whether it will usher in a new lighting paradigm that transforms the whole physical lighting 

infrastructure.   In this latter scenario, one would expect SSL to diffuse into the general 

illumination market at a much slower rate because installing into existing buildings would 

involve higher switching costs (e.g., fixture or wiring replacements).   

 

An  important distinction between the SSL CMP model and the analysis done by DOE (2003b)  

is that the SSL CMP model simplifies how lamp costs (measured in $/klm) are modeled.  

Lighting technologies can be purchased via the three routes outlined above, and in the SSL CMP 

model the SSL and CL only compete based on their lamp costs.  Only taking into consideration 
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lamp costs is a simplifying assumption, because in reality the lighting decisions in response to 

retrofits and new building construction would also take into account the cost of a fixture (and in 

some cases – ballasts) associated with each lighting technology option.  Hence, in this analysis it 

is assumed that: (1) SSL will fit directly into existing CL fixtures and there will be no switching 

costs that might be associated with installing new fixtures or wiring; (2) The fixtures cost of SSL 

will be comparable to the fixture costs of CL and therefore can be omitted from being including 

in an investment calculation.   The model can be modified to include these costs; such 

modification is reserved for future work. 

2.2 Component Two – Payback Calculation 

Investment decisions on energy-using technologies are typically framed in terms of a tradeoff 

between the upfront cost and operating cost (Decanio & Laitner, 1997).  Simply payback is the 

decision “engine” in this thesis that determines the market share of SSL, and this calculation 

makes up the second major component of the SSL CMP model.  The simply payback calculation 

is the ratio of difference in upfront costs of SSL and CL, to the difference in the operating costs 

between these technologies.  This payback equation, also used in DOE (2003b) report, is 

expressed as:  

 

 (1) 
)/($Re)/($
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The first variable in equation (1) represents the difference in the upfront costs, and is calculated 

in the SSL CMP model as, 

(2)   )/($)/($)/($ klmostCLUnfrontCklmCostSSLUpfrontklmtsUpfrontCos −=∆  
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where the SSL Upfront Cost and the CL Upfront Cost are exogenously determined variables that 

change over time.  These upfront costs have units of dollars per kilolumen ($/klm), and as 

mentioned previously, only take into account the cost of the lamp (and not the fixture or ballast). 

The difference in operating costs is a sum of the difference in energy costs and the difference in 

lamp replacement costs.  The calculation to determine the difference in annual energy costs is,  

 

(3) [ ])/(/1)/(/1
)/($)/(12)/()/($
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−
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in which the electricity cost is an average cost per kilowatt-hour based on forecasts for the price 

of electricity use in the DOE (2003b) analysis, which in turn relied upon data from the EIA 2003 

Annual Energy Outlook.  Table III-4 shows the forecasted national average electricity cost for 

the commercial sector, following a conversion to constant 2005 dollars.32  

Table III-4. Forecasted  
Electricity Costs  

Year Electricity Price ($/kWh) 

2005 0.069 

2010 0.067 

2015 0.069 

2020 0.072 

2025 0.073 

              Source: (DOE, 2003b) 

  

 

 

                                                 
32 It is important to note that the commercial electricity price is a nationwide average. In areas with higher than 
average electricity costs, the energy savings from more efficient lighting will be greater, and visa versa.   
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The number of hours per month lighting service is used has been set at 248 hours per month. 

This was calculated based on the average operating hour per day in the commercial sector of 9.9 

hours (DOE, 2003b) Table ES-3, and an assumed 25 days of operation each month. The 

efficacies of SSL and CL are also factors that determine the total difference in the energy costs 

per month. Finally, the calculation is multiplied by 12 (the number of months in one year) to 

yield the difference in energy costs per year. The difference in the lamp replacement costs is 

calculated in a similar fashion: 

 

(4)    
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This lamp replacement cost is a function of the mean lifetimes of the lighting technologies, the 

number of hours they are used per month, and the upfront costs for each technology.  In the DOE 

(2003b) model a labor charge was also included in this calculation, but has not been included in 

this analysis because the difference in installation times of SSL and CL is not known.  Hence, the 

installation labor costs for SSL and CL technologies are assumed to be equivalent for the 

purposes of this analysis and are omitted from equation (4).    

  

Finally, plugging in the difference in upfront costs, energy costs and lamp replacement costs 

from equations (2), (3) and (4), into equation (1) yields the payback (measured in years).33  The 

length of this payback time period determines the percent of new lighting purchases that is 

awarded to SSL. The relationship between years payback and the percent of new lighting 

                                                 
33 The units for each variable have been verified to provide a payback in years, and a detailed list of all model elements and their 
respective units is found in Appendix F.  
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purchases is depicted in Figure III-5.  This graph was developed by Arthur D. Little, Inc. and  is 

used in the  DOE (2003b) analysis.34  In this graph, as the number of years payback falls, SSL 

captures a greater percentage of new lighting purchases.  For example, if the payback from 

investing in SSL is two years, then approximately 30% of new lighting purchases in that month 

go to SSL while the remaining 70% would go to CL.  

Figure III-5. Years Payback & SSL Percent of New Purchases 
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                Source: (DOE, 2003b) 
 
 

This simple payback curve is based on empirical evidence that consumers use different discount 

rates when evaluating lighting purchases.  Often consumers use high discount rates when 

evaluating energy technology purchases, which are well above market interest rates.  Even 

though a payback of two years seems to be a sound investment choice, 70% of consumers who 

are making lighting purchases don’t chose SSL. It could be inferred that these consumers are 

applying higher discount rates than those who represent the 30% purchasing SSL.   

 

                                                 
34 DOE (2003b) cited that this curve was developed Arthur D. Little, Inc.  However no study was cited and thus the methodology 
used to develop this curve is not known.  
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Simple payback is only one of several possible calculations that can be made to evaluate a 

lighting purchasing decision.35  This evaluation method has both strengths and weaknesses. 

Simple payback is a relatively simple and intuitive method; the DOE (2003b) found it to be a 

robust indicator of purchasing behavior among consumers when they balance the trade-off 

between upfront costs and operating costs.  However, an important limitation of the SSL CMP 

model is that by using simple payback as the “engine” of consumer purchasing decisions, the 

model has only a limited capability to simulate the complex behavior of consumers.   

Furthermore, simple payback does not incorporate any discounting which is usually performed 

when analyzing long-term investment decisions because of the time-value of money.  

Discounting the operating costs would lengthen the number of years payback, because the time 

value of money would reduce the savings over time.  Therefore, the SSL CMP model 

underestimates the number of years payback and subsequently overestimates SSL market 

penetration.  

2.3 Component Three – Carbon Dioxide Emissions & Energy Consumption  

The final component of the SSL CMP model determines the total energy consumed by lighting 

between 2005 and 2025. The model incorporates CO2 emission factors for different fuels to 

calculate the monthly CO2 emissions from the lighting service supplied.   This third component 

of the model is shown below in Figure III-6.  

 
 
 
 
 
 

                                                 
35 An alternate, albeit more complicated method used to evaluate lighting purchases is life-cycle costing.  
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Figure III-6. SSL CMP Model: Component Three 
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The SSL CMP model calculates the energy (in kilowatt-hours) consumed at the end-user site, 

and then converts this to primary energy consumed by accounting for the electricity generation 

and distribution losses.  Electricity generating efficiencies per fuel (see Table III-5), and an 

assumed 8% loss in electricity distribution were obtained from the Greenhouse Gases, Regulated 

Emissions, and Energy Use in Transportation GREET model (Wang, 1998).  The primary energy 

consumed is tracked by the SSL CMP model monthly, as well as cumulatively between 2005 and 

2025.  
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The CO2 emissions were calculated in the model using emissions factors for the portfolio of fuel 

sources that are used to generate electricity in the U.S.   Emissions factors for CO2 emissions 

released from electric utility plants were based on figures used in the GREET model (Wang, 

1998). 36  Using a particular portfolio of fuels to generate electricity and their respective emission 

factors, a weighted-average CO2 emission factor can be calculated by summing over i fuels, 

(5)                )(%)( i
i

iAv EFEF ∑ ⋅=  

The fuel mix used in the SSL CMP model along with the conversion factors and emission factors 

for different fuels are in Table III-5.  

Table III-5. Default Portfolio of Energy Sources 
  Oil NG Coal Nuclear Other Total/ Weighted Average 
Fuel Mix1 1.0% 14.9% 53.8% 18.0% 12.3% 100.0% 
Generating Efficiency2 34.2% 39.4% 35.0% 34.0% 35.0% 35.5% 
Emission Factor3 (g/kWh) 896.6 562.9 1012.3 0 0 637.4 

1 (EIA, 2004b) 
2 (Wang, 1998) 
3 (Wang, 1998) Note that these emission factors are in grams per kWh consumed at the end-use site.  An 8% transmission loss is 
incorporated into these emission factors.  
 

These emission factors from Table III-5 are based on kilowatt-hours consumed at final end-user 

site, and incorporate an electricity transmission loss of 8%.  The model incorporates two other 

possible sources of electricity: nuclear and “other” (e.g., hydropower, solar, wind).  Their CO2 

emission factors are both zero.  The SSL CMP model is set up to allow the user to vary the 

portfolio of energy sources that generate the electricity.  As a default, the model has been set up 

based on EIA data for fuels used to generate electricity in 2003.  This default has been used to 

create the results discussed in the next chapter.  

 

                                                 
36 The GREET model was developed by Argonne National Laboratory and sponsored by the U.S. DOE Office of Energy-
Efficiency and Renewable Energy. The data used in this thesis was obtained from GREET version 1.4a.  
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Employing equation (5), the average CO2 emission factor is about 640 g/kWh consumed at the 

end-use site, or 0.64 kg/kWh.   The SSL CMP model uses this emission factor and calculates the 

total CO2 emissions per month based on the lighting technologies (and their efficacy) that are 

fulfilling the lighting demand that month.  The CO2 emissions are tracked both monthly and 

cumulatively, between 2005 and 2025.  

 

3. Scenario Building 

Six scenarios were constructed in order to test the impact that specific policies could have upon 

the path of SSL diffusion, and subsequently, the CO2 emission reductions achieved.  Below, each 

scenario is described along with an account of how it is incorporated into the STELLA model.  

These scenarios were built and simulated in STELLA to gain a better sense of the impact that 

different policies could have on the SSL adoption.  However, these simulations and their results 

(which are discussed in the following chapter) should not be interpreted as quantitative 

predictions.  Furthermore, it is important to note that none of the scenarios have been subjected 

to any cost-benefit analysis, which would be an important later step in evaluating which policy 

option(s) yield the greatest net benefit to society.  

 

These scenarios were chosen to represent a diverse selection of possible public policies that 

could foster the development and diffusion of SSL.  However, these scenarios do not represent 

all of the possible policy options.37  Policy levers such as government procurement or efficiency 

standards were not simulated in this thesis using the SSL CMP model.  Furthermore there are 

many different scenario possibilities – for example, scenarios that incorporate different policy 
                                                 
37 An exhaustive test of policy alternatives was outside the scope of this thesis.  Several examples of policy options 
not tested in this thesis are government procurement and energy-efficiency (technology or building) standards.  
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combinations or that implement a policy for only a defined time period – which is an area for 

future research.  Suggestions over future research will be further discussed in the concluding 

chapter of this thesis.   

 

The six chosen scenarios are described in Table III-6.   The first three scenarios described below 

are also found into the DOE (2003b) report.  
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Table III-6. Six Scenarios Described 

Scenario Policy Lever(s) Description 

1.  Baseline Scenario None 

 
In this scenario, it is assumed that there is no further investment into SSL; 
hence SSL never penetrates the market for general illumination in the 
commercial sector.  In this scenario, lighting demand is always fulfilled 
only by CL technologies.   The number of years payback is artificially set 
to 15 in the model, to ensure that SSL never penetrates the market. 
(According to Figure III-5, SSL will only gain market share when its 
payback falls under 10 years.) 
 

2.Medium 
R&D Investment 

 

R&D Funding, 
Industry & 

Government 
Collaboration 

 
In this scenario there is a national investment of $50 million dollars 
annually to develop SSL for general illumination.  Due to government 
and industry cooperation in tackling critical technology problems, SSL 
performance (efficacy and lifetime) improves and costs are reduced.  The 
s- curves for SSL were presented earlier in the model construction 
description. (See Figures III-2, 3, and 4.) 
 

3. High R&D Investment 
R&D Funding, 

Industry & 
Government 

Collaboration 

 
In this scenario, a higher level of R&D investment is committed to SSL: 
$100 million dollars annually. As a result of more intensive research on 
SSL for general illumination, greater performance improvements and cost 
reductions are achieved than in the medium investment scenario.  These 
higher performance improvements have been estimated by the DOE 
(2003b) in their analysis. These targets achieved with more intensive 
R&D are compared with the medium investment scenario targets in Table 
III-7 below.  
 

4. Medium R&D 
Investment And Rebate 

 
R&D Funding, 

Industry & 
Government 

Collaboration, 
Financial Incentive 

(Rebate) 
 

 
In this scenario, the Medium R&D Investment is complemented by 
incorporating a rebate that reduces the upfront cost of SSL.   This rebate 
reduces the upfront cost of SSL by 50 percent throughout the 20 year time 
period.  

5. Medium R&D 
Investment and Tax on 

Electricity 

R&D Funding, 
Industry & 

Government 
Collaboration, 

Tax 

 
This scenario similarly combines the Medium R&D Investment with a 
second policy lever. Here, this lever is a tax of 15% which is applied to 
the cost of electricity for the commercial sector throughout the 20 year 
time period. Potential electricity demand impacts due to the electricity tax 
are not accounted for.   
 

6. Medium R&D 
Investment and Information 

Program 

 
R&D Funding, 

Industry & 
Government 

Collaboration, 
Information Program 

 
This scenario also uses combines the Medium R&D Investment scenario 
with a second policy lever. In this scenario, an information program is 
established which provides consumers with more information about SSL. 
This program might be in the form of a demonstration and validation 
project, a voluntary labeling scheme (e.g. ENERGY STAR), or providing 
consumers with independent technical information so they can evaluate 
the pros and cons of SSL.  
 

 

 

Table III-7 shows the SSL technology limits (which are depicted as the limits of the technology 

s-curves in 2025), which are used in the medium and accelerated R&D investment scenarios 

described above.    
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Table III-7. SSL Technology Improvement Limits  
 

CRI Bin 
Efficacy 

(lm/W) 
Lifetime (1000 h) Cost ($/klm) 

Low CRI 160 80 $ 2.00 

Medium CRI  95 75 $ 4.30 

High CRI  80 70 $ 6.00 

Medium 
Investment 
Scenario 

Very High CRI  65 65 $ 10.30 

Low CRI 225 100 $ 1.20 

Medium CRI  180 100 $ 2.50 

High CRI  160 100 $ 3.30 

Accelerated 
Investment 
Scenario 

Very High CRI  140 100 $ 5.80 

Source: (DOE, 2003b)Note: Efficacy and lifetime values are rounded to the nearest 5.  

 

The performance improvements and cost reductions used in this analysis are directly from DOE 

(2003b), which relied upon the performance and cost targets established in the SSL industry 

roadmaps ("The Promise of Solid State Lighting for General Illumination: Light Emitting Diodes 

(LEDs) and Organic Light Emitting Diodes (OLEDs)," 2001; Tsao, 2002).  These roadmap 

targets are mainly used as guides as to the final improvement targets (Table III-7) that the SSL s-

curves asymptotically approach in 2025.  

 

The slope and shape of the s-curves were estimated in DOE (2003b)  based on consultation with 

experts in the SSL community, analysis of SSL research to date and on the performance and cost 

trends of similar technologies.  It is important to keep in mind that these SSL technology limits 

represent anticipated technology targets which may not be achievable by 2025 (DOE, 2003b).  

Or conversely, these SSL targets might be reached prior to 2025.  The SSL industry is a global 

industry, and there are a number of other countries with national investment projects already 
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underway for SSL.38  Solid-state lighting technological development will be shaped not only by 

U.S. research, development, commercialization and public policy, but also by similar efforts in 

countries around the world. Thus, the technology targets and rate of technological development 

used in this analysis might also be conservative.   

 

All five of the policy scenarios used in this thesis are based on either a medium or accelerated 

R&D investment into SSL.  These two investments reflect different levels of public money that 

could be invested into research, development and deployment of SSL. Along with a government 

investment into SSL, the private sector will play the critical role in developing SSL as a suitable 

replacement for conventional lighting. A public-private partnership, such as Next Generation 

Lighting Initiative (S.1166) currently before Congress, could fulfill this purpose by creating a 

coordinated effort (funded annually for ten years at $50 million) between industry, academia, 

national laboratories and other supporting agencies, to develop and diffuse SSL technology.  

 

                                                 
38 National R&D investments in SSL have been undertaken by countries such as China, Japan, Taiwan, and China.  
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CHAPTER IV. RESULTS 

 

1. Chapter Overview 

The SSL CMP model was run to simulate the six scenarios that are described at the end of 

Chapter III.  The results from these simulations are described in this chapter.  The energy and 

carbon dioxide (CO2) impacts of each policy scenario are analyzed and compared to the 

Reference Scenario.  Solid-state lighting market penetration by CRI bin are also analyzed under 

each scenario to better understand the effect that different policies have on different parts of the 

lighting market for commercial buildings.  Integrating the epidemic effect was a unique feature 

of the SSL CMP model; hence, each scenario is tested to determine the impact that the epidemic 

rate had in each scenario. Finally, a sensitivity analysis is performed to assess how sensitive the 

final outcomes are to the high leverage assumptions made over certain policies responses.39   

 

As a reminder, the six scenarios that have been considered in this thesis are: 

 Scenario 1 – Reference Scenario 

 Scenario 2 – Medium R&D Scenario 

 Scenario 3 –Advanced R&D Scenario 

 Scenario 4 –Medium R&D Scenario, Plus Electricity Tax 

 Scenario 5 – Medium R&D Scenario, Plus Rebate 

 Scenario 6- Medium R&D Scenario, Plus Information Program 

 

                                                 
39 Because there are over 30 variables in this model, a sensitivity analysis was conducted on only those variables that were 
thought to be high leverage.    
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The references scenario represents the base case in which there is no SSL technology developed 

and conventional lighting (CL) technologies continue to fulfill lighting demand through 2025.  In 

Scenarios 2 through 6, five different combinations of public policies are implemented to 

encourage and accelerate SSL diffusion.  These policies scenarios are contrasted with both the 

reference scenario and with each other, to assess how different types of public policies can 

impact the diffusion of SSL within the parameters of the SSL CMP model.   

 

2. Energy Impacts 

The results for primary energy consumption between 2005 and 2025 in each of the six scenarios 

are shown in Figure IV-1.  The primary energy is measured in quads, and takes into account 

energy losses during electricity generation and transmission.40  Commercial buildings in 2005 

consume approximately 4.3 quads of primary energy for lighting.   In Reference Scenario 1, 

primary energy consumption grows to 5.3 quads by 2025; in this scenario no SSL is deployed 

and the performance of CL improves only modestly.   In Scenarios 2 through 6, SSL is 

developed and penetrates the commercial building market, which reduces the primary energy 

consumed by lighting in 2025, relative to the Reference Scenario.  

 

Several things are immediately noticeable from the graph in Figure IV-1.  First, in Scenarios 2 

through 6 the reductions in primary energy consumption all resemble an inverse-s-shaped curve. 

This can be attributed to the s-shaped curve of SSL diffusion, which in turn is influenced by the 

s-curves that describe SSL technology improvements and the relationship between years payback 

and percent of new market purchases that are SSL.  Second, primary energy savings from SSL 

                                                 
40 See Chapter III for a description of how primary energy is calculated in Component III of the SSL CMP model.  
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aren’t realized prior to 2015 in any of the scenarios.  This implies that in the next ten years, SSL 

used for general illumination will likely have little to no impact on primary energy demand for 

lighting in commercial buildings.  Primary energy savings accredited to the purchase and use of 

SSL begins to accrue only after 2015.  Scenario 3 (Advanced R&D) provides the earliest energy 

reduction, beginning in 2016.  Energy reductions begin in 2017 under Scenario 5 (Medium R&D 

plus Rebate), and later in 2019 under Scenarios 2, 4, and 6.     

 

Figure IV-1. Annual Primary Energy Consumed by Scenario 
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By 2025, Scenario 2 provides the greatest energy reductions from the Reference Scenario; 2.4 

quads of primary energy are saved in Scenario 2.  This is 45% below the projected primary 

energy demand in the Reference Scenario.  Primary energy reductions relative to Reference 

Scenario are quantified in Table IV-1.  Scenarios 2, 4, 5, and 6 all provide annual energy savings 
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between 23-25% by 2025 relative to the Reference Scenario; this translates into between 1.2 and 

1.3 quads of primary energy.  

 

By 2020, Scenario 3 already provides the greatest energy savings (25%) of the five scenarios 

relative to the Reference Scenario. Scenarios 5 and 6 follow, providing an energy savings of 15% 

and 10%, respectively in 2020.  Under Scenarios 2 and 4, SSL is slower to provide significant 

energy savings; primary energy is only reduced by approximately 4-5% by 2020.    

 

Scenario 3 (Accelerated R&D) generates the most significant overall energy impact of the five 

SSL policy scenarios considered in this thesis.  This scenario produces a 45% reduction in 

primary energy consumption from the Reference Scenario by 2025.  Furthermore, energy savings 

under Scenario 3 begin to accrue the earliest among the scenarios considered.  Comparatively, 

Scenario 2 (Medium R&D) only generates a 23% reduction in primary energy consumption by 

2025 and because the energy savings begins to occur later – less energy is saved on a cumulative 

basis.  (Cumulative reductions in CO2 are discussed in the next section of this chapter.)   

 

Scenarios 4 – 6 were designed to supplement a medium R&D investment with an additional 

policy mechanism.  A tax incentive, rebate and an information program were integrated into the 

Table IV-1. Annual Primary Energy Consumption Reductions 
Relative to Reference Scenario 1 

  Sc. 2 Sc. 3 Sc.4 Sc.5 Sc. 6 
 (Quads/yr) (Percent) (Quads/yr) (Percent) (Quads/yr) (Percent) (Quads/ur) (Percent) (Quads/yr) (Percent) 

2005 0 0 0 0 0 0 0 0 0 0 
2010 0 0 0 0 0 0 0 0 0 0 
2015 0 0 0 0 0 0 0 0 0 0 
2020 0.2 4% 1.3 25% 0.3 5% 0.8 15% 0.5 10% 
2025 1.2 23% 2.4 45% 1.2 23% 1.3 25% 1.3 25% 
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model, and according to the primary energy results in Figure IV-1 and Table IV-1, the rebate 

(Scenario 5) is the most effective policy of the three policies.  In addition to providing a 25% 

reduction in primary energy in 2025, the rebate is able to generate the earliest (2017) primary 

energy savings of these three scenarios. The information program (Scenario 6) also generates a 

25% reduction in primary energy in 2025, but the energy savings aren’t seen until approximately 

2019.  However, once market penetration occurs under the information program scenario, 

primary energy consumption is reduced at a steeper rate than with the rebate.   Despite this, 

energy reduction impacts in Scenarios 5 and 6, the energy consumption ceases falling following 

2023, and remains flat throughout 2025.  

 

The rebate policy appears to be more influential initial SSL deployment and generating energy 

savings early in the diffusion process.  The information program accelerates the rate at which 

primary energy consumption falls.   The electricity tax provides only a small improvement from 

Scenario 2 (Medium R&D); its energy reduction path is only slightly discernable from that of 

Scenario 2. The electricity tax provides a small early advantage by reducing energy consumption 

from 4 to 5% in 2020.  However overall, the tax does not have a significant impact above and 

beyond the medium R&D investment.  

 

By 2025, the annual energy savings from in Scenarios 2 through 6 are shown in Figure IV-2.  

These savings are broken down by CRI bin, and represent SSL energy savings relative to 
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Reference Scenario 1.  Energy savings are presented in annual Terawatt-hours (TWh) – this unit 

represents the energy consumed at the user end-site.41   

 

Figure IV-2. Annual Energy Savings per CRI Bin in 2025 
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In Scenarios 2, 4, 5, and 6, the vast majority (96-98%) of the energy savings result from 

replacing VH CRI conventional lighting. The VH CRI bin is predominately incandescent 

lighting.  In these scenarios, SSL penetrating the L CRI bins generates relatively smaller energy 

savings (1-3% of total savings).  In Table IV-2 the results of Scenario 2 and Scenarios 4 through 

6 are given.   Scenario 2 (Medium R&D) in particular, generates an energy savings of 117.3 

TWhr which are highly concentrated (99%) in the VH CRI bin.  In the bottom half of Table IV-

2, the incremental energy savings in addition to Scenario 2 are shown for Scenarios 4 through 6.  

In these three scenarios, additional policy levers are implemented to accelerate the diffusion of 

                                                 
41 The conversion from energy consumed at the user end-site (TWh) to primary energy (quads) consumed at the electricity 
generation site; is performed in the model by dividing the TWh by the account generation efficiencies and a transmission loss of 
8%.   
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SSL.  By implementing these policies, greater energy savings in realized by 2025.  Overall, 

Scenario 5 (Medium R&D, Plus Rebate) generates the most additional energy savings by 2025 

(10.5 TWh more than Scenario 2).  Most of the additional energy savings accrue in the VH CRI 

bin, although some energy is also saved in the L CRI bin in Scenarios 4 through 6.  Scenario 5 

(Medium R&D, Plus Rebate) is successful in generating energy savings in the M CRI bin 

because it lowers the upfront price of SSL such that SSL can become competitive with CL 

technologies.   

 

Table IV-2. Annual Energy Reductions for Select Scenarios in 2025 
(in TWh/yr, Relative to Reference Scenario 1) 

 VH CRI H CRI M CRI L CRI Total 

Scenario 2 115.7  0 0 1.6  117.3  

 Incremental Energy Reductions Relative to Scenario 2 
 VH CRI H CRI M CRI L CRI Total 

Scenario 4 2.1 0.0 0.0 0.2 2.3 
Scenario 5 7.3 -0.1 1.4 2.0 10.5 
Scenario 6 7.0 0.0 0.0 1.1 8.1 

 

Interestingly, in Scenario 5 the H CRI bin actually consumes 0.1 TWh more energy than in 

Scenario 2.  This is because the SSL that penetrates this market is actually less efficient than the 

average efficiency of the CL technologies. The SSL is able to penetrate the market in the SSL 

CMP model because of the epidemic effect; hence, the use of SSL in the commercial sector in 

one bin has a spillover affect on other bins.  A small amount of CL technology is retired early 

and less-efficient SSL is adopted because of these information spillovers.  In reality, this could 

occur particularly because the unique features of SSL (e.g., flexibility, longevity, durability, the 

ability to change the color of light, etc.) might persuade potential adaptors to choose SSL despite 

the fact that it is slightly less efficient than a comparative CL technology.  
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On the other hand, Scenario 3 (Advanced R&D) is able to generate significant energy savings in 

both the VH CRI and M CRI bins by 2025.  In this scenario, 64% of energy savings accrue from 

the VH CRI bin while 27% of energy savings are from the M CRI bin.   The H CRI bin 

represents 7% of energy savings and the L CRI generates 3%.   The performance improvements 

and cost reductions that are realized through a higher R&D investment enable SSL to become 

competitive with CL in a number of different bins.  

 

Later in this chapter, the SSL market penetration by CRI bin will be analyzed for each policy –

this will allow for greater insight into how the market penetration of different lighting bins in the 

commercial building lighting sector compare with the energy savings per bin shown in Figure 

IV-2.  Subsequently, more insight will be gained as to why certain policies generate the energy 

savings seen here.    

 

How do these energy savings compare with earlier SSL market penetration reports?   The DOE 

(2003b) SSL market penetration report found that under a medium investment scenario, 1.23 

quads of primary energy would be saved on an annual basis by 2025.  Under the accelerated 

investment scenario these energy savings rose to 3.51 quads.  According to estimations based on 

Figure 8.1 in the DOE report, approximately 2.2 of these 3.51 quads can be attributed to the 

commercial sector (DOE, 2003b). (The remaining energy savings are due to the residential, 

industrial and outdoor stationary sectors.)  The SSL CMP model energy savings reduction of 2.4 

quads under the same accelerated investment scenario is comparable to the DOE result of 

approximately 2.2 quads.  Unfortunately, commercial sector results were not specified for the 
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medium R&D investment scenario in the DOE report, so no comparison between that estimate 

and this analysis can be made.   However, the results of this analysis can be at least partially 

validated by comparing the energy reductions found using the SSL CMP model to the results 

from the DOE (2003b) analysis.  

 

3. Carbon Dioxide Impacts 

Carbon dioxide (CO2) emissions are released when electricity is generated to power the lighting 

equipment used in the commercial building.  In Figure IV-3, the annual CO2 emissions released 

are graphed for each of the six scenarios that have been simulated in this thesis.  This graph 

closely resembles that of Figure IV-1 because in all six model runs, model variables which affect 

the average CO2 emission factor (mix of fuels used to generate electricity and the average 

efficiency of each fossil fuel generation process) were not changed.42   This was done so that the 

all of the changes in CO2 emissions could be attributed to the policies being tested in this thesis.  

Additional research could incorporate scenarios where the mix of fuels and their respective 

generation efficiencies change over time; however this work is reserved for future research.  

 

Even though these features of the model are not varied in the current analysis, they are important 

features of the SSL CMP model because the model is run to the year 2025.  By 2025 it is likely 

the fuel mix (and generation technologies) will be different than that of today, and hence this 

model allows that future analysis be capable of simulating different scenarios in which the fuel 

mix and generation efficiencies change over time.    

                                                 
42 In addition to the mix of fuels and average efficiency of fossil-fuel combustion, other factors that might impact the primary 
energy consumption and CO2 emissions relationship include: advanced clean power technologies such as coal sequestration or 
changes in the transmission losses over the electricity grid. 
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Figure IV-3. Annual CO2 Emission by Scenario 

0

50

100

150

200

250

300

350

2005 2007 2009 2011 2013 2015 2017 2019 2021 2023 2025

Year

M
M

T
 C

O
2

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
 

 
 

Carbon dioxide emissions attributed to commercial buildings lighting consumption grow from 

265 million metric tons of CO2 (MMT CO2) in 2005 to 324 MMT CO2 in 2025; this represents a 

22% growth in emissions over this 20-year time period.43  To put this into perspective, the 

Energy Information Administration (EIA) of the DOE estimates that in 2002, the U.S. released a 

total of approximately 5,680 million metric tons of CO2  from energy-related activities (EIA, 

2003a).  These energy-related CO2 emissions were by far the most significant source (82.3%) of 

GHG emissions in the U.S.  In the EIA Annual Energy Outlook 2004, energy-related CO2 

emissions are projected to grow 1.5% between 2002 and 2025, to reach approximately 8,074 

MMT CO2in 2025 (EIA, 2004a).44   Hence, CO2 emissions in 2025 of 324 MMT CO2 due to 

                                                 
43 Based on a back-of-the-envelope performed in Chapter II, it was found that in 2002 the commercial building sector’s lighting 
accounted for approximately 215 MMT CO2.  If one was to extrapolate back the 265 MMT CO2 used here, emissions in 2002 
would be slightly higher that this estimate. 
44 There are, of course a number of uncertainties with forecasting carbon emissions out to 2025.    
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commercial sector lighting would represent roughly 4.0% of total energy-related CO2 emissions.    

In Table IV-3, the CO2 emission reductions for the policy scenarios in the years 2015, 2020 and 

2025 have been quantified.  

 

Table IV-3. Annual CO2 Emission Reductions  
Relative to Reference Scenario 1 (MMT CO2/yr) 

 2015 2020 2025 

Scenario 2 0.0 11.9 74.8 

Scenario 3 2.4 77.2 145.0 

Scenario 4 0.0 15.1 76.2 

Scenario 5 0.2 47.5 81.5 

Scenario 6 0.0 29.0 80.0 

 

Figure IV-3 quantifies the reduction of CO2 emissions in each scenario, relative to the Reference 

Scenario. The emission reduction trends are almost identically to the trends in primary energy 

consumption from Figure IV-1.  In each of the five policy scenarios, CO2 emissions are reduced 

below 2005 levels by 2025.  These emission reductions begin in 2015 for Scenarios 2 and 5; and 

around 2019 for Scenarios 3, 4, and 6.   The emission reductions achieved by Scenarios 2 and 5 

in 2015 are relatively small, and no emissions reductions are gained by this time in the other 

scenarios.  Hence; this implies that deploying SSL in commercial buildings is not a realistic 

policy mechanism for meeting potential shorter-term CO2 emission targets that are established 

for the next ten years.45 

 

Under Scenario 3 (Advanced R&D) there is a 45% reduction in annual CO2 emissions in 2025. 

Under this scenario, by 2025 145 MMT of CO2 are being prevented annually.  There is a 23% 

                                                 
45 This indicates that SSL in general illumination applications isn’t likely to yield CO2  emission reduction in this time frame; 
however there are some instances where LEDs are used in niche applications (e.g. the backlights of a liquid crystal display 
(LCD)) could provide energy-savings in the nearer term.  For further information about these possibilities see (DOE, 2003a) and 
(Ton et al., 2003).  
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reduction of CO2 emissions in Scenario 2 (Medium R&D) or 74.8 MMT CO2.  This figure rises 

only slightly to a 24-25% reduction by implementing additional policy mechanisms (an 

electricity tax, a rebate, or an information program).  In absolute terms, additional reductions of 

between 1.5 and 6.5 MMT CO2 can be achieved by implementing one of these policies.  In 

addition to annual emissions, it is important to consider the impact that the different policy 

scenarios have on the cumulative CO2 emissions released between 2005 and 2025.  Cumulative 

emission reductions relative to the Reference Scenario are shown in Table IV-4.  

Table IV-4. Cumulative CO2 Emission Reduction 
Between 2005 & 2025 (Percent from Reference Scenario) 

Scenario Percent 

2.  Medium R&D 4.5% 

3. Advanced R&D 13.0% 

4.  Medium R&D, Plus Electricity Tax 4.9% 

5.  Medium R&D, Plus Rebate 7.6% 

6. Medium R&D, Plus Information Program 6.2% 

 

The cumulative CO2 emissions between 2005 and 2025 vary between scenarios because of the 

unique timing and rate of SSL market penetration for each scenario.   Scenario 3 (Advanced 

R&D) again provides the most significant impact – a 13.0% cumulative reduction in CO2 

emissions when contrasted with the Reference Scenario.   Scenario 2 (Medium R&D) provides a 

4.5% reduction; when the electricity tax is added this savings rises to 4.9%.   Scenario 6 

(Medium R&D, Plus Information Program) generates a 6.2% reduction while Scenario 5 

(Medium R&D, Plus Rebate) creates a 7.6% reduction in CO2 emissions from the Reference 

Scenario.   It is useful to compare the incremental effect of policies used in Scenarios 4 through 

6, to Scenario 2 in order to gauge the impact of the electricity tax, rebate and information 

program.  Of the policies considered in Scenarios 4-6, the rebate generates the biggest impact 

because it is successful in achieving earlier reductions in CO2 emissions.  However, some of the 



 102

same observations made earlier for the energy reduction trends seen in Figure IV-1 also apply to 

Figure IV-4.  For example, emission reductions in Scenarios 5 and 6 both level off around 2013. 

The emissions reduction trend occurs more rapidly under the information program, but is slower 

than the rebate to initiate emission reductions.  Finally, Scenario 4 (Medium R&D, Plus 

Electricity Tax) creates only a minor reduction in emissions compared to Scenario 2.   

 

Carbon dioxide emission trends under the policy scenarios considered in this thesis imply that 

2015 is the earliest that SSL deployed to provide general illumination in the commercial building 

sector, will have an impact on CO2 emissions.  Therefore, given the assumptions made in the 

SSL CMP model, SSL in this particular sector of the market won’t be able to contribute to 

meeting emission targets established for the next ten years (2005 until 2015).    However, in the 

longer term, SSL has the potential to generate emission reductions.  For instance, under Scenario 

3, CO2 emissions are 45% lower by 2025 than emissions in the Reference Scenario.  This 

represents a reduction of 145 MMT CO2 in 2025.  This emission level is by far the greatest 

emission reduction achieved under the scenarios that have been tested in this thesis.  

Furthermore, in Scenario 2, emissions continue to fall through 2005, whereas in other scenarios 

the emission reductions stagnate around 2023.   Emissions are able to continuing falling in 

Scenario 2 because the SSL more significant technical improvements and cost reductions allow 

SSL to penetrate all of the CRI bins where it can continually create energy savings through 2005.  

 

 In Scenario 2, CO2 emissions are reduced by approximately 75 MMT CO2 – slightly less than 

half the emission reductions that occur in Scenario 3.   This result should not be construed as 

quantifying a precise relationship between amounts of funding devoted to R&D and the emission 
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reductions possible.  The emission reductions largely depend on SSL market penetration, which 

in determined in part by the economics of SSL (performance and cost).  Future SSL performance 

improvements and cost reductions are difficult to predict out twenty years in time.  In general, 

the assumption that a greater U.S. R&D investment in SSL will improve the performance and 

reduce the cost is relatively robust.  Nevertheless there are a number of other factors that will 

factor into this relationship between 2005 and 2025 including: how effectively this money is 

spent, the nature of the government/industry partnership, the timing of important technical 

breakthroughs and incremental improvements, and foreign competition in the SSL industry.    

 

In comparison with Scenario 2 (Medium R&D), Scenario 5 (Medium R&D, Plus Rebate) is 

particularly effective in generating earlier CO2 emission reductions.  Scenario 6 on the other hand 

is able to accelerate the rate at which emission reductions are generated.   Scenario 5 (Medium 

R&D, Plus Electricity Tax) on the other hand is the least effective in affecting the outcome of 

CO2 emissions.  

 

4. SSL Market Penetration 

By 2025 the overall percent of the lighting stock (in terms of Tlm-hr) that is held by SSL, varies 

among the different policy scenarios as shown in Figure IV-4.  In Scenario 3 (Advanced R&D), 

SSL represents 51% of the total installed stock of lighting by 2025.  In Scenario 2 (Medium 

R&D), the SSL share of the lighting stock is quite a bit lower at only 10%.  This percentage is 

slightly higher in Scenarios 4, 5 and 6 – which corresponds to the incremental impact of their 

additional policies (electricity tax, rebate and information program, respectively) above and 

beyond the medium R&D investment.  In these three scenarios, SSL becomes between 10 and 
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15% of the installed lighting stock by 2025.  Out of these three policies, the rebate (Scenario 5) is 

able to provide the largest percent of installed SSL lighting by 2025.  

 
Figure IV-4. Percent of Commercial Lighting Stock that is SSL in 2025 
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In Scenario 2, the lighting market shifts rather dramatically so that 51% of the lumen-hours are 

supplied by SSL in 2025.   For policy purposes, it is important to analyze how and when 

different groups (bins) of commercial building sector lighting convert from CL to SSL.  This will 

facilitate a better understanding of which segments of the commercial lighting market will be 

early adopters, and which CRI bins generate the greatest energy and CO2 savings.  Subsequently, 

high impact CRI bins can be focused on in an effort to gain the greatest CO2 emission reductions.  

 

The market penetration under all five policy scenarios is depicted in Figure IV-5.  The market 

penetration is shown in months, in which 151 months are equivalent to the 21-year time span 

from 2005 until 2025. The market penetration is represented by the percent of lumen-hours that 

are supplied by SSL.   All of the SSL curves follow the stylized s-curve of diffusion.   In all 

scenarios, by 2025 the VH CRI bin is almost completely dominated by SSL; the s-curves have 
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all reached their asymptotic limit of approximately 95-99%.  Earlier in the chapter, Figure IV-2 

showed that in all five policy scenario, the VH CRI bin was responsible for the majority of 

annual energy savings in 2025.  Hence, it is the market penetration of the VH CRI that is driving 

these energy/ CO2 emission reductions.    

 

Interestingly, SSL in the L CRI also attains a significant share of the SSL by 2025 in all five of 

the policy scenarios shown in Figures IV-5-10.  However, this market penetration doesn’t 

generate significant energy savings.  For instance, in Scenario 2, SSL captures about 38% of the 

L CRI bin by 2025; however this bin only accounts for only 1% of total energy savings.    

 

Figure IV-5. SSL Market Penetration by CRI Bin: Five Scenarios 
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SSL Market Pentration by CRI Bin 
Scenario 3
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SSL Market Pentration by CRI Bin 
Scenario 4
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SSL Market Pentration by CRI Bin 
Scenario 5
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SSL Market Pentration by CRI Bin 
Scenario 6
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The high energy savings from the VH CRI bin arises from the fact that SSL penetrating the VH 

CRI bin is much more efficacious than the average CL technology. Hence, the energy savings 

from SSL penetration are more significant in this bin.  The difference in the efficacies of SSL 

and CL in the L CRI bin are much less striking, and thus the energy and CO2 emissions impact 

from SSL penetration is comparatively much less.    Furthermore, while the VH CRI bin 

consumed approximately 30% of commercial building energy for lighting in 2005, the L CRI bin 

consumed only about 3%.  Hence, SSL market penetration in the VH CRI bin is able to reduce 

energy use more than SSL penetration into the L CRI bin.  

 

In all five scenarios shown in Figure IV-5, SSL market penetration first occurs in the L CRI bin. 

In Scenario 3, L CRI SSL begins to penetrate the market in month 80 (approximately year 2012).  

In Scenario 2, L CRI SSL begins to penetrate the market in month 125 (approximately 2015).   

The rebate is able to stimulate earlier market penetration in the bin, moving market penetration 

from 125 to month 90, accelerating market penetration by about 3 years.    
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In Scenario 3 (Advanced R&D), all four CRI bins see significant SSL market penetration by 

2025.  By this year, SSL captures: 99% of VH CRI lighting; 31% of H CRI lighting; 54% of M 

CRI lighting; and 87% of L CRI lighting.    

 

It is noticeable in all scenarios depicted in Figure IV-5, that the rate of VH CRI market 

penetration is much quicker than in the other CRI bins. This can be attributed to the rapid 

turnover of CL in the VH CRI bin. For example, in 2005 average lifetime of a VH CRI CL is 

2,600 hours whereas the average lifetime of L CRI CL is 19,000 hours.   Therefore, the 

retirement turnover rate when the CL lighting technologies reach the end of their useful life is 

much shorter for VH CRI and this rapid turnover allows the share of SSL to grow more rapidly.46   

 

4. Epidemic Effect 

An epidemic effect was incorporated into the SSL CMP model to account for the impact that 

information diffusion through social networks will have the adoption of a SSL technology.  The 

epidemic rate is incorporated into the SSL CMP model as factor that encourages earlier CL 

retrofits.  In the model it is assumed that all of these early retrofits due to the epidemic effect are 

automatically translated into SSL purchases.  

 

In Table IV-5 the impact from the epidemic effect is presented in terms of the cumulative 

retrofits undertaken, and how many of these retrofits are attributed to the epidemic effect. (The 

remaining retrofits are attributed to the normal retrofit rate).  The impact that the epidemic effect 

                                                 
46 It is essential to keep in mind that this model assumes there are no compatibility issues or switching costs (e.g., different 
lighting fixtures) associated with replacing a CL lighting technologies with a SSL technology.  
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has in each of the five policy scenarios can be seen from the percentage of retrofits due to the 

epidemic effect.  

 

Table IV-5. Cumulative Epidemic Effect by Policy Scenario  

 
Total Cumulative 

Retrofits 
Cumulative Retrofits  
from Epidemic Effect 

% of Retrofits due to 
Epidemic Effect 

 (In Tlm-hr)  

Scenario 2 2120.6 0.00 0.0% 

Scenario 3 2127.8 190.7 9.0% 

Scenario 4 2116.5 0.00 0.0% 

Scenario 5 2099.6 21.3 1.0% 

Scenario 6 2104.2 3.45 0.2% 

 

In Scenarios 2 and 4, the epidemic effect doesn’t play any role in encouraging SSL diffusion.  

On the other hand, in Scenario 3 the epidemic effect accounts for 9% of all retrofits that occur 

over the 21-year time period.  In Scenarios 5 and 6 the epidemic rate accounts for a smaller 

fraction – 1.0 and 0.2% respectively – of the total retrofits that occur between 2005 and 2025. 

  

In Scenarios 3, 5 and 6 the epidemic effect does not play a role in SSL diffusion until a 

significant share of the installed lighting stock is SSL.  This is because the monthly epidemic rate 

only becomes greater than zero after a minimum of 10% of the lighting market is SSL.  In 

Scenarios 2 and 4, SSL market penetration only attains approximately a 10% market penetration 

in 2025, and hence the epidemic effect never comes into play.  The annual epidemic rate is 

relatively small (ranges from 0.0 to 5.0%) and hence because the SSL CMP STELLA model 

only captures outputs of up to two decimal places – in some cases the epidemic effect might be 

real, but so small it its effect is undetectable.  For the purposes of this analysis, these tiny effects 
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are deemed negligible.   On the other hand, in Scenario 3 the epidemic effect becomes a fairly 

significant stimulus for lighting retrofits.  Under Scenario 5, 1.0% of CL lighting is retrofitted 

because of the epidemic effect; a portion of this 1.0% is retrofitted despite the fact that the 

payback never falls under 10 years (which is the maximum payback for market penetration to 

begin to occur).   In this case, the epidemic effect that results from knowledge and experience 

about SSL in one bin, spills over and influences purchasing decisions in other bins.    

 

Of the scenarios considered in this thesis, from Table IV-5 it is apparent that the epidemic effect 

plays the most significant role in lighting retrofit decisions in Scenario 3.  This can be attributed 

to the strong share of the market that SSL is able to capture.  Hence, the epidemic effect is seen 

to have the greatest impact on the number of retrofits when SSL becomes a significant player in 

the lighting market.  

 

5. Sensitivity Analysis   

The sensitivity analysis in this thesis focuses on assumptions made about different policies and 

certain consumer responses to these policies that are integrated into the SSL CMP model.  This 

sensitivity analysis focuses on the key variables that were used in testing the policies.  These 

variables are adjusted to values 50% higher and lower than the original values.  When graphical 

relationships were used (e.g. to relate the years payback to the market share awarded to SSL), the 

bottom value on the x-axis was increased and then decreased by 50% to perform the sensitivity 

analysis. Then the SSL CMP model was run and two critical outputs were tracked to determine 

how sensitive the final outcomes were to the change in the variable.  The 2025 annual CO2 

emissions and the cumulative CO2 emissions were chosen as two model outputs to be tracked.    
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In Table IV-6, each variable tested in this sensitivity analysis is listed, along with the initial value 

(the middle value) and upper and lower limited tested, and the changes in the two outcomes for 

each limit. 

 

Table IV-6. Sensitivity Analysis for Select Variables 
( Performed Using Scenario 2) 

(MMT CO2)  

Variable Value Cumulative CO2 
(Change from Base) 

CO2 emissions 
in 2025 

(Change from Base) 
5% 5,835.4 0.2% 248.1 0.3% 
10% 5824.0  247.4  Electricity Tax 

15% 5,813.3 0.2% 246.8 0.2% 
25% 5,450.9 3.2% 238.8 1.3% 

50% 5,659.4  241.9  Rebate 

75% 5,768.2 1.9% 244.7 1.2% 

Lower 5,668.1 1.3% 242.6 0.3% 

Medium  5,744.0  243.4  Information Program* 

Upper 5,901.5 2.7% 251.2 3.2% 

Lower 5,847.2 0.0% 248.9 0.0% 

Medium  5,847.2  248.9  Epidemic Rate** 

Upper 5,846.6 0.0% 248.6 0.1% 

  Note: All of the sensitivity runs were performed assuming a Medium R&D Investment.  
 * The lower and upper limits were established for information program graph, by changing the value of the x-axis  
 from 10 to 5 and from 10 to 15, respectively.  
 ** The lower and upper limits for the epidemic rate graph were established by changing the value of the x-axis  
 from 1 to 1.5, and 1 to .5, respectively.  
 
 
According to the sensitivity analysis, the rebate and information program are the most sensitive 

variables.  For the rebate, the cumulative emissions of CO2 are changed by either 1.9 or 3.2% 

from the base value; the 2025 annual CO2 emissions are affected by 1.2-1.3%.  For the 

information program, the cumulative emissions of CO2 have a changed by either 1.3 or 2.7%; the 

2025 annual CO2 emissions are affected by either 0.3 or 3.2%.  For both the rebate and 

information program, cumulative CO2 emissions outcomes tended to exhibit higher sensitivity.  
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This would be expected because changes in the values of the rebate and information program 

would change the shape of the emission curve; and the cumulative impact of a number of years is 

likely to be more significant that final annual emissions in 2025.   

 

The electricity tax exhibited relatively little sensitivity – the base value of 2025 annual emissions 

was changed by just 0.2-0.3%.  The epidemic rate is even less sensitive; the impact on the 2025 

annual emissions is too small to capture in million metric tons (measured to a tenth of a million 

metric ton).  That the electricity tax was not particularly sensitive was not surprising, because of 

the relatively small impact that the price of electricity has on the payback calculation, which 

subsequently determines the percent of the market captured by SSL.  In Figure IV-6 below, the 

electricity cost, the upfront cost and the lamp replacement costs are plotted over 20 years for the 

VH CRI bin (under Scenario 2).   Each of these costs represents the different in the cost between 

SSL and CL; the annual difference in the electricity costs falls from -$1.64 to -$10.74.   

Comparatively the cost of electricity has much less impact that the other two components of the 

payback calculation, which explains why electricity tax was found to be a relatively insensitive 

variable.  
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Figure IV-6. Payback Calculation Components (VH CRI Bin) 
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On the other hand, the insensitivity of the epidemic rate was somewhat a surprise. One of the 

most widely use conceptual models of technology diffusion is based on the epidemic effect, and 

accordingly, it was expected that the epidemic variable would have a relatively significant 

impact on SSL diffusion.  Several explanations may account for the lack of sensitivity witnessed 

in this analysis.  First, while the relationship in which a higher market share of SSL creates a 

higher epidemic rate of retrofits – the assumption that this rate would extend only up to 5% a 

year when 100% SSL market penetration was attained, might be too modest.  Furthermore, since 

in Scenario 2 (which was used as the reference case for the sensitivity analysis) the SSL market 

penetration only reaches approximately 10%, the epidemic effect never became a significant 

cause of retrofits.   

 

Third, in the SSL CMP model the epidemic effect only has an impact on the number of monthly 

retrofits.  However, the epidemic effect could also increase the likelihood that SSL is purchased 

when new buildings are constructed or when old equipment is retired at the end of its life.  
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Hence, the impact of the epidemic effect could be understated in this model.   As will be 

discussed in the final chapter, future work could focus on clarifying the relationship between the 

epidemic effect and the diffusion of new lighting technologies so that the epidemic effect could 

be more accurately integrated into the SSL CMP model. 

 

Since the information program and rebate are relatively sensitive variables in this analysis 

relative to the electricity tax and the epidemic effect, it is important to discuss the implications 

this sensitivity has on some of the final results. The rebate was implemented in Scenario 5 and 

the information program was implemented in Scenario 6.  According to Table IV-6, 

approximately 242 and 243 MMT of CO2 is emitted annually under Scenario 5 and 6, 

respectively, in the year 2025.   These emissions represent annual CO2 emission reductions of 

81.5 and 80.0 MMT CO2, respectively, from Reference Scenario 1.   Annual CO2 emissions were 

found to vary respectively by 1.2 – 1.3% when analyzing the sensitivity of the rebate, and 0.3 – 

3.2% when analyzing the sensitivity of the information program. Thus, despite sensitivity of the 

rebate and information program – even when taking into account their sensitivity ranges they still 

generate net reductions in emissions.   
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CHAPTER V.  CONCLUSION 

 

1. Overview of Analysis  

 
Solid-state lighting is an emerging energy-efficient lighting technology. This thesis has explored 

the potential of SSL to provide a reduction in carbon dioxide (CO2) emissions when deployed in 

the commercial building sector for general illumination. This thesis has also explored how public 

policy mechanisms can accelerate the diffusion of SSL and the subsequent impact this has on 

primary energy consumption and CO2 emissions.   

 

This analysis was conducted by building an economic-energy-environment dynamic simulation 

model, entitled the SSL CMP model.  This model was built using the STELLA systems 

modeling software tool to simulate the market penetration of SSL into the general lighting 

market in the U.S. commercial building sector.  Modeling with STELLA provides a unique 

advantage in that it allows the user to gain a better understanding of the dynamics of a complex 

system.  The model simulation allows for a clear accounting of feedback, dynamics, and 

consequences from policy decisions.  This model is unique in that the STELLA modeling 

software allows for a comprehensive systems approach to modeling the process of technology 

diffusion. The SSL CMP model is also a richer model because it integrates epidemic-type effects 

to simulate how a technology is diffused through the market.    
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2. Summary of Results & Policy Recommendations 

The primary findings from this research are summarized below:  

 

• Deploying SSL in the commercial building sector offers the potential for up to a 45% 

reduction in primary energy-use and CO2 emissions by 2025.  Scenario 3 which is the 

accelerated R&D scenario generates a 45% annual reduction of emissions reduction from the 

Reference Scenario.  Scenario 2 (Medium R&D) on the other hand generates a 23% annual 

reduction of emissions in 2025 from the Reference Scenario, with Scenarios 4 through 6 

providing incremental reductions of 1-3%.  However these energy and CO2 emission 

reductions do not appear until at least 2015.  In light of this, it is apparent that SSL used for 

general illumination applications should not be considered a near-term solution to reduce 

CO2 emissions.   

 

• Technical improvements and cost reductions on solid-state lighting are important for 

realizing continuous CO2 emission reductions.  In this model, it is assumed that a higher 

level of R&D will generate greater cost reductions and performance improvements.  This 

allows SSL to become competitive with CL at an earlier point in time, and in more CRI bins 

of the commercial lighting market.  By 2025, emissions under Scenario 3 are still 

continuously falling because SSL achieves early market penetration in the VH and L CRI 

bins, and later achieves market penetration in the M and H CRI bins.  Because new markets 

are continuously being opened up and penetrated, emissions reductions continue to fall 

through 2025.  In contrast, under Scenarios 2, 4, 5, and 6 – SSL achieves fairly significant 

market penetration in the VH and L CRI bins but is not able to break into and gain substantial 
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market penetration in the M and H CRI bins. Therefore, emission reductions (and energy 

reductions) under these scenarios begin to plateau around 2023-2024.     

 

• A rebate on SSL can stimulate earlier market adoption, and an information program 

can enhance the rate at which SSL diffuses through the market. The additional policies 

(electricity tax, SSL rebate, and information program) which are used in conjunction with a 

medium R&D investment in Scenarios 4, 5, and 6, respectively, are only able to achieve 

moderate incremental benefits over Scenario 2 (Medium R&D).  Of these three policies, the 

rebate is able to generate earlier CO2 emission reductions because the upfront price of SSL 

equipment is reduced making it more competitive with CL technology.  The information 

program on the other hand, generates a more rapid rate of CO2 emission reductions because it 

is able to accelerate the rate at which SSL penetrates the market.  The electricity tax on the 

other hand provides only a very small improvement in CO2 emission reductions from 

Scenario 2.  Hence, a rebate program appears to be the most effective way to achieve an early 

market penetration, while the information program can be an effective program in speeding 

up the rate at which SSL is diffused through the market.  

 

• Earlier emission reductions occur under the higher national R&D investment scenario.  

The earliest market penetration of SSL occurs is in Scenario 3 (Advanced R&D), and creates 

a 13% cumulative CO2 emission reduction between 2005 and 2025, relative to the Reference 

Scenario.  Scenario 2 (Medium R&D) on the other hand only generates a cumulative 

reduction of 4.5%.  Of the three additional policy mechanisms that were tested in this 
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analysis, the rebate generates the highest cumulative emission reduction of 7.6% from the 

Reference Scenario.   

 

• The majority of CO2 emissions in all five policy scenarios are generated from replacing 

incandescent lighting.  This is in part due to the much higher efficiency of SSL compared to 

the incandescent CL technology it replaces in the VH CRI bin.  Furthermore, VH CRI 

accounted for approximately 30% of total lighting energy consumption in 2005, while L CRI 

lighting accounted for just 3%; therefore even if SSL displaces a significant percentage of CL 

in the L CRI bin, the energy savings are smaller than if the same percentage of conventional 

VH CRI lighting is displaced.  For example, in Scenario 2, by 2025 SSL has penetrated 95% 

of the VH CRI bin and 38% of the L CRI bin.  However, 99% of the total energy savings 

accrue from VH CRI bin and only 1% of energy reductions accrue from the L CRI bin.  This 

implies that substantially more emission reductions can be achieved by focusing on replacing 

incandescent lamps that compose the VH CRI bin, with SSL.   However, at the same time if 

CFL continue to gain market share by replacing incandescent lamps, then SSL will not only 

face a better performing incumbent technology, but the CO2 benefits reaped from replacing 

CFLs with SSL will be smaller.   

 

Although this thesis does not focus on the residential sector, it is also worth noting that VH 

CRI lighting is also widely used in the residential sector.  In fact, VH CRI incandescent 

lighting in the residential sector consumes approximately 90% of the household energy used 

for lighting (DOE, 2002).  Therefore, because replacing incandescent VH CRI lighting with 
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SSL is the most substantial energy savings in the commercial sector, the residential sector is 

also likely to be an important target for SSL market penetration.  

 

• The epidemic rate has the most significant impact when a significant portion of the 

market is captured by SSL.   The epidemic effect in the SSL CMP model had the most 

impact under Scenario 3; in which SSL gains over a 50% share in the lighting market by 

2025. Under this scenario, because SSL achieves significant market penetration, a greater 

percentage of retrofits are undertaken to replace CL with SSL.  Intuitively, this finding seems 

almost self-evident; however incorporating this epidemic into technology diffusion models 

and policy planning has important implications.  Public policy can be used to build an early 

market for a new technology, thereby “infecting” a base of users, and then relying on market 

mechanisms and the epidemic dynamic of technology diffusion to take over and finish the 

diffusion process. 

 

Although all models are based on simplifying assumptions which are made to reduce the 

problem or situation to a manageable complexity, one assumption in particular is important to 

mention because of the model results.  The results are predicated on the assumption that SSL will 

fit into existing lighting sockets.  If this is not the case, and there are significant switching costs, 

SSL will experience slower market penetration.  Only lighting systems that are newly built or are 

totally replaced could be potentially replaced by SSL.  This is a particularly important 

assumption, because so much of the energy and CO2 savings is found to accrue by replacing 

incandescent lighting, in which the short lifetime (~1,000 hours) means that these lamps are 

frequently replaced.  Hence, SSL that are made to fit into the typical Edison-sockets would need 
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to be widely available, with the appropriate electronics to modify the electricity from alternating 

current to direct current.    

 

This thesis has quantified some of the benefits following the development and market 

penetration of SSL for general illumination into the commercial building sector.  Although the 

policy scenarios tested were not exhaustive, they provide guidance as to how different policy 

mechanisms can impact the rate of SSL diffusion and the subsequent CO2 emission reductions 

that can be achieved.  From the primary findings highlighted above, a suite of policy options 

have been selected.   

 

Policy Recommendations: 

1. The government should invest in SSL R&D so as to realize the accelerated performance 

and cost targets for SSL.   This investment should be supplemented by a coordinated 

effort to offer rebates early in the diffusion process, after SSL enters the market for 

general illumination. 

2. In the near-term, focus should be concentrated on developing and deploying SSL as a 

viable and attractive replacement for incandescent lighting.  In the longer-term, greater 

focus should be placed on developing SSL products that capitalize on the innovativeness 

of SSL – but might not be feasible direct replacements for incandescent lamps in 

conventional Edison fixtures.  

3. An information program (e.g., ENERGY STAR) should be used to label high-quality 

SSL products, in order to accelerate market penetration.  
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2. Areas for Future Research  

An important complement to this research would estimate the costs associated with these types 

of programs and policies that can accelerate the market penetration of SSL.  Furthermore, 

additional work is needed to quantify some of the additional benefits from developing energy-

efficient SSL.  Some of these benefits include environmental and health benefits that accompany 

reducing energy use (e.g., air pollution, mining and drilling for fossil fuels, land needed for the 

sitting of new power plants); the economic benefits from developing a strong and innovative SSL 

industry in America (e.g. new job creation); the occupational benefits from deploying high 

quality SSL into the workplace (e.g. higher productivity); and the additional energy impacts that 

SSL can have by affecting the energy required for space conditioning or through reducing peak 

load energy-demand. 

 

Further research could focus on expanding the SSL CMP model by integrating a greater degree 

of complexity; including the fixture costs and lifetimes of conventional lighting, a more detailed 

stock of lighting technologies, and some of the latest energy-economic modeling techniques for 

better modeling of consumer behavior.  Given the availability of appropriate lighting data, 

relatively simple adjustments to the SSL CMP model could be made to study the impacts of SSL 

diffusion on state or regional energy demand.   Finally, additional scenarios could also be created 

and tested using the SSL CMP model.  For example, one such scenario could investigate how 

long rebate a policy should be used early on in the diffusion process, in order to gain a large 

enough base of “infected” technology users such that the epidemic dynamic could replace the 

effect the rebate has in stimulating technology diffusion.  
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Exploring the impact that SSL would have on energy and CO2 emissions if SSL technologies are 

not mass-produced to fit into conventional lighting fixtures would be another interesting avenue 

of research.  In other words, SSL would instead replace the current “bulb” culture with more 

innovative and unique ways of delivering lighting service.  Under this scenario, SSL would 

likely have a much smaller impact in the next 20 years because SSL would predominately be 

purchased only through new builds or lighting retrofits.   

 

Since the information program variable was found be a sensitive variable, it is recommended that 

future research concentrate on quantitatively linking information programs with changes in 

consumer implicit discount rates (and hence, the payback curve).   Furthermore, future empirical 

research over how the epidemic effect changes the rate of diffusion of new lighting technologies 

(or new energy-efficient equipment in general) could further enhance the SSL CMP model.     

 

Solid-state lighting is an innovative, and highly promising energy-efficient lighting technology. 

The CO2 emission reductions that are possible from SSL combined with growing public concern 

over future implications of global climate change form a compelling case for U.S. public policy 

intervention to develop and deploy SSL. Over the next decade, research and development with 

improve the performance and lower costs of SSL, which will allow SSL to become competitive 

with CL technologies.  Solid state lighting holds the potential to reduce CO2 emissions and 

primary energy use, and this analysis shows that performance improvements and cost reduction, 

created through R&D, will be vital be one of the most vital policies for SSL to achieve 

widespread market penetration in the commercial building sector.  While the private sector has 

an critical role in the R&D process for SSL, the government can aid in this effort by providing 
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funding for research, creating industry roadmaps that define major challenges, and facilitating a 

private-public partnership.  

 

The rebate program and information program have comparatively less impact on SSL diffusion 

than greater cost reductions and technology improvements. However, these policies can have 

some impact.  This analysis elucidated that rebates can stimulate earlier SSL adoption and an 

information program can accelerate the rate of diffusion.   Future analysis is needed to estimate 

additional benefits and costs associated with policies intended to tune the rate of SSL diffusion; 

if net social benefits are found then the case for government action would be further 

strengthened.   The SSL CMP model has estimated the energy and CO2 emission benefits from 

SSL diffusion, and can provide a future platform for estimating further costs and benefits 

associated with different policy mechanisms.  
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CHAPTER LXX. APPENDIX A. Lighting Glossary 
 
Ballast – An electrical device used to control the current provided to a lamp.  
 
[CCT] Color Correlated Temperature – The absolute temperature of a blackbody whose 
chromaticity most nearly resembles that of the lighting source.  
 
[CRI] Color Rendering Index – A measure of how surface colors appear when illuminated by 
the lamp, compared to how they appear when illuminated by a reference source of the same 
temperature.    
 
Efficacy – The energy-efficiency of lighting; calculated by dividing the quantity of light emitted 
from the lamp (in lumens) by the power input to the lamp (in watts) 
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General Lighting/General Illumination – Provides the lighting required for performing tasks. 
This lighting is commonly divided into three categories: ambient; task and accent lighting. 
Ambient lighting typically provides securing and safety as well as the lighting needed to perform 
general tasks. Task lighting provides just enough light so that a particular task can be performed 
but not enough to illuminate a larger surface. Accent lighting illuminates typically illuminates 
walls.  
 
Lamp – A generic term for an artificial source of light.  In this thesis is it taken to represent the 
actual electrically powered “bulb” or “tube”; or in the case of SSL, the semiconductor chip, 
which generates the light.  
 
Lighting Controls – A wide range of technologies that are used to electromechanically and/or 
mechanically control the lighting in a building. 
 
Lighting Fixture – A housing for securing lamp(s) and ballast(s), and controls the light 
distribution to a particular area.  
 
Lumen – A basic unit measurement of light.  A lumen is defined as the amount of light given out 
through a solid angle by a source of one candela [unit of luminous intensity] radiating out 
equally in all directions.   
 
Luminaire – Most commonly used to refer to the complete lighting system that includes a lamp, 
ballast and fixture.  
 
Watt – A unit of power.  
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APPENDIX B. Commercial Sector Lamps  

Type Wattage 
(lm/W) 

Efficacy 
(W) 

CRI Lamp Life in 
2005 (khrs) 

Lamp Price 
2005 ($) 

Price  in 
2005 

($/klm) 

Distribution 
Lamp Output 

(Tlm-hr)  

Percent  

Standard - General 
Service 83 16 100 2.5 1.00   1,114 63% 

Standard - Reflector 104 9 100 1.5 2.25   270 15% 
Halogen - General 
Service 64 15 100 2.8 3.50   3 0% 

Halogen – Quartz 226 20 100 3.5 3.00   276 16% 
Halogen - refl. - low 
volt 48 11 100 4.0 3.75   80 5% 

Low wattage (less than 
25W) 15 9 100 2.5 0.65   34 2% 

Misc incandescent 0 13 100       -   
INCANDESCENT / 
VH CRI  105.5 15.2   2.6 1.62 1.01 1,777   

T5 8 50 78 20.0 2.00   13 0% 
T8 – less than 4’ 23 82 80 17.5 3.00   196 2% 
T8 – 4’ 33 85 80 17.5 2.00   3,876 49% 
T8 – More than 4’ 50 88 68 13.8 6.00   29 0% 
T8 – U-bent 34 74 80 20.0 7.50   107 1% 
T12 – less than 4’ 29 63 71 12.8 2.25   202 2% 
T12 – 4’ 45 74 70 20.0 1.50   8,073 73% 
T12 – More than 4’ 93 79 76 14.5 3.50   3,076 39% 
T12 – U-bent 46 69 67 15.0 5.50   402 4% 
Compact – Plug-in 17 60 82 15.0 5.50   391 5% 
Compact – Screw base 16 55 82 10.0 5.50   161 2% 
Compact – Plug-in – 
reflector 16 55 82 10.0 8.00   -   

Compact – Screw base 
– reflector 16 55 82 10.0 8.00   19 0% 

Circline 30 58 73 11.0 3.50   164 1% 
Induction discharge 0 53 85   2.25   - 0% 
Miscellaneous 
fluorescent 18 60 80 10.0     24 0% 

FLUORESCENT / H 
CRI  55.0 80.4   16.0 2.94 0.67 7,863 100% 

FLUORESCENT / M 
CRI  129.5 71.6   18.3 1.40 0.15 11,072 100% 

Mercury vapor 331 40 33 20.0 22.00   261 30% 
Metal halide 472 65 68 13.8 60.00   2,202 20% 
High pressure sodium 260 104 22 20.0 22.00   587 68% 
Low pressure sodium 104 140 10 16.0 22.00   18 2% 
Xenon 0 40         -   
Electrodeless (e.g. 
mercury) 0 150         -   

HID / L CRI  278.2 85.5   19.9 22.0 0.93 866 100% 
LED 6 20 0           
Electroluminescent 2 10             
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Source: 
 
 
Type –   (DOE, 2002) Appendix E Table-E5, “Commercial Building Lamp   
   Characteristics” 
 
Wattage –   (DOE, 2002) Appendix E Table-E5, “Commercial Building Lamp   
   Characteristics” 
 
Efficacy –   (DOE, 2002) Appendix E Table-E5, “Commercial Building Lamp   
   Characteristics” 
 
CRI–    (DOE, 2003) Table 2-1 “Average Lamp Wattage, Efficacy, and Color  
   Rendering Index”  
 
Lamp Lifetime –  (DOE, 2003) Table 4-3 “Commercial Sector Conventional Technologies  
   Improvement, 2005 and 2025”  
 
Lamp Price –   (DOE, 2003) Table 4-3 “Commercial Sector Conventional Technologies  
   Improvement, 2005 and 2025” 
 
Price in 2005 –  Calculated into $/kWh using wattage, efficacy, and lamp price.  
  
Percent –   (DOE, 2002) Table 5-8 “Distribution of Lamp-Output (Tlm-hr) per Year  
   by Lamp Type”  
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APPENDIX C. Units & Conversion Factors  

 
Units 
 
khr  kilohour 
klm  kilolumen 
klm-hr  kilolumen-hour 
kWh  kilowatt-hour 
lm  lumen 
lm-hr   lumen-hour 
MMT CO2 million metric tons of carbon dioxide  
Quad  Quadrillion BTUs (British Thermal Unit)  
Tlm-hr  Teralumen-hour 
TWh  Terawatt-hour 
W  watt 
Yr  year 
 
 
Conversion Factors 
 
1 TWh  =  1x109 kWh 
 
CO/CO2  =  1 / 3.67 
 
Primary Energy/ 
Site-Use∗  =  10,768 BTU/kWh 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
∗ Used in (DOE, 2002). 



 133

 

APPENDIX D. SSL CMP Model Code   

 
CL[VH_CRI](t) = CL[VH_CRI](t - dt) + (CL_Purchase[VH_CRI] - CL_Retire[VH_CRI] - 
Retrofits[VH_CRI]) * dt 
INIT CL[VH_CRI] = 163 
 
 TRANSIT TIME = varies 
 
 INFLOW LIMIT = INF 
 
 CAPACITY = INF 
 
CL[H_CRI](t) = CL[H_CRI](t - dt) + (CL_Purchase[H_CRI] - CL_Retire[H_CRI] - 
Retrofits[H_CRI]) * dt 
INIT CL[H_CRI] = 661 
 
 TRANSIT TIME = varies 
 
 INFLOW LIMIT = INF 
 
 CAPACITY = INF 
 
CL[M_CRI](t) = CL[M_CRI](t - dt) + (CL_Purchase[M_CRI] - CL_Retire[M_CRI] - 
Retrofits[M_CRI]) * dt 
INIT CL[M_CRI] = 1037.6 
 
 TRANSIT TIME = varies 
 
 INFLOW LIMIT = INF 
 
 CAPACITY = INF 
 
CL[L_CRI](t) = CL[L_CRI](t - dt) + (CL_Purchase[L_CRI] - CL_Retire[L_CRI] - 
Retrofits[L_CRI]) * dt 
INIT CL[L_CRI] = 85.1 
 
 TRANSIT TIME = varies 
 
 INFLOW LIMIT = INF 
 
 CAPACITY = INF 
 
INFLOWS: 
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CL_Purchase[VH_CRI] = IF (Information__Factor=0) THEN Tlmhr_Needed[VH_CRI]*(1-
Percent__SSL[VH_CRI]) ELSE Tlmhr_Needed[VH_CRI]*(1-Percent__SSL_IF[VH_CRI]) 
CL_Purchase[H_CRI] = IF (Information__Factor=0) THEN Tlmhr_Needed[H_CRI]*(1-
Percent__SSL[H_CRI]) ELSE Tlmhr_Needed[H_CRI]*(1-Percent__SSL_IF[H_CRI]) 
CL_Purchase[M_CRI] = IF (Information__Factor=0) THEN Tlmhr_Needed[M_CRI]*(1-
Percent__SSL[M_CRI]) ELSE Tlmhr_Needed[M_CRI]*(1-Percent__SSL_IF[M_CRI]) 
CL_Purchase[L_CRI] = IF (Information__Factor=0) THEN Tlmhr_Needed[L_CRI]*(1-
Percent__SSL[L_CRI]) ELSE Tlmhr_Needed[L_CRI]*(1-Percent__SSL_IF[L_CRI]) 
OUTFLOWS: 
CL_Retire[VH_CRI] = CONVEYOR OUTFLOW 
 
 TRANSIT TIME = (CL_Lifetime[VH_CRI]*1000/hr_per_mt) 
CL_Retire[H_CRI] = CONVEYOR OUTFLOW 
 
 TRANSIT TIME = (CL_Lifetime[H_CRI]*1000/hr_per_mt) 
CL_Retire[M_CRI] = CONVEYOR OUTFLOW 
 
 TRANSIT TIME = (CL_Lifetime[M_CRI]*1000/hr_per_mt) 
CL_Retire[L_CRI] = CONVEYOR OUTFLOW 
 
 TRANSIT TIME = CL_Lifetime[L_CRI]*1000/hr_per_mt 
Retrofits[CRI_BINS] = LEAKAGE OUTFLOW 
 
 LEAKAGE FRACTION = (Retrofit__Rate+Epidemic__Rate)*2 
 
 NO-LEAK ZONE = 50% 
Cumulative_CO2(t) = Cumulative_CO2(t - dt) + (CO2_Emissions) * dt 
INIT Cumulative_CO2 = 0 
 
INFLOWS: 
CO2_Emissions = 
CO2_per_mt[VH_CRI]+CO2_per_mt[H_CRI]+CO2_per_mt[M_CRI]+CO2_per_mt[L_CRI] 
Cumulative_TWhr__delivered(t) = Cumulative_TWhr__delivered(t - dt) + (Delivered__TWhr) * 
dt 
INIT Cumulative_TWhr__delivered = 0 
 
INFLOWS: 
Delivered__TWhr = (kWhr[VH_CRI]+kWhr[H_CRI]+kWhr[M_CRI]+kWhr[L_CRI])/10^9 
SSL[VH_CRI](t) = SSL[VH_CRI](t - dt) + (SSL_Purchase[VH_CRI] - SSL_retire[VH_CRI]) * 
dt 
INIT SSL[VH_CRI] = 0 
 
 TRANSIT TIME = varies 
 
 INFLOW LIMIT = INF 
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 CAPACITY = INF 
 
SSL[H_CRI](t) = SSL[H_CRI](t - dt) + (SSL_Purchase[H_CRI] - SSL_retire[H_CRI]) * dt 
INIT SSL[H_CRI] = 0 
 
 TRANSIT TIME = varies 
 
 INFLOW LIMIT = INF 
 
 CAPACITY = INF 
 
SSL[M_CRI](t) = SSL[M_CRI](t - dt) + (SSL_Purchase[M_CRI] - SSL_retire[M_CRI]) * dt 
INIT SSL[M_CRI] = 0 
 
 TRANSIT TIME = varies 
 
 INFLOW LIMIT = INF 
 
 CAPACITY = INF 
 
SSL[L_CRI](t) = SSL[L_CRI](t - dt) + (SSL_Purchase[L_CRI] - SSL_retire[L_CRI]) * dt 
INIT SSL[L_CRI] = 0 
 
 TRANSIT TIME = varies 
 
 INFLOW LIMIT = INF 
 
 CAPACITY = INF 
 
INFLOWS: 
SSL_Purchase[VH_CRI] = IF (Information__Factor=0) THEN 
Tlmhr_Needed[VH_CRI]*(Percent__SSL[VH_CRI])+Retrofits[VH_CRI]*E&R_Ratio ELSE 
Tlmhr_Needed[VH_CRI]*Percent__SSL_IF[VH_CRI]+Retrofits[VH_CRI]*E&R_Ratio 
SSL_Purchase[H_CRI] = IF (Information__Factor=0) THEN 
Tlmhr_Needed[H_CRI]*Percent__SSL[H_CRI]+Retrofits[H_CRI]*E&R_Ratio ELSE 
Tlmhr_Needed[H_CRI]*Percent__SSL_IF[H_CRI]+Retrofits[H_CRI]*E&R_Ratio 
SSL_Purchase[M_CRI] = IF (Information__Factor=0) THEN 
Tlmhr_Needed[M_CRI]*Percent__SSL[M_CRI]+Retrofits[M_CRI]*E&R_Ratio ELSE 
Tlmhr_Needed[M_CRI]*Percent__SSL_IF[M_CRI]+Retrofits[M_CRI]*E&R_Ratio 
SSL_Purchase[L_CRI] = IF (Information__Factor=0) THEN 
Tlmhr_Needed[L_CRI]*Percent__SSL[L_CRI]+Retrofits[L_CRI]*E&R_Ratio ELSE 
Tlmhr_Needed[L_CRI]*Percent__SSL_IF[L_CRI]+Retrofits[L_CRI]*E&R_Ratio 
OUTFLOWS: 
SSL_retire[VH_CRI] = CONVEYOR OUTFLOW 
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 TRANSIT TIME = IF (Advanced_R&D=0) THEN 
SSL__MR&D_Lifetime[VH_CRI]*1000/hr_per_mt ELSE 
SSL_AR&D_Lifetime[VH_CRI]*1000/hr_per_mt 
SSL_retire[H_CRI] = CONVEYOR OUTFLOW 
 
 TRANSIT TIME = IF (Advanced_R&D=0) THEN 
SSL__MR&D_Lifetime[H_CRI]*1000/hr_per_mt ELSE 
SSL_AR&D_Lifetime[H_CRI]*1000/hr_per_mt 
SSL_retire[M_CRI] = CONVEYOR OUTFLOW 
 
 TRANSIT TIME = IF (Advanced_R&D=0) THEN 
SSL__MR&D_Lifetime[M_CRI]*1000/hr_per_mt ELSE 
SSL_AR&D_Lifetime[M_CRI]*1000/hr_per_mt 
SSL_retire[L_CRI] = CONVEYOR OUTFLOW 
 
 TRANSIT TIME = IF (Advanced_R&D=0) THEN 
SSL__MR&D_Lifetime[L_CRI]*1000/hr_per_mt ELSE 
SSL_AR&D_Lifetime[L_CRI]*1000/hr_per_mt  
Advanced_R&D = 1 
CO2_per_kWhr = 
EF_Coal*Percent_Coal+EF_NG*Percent_NG+EF_Oil*Percent_Oil+Percent_Nuclear*0+Percen
t_Other*0 
CO2_per_mt[CRI_BINS] = kWhr[CRI_BINS]*CO2_per_kWhr/1e12 
Coal_Eff = .35 
Combined_Ave___Efficiency = 
Coal_Eff*Percent_Coal+NG_Eff*Percent_NG+Oil_Eff*Percent_Oil+Other_Eff*Percent_Other
+Nuclear_Eff*Percent_Nuclear 
Cumulative_Delivered__Quads = Cumulative_TWhr__delivered*(.003412) 
Cumulative_Primary__Quads = 
Cumulative_Delivered__Quads/(Combined_Ave___Efficiency*.92) 
Delivered__Quads = Delivered__TWhr*.003412 
Diff_Operating__Cost[VH_CRI] = 
Diff__Electricity__Cost[VH_CRI]+Diff__Lamp__Replacement__Cost[VH_CRI] 
Diff_Operating__Cost[H_CRI] = 
Diff__Electricity__Cost[H_CRI]+Diff__Lamp__Replacement__Cost[H_CRI] 
Diff_Operating__Cost[M_CRI] = 
Diff__Electricity__Cost[M_CRI]+Diff__Lamp__Replacement__Cost[M_CRI] 
Diff_Operating__Cost[L_CRI] = 
Diff__Electricity__Cost[L_CRI]+Diff__Lamp__Replacement__Cost[L_CRI] 
Diff_Upfront__Cost[VH_CRI] = IF (Advanced_R&D=0) THEN 
SSL_MR&D_Upfront_Cost[VH_CRI]*SSL_Rebate__Program-CL_Upfront_Cost[VH_CRI] 
ELSE  SSL_AR&D_Upfront_Cost[VH_CRI]*SSL_Rebate__Program-
CL_Upfront_Cost[VH_CRI]  
Diff_Upfront__Cost[H_CRI] = IF (Advanced_R&D=0) THEN 
(SSL_MR&D_Upfront_Cost[H_CRI]*SSL_Rebate__Program-CL_Upfront_Cost[H_CRI]) 
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ELSE  (SSL_AR&D_Upfront_Cost[H_CRI]*SSL_Rebate__Program-
CL_Upfront_Cost[H_CRI])  
Diff_Upfront__Cost[M_CRI] = IF (Advanced_R&D=0) THEN 
(SSL_MR&D_Upfront_Cost[M_CRI]*SSL_Rebate__Program-CL_Upfront_Cost[M_CRI]) 
ELSE(SSL_AR&D_Upfront_Cost[M_CRI]*SSL_Rebate__Program-
CL_Upfront_Cost[M_CRI])  
Diff_Upfront__Cost[L_CRI] = IF (Advanced_R&D=0) THEN 
(SSL_MR&D_Upfront_Cost[L_CRI]*SSL_Rebate__Program-CL_Upfront_Cost[L_CRI])  
ELSE (SSL_AR&D_Upfront_Cost[L_CRI]*SSL_Rebate__Program-CL_Upfront_Cost[L_CRI]) 
Diff__Electricity__Cost[VH_CRI] = IF (Advanced_R&D=0) THEN 
12*(hr_per_mt*Electricity_Costs*Electricity_Tax*(1/SSL_MR&D_Efficacy[VH_CRI]-
1/CL_Efficacy[VH_CRI])) ELSE 
12*(hr_per_mt*Electricity_Costs*Electricity_Tax*(1/SSL_AR&D_Efficacy[VH_CRI]-
1/CL_Efficacy[VH_CRI]))  
Diff__Electricity__Cost[H_CRI] = IF (Advanced_R&D=0) THEN 
12*(hr_per_mt*Electricity_Costs*Electricity_Tax*(1/SSL_MR&D_Efficacy[H_CRI]-
1/CL_Efficacy[H_CRI])) ELSE 
12*(hr_per_mt*Electricity_Costs*Electricity_Tax*(1/SSL_AR&D_Efficacy[H_CRI]-
1/CL_Efficacy[H_CRI]))  
Diff__Electricity__Cost[M_CRI] = IF (Advanced_R&D=0) THEN 
12*(hr_per_mt*Electricity_Costs*Electricity_Tax*(1/SSL_MR&D_Efficacy[M_CRI]-
1/CL_Efficacy[M_CRI])) ELSE 
12*(hr_per_mt*Electricity_Costs*Electricity_Tax*(1/SSL_AR&D_Efficacy[M_CRI]-
1/CL_Efficacy[M_CRI]))  
Diff__Electricity__Cost[L_CRI] = IF (Advanced_R&D=0) THEN 
12*(hr_per_mt*Electricity_Costs*Electricity_Tax*(1/SSL_MR&D_Efficacy[L_CRI]-
1/CL_Efficacy[L_CRI])) ELSE 
12*(hr_per_mt*Electricity_Costs*Electricity_Tax*(1/SSL_AR&D_Efficacy[L_CRI]-
1/CL_Efficacy[L_CRI])) 
Diff__Lamp__Replacement__Cost[VH_CRI] = IF (Advanced_R&D=0) THEN 
((hr_per_mt/(SSL__MR&D_Lifetime[VH_CRI]*1000)*SSL_MR&D_Upfront_Cost[VH_CRI]*
SSL_Rebate__Program)-
(hr_per_mt/(CL_Lifetime[VH_CRI]*1000)*CL_Upfront_Cost[VH_CRI]))*12 ELSE 
((hr_per_mt/(SSL_AR&D_Lifetime[VH_CRI]*1000)*SSL_AR&D_Upfront_Cost[VH_CRI]*S
SL_Rebate__Program)-
(hr_per_mt/(CL_Lifetime[VH_CRI]*1000)*CL_Upfront_Cost[VH_CRI]))*12  
Diff__Lamp__Replacement__Cost[H_CRI] = IF(Advanced_R&D=0) THEN 
((hr_per_mt/(SSL__MR&D_Lifetime[H_CRI]*1000)*SSL_MR&D_Upfront_Cost[H_CRI]*SS
L_Rebate__Program)-
(hr_per_mt/(CL_Lifetime[H_CRI]*1000)*CL_Upfront_Cost[H_CRI]))*12 
ELSE 
((hr_per_mt/(SSL_AR&D_Lifetime[H_CRI]*1000)*SSL_AR&D_Upfront_Cost[H_CRI]*SSL_
Rebate__Program)-(hr_per_mt/(CL_Lifetime[H_CRI]*1000)*CL_Upfront_Cost[H_CRI]))*12 
Diff__Lamp__Replacement__Cost[M_CRI] = IF (Advanced_R&D=0) THEN 
((hr_per_mt/(SSL__MR&D_Lifetime[M_CRI]*1000)*SSL_MR&D_Upfront_Cost[M_CRI]*SS
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L_Rebate__Program)-
(hr_per_mt/(CL_Lifetime[M_CRI]*1000)*CL_Upfront_Cost[M_CRI]))*12 ELSE 
((hr_per_mt/(SSL_AR&D_Lifetime[M_CRI]*1000)*SSL_AR&D_Upfront_Cost[M_CRI]*SSL
_Rebate__Program)-(hr_per_mt/(CL_Lifetime[M_CRI]*1000)*CL_Upfront_Cost[M_CRI]))*12 
Diff__Lamp__Replacement__Cost[L_CRI] = IF(Advanced_R&D=0) THEN 
((hr_per_mt/(SSL__MR&D_Lifetime[L_CRI]*1000)*SSL_MR&D_Upfront_Cost[L_CRI])*SS
L_Rebate__Program-(hr_per_mt/(CL_Lifetime[L_CRI]*1000)*CL_Upfront_Cost[L_CRI]))*12 
ELSE 
((hr_per_mt/(SSL_AR&D_Lifetime[L_CRI]*1000)*SSL_AR&D_Upfront_Cost[L_CRI])*SSL_
Rebate__Program-(hr_per_mt/(CL_Lifetime[L_CRI]*1000)*CL_Upfront_Cost[L_CRI]))*12  
E&R_Ratio = Epidemic__Rate/(Retrofit__Rate+Epidemic__Rate) 
EF_Coal = 1012.3 
EF_NG = 562.9 
EF_Oil = 896.6 
Electricity_Tax = 1 
hr_per_mt = 248 
Information__Factor = 0 
Klmhr_per_sqft_ = 307/12 
kWhr[CRI_BINS] = IF (Advanced_R&D=0) THEN 
CL[CRI_BINS]*((1/CL_Efficacy[CRI_BINS])*10^9)+SSL[CRI_BINS]*((1/SSL_MR&D_Effic
acy[CRI_BINS])*10^9) ELSE 
CL[CRI_BINS]*((1/CL_Efficacy[CRI_BINS])*10^9)+SSL[CRI_BINS]*((1/SSL_AR&D_Effic
acy[CRI_BINS])*10^9) 
NG_Eff = .394 
Nuclear_Eff = .34 
Oil_Eff = .342 
Operating__Costs[VH_CRI] = IF (Advanced_R&D=0) THEN 
CL[VH_CRI]*(1/CL_Efficacy[VH_CRI])*Electricity_Costs*Electricity_Tax+SSL[VH_CRI]*(1
/SSL_MR&D_Efficacy[VH_CRI])*Electricity_Costs*Electricity_Tax ELSE 
CL[VH_CRI]*(1/CL_Efficacy[VH_CRI])*Electricity_Costs*Electricity_Tax+SSL[VH_CRI]*(1
/SSL_AR&D_Efficacy[VH_CRI])*Electricity_Costs*Electricity_Tax 
Operating__Costs[H_CRI] = IF (Advanced_R&D=0) THEN 
CL[H_CRI]*(1/CL_Efficacy[H_CRI])*Electricity_Costs*Electricity_Tax+SSL[H_CRI]*(1/SSL
_MR&D_Efficacy[H_CRI])*Electricity_Costs*Electricity_Tax ELSE 
CL[H_CRI]*(1/CL_Efficacy[H_CRI])*Electricity_Costs*Electricity_Tax+SSL[H_CRI]*(1/SSL
_AR&D_Efficacy[H_CRI])*Electricity_Costs*Electricity_Tax 
Operating__Costs[M_CRI] = IF (Advanced_R&D=0) THEN 
CL[M_CRI]*(1/CL_Efficacy[M_CRI])*Electricity_Costs*Electricity_Tax+SSL[M_CRI]*(1/SS
L_MR&D_Efficacy[M_CRI])*Electricity_Costs*Electricity_Tax ELSE 
CL[M_CRI]*(1/CL_Efficacy[M_CRI])*Electricity_Costs*Electricity_Tax+SSL[M_CRI]*(1/SS
L_AR&D_Efficacy[M_CRI])*Electricity_Costs*Electricity_Tax 
Operating__Costs[L_CRI] = IF (Advanced_R&D=0) THEN 
CL[L_CRI]*(1/CL_Efficacy[L_CRI])*Electricity_Costs*Electricity_Tax+SSL[L_CRI]*(1/SSL_
MR&D_Efficacy[L_CRI])*Electricity_Costs*Electricity_Tax ELSE 
CL[L_CRI]*(1/CL_Efficacy[L_CRI])*Electricity_Costs*Electricity_Tax+SSL[L_CRI]*(1/SSL_
AR&D_Efficacy[L_CRI])*Electricity_Costs*Electricity_Tax 
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Other_Eff = .35 
Payback[VH_CRI] = -Diff_Upfront__Cost[VH_CRI]/Diff_Operating__Cost[VH_CRI] 
Payback[H_CRI] = -Diff_Upfront__Cost[H_CRI]/Diff_Operating__Cost[H_CRI] 
Payback[M_CRI] = -Diff_Upfront__Cost[M_CRI]/Diff_Operating__Cost[M_CRI] 
Payback[L_CRI] = -Diff_Upfront__Cost[L_CRI]/Diff_Operating__Cost[L_CRI] 
Percent_Coal = .538 
Percent_NG = .149 
Percent_Nuclear = .18 
Percent_of__Lighting_SSL = Total_SSL/(Total_SSL+Total_CL) 
Percent_Oil = .01 
Percent_Other = .123 
Primary__Quads = Delivered__Quads/(Combined_Ave___Efficiency*.92) 
Purchase__Costs[VH_CRI] = IF (Advanced_R&D=0) THEN 
CL_Purchase[VH_CRI]*CL_Upfront_Cost[VH_CRI]*(1/CL_Lifetime[VH_CRI])+SSL_Purcha
se[VH_CRI]*SSL_MR&D_Upfront_Cost[VH_CRI]*(1/SSL__MR&D_Lifetime[VH_CRI]) 
ELSE 
CL_Purchase[VH_CRI]*CL_Upfront_Cost[VH_CRI]*(1/CL_Lifetime[VH_CRI])+SSL_Purcha
se[VH_CRI]*SSL_AR&D_Upfront_Cost[VH_CRI]*(1/SSL_AR&D_Lifetime[VH_CRI]) 
Purchase__Costs[H_CRI] = IF (Advanced_R&D=0) THEN 
CL_Purchase[H_CRI]*CL_Upfront_Cost[H_CRI]*(1/CL_Lifetime[H_CRI])+SSL_Purchase[H_
CRI]*SSL_MR&D_Upfront_Cost[H_CRI]*(1/SSL__MR&D_Lifetime[H_CRI])  
ELSE 
CL_Purchase[H_CRI]*CL_Upfront_Cost[H_CRI]*(1/CL_Lifetime[H_CRI])+SSL_Purchase[H_
CRI]*SSL_AR&D_Upfront_Cost[H_CRI]*(1/SSL_AR&D_Lifetime[H_CRI]) 
Purchase__Costs[M_CRI] = IF (Advanced_R&D=0) THEN 
CL_Purchase[M_CRI]*CL_Upfront_Cost[M_CRI]*(1/CL_Lifetime[M_CRI])+SSL_Purchase[
M_CRI]*SSL_MR&D_Upfront_Cost[M_CRI]*(1/SSL__MR&D_Lifetime[M_CRI]) 
ELSE 
CL_Purchase[M_CRI]*CL_Upfront_Cost[M_CRI]*(1/CL_Lifetime[M_CRI])+SSL_Purchase[
M_CRI]*SSL_AR&D_Upfront_Cost[M_CRI]*(1/SSL_AR&D_Lifetime[M_CRI]) 
Purchase__Costs[L_CRI] = IF (Advanced_R&D=0) THEN 
CL_Purchase[L_CRI]*CL_Upfront_Cost[L_CRI]*(1/CL_Lifetime[L_CRI])+SSL_Purchase[L_
CRI]*SSL_MR&D_Upfront_Cost[L_CRI]*(1/SSL__MR&D_Lifetime[L_CRI]) ELSE 
CL_Purchase[L_CRI]*CL_Upfront_Cost[L_CRI]*(1/CL_Lifetime[L_CRI])+SSL_Purchase[L_
CRI]*SSL_AR&D_Upfront_Cost[L_CRI]*(1/SSL_AR&D_Lifetime[L_CRI]) 
Retrofit__Rate = .0042 
SSL_Rebate__Program = 1 
Tlmhr_Needed[VH_CRI] = 
Tlmhr___Demand[VH_CRI]+CL_Retire[VH_CRI]+Retrofits[VH_CRI]*(1-
E&R_Ratio)+SSL_retire[VH_CRI]-CL[VH_CRI]-SSL[VH_CRI] 
Tlmhr_Needed[H_CRI] = 
Tlmhr___Demand[H_CRI]+CL_Retire[H_CRI]+Retrofits[H_CRI]*(1-
E&R_Ratio)+SSL_retire[H_CRI]-SSL[H_CRI]-CL[H_CRI] 
Tlmhr_Needed[M_CRI] = 
Tlmhr___Demand[M_CRI]+CL_Retire[M_CRI]+Retrofits[M_CRI]*(1-
E&R_Ratio)+SSL_retire[M_CRI]-CL[M_CRI]-SSL[M_CRI] 
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Tlmhr_Needed[L_CRI] = Tlmhr___Demand[L_CRI]+CL_Retire[L_CRI]+Retrofits[L_CRI]*(1-
E&R_Ratio)+SSL_retire[L_CRI]-SSL[L_CRI]-CL[L_CRI] 
Tlmhr___Demand[VH_CRI] = Klmhr_per_sqft_*Bld_sqft[VH_CRI]/10^9 
Tlmhr___Demand[H_CRI] = Klmhr_per_sqft_*Bld_sqft[H_CRI]/10^9 
Tlmhr___Demand[M_CRI] = Klmhr_per_sqft_*Bld_sqft[M_CRI]/10^9 
Tlmhr___Demand[L_CRI] = Klmhr_per_sqft_*Bld_sqft[L_CRI]/10^9 
Total_CL = CL[VH_CRI] + CL[H_CRI] + CL[M_CRI] + CL[L_CRI] 
Total_Cost = 
Purchase__Costs[VH_CRI]+Purchase__Costs[H_CRI]+Purchase__Costs[M_CRI]+Purchase__
Costs[L_CRI]+Operating__Costs[VH_CRI]+Operating__Costs[H_CRI]+Operating__Costs[M_
CRI]+Operating__Costs[L_CRI] 
Total_SSL = SSL[VH_CRI] + SSL[H_CRI] + SSL[M_CRI] + SSL[L_CRI] 
TWh[VH_CRI] = kWhr[VH_CRI]/(10^9) 
TWh[H_CRI] = kWhr[H_CRI]/(10^9) 
TWh[M_CRI] = kWhr[M_CRI]/(10^9) 
TWh[L_CRI] = kWhr[L_CRI]/(10^9) 
Years__Payback[VH_CRI] = IF (Payback[VH_CRI] < 10) AND (Payback[VH_CRI] > 0) 
THEN Payback[VH_CRI] ELSE 15 
Years__Payback[H_CRI] = IF (Payback[H_CRI] < 10) AND (Payback[H_CRI] > 0) THEN 
Payback[H_CRI] ELSE 15 
Years__Payback[M_CRI] = IF (Payback[M_CRI] < 10) AND (Payback[M_CRI] > 0) THEN 
Payback[M_CRI] ELSE 15 
Years__Payback[L_CRI] = IF (Payback[L_CRI] < 10) AND (Payback[L_CRI] > 0) THEN 
Payback[L_CRI] ELSE 15 
Bld_sqft[CRI_BINS] = TIME 
CL_Efficacy[CRI_BINS] = TIME 
CL_Lifetime[CRI_BINS] = TIME 
CL_Upfront_Cost[CRI_BINS] = TIME 
Electricity_Costs = GRAPH(TIME) 
(0.00, 0.069), (62.8, 0.067), (126, 0.069), (188, 0.072), (251, 0.073) 
Epidemic__Rate = 
GRAPH((SSL[VH_CRI]+SSL[H_CRI]+SSL[M_CRI]+SSL[L_CRI])/(CL[VH_CRI]+CL[H_CR
I]+CL[M_CRI]+CL[L_CRI]+SSL[VH_CRI]+SSL[H_CRI]+SSL[M_CRI]+SSL[L_CRI])) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.0008), (0.3, 0.0012), (0.4, 0.002), (0.5, 0.0024), (0.6, 0.003), (0.7, 
0.0035), (0.8, 0.004), (0.9, 0.0044), (1, 0.0044) 
Percent__SSL[CRI_BINS] = Years__Payback[CRI_BINS] 
Percent__SSL_IF[CRI_BINS] = Years__Payback[CRI_BINS] 
SSL_AR&D_Efficacy[CRI_BINS] = TIME 
SSL_AR&D_Lifetime[CRI_BINS] = TIME 
SSL_AR&D_Upfront_Cost[CRI_BINS] = TIME 
SSL_MR&D_Efficacy[CRI_BINS] = TIME 
SSL_MR&D_Upfront_Cost[CRI_BINS] = TIME 
SSL__MR&D_Lifetime[CRI_BINS] = TIME 



 

APPENDIX E.  Summary of Current Public Policies Related to SSL 
 

 
Policy 

 
Part of Government  

 
Description of the Policy 

R&D Funding 
for SSL 

Department of Energy 
(DOE)- Office of 
Energy-Efficiency and 
Renewable Energy- 
Building Technologies 
Program 

The DOE has supported R&D on both LED and OLED 
technology under its Building Technologies Program. R&D 
funding has been made available for a spectrum of activities 
from basic research to product development. These government 
funding opportunities are often supplemented with a cost-share 
ranging from 20-50%. More information is available from:  
http://www.netl.doe.gov/ssl/  

Sponsors 
Meeting & 
Workshops on 
SSL 

Department of Energy- 
Office of Energy-
Efficiency and 
Renewable Energy- 
Building Technologies 
Program 

Meetings and workshops were partially sponsored by the DOE; 
bringing together SSL experts from industry, academia and 
government.  From these meeting, industry roadmaps were 
created in which technical targets were established and core 
challenges discussed.  These reports are available from: 
http://www.netl.doe.gov/ssl/publications.html  

Provide 
Information 
Portal on SSL 

Sandia National 
Laboratory 

Maintains a current website on SSL. This website contains an 
overview of the technology; current and archived technical and 
business news on SSL; an overview of SSL programs in foreign 
countries; worldwide links to organizations involved in SSL; 
and information about U.S. government programs for SSL. This 
website can be accessed at: http://lighting.sandia.gov/ 

Established 
SSL Industry 
Alliance 

Department of Energy- 
Office of Energy-
Efficiency and 
Renewable Energy- 
Building Technologies 
Program 

In July 2004 the DOE selected the Next Generation Lighting 
Industry Alliance (NGLIA) to serve as its partner in research, 
development and demonstration activities for SSL.  The 
industry alliance is expected to provide and manufacturing and 
commercialization focus for DOE SSL efforts. No government 
funding is used for this Alliance. 

National 
Initiative for 
SSL 
(Proposed 
Legislation) 

U.S. Congress 

In 2001, Senators Bingaman (NM) and Mike DeWine (OH) 
introduced S.1166 which called for the establishment of a 
“Next Generation Lighting Initiative” in the DOE.  The bill 
would authorize $50 million per year for 10 years to develop 
SSL. This bill was included in the S.1766 “Energy Policy Act 
of 2002,” and subsequently also included in S.2095 “The 
Energy Policy Act of 2003” introduced in February 2004.   As 
of December 2004 this legislation has not been approved. 

R&D on 
Related 
Technologies 

Defense Advanced 
Research Project 
Agency (DARPA); 
Office of Naval 
Research (ONR); Sandia 
National Laboratory; 
Berkeley National 
Laboratory 

DARPA has a program to develop semiconductor U.V. lighting 
sources to detection biological agents- This UV technology 
could be useful for SSL.  ONR has been a long supporter of 
research on wide-bandgap semiconductors.  Sandia and 
Berkeley (both U.S. national laboratories) both have research 
programs on SSL. 
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APPENDIX F. Table of SSL CMP Model Elements  
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