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ABSTRACT

Silicon Carbide (SiC) has been investigated as an alternative material to Silicon (Si) for

enhancing the power-handling capability of semiconductor devices for simultaneous

high-temperature and high frequency applications. Its high thermal conductivity, high

bandgap, low permittivity, high saturation velocity, moderate mobility, material hardness

and chemical inertness make it a prime candidate for power electronics, heat and light

sensors, and MEMS applications. The MESFET is the most viable power transistor based

on SiC. The performance of SiC MESFETs is limited by trapping and thermal effects.

A physics-based analytical model of the SiC MESFET incorporating trapping and

thermal effects is reported. The model takes into account the field and temperature

dependencies of carrier transport parameters and carrier trapping effects. Both surface

and substrate traps have been incorporated in the model to calculate the observed current

slump in the I-V characteristics. The trapping and detrapping from surface traps control

the channel opening at the drain end of the channel that requires the drain resistance to be

gate and drain voltage dependent. The substrate traps capture channel electrons at high

drain bias when the buffer layer is fully depleted resulting in current collapse at low drain

bias in the following I-V trace. The detrapping of the captured electrons is initiated with

the increasing drain bias and the channel electron concentration increases which is

accelerated by increased thermal effects. As a result, restoration of collapsed drain

current is obtained before the trapping effect is reinitiated at high drain bias. The

calculated results using the current model are in good agreement with experimental data.
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A small-signal model for the MESFET has also been proposed. Calculations for the

output conductance, the transconductance, the gate-source and gate-drain capacitance has

also been presented.
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Chapter 1

Introduction

1 1 Introduction

1 . 2 MaterialAdvantages of SiC

1.2.1 Bandgap
1.2.2 Critical Electric Field

1.2.3 Mobility
1.2.4 Saturation Velocity
1.2.5 Relative Dielectric Constant

1.2.6 Thermal Conductivity
1.2.7 Physical Parameters

1.3 Reasons for the Popularity of the SiC MESFET

1.4 Thesis Contribution

1.5 Thesis Outline

1.1 Introduction

Since the conception and introduction of semiconductor devices, vacuum tube technology has been

replaced by semiconductor devices in virtually all areas of microwave electronics. Power electronics

present the last frontier for semiconductor devices. The primary disadvantage of semiconductor devices has

always been their thermal instability. Commercial microwave and broadband communications require

devices to handle powers of the order of a few watts to a few megawatts. Further, semiconductor realestate

being inherently expensive, there is a constant drive towards miniaturization in the semiconductor industry.

Commercial semiconductor power transistors are of the order of 5 urn x 500 urn, and dissipating megawatts

of power over such small areas is inherently difficult. Further voltage drops of the order of 35-40 V across

the 5 urn length of a transistor create excessive electrical stress in the device, especially since most of the

voltage drop generally occurs across a very small fraction of the gate length of the device. Thus high-power

electronics is still dominated by vacuum tube devices. To successfully combat thermal and electrical stress,

it is necessary to inhibit thermally excited electrons from crossing the energy gap. This may be achieved by

increasing the bandgap between the conduction band and the valence band, while taking care that

semiconductor properties still characterize the device. Since the difficulty encountered by electrons in

crossing the bandgap is exponentially dependent upon the magnitude of the bandgap (according to Fermi-

Dirac statistics), even a small increase in the bandgap yields great power advantages. In short, the quest for

1



materials better suited for the manufacture of high power devices transits naturally into the quest for the

material having the greatest energy band separation. This simple truth was realized very early on, but like

so many other great ideas, had to wait until mature manufacturing processes were developed for the

production of what is now known as the set of wide-bandgap materials, primary among them being the

materials GaN, A1N, InN, BN and several ploytypes of SiC. As can be seen from Fig. 1-1 [1], the state-of-

the-art of semiconductor power devices are able to produce powers of several hundred watts at about

2 GHz to around a watt of output power at 100 GHz. They are not yet powerful enough to replace the

klystrons, gyrotrons, Crossed Field Antennas (CFAs), gridded tubes, Backward Wave Oscillator (BWOs)

and Traveling Wave Tubes (TWTs). Still, the first steps have been taken.

0.1 m 10cm 1.0 cm LQmm

1000

Frequency {GHz)

Fig. 1-1. A graphic description of the power-

frequency
characteristics of the current state-of-the-art of SiC

MESFETs superimposed over power-frequency

characteristics of several vacuum tube and GaAs-based

devices [1]. Dark lines represent vacuum-tube devices

while the light lines represent semiconductor-based

devices.



Semiconductor FETs and MESFETs are able to compete (at least in part) with the gridded tubes. Further

improvements in device fabrication, coupled with sound theoretical insight into the workings of these

devices should definitely improve yield and the necessity for a vast majority of the vacuum tube technology

removed.

1.2 Material Advantages of SiC

SiC being a high-bandgap semiconductor is a natural choice for high-power devices. Apart from having a

wide bandgap, SiC also has a number of other electrical and mechanical parameters that make it suitable

for high-power and high-frequency applications. Table 1-1 depicts the most important material parameters

that yields SiC suitable for the manufacture of high-power devices. The material parameters are explain in

detail below.

Table 1-1. Comparison of the material properties of SiC [2], GaN [2], GaAs [3] and Si [3].

Property 4H-SiC 6H-SiC 3C-SiC GaN Si GaAs

Energy Gap (eV) 3.23 3.0 2.36 3.39 Ll 1.43

Critical Electric Field (MV/cm) 3-5 3-5 1 5 0.2 0.4

Saturation Velocity * 1
07

(cm/s) 2 1.5 2 2.5 1 0.7

Mobility (cmVVs) 900 400 800 1000 1350 8500

Relative Dielectric Constant 9.66 9.66 9.72 9 11.8 12.5

1.2.1 Bandgap

The bandgap of SiC (3.23 eV) is three times that of Si (1.12 eV). This allows it to have significant

advantages over Si and other smaller bandgap materials and this is the reason why the so-called high-

bandgap materials are being investigated vigorously as material alternatives for power devices. Due to the

high bandgap of SiC, it requires a large electric field for electrons to transit from the valence band to the

conduction band. As a direct consequence, the intrinsic concentration of SiC is of the order of 1
0"8 cm"3

[2]

while that of Si is of the order of
1010 cm"3

[3]. This allows the manufacture of SiC substrates that are



nearly semi-insulating. Semi-insulating substrates may be created by the introduction of defects within the

bandgap (by the introduction of vanadium [4] for example). Defects within the bandgap succor

recombination resulting in a reduction of the intrinsic carrier concentration, and a consequent decrease in

the conductivity. Further, due to the high bandgap, the leakage current of a SiC diode is lower than that of a

Si diode by a factor of
104-105

[5], [6]. Thus, sensors created of SiC are generally up to 10,000 times more

accurate than comparable Si-based diodes.

Depending upon the polytype used, inter-band transitions of electrons from the conduction band to valence

band allow for colored electromagnetic emissions, notably green (6H-SiC), green-yellow (4H-SiC), yellow

(15R) and pale-yellow for the doped material and greenish-yellow for the undoped material [7]. Further,

SiC may be used for the detection and emission ofblue and ultraviolet radiation.

1.2.2 Critical Electric Field

Due to the higher bandgap of SiC, the critical electric field necessary for electrical breakdown of SiC (3

MV/cm) is 10 times higher than that of Si (0.3 MV/cm) [8]. It is thus possible to apply much higher

voltages to a device manufactured using SiC when compared to an equal-sized Si-based device. The

primary aim of a power device is to be able to control and amplify high voltages, and thus the critical

electric field is of paramount importance in determining the operational limit of a power device. Further,

the higher power supply voltages allow devices to deliver higher output power.

1.2.3 Mobility

The low-field, intrinsic mobility of the device is one of the most important factors influencing the

frequency characteristics of the device since it determines the ability of the free electrons in the material to

respond to changes in the electric field applied across it. The low field bulk mobility of SiC is 1000

cmVV.s, which compares favorably with that of 1350 cm2/V.s ofundoped Si.

1.2.4 Saturation Velocity

With an increase in the electric field, the mobility steadily decreases until a point is reached wherein any

increase in electric field does not result in any further increase in the velocity of electrons. The



corresponding velocity is known as saturation velocity. This is discussed in detail in Chapter 2. It is a

quantity that primarily determines the magnitude of the saturation drain current and hence directly affects

the transconductance of the device in the saturation region of operation. Thus a higher saturation velocity is

tantamount to greater transconductance. The saturation velocity of SiC is 2 x
107

cm/s, which is twice that

ofSi.

1.2.5 Relative Dielectric Constant

Since the relative dielectric constant of SiC (9.7) is smaller compared to that of Si (1 1.8), SiC based devices

have much lower capacitances compared with Si-based devices and thus allow the devices to operate at

much greater frequencies. The high saturation velocity, moderate mobility and low relative dielectric

constant permit SiC-based devices to operate at high frequencies.

1.2.6 Thermal Conductivity

The thermal conductivity of SiC is 4.9 W/cm.K, which is greater than 1.5 W/cm K. of Si. Even if a lot of

heat is generated in the device, it is easily drained out of the device due to the high thermal conductivity.

10DO

<3 iao

3

50
- io

-

u.

c

o

o

too

GHz

Fig. 1-2. Johnson's figure of merit for various

semiconductors. SiC and GaN are among the best materials
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Thus the need for elaborate cooling mechanisms is obviated in most cases. It is interesting to note here that

when other semiconductor materials (such as GaN) are used for making a power device, they are generally

grown on a SiC substrate for this reason.

One of the most important metrics to measure the power-handling capacity of a device at high frequency is

Johnson's figure of merit [9]. Johnson's figure ofmerit for several materials is depicted in Fig. 1-2. It is

seen that SiC together with GaN has one of the best Johnson's figure of merit and is second only to

diamond.

1.2.7 Physical Parameters

SiC is a very hard material (having a Young's Modulus of 700 GPa [2] while that of Si is only 165 GPa,

[3]) and is chemically inert. Thus, SiC is also suited for operations in high-radiation areas like nuclear

reactors and outer-space, as well as forMEMS applications.
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Fig 1-3. The improvement in device fabrication technology

as shown by the (a) increase in size of wafer (CREE

corporation), and (b) decrease in the micropipe density per

year [10].



Power devices are generally large since they need to dissipate high power and carry high current. Thus it is

important to be able to manufacture wafers that are devoid of defects. Device fabrication using 3C-SiC was

initially pursued but since it was easier to manufacture the 4H- and 6H-SiC polytypes of SiC, they have

been studied and characterized extensively. Currently 2-inch and 3-inch 4H- and 6H- SiC wafers are

available, with the 2-inch wafers being virtually micropipe free [10].

Today, the number ofmanufacturers providing the SiC substrate has increased from a single manufacturer

to more than five manufacturers. A diagram depicting the increase in the wafer size and the simultaneous

decrease in the micropipe density by the year is depicted in Fig. 1-3. It is clear that the process technology

has improved rapidly and is expected to keep improving in the future. As the micropipe density decreases,

bigger devices having better power-handling capability may be built, and further, the yield of each wafer

may be significant.
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Fig. 1-4. A schematic diagram of the progress in the current-

carrying capabilities of SiC power devices over the years.

As a result of the beneficial characteristics of SiC, various devices have been fabricated using SiC such as

Schottky [11], [12] and p-n junction diodes [13], thyristors [14] and U-trench MOSFETs (UMOSFETs)

[15]. The power handling capability of the devices has steadily increased through the years as evident from



the statistics shown in Fig. 1-4, which depicts the increase in the current carrying capabilities of various

SiC based devices over the years. Current carrying capabilities of SiC power devices have increased a

hundred fold over a span of less than ten years, from less than one ampere in 1993 to close to a hundred

amperes in 1999.

1.3 Reasons for the Popularity of the SiC MESFET

Heterostructure configurations for SiC, although under current research [16]-[18], are not yet popular.

Further, even though there have been great improvements in oxide growth over SiC, the surface mobility of

electrons in SiC [19], [20] based MOS devices are still not production grade. The power device of choice

that has been extensively studied and characterized and still under inspection is the metal semiconductor

field effect transistor (MESFET). This structure allows the electrons to flow through the doped channel

which causes the electrons to travel with bulk mobility as opposed to surface mobility of the MOS

structure, thus allowing for better mobility and subsequently better frequency operation. Fig. 1-5 shows the

development of the state of the art of SiC MESFET technology. It can be seen that the maximum power

density of the SiC MESFET has had a steady increase and has increased nearly six-fold between 1996 and

1999, while the total power from a single chip has increased more than eight fold during the same time.

Such improvements in power performance have spurred further research in SiC MESFETs. Currently,

commercial grade SiC power MESFETs are obtainable from CREE
corporation

like the CRF-24010.

Further, since the frequency-power-bandwidth tradeoffs between the GaN HEMT and the SiC MESFET are

not fully understood, the SiC MESFET having the lower input capacitance might offer much better total

power output.
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1998 1999

(a)

1999

(b)

Fig 1-5. Improvements in the capabilities of the MESFETs in

terms of the (a) the maximum power density and (b) the

total power from a single chip.

1.5 Thesis Contribution

SiC MESFETs were initially prepared on substrates [21]. These MESFETs had problems pertaining to

capacitive losses and the formation of secondary channels in the substrate, resulting in the degradation (in

part) of transistor operation. The introduction of preparatory techniques for SI substrates has led to the

realization of large-periphery SiC MESFET structures, which can support much higher currents without

detrimental capacitive effects.



The SI substrates are semi-insulating by the introduction of vanadium. Vanadium introduces levels at

1.1 7eV, 1.7eV and 0.97eV below the conduction-band [2], DLTS measurements [22] have also revealed

trap levels at 0.5 leV, 0.60eV, 0.68eV, 0.768eV and 0.89eV above the valence band. The trap located at

0.5 leV above the valence band is probably due to the defects created by the introduction of nitrogen (used

for doping the channel) [23]. The trap located at 0.6eV above the valence band is due to vanadium [24].

The other trap levels are ofunknown origin. Apart from the traps present at the substrate, surface traps have

also been observed [25], [26]. These traps are responsible for significant current collapse of the I-V

characteristics resulting in temporal current degradation [27]. Transconductance and output conductance

become frequency-dependent as a result of the trapping phenomenon [28].

Various attempts have been made in the way of characterization of these traps [29] and their effects [30].

Although extensive research has been carried out in this field, the understanding of the SiC traps is still in

its infancy. Some understanding of the trapping phenomenon has been obtained as a result of this

investigation and various methods have been proposed for circumventing the effects of the traps. Some of

these techniques involve the investigation of alternative methods of substrate growth [31], some involve the

investigation of alternative device geometries while others involve the variation of the characteristics of the

buffer layer [32], [33] (a thin epitaxially grown layer separating the channel and the substrate, which will

be investigated in detail later in the thesis).

Even though various qualitative theories describing the trapping phenomenon in the SiC MESFET have

been suggested [33], prevalent research has not been geared toward the proposal of a quantitative model

intended to quantify the slump in I-l 'measurements. In this work, a new model for the calculation of the I-

V characteristics in the presence of surface and substrate traps has been proposed. Further, the current

model of the I-V characteristics takes into account the source and the drain resistances and the effect of the

buffer layer when present.

A small-signal model for the MESFET has also been proposed which incorporates the source and drain

resistances, and the depletion layer formed at the channel/buffer interface.

10



1.4 Thesis Outline

Chapter 2 discusses the DC model of the SiC MESFET. First, the mobility model for the electrons is

described. This mobility model incorporates the (lateral) field dependence, the temperature dependence and

the concentration dependence mobility. The general structure and the working principles of the MESFET

are introduced next. Characteristics of the depletion region that appear between the channel and the buffer

are discussed next. This is key in understanding the trapping mechanism that has been proposed. Then the

current equations for the linear regions are derived, followed by the description of the pinchoff criterion

and finally the current equations for the drain current equations at saturation are described.

Chapter 3 discusses the non-idealities present in the /-('relationship in the SiC MESFET as a result of

trapping and thermal effects. The first part of Chapter 3 is dedicated to the description of the various

trapping phenomena, the consequent current slump and the proposed model for the I-V characteristics. The

chapter discusses the substrate traps, the effects of the surface and the substrate traps and the way in which

they are modeled. The second part of Chapter 3 describes the thermal dependencies of the model. Since

MESFETs are generally intended to be used as power devices, significant joule heating is expected within

the device. Although the power dissipating capability of the material is significantly greater than most of

the other semiconductor materials, self-heating effects are not entirely absent. The chapter describes the

thermal dependencies of the various material parameters used during the simulations and the method by

which these temperature dependencies have been incorporated.

Chapter 4 describes a small-signal model of the device. This model describes the low-frequency model of

the transconductance, the output conductance, the capacitances between the gate and the drain and that

between the gate and the source. This derivation of the capacitances does not take into account either the

temperature dependence of the small-signal parameters or the frequency dependence of the small-signal

parameters.

Chapter 5 presents the conclusion and looks at the future work that may be done.
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Chapter2

Modeling DC Characteristics

2.1 Introduction

2.2 A Brief Overview of the General Structure and Principles of the MESFET

2.3 The Depletion Regions

2.4 Mobility
2. 5 Current Equations Before Pinchoff

2.6 Pinchoff

2.7 Beyond Pinchoff

2.1 Introduction

In this chapter, the I-V characteristics for a SiC-based MESFET are derived. Section 2.2 describes the

structure and the basic principles of the MESFET. Section 2.3 describes various depletion regions present

in SiC-based MESFET structures. A very general mobility model has been used in the simulation, which

has been described in Section 2.4. In Section 2.5, the current equation in the linear region is derived.

Section 2.6 determines the important criterion of pinchoff. Finally, in Section 2.7 the current equations for

the saturation region have been derived.

2.2 A BriefOverview of the General Structure and Principles of theMESFET

The simplestMESFET structure is shown in Fig. 2-1. A doped channel is grown over a semi-insulating (SI)

substrate. Ohmic contacts for a source and a drain are formed and a lateral electric field controls the

electron/hole flow in the channel when a potential is applied between the source and the drain. For

controlling the amount of charge moving through the channel (and thus controlling the current through the

channel) a Schottky gate is placed between the source and the drain. Application of a bias voltage at the

gate allows one to control the thickness of the depletion region under the gate and thus control the drain

current. When a sufficiently large voltage bias is applied at the gate, the depletion region pinches off the

channel and the drain current becomes independent (actually, nearly independent) of the drain voltage, and

Llcpendent only upon the gate voltage. In SiC, the semi-insulating substrate is created by the introduction of

vanadium. Vanadium introduces deep levels near the center of the energy-gap of SiC. Since the energy-gap
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ot Sit is very high, the introduction of deep-levels succors the resistivity by freezing-out the already

meager amount of intrinsic carriers present. Unfortunately deep levels not only capture intrinsic carriers

present in the substrate, but also channel carriers that escape from the channel and end up in the substrate.

Depletion

Region

Source

Channel

Fig. 2-1 A schematic representation of the basic MESFET

structure.

The formation, the capture process and the release of electrons from these deep levels will be examined in

the Chapter 3 in greater detail. The channel is generally n-type doped. This is because the bulk-mobility of

holes in SiC is impracticably low and thus p-channel MESFETs are generally low-frequency devices. The

epitaxial growth of the channel introduces lattice-mismatch between the n-channel and the substrate. This

leads to the formation of traps at the interface between the n-channel and the substrate. To mitigate the

effects of the interface traps, another layer is inserted between the channel and the substrate. This layer is

known as the buffer layer and is generally p-type doped. Interface traps formed between the buffer-layer

and the substrate do not affect the interface between the buffer layer and the channel.

In general, the current flowing through the channel is primarily determined by the dimensions, the doping

conditions of the channel (which determine the channel resistivity), the mobility and the velocity of

electrons in the channel. In the MESFET structure analyzed in this work, the electrical dimensions of the

channel are determined by the depletion regions formed within the channel at the metal-semiconductor

junction of the gate and the channel-buffer p-n junction. The velocity of the electrons in a semiconductor is

13



determined by the electric field and the mobility of the mobile carriers in it. Since the depletion regions in

the channel and the carrier mobility are of paramount importance in determining the I-V relationship of the

device, both the depletion regions and the electric field are revisited in Sections 2.3 and 2.4, respectively.

2.3 The Depletion Regions

Fig. 2-2 depicts a snapshot of a simulation of the MESFET in operation at a gate voltage of -IV and a drain

voltage of IV. In the snapshot, the depletion region boundaries are represented as red lines and the current

density is represented in gray-scale. It may be observed that the current density is limited to the undepleted

region of the channel. The simulation is obtained using the 2D
Atlas8

simulator. The simulator details are

described in Annexure I.

source

gate ]

W I

155fr*8S ifl
1 IWc+95
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Fig. 2-2 A snapshot of the cross-section of the MESFET

simulation depicting the buffer layer and the resulting

depletion region formed. It also shows the depletion region

formed at the Schottky gate. The depletion region

boundaries are shown in red while the conduction region

current density is shown in gray-scale.

Prevalent analytical solutions take into account the depletion region due to the gate only, but as clearly seen

from Fig. 2-3, both depletion regions are necessary in determining I-V characteristics of the device. The

14



axes and the depletion region depths within the channel are shown in green (and have been appended to the

figure on the simulator output).

The depletion region under the gate is due to the metal-semiconductor Schottky contact with the application

of the gate bias. In general, the height of this depletion region at the point x in the channel is given by the

equation:

\qND

where s is the permittivity of SiC, ND is the doping concentration of the channel, q is the magnitude of the

electron charge, VG is the applied gate bias, and V(x) is the potential of the channel at point x. Vbj is the

built-in potential of the metal-semiconductor Schottky contact and this is given by:

kT,

9
Vbl = --\n

rN A

(2-2)

where , is the intrinsic carrier concentration of SiC. Equation (2-1) predicts that the higher the magnitude

of the gate bias, the thicker the depletion region under the gate. This can be seen in Fig. 2-3. Fig. 2-3 shows

the height of the depletion regions under different gate biases. The drain bias is held constant at 0.01 V. In

Fig. 2-3 (a) the gate bias is 0V while in Fig. 2-3 (b), the gate bias is -3V. It may be plainly observed that

the depletion region depths increase with an increase in the magnitude of the gate bias. The equation

predicts that the height of the depletion region under the gate is also dependent upon the channel potential

and should thus be position dependent. Since the drain bias in Fig. 2-3 is very low (VD
= 0.01V), the height

of the depletion region under the gate is nearly constant over the length of the gate. However, as the drain

bias is increased, the height of the depletion region under the gate due to the Schottky contact increases

along the length of the
device toward drain, as seen in Fig. 2-2.
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the channel-buffer interface increases as channel potential increases from OV at the source end of the

channel to IV at the drain end of the channel.

2.4 Mobility

An electric field applied across the crystal lattice of a material introduces force on the charged particles

constituting the device. Mobile charges are accelerated either in the direction of the electric field or in a

direction opposite to the electric field depending upon the nature of charge of the mobile carriers. The

charges cannot accelerate indefinitely however, but acquire a constant velocity v called the drift velocity

under the influence of the electric field E. The relationship between the drift velocity v and the electric field

E is linear for low values of electric field and is given by the relation:

v = /jE, (2-5)

where p. is the mobility of the mobile carriers. As MESFETs made of SiC are generally -type, the mobile

carriers are generally electrons. All further references to either mobile carriers or majority carriers will refer

to electrons unless specifically mentioned otherwise. The drift velocity of the electrons is seen to be

linearly proportional to the electric field in equation (2-5). This is true only when the electric field is

sufficiently low. As the electric field increases, the velocity asymptotically approaches a constant

maximum velocity. This is called the saturation velocity of the electrons and is denoted by vsal. The cause

of a constant drift velocity is the energy loss that occurs during electron-phonon interactions. Thermal

effects are less at low drain voltages. It is thus only natural that the low-field mobility should be a stronger

function of the doping concentration. The most widely used model for the determination the mobility of a

doped material was proposed by Caughey and Thomas and is widely known as the Caughey-Thomas

model. The low-field mobility, according to the Caughey-Thomas model is [34-35]:
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where a, [imax, pmin and NRefare characteristic of the material. For SiC these values are 0.5, 950 cm2/V.s. 40

cmTV.s and 2 x
1017

cm"3, respectively. Although the electron velocity appears to be a linear function of

the electric field, it is in fact only nearly linear for low lateral fields. As the electric field increases the

electron velocity gradually deviates from the linear dependence on electric field and at sufficiently high

fields, becomes almost constant, independent of the electric field.

4 6 8

Electric Field (105V/cm)

10 12

Fig. 2-4. A plot of mobility vs. electric field with [3

0.86(A), (3 = 1
.0(D)

and (3 = 1.2(0).

This phenomenon is called velocity saturation and is denoted by vsal. Velocity saturation is incorporated

into equation (2-5) by modifying the mobility such that it becomes a function of the electric field. Various

empirical models have been proposed which are able to predict the electric field dependence of the

mobility. The one that has been used in this work is [36]:

Mo
M

1 +

f Irl^

Mo\E\

V Vsa, J

]/p
' (2-7)
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where E is the lateral electric field and vsa, is the saturation velocity of the electrons. /? is a constant which is

very close to unity for 4H-SiC. Monte-Carlo simulation results yield values of 0.84 [32] for the value of /?

while experimental observations yield a value of 1.2 [37]. For the purpose of this present work, a value of 1

has been used for /?. It is evident from Fig. 2-4 that this value of /? is sufficiently accurate. For 4H-SiC the

value of the saturation velocity is 2.07 x
107

cm/s. The velocity of the electrons is plotted against the

electric field in Fig. 2-5. It can be seen that the velocity of the electrons increases linearly at low fields and

then saturates at a velocity of 2.07
*
107

cm/s at excessively high electric fields.

Electric Field (x105V/cm)

Fig 2-5. The electron velocity as a function of the electric

field (thick line), and the saturation velocity is shown by a

dashed line.

2.5 Current Equations Before Pinch-off

In the MESFET model considered in this work, various additions have been made to the simple MESFET

structure that is shown in Fig. 2-1 . Fig. 2-6 (a) has been split up into four sections.
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Fig. 2-6. A schematic representation of the MESFET cross-

section that is used for /- 1
'

modeling. Fig. 2-2 has been split

up to show the physical locations of the drain/source

resistances, and the depletion regions that have been

modeled in the I-V relationships (a), and a schematic

diagram representing the cross section that is to be used for

modeling the I-V relations.
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The bottom section comprising the buffer region and the SI substrate has not been modeled. The effect of

the buffer region however has been modeled by the depletion region in the channel, shown in the channel in

a shade of orange. The part of the channel beyond the gate (shown in the channel in a shade of blue) is

modeled by the source and the drain resistances. The corresponding schematic of the cross-section of the

MESFET is shown in Fig. 2-6 (b).

The length of the channel is the part of the channel under the gate. The thickness of the channel is a, the

width is W and the length is L. Rs and RD are the source and drain resistances as shown in Fig. 2-6. Due to

the presence of the current ID in the channel, the potential drop across the source and the drain resistances

are ID Rs and ID RD, respectively. Thus, the potentials at x
= 0 and x

= L are ID Rs and VD - 1D RD,

respectively. Equation (2-1) may be used in conjunction with the channel potentials at the source and drain

end of the channel (just mentioned) to obtain an expression for the height of the depletion region under the

gate due to the Schottky gate as:

hs=\-^-[-VG+Vbi+IDRs]

hD=.l^-[-VG+Vbi + VD-IDRD]

(2-8)

and the height of the depletion region formed at the buffer-channel junction, at the source and the drain

ends of the channel may be obtained by solving equation (2-3) in conjunction with the channel potentials at

the end of the channel to obtain:

'15

Na

NA+ND

v =

v..

NA+NL

J^^[Ubl+IoRs]
V 9 NDNA

V q ndNa

(2-9)

At point x in the channel, the equation for the drain current is given by:
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ID = qWn{x)fi{E)E{x)[a
- h{x)- /?,(x)], (2-10)

where ju{E) is the mobility of the electrons for the electric field E, n(x) is the charge concentration of the

channel and is given by ND, the doping concentration of the channel, and a is the thickness of the channel.

Using the expression formobility (equation (2-7)) in equation (2-10) leads to the expression:

ID=qWN ^-~E{x\a-h(x)-h(x)}. (2-11)

1 + -^-

V

sat

The electric field at point x in the channel is given by the negative spatial derivative of the potential at that

point. Since the magnitude of the current is being sought at this point, the negative sign is neglected. h(x)

and A,(x) may be substituted into equation (2-11) using equations (2-1) and (2-3) and the resultant

differential equation solved to obtain the value of the channel current. Boundary conditions are those of the

channel potential at the two ends of the channel and the depletion region depths at the two ends of the

channel as given by equations (2-8) and (2-9). The equation for the drain current for the linear region is

given by the equation:

qWNufhy L[v _Id{Rs
+Rd)]_

vsatL +

(2^

3 2e
L SJ3 2f N,

L J

2.6 Pinchoff

As the gate bias or the drain bias is decreased, the height of the depletion region (especially at the drain end

of the channel) slowly increases until the channel under the gate is pinched off. Also, it is assumed that

pinchoff occurs after velocity saturation. This is a reasonable assumption for a channel thickness of about
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2 urn and a doping concentration of about 107cm"3[36], Under these circumstances, the velocity of the

electrons are vsa and the corresponding electron current is given by:

iDsa,=qWNDvs, ^J^-[-VG+Vbi+VDsol
-IDsa,RD]-

2

V^+^-a]
qNDNA+ND

(2-13)

where IDsa, and VDsa, are the saturation current and saturation voltage respectively. Pinchoffoccurs when the

saturation current given by the equation (2-13) equals the linear current given by the equation (2-12). For

obtaining the values of VDsa, and lDsa equations (2-12) and (2-13) need to be solved simultaneously, at each

value of VD. For the linear region, the current calculated by the equation (2-12) is always less than the

current calculated by the equation (2-13). At the point of pinchoff (VDsal) however, the current (IDsai)

calculated using the equation (2-12) equals that calculated using the equation (2-13).

2.7 Beyond Pinchoff

Fig. 2-7 may be used for visualizing the model used for arriving at the saturation current equations beyond

pinchoff. Beyond pinchoff, the depletion region under the gate encroaches more and more into the channel

and the point at which pinchoffoccurs shifts toward the source. The effective length of the linear part of the

channel decreases. This is termed channel-length modulation and is responsible for the finite slope of the I-

Kplot of saturation. In Fig. 2-7 for example, the point at which pinchoffoccurs has shifted to a point x
= L}.

It is assumed that for the rest of the region beyond point Lx, the channel opening remains of the same

thickness.
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Channel opening

after pinchoff

beyond the linear

region of the

channel

Gate Metal

Depletion region

under the gate

J\a-h(Lx)-h\(Lx)}

Depletion region at

the interface of the

channel and the

buffer

Fig. 2-7. A schematic diagram of the channel after pinchoff.

Note that saturation has been greatly exaggerated, and the

structure greatly simplified for the purpose of visualization.

Let the length of the channel at which pinchoff occurs be L\. Let the potential at this point be (',. The

current in the linear part of the channel may be obtained by solving the differential equation (2-11) over the

length v
= 0 to .v

= L{. Solving the differential equation leads to:

ID =
qWNDlu0vs

lLl+Mo[V]-IDRs]

{4\-idrs]-

qNL

3 2e
hi 4

2 qND NA + NL

3 2e NA
hm-ti\s

(2-14)

where the equations for /?/., and h]U are given by:
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u
=Jf^^^l

hiu =

N.

NA+ND
^N^NHub,^\

(2-15)

HDNA

Assuming that the height of the depletion layer under the gate beyond the length x = L, is constant, the

current through this region is given by:

ID=qWNDvSi a-l^\-vc+vbl+v^\^-^[ub,^]
\qND \qNDNA+ND

(2-16)

At this moment, three variables are unknown. These are ID, Vx and Lt. Thus, it is necessary to have another

equation for solving the current. This equation may be obtained by a two-dimensional analysis of the

potential in the depletion region under the gate. The potential under the gate is given by the equation

d2V(x,y)
+
d2V{x,y)

_

qN
L

cV cV

(2-17)

and using the gradual channel approximation.

d2V{x,y)_ qNL

cV

(2-18)

For the solution, a new reference frame is selected at
=
x

- Lu and a new potential function W is created

such that

W(x\y)=V(x,y)+^
2e

y1. (2-19)
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ral form of the solution of the differential-equation (2-1 8) is given by [36]

W(x',y) =
(j/v

+ \ccos(ky)+Dsm{ky))+ Ex'y + Fx'+Gy +H . (2-20)

The boundary conditions for the solution of (2-20) are

I- W{x\y)\y__o=-{-VG+Vh),

II.

III.

dV{x',y)

By

8W(x\y)

v=h ,

dx'

0,

dV{x',y)

(2-21)

*'=o dx
y=h\L\ y=h\u

Es ,
and

IV. V{x,y\-L =VD-IDRL
y=h\u

The first boundary condition represents the fact that the potential at any point in the depletion region closest

to the gate is equal to the gate voltage and the built-in potential, and is independent of the lateral position of

the point under consideration. The second boundary condition states that the vertical component of the

electric field at the edge of the depletion region is zero. All the vertical electric field that ends at the gate

originates at an ionized dopant ion in the depletion region. Thus, below the depletion region, no vertical

electric field may exist. The third boundary condition is the mathematical representation of the assumption

that velocity saturation occurs before pinchoff. Here, Es represents the saturated electric field.

The calculation of Es proceeds as follows. Theoretically, the value of the electric field at which velocity

saturates is infinite. For the purpose of practicality, it is assumed that for a sufficiently large amount of

electric field (Es), the velocity of the electrons is sufficiently close to the actual saturation velocity. For

example, if the actual velocity of the electrons is Eysal (where E, is very close to 1), then by equation (2-5),
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&sat =M{ES)ES (2-22)

and substituting the value of the low-field mobility in equation (2-7),

frs.
Mo

MoEs
(2-23)

Solving for Es.

( e \
Z7

_
sat

Mo

4

vWy

(2-24)

The final boundary condition represents the fact that at the drain end of the channel, the potential is equal to

the difference between the drain bias and the drop that appears across the channel. Using boundary

conditions given by equations (2-21), the differential equation (2-18) may be solved as:

VD-IDRD=^^smh

n 2hu J

+ v (2-25)

Now, equation (2-14), (2-16) and (2-25) may be solved simultaneously to obtain the value of the current

after pinchoff has taken place.
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Chapter3

Trapping and Thermal Effects in the SiC MESFETs

3.1 Introduction

3.2 Trapping Effects
3.2. 1 Intrinsic Defects in 4H-SIC

3.2.2 Defects Introduced by Vanadium
3.2.3 Defects Introduced by Dopants like Nitrogen andAluminum
3.2.4 Surface Traps

3.2.5 Modeling Electron Capture and Release in Bulk Traps

3.2.6 Source and Drain Resistance Modeling
3.3 Thermal Effects

3.4 Temperature-Dependent Variables in the I-V Equations

3.4.1 Effect of Temperature on Low-FieldMobility
3.4.2 Effect of Temperature on Saturation Velocity
3.4.3 Effect of Temperature on Free-Carrier Concentration

3.5 Temperature Dependence of the Thermal Conductivity of SiC
3.6 Power Dissipation Equations Representing Thermal Equilibrium

3.7 The Iterative Solution for the Temperature-Dependent Current

3.8 Results

3.1 Introduction

The /- V characteristics described in Chapter 2 are ideal. SiC based devices are plagued by traps and the

ideal I-V characteristics are inadequate to explain experimental results. In the following sections, the

theoretical origin and nature of these non-idealities and their effects on the I-V characteristics and modeling

issues will be described. Two types of traps have been identified: surface traps and substrate traps. Surface

traps cause the drain resistance to become drain bias dependent and result in the decrease of

transconductance. The substrate traps decrease the channel electron concentration by capturing electrons

and result in current slump in the I-V characteristics. Although SiC is a popular material for its high thermal

conductivity, devices based on SiC suffer significantly from self-heating effects at high power density

applications [38]. For accurate device modeling, both trapping and self-heating effects need to be modeled.

Thermal effects result in a change in the transport parameters leading to a drop in the channel current

concentration at high power levels.
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Section 3.2 describes trapping effects and the methods to model their effects. Thermal effects are described

in Section 3.3. The parameters in the I-V relationship that are dependent upon temperature are described in

Section 3.4, along with their temperature dependencies. The temperature dependency of the thermal

conductivity of SiC is explained in Section 3.6. Finally the method of solution for calculating the drain

current is explained in Section 3.7.

3.2 Trapping Effects

Ideal semiconductors are devoid of energy levels in the energy gap between the conduction and the valence

band. In practice, however, one or more energy-states are present in the energy gap between the conduction

and the valence bands. Sometimes these levels are intentionally introduced. Gold is introduced in silicon

for example to succor recombination [39]. Vanadium is introduced in SiC to create SI properties [24]. At

other times, their presence is not desired, since they form trapping centers responsible for unintentional

electron capture. Trap levels are present in SiC for various reasons. Some of them are discussed below.

3.2.1 Intrinsic Defects in 4H-SiC

Intrinsic defects are primarily of three kinds. First, there are intrinsic defects with associated bound-

excitons near the bandgap region. The second type of defects is seen in high-temperature chemical vapor

deposition (HTCVD) substrates. It is believed that these deep defects are responsible for the SI

characteristics ofHTCVD SiC, since these are devoid of vanadium. The third type of defect is the intrinsic

structural defect caused due to stacking faults and dislocations [40].

3.2.2 Defects Introduced by Vanadium

Vanadium is introduced in SiC in physical vapor transport (PVT) substrates to produce SI characteristics.

This introduces energy states at 1.6eV [40], 0.7eV [40], 0.97eV [2] and 1.1 7eV [2] below the conduction

band. The level at I.6eV below the conduction band is nearly at the center of the energy gap and is

responsible for imparting the SI characteristics by forming recombination centers. Another deep level is

observed at LleV below the conduction band in SiC grown by HTCVD and not doped using vanadium.
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Although various theories have been proposed, the origin of the deep-level at l.leV below the conduction

band is still unknown [40].

3.2.3 Defects Introduced by Dopants like Nitrogen and Aluminum

Nitrogen is used for both n- and p-type doping in SiC. Nitrogen introduces a trap level at 0.5 leV [40]

above the valence band and is attributed to dopant-defect complex. Ion-implantation results in intrinsic

defects at 1.9eV, 1.3eV, 0.9eV, 0.7eV and 0.5eV below the conduction band [41]. The implantation ofAl

introduces a level at 1.43eV below the conduction band [42],

Intrinsic defects and defects introduced by nitrogen and vanadium result in deep-level traps.

3.2.4 Surface Traps

Apart from these deep-level traps, surface traps present at the surface further deteriorate the MESFET

performance. The presence of an oxide layer further exacerbates the defects at the surface [43]. Three

dominant surface trapping levels have been observed at 0.68eV, 0.77eV and 0.89eV [22] above the valence

band. A summary of the type of traps observed in the SiC MESFET is shown in Table 3-1.

Table 3-1: A summary of the locations and densities ofvarious types of traps observed in the 4H-SiC

MESFET [22].

Trap Number Trap Location

(eV)

Trap Density

(cm"3)

Capture Cross Section

(cm2)

1 Ey + 0.51 1 x
1016

6.4 x
10"15

2 Ev + 0.60
lxlO'4

3.2 x
lO"'6

3 Ey + 0.68 1 x
1015

8.3 x
1016

4 Ev + 0.77
IxlO15

1.2 x
lO-15

5 Ey + 0.89
lxlO15

9.0 x
1015

Traps for electrons exist both at the surface and the substrate. The trapping and detrapping of electrons is

shown in the Fig. 3-1. A number of traps exist at the surface. These have a propensity for capturing and

retaining electrons. The presence of a nitride layer mitigates the propagation of electrons from the gate

metal to the traps, but do not prevent the traps from capturing electrons, however, when sufficient positive

bias is applied between the drain and the gate. Thus the depletion region below the gate extends beyond the
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gate due to the presence of these captured electrons. This work models this physical phenomenon by

incorporating the effects of the depletion length in the drain resistance.

3.2.5 Modeling Electron Capture and Release in Bulk Traps

The schematic diagram of the crosssection of the MESFET is shown in Fig.3-1. Initially, when no drain

bias is applied (as shown in Fig. 3-1. (a),) the depletion region throughout the channel is of constant

thickness.

Electrons captured at

substrate traps

Fft-^
(-4) s_a q a
flQfltifl

(a)

' "
5/

\^rt
^

~^-) As

W

\Q

(b)

Electrons captured at surface

traps

(c)

Fig. 3-1 A schematic diagram showing the cross section of a

MESFET depicting electron capture and release from bulk

and surface traps. Fig. 3.1 (a) depicts depletion regions

between at the channel-buffer and the gate-channel

interface in the absence of drain voltage and at a time when

electrons are absent from the traps, (b) depicts the condition

when a large drain bias is applied resulting in the capturing

of electrons by traps, and (c) depicts the state of the

depletion regions just after the removal of drain voltage

after traps have been captured.

As the drain bias is increased, the depletion region towards the drain is increased until the drain end of the

buffer layer is fully depleted. Further increase in drain bias allows electrons from the channel to travel right

through the buffer layer and reach the SI substrate. These electrons get captured in the traps present in the
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substrate (as shown in Fig. 3-1. (b)). In the next sweep, the drain voltage is dropped to zero and the gate

voltage is changed. At this point, although the drain end is not biased, electrons that were previously

captured by the substrate traps have not been released yet. Thus the depletion region between the channel

and the buffer is thicker in the drain side as shown in Fig. 3-1. (c). At this point the de-trapping process

starts. The de-trapping of electrons depends primarily on the effective lifetime of the trapped electrons. As

the voltage increases in the following sweep, the traps are progressively de-trapped, and the current

collapse disappears after some voltage. The rate at which the bulk traps are de-trapped depends upon the

trap activation energy, capture cross section, effective mass of the electrons, among others. Thus, in the I-V

characteristics, the voltage at which the de-trapping is complete is entirely dependent on the rate at which

the drain voltage is changed. Let the concentration of the traps be NT. Assuming that when the trapping

process occurs, all of the traps the filled and the concentration in the channel reduces to NDAcUml - NT. At a

particular voltage (VA) de-trapping starts and by the time the drain voltage rises to VB, all electrons have

been de-trapped. Between the voltages VA and VB the channel concentration monotonically increases from

NDAc,uai - NT to NDAcUlal. A linear increase in the channel concentration from concentration NA to

concentration NB is given by

ND

HDActoal-HT VD<VA

NDAcWal-NT + N^D_~vV^ VA<VD<VB, (3.1)

NDAc,ual VB < VD

but this is a completely arbitrary choice. This function might be a exponentially interpolated value or even

a polynomial function of some kind. The linear increase however was sufficient in explaining the trapping

characteristics.

3.2.6 Source and Drain Resistance Modeling

Source and drain resistances may be obtained by measurement, but they are not of much use to the circuit

designer. Analytical models that are able to predict the nature of the source and drain resistance are very

important. Although the bias dependent source and drain resistances are derived empirically in this work
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since surface and substrate trap concentrations and their behavior has not been fully modeled at this time, a

novel approach for the calculation of the drain resistance is described. Both the source and the drain

resistances are composed partly of the metal contact resistance, and partly of the resistance of the

semiconductor bulk present before and after the length of the gate. Since the number of electrons trapped at

the surface is a function of the gate and the drain biases, the height of the depletion region beyond the gate

is also some function of the gate and the drain bias. The source end of the device is generally unaffected by

the gate bias as much as the drain end of the device is affected since the potential between the gate and the

source is generally not as much as that between the gate and the drain. The metal contact resistance is taken

to be a constant, both for the source and the drain. This varies from device to device, however, depending

upon the dimensions of the drain and the source contacts and the resistivity of the constituting materials.

There is further resistance due to the highly doped semiconductor material that exists between the drain end

of the channel and the drain and the source end of the channel and the source. For the source, the resistance

of the channel between the source and the gate is assumed constant. For the drain, the resistance would

generally be a highly nonlinear function of the gate and the drain voltages. The drain resistance is modeled

as shown in Fig. 3-2. The density of trapped electrons at the surface states decreases towards the drain

12

gate

A U> drain

0

3^^^""^

A2
k
h2 A>

r

OO 0

hi

Fig. 3-2. A schematic representation of the block

approximation of the resistive components of the channel

that result in drain resistance augmentation with increasing
drain voltage.
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. The channel region between the drain and the gate is divided up into two regions A, and A2 as shown. A,

constitutes the part of the channel over which trapped electron concentration in the surface traps is almost

negligible. Over A2 the depletion region due to the surface traps has been considered. The region above A2

is a step approximation of the depletion region formed due to the presence of the electrons captured by

surface traps. That below the regions labeled A, and A2 is a step approximation for the depletion region

formed at the junction between the channel and the buffer region. The height of the region A2 (i.e. hi) is a

function of the gate and drain voltages, while the height of the region A, (i.e. hi) is a function of the drain

voltage alone. Thus,

RM=MvG,vD\

RA2=f2(VD)and

RD=^+RA2+Ro-Ro+A(vG,vD) + f2(vD)

(3.2)

(3.3)

(3.4)

where R0 is the resistance representing the contact resistance used for the formation of ohmic contact. RAI

and RA2 are given by the expressions

R,

f IA^

qM" yWh\j
and (3.5)

*,! =

9Mn

f L2^

KWh2j
(3.6)

respectively.

3.3 Thermal Effects

A major area in which the SiC MESFET is predicted to be useful is in power applications. The inherent

nature of power devices requires these devices to be able to dissipate large amounts of power. Self-heating

(also known as Joule heating) is a natural consequence. Although the thermal conductivity of SiC is large
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(close to that of copper [2]) the temperature of the channel is significantly higher than the temperature of

the backside contact in most practicable MESFET structures, as shall be shown later in this chapter. The

change in temperature entails a change in the various transport parameters which finally translates to a

change in the I-V characteristics. Thus, it becomes important to model the self-heating effects of these

devices for effectively modeling the
I- V characteristics.

3.4 Temperature-Dependent Variables in the I-VEquations

In this section the variables in the current equation that are temperature-dependent are described.

Incorporation of the temperature dependence of the variables in the current equations (thus rendering the
I-

V equations temperature dependent) is the first step toward the modeling of self-heating effects. Generally,

three terms in the I-V equations need modification: the low-field mobility, saturation velocity and the free

carrier concentration. As the temperature increases, the mobility and the saturation velocity decreases. This

is due to the fact that electron-phonon interactions increase with increasing temperature. This causes a

general reduction in the current density. Further, in the case of incomplete ionization of carriers, any

increase in temperature result in further ionization and thus greater channel concentration, resulting in

greater current. This is true only in the case of degenerate semiconductors and in not ofmuch use in the

present discussion. A quantitative description of the temperature dependencies of each of the parameters

are provided in the following sections.

3.4.1 Effect ofTemperature on Low-FieldMobility

The equation for the low-field mobility for SiC is:

J N

\N^fJ

where JU is the minimum value of the low-field mobility, /^max is the maximum value of the low-field

mobility, NRef is the reference concentration, N is the doping concentration and a is an exponential
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parameter for incorporating the doping dependence of the low-field mobility. All of the variables other than

a are temperature dependent, and their temperature dependence is given by the equations shown below

[35]:

A =950

1, 300J
cm7Vs,

f-T^m,=40|-

cmVVs, and (3-8)

/V,,/=2xlOI7x

( T \
T

V300y

The temperature dependencies of these parameters are shown in Fig. 3-3 and the resulting variation in the

low-field mobility is shown in Fig. 3-4.
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Fig. 3-3. The variation of the maximum (jumax\ minimum

(jumi) low-field mobilities and the reference concentration

(Nref).

As can be seen from Fig. 3-3, both fimax, and iimw decrease with temperature. ixmax decreases from a value

of about 2500 cm2/Vs at a temperature of 200 K to a value of about 50 cm2/Vs at 1000 K. NRefon the other
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hand, increases with temperature. It increases linearly from a concentration of 1.33 x
1017 cm"3

at 200 K to

a concentration of 6.67 x
1017

cm"3

at 1000 K. All these factors result in a decrease in the mobility of the

earners as seen in Fig. 3-4.

500

300 400 500 600 700

Temperature (K)

800 900 1000

Fig. 3-4. The variation of low-field mobility (juo) as a

function of the temperature (N = 2x
1017

cm"3, a
= 0.5).

Fig. 3-4 depicts the change in the value of the low-field mobility with respect to the change in temperature.

As can be seen from the figure, the value of the mobility decreases with temperature. This mobility model

incorporates the decrease in mobility resulting from the introduction of the dopants. At 300 K the mobility

of the electrons are about 500 cm2/Vs (and not 1000 cm7Vs, which is the bulk mobility), corresponding to

a doping concentration of 2 x
1017

cm"3. At 1000 K, this value of mobility decreases to 50 cmVVs. The

field-dependent mobility is given by the equation:

M = -

(3-9)

MoxE

V sal J

37



Assuming that/?
= 1 and a constant saturation velocity (vsal = 2 x

107

cm/s), the plot of the field-dependent

mobility with respect to the electric field and temperature is shown in Fig. 3-5. It can be seen that the value

oi Inc field-dependent mobility varies little at high electric fields, even for high temperatures, while it

varies significantly when the electric field is low. For example, for a lateral field of 2 x
105

V/cm, there is a

70% change in the value of the field dependent mobility as the temperature changes from 200K to 1000K.

For a lateral field of 12 x 10 V/cm however, the corresponding change in the value of the field-dependent

mobility is only 35%, for the same temperature variation.
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Fig. 3-5. The variation of the field-dependent mobility with

17
temperature and electric field (N = 2x 10

,
a
= 0.5).

Thus, the temperature dependence of current due to the temperature dependence of mobility is important

onh m the linear region of operation. In the saturation region, when the electric field is high, the
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temperature dependence of current is strongly dependent upon the temperature dependence of saturation

velocity, which is taken up in the next section.

3.4.2 Effect of Temperature on Saturation Velocity

Current theory in not sufficiently mature to predict accurately the temperature dependence of saturation

velocity [38], since the uncertainty that affects the coupling constant values remain very large. The

variation of saturation velocity with temperature is the one used by Royet et al. [38]:

2hu, D

3x ~

m,kT +
hm^i

exp
(hta0
kBT

2a>
exp

kcT

D

(3-10)

where u, is the velocity of sound in SiC taken to be 13300 m/s, D is the coupling constant, E is the acoustic

deformation potential, to0 is the optical phonon energy and m, is the transverse effective mass of the

electron. The values of these quantities are shown in Table 3-2.

Table 3-2: Numerical values for calculating the saturation velocity [38].

Parameter Value

Velocity of sound in SiC (ut) 13,300.00 m/s

Coupling Constant (D) 6.5 x 109eV/cm

Acoustic deformation potential (E) 15 eV

Optical phonon energy (a>0)
/tG70= 120 meV

Transverse effective mass (m,) 0.42 m0

A plot of the variation of the normalized value of the saturation velocity with temperature is plotted with

temperature in Fig. 3-6. The normalization has been carried out such that the value of the normalized

saturation velocity is 1 at 300 K. As seen in Fig. 3-6 the saturation velocity decreases by about 30% when

the temperature changes from 300K to 600K. Since the current in the saturation region is directly

proportional to the saturation velocity, it may be seen that this change in the magnitude of saturation

velocity is significant even for a small change in the channel temperature, and needs to be incorporated for

properly modeling thermal
effects.
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Fig. 3-6. The variation of a normalized saturation velocity

with respect to temperature.

3.4.3 Effect ofTemperature on Free-carrier Concentration

It has been proposed that the variation of the charge density with temperature in a SiC bulk necessitates the

numerical solution of the neutrality equation:

n = N ,

+-
N,

2 [ ED,
1 + r^exp

SL

NC{T) \kBT

Nr

In
1 H 1-^ exp

NC(T) kBT

(3-11)

However, since manufacturing processes are yet immature, a significant number of majority carriers

interact with surface and substrate states in a complex manner. It is further assumed that the theoretical

variation of the majority carrier concentration with temperature is insignificant compared to the temporal of

channel electron concentration resulting from surface and substrate traps. Thus the variation of channel

electron concentration with respect to temperature has been neglected in this work.

3.5 Temperature Dependence of the Thermal Conductivity of SiC

Although the thermal conductivity of SiC is very high compared to the thermal conductivity of other

semiconductor materials, it is not constant with temperature. The thermal conductivity of SiC is as good as

copper only at low temperatures. As the temperature increases, the thermal conductivity of SiC starts

decreasing. Thus, at higher temperatures, the ability of SiC to dissipate heat decreases significantly. If this

40



in not modeled into the heat-flow equation, the correct thermal profile can not be obtained. This section

describes the variation of the thermal conductivity of SiC with respect to temperature. The variation of

thermal conductivity on temperature is given by the relation [38]:

K(T)
= k0,

300
(3-12)

where Km\s the thermal conductivity of SiC at 300K having a value of 3.2 W/cm/K, and T is the

temperature in K of the bulk. The variation of the normalized thermal conductivity with temperature is

shown in Fig. 3-7:
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Fig. 3-7. The variation of the normalized thermal

conductivity with respect to
temperature.

Again, the normalization has been carried out so that the
normalized thermal conductivity is 1 at 300 K. As

can be seen, the thermal conductivity at 600K reduces to about 40% of its value at 300K. Thus, it is

imperative that any temperature-dependence of
the I-V equations takes care of the variation of the thermal

conductivity of the SiC bulk with temperature.
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3.6 Power Dissipation Equations Representing Thermal Equilibrium

Equation (3-12) may be linearized using Krickoff s transformation to:

, r

(3-13)

Approximating the channel to a half-cylinder, the temperature difference between the backside contact and

the channel is going to be given by [38]:

AT -

:{T0)W

In
8/

ttL

diss
>-p~P~

1
i\

(3-14)

where Pdiss is the power dissipated in the channel, T0 is the temperature of the backside contact and tsub is

the thickness of the substrate and P0 -(7T>c(TQ)WT0/Pdiss)/\n(Stsub/n:L)
. Equation (3-13) may be

integrated and the result simplified by using equation (3-14) yielding the equation:

P
V

1
^'

AT = Tn
2R

ii J

p

2Pn

\2
(3-15)

3.7 The Iterative Solution for the Temperature-Dependent Current

The method for the solution of the temperature-dependent drain current is described as follows. First the

current is calculated using the current equations for a particular drain voltage assuming a channel

temperature of 300K. The dissipated power Pdiss is the product of the drain current and the drain voltage.

This dissipated power is used to find the difference in temperature between the backside contact and the

channel using equation (3-15).
AT is then used to find the temperature of the channel (AT + Ta), which is

subsequently used for finding the value of the current at the designated temperature. This procedure is

carried on iteratively until sufficient convergence is observed.
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3.8 Results

Data were obtained from [31] for a MESFET fabricated by Sghaier et al. at Thales Research and

Technology at Orsay, France. The transistor has a gate length of I urn, a width of 2x250 urn, a buffer layer

thickness of 0.3 urn, a channel thickness of 0.3 urn, a channel doping level of 2x1
017 cm"3

and a buffer

doping of 1 x 10 . The distance between the source and the gate contact is 1 urn and that between the

gate and the drain is 2 um. A Si02 layer is present on top of the structure. The I-V characteristics of the

MESFET is shown in Fig. 3-8.

20

Drain Voltage (V)

35

Fig. 3-8. The measured 7-V characteristics of the MESFET

fabricated by Sghaier et al. [31] depicting the various non-

idealities present in the MESFET.

Fig. 3-8 contains two sets of I-V curves. Current components depicted by solid lines represent simulations

in which the gate voltage was progressively decreased from -IV to -9 V, while those represented by the
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dashed lines are representative of the I-V characterictics measured while the gate bias was progressively

increased from -9 V to -IV. For the gate voltages of-1V and -3 V, the two sets of curves overlap. For the

gate voltages of -5 V, -7 V and -9 V however, the currents in the two sets are different and differ in the

amount of current collapse resulting from substrate trapping effects. Thermal deterioration of drain
current

is also evident, especially for low gate and high drain biases, wherein the drain current is seen to decrease

rather than increase with increasing drain bias.

Fig. 3-9 depicts the simulation results resulting from neglecting both buffer and substrate traps. It

incorporates thermal effects so that the true nature of the drain-current reductions due to the surface and the

substrate traps become evident. It can be seen from the figure that the drain currents predicted by the

absence of the trapping effects are significantly greater than the measured value.

0.06

10 15

Drain Voltage (V)

Fig. 3-9. Measured (D) and calculated I-V characteristics

showing the difference in the measured and calculated

values when trapping characteristics are not
incorporated.
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Fig. 3-11 represents the I-V characteristics in which the surface traps have been incorporated but the

substrate traps have not been incorporated, while Fig. 3-13 represents the /- V characteristics wherein both

the surface and the substrate traps have been accounted for.

As can be seen from the Fig. 3-9, Fig. 3-1 1 and Fig 3-13, there is significant current collapse not only due

to the substrate traps but there is significant loss of current due to the presence of the surface traps as well.

When trapping effects are neglected, the predicted value of the saturation current for a gate bias of -5 V is

of the order of 0.05 A while the corresponding measured value is of the order of 0.04 A, as seen in Fig. 3-9.

As mentioned before, the surface traps are primarily responsible for increasing the drain resistance of the

channel. For the results shown below, the variation of the drain resistance with the drain bias is shown in

Fig. 3-10.

10 15 20

Drain Voltage (V)

30

Fig. 3-10. Variation of drain resistance with the gate and the

drain voltage.

This results in greater potential drop across the drain and the source resistances and thus lesser current. It

may be predicted from this that the greater the current, the greater the magnitude of the current deviates

from the measured value.
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Fig. 3-11. Measured and calculated I-V characteristics

depicting the difference between the measured and

calculated values when substrate trapping effects are

neglected.

This is evident in Fig. 3-9 where the greatest deviation from measured current is for the gate voltage of

-5 V. As seen in Fig. 3-13, the inclusion of the substrate trapping effects in the I-V relationship results in

much better prediction of current, especially in the saturation region. However, it is still insufficient in

predicting the current collapse that is observed as a result of the buffer traps. Buffer traps capture electrons

in the previous sweep and steadily release electrons in the subsequent sweep. The variation of the effective

channel concentration (n) with respect to the drain voltage is shown in Fig. 3-12. The release of electrons

from buffer traps for different biases is dependent mainly upon the difference in channel/buffer temperature

for the biases. The channel (and thus the buffer) temperature at a gate voltage of -9 V is lower than the

channel temperature at the gate voltage of-5 V.
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Fig. 3-12. The variation of the effective channel

concentration with respect to the drain voltage.

It is evident that it will necessarily take greater time for the electrons in the buffer traps to get detrapped for

the gate voltage of-9 V than it would take for the buffer traps to get detrapped for the gate voltage of -5 V.

This is seen to be the case in Fig. 3-9. Incorporation of the buffer trapping effect into the /- V relationship

results in the correct prediction of the current relationships, as shown in Fig. 3-13.

? Experiment

- Calculated

10 15

Drain Voltage (V)

20 25

Fig. 3-13. Measured and calculated I-V characteristics

showing the agreement between the two when all non-

idealities are incorporated into the I-V relationships.

47



Fig. 3-14 (a) depicts the measured and calculated /- V relationship when the gate voltage was progressively

decreased from -1 V to -9 V, while Fig. 3-14 (b) depicts the measured and the calculated I-V relationship

when the gate voltage was increased from -9 V to -IV. In the former case, before the sweep begins, the

temperature of the device in general is higher since the previous sweep happened to dissipate more heat.

This is shown in Fig. 3-14 (b) where the buffer-trapping effect is more pronounced when the gate voltage

increases from -9 V to -1 V than in the case when the gate voltage decreases from -1 V to -9 V.

10 20 30

Drain-Source Voltage (V)

(a)

J
0.05

~ 0.04

0.03

O 0.02 4

Q 0.00

D Measured

Calculated

0 10 20 30

Drain Voltage (V)

(b)

Fig. 3-14. Measured and calculated I-V characteristics for

instances where (a) the gate voltage was decreased from -

1 V to -9 V and (b) the gate voltage was increased from -

9 V to -1 V.

Another device simulation has also been carried out for further corroborating the theory. This device has

been reported by Huang et al. [44]. The MESFET structure is similar to that that made by Sghaier et al.

with the following characteristics: the n-type channel has a doping of
1.7xl017

cm"3, and a depth of

0.26 am. The main difference between the previous and the current device is that this device has a very

thick buffer layer of 6 um and has a concentration of
1.4xl015

cm"3. The source and the gate lengths are 1

um and the gate length is 0.7 um. The measured and the simulated I-V characteristics are shown in Fig. 3-

15.
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Fig. 3-15. Measured and calculated I-V characteristics

showing the importance ofhaving a thick buffer layer.

The I-V characteristics have been simulated without the inclusion of substrate traps but with the inclusion

of surface trapping effects. The figure shows that the presence of a very thick buffer layer effectively

eliminates the buffer trapping effects.
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Chapter 4

The Effects of the Buffer Layer on the Electrical

Characteristics of the MESFET

4.1 Introduction

4.2 Results and Discussion

4.3 Conclusion

4.1 Introduction

In this chapter, two-dimensional simulations to investigate the effects of the buffer layer thickness

and doping concentration on the electrical characteristics of the SiC MESFET have been carried out using

the Atlas device simulator . The buffer layer is primarily used for preventing electrons from crossing the

buffer layer and getting trapped into the buffer traps as shown in the previous chapter. It is further seen in

Chapter 2 that the current equations are significantly altered as a result of the presence of the depletion

region at the channel/buffer interface. It may be inferred that the electrical characteristics of the MESFET

will be significantly altered by the presence of the depletion region. In theoretical calculations, it is

assumed that the depletion region at the buffer/channel interface is devoid of channel electrons. This is not

strictly accurate. As shall be seen in this chapter, two-dimensional numerical simulations show that for

weakly doped buffer regions, channel electrons leak into the depletion region creating a duplicate channel,

and the electrical characteristics of the device are greatly affected by it. This chapter investigates the

variations of transconductance, output resistance, gate-source capacitance, gate-drain capacitance and

(cutoff frequency)7t with respect to the change in buffer layer thickness and doping concentration.

For a SiC MESFET with buffer layer thickness of 0.3 /um and gate length of 1 /mi, drain current

increases from 0.1 AJ fim to above 0.45 AJ fim as the buffer layer doping density is decreased from

1.9xl017 cm'3

to
lxlO16

cm"3. The simulations were carried out at a gate-source voltage of-1 V and a drain-

source voltage of 15 V. Under similar conditions, the output resistance decreases from
1.2x]06

CU/jm to

the details ofdevice simulation and parameters used for device simulation may be found in

,,)Oc-n(ii I-2D Device Simulation
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i ' iO Q///m, and the transconductance decreases from 5.9 mS///m to 5.3 mS///m, and/T decreases from

Oil GHz to 0.08 GHz.

4.2 Results and Discussion

In this analysis, three n-channel SiC-based MESFETs with different buffer layers have been

considered as described in Fig. 4-1 and Table 4-1. For comparison of the performance variations due to

different buffer layers, the same channel doping density and thickness of all three structures have been

considered. These are
2xl017 cm"3

and 0.3 /mi, respectively. Structure-I has a thin (0.3 /mi) and
lightly-

doped
(lxlO16

cm"3) buffer region, Structure-II has a thin (0.3 /mi) but heavily-doped buffer region, and

Structure-Ill has a thick (0.6 /mi) and moderately-doped
(5xl016

cm"3) buffer layer.

Table 4-1 - Device structures used in the analysis.

Structure I II III

Buffer thickness (um) 0.3 0.3 0.6

Buffer doping (cm3)
lxlO16 lxlO'7 5xl016

Channel doping (cm3)
2xl017 2xl017 2xl017

Channel thickness (urn) 0.3 0.3 0.3

Fig. 4-1 depicts the channel current density and the vertical component of the electric field along the

cross section of the devices. It can be seen from Fig. 4-l(a) that the electric field in Structure-I is very weak

at the channel/buffer interface compared to that present in Structure-II and Structure-Ill. This is because the

lower doping in the buffer layer of Structure-I would entail a much smaller built-in voltage at the

channel/buffer interface and a correspondingly low electric field would result. However, a net electric field

across the buffer exists as the buffer layer is fully depleted. As a result, the channel electrons in Structure-I

are not completely confined within the channel and leak into substrate region through the buffer layer and

are subsequently captured by the traps. The dispersion of electrons causes the drain current in the saturation

region to become linearly dependent upon the drain voltage. Thus, the output resistance of the channel is

significantly reduced as shown in the I-V characteristics of Structure-I (see Fig. 4-2, curves shown by ?).
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Fig. 4-1. The current density and the vertical component of

electric field lines are plotted across the device cross-sections

under similar biasing conditions (Vas
=
-5V and Vos

= 15V). It

may be observed that the spatial dispersion of free carriers is the

highest in Structure-I (Fig. la) - where the buffer layer is totally

depleted, and is lowest in the Structure-II (Fig. lb) - where the

buffer is least depleted. Structure-Ill (Fig. lc) exhibits a greater

degree of spatial dispersion of carrier density compared to

Structure-II as the depletion region width in the buffer layer is

increased.

In Structure-II and Structure-Ill, the buffer layer is not fully depleted due to an increase in doping

density and/or buffer layer thickness. As a result, the carriers are confined inside the channel due to the

absence of a net electric field across the buffer.
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5.E-04
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Drain-Source Voltage (V)

12 15

Fig. 4-2. I-V characteristics of Structure-I, -II and -III. The I-

V characteristics of Structure-I (?) exhibits the highest

saturation drain current, however, its output resistance is

the lowest. Structure-II (o) has the lowest saturation drain

current and the highest output resistance. In Structure-Ill

(), an increase in saturation drain current is obtained at the

expense of reduced output resistance. Gate voltages are -IV

(top), -3V (middle) and -5V (bottom).

As a result, higher output resistance is observed in the I-V characteristics of Structures-II and -III as

shown in Fig. 4-2. However, since the concentration of the buffer layer of Structure-II is double the

concentration of the buffer layer of Structure-Ill, carrier confinement is significantly higher and so is the

output resistance. One consequence of improper confinement of the channel current density resulting from

a low-doped buffer region is that the drain current is higher due to the effective increase in channel

thickness. Fig. 4-3(a) shows the variation of the drain current with the variations in the buffer layer

thickness and buffer doping concentration at VGs
=

-1 V and VDS
= 15 V. The drain current varies

significantly with the buffer doping concentration and only slightly with the buffer thickness, especially in

buffers that are highly doped. The thick and heavily doped buffers have the least current while thin and

lightly doped buffers have the maximum current. From the previous discussion, it may be inferred that the

buffers that are heavily doped should exhibit the greatest output resistances. This can be seen from Fig.

4-3(b), which shows the variation of the output resistance as a function of drain voltage with the buffer

doping concentration as a parameter, at a gate bias of-1 V.
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Fig. 4-3. Effects of buffer layer - (a) variation of the drain current

with the variations in buffer concentration and thickness at

Vgs=
-1 V and VDs= 15 V, and (b) variation of the drain resistance

with the variations in drain voltage and buffer layer concentration

atVGS=-\V.

As expected, the output resistance steadily increases with increasing drain voltage and buffer layer

concentration. The variation of the gate-source capacitance (CCs) with respect to the buffer thickness and

buffer doping concentration is shown in Fig. 4-4(a). The gate-source capacitance is of the order of 5 fF///m

and is nearly independent of the thickness of the channel. However, it increases linearly with decreasing

doping concentration. The variation of the gate-drain capacitance (CGO) with respect to the buffer thickness

and doping concentration is shown in Fig. 4-4(b). The gate-drain capacitance is nearly independent of the

buffer thickness and increases almost linearly with decreasing buffer doping concentration. The

transconductance (Gm) as a function of buffer concentration and buffer thickness is shown in Fig. 4-4(c).

The transconductance is nearly independent of both the doping and the buffer thickness. However, for low

values ofbuffer concentration, the transconductance decreases at low channel thickness.

Finally,/}- for the transistor is calculated using:

G.
fr =

2k(Ccs+Cgd)
(4-1)
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A plot offT is shown in Fig. 4-4(d). As can be seen from the figure, fT is also nearly independent of

both the buffer thickness and buffer concentration.
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Fig. 4-4. Small-signal parameters- (a) the gate-source capacitance,

(b) the gate-drain capacitance, (c) the transconductance and (d)f},

as a function of the buffer concentration and buffer thickness.

For low values of buffer concentration, a sharp drop in/r can be observed. This decrease in the value

of /r is seen to mimic the decrease in transconductance shown in Fig. 4-4(c). CGS and CGD exhibit
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complementary behavior toward doping concentration and the summation of CCD and CGS is almost

independent ofboth buffer doping concentration and thickness.

4.3 Conclusions

This chapter investigated the effects of the doping concentration and thickness of the buffer layer on the

SiC-based MESFET characteristics. It was found that high values of doping concentration of the buffer

layer results in higher output resistance and higher^, which are important for the devices to be used in RF

power amplifiers. As the maximum drain current in the devices with higher doping concentration is

significantly reduced, devices with larger channel widths are required to compensate for the decreasing

current. A highly doped buffer prohibits channel electrons from reaching the electron traps located at the

buffer-substrate interface and thus would result in the mitigation of substrate trapping effects.
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Chapter5

Small-Signal Parameters

5.1 Introduction

5.2 The Small-SignalModel of the MESFET

5.3 Current Equations Revisited

5.4 The Output Conductance

5.5 Transconductance

5.6 The Gate-Source Capacitance

5. 7 The Gate-Drain Capacitance

5.8 Results

5.1 Introduction

In this chapter, the small-signal model of the MESFET is studied. The model does not take into

account the thermal effects arising from electron-phonon interactions and trapping effects. The small-signal

model necessary for using the transistor for RF/analog applications, is made up of a set of resistors,

capacitors and typically a voltage controlled current source (defined at a given set of bias voltages). This

model can then be used as a sub-circuit in larger circuit applications (eg. power amplifiers, LNAs), and

analyzed using standard circuit analysis. Once the small-signal model is determined, it is also possible to

determine the frequency characteristics of the device, the optimum frequency of operation of the transistor

and the maximum operating frequency of the device. Subsequently, digital applications can use this

information to find the turn-on and turn-off times of logic-gates, clock generators, etc., fabricated using the

device.

5.2 The Small-Signal Model of theMESFET

A number of small-signal models are available for the MESFET [45]-[49]. Most of the models are

very similar to various well-known FET models [50], [51]. A typical small-signal model of the MESFET is

shown in Fig. 5-l(a). In Fig. 5-l(b) the physical origins of various elements present in the small-signal

model ofFig. 5- 1(a) are shown. The model and the diagram have been adapted from the book Ref. [52],
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Fig. 5-1. (a) small-signal circuit model, and (b) a

schematic representation of the origins of each of the

elements present in the small-signal representation [52].
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From the figure, it can be seen that source, gate and drain resistances are modeled by the

resistances Rs, RG and RD, respectively. Further, it may be observed that the source and the drain resistances

are broken up into two parts: the resistance of the source/drain ohmic contacts and the resistance of the

semiconductor present between the source/drain contact regions and the gate region. The gate resistance is

primarily composed of the gate contact resistance. As shall be discussed later, none of the resistances are

modeled into the small-signal parameters. The height of the depletion region under the gate toward the

source side is controlled by the potential between the gate and the source. A differential change in the

source-to-gate voltage induces a corresponding differential change in the amount of charge in the depletion

region under the gate in the channel. The ratio of this variation of the depletion charge under the gate with

the corresponding variation in the change in the source-to-gate voltage with the drain voltage held constant

corresponds to the gate-source capacitance Cgs, as shown in the Fig. 5-1 (b). A similar situation occurs

when the drain voltage is varied while the gate and source voltages are held constant. In this situation, the

potential across the channel changes slightly. This induces a change in the height of the depletion region

and thus a change in the magnitude of the charge in the depletion region under the channel. This differential

change in the depletion-region charge under the gate divided by the differential change in the drain voltage

(while all other voltages remaining constant,) is represented by the gate-drain capacitance Cgd. ids is the gate

voltage-controlled current source. The current in the channel is ideally dependent only upon the gate

voltage and not on the drain voltage when the device is operating in the saturation region. Effects of the

drain voltage on the /-V curves cannot be neglected in the saturation region of operation. The drain voltage

dependence of the current is modeled by using a bias dependent channel resistance Rds. The drain-source

capacitance Cds is used to model the significant displacement current that may flow through the channel at

high frequencies. In this thesis, methods for determining the gate-source capacitance, the gate-drain

capacitance, the transconductance
and the output conductance is determined. The transconductance and the

output conductance are obtained by differentiating the drain current with respect to the gate voltage and

drain voltage, respectively, while the gate-source and gate-drain capacitances are obtained by

differentiating the charge under the gate with
respect to the gate and the drain voltages, respectively.
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5.3 Current Equations Revisited

It needs to be noted that the current equations that have been derived in the first chapter

correspond to an extrinsic transistor wherein the source and the drain resistance are modeled into the

current. However, the small-signal model derived in this chapter is an intrinsic model as seen from Fig. 5-1.

In this model, the small signal parameters are independent of the source and the drain voltages. The

potentials at the source and the drain are assumed to be equal to those applied at the terminals. Under these

circumstances, the current equations need to be re-derived by neglecting the source and the drain

resistances. The procedure for the derivations is the same as that in Chapter 2 and so only the results are

shown here. The equation for the source-drain current in the linear region is given by:

jD =

qWND^sal\

Vsa,L + M0VD

2qND

3 2s
k-hi\

2qNDNA+ND r, 3

3 2s 7V7

(5-1)

fc-

where, all parameters are the same as defined in Chapter 2 other than the heights of the depletion regions

which are defined as:

NA

NA+ND
\2sNA+ND_[Ub]

(5-2)

q ndna

K =

v,

NA+ND
\2sN'+NHubl+vD]
q ndna

For solving for the current equations in the saturation region
the following three equations need to

be solved simultaneously:

^A+mM

'

3
2slu s]

3 2s NA
[]U

]Sf

ID=qWNDvs,
\qND ^qNDNA+ND

(5-4)
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and V
2Eshu u
^-^-sinh
n

fn{L-Lxf
2h

+ V, (5-5)

11 J

Again, all parameters have already been defined in Chapter 2.

5.4 The Output Conductance

The output conductance is the reciprocal of the output resistance Rds. This is a small signal

parameter defined as the ratio of the differential change in the drain current to a differential change in the

drain voltage. In the linear region of operation, the output conductance may be calculated by differentiating

the linear region drain current equation with respect to drain voltage as shown below:

goi
= dI^=qWND^at{a_K_K] IdMo

{56)

dVD Vsa,L+MoVD lVsa, +MoVd\

For obtaining the output conductance in the saturation region, the three equations (5-3), (5-4) and

(5-5) need to be differentiated with respect to the drain voltage, and the differentials dLj/dVD and dV/dVD

need to be eliminated from the resulting equations. Differentiating equation (5-3) with respect to VD we

obtain:

go

dL

dVn

h *%-

qWND/J0vSi

Vc=const .

dVn
h <%

[VsaA+Mo^]

I

x<a
dVx

~d~V~n

dVn

dL,

bA+MovM
sa'

dVo
+ Mo

ydVDj

(5-7)

which may be rearranged to an equation of the form:

go k,i,+/^]1

[v*A+Ml

dV\

dVn

[dL,IDVsa,

(5-8)

which may be rewritten as:

So,
= M.

dVj

dVn dVn
(5-9)
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Mu =
qWNDMov. JdMof^^{a_h h }

Wo
and (5-10 a)

M,
IDVsa,

koA+MoVj

Now, differentiating equation (5-4) with respect to VD, we obtain:

(5-10 b)

gm
=

-Wvsi

K

- +

7V7

xNA+NDj \l\

(

dV^

ydVD)

(5-11)

which may be rewritten as:

go -M,

'

dV^

Kdvoj

(5-12)

where:

Mn=sWvsal
- +

V,

yNA+NDj

(5-13)

And finally, differentiating equation (5-5) with respect to VD, we obtain:

dV. IE*
.

,L + -sinh

dVD n

n{L-Lx)\

2/?

/

2r

71
hu cosh

ii J\

fn{L-L,)M 1

2/7
n j

Ah2

2s_

qND

2hLXn

C -i \f ,rr \

V"I1 /

dV,

dV,
+

\"r
D J

dL^

dVDj

Al-la^
2s

2huAqN.V"-"l D J

'
'

dV^

KdVDj

(5-14)

which may be rearranged to:

dV,

~dVn

ES{L-L,)

, 2E, 2s 1 .

,

l-i sinh

ti qND 2hLX

fn{L-Lxf

k{L-L,)

2/?

2s

4/7
\<lNDj

cosh

2/7
11 J

II J

'

dL^

KdVoJ

2ES cosh
4l-lS

2/7
n )

(5-15)

Again, this is represented as:
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dVi

~

_dVD_

Mi4~

'

dL,

"

M, (5-16)

where.

Mu = 1 +
2ES 2s 1

k qND 2hLl
-sinh

71{L-L,)\ ES{L-L})( 2s
N

2^v ""II j 4ht qN

cosh

Vi"D/

;r(*-*.)!
V 2hn J

Ml5 =2^ cosh
(Z-I,)71

\ 2hn J

(5-17 a)

(5-17 b)

Using equations (5-9), (5-12) and (5-16), the equation for the output conductance may be obtained

go
=

[m12/mJ
\ +Mu/Mn-{MuM]4)/{MnMl5y

(5-18)

5.5 The Transconductance

The transconductance is defined as the differential change in the drain current with respect to a

differential change in the gate voltage. In the linear region, the transconductance may be determined by

differentiating the current equation in the linear region (5-1) with respect to the gate voltage:

VsoiL +MoVd

(5-19)

In the saturation region, all the three current equations for the saturation region (5-3), (5-4) and
(5-

5) need to be differentiated with respect to the gate voltage. Differentiating (5-3) with respect to the gate

voltage, we obtain:

o ms

qWNoVsaMo

VsaA+Mo^

VsaA+MoK

wKii.t. an be rewritten as

dVt
'

dVn

rdL,^

h,
dV^

dV,
-kS-k

rf7

c J dVn_

+ Mo

'

dV^

KdVoj

(5-20)
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gn
qWNDka,M0

qWNDka,M0

VsaA+M0V]

which may be rewritten as:

IDMo dU

dV

dVn.

K-hY
VsaA+M0^ dVG

gm=M2X

where M2], M22 and M22 are defined as,

KdVGj

+M -M,23

M, gggV^,^, }
/

A/
/D/"0

23

A+MoV\

Now, differentiating equation (5-4) with respect to the gate voltage we obtain,

gm
=

sWvs,

which may be represented as,

K\ h\LX

N,

NA+ND

dVx sWvsal

dVG hLl

gm=M2

dV,
-Af,

>dVD
^

where,

M24=sWvsi
N,

kNa+NdJ

,
and

sWv

(5-21)

(5-22)

(5-23 a)

(5-23 b)

(5-23 c)

(5-24)

(5-25)

'
25

(5-26 a)

(5-26 b)

And finally, differentiating equation (5-5) with respect to the gate voltage, we obtain:
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2EJi,
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which may be rearranged to the form:
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which may be rewritten in the form:
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M
26
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V 2hu J 2hLi qND\ hL]7rqND K 2hu J
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M21 = Es cosh
4L~Lt)

2hu J

and (5-30 b)
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hL]7T qND

sinh
7t{L-L,)\ ES(L-L,) 2s

\ 2hu j 2/72, qND

cosh
m^f

2/7,
(5-30 c)

1 J

Finally, using equations (5-22), (5-25) and (5-29), the equation for the transconductance may be

obtained as:
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5.6 The Gate-Source Capacitance

The magnitude of depletion charge under the gate is dependent upon the gate and the drain biases.

Differential changes of these biases result in differential changes of the magnitude of the charge under the

gate. This leads to the formation of capacitances between the gate and the drain terminals and capacitances

between the gate and the source terminals. These are termed the as gate-drain capacitance (Cgd) and the

gate-source capacitance (Cgs), respectively. There are a number of definitions for the each of these

capacitances [53-55], but the most common definition for the gate-source and gate-drain capacitances are

dQi

dVr.

dQ

dVDVD=cons<.
and

Vn -const.
respectively [56].

The charge under the gate is given by the equation:

L

Qi=qWNDjh(x)dx (5-32)

in the linear region and by

Qx =

qWND \h{x)dx + qWNDh\x=L
{L -

Lx ) (5-33)

in the saturation region. These equations may be differentiated with respect to the gate voltage while the

drain voltage is held constant to obtain the gate-source capacitance. In the linear region the gate-source

capacitance is given by:

C

dVr_

=

qWND\

2s

dVG\qND

[-vG+vbi+v\k (5-34)
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After the differentiation is carried out, the value of the capacitance is given by the equation:

C
ff

(5-35)

Equation (2-11) may be used to find an expression relating .v, the position along the channel and

the corresponding channel potential V. This may be used for variable substitution. After variable

substitution from x to Kis carried out, the equation (5-35) may be represented by the equation:

'qWNDMo
c^Wh

-{a-h-h,}--^-dV (5-36)

where h and h\ are functions of V. Equation (5-36) may be simplified by using the equation (5-2) as:

Cgs = sW
qWNDMo M0

sal J/i

J c

sW
qWND/iQ

[v]

cWq^DMoJl
-v,

D 0\NA+ND

ub,+v

kK
+ V-Vg;

dV

(5-37)

Finally, solving the equation (5-37) leads to the expression for the gate-source capacitance in the

linear region as:
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Cgs=sW

-sW

qWNpMo
a

Mo
K~hs]

qWr%Mo fy
i

=wqWNDMo \ NA
;

Id In i^A+ND

Wo +"I r{VD -Vc+ Vbi ) - V(L/WX-
VG + Vb, ) (5-38)

bbi-vG-vb)J4vD+u -4vD-vc+vbl
+

W-4-VG+Vb,

(Ub,-Vc-Vb)j4Vo +ul tJKzK +v< \
2 1 ^+^-vG+vu

In the saturation region the equation (5-33) rather than the equation (5-32) must be differentiated

with respect to the gate voltage. The capacitance is this given by:

dQ,
Css

dV

W^J^["Kc+K-+K]A

+ qWNDhu --{L,)-qWNDhn ^{Q)\-qWNDhLl--(L,) (5-39)

dVG dVG J dVG

+ qWND(L-Ll)^
dVr,

which may be rewritten in the form:

Cgs=qWND)^\-^-[-VG+Vbl+v\ix + qWND{L-L,)

o
dV

G \ qND

dhL\

dVn
(5-40)

dhLJdVG may be obtained by differentiating equation (2-15) and using equation (5-25) to obtain the

value of dV) /dVG as:

dh, 1 2s g ~M,S

V M2AdVG 2hu qND

And finally the equation for the gate-source capacitance in the saturation
region is given by:

(5-41)
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qWNpMo
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Mo
\hu-h^sW^^-\vA

'
n

+ sW
qWNDMo NA

NA+ND

W> + ulWt -

vG + Vbi ) - JUb, (- Vc + Vbi )

{ub, + vG-vhl)Xn^ +uu -^ -vG + vbi
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Pm + vg- vA ln vg
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^G + ^

+

[Uo~

+ ^-vG+vbi

+
sW(L-L,)

lhl

gm~M2

M
24

(5-42)

5.7 The Gate-Drain Capacitance

The gate-drain capacitance is defined as the differential change in the magnitude of the charge

under the gate with respect to a differential change in the drain voltage. As shown in Annexure II the total

charge under the gate in the linear region is given by the equation:

a =M1 -Bl k -hi}-

WN^ [hD-ht

'Ji;(2Vf+b)-4Ri{2Vi+b)2sqNDW^0 NA

Ir NA+ND

At
+ ln

2^jRf +2Vf+b

+ 2Vt+b

(5-43)

where,
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(5-44)

Rf
= Y~vG + vb, )Ub, + {-VG + Vbi + f/w )FD +

FD2

]
*,-=[(-rG+Kw)/J

b = (-VG+Vbi+Ubi)

A =

4(-VG+Vbi)Ub,-(-VG +Vbl +
Ub,)2

The total depletion charge under the gate in the saturation region is given by the equation as

shown in Annexure II:

3* j ID Asl,

2sqNDW2Mo f^N^ \jRf~(2Vf+b)-jRf~(2Vf+b)
NA+ND

+Aln
2JRf +2Vf+b

+ 2Vi+b

+
qWND(L-Lx)hh

(5-45)

where.

Rf
= [i-vG + ^,)^- + (-^G + ^- + ^-F, +

v2

]
*,=[(-rG+rw)/J

V -Vv
f y\

v, =o

(5-46)

In the linear region of operation, equation (5-40) may be differentiated with respect to the drain

voltage to obtain the expression for the gate-drain capacitance:
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where,

dQ
=

g2WN2D qWNDM0a Mo /;2 dhD

dVD s \ ID vsat\\DdVD^

g2WN2D qWNDfLf)a I h3D
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\g0
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Sir dVn

+

ell
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2sqNDW2Mo NA
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dV \
f

dV,

1 dRf dVf

D J

+ 2
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2^Rf dVD 2 2jRf +2Vf+b

|
2sqNDW2M(tgr) I NA \jR~;(2Vf+b)-W(2Vf+b)

+Aln

/J

Al N + N1
D V "A

t iv
D

2^R~f+2Vf+b

+ 2Vi+b

(5-47)

JF7
= 1

^/ , . . r, ^/ . or, <"7

dVr
-{-VG +Vbi+Ubi)-f + 2V

dVn dVn

dhr fdV^
K~dVDj

(5-48)

dVD qNDhD

And finally the gate-drain capacitance in the saturation region is
given by the equation:
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where:

dQ,
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(5-49)

dVf

~dVn
-go/My

dRf , \dVf
~

=(-VG
+

vb,+ub)^dVD

dh,,

dVD qNDhL] dVD

dV,

dL,

dVn
-g0

M

2V,

dVf
~dvZ

(5-50)

5.8 Results

The small-signal parameters have been calculated for the ideal device having
dimensions similar to that of

the device fabricated by Sghaier et al. [31], assuming that both the source and the drain resistances are

50 Q. The transistor has a gate length of 1 um, a width of 2x250 um, a buffer layer thickness
of 0.3 um, a
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channel thickness of 0.3 um, a channel doping level of
2xl017

cm"3

and a buffer doping of
lxlO16

cm"3.

The distance between the source and the gate contact is 1 um and that between the gate and the drain is

2 um.

VD=0.9V

-9 -6 -3 0

Gate-Source Voltage (V)

Fig. 5-2. The plot of transconductance as a function of the

gate-source voltage with drain-source voltage as a

parameter.

Fig. 5-2 depicts the plot of the transconductance of the device as a function of the gate bias with drain bias

as a parameter. The transconductance steadily decreases with a decrease in the gate voltage both in the

linear and the saturation region. In the saturation region, the transconductance is nearly independent of the

drain voltage as may be observed from the lines that are closely packed lines in Fig, 5-2. This indicates

that the output resistance in the saturation region is fairly constant. In the linear region however, the

transconductance varies significantly with the drain voltage and is indicative of the fact that the slopes of

the I-V characteristics are different for different drain voltages as expected. An extrapolation of the

transconductance curve indicates a threshold voltage of about -12 V. The transconductance is maximum at
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a gate voltage of 0 V and has a saturation value of around 35 mS. It decreases fairly linearly in the

saturation region to a value of about 12 mS at a gate voltage of -9 V.
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Fig. 5-3. The plot of the output conductance of the device as

a function of the drain bias with gate bias as a parameter.

Fig. 5-3 shows the output conductance of the device as a function of the drain bias with gate bias as a

parameter. The output conductance specified as the differential change in the drain current that occurs as a

result of a differential change in the drain voltage. In the linear region, the current changes rapidly with an

application of drain bias and thus it is expected that in the linear region the output conductance is going to

be high. In the saturation region however, the drain current changes only slightly with a change in the drain

voltage and this results in a very low value of output conductance. The output conductance is several orders

ofmagnitude higher in the linear region than in the saturation region as seen in Fig. 5-4. In the linear region

the value of the output conductance is about 0. 1 S while in the saturation region the value of the output

conductance is between
lxlO"8

S and
lxlO"9

S. Further, the output conductance at the gate voltage of 0V is
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grdiio than the output conductance at the gate voltage of -9 V. This is expected since the drain current at a

gate voltage of0 V is greater than the drain current at a gate voltage of -9 V for example.
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Fig. 5-4. Plot of the output resistance as a function of the

drain voltage with gate voltage as a parameter.

Fig 5-4 depicts the output resistance of the device with respect to the drain voltage with the gate bias as a

parameter. The output resistance is the inverse of the output conductance and is defined as the ratio of the

differential change in the drain voltage with the corresponding differential change in the drain current. That

is, it is the slope of the I-V characteristics. Here again, it can be seen that in the saturation region the output

resistance is constant and independent of the drain bias. The output resistance in the saturation region is

minimum for a gate bias of 0 V and steadily increases as the gate voltage becomes more and more negative.

In the linear region the output resistance is around 10 Q that increases to a value of about 10 GD. at

saturation.
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Fig. 5-5. A plot of the gate-source capacitance as a function

of the gate-source voltage with drain-source voltage as a

parameter.

The gate-source capacitance is plotted as a function of the gate-source voltage, with the drain

voltage as a parameter in Fig. 5-5. The gate-source capacitance changes very little with changing gate

voltage. It is seen that the capacitance decreases with decreasing gate voltage between gate voltages of 0 V

and
- 5 V and increases thereafter. The capacitance is of the order of 0.5 pF. In the absence of the buffer

layer, the gate-source capacitance continuously decreases with decreasing gate bias, while in the presence

of tlk buffer layer it can be seen that the gate-source capacitance after saturation is affected by the increase

in the thickness of the lower depletion region and increases with decreasing gate voltage. This is probably

due i* > l he following reason: When the drain voltage is held constant and the gate voltage is decreased, the
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current decreases as well. In saturation, the channel opening is fairly constant and so the channel resistance

is fairly constant also. This results in an overall decrease in the channel potential over most part of the

channel. This results in a decrease in the thickness of the lower part of the channel. As a result, a greater

amount of space is present for the upper depletion region to expand into. Thus the total charge under the

depletion region increases more rapidly, increasing the gate-source capacitance.

1.00E-12 -i

1.00E-13

1.00E-19

8 12

Drain Voltage (V)

16

Fig. 5-6. A plot of the gate-drain capacitance as a function of

the drain voltage with gate bias as a parameter.

The gate-drain capacitance is plotted as a function of the gate-drain voltage
in Fig. 5-6. In the linear region,

the capacitance is high and decreases significantly as the drain voltage
increases. At saturation the value of

the gate-drain capacitance is several orders of magnitude lower than that of the value present at a drain

voltage of 0 V. As the drain voltage rises and the channel saturates, the depletion region just under the gate
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changes very little and as a result, the gate-drain capacitance is very low. In the linear region very close to a

drain voltage of 0 V. the gate-drain capacitance is about 0.1 pF and when the channel saturates, the
gate-

drain capacitance is about 0.1 aF.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

6.2 Future Work

6.1 Conclusion

A physics-based model has been proposed for modeling the non-ideal effects of the SiC MESFET, and

small signal parameters have been derived. The model incorporates the effects of surface and substrate

traps and thermal degradation of current. It also incorporates source and drain resistances and the depletion

region at the channel/buffer interface. The derived I-V model has been applied to model two devices. The

first device was fabricated and measured by Sghaier et al. [31], while the second device was by Huang et

al. [44].

The device fabricated by Sghaier et al. had a very thin buffer, and thus it can be seen that there is

significant degradation due to the substrate trapping effects, while the device fabricated by Huang et al. had

a very thick buffer layer and it may be seen that for this device the substrate trapping effect has been

significantly reduced. This is also corroborated from the proposed theory wherein the channel carrier

concentration is varied temporally to model the substrate trapping phenomenon. Thus, a thick and highly

doped buffer layer is better at avoiding substrate-trapping effects. It can also be seen from Fig. 3-13 that

thermal-effects and substrate trapping effects are not independent of each other but need to be considered

together if the actual nature of the traps are needed to be modeled.

Surface traps capture electrons and extend the depletion beyond the gate and their effects have been

incorporated by assuming a bias-dependent drain resistance. Various methods may be used for mitigating

the effects of the surface traps. One method of doing that is to use a trenchMESFET structure. This reduces

the electric field between the source and the drain. As a result of the reduction of the electric field between

the drain and the source, the propensity for surface traps to capture electrons is reduced. Anothermethod of

reducing
surface trapping is to grow an oxide at the surface. This makes it more difficult for the electrons to
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reach the surface traps. A thin layer of nitride at the two ends of the gate can further reduce the effects of

the surface traps. Another method of preventing the effect of surface traps is to introduce a spacer layer

between the surface and the channel (much like the introduction of the buffer layer between the channel

and the substrate.)When surface states capture electrons, the resulting depletion region is formed within the

spacer layer and thus does not affect the current flowing in the channel.

The modeling of the trapping has been kept semi-empirical because accurate and complete trapping levels

and trap densities were not obtainable for the MESFETs for which the /- V relationships were obtained.

A small-signal model has been proposed for the SiC MESFET. The ideal output conductance,

transconductance, gate-source and gate-drain capacitance have been derived. The small signal model that

has been proposed takes into account the drain and source resistances, and the depletion region at the

channel/buffer interface. These may be used for finding the theoretical operational limit of the SiC

MESFET.

6.2 FutureWork

Derivation of all equations in this thesis has assumed that the depletion approximation shall hold under all

circumstances. When the buffer layer concentration is very low, this assumption is not valid. Electronic

repulsive forces between the channel electrons influence the behavior of the current, especially in the

saturation region. For very lightly doped buffer, there is significant dispersion of the channel electrons and

a consequent decrease in the output resistance. The nature of the current dispersion resulting from
electron-

trap scattering is being investigated.

The proposed model is intended to be used in a device simulator. Device simulators such as
Spectre

use

device models by
SPICE

or
BSIM

parameter files. Thus, the model can be used only if either
SPICE

or

BSIM

parameters of the device are extracted.
SPICE

level parameters have not been extracted yet.

Extraction of the
SPICE

parameters are heuristic in nature and entail semi-empirical measurements

tailored to a particular device. Extraction of either
SPICE

or
BSIM

parameters that can faithfully model a

device, the characteristics of which are significantly deteriorated by temperature dependent trapping

effects, is inherently difficult. A methodology for extraction of
SPICE

or
BSIM

parameters of these
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devices would be invaluable, since only then can actual circuits using these devices be simulated and

verifiable circuit performance obtained. Only then can circuit performance of SiC based devices be tested

against circuit performances of devices made of other materials.

The frequency characteristics of a device are determined mainly by the \lf noise of the system. In SiC, the

primary cause of the 1// noise is trapping. A tractable mathematical model that physically describes the

trapping phenomenon is still absent. A methodology for obtaining dispersion characteristics using basic

trapping phenomenon is imminent and shall be undertaken shortly.
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Appendix X

2D Device Simulation

This appendix explains the 2D device simulation that has been used in various places in the thesis.

This appendix introduces the method of use of the
Atlas

device simulator as a tool for augmenting the

theoretical analysis that has been done in this thesis. Section 1.1 is a brief introduction of 2D modeling, the

different simulators currently in use for device modeling purposes, and a brief introduction of the

DeckBuild

package. Section 1.2 describes the Atlas device simulator in greater detail. Section 1.3

describes the models and model parameters that have been used for simulation purposes. Section 1.4 is a

brief summary of all the models and parameters.

1.1 Introduction

This chapter describes the physical models used in the Atlas [57] device simulator for the simulation of

the SiC MESFET. Device simulation software provides in-depth insight into the physical mechanisms of

the device control the operation. Graphical descriptions of the electric field distributions, potential profiles,

carrier charge concentrations and thermal profiles may be obtained. Presently a number of device

simulators are commercially available, such as MEDICI [58], PISCES [59] and MINIMOS [60]. In this

work, the ATLAS device simulator has been used.

The ATLAS simulation software is part of a much bigger simulation suite from Silvaco International

geared toward the simulation of processes, devices and circuits. The suite contains a set of graphical user

interface (GUI) based tools for simplifying the use of the simulator itself. These tools are described below:

DeckBuild This is an integrated simulation environment having a simple and effective GUI.

Simulation commands may be directly typed into this environment. It has the capability

of running any one of the simulators or tools in the background and executing script files

relative to the particular simulator. This obviates the need for having different script files

for different simulators. Thus DeckBuild allows for the possibility of having one script
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file that creates a structure using a process simulator (ATHENA for example), plots the

resultant structure using the plotting tool (TonyPlot), re-meshing the structure using a

device-editing tool (DevEdit) and finally simulating the resultant device using a device

simulation software (ATLAS) all using the same script file. Furthermore, multiple

simulations of the same or different devices may be performed using the same script file.

Besides, menus for automatically generating script commands are also provided. These

menu items automatically update, depending upon the type of simulator running in the

background: Atlas, Athena, etc.

TonyPlot This is graphing software and is part of the device simulation software suite. It is able to

plot one- and two-dimensional structure files generated by any of the simulation tools

provided by Silvaco. Apart from plotting structure files, it also has the capability of

plotting user datafiles, and log files containing I-V characteristics, C-V characteristics,
S-

parameters and so on. Real data may be plotted with line plots, complex data can be

plotted with polar plots and S-parameter data may be plotted with Smith charts. Apart

from plotting, it has various other amenities, such as tools for creating movies, Poisson

solvers and integrators for calculating areas under the plots.

DevEdit This is a GUI based software capable of editing device geometries and meshes. It is

useful in changing device geometries created using the ATLAS simulator. It has a

number of powerful automated meshing algorithms that may be used for expediting the

meshing process based upon various process parameters
such as the net and total doping

of the structure. Further, meshes can be refined by the user at any point using the refining

tools available.

ATLAS is a device-simulation software from Silvaco International [61]. It is a very versatile software

incorporating the following simulators:

S-Pisces, a 2D silicon device simulator,
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TFT2D, an amorphous and polycrystalline device simulator,

Ferro, a ferro electric field dependent permittivity model,

Blaze, a 2D and 3D device simulator for advanced materials,

LASER, a semiconductor LASER diode simulator,

VCSEL, a vertical cavity surface emitting LASER simulator,

Luminous, an optoelectronic device simulator,

Giga, a non-isothermal device simulatior

MixedMode, a circuit simulator fro advanced devices,

Quantum, a simulation model for quantum-confinement models, and

Noise, a 2D small signal noise generator.

ATLAS has the capability of solving numerous types of devices, which may be either one-dimensional or

two-dimensional or even three-dimensional. The MESFET is essentially a planar two-dimensional device

having lateral symmetry and thus it is both necessary and sufficient (in the present case) to solve a two-

dimensional cross-section of the MESFET.

1.2 Device Simulation

The ATLAS device simulator typically solves the following coupled equations in two-dimensions [62]:

The Poisson equation:

v{sVy/)=-p. (1-1)

The electron and the hole carrier continuity equations, and

^- = lv*Jn +G-R, d-2)
ot q

^ =
Iv7.7

dt q
^tL-.-_V.jp +Gp-Rp. (1-3)

The current transport equations,

J=qDnVn-
qnMVy

"

MAkTLV(ln nie )), (1-4)
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JP =

qDpVp
-

qpMpVy,
-

Mpp(kTLV(ln nie )), (1-5)

where <fi is the electrostatic potential, e is the local permittivity, p is the charge density, n and p are the

electron and hole concentrations, / is the time, q is the charge of the electron, J and Jp art the electron and

hole current densities, G and Gp are the generation rates of electrons and holes, respectively,R and Rp art

the recombination rates of electrons and holes, respectively, Dn and Dp are the electron and hole

diffusivities, respectively, // and nP are the electron and hole mobilities respectively, k is the Boltzmann

constant, TL is the lattice temperature and nie is the intrinsic carrier concentration. In Atlas, energy balance

transport model can be selected instead of simple drift-diffusion model, to account for non-local lattice

heating effects using the energy balance equations:

dn = qDn V>7 -

MrHY + qnDTn vT , (1-6)

Sn=-KnVT

rkS,^

dJn . d-7)
v q

JP
=

qDpVp-MPpVy/ +
qpDTp VTp ,

and (1-8)

SP=-KpVTp-
IJP, d-9)

kSP

q

where T and Tp represent the electron and hole temperatures, and S and Sp is the flux of heat from the

carrier to the lattice. While using the simulator, either all of the above equations may be solved

simultaneously or, optionally, only relevent equations may be solved to obtain the solution. For example, if

a solution for a field-effect device having electrons as the majority carriers need to be obtained, then the

equations relating hole currents may be turned off. Similarly, when lattice-heating effects are negligible, the

energy-balance equations need not be evaluated and drift-diffusion equations can be selected.

1.3 Models and Model Parameters

The results of the simulation are accurate only if the models used for the simulations and the values of the

parameters of the models are properly selected. SiC being a newer material compared to Si or GaAs, the

default values of the various model parameters used in the simulator are generally insufficient to correctly
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model the current-voltage and other characteristics of the SiC MESFET. In this section, the models that

have been used, the reasons for using the models and the values used in the models are presented.

1.3.1 Parameters for Carrier Statistics

These parameters define the type of functions to be used for the probability of occupancy, the density of

states, the intrinsic carrier concentration, the energy bandgap, etc. Thus, these parameters are used for

defining the characteristics of the materials used in the device. The models needed to be set and the values

of the parameters used in the equations describing the models are detailed next. These parameters may be

changed using theMODELS statement in ATLAS.

The Probability ofOccupancy

Boltzmann statistics are used by default in the ATLAS simulator but may be specifically turned on by using

the BOLTZMAN parameter of the MODEL command. This is a much simpler model for describing the

probability of occupancy of carriers in a subband and is subsequently much faster to implement. Being the

simple model, it is not as comprehensive as Fermi-Dirac statistics. For simple and faster analysis

Boltzmann statistics has been used in the present work. However, Fermi-Dirac statistics may be used for

simulations by using the FERMIDIRAC option in the MODEL statement.

The Density of States

The effective density of states in ATLAS is modeled by the following equations:

NC(TL) = 2
2nmekTL

300J
NC300

,
and (1-10)

Ny{TL) = 2
2nmhkTL Ik.

V300y

NV300, (i-ll)

where me is the effective mass of electrons, mh is the effective mass of holes, h is Plank's constant,

NC300 is the conduction-band density-of-states at 300 K and NV300 is the valence band density-of-states

at 300 K. The values of the density of states for SiC may be specified by setting the NC300 and NV300
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parameters of the MODEL statement. For SiC, NC300 = 1 .6887 x
1019 cm"3

and NV300 = 2.4942 x
1019

cm"3

respectively, obtained from the calculation of effective masses of electrons [63] and holes [64].

The Intrinsic Carrier Concentration

ATLAS calculates the effective intrinsic carrier concentration from the density of states and the energy

bandgap using the formula:

=v^exp

K2kTLJ

(1-12)

and so there is no need to mention the intrinsic carrier concentration explicitly. The energy bandgap needs

to be provided, however, and its value is described in the next section.

The Energy Bandgap

The energy bandgap of SiC is given by the equation [2]:

EjTL) =
EM-6.5x\0-

7_+1300
(1-13)

where Eg(0) is the energy bandgap of SiC at OK. ATLAS models the energy gap in a manner very similar to

(1-13) by the equation

E {TL )= E (0) - EGALPHA

= EG300+ EGALPHA

n
77^+EGBETA

300'

n

300 + EGBETA 7_ + EGBETA
(1-14)

Comparing the above two equations, the values of EGALPHA and EGBETA are obtained as 6.5 x 10

eV/K and 1300 K, respectively. Furthermore, the value of the energy gap at 300K (EG300) is 3.23 eV.

These values can be set by setting the EGALPHA, EGBETA and EG300 parameters of the MODELS

statement.
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1.3.2 Boundary Conditions

ATLAS solves for numerous boundary conditions. Some of the boundary conditions that ATLAS solves for

are: ohmic contacts, Schottky contacts, floating contacts, insulating contacts, etc. For the purpose of

modeling MESFETs, two ohmic contacts are needed for specifying the boundary conditions of the source

and the drain and one Schottky contact for the gate needs to be specified. The following sections detail the

parameters necessary for the specification of each type of contact. Although lumped resistances,

capacitances and inductances may be specified for each of the contacts, these have been purposefully

neglected since the whole intention of the two-dimensional simulations are to be able to observe the nature

of the electric field distributions, potential distributions, carrier concentrations etc. within the intrinsic

device leading to greater insight of the physical mechanisms inside the device itself, rather than obtaining

parameter models for the simulation purposes.

Ohmic Contacts

Ohmic contacts are modeled in ATLAS by making the majority and the minority quasi-fermi potential

equal to the applied bias, while the surface potential, the hole concentration and the electron concentrations

are fixed. This is the Dirichlet boundary condition. For making a contact ohmic, it is necessary to include

the statement NEUTRAL in the CONTACT statement.

Schottky Contacts

The surface potential at the Schottky contact is defined in ATLAS by the equation:

E kT

y/s =AFFIMTY+^ +^Mn

2q 2q

___

K^vj

WORKFUNCTION + Vappljed , (1-15)

where AFFINITY is the electron affinity of the semiconductor, Vappii[;d is the value of the applied bias and

WORKFUNCTION is the workfunction of the contact, both ofwhich are expressed in eV. The value of

the electron affinity of SiC is assumed to be 3.08 eV [65]. In general, the material workfunction is

determined from the Schottky barrier height of the metal-semiconductor contact. Generally the barrier

height is determined by the type of metal and the type of semiconductor material used for making the

Schottky junction and may be readily measured. The barrier heights of several metals with respect to SiC
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have been documented [66], some of them being the barrier height between SiC and Au ( 1 .73-1 .8 eV). that

between SiC and Ni (1.6-1.7 eV) and that between SiC and Ti (1.1-1.15 eV). Generally gate metals are

composed of stacks ofmetals and the process of annealing reduces the total barrier height to the vicinity of

1.2 eV [67]. The WORKFUNCTION parameter needs to be specified in the CONTACT statement while

the AFFINITY parameter needs to be specified in the MODELS statement.

1.3J PhysicalModels

Physical models comprise models for electrical characteristics such as carrier mobility, carrier-carrier

scattering and carrier generation and recombination. These models determine the electrical characteristics

of devices created of the material. Models that have been incorporated into this work and relevant

parameters are discussed in the following sections.

Carrier MobilityModel

Electrons are the majority carriers in the SiC MESFET having an n-type channel. Thus only the electron

current density equations of the drift-diffusion model have been solved. The physical parameters are

evaluated for electrons only. This is specified in
ATLAS

by the statement:

MODELS NUMCARR=1 ELECTRONS

The carrier mobility models that have been used in this work, account for the concentration dependence,

the temperature dependence and the field dependence of electron mobility. The concentration dependence

and temperature dependence of the low-field mobility is modeled using the Caughey-Thomas model. This

model may be selected by using the ANALYTIC parameter of the MODELS statement. The formula used

for the Caughey-Thomas [35] model is given by:

/in0=MUlN.CAUG

f T
^ALPHAN.CAUG

j_

300

MU2N.CAUG(7_
/3qo)betan.caug

_MUiN,_AUG(7_

/3qq)alphancaug

1 + (7_ /
300)GAMMANCAUG

(N I
NCRIT.CAUG)DELTAN CAUG
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As shown in Chapter 2, the greater the doping of the material, the lower the mobility. The mobility is

maximum in an intrinsic material where N (the doping concentration) is zero. This is given by

MU2N.CAUG. As doping increases, the mobility steadily decreases until it asymptotically approaches the

lowest value which is given by MU1N.CAUG . NCRIT.CAUG is the doping concentration at which the

mobility value is equal to the arithmetic mean of the maximum and minimum values of mobility. The

temperature dependence of mobility is given by the parameters ALPHAN.CAUG, BETAN.CAUG,

GAMMAN.CAUG and DELTAN.CAUG. The value of the parameter MU1N.CAUG is 40 cm2/Vs, that

ofMU2N.CAUG is 950 cm2/Vs, ALPHAN.CAUG is 0.5, BETAN.CAUG is -2.4, NCRIT.CAUG is 2

x
1017

cm"3, DELTAN.CAUG is 0.76 and GAMMAN.CAUG is -0.76 [35]. The mobility of electrons

and holes decreases at high fields until the carrier velocity saturates. When the electric field (given by the

variable E) is zero, the value of the mobility is equal to the low-field mobility (Mq). At very high values

of electric field, the value of the mobility approaches a value equal to the saturation velocity divided by the

electric field. The parallel field-dependent mobility is turned on by the FLDMOB parameter of the

MODELS statement. This uses the following formula to calculate the field-dependent mobility function:

1

M(E)=Mnl

1

f \ BETAN

1 +

BETAN

(1-17)

VSATN,

where BETAN is assumed to be 1. The value of VSATN, the saturation velocity of the electrons is

calculated using the equation:

ALPHAN.FLD
VSATN = (1-18)

1 + THETAN.FLDexp
VTNOMP.FLD,

where the value ofALPHAN.FLD is 4.77 x
107

cm/s, THETAN.FLD is 0.6 and TNOMP.FLD is 600 K

[35].

Generation-Recombination Models
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ATLAS provides a number of carrier generation-recombination models, primary among them being the

SHR recombination model, the radiative recombination model, the Auger recombination model and a

surface recombination model. Some of the modes have slight variations in various implementations. For

example, ATLAS implements three different types ofAuger recombination models - the 'Standard Auger

Recombination'

model, the 'Klaassen's Carrier Concentration
Dependent'

model and the 'Narrow Bandgap

Auger'

model. Further, various impact ionization models are also available to be used in the presence of

high electrical stress when impact ionization cannot be neglected. In this dissertation simple SRH and

Auger recombination models have been used and impact ionization has been neglected.

SHR Recombination Model

The electron-phonon interaction in the SiC MESFET has been implemented by using the SHR

recombination model. ATLAS implements three different types of SHR recombination models. The SHR

recombination model used for this dissertation is the concentration independent SHR model. This also

happens to be the simplest of the SHR recombination models available in ATLAS. This model is defined in

ATLAS by the following equation:

2

R
pn-nh

SHR

TAUPO n + nie exp

'etrap^

V kTL
+ TAUNO p + nie exp

ETRAP
A

kT,

.(1-19)

where TAUPO and TAUNO are the hole and electron lifetimes and ETRAP is the difference between the

trap level and intrinsic-Fermi level. The value of TAUO used for the purpose of the simulations is

6.0 x
10"7

s and that of TAUNO is l.Ox
10"9

s. ETRAP is taken as 0.0 since the vanadium-doped SiC

substrate has levels very close to the middle of the energy gap. This feature is turned on but the SHR

parameter of the MODELS statement.

Auger RecombinationModel

As mentioned above, there are three different types ofAuger recombination models available to use in the

ATLAS

simulator. In this dissertation, the 'Standard
Auger'

recombination model has been chosen, again
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for the sake of simplicity. The standard Auger recombination model has been implemented in
ATLAS''

using the following equation:

R
Auger

=

AUGNf/w2
-

nn]e )+
AUGp(/7/?2

-

pn;e ), (1-20)

where AUGN and AUGP are the Auger recombination coefficients at 300 K. Their values for SiC are 5 x

10"31

cm6/s and 2 x
10"31

cm6/s respectively [2].

Summary

This appendix enumerated the models and parameters used for the
ATLAS

simulator. Tables I-I

summarizes the parameters used for defining the various models used for the
MODELS

statement. Table

I -I I summarizes the parameter specification for boundary value specification. Table I-III summarizes the

values of the parameters used for the various models used in defining the models in the MODELS

statement. This model may be turned on by using the AUGER parameter of the MODELS statement.
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Table I-I. Parameters for defining the models in the MODELS statement.

Parameter Value Description

BOLTZMAN

NUMCARR1ERS

ELECTRONS

ANALYTIC

FLDMOB

SHR

AUGER

Specifies that Boltzmann statistics rather than Fermi-Direc statistics is

going to be used during simulations.

> Specifies that only equations for electrons shall be solved.

Specifies that the Caughey-Thomas model for the low-field mobility

is going to be used during simulations.

Specifies that the field-dependent model for the mobility is going to

be used during simulations.

Specifies that the concentration independent SHR recombination

model is used during simulations.

Specifies that the standard Auger recombination model is used during

simulations.

Table I-II. Parameters for defining the boundary-value conditions in the CONTACT statement.

Parameter Value Description

NEUTRAL Specifies that the contact in question is an ohmic contact.

This is specified for the gate and the drain contacts.

WORKFUNCTION 1 .2 eV [12]. Specifies that the contact in question is a Schottky contact.

This is specified for the gate contact.
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Table I-III. Summary of the values of the model parameters used in the MODELS statement.

Parameter Variable name in

ATLAS

Units Value Reference

MaterialParameters:

Conduction band density of states at NC300
cm"3

1.6887 x [63]

300K 1019

Valence band density of states at 300K NV300
cm"3

2.4942 x

1019

3.23

[64]

Energy Gap at 300K EG300 eV [2]

Parameter representing the temperature EGALPHA eV/K 6.5 x
If)-4

[2]

dependency of the bandgap

Parameter representing the temperature EGBETA K 1300 [2]

dependency of the bandgap

Electron Affinity AFFINITY eV 3.08 [65]

Loiv-FieldMobility Parameters: The Caughey-

Caughey-Thomas mobility parameter MU1N.CAUG

ThomasMobilityModel

cm2/Vs 40 [35]

Caughey-Thomas mobility parameter MU2N.CAUG cm2/Vs 950 [35]

Caughey-Thomas mobility parameter NCRIT.CAUG
cm"3

2 x
1017

[35]

Caughey-Thomas mobility parameter ALPHAN.CAUG -

-0.5 [35]

Caughey-Thomas mobility parameter BETAN.CAUG -

-2.4 [35]

Caughey-Thomas mobility parameter GAMMAN.CAUG -

-0.76 [35]

Caughey-Thomas mobility parameter DELTAN.CAUG - 0.76 [35]

Field-Dependence ofMobility Parameters:

Field-dependent mobility parameter BETAN - 1 [35]

Field-dependent mobility parameter ALPHAN.FLD cm/s 4.77 x

107

[35]

Field-dependent mobility parameter THETAN.FLD - 0.6 [35]

Field-dependent mobility parameter TNOMP.FLD K 600 [35]

SHRRecombination Parameters:

Hole lifetime TAUPO s 6.0 x
10"7

[2]

Electron Lifetime TAUNO s 1.0 x
10"9

[2]

Trap Level for SHR recombination ETRAP eV 0

AugerRecombination Parameters:

Auger recombination coefficient AUGN cm6/s 5
xlO"31

[2]

Auger recombination coefficient AUGP cm6/s 2 x
10"31

[2]
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Appendix XX

Determination of Q\

This appendix describes the analysis used for determining the charge in the depletion region in the

channel under the gate formed as a result of the applied bias voltages. This charge changes as the gate bias

or the drain bias changes. The differential change in the magnitude of this charge with respect to the

differential change in the bias voltages defines the capacitance formed between the gate and source and that

formed between the gate and the drain. Thus the determination is essential before the capacitances of the

device may be obtained.

First, the charge just under the gate is determined for the linear region of operation of the MESFET. It will

then be obtained for the saturation region of operation. As may be expected, the basic methodologies of

obtaining the solution for Q\ while the MESFET is operating in the either mode are largely similar to one-

another.

Q\ in the Linear Region ofOperation

The charge under the gate is given by:

_>,

= qWND^h(x)dx. (II- 1)

The current equation in the linear region of operation is given by:

ID=qWND^[a-h(x)-hl(x)]
*

, (H-2)

v,, dx
sat

which may be rewritten as:

&Ji!M[fl-^)-Al(,)]-ii|rfF. (I1.3)
1
D

Equation (II-3) may be used for variable substitution in equation (II-l). Assuming source is tied to the

ground, the lower limit changes to (0), which is the value of the channel potential at x
= 0, while the higher
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limii iianges to (VD), which is the value of the channel potential at x = L. Thus the equation would change

to:

Ql ^^4DMxji^[a-^)^,(x)]-^W (II-4)

The relationship between the channel potential, the height of the depletion region under the gate (h(x)) and

the height of the depletion region in the channel at the interface between the channel and the buffer (h{(x))

is given by the equations (II-5) and (II-6), respectively.

*to=^^(-r6 + K+F(x)), (II-5)

\qND

An equation relating the differential change in the height of the depletion region under the gate with a

differential change in the channel potential may be obtained by (first squaring both sides of equation (II-5))

and then taking differentia] of equation (II-5) w.r.t. The resulting equation is given by:

qNDh{x)D

dh{x) = dV . (II-7)
s

Equations (II-5), (II-6) and (II-7) may be used in conjunction with equation (II-4) to obtain the final form of

the equation before integration is carried out and is given by:

qWN_DMoa M0 \ ? ?W__^ dh
Q,=qWND\qWN^a-mtD

In V, *s

.2ijr2

qLWlN-DMo toqNDh

sID
-

s

[D^Ah2dh
.(11-8)

*! P

*
D V A

"*"

D
5

Among the three integral terms in (II-8), integration the first two integrals are trivial. The last integration

has been solved using the identities described in Ref. [68]. If R =
a + bt + ct2, and

A= Aac -

b2, the

following relations hold:
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r
r-

_

(2cx + bpjR A r dx

> 4c
+

8c 'j/v
, and

|-i^ =
^=ln(2Vc^ + 2c/ + /j) [c>0]

(II-9)

(11-10)
]Jr-~J~c

In the third integral, comparing the coefficients of [(-VG + Vbi )Ubj + {-VG + Vbj +Ubj
)V +

V2

\ and the

polynomial R, it is evident that for the present case, a
= (Vr.+V,)U,,b= (V^+V,+U.) c

= 1 R =

v (j oi / ai
'

\ O bi bi
'
' '

[(-^g +^)^, H-VG +Vbi +Ubi)V + V2} and A =

4(-Fc +Vbi)Ubl -(-VG +Vbi +Ub,)2.

Using the above identity, the solution for Qx may be obtained to be:

a _<^
!__/__,

_

^U 3
_ ^ j_^A__ fe _

,4

}3"
I 7Z 4s/,

26qNDW1/io
_____

V^7(2F/ +b)-jRi(2Vi+b)

+Aln

/,

2^Rj+ 2Vf+b

+ 2Vi+b

(Il-ll)

In the above equations, 17 is the channel voltage at x = L is given by f__and Vi is the channel potential at x

= 0 and is given by the equation 0. Rf is the value ofR(V) at the drain side of the channel, while 7?, is the

value ofR at the source side of the channel given by

\(-VG + Vb, )Ubi + (-VG + Vb, + Ubl )VD + {VDf ], and (11-12)

[(-VG+Vbl)Ubi], (11-13)

respectively.
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Q\ in the Saturation Region ofOperation

Qt in the saturation region is divided into two parts. The first part is linear which is the region under the

gate from x
= 0 to x = Z.,, and the second part is the saturated part between the regions x

= L, and x
= L. The

equation in the integral form is given by:

Qx=qWND [
'

h{x)dx + qWND(L-Li )hL] (11-14)

The solution to this equation is similar to that of the linear region given by, except that in this equation

parameters such as 17 and Rfare different. The final voltage Vj is given by V\, R/is given by:

\(-VG+Vbl)Ubi+{-VG+Vbl+Ubl)V, +v]2\

and the final equation is given by

\qWNDM0a // U 3
/;3}

q3W2N3DMo L*
'" '

'

Id
vMJUl

Si

4sID3s
k -^41

2sqNDW2M0 N, 'jR7(2Vf+b)-4R~{2Vi+b)

NA+ND

At+ ln

2yjRf+2Vf+b

+ 2Vi+b

+ qWND(L-Li)h,

(11-15)
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