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Abstract	

Signal	 to	 Noise	 Ratio	 (SNR)	 estimation	when	 the	 transmitted	 symbols	 are	 unknown	 is	 a	
common	problem	in	many	communication	systems,	especially	those	which	require	an	accurate	SNR	
estimation.	 For	 instance,	 modern	 wireless	 communication	 systems	 usually	 require	 accurate	
estimate	 of	 SNR	 without	 knowledge	 of	 the	 transmitted	 symbols.	 In	 addition,	 SNR	 estimation	 is	
required	in	order	to	perform	efficient	signal	detection,	power	control,	and	adaptive	modulation	In	
this	 study,	 Non	 data	 Aided	 (NDA)	 SNR	 estimation	 for	 Binary	 Phase	 Shift	 Keying	 (PBSK)	 and	
Quadrature	 Phase	 Shift	 Keying	 (QPSK)	 using	 the	 Expectation	 Maximization	 (EM)	 algorithm	 is	
developed.	 The	 assumption	 here	 is	 that	 the	 received	 data	 samples	 are	 drawn	 from	 a	mixture	 of	
Gaussians	distribution	and	they	are	independent	and	identically	distributed	ሺi. i. d. ሻ.	The	quality	of	
the	 proposed	 estimator	 is	 examined	 via	 the	 Cramer‐Rao	 Lower	 Bound	 (CRLB)	 of	 NDA	 SNR	
estimator.	It	is	also	assumed	that	the	channel	gain	is	constant	during	each	symbol	interval,	and	the	
noise	is	Additive	White	Gaussian	(AWGN).	Maximum	Likelihood	estimator	is	being	used	if	we	have	
access	to	the	complete	data,	in	this	case	the	problem	would	be	much	easier	since	we	get	the	exact	
closed	 form	 solution,	 but	 when	 the	 observed	 data	 are	 incomplete	 or	 partially	 available,	 the	 EM	
algorithm	will	be	used.	This	approach	is	an	iterative	method	to	get	an	approximated	result	which	is	
either	an	approximated	global	maximum	or	local	maximum.	However,	in	the	NDA	SNR	estimation,	
we	 only	 have	 a	 global	 maximum	 since	 our	 assumption	 is	 that	 the	 distribution	 is	 a	 mixture	 of	
Gaussians.	This	 is	being	 investigated	 for	the	cases	of	Single	 Input	Single	Output	(SISO)	and	Single	
Input	Multiple	Output	 (SIMO).	The	main	concern	about	 the	receive	diversity	 is	 the	cost,	 size,	and	
power,	that	is	why	we	resort	to	the	transmit	diversity	such	as	Multiple	Input	single	Output(MISO)	
with	 space	 time	 block	 codes	 (STBC).	 The	 base	 station	 usually	 serves	 hundreds	 to	 thousands	 of	
remote	units	which	 is	 the	sole	reason	of	using	transmit	diversity	at	 the	base	station	 instead	of	at	
every	remote	unit	covered	by	the	base	station.	It	is	more	economical	in	this	case	to	add	equipment	
to	the	base	station	instead	of	the	remote	units.	Alamouti	used	a	simple	transmit	diversity	technique	
and	assumed	in	his	paper	that	the	receiver	has	perfect	knowledge	of	the	channel	transition	matrix.	
However,	this	assumption	may	seem	highly	unrealistic.	One	of	our	contributions	is	to	estimate	the	
channel	information,	as	well	as	the	noise	variance	which	would	be	used	in	estimating	the	SNR	and	
deriving	 the	 CRLB	 for	 both	 DA	 and	 NDA	 case.	 The	 performance	 of	 our	 estimator	 would	 be	
empirically	assessed	using	Monte‐Carlo	simulations,	with	CRLB	as	a	performance	metric.	
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Abstract	

	

Signal	 to	Noise	Ratio	 (SNR)	estimation	when	the	 transmitted	symbols	are	unknown	 is	a	common	

problem	 in	 many	 communication	 systems,	 especially	 those	 which	 require	 an	 accurate	 SNR	

estimation.	 In	 this	 study,	 Non	 data	 Aided	 (NDA)	 SNR	 estimation	 for	 Binary	 Phase	 Shift	 Keying	

(PBSK)	 and	 Quadrature	 Phase	 Shift	 Keying	 (QPSK)	 using	 the	 Expectation	 Maximization	 (EM)	

algorithm	is	developed.	The	assumption	here	 is	 that	 the	received	data	samples	are	drawn	 from	a	

mixture	of	Gaussians	distribution	and	they	are	independent	and	identically	distributed	ሺ݅. ݅. ݀. ሻ.	The	

quality	 of	 the	 proposed	 estimator	 is	 examined	 via	 the	 Cramer‐Rao	 Lower	Bound	 (CRLB)	 of	NDA	

SNR	estimator.	It	is	also	assumed	that	the	channel	gain	is	constant	during	each	symbol	interval,	and	

the	noise	 is	Additive	White	Gaussian	(AWGN).	Maximum	Likelihood	estimator	 is	being	used	 if	we	

have	access	to	the	complete	data,	in	this	case	the	problem	would	be	much	easier	since	we	get	the	

exact	 closed	 form	solution,	but	when	 the	observed	data	are	 incomplete	or	partially	available,	 the	

EM	 algorithm	will	 be	 used.	 This	 approach	 is	 an	 iterative	method	 to	 get	 an	 approximated	 result	

which	 is	 either	 an	 approximated	 global	maximum	 or	 local	maximum.	However,	 in	 the	NDA	 SNR	

estimation,	 we	 only	 have	 a	 global	 maximum	 since	 our	 assumption	 is	 that	 the	 distribution	 is	 a	

mixture	of	Gaussians.	This	is	being	investigated	for	the	cases	of	Single	Input	Single	Output	(SISO);	

[3],	[4],	[10],	and	Single	Input	Multiple	Output	(SIMO);	[5],	[9].	The	main	concern	about	the	receive	

diversity	is	the	cost,	size,	and	power,	that	is	why	we	resort	to	the	transmit	diversity	such	as	Multiple	

Input	 single	 Output(MISO)	with	 space	 time	 block	 codes	 (STBC).	 The	 base	 station	 usually	 serves	

hundreds	to	thousands	of	remote	units	which	is	the	sole	reason	of	using	transmit	diversity	at	the	

base	station	 instead	of	at	every	remote	unit	covered	by	the	base	station.	It	 is	more	economical	 in	

this	case	to	add	equipments	to	the	base	station	 instead	of	 the	remote	units.	Alamouti	 [12]	used	a	

simple	 transmit	 diversity	 technique	 and	 assumed	 in	 his	 paper	 that	 the	 receiver	 has	 perfect	

knowledge	of	the	channel	transition	matrix.	However,	this	assumption	may	seem	highly	unrealistic.	

One	of	our	contributions	is	to	estimate	the	channel	information,	as	well	as	the	noise	variance	which	

would	 be	 used	 in	 estimating	 the	 SNR	 and	 deriving	 the	 CRLB	 for	 both	 DA	 and	 NDA	 case.	 The	

performance	of	our	estimator	would	be	empirically	assessed	using	Monte‐Carlo	simulations,	with	

CRLB	as	a	performance	metric.	
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1	Introduction	

	

Many	modern	wireless	communication	systems	require	the	Signal	to	Noise	ratio	(SNR)	estimation	

without	 the	 knowledge	 of	 the	 transmitted	 data	 symbols	 in	 Non‐Data	 Aided	 (NDA)	manner.	 SNR	

estimators	may	be	divided	 to	 two	categories,	Data	Aided	 (DA)	and	Non	Data	Aided	 (NDA).	 In	DA	

estimators,	the	transmitted	symbols	are	used	or	known	at	the	receiver	and	used	in	the	estimation	

process,	 in	 NDA	 estimators;	 the	 estimation	 process	 is	 being	 done	without	 the	 knowledge	 of	 the	

transmitted	symbols,	just	based	on	the	received	samples.	The	Cramer‐Rao	Lower	Bound	(CRLB)	for	

NDA	 SNR	 estimation,	which	 gives	 the	minimum	variance	 of	 unbiased	 estimators,	will	 be	 used	 in	

evaluating	 our	 estimator	 [5].	 The	 CRLB	 for	 NDA	 SNR	 estimation	 for	 the	 BPSK	 and	QPSK	will	 be	

derived	 and	 plotted	 against	 the	 EM‐ML	 NDA	 SNR	 estimator.	 Here,	 the	 transmitted	 symbols	 are	

treated	as	unknown	parameters,	but	nuisance	parameter;	unknown	and	unwanted.		This	estimation	

procedure	would	be	close	 to	 the	CRLB	 for	 the	SNR	of	 interest;	at	sufficiently	high	SNR.	The	main	

purpose	of	this	study	is	to	derive	a	closed	form	approximation	for	the	NDA	CRLB	in	the	BPSK	and	

QPSK	 case.	 Besides,	 the	 derivations	 of	 the	 EM	 algorithm	 for	 NDA	 SNR	 estimation	 which	 will	

iteratively	maximize	the	likelihood	function	till	reach	approximately	the	global	maximum.		

The	 structure	 of	 the	 rest	 of	 this	 research	 is	 as	 follows,	 in	 this	 first	 chapter,	 we	 introduce	 the	

problem	 of	 estimation	 especially	 for	 a	 Gaussian	 distributed	 data,	 followed	 by	 the	 Minimum	

Variance	 Unbiased	 Estimator	 (MVUE)	 which	 will	 then	 lead	 us	 to	 the	 Cramer‐Rao	 Lower	 Bound	

(CRLB).	In	chapter	two,	Mixtures	of	Gaussians	(MoG)	will	be	introduced	followed	by	the	Maximum	

Likelihood	 estimate	 (MLE)	 of	 the	 MoG	 model.	 In	 chapter	 three,	 we	 introduce	 the	 Expectation	

Maximization	 (EM)	 algorithm,	 and	 then	 we	 solve	 one	 of	 its	 applications	 which	 is	 mixtures	 of	

Gaussians	parameter	estimation.	In	chapter	four,	we	introduce	SISO	NDA	SNR	estimation	using	the	

EM	algorithm	in	the	literature,	besides	solving	this	model	for	the	BPSK	and	QPSK	case.	Also	CRLB	

for	both	BPSK	and/or	QPSK	will	be	derived	and	plotted.	In	chapter	five,	MISO	with	space	and	time	

block	 codes	 (STBC)	 NDA	 SNR	 estimation	 using	 the	 EM	 algorithm	 will	 be	 addressed.	 	 NDA	 SNR	

estimator	will	 be	 derived	 and	 plotted	 in	 both	 cases	 and	 for	 different	 sample	 size	N	 using	Monte	

Carlo	 simulations.	 Improvements	 in	 SNR	 estimation	 accuracy	 will	 be	 proven	 when	 exploiting	

diversity	 method	 due	 to	 the	 use	 of	 mutual	 information.	 The	 last	 chapter	 will	 talk	 about	 the	

conclusion	and	summary	of	the	research.	
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1.1 Estimation	

The	problem	of	parameter	estimation	is	a	common	problem	that	is	widely	faced	in	many	areas	such	

as	 Radar,	 speech,	 image	 analysis,	 biomedicine,	 communications,	 control,	 and	 much	 more.	 	 The	

problem	we	are	faced	with	is	estimating	some	parameters	based	on	some	seen	or	observed	samples	

due	 to	 the	 use	 of	 digital	 communication	 systems	 or	 digital	 computers	 [2].	 Mathematically,	 we	

observe	N	data	points	at	the	receiver	side	ሼݕሺ1ሻ, ,ሺ2ሻݕ . . . . . , 	unknown	an	from	sampled	which	ሺNሻሽݕ

probability	 density	 function	 	 ;ݕ௒ሺ݌ Өሻ	 parameterized	 by	 an	 unknown	 parameter	 Ө,	 which	 is	 the	

parameter	 of	 interest.	 Unfortunately,	 we	 don’t	 really	 get	 to	 see	 the	 distribution	 of	 the	 received	

sample	Y.	We	only	get	that	sample,	Y,	which	we	then	use	to	estimate	our	parameter	Ө.		As	a	result	of	

that,	 our	 estimator	won’t	 give	 us	 the	 exact	 Ө,	 but	 an	 estimated	 version	 of	 it.	 Our	 estimator	will	

depend	highly	through	some	function	of	the	received	sample	Y	as,		

Ө෡ ൌ ݂ሺݕሺ1ሻ, ,ሺ2ሻݕ . . . . . , 	ሺ1.1ሻ																																																																																																																							ሺNሻሻݕ

This	estimator	might	be	used	to	estimate	the	carrier	frequency,	channel	phase,	signal	power,	noise	

power,….etc.	Since	the	received	data	are	random,	we	can	describe	its	behavior	according	to	its	PDF	

function,	݌ሺݕሺ1ሻ, ,ሺ2ሻݕ . . . . . , ;ሺNሻݕ Өሻ.	The	semicolon	is	used	to	indicate	that	the	distribution	of	PDF	

is	parameterized	by	the	parameter	Ө.	And	it	 is	constant.	This	kind	of	estimation	is	called	classical	

parameter	 estimation	 because	 the	 parameters	 of	 interest	 are	 assumed	 to	 be	 deterministic	 and	

needs	 to	 be	 estimated.	 Since	 we	 are	 assuming	 the	 noise	 which	 corrupted	 our	 received	 signal	 is	

additive	white	Gaussian	noise,	AWGN,	 the	distribution	of	 the	PDF	of	 the	received	samples	will	be	

Gaussian	distribution.	For	example,	if	we	received	one	sample	and	the	parameter	which	needs	to	be	

estimated	is	the	mean	and	variance.	Figure	1.1	shows	a	normal	distribution	of	zero	mean	and	unite	

variance.	 This	 is	 just	 an	 illustrative	 example	 which	 shows	 us	 the	 parameters	 which	 we	 will	 be	

estimating.	Assume	that	we	have	a	signal	which	happen	to	be	constant	corrupted	by	AWGN,	w(n),	

our	model	will	be	as	follows,	

ሺ݊ሻݕ ൌ μ௬ ൅ 	ሺ݊ሻݓ

The	parameters	which	need	to	be	estimated	here	are	two,	 the	DC	component	or	average,	and	the	

variance	of	our	Gaussian	noise.	

If	one	sample	has	been	observed,		

ሺ1ሻݕ ൌ μ௬ ൅ 	ሺ1ሻݓ
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Figure	1.1	Normal	distribution	with	mu=0,	sigma=1	

	

Ө ൌ ሾμ௬			ߪଶ	ሿ்	

	then,	

;ሺ1ሻݕሺ݌ Өሻ ൌ
1

ଶߪߨ2√
ሺെ	݌ݔ݁

൫ݕሺ1ሻ െ μ௬൯
ଶ

ଶߪ2
ሻ																																																																																																						ሺ1.2ሻ	

The	assumption	is	that	the	noise	ݓሺ1ሻ~ࣨሺ0, 	same	the	has	ሺ݊ሻݓ	of	sample	each	general,	in	Or	ଶሻ.ߪ

PDF	 as	 	.ሺ1ሻݓ Since	 these	 samples	 are	 uncorrelated	 with	 each	 other,	 uncorrelated	 means	

independent	if	the	distribution	is	Gaussian,	we	can	now	generalize	the	PDF	of	the	received	samples	

Y	of	size	N	as	follows,	

,ሺ1ሻݕሺ݌ ,ሺ2ሻݕ . . . . . , ;ሺNሻݕ Өሻ ൌෑ݌ሺݕሺ݊ሻ; Өሻ ൌ ;ሺ࢟݌ Өሻ ൌ 		ሺӨ/࢟ሻࡸ

ே
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																																																													ൌෑ
1

ଶߪߨ2√
൝െ	݌ݔ݁

൫ݕሺnሻ െ μ௬൯
ଶ

ଶߪ2
ൡ					

ே

௡ୀଵ

	

																																																													ൌ
1

ሺ2ߪߨଶሻ
ே
ଶ

൝െ	݌ݔ݁
1
ଶߪ2

෍൫ݕሺnሻ െ μ௬൯
ଶ

ே

௡ୀଵ

ൡ																																							ሺ1.3.1ሻ	

Equation	(1.3)	is	called	the	likelihood	function	of	the	received	data,	which	would	be	used	to	find	the	

Maximum	Likelihood	estimate	(MLE)	of	 the	mean	and	variance	 in	case	of	our	received	data	were	

generated	by	single	Gaussian.	I	just	wanted	to	make	this	clear	because	in	the	next	chapter	we	will	

be	talking	about	received	sample	which	has	been	generated	by	more	than	one	Gaussian;	Mixture	of	

Gaussians.	 To	 find	 the	 MLE	 of	 equation	 (1.3),	 we	 need	 to	 find	 the	 values	 of	 μ௬	 and	 	ଶߪ which	

maximizes	the	likelihood	function	ࡸሺӨሻ.	We	can	instead	maximize	the	log	likelihood	function	since	

the	logarithm	is	a	monotonic	function.	MLE	has	the	asymptotic	property	of	being	unbiased.	It	is	also	

proved	that	MLE	achieves	the	CRLB	for	high	SNR.		

खሺӨሻ ൌ െ
ܰ
2
ଶሻߪߨሺ2݃݋݈ െ

1
ଶߪ2

෍൫ݕሺnሻ െ μ௬൯
ଶ

ே

௡ୀଵ

																																																																																									ሺ1.3.2ሻ	

Ө෡ ൌ ݔܽ݉݃ݎܽ
Ө

	खሺӨሻ	

which	can	be	found	by	setting	the	gradient	of	खሺӨሻ	with	respect	to	Ө	equal	to	zero;	

खሺӨሻ		Ө׏ ൌ 0.	

The	ML	solution	is	given	as,	

μො௬ ൌ
1
ܰ
෍ݕሺ݊ሻ																																																																																																																																																							ሺ1.4ሻ

ே

௡ୀଵ

	

ଶ෢ߪ ൌ
1
ܰ
෍ሺݕሺ݊ሻ െ μො௬ሻଶ																																																																																																																																							ሺ1.5ሻ

ே

௡ୀଵ

	

To	check	the	unbiasedness,	we	find	the	expected	value	of	the	estimated	parameters	and	compare	

them	with	the	true	parameters.	It	can	be	easily	shown	as,	
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ॱൣμො௬൧ ൌ
1
ܰ
෍ॱሼݕሺ݊ሻሽ
ே

௡ୀଵ

	

ॱൣμො௬൧ ൌ μ௬																																																																																																																																																																ሺ1.6ሻ		

ॱൣߪଶ෢൧ ൌ
1
ܰ
෍ॱ൛ሺݕሺ݊ሻ െ μො௬ሻଶൟ							

ே

௡ୀଵ

	

ॱൣߪଶ෢൧ ൌ
1
ܰ
෍ॱ൝ݕଶሺ݊ሻ െ

2
ܰ
ሺ݊ሻݕ ෍ ሺ݉ሻݕ ൅

1
ܰଶ ෍ ෍ݕሺ݉ሻݕሺ݇ሻ

ே

௞ୀଵ

ே

௠ୀଵ

ே

௠ୀଵ

ൡ							

ே

௡ୀଵ

	

ॱൣߪଶ෢൧ ൌ
ܰ െ 1
ܰ

	ሺ1.7ሻ																																																																																																																																																			ଶߪ

So,	we	see	that	the	MLE	of	the	variance	is	biased,	while	the	MLE	of	the	mean	is	unbiased.	The	MLE	

distribution	may	be	approximated	as,	

Ө෡ 	ࣨሺӨ, ~ଵሺӨሻሻିܫ	
௔ 																																																																																																																																																								ሺ1.8ሻ	

Where,	 ~ݏ݊ܽ݁݉		
௔ 	 asymptotically	 distributed	 according	 to,	 	ሺӨሻܫ is	 the	 fisher	 information	which	 is	

given	by,	

ሺӨሻܫ ൌ െॱ ቈ
߲ଶ ݃݋݈ ;ሺܻ݌ Өሻ

߲Ө૛
቉																																																																																																																																	ሺ1.9ሻ	

A	computer	simulation	could	be	performed	to	define	how	large	the	data	length	N	had	to	be	in	order	

to	get	this	asymptotic	result.	Monte	Carlo	method	could	be	used	for	various	realizations	(say	M)	of	

our	estimate	Ө෡	,	The	mean	and	variance	of	the	estimator	could	then	be	calculated	as,	

෡ॱൣӨ෡൧ ൌ
1
ܯ
෍Ө෡௜																																																																																																																																																						ሺ1.10ሻ

ெ

௜ୀଵ

	

ෞݎܽݒ ൫Ө෡൯ ൌ
1
ܯ
෍ሺӨ෡௜ െ ෡ॱൣӨ෡൧ሻଶ																																																																																																																													ሺ1.11ሻ

ெ

௜ୀଵ

	

The	choice	of	a	better	estimator	could	be	done	as;	among	all	the	estimators	we	have,	we	choose	the	

one	which	gives	a	closer	estimate	(on	average)	 to	 the	global	 true	value,	and	has	higher	precision	

(lower	variance)	[2].		
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1.2 Multivariate	Gaussian	distribution	

Since	the	focus	on	this	research	will	be	on	Gaussian	distribution,	it	is	worth	introducing	the	general	

multivariate	Gaussian	distribution,	its	behavior	and	properties.	

Suppose	we	have	a	random	variable	that	follows	a	multivariate	Gaussian	distribution.	This	random	

variable	may	be	signal	corrupted	by	noise.		

ܻ ൌ ሾݕଵሺ݊ሻ	ݕଶሺ݊ሻ	ݕଷሺ݊ሻ…ݕ஽ሺ݊ሻሿ	்	

ࢅμ	;ݏ݅	݊ܽ݁݉	ݏݐܫ ൌ ॱሾܻሿ ൌ ሾॱሾݕଵሺ݊ሻሿ		ॱሾݕଶሺ݊ሻሿ		ॱሾݕଷሺ݊ሻሿ	… 	ॱሾݕ஽ሺ݊ሻሿ	ሿ	்	

Its	covariance	matrix	is; 	∑ଢ଼ ൌ ॱሾሺY െ μଢ଼ሻሺY െ μଢ଼ሻ୘ሿ	

Then,	the	distribution	of	this	random	variable	will	be	given	by,	

௒ሺܻሻ݌ ൌ
1

|௒∑ߨ2|
ଵ
ଶ

ሺെ	݌ݔ݁
1
2
ሺܻ െ μࢅሻ்∑௒

ିଵሺܻ െ μࢅሻሻ																																																																																	ሺ1.12ሻ	

If	the	Covariance	matrix	∑௒ ൌ 	the	of	each	variances,	equal	with	variables	random	independent	,ࡵଶߪ

received	 samples	 dimension	 in	 equation	 (1.12)	will	 return	 to	 equation	 (1.2).	 	 Let	 us	mention	 an	

important	property	which	is	the	effect	of	linear	transformation	on	Gaussian	distribution,	let,	

	ܻ ൌ ܺܣ ൅ ܾ	

where,	A	and	b	are	constants	matrix	and	vector	respectively,	and	X	is	a	vector	of	random	variable.	

,݄݊݁ݐ 	μࢅ ൌ ॱሾܻሿ ൌ ࢄμ	ܣ ൅ ܾ	

ܽ݊݀, ∑௒ ൌ 	்ܣ௑∑ܣ

The	MLE	 in	 the	multivariate	 case	would	 be	 as	 follows,	 the	model	 parameters	which	 need	 to	 be	

estimated	is,	

Ө ൌ ሾ	μࢅ			ܿ݁ݒሺ∑௒ሻ	ሿ்,	assuming	i.i.d	samples,	

;ࢅ௒ሺ݌ Өሻ ൌෑ
1

|௒∑ߨ2|
ଵ
ଶ

ሺെ	݌ݔ݁
1
2
ሺܻሺ݊ሻ െ μࢅሻ்∑௒

ିଵሺܻሺ݊ሻ െ μࢅሻሻ

ே

௡ୀଵ

				

																ൌ |௒∑ߨ2|
ି
ே
ଶ݁݌ݔ	ሺെ

1
2
෍ሺܻሺ݊ሻ െ μࢅሻ்∑௒

ିଵሺܻሺ݊ሻ െ μࢅሻ

ே

௡ୀଵ

ሻ	
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					खሺӨሻ ൌ ;ࢅ௒ሺ݌݃݋݈ Өሻ ൌ െ
ܰ
2
|௒∑ߨ2|	݃݋݈ െ

1
2
෍ሺܻሺ݊ሻ െ μࢅሻ்∑௒

ିଵሺܻሺ݊ሻ െ μࢅሻ

ே

௡ୀଵ

	

To	find	the	MLE	of	this	parameter,	we	need	to	go	through	the	same	process	of	differentiating	the	

likelihood	of	equation	(1.12)	and	equating	it	to	zero	we	get	the	following,	

߲खሺӨሻ

߲Ө
ൌ ૙	, first	we	differntiate	with	respect	to	μࢅ	as	

߲खሺӨሻ

߲μࢅ
ൌ ૙	, we	get,	

	μොࢅ ൌ
1
ܰ
෍ܻሺ݊ሻ																																																																																																																																																		ሺ1.13ሻ

ே

௡ୀଵ

	

and	differntiating	with	respect	to	the	covariance	matrix	
߲खሺӨሻ

߲∑௒
ൌ ૙	, we	get,	

∑෡௒ ൌ
1
ܰ
෍ሺܻሺ݊ሻ െ 	μොࢅሻሺܻሺ݊ሻ െ 	μොࢅሻ்																																																																																																										ሺ1.14ሻ

ே

௡ୀଵ

	

The	 parameter	 estimate	 in	 this	 case	 is	 straight	 forward	 computed	 in	 a	 closed	 form	 since	 the	

assumption	 that	Y’s	samples	are	being	drawn	 from	only	one	Gaussian	distribution.	However,	 this	

won’t	be	the	case	when	we	have	a	mixture	of	Gaussians.	The	proposed	algorithm	will	be	a	mixture	

of	 multivariate	 Gaussian	 distribution	 since	 we	 are	 dealing	 with	 PBSK	 and	 QPSK	 constellation	

systems	and	the	transmitted	data	symbols	are	unknown.		

	

1.3 Minimum	Variance	Unbiased	Estimator	(MVUE)	

The	search	for	good	estimators	of	unknown	deterministic	parameters	isn’t	always	an	easy	task.	Our	

focus	will	be	on	estimators	which	on	average	yield	 the	 true	parameter	value,	and	 then	among	all	

those	estimators,	we	look	for	the	one	which	has	the	least	variance.	For	an	estimator	to	be	unbiased,	

ॱൣӨ෡൧ ൌ Ө																																																																																																																																																																		ሺ1.15ሻ	

The	bias	of	an	estimator	may	be	defined	as,	

ܾሺӨሻ ൌ ॱൣӨ෡൧ െ Ө	

To	find	an	optimal	estimator,	we	need	to	find	a	criterion	like	the	mean	square	error	(MSE),	
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൫Ө෡൯ܧܵܯ ൌ ॱሾ൫Ө෡ െ Ө൯
૛
ሿ																																																																																																																																							ሺ1.16ሻ	

൫Ө෡൯ܧܵܯ ൌ ൫Ө෡൯ݎܽݒ ൅ ܾଶሺӨሻ																																																																																																																														ሺ1.17ሻ	

Good	estimators	have	small	MSE	or	small	variance	if	 the	bias	 is	zero.	Equations	(1.16)	and	(1.17)	

are	unrealizable	estimators	since	they	are	function	of	the	true	parameter	value,	so	we	cannot	assess	

the	performance	of	the	estimator	in	this	case.		

MSE	is	composed	to	error	due	to	the	bias	and	variance.	MVUE	does	not	always	exist,	and	if	 it	did,	

sometimes	it	is	not	easy	to	be	found	[2].	One	way	of	finding	it	is	using	the	Cramer	Rao	Lower	Bound	

(CRLB).	When	CRLB	satisfies	with	equality	for	all	Ө,	the	ܤܮܴܥ ൌ 	.ܧܷܸܯ

	

1.4 Cramer	Rao	Lower	Bound	(CRLB)	

Finding	 a	 lower	 bound	 on	 the	 variance	 of	 an	 unbiased	 estimator	will	 be	 extremely	 important	 in	

practice.	This	will	serve	as	a	benchmark	in	comparing	the	goodness	of	an	estimator.	CRLB	allows	us	

to	assure	that	an	estimator	is	the	minimum	variance	unbiased	estimator	(MVUE),	which	will	be	the	

case	when	the	estimator	attains	the	CRLB	for	all	values	of	the	unknown	parameter.	

If	݌ሺݕ; 	Өሻ	satisfies	regularity	conditions,	the	variance	of	unbiased	estimator	is	defined	as,	

൫Ө෡൯ݎܽݒ ൒
1

െॱ ൤
߲ଶ݈݃݋	݌ሺݕ; Өሻ

߲Өଶ ൨
																																																																																																																										ሺ1.18ሻ	

An	estimator	may	be	found	that	attains	the	bound	for	all	Ө	if	and	only	if	the	score	function	can	be	

written	as,	

;ݕሺ݌	݃݋݈߲ Өሻ

߲Ө
ൌ ሻݕሺӨሻሺ݃ሺܫ െ Өሻ	

For	some	functions	g	and	I,	that	estimator	which	is	the	MVUE	is	given	by,	

Ө෡ ൌ ݃ሺݕሻ	

And	the	minimum	variance	is	

൫Ө෡൯ݎܸܽ ൌ
1

ሺӨሻܫ
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Then	this	estimator	is	said	to	be	efficient.		

Let	us	extend	the	CRLB	to	a	vector	parameter,	

Ө ൌ ሾӨଵ	Өଶ	Өଷ …		Ө௣ሿ்	

൯࢏൫Ө෡ݎܸܽ ൒ ሾିࡵଵሺӨሻሿ௜௜																																																																																																																																											ሺ1.19ሻ	

where	ࡵሺӨሻ	is	the	݌ ൈ 	.matrix	information	Fisher	݌

ሾࡵሺӨሻሿ௜௝ ൌ െॱሾ
߲ଶ݈݃݋	݌ሺܻ; Өሻ

߲Ө௜߲Ө௝
ሿ																																																																																																																												ሺ1.20ሻ	

For	example	if	

Ө ൌ ሾμ௬			ߪଶ	ሿ்	

Then,	

ሺӨሻࡵ ൌ

ۏ
ێ
ێ
ێ
െॱۍ ቈ

߲ଶ݈݃݋	݌ሺܻ; Өሻ

߲μ௬ଶ
቉ െॱ ቈ

߲ଶ݈݃݋	݌ሺܻ; Өሻ

߲μ௬߲ߪଶ
቉

െॱ ቈ
߲ଶ݈݃݋	݌ሺܻ; Өሻ

ଶ߲μ௬ߪ߲
቉ െॱ ቈ

߲ଶ݈݃݋	݌ሺܻ; Өሻ

ଶଶߪ߲
቉
ے
ۑ
ۑ
ۑ
ې

	

This	matrix	is	symmetric	and	positive	definite.	

If	we	are	estimating	a	function	of	the	parameter	as	in	the	research	study,	if	

ࢻ ൌ ݂ሺӨሻ	

Then,	

ෝሻࢻሺݒ݋ܥ ൒
߲݂ሺӨሻ
߲Ө

ଵሺӨሻିࡵ
߲݂ሺӨሻ
߲Ө

்
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2 Mixtures	of	Gaussians	(MoG)	

When	it	is	not	possible	for	one	Gaussian	distribution	to	represent	our	model,	we	resort	the	mixture	

of	Gaussians	method.	It	is	a	combined	(mixture)	of	some	known	distributions	that	are	combined	to	

form	our	model.	In	our	estimation	problem,	our	assumption	is	that	we	are	given	a	received	samples	

Y	of	length	N,	which	are	drawn	from	a	mixture	of	Gaussians	distribution.	The	number	of	Gaussians	

is	determined	by	 the	constellation	order	we	use.	For	example,	 in	PBSK,	we	have	 two	mixtures	of	

Gaussians	per	antenna	with	means	{‐1,	+1},	and	in	QPSK,	we	have	four	mixtures	of	Gaussians	per	

antenna	 with	 means	 {േ
ଵ

√ଶ
	,	 േ݆

ଵ

√ଶ
}.	 Gaussian	 Mixture	 Model	 (GMM)	 can	 be	 used	 in	 modeling	

complicated	 probability	 density	 functions	 (PDFs)	which	 have	 complicated	 shapes	 that	 cannot	 be	

modeled	using	a	single	Gaussian.		

	

2.1 The	basic	definition	of	MoG	

The	general	form	of	a	Gaussian	mixture	models	is	

Өሻ/ݕሺ݌ ൌ ෍ ௠/Ө௠ሻ߱,ݕሺ݌

ெ

௠ୀଵ

	

														ൌ ෍ ௠ߨ

ெ

௠ୀଵ

,௠߱/ݕሺ݌ Ө௠ሻ	

													ൌ ෍ ௠ߨ

ெ

௠ୀଵ

ࣨሺݕ; μ௠	, ∑௠ሻ																																																																																																																				ሺ2.1ሻ	

where	ߨ௠	is	the	component	prior	of	each	Gaussian	component.	There	is	a	necessary	condition	for	

	ݏ௠ߨ to	 be	 a	 valid	 probability	 density	 function	 that,	 	 ∑ ௠ߨ
ெ
௠ୀଵ ൌ 1	 and	ߨ௠ ൒ 0.	 The	 parameters	

which	need	to	be	estimated	are	ߨଵ	,	ߨଶ	,	.		.		.		.		,	ߨெ	,	Өଵ	,	Өଶ	,	.		.		.		.		,		Өெ	.	Increasing	the	number	of	

components	would	result	 in	more	parameters	which	need	to	be	estimated,	which	leads	to	a	more	

accurate	class	conditional	probability	distribution	function.	We	need	to	be	careful	about	finding	the	

correct	 number	 of	 mixture	 components	 to	 avoid	 singularities,	 when	 using	 the	ML	 estimation	 to	

estimate	 the	 parameters	 [1].	 Figure	 2.1	 below	 shows	 the	 probability	 distribution	 function	 of	 a	

mixture	 of	 two	 Gaussians,	 and	 figure	 2.2	 shows	 the	 contours	 of	 those	 two	 Gaussians	 with	 the	

samples	drawn	from	the	same	distribution.	 In	 fact	 this	exact	distribution	will	not	be	given	 in	our	

case	of	study.	What	is	given	is	just	a	received	sample	of	size	N	which	is	drawn	in	figure	2.2.	
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Figure	2.1.	Mixtures	of	two	Gaussians.	

	

Figure	2.2.	Samples	and	Contours	of	the	previous	distribution.	
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2.2 The	Likelihood	function	

The	likelihood	function	is	a	function	of	the	parameters	of	a	statistical	model	given	the	observation	

data.	 The	 maximum	 likelihood	 solution	 selects	 values	 for	 the	 model	 parameters	 that	 give	 a	

distribution	which	gives	the	observed	data	the	highest	probability.	Let	us	introduce	the	Maximum	

Likelihood	estimate	(MLE)	of	a	Gaussian	Mixture	Model	(GMM).	Maximizing	the	likelihood	function	

is	the	same	as	maximizing	the	Log	Likelihood	function	since	the	likelihood	function	is	a	monotonic	

function.	This,	in	the	case	of	one	Gaussian	or	when	there	is	no	hidden	variables	would	simplify	the	

math	a	 lot	since	the	likelihood	function	is	exponential	 function,	so	the	log	function	will	cancel	the	

exponential	 and	we	would	 be	 left	with	 the	 exponent.	 The	 Log	 likelihood	 function	 for	 the	 data	 is	

given	by,	

खሺӨሻ ൌ෍ ௡/Өሻݕሺ݌	ࢍ࢕࢒
ே

௡ୀଵ
	

										ൌ ෍ ෍	ࢍ࢕࢒ ௠ߨ
ெ

௠ୀଵ
,௡/߱௠ݕሺ݌ Ө௠ሻ

ே

௡ୀଵ
	

									ൌ ෍ ෍		ࢍ࢕࢒ ௠ߨ
ெ

௠ୀଵ
ࣨሺݕ௡; μ௠	, ∑௠ሻ	

ே

௡ୀଵ
																																																																																															ሺ2.2ሻ	

Where,	 it	 is	 clear	 here	 that	 the	 likelihood	 function	 depends	 on	 the	 PDF	 at	 a	 given	 mixture	

component.	 In	the	estimation	problem	we’ve	assumed	that	the	noise	is	AWGN,	so	∑௠ ൌ ௠ଶߪ 	ࡵ ,	but	

∑௠	 	 in	 general	 may	 take	 any	 covariance	 matrix	 form.	 Therefore	 the	 log	 Likelihood	 function	

becomes,																																																																				

खሺӨሻ ൌ෍ ෍		ࢍ࢕࢒
௠ߨ

ሺ2ߪߨ௠ଶ ሻ
ௗ
ଶ

ெ

௠ୀଵ
	݌ݔ݁ ቆ

െ‖࢟࢔ െ μ௠‖૛

௠ଶߪ2
ቇ

ࡺ

ୀ૚࢔
																																																																							ሺ2.3ሻ	

			Ө෡ࡸࡹ ൌ ݔܽ݉݃ݎܽ
Ө

खሺӨሻ																																																																																																																											ሺ2.4ሻ	

This	may	be	solved	by	differentiating	the	log	Likelihood	function	and	equate	it	to	zero	as	follows,	

खሺӨሻ	Ө׏ ൌ ૙,	

The	 maximum	 likelihood	 solution	 for	 this	 likelihood	 function	 is	 given	 by	 setting	 the	 partial	

derivative	of	the	log	likelihood	function,		खሺӨሻ	with	respect	to	the	parameter	of	interest	to	zero	and	

solving	for	the	parameter	of	interest.	Considering	a	particular	parameter,		Ө௠	,	which	is	related	to	

the	mth	mixture	component.	
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߲खሺӨሻ

߲Ө࢓
ൌ ෍ ൜

௠ߨ
௡/Өሻݕሺ݌

,	௡/߱௠ݕሺ݌߲ Ө௠ሻ
߲Ө௠

ൠ

ே

௡ୀଵ

ൌ 0	

Where,	Ө௠ ൌ ሾμ௠	, ∑௠ሿ்	in	the	Gaussian	distribution	case,	the	distribution	of	interest,	

Let	us	first	let	Ө௠ ൌ μ௠	then,	

߲खሺӨሻ

߲μ௠
ൌ ෍

,	௡/μ௠ݕ௠ࣨሺߨ ∑௠ሻ
∑ ሼߨ௞ࣨሺݕ௡/μ௞	, ∑௞ሻሽெ
௞ୀଵ

∑௠ିଵሺݕ௡ െ μ௠ሻ

ே

௡ୀଵ

ൌ 0	

,	௡ݕ/ሺ߱௠ܲ			,ݐ݄ܽݐ	ݓ݋݊݇	݁ݓ		 Өሻ ൌ
,	௡/μ௠ݕ௠ࣨሺߨ ∑௠ሻ

∑ ,	௡/μ௞ݕ௞ࣨሺߨ ∑௞ሻெ
௞ୀଵ

		

݄ܶ݁݊,							μො௠ ൌ
∑ ܲሺ߱௠/ݕ௡	, Өሻݕ௡
ே
௡ୀଵ

∑ ܲሺ߱௠/ݕ௡	, Өሻே
௡ୀଵ

																																																																																																													ሺ2.5ሻ	

Similarly,	let		Ө௠ ൌ ∑௠	then,	

߲खሺӨሻ

߲∑௠
ൌ ෍

௠ߨ
∑ ,	௡/μ௞ݕ௞ࣨሺߨ ∑௞ሻெ
௞ୀଵ

߲ࣨሺݕ௡/μ௠	, ∑௠ሻ
߲∑௠

ே

௡ୀଵ

ൌ 0	

߲खሺӨሻ

߲∑௠
ൌ ෍

௠ߨ
∑ ,	௡/μ௞ݕ௞ࣨሺߨ ∑௞ሻெ
௞ୀଵ

1
2
ࣨሺݕ௡/μ௠	, ∑௠ሻሺሺ∑௠ିଵሺݕ௡ െ μ௠ሻሻሺ∑௠ିଵሺݕ௡ െ μ௠ሻሻ் െ ∑௠ିଵሻ

ே

௡ୀଵ

	

݄ܶ݁݊, ∑෡௠ ൌ
∑ ܲሺ߱௠/ݕ௡	, Өሻሺݕ௡ െ μ௠ሻሺݕ௡ െ μ௠ሻ்
ே
௡ୀଵ

∑ ܲሺ߱௠/ݕ௡	, Өሻே
௡ୀଵ

																																																																					ሺ2.6ሻ	

We	 conclude	 that	 		μො௠	, ∑෡௠	 estimates	 will	 only	 be	 correct	 when	 using	 the	 correct	 posterior	

distributionܲሺ߱௠/ݕ௡	, Өሻ,	 but	 the	 posterior	 distribution	 ܲሺ߱௠/ݕ௡	, Өሻ	 depends	 on	 them	 both.	 So,	

there	 is	no	 compact	 form	solution	 for	 these	parameters.	We	 then	 turn	 to	 an	 iterative	 solution	 to	

finding	the	maximum	likelihood	estimate	which	will	be	our	target	in	this	research	where	we	will	be	

using	 the	 Expectation	Maximization	 as	 an	 iterative	 approach	 in	 finding	 the	Maximum	Likelihood	

solution.		

Let	us	now	maximize	the	log	likelihood	function	with	respect	to	the	mixing	coefficients,	ߨ௠.	This	is	a	

constraint	optimization	problem,	so	Lagrange	multiplier	will	be	used	to	solve	this	problem.	
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खሺӨ, ሻߣ ൌ෍ ௡/Өሻݕሺ݌	ࢍ࢕࢒ ൅
ே

௡ୀଵ
ሺ෍ߣ ௠ߨ

ெ

௠ୀଵ

െ 1ሻ	

Then	now	differentiate	this	function,	खሺӨ, 	and	,	௠ߨ	,coefficients	mixing	the	both,	to	respect	with	ሻ,ߣ

the	Lagrange	multiplier,	ߣ	,	we	get	the	estimated	mixture	component	as	below,	

ො௠ߨ ൌ
1
N
෍ܲሺ߱௠/ݕ௡	, Өሻ		

ே

௡ୀଵ

																																																																																																																									ሺ2.7ሻ	

Finally,	we	 realize	 that	without	 the	 knowledge	 of	 the	 class	 or	 component	 of	 each	 drawn	 sample	

ܲሺ߱௠/ݕ௡	, Өሻ,	we	cannot	 find	the	maximum	likelihood	estimate	of	the	parameters	of	 interest.	The	

estimates			μො௠		and		∑෡௠	will	be	one	iteration	in	the	direction	of	the	maximum	likelihood	estimate	of	

the	EM	algorithm	which	would	be	clear	in	the	next	chapter.	
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3 The	Expectation	Maximization		(EM)	Algorithm	

	

3.1 Introduction	

	

The	 EM	 algorithm	 was	 invented	 and	 implemented	 by	 several	 researchers	 till	 Dempster	 [6]	

collected	their	ideas	together,	assured	convergence,	and	stated	the	term	“EM	algorithm.	“	which	

has	been	used	since	then.	One	of	the	main	application	areas	of	the	EM	algorithm	is	estimating	

parameters	 of	mixture	 distribution	which	 is	 the	 aim	 in	 this	 research.	 The	 EM	 algorithm	 has	

broad	areas	of	applications	some	of	which	is	in	genetics,	econometric,	clinical,	and	sociological	

studies.	In	signal	processing	areas	like	Maximum	Likelihood	tomographic	image	reconstruction,	

training	of	hidden	Markov	models	 in	speech	recognition	[7].	 	The	advent	of	 the	EM	algorithm	

has	come	to	solving	the	problem	of	latent	(hidden)	(unobserved)	variables	which	MLE	couldn’t	

afford.	 If	we	 introduce	a	 joint	distribution	over	both	 the	observed	and	hidden	variables,	 then	

the	 corresponding	 distribution	 (the	 distribution	 of	 the	 observed	 variables	 alone)	 is	 given	 by	

marginalization.	This	would	help	putting	complex	distributions	over	observed	variables	to	be	in	

a	more	tractable	form	of	distribution	formed	by	both	observed	and	latent	variables.	The	main	

focus	in	this	study	will	be	on	EM	algorithm	in	Mixtures	of	Gaussians	(MoG).	The	latent	variable	

in	our	case	would	be	the	class	label.	We	would	be	given	a	bunch	of	data	which	are	not	labeled,	

and	 need	 to	 estimate	 some	 parameters	 out	 of	 it.	 Here	we	 have	 two	 problems,	 the	 first	 is	 to	

estimate	 the	 latent	 or	missing	 data,	 and	 then	we	 come	 to	 our	 goal	 of	 estimating	 the	 desired	

parameters	which	would	not	be	estimated	without	estimating	the	missing	(latent)	classes.	The	

latent	 variable	 will	 be	 discrete	 and	 constant.	 For	 example,	 in	 the	 case	 of	 Mixture	 of	 two	

Gaussians,	we	have	two	latent	variables.	It	will	eventually	tend	to	a	classification	problem.	The	

class	will	 then	be	belonging	 to	 either	 class	one	or	 two	depending	on	 the	observed	data.	This	

would	give	which	of	the	Gaussian	mixture	components	is	associated	with	each	vector	(sample)	

in	the	observed	data.	The	EM	algorithm	would	be	the	method	of	choice	when	direct	maximum	

likelihood	 (ML)	 parameter	 estimation	 is	 not	 possible	 without	 the	 knowledge	 of	 the	 latent	

variables.	 	The	goal	of	the	EM	algorithm	is	to	find	the	Maximum	Likelihood	(ML)	solutions	for	

models	which	have	latent	variables.	Let	us	denote	the	set	of	observed	data	by	Y,	and	denote	the	

latent	variables	by	Z.	The	set	of	all	model	parameter	 is	denoted	by	Ө,	and	 then	 the	 likelihood	

function	would	be	given	by,	

ሺܻ/Өሻ݌		ࢍ࢕࢒ ൌ ,ሺܻ݌෍ࢍ࢕࢒ ܼ/Өሻ
௓

																																																																																																											ሺ3.1ሻ	
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This	is	for	discrete	random	variables,	the	same	is	true	when	working	with	continuous	random	

variables	 except	 switching	 the	 summation	 in	 equation	 (3.1)	 in	 to	 integration	 over	 the	 latent	

variable	Z.	The	bad	news	here	in	equation	(3.1)	is	that	the	summation	over	the	latent	variable	Z	

is	 inside	the	logarithm	which	made	it	clear	that	the	solution	of	this	equation	won’t	be	an	easy	

task.	We	can	see	that	since	the	logarithm	and	exponentials	won’t	be	canceled	with	each	other	as	

we’ve	 seen	 in	 the	 previous	 chapter.	 In	 the	 previous	 chapter	 the	 summation	was	 outside	 the	

logarithm	which	made	it	easy	to	be	cancelled	with	the	exponential	of	the	Gaussian	distribution.	

Let	us	assume	that	for	every	observed	sample	in	Y,	we	know	the	corresponding	latent	variable	

Z.	 Then	 we	 can	 call	 ሼܻ, ܼሽ	 as	 the	 complete	 data	 set.	 We	 will	 refer	 to	 Y	 as	 incomplete	 data.	

Maximization	of	the	complete	data	log	likelihood	function	݈݃݋	݌ሺܻ, ܼሻ	is	straight	forward	done	

by	MLE.	However,	we	don’t	really	get	to	see	the	latent	variables	Z,	but	only	the	incomplete	data	

Y.	we	know	Z	by	the	posterior	distribution	݌ሺܼ/ܻ, Өሻ.	Since	we	cannot	use	the	complete	data	log	

likelihood,	 we	 instead	 take	 its	 expected	 value	 under	 the	 posterior	 distribution	 of	 the	 latent	

variable.	This	 step	corresponds	 to	 the	E	step	of	 the	EM	algorithm.	The	M	step	 then	would	be	

maximizing	this	expectation	with	respect	to	the	parameters	of	interest.	If	we	denote	the	current	

estimate	as	Ө௞	,	then	the	E	and	M	steps	would	result	in	a	better	estimate	Ө௞ାଵ.	These	two	steps	

will	 then	 be	 repeated	 till	 we	 get	 some	 precision	 degree	 [1].	 We	 start	 our	 EM	 algorithm	 by	

choosing	an	initial	point	Ө଴	for	the	parameters	to	start	with.	In	the	E	step,	we	use	the	current	

parameter	value	Ө௞	to	find	the	posterior	distribution	of	the	latent	variables	݌ሺܼ/ܻ, Ө௞ሻ.	We	then	

use	 this	 posterior	 distribution	 in	 finding	 the	 expectation	 of	 the	 complete	 data	 log	 likelihood	

computed	at		Ө௞ାଵ,	we	denote	this	expectation	as	࣫ሺ	Ө௞, Ө௞ାଵሻ,	which	called	auxiliary	function,	

is	given	by,	

࣫ሺ	Ө௞, Ө௞ାଵሻ ൌ෍݌ሺܼ/ܻ, Ө௞ሻ	ࢍ࢕࢒		݌ሺܻ, ܼ/Ө௞ାଵሻ
௓

																																																																											ሺ3.2ሻ	

Ө௞ାଵ	is	then	computed	in	the	M	step	as,	

Ө௞ାଵ ൌ ݔܽ݉݃ݎܽ
Ө

࣫ሺ	Ө௞, Ө௞ାଵሻ																																																																																																																						ሺ3.3ሻ	

Let	us	prove	those	equations	alongside	with	the	convergence	of	the	EM	algorithm	regardless	of	

any	initial	starting	point.	To	do	that,	we	need	to	introduce	some	definitions.	

	

3.2 Jensen’s	Inequality	

This	inequality	will	be	useful	in	the	derivation	of	the	update	formulas	in	the	mixture	models.	It	says	

that,	
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݂ ൭෍ ௠ߣ

ெ

௠ୀଵ

௠൱ݕ ൒ ෍ ௠݂ሺߣ

ெ

௠ୀଵ

	ሺ3.4ሻ																																																																																																																									௠ሻݕ

Where	f	is	any	concave	function	and	∑ ௠ߣ ൌ 1ெ
௠ୀଵ ,	and	0 ൑ ௠ߣ ൑ 1.	

Also,	

݂ሺॱሺݕሻሻ ൒ ॱሾ݂ሺݕሻሿ		or,	

݂ ൭
1
ܯ
෍ ௠ݕ

ெ

௠ୀଵ

൱ ൒
1
ܯ
෍ 	݂ሺݕ௠

ெ

௠ୀଵ

ሻ		

	

3.3 Kullback‐Leibler	(KL)	Divergence		

This	helps	us	 find	the	divergence	between	two	probability	distribution	 functions.	Let	us	take	two	

distributions,	p(y)	and	q(y).	Then	the	KL	divergence	between	them	is	given	by,	

ࣞ൫݌ሺݕሻ, ሻ൯ݕሺݍ ൌ න݌ሺݕሻ	ࢍ࢕࢒		
ሻݕሺ݌
ሻݕሺݍ

ݕ݀	 ൌ െන݌ሺݕሻ	ࢍ࢕࢒		
ሻݕሺݍ
ሻݕሺ݌

	ݕ݀	

Using	the	fact	that		݈݃݋ 	ሺݕሻ ൑ ݕ െ 1,	we	then	get,	

න 		܏࢕࢒	ሻݕሺ݌
ሻݕሺݍ
ሻݕሺ݌

ݕ݀	 ൑ න݌ሺݕሻሾ	
ሻݕሺݍ

ሻݕሺ݌
െ 1ሿ	݀ݕ	

																																					൑ නሺݍሺݕሻ െ 	ݕ݀	ሻሻݕሺ݌

																																					൑ 0		

Then	we	see	that	ࣞ൫݌ሺݕሻ, ሻ൯ݕሺݍ ൒ 0.	

This	gives	the	following,	

න ሻݕሺ݌	ࢍ࢕࢒	ሻݕሺ݌ ݕ݀	 ൒ න݌ሺݕሻ	ࢍ࢕࢒	ݍሺݕሻ 	ݕ݀	

Or	in	discrete	version,	

෍݌ሺݕሻ	ࢍ࢕࢒	݌ሺݕሻ ൒
௒

෍݌ሺݕሻ	ࢍ࢕࢒	ݍሺݕሻ
௒

																																																																																																											ሺ3.5ሻ	
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Let	us	try	to	write	the	KL	divergence	in	the	case	of	two	Gaussians,	

Let,	݌ሺݕሻ ൌ ࣨሺݕ; μଵ	, ∑ଵሻ	and,	ݍሺݕሻ ൌ ࣨሺݕ; μଶ	, ∑ଶሻ	then,	

ࣞ൫݌ሺݕሻ, ሻ൯ݕሺݍ ൌ
1
2
ሺ∑ଶݎݐ

ିଵ∑ଵ െ ሻܫ ൅ ሺμଵ െ μଶሻ்∑ଶ
ିଵሺμଵ െ μଶሻ ൅ 		݃݋݈

|∑ଶ|
|∑ଵ|

																																										ሺ3.6ሻ	

	

3.4 The	EM	Derivation	

If	 we	 consider	 a	 mixture	 of	 Gaussians	 distribution,	 the	 parameters	 values	 which	 need	 to	 be	

estimated	 are	 the	 means,	 ,ଵߤ ,ଶߤ . . , 	,covariances	ܽ݊݀		ெߤ ∑ଵ, ∑ଶ, … , ∑ெ	and	 component	 priors,	

,ଵߨ ,ଶߨ	 … , 	will	values	Those	.	ெߨ change	 from	 iteration	 to	 iteration,	Ө௞	 to	Ө௞ାଵ	till	 they	 reach	 the	

optimum	value	or	stabilize	at	some	values.	Once	the	Ө௞	goes	to	Ө௞ାଵ,	the	PDF	will	also	iterate	from	

	,be	will	likelihood	log	the	in	increase	The	ሺܻ/Ө௞ାଵሻ.݌	to	ሺܻ/Ө௞ሻ݌

ख൫Ө௞ାଵ൯ െ ख൫Ө௞൯ ൌ ෍ ௡/Ө௞ାଵሻݕሺ݌	ࢍ࢕࢒ െ ௡/Ө௞ሻݕሺ݌	ࢍ࢕࢒

ࡺ

ୀ૚࢔

	

																																		ൌ ෍ 	ࢍ࢕࢒
௡/Ө௞ାଵሻݕሺ݌
௡/Ө௞ሻݕሺ݌

ࡺ

ୀ૚࢔

																																																																																																								ሺ3.7ሻ	

In	 the	 case	 of	 mixture	 model,	 we	 need	 to	 introduce	 the	 latent	 variables	 as	 being	 one	 of	 the	 M	

mixtures.		

ख൫Ө௞ାଵ൯ െ ख൫Ө௞൯ ൌ ෍ ࢍ࢕࢒
1

௡/Ө௞ሻݕሺ݌
෍ ,	௡ݕሺ݌ ߱௠/Ө௞ାଵሻ

ெ

௠ୀଵ

ࡺ

ୀ૚࢔

	

																																	ൌ ෍ ࢍ࢕࢒
1

௡/Ө௞ሻݕሺ݌
෍

,	௡ݕ/ሺ߱௠݌ Ө௞ሻ݌ሺݕ௡	, ߱௠/Ө௞ାଵሻ
,	௡ݕ/ሺ߱௠݌ Ө௞ሻ

ெ

௠ୀଵ

ࡺ

ୀ૚࢔

	

Since	the	log	function	is	strictly	concave,	we	can	apply	Jensen’s	Inequality	as	follows,	

ख൫Ө௞ାଵ൯ െ ख൫Ө௞൯ ൒ ෍ ෍ ,	௡ݕ/ሺ߱௠݌ Ө௞ሻ	ࢍ࢕࢒		
,	௡ݕሺ݌ ߱௠/Ө௞ାଵሻ

,	௡ݕ/ሺ߱௠݌௡/Ө௞ሻݕሺ݌ Ө௞ሻ

ெ

௠ୀଵ

ே

௡ୀଵ

																																								ሺ3.8ሻ	

We’ve	used	ߣ௠	ܽݏ	݌ሺ߱௠/ݕ௡	, Ө௞ሻ	in	Jensen’s	inequality.		
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Also,	we’ve	seen	from	(3.2)	that	the	auxiliary	function	may	be	written	as,	

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍ ,	௡ݕ/ሺ߱௠݌ Ө௞ሻ	ࢍ࢕࢒	݌ሺݕ௡	, ߱௠/Ө௞ାଵሻ

ெ

௠ୀଵ

ே

௡ୀଵ

	

We	can	then	rewrite	equation	(3.7)	as,	

ख൫Ө௞ାଵ൯ െ ख൫Ө௞൯ ൒ ࣫൫	Ө௞, Ө௞ାଵ൯ െ ࣫൫	Ө௞, Ө௞൯		

The	difference	 in	 the	auxiliary	 function	gives	a	 lower	bound	on	the	 increase	 in	 the	 log	 likelihood.	

We	can	see	that	࣫൫	Ө௞, Ө௞൯	depends	on	the	current	parameters,	so	if	we	just	maximize	the	auxiliary	

function	࣫൫	Ө௞, Ө௞ାଵ൯,	 the	 likelihood	 function	will	also	be	maximized	as	a	 result	of	 that.	Now	our	

aim	is	to	maximize	the	function	࣫൫	Ө௞, Ө௞ାଵ൯	to	get	to	the	parameters	of	interest.	We	can	do	that	by	

differentiating	 the	 auxiliary	 function	࣫൫	Ө௞, Ө௞ାଵ൯	with	 respect	 to	 the	 new	 parameters	 Ө௞ାଵ	 and	

equate	the	result	to	zero.	We	need	to	make	sure	that	when	maximizing	the	function	with	respect	to	

the	mixing	proportion,	we	need	to	use	Lagrange	multiplier.		

Ө	Өೖశభ࣫൫׏
௞, Ө௞ାଵ൯ ൌ 0.	

What	we	need	to	guarantee	is	that	as	we	iterate	from	Ө௞	to	Ө௞ାଵ,	we	need	to	make	sure	that	we	are	

in	 fact	 increasing	 the	 log	 likelihood	 function	 or	 else	we	 are	 not	 improving	 or	 going	 towards	 the	

optimum	solution.	We	need,	

ख൫Ө௞ାଵ൯ ൒ ख൫Ө௞൯	or,	

ख൫Ө௞ାଵ൯ െ ख൫Ө௞൯ ൒ 0.	

Let	us	introduce	the	posterior	distribution	of	the	latent	variable	݌ሺܼ/ݕ, Ө௞ሻ,	

Ө௞ାଵሻ/ݕሺ݌ࢍ࢕࢒ െ Ө௞ሻ/ݕሺ݌	ࢍ࢕࢒ ൌ෍݌ሺܼ/ݕ, Ө௞ሻሾࢍ࢕࢒		݌ሺݕ/Ө௞ାଵሻ െ Ө௞ሻሿ/ݕሺ݌		ࢍ࢕࢒
௓

	

Since,	

෍݌ሺܼ/ݕ, Ө௞ሻ
௓

ൌ 1	

From	the	definition	of	conditional	probability,	
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Ө௞ାଵሻ/ݕሺ݌ ൌ
,ሺܼ݌ Ө௞ାଵሻ/ݕ
,ݕ/ሺܼ݌ Ө௞ାଵሻ

	

We	can	then	write	the	following,	

෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ/Ө௞ାଵሻ ൌ෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		
௓

,ሺܼ݌ Ө௞ାଵሻ/ݕ
,ݕ/ሺܼ݌ Ө௞ାଵሻ

௓

		

Similarly	for	the	second	term,	

෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ/Ө௞ሻ ൌ෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		
௓

,ሺܼ݌ Ө௞ሻ/ݕ
,ݕ/ሺܼ݌ Ө௞ሻ

௓

	

Combining	the	last	two	equations	we	get,	

ख൫Ө௞ାଵ൯ െ ख൫Ө௞൯ ൌ෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ, ܼ/Ө௞ାଵሻ
ࢆ

െ෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺܼ/ݕ, Ө௞ାଵሻ
ࢆ

	

																																					െ෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ, ܼ/Ө௞ሻ
௓

൅෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺܼ/ݕ, Ө௞ሻ
௓

	

From	the	definition	of	the	KL	divergence,	

ࣞ൫݌ሺܼ/ݕ, Ө௞ሻ, ,ݕ/ሺܼ݌ Ө௞ାଵሻ൯ ൌ෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		
,ݕ/ሺܼ݌ Ө௞ሻ
,ݕ/ሺܼ݌ Ө௞ାଵሻ

௓

൒ 0	

Using	this	KL	divergence	equation	in	the	last	equation	we	get,	

ख൫Ө௞ାଵ൯ െ ख൫Ө௞൯ ൒෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ, ܼ/Ө௞ାଵሻ
ࢆ

െ෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ, ܼ/Ө௞ሻ
௓

	

Where,	the	difference	between	the	left	and	right	hand	sides	is	the	KL	divergence.	If	we	can	assure	

that	the	right	hand	side	is	positive,	then	the	left	hand	side	will	be	also	positive.		

Suffices	to	show	that,	

෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ, ܼ/Ө௞ାଵሻ
ࢆ

൒෍݌ሺܼ/ݕ, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ, ܼ/Ө௞ሻ
௓

	

Which	will	assure	that,	

ख൫Ө௞ାଵ൯ ൒ ख൫Ө௞൯.	
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	Let	us	recall	the	auxiliary	function,	

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ෍݌ሺܼ/ݕ, Ө௞ሻ	݈݃݋		݌ሺݕ, ܼ/Ө௞ାଵሻ
ࢆ

	

If	the	auxiliary	function	increases,	then	the	likelihood	will	also	increase.	If,	

࣫൫	Ө௞, Ө௞ାଵ൯ ൒ ࣫൫	Ө௞, Ө௞൯		

Then,	

ख൫Ө௞ାଵ൯ ൒ ख൫Ө௞൯.	

We	 can	 see	 the	 difference	 between	 the	 likelihoods	 and	 the	 auxiliary	 functions	 would	 be	 the	 KL	

divergence,	as	follows,	

ൣख൫Ө௞ାଵ൯ െ ख൫Ө௞൯൧ െ ൣ࣫൫	Ө௞, Ө௞ାଵ൯ െ ࣫൫	Ө௞, Ө௞൯൧ ൌ ࣞ൫݌ሺܼ/ݕ, Ө௞ሻ, ,ݕ/ሺܼ݌ Ө௞ାଵሻ൯																							ሺ3.9ሻ	

The	increase	in	the	auxiliary	function	would	be	a	lower	bound	on	the	increase	of	the	log	likelihood.	

We	 noted	 that	maximizing	 the	 auxiliary	 function	 once,	 doesn’t	 result	 in	 the	 optimum	parameter	

values,	 we	 need	 to	 iterate	 till	 convergence	 is	 being	 achieved.	 We	 can	 now	 summarize	 the	 EM	

algorithm	in	two	steps:	

⤇	 The	 Expectation	 step	 which	 is	 done	 after	 guessing	 a	 starting	 point	 Ө଴	 and	 calculating	 the	

posterior	 distribution	 of	 the	 latent	 variable,	݌ሺܼ/ݕ, Ө௞ሻ,	 by	 taking	 the	 expected	 value	 of	 the	 log	

likelihood	 of	 the	 complete	 data	 in	 terms	 of	 the	 new	 parameter	 values	 Ө௞ାଵ,	 ,ݕሺ݌ሺ		݃݋݈ ܼ/

Ө௞ାଵሻሻหݕ, Ө௞with	 respect	 to	 the	 posterior	 distribution	 of	 the	 latent	 variables	 ,ݕ/ሺܼ݌	, Ө௞ሻ.	 As	

follows,	

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ॱ௣ሺ௓/௬,Өೖሻ൛ࢍ࢕࢒		݌ሺݕ, ܼ/Ө
௞ାଵሻหݕ, Ө௞	ൟ																																																																															ሺ3.10ሻ	

⤇	The	Maximization	step	which	maximizes	the	auxiliary	function,	࣫൫	Ө௞, Ө௞ାଵ൯,	with	respect	to	the	

new	parameters	Ө௞ାଵ.		

Ө௞ାଵ ൌ ݔܽ݉݃ݎܽ
Ө

࣫൫	Ө௞, Ө௞ାଵ൯		

The	 major	 problem	 with	 the	 initial	 parameter	 values	 that	 if	 there	 is	 at	 least	 one	 local	 maxima	

besides	the	global	maxima,	then	the	EM	algorithm	might	only	get	a	local	maxima	instead	of	getting	
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the	 global	maxima.	One	way	 of	 trying	 to	 overcome	 this	 problem	 is	 by	 starting	 at	many	different	

initial	points	and	then	chooses	the	one	which	gives	the	highest	likelihood.		

	

3.5 Mixture	of	Gaussians	and	the	EM	algorithm	

One	 of	 the	 applications	 of	 the	 EM	 algorithm	 is	 to	 find	 the	 MLE	 of	 the	 Mixture	 of	 Gaussians	

parameters	in	the	existing	of	unobserved	variables	or	data.	We’ve	seen	that	the	parameters	couldn’t	

be	 found	by	 a	 direct	MLE.	An	 iterative	 procedure	needs	 to	 be	 done	 in	 order	 for	 us	 to	 get	 to	 the	

optimum	 results	 for	 the	 parameters.	 The	major	 problem	which	we	 encounter	 here	 is	 that	which	

Gaussian	component	was	responsible	for	generating	that	specific	sample.	We	know	that	the	latent	

variables	 are	 discrete	 which	 determines	 the	 number	 of	 mixtures	 which	 have	 been	 used	 in	

generating	 the	 observed	 data.	 If	 we	 have	 prior	 knowledge	 about	 the	 components	 which	 were	

responsible	 for	 generating	 the	 data,	 then	 the	problem	would	 become	 easier	 and	 could	 be	 solved	

using	a	direct	MLE.	So	now	our	major	problem	is	estimating	the	component	which	was	responsible	

for	generating	each	data	point	in	my	observed	data.	Once	we	know	the	posterior	distribution	of	the	

hidden	 variables	݌ሺܼ/ܻ, Өሻ,	 the	 problem	 then	 become	 like	 a	 direct	MLE	 problem	 in	 the	 auxiliary	

function	sense.		

Assume	that,	ݖ௡௞ ൌ ቄ1		if	the	observed	data	ݕ௡	was	generated	by	component	߱௞
0																																																																																											otherwise

	

Let	 us	 have	 a	 look	 at	 a	 single	 received	 sample	 which	 we	 suppose	 that	 it	 was	 generated	 by	

component		߱௞.	We	can	write,	

,௡ݖሺ݌ ௡/Өሻݕ ൌ ,߱௞	௡/ݕሺ݌ Ө௞ሻ	݌ሺ	߱௞ሻ	

																							ൌ ෑሾ݌ሺݕ௡/	߱௠, Ө௠ሻ	݌ሺ	߱௠ሻሿ௭೙೘
ெ

௠ୀଵ

																																																																																						ሺ3.11ሻ	

In	addition	of	Y	being	݅. ݅. ݀.	samples,	Z	also	are	݅. ݅. ݀.	samples,	

,ሺܼ݌ ࢟/Өሻ ൌෑ݌ሺݖ௡, ௡/Өሻݕ

ே

௡ୀଵ

	

In	 the	 Expectation	 step	 of	 the	 EM	 algorithm	 we	 need	 to	 compute	 iteratively	 the	 posterior	

distribution	 of	 the	 latent	 variable	 ,࢟/ሺܼ݌ Ө௞ሻ	 in	 order	 to	 find	 the	 auxiliary	 function.	 Then	 we	

maximize	the	auxiliary	function.	
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࣫൫	Ө௞, Ө௞ାଵ൯ ൌ෍݌ሺܼ/࢟, Ө௞ሻ	
௓

,ሺܼ݌		ࢍ࢕࢒ ࢟/Ө௞ାଵሻ	

																									ൌ ෍݌ሺܼ/࢟, Ө௞ሻ෍ ,௡ݕሺ݌		ࢍ࢕࢒ ௡/Ө௞ାଵሻݖ

ே

௡ୀଵ௓

	

																									ൌ ෍෍݌ሺܼ/࢟, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ௡, ௡/Ө௞ାଵሻݖ
௓

ே

௡ୀଵ

	

																									ൌ ෍෍݌ሺ	ݖ௡/ݕ௡, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ௡, ௡/Ө௞ାଵሻݖ
௭೙

ே

௡ୀଵ

	

																									ൌ ෍෍݌ሺ	ݖ௡/ݕ௡, Ө௞ሻ ෍ ௡௠ݖ

ெ

௠ୀଵ

,	߱௠	௡/ݕሺ݌൫		ࢍ࢕࢒ Ө௠௞ାଵሻ݌௞ାଵሺ	߱௠ሻ൯
௭೙

ே

௡ୀଵ

	

																									ൌ ෍෍݌ሺ	ݖ௡/ݕ௡, Ө௞ሻ ෍ ௡௠ݖ

ெ

௠ୀଵ

,	߱௠	௡/ݕሺ݌		ࢍ࢕࢒ Ө௠௞ାଵሻ
௭೙

ே

௡ୀଵ

൅෍෍݌ሺ	ݖ௡/ݕ௡, Ө௞ሻ ෍ ௡௠ݖ

ெ

௠ୀଵ

߱௠ሻ	௞ାଵሺ݌		ࢍ࢕࢒
௭೙

ே

௡ୀଵ

	

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ൝෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ	ࢍ࢕࢒		݌ሺݕ௡/	߱௠	, Ө௠௞ାଵሻ

ே

௡ୀଵ

ெ

௠ୀଵ

൅෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ	ࢍ࢕࢒		݌௞ାଵሺ	߱௠ሻ
ே

௡ୀଵ

ൡ																																																																												ሺ3.12ሻ	

We	know	that	the	log	likelihood	function	for	a	component	mixture	is,	

;ሺ࢟݌		ࢍ࢕࢒ μ௠	, ∑௠ሻ ൌ െ
1
2
ሾࢍ࢕࢒			ሺ2ߨሻ஽|∑௠| ൅ ሺ࢟ െ μ௠ሻ்∑௠ିଵሺ࢟ െ μ௠ሻሿ	

This	is	then	substituted	in	the	auxiliary	function	as	follows,	
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࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ൜െ
1
2
ሺݕ௡ െ μො௠ሻ்∑෡௠ିଵሺݕ௡ െ μො௠ሻൠ

ே

௡ୀଵ

ெ

௠ୀଵ

൅ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ቊെ
1
2
ሻ஽ห∑෡௠หൟቋߨሺ2	൛		ࢍ࢕࢒

ே

௡ୀଵ

ெ

௠ୀଵ

൅ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ	ࢍ࢕࢒		݌௞ାଵሺ	߱௠ሻ																																								

ே

௡ୀଵ

ெ

௠ୀଵ

																													ሺ3.13ሻ	

We	 now	 need	 to	 estimate	 the	 parameters	 of	 interest	 of	 component	 	߱௠	 at	 iteration	 ݇ ൅ 1	 by	

differentiating	the	auxiliary	function	with	respect	to	one	of	the	parameters	and	equating	to	zero,	

,Ө௞	Ө࣫൫׏ Ө௞ାଵ൯ ൌ 0																																																																																																																																														

In	the	case	of	estimating	the	mean	of	the	݉௧௛	mixture	component,	

Ө	ஜ೘࣫൫׏
௞, Ө௞ାଵ൯ ൌ 0			

This	will	result	in	the	updating	mean	formula,	

μො௠ ൌ
∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻݕ௡
ே
௡ୀଵ

∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻே
௡ୀଵ

																																																																																																																												ሺ3.14ሻ	

Ө	೘࣫൫∑׏
௞, Ө௞ାଵ൯ ൌ 0			

This	will	result	in	the	updating	Covariance	formula,	

∑෡௠ ൌ
∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻሺݕ௡ െ μො௠ሻሺݕ௡ െ μො௠ሻ்
ே
௡ୀଵ

∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻே
௡ୀଵ

																																																																																								ሺ3.15ሻ	

Equations	(3.13)	to	(3.15)	will	be	iterated	till	convergence	is	achieved.		

To	sum	up,	the	EM	algorithm	for	Mixture	of	Gaussians	may	be	summarized	as	follows,		

1. Initialize	 the	 parameters	 mean	 	 μ௠଴	 ,	 Covariance	 ∑௠
଴	 ,	 and	 mixing	 coefficient	 ௠଴ߨ ൌ

	.function	likelihood	log	the	for	value	initial	the	calculate	then	߱௠ሻ,	଴ሺ݌

2. In	the	E	step,	we	need	to	calculate	the	responsibilities,	݌ሺ	߱௠/ݕ௡, Ө௞ሻ,	

,௡ݕ/߱௠	ሺ݌ Ө௞ሻ ൌ
,	௡/μ௠ݕ௠ࣨሺߨ ∑௠ሻ
∑ ,	௡/μ௝ݕ௝ࣨሺߨ ∑௝ሻெ
௝ୀଵ

	

3. In	the	M	step,	we	need	to	re	estimate	the	parameters,	using	the	current	responsibility,	
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௠௞ାଵߤ ൌ
∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻݕ௡
ே
௡ୀଵ

∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻே
௡ୀଵ

							

∑௠௞ାଵ ൌ
∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻሺݕ௡ െ ௡ݕ௠௞ାଵሻሺߤ െ ௠௞ାଵሻ்ߤ
ே
௡ୀଵ

∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻே
௡ୀଵ

													

௠௞ାଵߨ ൌ
∑ ,௡ݕ/߱௠	ሺ݌ Ө௞ሻ
ே
௡ୀଵ

ܰ
	

4. Evaluate	 the	 log	 likelihood	 checking	 for	 increasing	 the	 log	 likelihood	 and	 stopping	 the	

iteration	process	if	a	given	precision	has	been	achieved.	

,ߨ/ሺ࢟݌	ࢍ࢕࢒ ,ߤ ∑ሻ ൌ ෍ ࢍ࢕࢒ ෍ ,	௡/μ௠ݕ௠ࣨሺߨ ∑௠ሻ

ெ

௠ୀଵ

ே

௡ୀଵ

	

If	the	precision	hasn’t	been	achieved,	we	go	back	to	point	number	2	and	iterate	once	again.	

We	do	the	same	procedure	till	we	achieve	the	precision	condition.		

For	 instance,	 let	 us	 consider	 an	 example	 showing	 a	 mixture	 of	 four	 Gaussians	 as	 an	

illustration	example.	I	assumed	that	the	means	as	the	values	of	the	four	sent	symbols	in	the	

QPSK	case,	ܽ௡ ∈ ሼേ1	, േ1ሽ,	and	have	equal	covariance	of	∑ ൌ 	.matrix	2×2	a	is	I	where	,ܫ	0.35

Figure	 3.1	 shown	 shows	 these	 generated	 data	 with	 its	 Gaussian	 fit	 using	 the	 previous	

algorithm,	my	assumption	model	was	like,		

࢟ ൌ ܽ௡ ൅ ࢝		

Where	࢟	is	the	received	data	which	corrupted	by	additive	white	Gaussian	noise	AWGN,	࢝	of	

covariance,	∑	,	both	of	size	N,	and		ܽ௡ ൌ ሼേ1, േ	1ሽ.	This	is	done	by	generating	800	samples	

drawn	 from	 each	mixture	 of	 four	 Gaussians	 and	 then	 pretending	 like	we	 don’t	 know	 the	

parameters	from	which	those	samples	were	drawn	and	trying	to	estimate	those	parameters	

by	finding	the	best	contour	match	and	estimating	the	parameters	using	the	EM	algorithm.			

As	we	can	see	 from	the	coming	 figures,	 the	more	we	 increase	the	variances,	 the	more	the	

inference	 become	 difficult	 and	 we	 might	 not	 get	 the	 true	 parameters	 as	 a	 result.	 As	 we	

decrease	the	variance,	the	mixtures	would	become	more	circular	and	separated	and	easy	to	

be	 classified.	 Figure	 3.2	 shows	 the	 mixture	 of	 four	 Gaussians	 exactly	 as	 in	 the	 previous	

figure	 except	 that	 we	 decreased	 the	 variances	 to	 0.05.	 We	 clearly	 see	 the	 difference	 in	

estimating	the	contours	of	those	mixtures.	In	this	figure	classification	could	be	done	easily	

without	 encountering	 too	much	 error.	 K‐means	 plot	 is	 also	 drawn	 to	 see	 that	 it	 is	 just	 a	

special	case	of	the	EM	algorithm	when	the	covariance	approaches	zero.		
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Figure	3.1.	mixtures	of	four	Gaussians	data	and	their	fit	when	ܥ ൌ 	ܫ0.35

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.2.	mixtures	of	four	Gaussians	data	and	their	fit	when	ܥ ൌ 	ܫ0.05
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4 SISO	NDA	SNR	estimation	using	the	EM	algorithm	in	the	Literature	

	

4.1 BPSK	case	

In	 the	 binary	phase	 shift	 keying,	we	have	 a	mixture	of	 two	 classes,	 ܽ௡ ∈ ሼ൅1,െ1ሽ.	Those	 are	 the	

transmitted	symbols.		

4.1.1 The	system	model	

We	 are	 assuming	 that	 there	 is	 no	 error	 in	 timing,	 phase	 deviation,	 or	 frequency	 deviation.	 The	

matched	filter	output	may	be	given	by,	

௡ݕ ൌ ܽ௡݄ ൅ ݊																														,	௡ݓ ൌ 	1, … . . , ܰ																																																																																												ሺ4.1ሻ	

where,	ݕ௡	is	the	received	sample,	ܽ௡	is	the	transmitted	symbol,	 	݄	is	the	channel	gain,	and	ݓ௡	is	a	

zero	mean	AWGN	with	variance	ߪଶ.		

We	can	write	equation	(4.1)	in	a	vector	form	as,	

࢟ ൌ ݄ࢇ ൅ ࢝																																																																																																																																																																ሺ4.2ሻ	

where,	 ࢟ ൌ ሾݕଵ	ݕଶ	ݕଷ	. . . . 	ேሿ்ݕ ,	 ࢇ ൌ ሾܽଵ	ܽଶ	ܽଷ	. . . . ܽேሿ்	 ,	 ࢝ ൌ ሾݓଵ	ݓଶ	ݓଷ	. . . 	.ேሿ்ݓ		. The	 transmitted	

symbols	 may	 be	 modeled	 as	 realizations	 of	 ݅. ݅. ݀.	 binary	 random	 variables.	 The	 probability	

distribution	function	may	be	written	as,			

,௡/ܽ௡ݕሺ݌ Өሻ ൌ
1

ଶߪߨ2√
݌ݔ݁ ቊ	െ

ሺݕ௡ െ ܽ௡݄ሻଶ

ଶߪ2
	ቋ																																																																																																		ሺ4.3ሻ	

Assuming	equally	likely	symbols,	we	have,	

;௡ݕሺ݌ Өሻ ൌ෍݌ሺݕ௡/ܽ௡, Өሻ
௔೙

		ሺܽ௡/Өሻ݌

																		ൌ
1

ଶߪߨ2√
൝
1
2
݌ݔ݁ ቊെ

ሺݕ௡ െ ݄ሻଶ

ଶߪ2
ቋ ൅

1
2
݌ݔ݁ ቊ	െ

ሺݕ௡ ൅ ݄ሻଶ

ଶߪ2
ቋൡ	

where,	Ө ൌ ሾ݄		ߪଶሿ்.	Now	for	N	received	݅. ݅. ݀.	samples	we	have,	

;ሺ࢟݌ Өሻ ൌෑ݌ሺݕ௡; Өሻ
ே

௡ୀଵ
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;ሺ࢟݌ Өሻ ൌෑ
1

ଶߪߨ2√
൬
1
2
൰ ൝݁݌ݔ ቊെ

ሺݕ௡ െ ݄ሻଶ

ଶߪ2
ቋ ൅ ቊെ	݌ݔ݁

ሺݕ௡ ൅ ݄ሻଶ

ଶߪ2
ቋൡ

ே

௡ୀଵ

																																																ሺ4.4ሻ	

This	 is	 the	 likelihood	 function	of	 the	received	data.	Now	given	 the	observation	data,	estimate	 the	

parameter	values	Ө෡ ൌ ሾ෠݄		ߪଶ෢ሿ்	and	then	substitute	to	find	the	SNR,	

ܵܰ෣ܴ ൌ ቆ		ଵ଴ࢍ࢕࢒	10
෠݄ଶ

ଶ෢ߪ
ቇ	

4.1.2 The	CRLB	for	BPSK	

The	Cramer‐Rao	Lower	Bound	(CRLB)	 is	a	 lower	bound	 for	 the	Mean	Square	Error	 (MSE)	of	 any	

unbiased	estimator	which	satisfies	the	regularity	condition	[2].	In	our	case	of	SNR	estimation,	the	

CRLB	can	be	written	as,	

ሺܴܵܰሻܤܮܴܥ ൌ
்߲ܴܵܰ

߲Ө
ଵሺӨሻିࡵ

߲ܴܵܰ
߲Ө

																																																																																																																ሺ4.5ሻ	

Where	ࡵሺӨሻ	is	the	fisher	information	matrix	given	by,	

ሺӨሻࡵ ൌ

ۏ
ێ
ێ
ێ
െॱۍ ቈ

߲ଶࢍ࢕࢒	݌ሺܻ; Өሻ

߲݄ଶ
቉ െॱ ቈ

߲ଶࢍ࢕࢒	݌ሺܻ; Өሻ

ଶߪ߲݄߲
቉

െॱ ቈ
߲ଶࢍ࢕࢒	݌ሺܻ; Өሻ

ଶ߲݄ߪ߲
቉ െॱ ቈ

߲ଶࢍ࢕࢒	݌ሺܻ; Өሻ

ଶଶߪ߲
቉
ے
ۑ
ۑ
ۑ
ې

																																																																																				ሺ4.6ሻ	

And,	

߲ܴܵܰ
߲Ө

ൌ ൤
20

ሺ10ሻࢍ࢕࢒	݄
			െ

10
ଶߪ ሺ10ሻࢍ࢕࢒

൨
்

																																																																																																									ሺ4.7ሻ	

For	the	NDA	case,	

The	log	likelihood	function	is	given	as,	

खሺӨሻ ൌ෍ ௡/Өሻݕሺ݌	ࢍ࢕࢒
ࡺ

ୀ૚࢔
	

										ൌ െ
ܰ
2
ଶሻߪߨሺ2݃݋݈ െ

1
ଶߪ2

෍ሾሺݕ௡ሻଶ ൅ ݄ଶሿ
ே

௡ୀଵ

൅෍ ݃݋݈ ݄ݏ݋ܿ ൬
௡݄ݕ
ଶߪ

൰

ே

௡ୀଵ

																																																ሺ4.8ሻ	
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After	 differentiating	 this	 function	 with	 respect	 to	 the	 channel	 gain	 and	 the	 variance	 we	 get	 the	

following,	

߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

߲݄ଶ
ൌ െ

ܰ
ଶߪ

൅෍ ଶ݄ܿ݁ݏ ൬
௡݄ݕ
ଶߪ

൰

ே

௡ୀଵ

ቀ
௡ݕ
ଶߪ
ቁ
ଶ
	

߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

ଶߪ߲݄߲
ൌ
݄ܰ
ସߪ

െ෍ ଶ݄ܿ݁ݏ ൬
௡݄ݕ
ଶߪ

൰

ே

௡ୀଵ

௡ଶ݄ݕ
଺ߪ

െ෍ ݄݊ܽݐ ൬
௡݄ݕ
ଶߪ

൰

ே

௡ୀଵ

௡ݕ
ସߪ
	

߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

ଶ߲݄ߪ߲
ൌ
߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

ଶߪ߲݄߲
	

߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

ଶଶߪ߲
ൌ

ܰ
ସߪ2

െ
1
଺ߪ

෍ሾሺݕ௡ሻଶ ൅ ݄ଶሿ
ே

௡ୀଵ

൅෍ ݄݊ܽݐ ൬
௡݄ݕ
ଶߪ

൰

ே

௡ୀଵ

௡݄ݕ2
଺ߪ

൅෍ ଶ݄ܿ݁ݏ ൬
௡݄ݕ
ଶߪ

൰

ே

௡ୀଵ

൬
௡݄ݕ
ସߪ

൰
ଶ

	

ሺӨሻࡵ ൌ

ۏ
ێ
ێ
ێ
ۍ
ܰሺ1 െ ݂ሺߩሻሻ

ଶߪ
݄ܰ
ସߪ

	݂ሺߩሻ

݄ܰ
ସߪ

	݂ሺߩሻ
ܰ
ସߪ

ቊ
1
2
െ
݄ଶ	݂ሺߩሻ
ଶߪ

ቋ
ے
ۑ
ۑ
ۑ
ې
																																																																																										ሺ4.9ሻ	

where,	

݂ሺߩሻ ൌ
ሺെ	݌ݔ݁

ߩ
2ሻ

ߨ2√
න

ሺ	݌ݔଶ݁ݔ
െݔଶ
2 ሻ

ሻߩඥݔሺ		݄ݏ݋ܿ
	

ାஶ

ିஶ
	ሺ4.10ሻ																																																																																													ݔ݀

We	can	now	substitute	this	result	into	equation	(4.5)	and	get	the	following,	

ሺܴܵܰሻܤܮܴܥ ൌ ൤
20

ሺ10ሻࢍ࢕࢒	݄
			െ

10
ଶߪ ሺ10ሻࢍ࢕࢒

൨

ۏ
ێ
ێ
ێ
ۍ
ܰሺ1 െ ݂ሺߩሻሻ

ଶߪ
݄ܰ
ସߪ

	݂ሺߩሻ

݄ܰ
ସߪ

	݂ሺߩሻ
ܰ
ସߪ

ቊ
1
2
െ
݄ଶ	݂ሺߩሻ
ଶߪ

ቋ
ے
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ۍ

20
ሺ10ሻࢍ࢕࢒	݄

			

െ
10

ଶߪ ےሺ10ሻࢍ࢕࢒
ۑ
ۑ
ې
	

ሺܴܵܰሻܤܮܴܥ ൌ
200

ܰሺ݈݃݋ሺ10ሻሻଶ

2
ߩ െ ݂ሺߩሻ ൅ 1

1 െ ݂ሺߩሻ െ ሻߩሺ݂	ߩ	2
	ሺ4.11ሻ																																																						ଶܤ݀																		
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For	the	DA	case,	

खሺӨሻ ൌ ෍ ,௡/ܽ௡ݕሺ݌	ࢍ࢕࢒ Өሻ
ࡺ

ୀ૚࢔

	

ൌ ෍ቊെ
1
2
ଶሻߪߨሺ2݃݋݈ െ

ሺݕ௡ െ ܽ௡݄ሻଶ

ଶߪ2
ቋ

ே

௡ୀଵ

	

where	ܽ௡	is	given	to	be	either	+1	or	‐1.		

After	 differentiating	 this	 function	 with	 respect	 to	 the	 channel	 gain	 and	 the	 variance	 we	 get	 the	

following,	

߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

߲݄ଶ
ൌ െ

ܰܽ௡ଶ

ଶߪ
	

߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

ଶߪ߲݄߲
ൌ െ

ܰሺܽ௡ݕ௡ െ ݄ሻ
ସߪ

	

߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

ଶ߲݄ߪ߲
ൌ
߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

ଶߪ߲݄߲
	

߲ଶࢍ࢕࢒	݌ሺ࢟; Өሻ

ଶଶߪ߲
ൌ

ܰ
ସߪ2

െ
1
଺ߪ

෍ሺݕ௡ െ ܽ௡݄ሻଶ
ே

௡ୀଵ

	

ሺӨሻࡵ ൌ ൦

ܰ
ଶߪ

0

0
ܰ
ସߪ2

൪ 																																																																																																																																																		4.12	

We	may	now	substitute	this	result	into	equation	(4.5)	and	get	the	following,	

ሺܴܵܰሻܤܮܴܥ ൌ ൤
20

ሺ10ሻࢍ࢕࢒	݄
			െ

10
ଶߪ ሺ10ሻࢍ࢕࢒

൨ ൦

ܰ
ଶߪ

0

0
ܰ
ସߪ2

൪

ۏ
ێ
ێ
ۍ

20
ሺ10ሻࢍ࢕࢒	݄

			

െ
10

ଶߪ ےሺ10ሻࢍ࢕࢒
ۑ
ۑ
ې
	

ሺܴܵܰሻܤܮܴܥ ൌ
200

ܰሺ݈݃݋ሺ10ሻሻଶ
		ሺ	
2
ߩ
൅ 1ሻ															݀ܤଶ																																																																																					ሺ4.13ሻ	
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4.1.3 NDA	SNR	estimation	using	the	EM	algorithm	

We	now	introduce	the	method	of	EM	algorithm	in	estimating	the	SNR.	Our	assumptions	are	that	the	

data	 was	 drawn	 from	 a	 mixture	 of	 two	 Gaussians,	 and	 are	 uncorrelated	 with	 each	 other.	 The	

samples	are	drawn	in	an	݅. ݅. ݀.	manner.	The	parameters	which	we	need	to	estimate	now	are,	

Ө෡ ൌ ሾ݄			෢ ଶ෢ߪ		 ሿ்	

				ൌ 	ݔܽ݉݃ݎܽ
Ө

;ሺ࢟݌ Өሻ	

ොߩ ൌ
෠݄ଶ

ଶ෢ߪ
																																																																																																																																																																				

ܵܰ෣ܴ ൌ 	ሺ4.14ሻ																																																																																																																																											ොሻߩଵ଴ሺࢍ࢕࢒	10

The	EM	algorithm	will	be	used	to	iteratively	estimate	the	channel	gain	and	the	noise	variance	then	

use	them	to	estimate	the	signal	to	noise	ratio.	The	received	data	will	be	seen	as	incomplete	data	set	

since	we	don’t	know	its	class	(transmitted	symbol).	The	auxiliary	function	in	this	case	may	be	given	

as,	

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ॱ௣ሺ௓/௬,Өೖሻ൛ࢍ࢕࢒	ሺ݌ሺ࢟, ܼ/Ө
௞ାଵሻሻห࢟, Ө௞	ൟ																																																																																		

				࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍ ,௡ݕ/ሺ߱௠݌ Ө௞ሻ

ெ

௠ୀଵ

ே

௡ୀଵ

,௡/߱௠ݕሺ݌	ࢍ࢕࢒ Ө௞ାଵሻ

൅෍ ෍ ,௡ݕ/ሺ߱௠݌ Ө௞ሻ

ெ

௠ୀଵ

ே

௡ୀଵ

	ሺ4.15ሻ																																																																										௞ାଵሺ߱௠ሻ݌	ࢍ࢕࢒

Ө௞ାଵ ൌ ݔܽ݉݃ݎܽ
Ө

࣫ሺ	Ө௞, Ө௞ାଵሻ																																																																																																											ሺ4.16ሻ	

Now	 solving	 those	 two	 equations	 will	 give	 us	 the	 E	 &	 M	 steps.	 Since	 we	 know	 the	 mixing	

proportion	݌ሺ߱௠ሻ,	we	don’t	need	to	estimate	it.	

The	auxiliary	function	may	be	given	as,	

	࣫ ቀ	Ө݇, Ө݇൅1ቁ ൌ ෍ ෍ ,௡ݕ/ሺ߱௠݌ Ө௞ሻ

ெ

௠ୀଵ

ே

௡ୀଵ

,௡/߱௠ݕሺ݌	ࢍ࢕࢒ Ө௞ାଵሻ	
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࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ൜െ
1
2
ቀሺݕ௡ െ ௠௞ାଵሻ்∑௠௞ାଵߤ

ିଵ
ሺݕ௡ െ ௠௞ାଵሻቁൠߤ

ே

௡ୀଵ

ெ

௠ୀଵ

൅ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ൜െ
1
2
൫ࢍ࢕࢒		ൣ 	ሺ2ߨሻ஽ห∑௠௞ାଵห൧൯ൠ

ே

௡ୀଵ

൅ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ	ࢍ࢕࢒		ሼܥሽ
ே

௡ୀଵ

ெ

௠ୀଵ

ெ

௠ୀଵ

	

,௡/߱௠ݕ൫݌	ࢍ࢕࢒ Ө௞ାଵ൯ ൌ െ
1
2
ଶߪߨሺ2	ࢍ࢕࢒

௞ାଵ
ሻ െ

ሺݕ௡ െ ܽ௠݄௞ାଵሻଶ

ଶ௞ାଵߪ2
	

߲࣫൫	Ө௞, Ө௞ାଵ൯
߲݄௞ାଵ

ൌ
߲

߲݄௞ାଵ
൝෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ቊെ

ሺݕ௡ െ ܽ௠݄௞ାଵሻଶ

ଶ௞ାଵߪ2
ቋ

ே

௡ୀଵ

ெ

௠ୀଵ

ൡ ൌ 0	

෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ቊ
ܽ௠ሺݕ௡ െ ܽ௠݄௞ାଵሻ

ଶ௞ାଵߪ
ቋ ൌ 0

ே

௡ୀଵ

ெ

௠ୀଵ

	

෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻሼܽ௠ݕ௡ െ ݄௞ାଵሽ ൌ 0

ே

௡ୀଵ

ெ

௠ୀଵ

	

෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻሼܽ௠ݕ௡ሽ ൌ ݄ܰ௞ାଵ
ே

௡ୀଵ

ெ

௠ୀଵ

	

෍ ,௡ݕ/ሺ߱ଵ݌	௡ݕ Ө௞ሻ െ෍ݕ௡	݌ሺ߱ଶ/ݕ௡, Ө௞ሻ ൌ ݄ܰ௞ାଵ
ே

௡ୀଵ

ே

௡ୀଵ

	

,݁ܿ݊݅ݏ ,௡ݕ/ሺ߱ଵ݌ Ө௞ሻ ൅ ,௡ݕ/ሺ߱ଶ݌ Ө௞ሻ ൌ 1	

෍ ,௡ݕ/ሺ߱ଵ݌	௡ݕ Ө௞ሻ െ෍ݕ௡	ሾ1 െ ,௡ݕ/ሺ߱ଵ݌ Ө௞ሻሿ ൌ ݄ܰ௞ାଵ
ே

௡ୀଵ

ே

௡ୀଵ

	

݄ܰ௞ାଵ ൌ ෍ݕ௡	ሼ2	݌ሺ߱ଵ/ݕ௡, Ө௞ሻ െ 1ሽ
ே

௡ୀଵ

	

݄௞ାଵ ൌ
1
ܰ
෍ݕ௡ሺ2	݌ሺ߱ଵ/ݕ௡, Ө௞ሻ െ 1ሻ

ே

௡ୀଵ
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ሼ2	݌ሺ߱ଵ/ݕ௡, Ө௞ሻ െ 1ሽ ൌ 2

ە
۔

ۓ ሺെ	݌ݔ݁
ሺݕ௡ െ ݄௞ሻଶ

ଶ௞ߪ2
ሻ

ሺെ	݌ݔ݁
ሺݕ௡ െ ݄௞ሻଶ

ଶ௞ߪ2
ሻ ൅ ሺെ	݌ݔ݁

ሺݕ௡ ൅ ݄௞ሻଶ

ଶ௞ߪ2
ሻ
ۙ
ۘ

ۗ
െ 1	

																																					ൌ
ሺെ	݌ݔ2݁

ሺݕ௡ െ ݄௞ሻଶ

ଶ௞ߪ2
ሻ െ ሺെ	݌ݔ݁

ሺݕ௡ െ ݄௞ሻଶ

ଶ௞ߪ2
ሻ െ ሺെ	݌ݔ݁

ሺݕ௡ ൅ ݄௞ሻଶ

ଶ௞ߪ2
ሻ

ሺെ	݌ݔ݁
ሺݕ௡ െ ݄௞ሻଶ

ଶ௞ߪ2
ሻ ൅ ሺെ	݌ݔ݁

ሺݕ௡ ൅ ݄௞ሻଶ

ଶ௞ߪ2
ሻ

	

																																					ൌ
ሺെ	݌ݔ݁

ሺݕ௡ െ ݄௞ሻଶ

ଶ௞ߪ2
ሻ െ ሺെ	݌ݔ݁

ሺݕ௡ ൅ ݄௞ሻଶ

ଶ௞ߪ2
ሻ

ሺെ	݌ݔ݁
ሺݕ௡ െ ݄௞ሻଶ

ଶ௞ߪ2
ሻ ൅ ሺെ	݌ݔ݁

ሺݕ௡ ൅ ݄௞ሻଶ

ଶ௞ߪ2
ሻ
	

																																			ൌ ቊ	݄݊ܽݐ
௡݄௞ݕ

ଶ௞ߪ
ቋ	

݄௞ାଵ ൌ
1
ܰ
෍ݕ௡	݄݊ܽݐ		ቊ

௡݄௞ݕ

ଶ௞ߪ
ቋ																																																																																																											ሺ4.17ሻ

ே

௡ୀଵ

	

Solving	for	the	variance,	we	have,	

߲࣫൫	Ө௞, Ө௞ାଵ൯

ଶ௞ାଵߪ߲
ൌ	

߲

ଶ௞ାଵߪ߲
൝෍ ,௡ݕ/ሺ߱ଵ݌ Ө௞ሻࢍ࢕࢒	݌ሺݕ௡/߱ଵ, Ө௞ାଵሻ ൅෍݌ሺ߱ଶ/ݕ௡, Ө௞ሻࢍ࢕࢒	݌ሺݕ௡/߱ଶ, Ө௞ାଵሻ

ே

௡ୀଵ

ே

௡ୀଵ

ൡ ൌ 0	

෍ ,௡ݕ/ሺ߱ଵ݌ Ө௞ሻ ቊെ
1

ଶ௞ାଵߪ2
൅
ሺݕ௡ െ ݄௞ାଵሻଶ

ସ௞ାଵߪ2
ቋ ൅෍݌ሺ߱ଶ/ݕ௡, Ө௞ሻ ቊെ

1

ଶ௞ାଵߪ2
൅
ሺݕ௡ ൅ ݄௞ାଵሻଶ

ସ௞ାଵߪ2
ቋ

ே

௡ୀଵ

ே

௡ୀଵ

ൌ 0	

෍ ൝݌ሺ߱ଵ/ݕ௡, Ө௞ሻ ቊെ
1

ଶ௞ାଵߪ2
൅
ሺݕ௡ െ ݄௞ାଵሻଶ

ସ௞ାଵߪ2
ቋ ൅ ሾ1 െ ,௡ݕ/ሺ߱ଵ݌ Ө௞ሻሿ ቊെ

1

ଶ௞ାଵߪ2
൅
ሺݕ௡ ൅ ݄௞ାଵሻଶ

ସ௞ାଵߪ2
ቋൡ

ே

௡ୀଵ

ൌ 0	

෍ ൝݌ሺ߱ଵ/ݕ௡, Ө௞ሻ ቊ
ሺݕ௡ െ ݄௞ାଵሻଶ

ସ௞ାଵߪ2
ቋ ൅ ቊെ

1

ଶ௞ାଵߪ2
൅
ሺݕ௡ ൅ ݄௞ାଵሻଶ

ସ௞ାଵߪ2
ቋ െ ,௡ݕ/ሺ߱ଵ݌ Ө௞ሻ ቊ

ሺݕ௡ ൅ ݄௞ାଵሻଶ

ସ௞ାଵߪ2
ቋൡ

ே

௡ୀଵ

ൌ 0	
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෍൝െ2	݌ሺ߱ଵ/ݕ௡, Ө௞ሻ ቊ
௡݄௞ାଵݕ

ସ௞ାଵߪ
ቋ ൅ ቊെ

1

ଶ௞ାଵߪ2
൅
ሺݕ௡ ൅ ݄௞ାଵሻଶ

ସ௞ାଵߪ2
ቋൡ

ே

௡ୀଵ

ൌ 0	

෍ ቄ4	݌ሺ߱ଵ/ݕ௡, Ө௞ሻݕ௡݄௞ାଵ ൅ ଶߪ
௞ାଵ

െ ሺݕ௡ሻଶ െ ௡݄௞ାଵݕ2 െ ሺ݄௞ାଵሻଶቅ

ே

௡ୀଵ

ൌ 0	

෍ ቄ2ݕ௡݄௞ାଵሺ	2	݌ሺ߱ଵ/ݕ௡, Ө௞ሻ െ 1ሻ ൅ ଶߪ
௞ାଵ

െ ሺݕ௡ሻଶ െ ሺ݄௞ାଵሻଶቅ

ே

௡ୀଵ

ൌ 0	

෍ ൝2ݕ௡݄௞ାଵ݄݊ܽݐ		൝
݄݊ݕ

݇

2݇ߪ
ൡ ൅ ଶߪ

௞ାଵ
െ ሺݕ௡ሻଶ െ ሺ݄௞ାଵሻଶൡ

ே

௡ୀଵ

ൌ 0	

2ܰሺ݄௞ାଵሻଶ ൅ ଶߪܰ
௞ାଵ

െ෍ሺݕ௡ሻଶ
ே

௡ୀଵ

െ ܰሺ݄௞ାଵሻଶ ൌ 0	

ଶߪܰ
௞ାଵ

ൌ ෍ݕ௡ଶ
ே

௡ୀଵ

െ ܰሺ݄௞ାଵሻଶ	

ଶߪ
௞ାଵ

ൌ
1
ܰ
෍ݕ௡ଶ െ ൫݄௞ାଵ൯

ଶ
ே

௡ୀଵ

																																																																																																																							ሺ4.18ሻ	

ොߩ ൌ
෠݄ଶ

ଶ෢ߪ
			

ܵܰ෣ܴ ൌ 	ොሻߩଵ଴ሺࢍ࢕࢒	10

ॱൣܵܰ෣ܴ൧෣ ൌ
1
ܯ
෍ܵܰ෣ܴ௜																																																																																																																																									ሺ4.19ሻ

ெ

௜ୀଵ

	

൫ܵܰ෣ܴ൯ܧܵܯ ൌ ॱሺܵܰ෣ܴ െ ܴܵܰሻ૛ ൌ ൫ܵܰ෣ܴ൯ݎܽݒ ൌ
1
ܯ
෍ሺܵܰ෣ܴ௜ െ ॱൣܵܰ෣ܴ൧෣ ሻଶ																																									ሺ4.20ሻ

ெ

௜ୀଵ

	

We	don’t	need	to	worry	about	the	mixing	coefficient	since	we	know	that	they	are	equally	likely.	The	

hyperbolic	tangent	in	updating	the	channel	gain	will	serve	as	a	soft	threshold.	When	the	hyperbolic	

tangent	 argument	 is	 large,	 this	 threshold	would	 become	more	 like	 a	 signum	 function	 threshold.	

After	 Starting	 with	 initial	 values	 for	 the	 channel	 gain	 and	 noise	 variance,	 equations	 (4.17)	 and	

(4.18)	will	be	used	to	iteratively	find	the	estimates	to	the	parameters	which	would	be	then	used	to	



 
 

  35   
 

estimate	 the	 signal	 to	 noise	 ratio,	 ෝ,ߩ ܵܰ෣ܴ	 as	 given	 above.	 The	 	ܧܵܯ will	 be	 found	 for	 different	

estimated	values	of	SNR.		Then	this	MSE	will	be	assessed	using	the	NDA	CRLB	in	units	of	dB2.	The	

estimation	process	will	be	done	for	a	range	of	SNR	from	1	dB	to	20	dB,	and	for	different	values	of	

received	sample	size,	N,	128,	512	and	1024.	Figure	4.1	shown	explains	three	things	when	BPSK	is	

used	as	 the	 transmitted	symbols.	The	red	curve	 is	 the	CRLB	 for	NDA	signal,	 the	blue	curve	 is	 the	

CRLB	for	DA	signal,	and	the	black	curve	shows	the	MSE	estimated	using	the	EM	algorithm.	The	EM	

algorithm	 estimate	 is	 repeated	 10000	 times	 using	 Monte	 Carlo	 simulations	 to	 get	 10000	

realizations	of	 the	SNR	estimates,	 then	averaging	them	to	get	the	estimated	SNR,	then	finding	the	

variance	 to	 get	 the	 MSE	 for	 that	 specific	 SNR	 estimate	 value.	 We	 then	 repeat	 this	 process	 for	

different	 values	 of	 SNR,	 say	 from	 0	 dB	 to	 20	 dB	 and	 their	 resultant	 MSE.	 Those	 estimates	 then	

assessed	with	the	CRLB	as	shown	below.	We	see	that	for	low	SNR	estimate	values,	the	MSE	is	large	

compared	with	the	NDA	CRLB.	The	higher	the	SNR	become,	the	lower	the	MSE	we	get	till	they	(the	

CRLB	 and	MSE)	 both	match.	 This	 was	 for	 sample	 size	 of	 N=128.	 The	 next	 step	 we	 would	 do	 is	

increase	N	and	see	what	is	going	to	happen	to	our	estimation	accuracy.		

	

Figure	4.1	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=128	for	the	BPSK	case	
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Figure	4.2	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=512	for	the	BPSK	case	

Figure	4.2	shows	the	relation	between	MSE	and	CRLB	vs.	SNR	for	N=512.		What	we	realize	here	is	

that	 the	MSE	&	CRLB	are	decreased	 compared	with	 the	 case	when	N=128.	CRLB	 itself	decreased	

from	0.3	dB2	for	high	SNR	when	N	was	128,	to	less	than	0.1	dB2	for	high	SNR	when	N	is	512.	Figure	

4.3	shows	the	same	thing	but	for	N=1024.	Figure	4.3	shows	that	the	precision	of	the	MSE	and	CRLB	

is	in	the	order	of	less	than	0.05	dB2	for	SNRs	greater	than	8	dB.	Figure	4.4	shows	the	error	which	is	

the	 difference	 between	 the	MSE	 and	 CRLB	 in	 dB2	 and	 the	 SNRs	 for	 the	 previous	 three	 cases	 of	

different	Ns,	128,	512,	and	1024.	This	figure	proves	that	as	N	increases,	the	error	decreases	which	

means	that	the	MSE	become	closer	and	closer	to	the	CRLB	until	they	both	match	at	some	SNR	value	

and	 beyond.	 From	 the	 SNR	 equation	we	 see	 that	 the	 SNR	 is	 inversely	 proportional	 to	 the	 noise	

variance,	which	means	as	we	increase	the	noise	variance,	the	SNR	will	decrease	as	a	result	of	that,	

and	the	two	mixtures	then	will	intervene	with	each	other	which	makes	it	difficult	for	classification.	

On	the	other	hand	however,	as	we	decrease	the	noise	variance,	the	SNR	will	increase	as	a	result	of	

that	and	the	two	mixtures	then	will	be	far	away	from	each	other	which	makes	classification	become	

easier	and	results	in	almost	no	error..		
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Figure	4.3	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=1024	for	the	BPSK	case	

	

Figure	4.4	The	Error	in	dB2	vs.	SNR	in	dB	for	different	Ns.	
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Figure	4.5	The	MSE	in	dB2	vs.	N.	

The	 last	 figure	4.5	which	 shows	 the	 changes	 in	 the	MSE	as	we	 increase	N.	 this	 is	 easily	 could	be	

inferred	 from	 the	 previous	 figures,	 but	 we	 want	 it	 to	 be	 clear	 that	 as	 we	 increase	 N,	 MSE	 will	

decrease	as	a	result.	We	vary	N	from	128	to	4096	and	see	the	resultant	MSE	when	SNR	has	been	

chosen	constant	in	this	case	to	be	4	dB.	The	MSE	decreased	from	0.45	dB2	when	N	was	128	to	about	

0.025	dB2	when	N	is	4096.	Our	expectation	is	that	as	N	tends	to	infinity,	MSE	will	tend	to	zero	as	a	

result	

4.2 The	QPSK	case	

In	 the	 case	 of	QPSK	 case,	 it	 is	 assumed	 that	 the	 received	 samples	were	drawn	 independently	 an	

identically	from	a	mixture	of	four	circular	symmetric	complex	Gaussian	distribution.	Our	model	in	

this	case	would	be	exactly	the	same	except	for	the	transmitted	symbols	now	four	instead	of	two.	We	

are	assuming	that	there	is	no	error	in	timing,	phase	deviation,	or	frequency	deviation.	The	matched	

filter	output	may	be	given	as,	

௡ݕ ൌ ܽ௡݄ ൅ ݊																														,	௡ݓ ൌ 	1, … . . , ܰ																																																																																												ሺ4.21ሻ	

500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

M
S

E
 in

 d
B

2

MSE as we increase N for SNR=4dB



 
 

  39   
 

where,	ݕ௡	is	the	received	sample,	ܽ௡ ∈ ቄേ
ଵ

√ଶ
േ ݆

ଵ

√ଶ
ቅ	is	the	transmitted	symbol,		݄	is	the	channel	gain,	

and	ݓ௡	is	a	zero	mean	AWGN	with	variance	ߪଶ.		

We	can	write	equation	(4.21)	in	a	vector	form	as,	

࢟ ൌ ݄ࢇ ൅ ࢝																																																																																																																																																													ሺ4.22ሻ	

where,	 ࢟ ൌ ሾݕଵ	ݕଶ	ݕଷ	. . . . 	ேሿ்ݕ ,	 ൌ ሾܽଵ	ܽଶ	ܽଷ	. . . . ܽேሿ்	 ,	 ࢝ ൌ ሾݓଵ	ݓଶ	ݓଷ	. . . 	.ேሿ்ݓ		. The	 transmitted	

symbols	may	be	modeled	as	realizations	of	݅. ݅. ݀.	circular	symmetric	complex	Gaussian	distribution.	

The	probability	distribution	function	may	be	written	as,				

,௡/ܽ௡ݕሺ݌ Өሻ ൌ
1
ଶߪߨ

exp	൜െ
1
ଶߪ

௡ݕ| െ ܽ௡݄|ଶൠ																																																																																																	ሺ4.23ሻ	

Assuming	equally	likely	symbols,	
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The	probability	distribution	function	of	N	݅. ݅. ݀.	received	samples	of	࢟	will	be	as	follows,	
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																											ሺ4.24ሻ	

	

The	Log	Likelihood	function	is	then	defined	as	follows,	

खሺӨሻ ൌ෍ ௡/Өሻݕሺ݌	ࢍ࢕࢒
ࡺ

ୀ૚࢔
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					ሺ4.25ሻ	

This	is	the	Log	Likelihood	function	of	the	received	data	of	࢟,	now	the	problem	of	estimation	would	

be	as	follows,	given	the	observation	vector,	࢟,	estimate	the	parameters,	Ө෡ ൌ ሾ෠݄		ߪଶ෢ሿ்.	Then	use	them	

to	find	the	SNR	estimate,	

ܵܰ෣ܴ ൌ ૚૙ࢍ࢕࢒	10 ቆ
෠݄ଶ

ଶ෢ߪ
ቇ	

	

4.2.1 The	CRLB	for	QPSK	

The	Cramer‐Rao	Lower	Bound	(CRLB)	 is	a	 lower	bound	 for	 the	Mean	Square	Error	 (MSE)	of	 any	

unbiased	estimator	which	satisfies	the	regularity	condition	[2].	In	our	case	of	SNR	estimation,	the	

CRLB	can	be	given	as,	
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Where	ܫሺӨሻ	is	the	fisher	information	matrix	given	by,	
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For	the	NDA	case,	

The	log	likelihood	function	is	given	by,	
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This	procedure	is	similar	to	the	one	which	being	done	by	Alagha	[8],	
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where,	
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We	can	now	substitute	this	result	in	equation	(4.5)	and	get	the	following,	
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	ሺ4.28ሻ																																																														ଶܤ݀											

	

For	the	DA	case,	

The	log	likelihood	function	is	given	by,	

खሺӨሻ ൌ෍ ,௡/ܽ௡ݕሺ݌	ࢍ࢕࢒ Өሻ
ࡺ

ୀ૚࢔
	

खሺӨሻ ൌ෍ 	݃݋݈
ࡺ

ୀ૚࢔
൝
1
ଶߪߨ

exp	ቊെ
௡ݕ| െ ܽ௡݄|ଶ

ଶߪ
ቋൡ	

										ൌ ෍ െ݈݃݋	ሺߪߨଶሻ െ
௡ݕ| െ ܽ௡݄|ଶ

ଶߪ
ࡺ

ୀ૚࢔
	

Then	substituting	to	find	the	fisher	information	matrix,	
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ሺӨሻࡵ ൌ ൦

2ܰ
ଶߪ

0

0
ܰ
ସߪ

൪	

ሺܴܵܰሻܤܮܴܥ ൌ ൤
20

ሺ10ሻࢍ࢕࢒	݄
			െ

10
ଶߪ ሺ10ሻࢍ࢕࢒

൨ ൦

2ܰ
ଶߪ

0

0
ܰ
ସߪ

൪

ۏ
ێ
ێ
ۍ

20
ሺ10ሻࢍ࢕࢒	݄

			

െ
10

ଶߪ ےሺ10ሻࢍ࢕࢒
ۑ
ۑ
ې
	

ሺܴܵܰሻܤܮܴܥ ൌ
100

ܰሺ݈݃݋ሺ10ሻሻଶ
ሺ
2
ߩ
൅ 1ሻ								݀ܤଶ																																																																																							ሺ4.29ሻ	

	

4.2.2 NDA	SNR	estimation	using	the	EM	algorithm	

We	use	 the	EM	algorithm	now	 in	estimating	 the	SNR,	 its	MSE	and	compare	our	estimated	values	

with	 the	 CRLB	 values.	 Our	 assumptions	 are	 that	 the	 data	 was	 drawn	 from	 a	 mixture	 of	 four	

Gaussians,	and	are	uncorrelated	with	each	other.	The	samples	are	drawn	in	an	݅. ݅. ݀.	manner.	The	

parameters	which	we	need	to	estimate	now	are,	

Ө෡ ൌ ሾ෠݄					ߪଶ෢ሿ்	

				ൌ 	ݔܽ݉݃ݎܽ
Ө

;ሺ࢟݌ Өሻ	

ොߩ ൌ
෠݄ଶ

ଶ෢ߪ
									

ܵܰ෣ܴ ൌ 	ሺ4.30ሻ																																																																																																																																												ොሻߩଵ଴ሺࢍ࢕࢒	10

The	EM	algorithm	will	be	used	to	iteratively	estimate	the	channel	gain	and	the	noise	variance	then	

use	them	to	estimate	the	signal	to	noise	ratio.	The	received	data	will	be	seen	as	incomplete	data	set	

since	we	don’t	know	the	class	of	each	transmitted	symbol.	The	auxiliary	function	in	this	case	may	be	

given	by,	

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ॱ௣ሺ௓/௬,Өೖሻ൛ࢍ࢕࢒	ሺ݌ሺ࢟, ܼ/Ө
௞ାଵሻሻห࢟, Ө௞	ൟ									
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࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍ ,௡ݕ/ሺ߱௠݌ Ө௞ሻ

ெ

௠ୀଵ

ே

௡ୀଵ

,௡/߱௠ݕሺ݌	ࢍ࢕࢒ Ө௞ାଵሻ

൅෍ ෍ ,௡ݕ/ሺ߱௠݌ Ө௞ሻ

ெ

௠ୀଵ

ே

௡ୀଵ

																																																																																௞ାଵሺ߱௠ሻ݌	ࢍ࢕࢒

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ቊെ
1
2
ቄሺݕ௡ െ ௠௞ାଵሻ்∑௠௞ାଵߤ

ିଵ
ሺݕ௡ െ ௠௞ାଵሻቅቋߤ

ே

௡ୀଵ

ெ

௠ୀଵ

൅ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ቊെ
1
2
ቄࢍ࢕࢒		൛	ሺ2ߨሻ஽ห∑௠௞ାଵหൟቅቋ

ே

௡ୀଵ

ெ

௠ୀଵ

൅ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ	ࢍ࢕࢒		ሼܥሽ
ே

௡ୀଵ

ெ

௠ୀଵ

	

݌	݃݋݈ ቀݕ௡/߱௠, Ө
݇൅1ቁ ൌ െࢍ࢕࢒	ቄߪߨଶ

௞ାଵ
	ቅ െ

หݕ௡ െ ܽ௠݄௞ାଵห
ଶ

ଶ௞ାଵߪ
		

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ൝െࢍ࢕࢒	ቄߪߨଶ
௞ାଵ

	ቅ െ
หݕ௡ െ ܽ௠݄௞ାଵห

ଶ

ଶ௞ାଵߪ
ൡ

ே

௡ୀଵ

ெ

௠ୀଵ

	

Ө௞ାଵ ൌ ݔܽ݉݃ݎܽ
Ө

࣫ሺ	Ө௞, Ө௞ାଵሻ																																																																																																											ሺ4.31ሻ	

Now	solving	those	two	equations	will	give	us	the	E	&	M	steps.		

When	solving	for	the	channel	gain	we	get,	

߲࣫൫	Ө௞, Ө௞ାଵ൯
߲݄௞ାଵ

ൌ
߲

߲݄௞ାଵ
൝෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ൝െ݈݃݋	ቄߪߨଶ

௞ାଵ
	ቅ െ

หݕ௡ െ ܽ௠݄௞ାଵห
ଶ

ଶ௞ାଵߪ
ൡ

ே

௡ୀଵ

ெ

௠ୀଵ

ൡ ൌ 0	

߲࣫൫	Ө௞, Ө௞ାଵ൯
߲݄௞ାଵ

ൌ
߲

߲݄௞ାଵ
൝෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ൝െ

หݕ௡ െ ܽ௠݄௞ାଵห
ଶ

ଶ௞ାଵߪ
ൡ

ே

௡ୀଵ

ெ

௠ୀଵ

ൡ ൌ 0	

෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ቄ2݄௞ାଵ െ 2Ըሼܽ௠∗ ௡ሽቅݕ

ே

௡ୀଵ

ெ

௠ୀଵ

ൌ 0	

෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ݄௞ାଵ
ே

௡ୀଵ

ெ

௠ୀଵ

ൌ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ

ே

௡ୀଵ

ெ

௠ୀଵ

Ըሼܽ௠∗ 	௡ሽݕ
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݄ܰ௞ାଵ ൌ ෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ

ே

௡ୀଵ

ସ

௠ୀଵ

Ըሼexp	ሾെ݅ሺ2݉ െ 1ሻ4/ߨሿݕ௡ሽ	

݄ܰ௞ାଵ ൌ ෍ ቄ݌ሺ	߱ଵ/ݕ௡, Ө௞ሻԸሼexp	ሾെ݅4/ߨሿݕ௡ሽ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻԸሼexp	ሾെ݅34/ߨሿݕ௡ሽ
ே

௡ୀଵ

൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻԸሼexp	ሾെ݅54/ߨሿݕ௡ሽ ൅ ,௡ݕ/߱ସ	ሺ݌ Ө௞ሻԸሼexp	ሾെ݅74/ߨሿݕ௡ሽቅ	

,௡ݕ/߱ସ	ሺ݌ Ө௞ሻ ൌ 1 െ ሼ݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ ൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻሽ	

݄ܰ௞ାଵ ൌ ෍ ൜݌ሺ	߱ଵ/ݕ௡, Ө௞ሻԸሼexp	ሾെ݅4/ߨሿݕ௡ሽ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻԸሼexp	ሾെ݅34/ߨሿݕ௡ሽ
ே

௡ୀଵ

൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻԸሼexp	ሾെ݅54/ߨሿݕ௡ሽ

൅ ቄ1 െ ሼ݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ 	൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻሽቅԸሼexp	ሾെ݅74/ߨሿݕ௡ሽൠ	

݄ܰ௞ାଵ ൌ ෍ ቄ݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ൛Ըሼexp	ሾെ݅4/ߨሿݕ௡ሽ െ Ըሼexp	ሾെ݅74/ߨሿݕ௡ሽൟ

ே

௡ୀଵ

൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ൛Ըሼexp	ሾെ݅34/ߨሿݕ௡ሽ െ Ըሼexp	ሾെ݅74/ߨሿݕ௡ሽൟ

൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻ൛Ըሼexp	ሾെ݅54/ߨሿݕ௡ሽ െ Ըሼexp	ሾെ݅74/ߨሿݕ௡ሽൟ ൅ Ըሼexp	ሾെ݅74/ߨሿݕ௡ሽቅ	

݄௞ାଵ ൌ െ
√2
ܰ
෍ ቊ	݌ሺ	߱ଵ/ݕ௡, Ө௞ሻԸሼ݅ݕ௡ሽ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻԸሼሺ1 ൅ ݅ሻݕ௡ሽ ൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻԸሼݕ௡ሽ
ே

௡ୀଵ

െ
1
2
Ըሼ	ሾ1 ൅ ݅ሿݕ௡ሽቋ	

݄௞ାଵ ൌ െ
√2
ܰ
෍ ቊ	൜݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ െ

1
2
ൠԸሼ݅ݕ௡ሽ

ே

௡ୀଵ

൅ ൜݌ሺ	߱ଶ/ݕ௡, Ө௞ሻ ൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻ െ
1
2
ൠԸሼݕ௡ሽቋ																																																							 						ሺ4.32ሻ	

When	solving	for	the	variance	we	get,	

߲࣫൫	Ө௞, Ө௞ାଵ൯

ଶ௞ାଵߪ߲
ൌ

߲

ଶ௞ାଵߪ߲
൝෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ൝െࢍ࢕࢒	ቄߪߨଶ

௞ାଵ
	ቅ െ

หݕ௡ െ ܽ௠݄௞ାଵห
ଶ

ଶ௞ାଵߪ
ൡ

ே

௡ୀଵ

ெ

௠ୀଵ

ൡ ൌ 0	
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෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ൝െ
1

ଶ௞ାଵߪ
൅
หݕ௡ െ ܽ௠݄௞ାଵห

ଶ

ସ௞ାଵߪ
ൡ

ே

௡ୀଵ

ெ

௠ୀଵ

ൌ 0	

෍ ෍݌ሺ	߱௠/ݕ௡, Ө௞ሻ ቄหݕ௡ െ ܽ௠݄௞ାଵห
ଶ
ቅ

ே

௡ୀଵ

ெ

௠ୀଵ

ൌ ଶߪܰ
௞ାଵ

	

ଶߪܰ
௞ାଵ

ൌ ෍ ൜݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ ቄหݕ௡ െ ܽଵ݄௞ାଵห
ଶ
ቅ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ ቄหݕ௡ െ ܽଶ݄௞ାଵห

ଶ
ቅ

ே

௡ୀଵ

൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻ ቄหݕ௡ െ ܽଷ݄௞ାଵห
ଶ
ቅ

൅ ቄ1 െ ሼ݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ 		൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻሽቅ ቄหݕ௡ െ ܽସ݄௞ାଵห
ଶ
ቅൠ	

ଶߪܰ
௞ାଵ

ൌ ෍ ൜݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ ቄെ2Ըሼܽଵ
௡݄௞ାଵሽݕ∗ ൅ 2Ըሼܽସ

௡݄௞ାଵሽቅݕ∗

ே

௡ୀଵ

൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ ቄെ2Ըሼܽଶ
௡݄௞ାଵሽݕ∗ ൅ 2Ըሼܽସ

௡݄௞ାଵሽቅݕ∗

൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻ ቄെ2Ըሼܽଷ
௡݄௞ାଵሽݕ∗ ൅ 2Ըሼܽସ

௡݄௞ାଵሽቅݕ∗ ൅ ቄหݕ௡ െ ܽସ݄௞ାଵห
ଶ
ቅൠ	

ଶߪܰ
௞ାଵ

ൌ ෍ ൜െ2݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ݄௞ାଵ൛Ըሼexp	ሾെ݅4/ߨሿݕ௡ሽ െ Ըሼexp	ሾെ݅74/ߨሿݕ௡ሽൟ

ே

௡ୀଵ

െ ,௡ݕ/߱ଶ	ሺ݌2 Ө௞ሻ݄௞ାଵ൛Ըሼexp	ሾെ݅34/ߨሿݕ௡ሽ െ Ըሼexp	ሾെ݅74/ߨሿݕ௡ሽൟ

െ ,௡ݕ/߱ଷ	ሺ݌2 Ө௞ሻ݄௞ାଵ൛Ըሼexp	ሾെ݅54/ߨሿݕ௡ሽ െ Ըሼexp	ሾെ݅74/ߨሿݕ௡ሽൟ

൅ ቄหݕ௡ െ ܽସ݄௞ାଵห
ଶ
ቅൠ	

ଶߪܰ
௞ାଵ

ൌ ෍ ൜െ2݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ݄௞ାଵԸ൛െ√2݅ݕ௡ൟ െ ,௡ݕ/߱ଶ	ሺ݌2 Ө௞ሻ݄௞ାଵԸ൛െඥ2ሺ1 ൅ ݅ሻݕ௡ൟ

ே

௡ୀଵ

െ ,௡ݕ/߱ଷ	ሺ݌2 Ө௞ሻ݄௞ାଵԸ൛െ√2ݕ௡ൟ ൅ ቄหݕ௡ െ ܽସ݄௞ାଵห
ଶ
ቅൠ	

ଶߪ
௞ାଵ

ൌ
2√2
ܰ

෍ ൝݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ݄௞ାଵԸሼ݅ݕ௡ሽ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ݄௞ାଵԸሼሺ1 ൅ ݅ሻݕ௡ሽ
ே

௡ୀଵ

൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻ݄௞ାଵԸሼݕ௡ሽ ൅
1

2√2
ቄหݕ௡ െ 4ሿ݄௞ାଵห/ߨሾ݅7	݌ݔ݁

ଶ
ቅൡ	
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ଶߪ
௞ାଵ

ൌ
2√2
ܰ

෍ቐ൜݌ሺ	߱ଵ/ݕ௡, Ө௞ሻ ൅ ,௡ݕ/߱ଶ	ሺ݌ Ө௞ሻ െ
1
2
ൠ ݄௞ାଵԸሼ݅ݕ௡ሽ

ே

௡ୀଵ

൅ ൜݌ሺ	߱ଶ/ݕ௡, Ө௞ሻ ൅ ,௡ݕ/߱ଷ	ሺ݌ Ө௞ሻ െ
1
2
ൠ ݄௞ାଵԸሼݕ௡ሽ ൅

1

2√2
௡|ଶݕ| ൅

1

2√2
݄௞ାଵ

ଶ

ቑ	

ଶߪ
௞ାଵ

ൌ
1
ܰ
෍|ݕ௡|ଶ െ ݄௞ାଵ

ଶ
ே

௡ୀଵ

																																																																																																																										ሺ4.33ሻ	

We	don’t	 need	 to	worry	 about	 the	mixing	 coefficient	 since	we	 know	 that	 they	 are	 equally	 likely.	

After	 Starting	 with	 initial	 values	 for	 the	 channel	 gain	 and	 noise	 variance,	 equations	 (4.27)	 and	

(4.28)	will	be	used	to	iteratively	find	the	estimates	to	the	parameters	which	would	be	then	used	to	

estimate	the	ܵܰ෣ܴ	as	given	above.	The	ܧܵܯ	will	be	found	for	different	estimated	values	of	different	

SNR	values	and	will	be	assessed	sing	the	CRLB.	

	

Figure	4.6	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=128	

Then	this	MSE	performance	will	be	compared	to	the	fundamental	limit	of	the	CRLB	in	units	of	dB2	at	

each	estimated	SNR	value.	The	estimation	process	will	be	done	for	a	range	of	SNR	from	0	dB	to	20	
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dB,	 and	 for	 different	 values	 of	 received	 sample	 size	 N,	 128,	 512,	 and	 1024.	 Figure	 4.6	 shown	

explains	three	things	when	QPSK	is	used	as	the	transmitted	symbols.	The	red	curve	is	the	CRLB	for	

NDA	 signal,	 the	blue	 curve	 is	 the	CRLB	 for	DA	 signal,	 and	 the	black	 curve	which	 shows	 the	MSE	

estimated	using	the	EM	algorithm.	The	EM	algorithm	SNR	estimate	is	repeated	10000	times	using	

Monte	Carlo	simulations	to	get	10000	realizations	of	the		SNR	estimates,	then	averaging	them	to	get	

the	estimated	SNR,	and	find	their	variance	to	get	the	MSE	for	that	specific	SNR	estimate	value.		

	

Figure	4.7	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=512	

We	then	repeat	this	process	for	different	values	of	SNR,	say	from	0	dB	to	20	dB	and	their	resultant	

MSE.	 Those	 estimates	 then	 compared	with	 the	 CRLB	 as	 shown	 above.	We	 see	 that	 for	 low	 SNR	

estimate	values;	 the	MSE	 is	 large	compared	with	the	NDA	CRLB.	The	higher	 the	SNR	become,	 the	

lower	the	MSE	we	get	till	they	(the	CRLB	and	MSE)	both	match.	This	was	for	sample	size	of	N=128	

in	figure	4.6	in	the	previous	page.	The	next	step	we	would	do	is	increase	N	and	see	what	is	going	to	

happen	to	our	estimation	accuracy.		Figure	4.7	shows	the	relation	between	MSE	and	CRLB	vs.	SNR	

for	N=512.		What	we	realize	here	is	that	the	MSE	is	decreased,	also	CRLB	is	decreased	from	what	it	

was	before	when	N=128.	CRLB	itself	decreased	from	2	when	N	was	128	and	SNR	of	0dB,	to	less	than	

0.5	when	N	is	512	at	the	same	SNR.		
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Figure	4.8.	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=1024	

	

Figure	4.9.	The	Error	in	dB2	vs.	SNR	in	dB	for	different	Ns.	
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Figure	4.8	shows	the	same	thing	Figure	4.7	shows,	but	for	N=1024.	The	precision	of	the	MSE	and	

CRLB	is	in	the	order	of	less	than	0.025	dB2	for	SNRs	greater	than	6	dB.	Figure	4.9	shows	the	error	

which	is	the	difference	between	the	MSE	and	NDA	CRLB	in	dB2	at	different	values	of	SNRs	shown	

for	 the	 previous	 three	 cases	 of	 different	 Ns,	 128,	 512,	 and	 1024.	 This	 figure	 proves	 that	 as	 N	

increases,	 the	 error	 decreases	 which	means	 that	 the	MSE	 become	 closer	 and	 closer	 to	 the	 NDA	

CRLB	until	they	both	match	at	some	SNR	value	and	beyond.	From	the	SNR	equation	we	see	that	the	

SNR	is	inversely	proportional	to	the	noise	variance,	which	means	as	we	increase	the	noise	variance,	

the	SNR	will	decrease	as	a	result	of	that	and	the	four	mixtures	then	will	intervene	with	each	other	

which	makes	it	difficult	for	us	to	classify	each	class.	On	the	other	hand	however,	as	we	decrease	the	

noise	variance,	the	SNR	will	increase	as	a	result	of	that	and	the	four	mixtures	then	will	be	far	away	

from	each	other	(classes	are	separated	from	each	other)	which	makes	classification	become	easier	

and	results	in	almost	no	error.		
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5. MISO	with	STBC	NDA	SNR	estimation	using	the	Expectation	Maximization	algorithm	

	

Modern	 communication	 systems	 require	 accurate	 estimation	 of	 the	 Signal	 to	 Noise	 Ratio	

SNR	 for	 optimal	 usage	 of	 radio	 resources	 [5],	 [9].	 The	 knowledge	 of	 the	 SNR	 is	 a	

requirement	in	most	applications	in	order	to	make	optimal	signal	detection,	power	control.	

MIMO	 systems	 gives	 a	 significant	 enhancement	 to	 the	 accuracy	 of	 estimating	 the	 SNR	

besides	many	other	improvements	in	data	rate,	channel	capacity,	and	being	able	to	reduce	

Multipath	 fading	 at	 the	 remote	 units.	 Different	 diversity	 modes	 are	 being	 used,	 time	

diversity,	 frequency	 diversity,	 spatial	 diversity.	 A	 MIMO	 system	 usually	 consists	 of	 M	

transmit	and	N	receive	antennas.	Attention	will	be	given	to	the	transmit	diversity	for	some	

reasons,	 which	 then	 will	 be	 compared	 with	 SISO	 and	 SIMO.	 Transmit	 diversity	 or	 MISO	

would	improve	our	system’s	performance	without	the	cost,	size,	and	power	that	SIMO	will	

have	 in	order	 to	 improve	 the	quality	of	 the	received	signal	 [12].	For	 that	 reason,	antenna	

diversity	techniques	are	utilized	at	the	Base	station.	A	simple	transmit	diversity	technique	

will	be	explained	here	which	been	done	by	Alamouti	in	[12].	Space‐time	codes	are	used	to	

generate	 a	 redundant	 signal.	 The	 signal	 copy	 is	 transmitted	 not	 only	 from	 a	 different	

antenna,	but	at	a	different	time.	The	signal	s1	and	s2	are	sent	in	the	first	symbol,	then	a	signal	

replication	of	–s2*	and	s1*	is	added	to	create	the	Alamouti	space‐time	block	code.	

5.1	Conventional	Receive	diversity	(SIMO)	model:	

                       

 

                                                                                              

                               

                                         

 

                           

 

                     

   

Figure	5.1	SIMO/	Receive	Diversity	system	model	
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h1

h2

hNT

௜ሺ݊ሻݕ ൌ ݄௜ݏሺ݊ሻ ൅ 			௜ሺ݊ሻݓ

where	i=1,	2,	.	.	.	.	.	,	NR.	and	n=1,	2,	.	.	.	.	.	,	N.		

,ሺ݊ሻݏ/ሺ݊ሻ݅ݕሺ݌ Өሻ ൌ
1

ସߪଶߨ
exp ൝െ

ฮ݅ݕሺ݊ሻ െ ሺ݊ሻฮݏ݄݅
ଶ

ଶߪ
ൡ					

,࢙/ࢅሺ݌ Өሻ ൌෑෑ
1

ସߪଶߨ

ேೃ

௜ୀଵ

ே

௡ୀଵ

exp ൝െ
ฮ݅ݕሺ݊ሻ െ ሺ݊ሻฮݏ݄݅

ଶ

ଶߪ
ൡ					

	

5.2	Transmit	diversity	(MISO)	model:	

	

	

																									

																																																																						

																																																																																																																																																																											

																																																						

																																																																												

																																																																																																																																	

	

	

																																																																			

	

	

																																	

	

Figure	5.2	MISO/	Transmit	diversity	system	model	
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where	i=1,	2,	.	.	.	.	.	,	NT.	and	n=1,	2,	.	.	.	.	.	,	N.		

,ሺ݊ሻݏ/ሺ݊ሻݕሺ݌ Өሻ ൌ
1

ସߪଶߨ
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݅ൌ1 ሺ݊ሻฮݏ

ଶ
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ସߪଶߨ

ே

௡ୀଵ
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5.3	MIMO	model:	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.3	MIMO	system	model	

	

௝ሺ݊ሻݕ ൌ ݄௜௝ݏሺ݊ሻ ൅ 			௝ሺ݊ሻݓ

where	i=1,	2,	 .	 .	 .	 .	 .	 ,	NT,	 	j=1,	2,	 .	 .	 .	 .	 .	 ,	NR	 ,	and	n=1,	2,	 .	 .	 .	 .	 .	 ,	N,	and	hij	 is	the	channel	gain	

between	the	transmit	antenna	i	and	the	receive	antenna	j.		
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5.4 The	transmit	diversity	for	BPSK	case:	

	

This	approach	is	being	done	by	Alamouti	[12]	where	two	transmit	antennas	and	one	receive	

antenna	has	been	used.	At	a	given	time,	n,	two	signals	are	simultaneously	sent	from	the	two	

antennas.	Denoting	the	signal	sent	by	antenna	one	by,	S1,	and	the	signal	sent	by	antenna	two	

by,	 S2.	 Then	 we	 repeat	 sending	 –	 S2*	 from	 the	 first	 antenna,	 then	 S1*	 from	 the	 second	

antenna,	this	ordering	will	be	done	to	all	of	our	data.	This	is	called	space	and	time	coding.	

Our	model	in	this	case	will	look	like,	

ଶ௡ିଵݎ ൌ ݄ଵݏଶ௡ିଵ ൅ ݄ଶݏଶ௡ ൅ 	ଶ௡ିଵݓ

ଶ௡ݎ ൌ െ݄ଵݏଶ௡
∗ ൅ ݄ଶݏଶ௡ିଵ

∗ ൅ 	ଶ௡ݓ

We	then	may	write	it	in	a	matrix	form	as,	

ቂ
ଶ௡ିଵݎ
ଶ௡ݎ
∗ ቃ ൌ ൤

݄ଵ					݄ଶ
݄ଶ
∗ 	െ ݄ଵ

∗൨ ቂ
ଶ௡ିଵݏ
ଶ௡ݏ

ቃ ൅ ቂ
ଶ௡ିଵݓ
ଶ௡ݓ

ቃ 	,								݊ ൌ 1,2, … . . , ܰ/2.																																																ሺ5.1ሻ	

ܴሺ݊ሻ ൌ ሺ݊ሻܵܪ ൅ܹሺ݊ሻ	

ࡾ ൌ ሺࡵ⊗ ࡿሻܪ ൅ࢃ	

where	R(n)	is	the	received	samples	from	both	antennas	at	time	n,	H	is	the	complex	channels	

gains	 matrix,	 S(n)	 are	 the	 sent	 symbols	 at	 time	 n	 from	 the	 two	 antennas,	 W(n)	 are	 the	

Circularly	symmetric	complex	Gaussian	noise	samples	at	time	n,	R	is	the	vector	of	received	

samples,	I	is		
ே

ଶ
ൈ

ே

ଶ
	Identity	matrix	where	N	is	the	total	number	of	received	samples,	S	is	the	

sent	vector	of	symbols,	W	is	the	noise	vector	at	the	receiver,	⊗	is	the	kroncker	product,	and	

H	is	as	follows;	

ܪ ൌ ൤
݄ଵ					݄ଶ
݄ଶ
∗ 	െ ݄ଵ

∗൨	

	The	 probability	 distribution	 function	 for	 the	 received	 data	 at	 a	 given	 time	 n,	 given	 the	

transmitted	data,	given	by,	

,ሺܴሺ݊ሻ/ܵሺ݊ሻ݌ Өሻ ൌ
1

ସߪଶߨ
exp ቊെ

‖ܴሺ݊ሻ െ ሺ݊ሻ‖ଶܵܪ

ଶߪ
ቋ																																																																				ሺ5.2ሻ	

;ሺܴሺ݊ሻ݌ Өሻ ൌ ෍ ,ሺܴሺ݊ሻ/ܵሺ݉ሻ݌ Өሻ݌ሺܵሺ݉ሻ/Өሻ	

ସ

௠ୀଵ

	

Suppose	an	equally	likely	data	symbols.		

;ሺܴሺ݊ሻ݌ Өሻ ൌ
1

ସߪଶߨ4
෍ exp ቊെ

‖ܴሺ݊ሻ െ ሺ݉ሻ‖ଶܵܪ

ଶߪ
ቋ	

ସ

௠ୀଵ
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;ሺܴሺ݊ሻ݌ Өሻ ൌ
1

ସߪଶߨ4
෍ exp ቊെ

ଶ௡ିଵݎ| െ ሺ݄ଵݏଶ௠ିଵ ൅ ݄ଶݏଶ௠ሻ|ଶ ൅ ଶ௡ݎ| െ ሺ݄ଶݏଶ௠ିଵ െ ݄ଵݏଶ௠ሻ|ଶ

ଶߪ
ቋ	

ସ

௠ୀଵ

	

For	the	BPSK	case,	ݏଶ௠ିଵ ൌ ሼെ1,൅1ሽ, ଶ௠ݏ ൌ ሼെ1,൅1ሽ.	

where	 ቂ
ଶ௠ିଵݏ
ଶ௠ݏ

ቃ ∈ ቄቂെ1
െ1

ቃ , ቂെ1
൅1

ቃ , ቂ൅1
െ1

ቃ , ቂ൅1
൅1

ቃቅ.	

We	can	then	rewrite	݌ሺܴሺ݊ሻ; Өሻ	as	follows,	

;ሺܴሺ݊ሻ݌ Өሻ ൌ
1

ସߪଶߨ4
ቊexp ቊെ

ଶ௡ିଵݎ| ൅ ሺ݄ଵ ൅ ݄ଶሻ|ଶ ൅ ଶ௡ݎ| ൅ ሺ݄ଶ െ ݄ଵሻ|ଶ

ଶߪ
ቋ

൅ exp ቊെ
ଶ௡ିଵݎ| ൅ ሺ݄ଵ െ ݄ଶሻ|ଶ ൅ ଶ௡ݎ| ൅ ሺ݄ଶ ൅ ݄ଵሻ|ଶ

ଶߪ
ቋ

൅ exp ቊെ
ଶ௡ିଵݎ| െ ሺ݄ଵ െ ݄ଶሻ|ଶ ൅ ଶ௡ݎ| െ ሺ݄ଶ ൅ ݄ଵሻ|ଶ

ଶߪ
ቋ

൅ exp ቊെ
ଶ௡ିଵݎ| െ ሺ݄ଵ ൅ ݄ଶሻ|ଶ ൅ ଶ௡ݎ| െ ሺ݄ଶ െ ݄ଵሻ|ଶ

ଶߪ
ቋቋ	

;ሺܴሺ݊ሻ݌ Өሻ

ൌ
1

ସߪଶߨ4
ቊexp ቊെ

ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ 2Ըሺݎଶ௡ିଵሺ݄ଵ ൅ ݄ଶሻ∗ሻ ൅ 2Ը൫ݎଶ௡
∗ ሺ݄ଶ െ ݄ଵሻ൯ ൅ |݄ଵ ൅ ݄ଶ|ଶ ൅ |݄ଶ െ ݄ଵ|ଶ

ଶߪ
ቋ

൅ exp ቊെ
ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ 2Ըሺݎଶ௡ିଵሺ݄ଵ െ ݄ଶሻ∗ሻ ൅ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ ൅ ݄ଵሻ൯ ൅ |݄ଵ െ ݄ଶ|ଶ ൅ |݄ଶ ൅ ݄ଵ|ଶ

ଶߪ
ቋ

൅ exp ቊെ
ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| െ 2Ըሺݎଶ௡ିଵሺ݄ଵ ൅ ݄ଶሻ∗ሻ െ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ െ ݄ଵሻ൯ ൅ |݄ଵ ൅ ݄ଶ|ଶ ൅ |݄ଶ െ ݄ଵ|ଶ

ଶߪ
ቋ

൅ exp ቊെ
ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| െ 2Ըሺݎଶ௡ିଵሺ݄ଵ ൅ ݄ଶሻ∗ሻ െ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ െ ݄ଵሻ൯ ൅ |݄ଵ ൅ ݄ଶ|ଶ ൅ |݄ଶ െ ݄ଵ|ଶ

ଶߪ
ቋቋ	

;ሺܴሺ݊ሻ݌									 Өሻ ൌ
1

ସߪଶߨ4
exp ቊെ
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																																ቊexp ቊെ
2Ըሺݎଶ௡ିଵሺ݄ଵ ൅ ݄ଶሻ∗ሻ ൅ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ െ ݄ଵሻ൯
ଶߪ

ቋ

൅ exp ቊെ
2Ըሺݎଶ௡ିଵሺ݄ଵ െ ݄ଶሻ∗ሻ ൅ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ ൅ ݄ଵሻ൯
ଶߪ

ቋ

൅ exp ቊെ
െ2Ըሺݎଶ௡ିଵሺ݄ଵ ൅ ݄ଶሻ∗ሻ െ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ െ ݄ଵሻ൯
ଶߪ

ቋ

൅ exp ቊെ
െ2Ըሺݎଶ௡ିଵሺ݄ଵ ൅ ݄ଶሻ∗ሻ െ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ െ ݄ଵሻ൯
ଶߪ

ቋቋ	

;ሺܴሺ݊ሻ݌			 Өሻ ൌ
1

ସߪଶߨ4
exp ቊെ

ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ |݄ଵ ൅ ݄ଶ|ଶ ൅ |݄ଶ െ ݄ଵ|ଶ

ଶߪ
ቋ

∗ ቊ2 cosh ቆ
2Ըሺݎଶ௡ିଵሺ݄ଵ ൅ ݄ଶሻ∗ሻ ൅ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ െ ݄ଵሻ൯
ଶߪ

ቇ

൅ 2cosh	ሺ
2Ըሺݎଶ௡ିଵሺ݄ଵ െ ݄ଶሻ∗ሻ ൅ 2Ը൫ݎଶ௡

∗ ሺ݄ଶ ൅ ݄ଵሻ൯
ଶߪ

ሻቋ	

We	know	that,	

coshሺݔሻ ൅ coshሺݕሻ ൌ 2cosh	ሺ
ݔ ൅ ݕ
2

ሻcosh	ሺ
ݔ െ ݕ
2

ሻ	

;ሺܴሺ݊ሻ݌ Өሻ ൌ
1

ସߪଶߨ2
exp ቊെ

ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ |݄ଵ ൅ ݄ଶ|ଶ ൅ |݄ଶ െ ݄ଵ|ଶ

ଶߪ
ቋ

∗ ቊ2 cosh ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ cosh ቆ

2Ըሺݎଶ௡ିଵ݄ଶ
∗ሻ െ 2Ըሺݎଶ௡

∗ ݄ଵሻ

ଶߪ
ቇቋ	

;ሺܴሺ݊ሻ݌ Өሻ ൌ
1

ସߪଶߨ
exp ቊെ

ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ 2|݄ଵ|ଶ ൅ 2|݄ଶ|ଶ

ଶߪ
ቋ

∗ ቊcosh ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ cosh ቆ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ଶߪ
ቇቋ										ሺ5.3ሻ	

For	N	݅. ݅. ݀.	received		samples	of	R(n),	the	Joint	PDF	distribution	will	be	written	as	follows,		

;ࡾሺ݌ Өሻ ൌෑ
1

ସߪଶߨ
exp ቊെ

ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ 2|݄ଵ|ଶ ൅ 2|݄ଶ|ଶ

ଶߪ
ቋ

ே/ଶ

௡ୀଵ

∗ ቊcosh ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ cosh ቆ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ଶߪ
ቇቋ										ሺ5.4ሻ	

The	Log	Likelihood	function	will	then	be	given	by,	
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खሺӨሻ ൌ ෍ ;ሺܴሺ݊ሻ݌	ࢍ࢕࢒ Өሻ

૛/ࡺ

ୀ૚࢔

	

खሺӨሻ ൌ ෍ 	ࢍ࢕࢒ ൝
1

ସߪଶߨ
exp ቊെ

ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ 2|݄ଵ|ଶ ൅ 2|݄ଶ|ଶ

ଶߪ
ቋ

૛/ࡺ

ୀ૚࢔

∗ ቊcosh ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ cosh ቆ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ଶߪ
ቇቋൡ	

खሺӨሻ ൌ ෍െࢍ࢕࢒ሺߨଶߪସሻ

૛/ࡺ

ୀ૚࢔

െ
ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ 2|݄ଵ|ଶ ൅ 2|݄ଶ|ଶ

ଶߪ

൅ ࢍ࢕࢒ cosh ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ

൅ ࢍ࢕࢒ cosh ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ																																																																								ሺ5.5ሻ	

Now	 given	 the	 received	 sample	 R,	 estimate	 the	 parameters	 h1,	 h2,	 and	 	.ଶߪ However,	 h1,	 h2	 are	

complex	variables,	so	we	need	to	estimate	their	real	and	imaginary	parts	separately.	

Let	

݄ଵ ൌ ܽ ൅ ܾ݅	ܽ݊݀	݄ଶ ൌ ܿ ൅ ݅݀		

Now	our	parameters	are	as	follows,	

Ө෡ ൌ ሾ ොܽ		 ෠ܾ		ܿ̂		 መ݀ 	ଶ෢ሿ்ߪ	

				ൌ 	ݔܽ݉݃ݎܽ
Ө

;ࡾሺ݌ Өሻ	

ොߩ ൌ
ห݄ଵ෢ห

ଶ
൅ ห݄ଶ෢ห

ଶ

ଶ෢ߪ
					

ܵܰ෣ܴ ൌ 	ሺ5.6ሻ																																																																																																																																														ොሻߩଵ଴ሺࢍ࢕࢒	10
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5.5 The	CRLB	for	the	transmit	diversity	in	the	BPSK	case.	

	

For	the	DA	case:	

In	this	case	we	are	assuming	that	we	know	the	transmitted	data	S	and	would	like	to	find	a	 lower	

bound	on	the	variance	in	this	case.	We	know	that	CRLB	is	given	by,	

ሺܴܵܰሻܤܮܴܥ ൌ
்߲ܴܵܰ

߲Ө
ଵሺӨሻିܫ

߲ܴܵܰ
߲Ө

																																																																																																																		

where	ܫሺӨሻ	is	the	fisher	information	matrix	given	by,	

ሾࡵሺӨሻሿ࢐࢏ ൌ 		െॱ ቈ
߲ଶࢍ࢕࢒	݌ሺࡾ; Өሻ

߲Ө௜߲Ө௝
቉								

And,	

߲ܴܵܰ
߲Ө

ൌ ൤
20ܽ

ሺ10ሻࢍ࢕࢒ܯ
			

20ܾ
ܯ ሺ10ሻࢍ࢕࢒

			
20ܿ

ܯ ሺ10ሻࢍ࢕࢒
				

20݀
ܯ ሺ10ሻࢍ࢕࢒

			െ
10

ଶߪ ሺ10ሻࢍ࢕࢒
൨
்

	

where	ܯ ൌ |݄ଵ|ଶ ൅ |݄ଶ|ଶ.	

,ሺܴሺ݊ሻ/ܵሺ݊ሻ݌ Өሻ ൌ
1

ସߪଶߨ
exp ቊെ

‖ܴሺ݊ሻ െ ሺ݊ሻ‖ଶܵܪ

ଶߪ
ቋ		

,ሺ݊ሻܵ/ࡾሺ݌ Өሻ ൌෑ
1

ସߪଶߨ
exp ቊെ

‖ܴሺ݊ሻ െ ሺ݊ሻ‖ଶܵܪ

ଶߪ
ቋ

ே/ଶ

௡ୀଵ

	

खሺӨሻ ൌ ෍െࢍ࢕࢒ሺߨଶߪସሻ

૛/ࡺ

ୀ૚࢔

െ
‖ܴሺ݊ሻ െ ሺ݊ሻ‖ଶܵܪ

ଶߪ
	

								

										ൌ ෍െࢍ࢕࢒ሺߨଶߪସሻ

૛/ࡺ

ୀ૚࢔

െ
ଶ௡ିଵݎ| െ ሺ݄ଵݏଶ௡ିଵ ൅ ݄ଶݏଶ௡ሻ|ଶ ൅ ଶ௡ݎ| െ ሺ݄ଶݏଶ௡ିଵ െ ݄ଵݏଶ௡ሻ|ଶ

ଶߪ
	

									ൌ ෍െࢍ࢕࢒ሺߨଶߪସሻ

૛/ࡺ

ୀ૚࢔

	

െ
ଶ௡ିଵݎ| െ ሺሺܽ ൅ ܾ݅ሻݏଶ௡ିଵ ൅ ሺܿ ൅ ݅݀ሻݏଶ௡ሻ|ଶ ൅ ଶ௡ݎ| െ ሺሺܿ ൅ ݅݀ሻݏଶ௡ିଵ െ ሺܽ ൅ ܾ݅ሻݏଶ௡ሻ|ଶ

ଶߪ
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										ൌ ෍െࢍ࢕࢒ሺߨଶߪସሻ

૛/ࡺ

ୀ૚࢔

	

																				െ
ଶ௡ିଵݎ| െ ሺܽݏଶ௡ିଵ ൅ ଶ௡ିଵݏܾ݅ ൅ ଶ௡ݏܿ ൅ ଶ௡ሻ|ଶݏ݀݅ ൅ ଶ௡ݎ|

∗ െ ሺܿݏଶ௡ିଵ െ ଶ௡ିଵݏ݀݅ െ ଶ௡ݏܽ ൅ ଶ௡ሻ|ଶݏܾ݅

ଶߪ
	

										ൌ ෍െࢍ࢕࢒ሺߨଶߪସሻ

૛/ࡺ

ୀ૚࢔

െ
ሺԸሺݎଶ௡ିଵሻ െ ଶ௡ିଵݏܽ െ ଶ௡ሻଶݏܿ ൅ ሺԱሺݎଶ௡ିଵሻ െ ଶ௡ିଵݏܾ െ ଶ௡ሻଶݏ݀

ଶߪ

െ
ሺԸሺݎଶ௡

∗ ሻ െ ଶ௡ିଵݏܿ ൅ ଶ௡ሻଶݏܽ ൅ ሺԱሺݎଶ௡
∗ ሻ െ ଶ௡ݏܾ ൅ ଶ௡ିଵሻଶݏ݀

ଶߪ
	

߲खሺӨሻ

߲ܽ
ൌ ෍െ

1
ଶߪ

ே/ଶ

௡ୀଵ

൫െ2ݏଶ௡ିଵሺԸሺݎଶ௡ିଵሻ െ ଶ௡ିଵݏܽ െ ଶ௡ሻݏܿ ൅ ଶ௡ݎଶ௡ሺԸሺݏ2
∗ ሻ െ ଶ௡ିଵݏܿ ൅ 	ଶ௡ሻ൯ݏܽ

߲ଶखሺӨሻ

߲ܽଶ
ൌ ෍െ

1
ଶߪ

ே/ଶ

௡ୀଵ

൫െ2ݏଶ௡ିଵሺെݏଶ௡ିଵሻ ൅ 	ଶ௡ሻ൯ݏଶ௡ሺݏ2

															ൌ ෍െ
1
ଶߪ

ே/ଶ

௡ୀଵ

ሺ2ݏଶ௡ିଵ
ଶ ൅ ଶ௡ݏ2

ଶ ሻ	

ଶ௡ିଵݏ		݁ܿ݊݅ܵ
ଶ ൌ ଶ௡ݏ

ଶ ൌ 1	

߲ଶखሺӨሻ

߲ܽଶ
ൌ ෍െ

1
ଶߪ

ே/ଶ

௡ୀଵ

ሺ4ሻ ൌ െ
2ܰ
ଶߪ
	

	

ሾࡵሺӨሻሿ૚૚ ൌ െॱ ቈ
߲ଶखሺӨሻ

߲ܽଶ
቉ ൌ ሾࡵሺӨሻሿ૛૛ ൌ െॱ ቈ

߲ଶखሺӨሻ

߲ܾଶ
቉ ൌ ሾࡵሺӨሻሿ૜૜ ൌ െॱ ቈ

߲ଶखሺӨሻ

߲ܿଶ
቉ ൌ ሾࡵሺӨሻሿ૝૝

ൌ െॱ ቈ
߲ଶखሺӨሻ

߲݀ଶ
቉ ൌ

2ܰ
ଶߪ

,			ሾࡵሺӨሻሿ૞૞ ൌ 		െॱ ቈ
߲ଶखሺӨሻ

ଶଶߪ߲
቉ ൌ

ܰ
ସߪ
							

ሾࡵሺӨሻሿ࢐࢏ ൌ 		െॱ ቈ
߲ଶखሺӨሻ

߲Ө௜߲Ө௝
቉ ൌ ݅	ݎ݋݂		0 ് ݆		
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ሺӨሻࡵ ൌ ܰ݅ሺӨሻ ൌ ܰ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
2
ଶߪ

					0					0					0				0

0					
2
ଶߪ

				0					0				0

0							0					
2
ଶߪ

			0					0

0					0					0					
2
ଶߪ

					0

0					0					0					0				
1
ସߪ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	

ሺܴܵܰሻܤܮܴܥ ൌ
்߲ܴܵܰ

߲Ө
ଵሺӨሻିࡵ

߲ܴܵܰ
߲Ө

					

ൌ ൤
20ܽ

ሺ10ሻࢍ࢕࢒ܯ
	

20ܾ
ܯ ሺ10ሻࢍ࢕࢒

	
20ܿ

ܯ ሺ10ሻࢍ࢕࢒
	

20݀
ܯ ሺ10ሻࢍ࢕࢒

	
െ10

ଶߪ ሺ10ሻࢍ࢕࢒
൨

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
2ܰ
ଶߪ

					0					0					0				0

0					
2ܰ
ଶߪ

				0					0				0

0							0					
2ܰ
ଶߪ

			0					0

0					0					0					
2ܰ
ଶߪ

					0

0					0					0					0				
ܰ
ସߪ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

20ܽ
ሺ10ሻࢍ࢕࢒ܯ

20ܾ
ܯ ሺ10ሻࢍ࢕࢒

20ܿ
ܯ ሺ10ሻࢍ࢕࢒

20݀
ܯ ሺ10ሻࢍ࢕࢒

െ10
ଶߪ ےሺ10ሻࢍ࢕࢒

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

																								ൌ
100

ܰሺlogሺ10ሻሻଶ
൬
2
ߩ
൅ 1൰																																																																																																																		ሺ5.7ሻ	

	

For	the	NDA	case:	

खሺӨሻ ൌ ෍െࢍ࢕࢒ሺߨଶߪସሻ

૛/ࡺ

ୀ૚࢔

െ
ଶ௡ିଵ|ଶݎ| ൅ ଶ௡|ଶݎ| ൅ 2|݄ଵ|ଶ ൅ 2|݄ଶ|ଶ

ଶߪ

൅ ࢍ࢕࢒ cosh ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ ൅ ࢍ࢕࢒ cosh ቆ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ଶߪ
ቇ		

We	need	to	find	the	fisher	information	matrix	for	this	Likelihood	function	in	order	to	find	the	CRLB	

for	the	NDA	case.		

ሾࡵሺӨሻሿ࢐࢏ ൌ 		െॱ ቈ
߲ଶखሺӨሻ

߲Ө௜߲Ө௝
቉ , and				ሾࡵሺӨሻሿ࢐࢏ ൌ ሾࡵሺӨሻሿ࢏࢐		for	݅ ് ݆,	
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ሾࡵሺӨሻሿ૚૚ ൌ 		െॱ ቈ
߲ଶखሺӨሻ

߲ܽଶ
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2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ ൬െ

2Ըሺݎଶ௡ିଵሻ
ସߪ

൰

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ ൬
2Ըሺݎଶ௡ିଵሻ

ଶߪ
൰ ቆെ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ସߪ
ቇ	

߲ଶखሺӨሻ

߲ܾଶ
ൌ ෍െ

4
ଶߪ

൅ ଶ݄ܿ݁ݏ
ே/ଶ

௡ୀଵ

ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇቆ

2Աሺݎଶ௡
∗ ሻ

ଶߪ
ቇ
ଶ

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ ൬
2Աሺݎଶ௡ିଵሻ

ଶߪ
൰
ଶ

	

߲ଶखሺӨሻ

߲ܾ߲ܿ
ൌ ෍ ଶ݄ܿ݁ݏ

ே/ଶ

௡ୀଵ

ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇቆ

2Աሺݎଶ௡
∗ ሻ

ଶߪ
ቇ ൬
2Ըሺݎଶ௡ିଵሻ

ଶߪ
൰

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ ൬
2Աሺݎଶ௡ିଵሻ

ଶߪ
൰ ቆ
2Ըሺݎଶ௡

∗ ሻ
ଶߪ

ቇ	

߲ଶखሺӨሻ

߲ܾ߲݀
ൌ ෍ ଶ݄ܿ݁ݏ

ே/ଶ

௡ୀଵ

ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇቆ

2Աሺݎଶ௡
∗ ሻ

ଶߪ
ቇ ൬
2Աሺݎଶ௡ିଵሻ

ଶߪ
൰

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ ൬
2Աሺݎଶ௡ିଵሻ

ଶߪ
൰ ቆെ

2Աሺݎଶ௡
∗ ሻ

ଶߪ
ቇ	

߲ଶखሺӨሻ

ଶߪ߲ܾ߲
ൌ ෍

4ܾ
ସߪ

൅ ݄݊ܽݐ ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ

ே/ଶ

௡ୀଵ

ሺ
െ2Աሺݎଶ௡

∗ ሻ
ସߪ

ሻ

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇቆ

2Աሺݎଶ௡
∗ ሻ

ଶߪ
ቇ ቆെ

2Ըሺݎଶ௡ିଵ݄ଶ
∗ሻ െ 2Ըሺݎଶ௡

∗ ݄ଵሻ

ସߪ
ቇ

൅ ݄݊ܽݐ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ ൬െ

2Աሺݎଶ௡ିଵሻ
ସߪ

൰

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇ ൬
2Աሺݎଶ௡ିଵሻ

ଶߪ
൰ ቆെ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ସߪ
ቇ	



 
 

  63   
 

߲ଶखሺӨሻ

߲ܿଶ
ൌ ෍െ

4
ଶߪ

൅ ଶ݄ܿ݁ݏ
ே/ଶ

௡ୀଵ

ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ ൬
2Ըሺݎଶ௡ିଵሻ

ଶߪ
൰
ଶ

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆ

2Ըሺݎଶ௡
∗ ሻ

ଶߪ
ቇ
ଶ

	

߲ଶखሺӨሻ

߲߲ܿ݀
ൌ ෍ ଶ݄ܿ݁ݏ

ே/ଶ

௡ୀଵ

ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ ൬
2Ըሺݎଶ௡ିଵሻ

ଶߪ
൰ ൬
2Աሺݎଶ௡ିଵሻ

ଶߪ
൰

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆ

2Ըሺݎଶ௡
∗ ሻ

ଶߪ
ቇ ቆ

െ2Աሺݎଶ௡
∗ ሻ

ଶߪ
ቇ	

߲ଶखሺӨሻ

ଶߪ߲߲ܿ
ൌ ෍

4ܿ
ସߪ

൅ ݄݊ܽݐ ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ

ே/ଶ

௡ୀଵ

൬െ
2Ըሺݎଶ௡ିଵሻ

ସߪ
൰

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ ൬
2Ըሺݎଶ௡ିଵሻ

ଶߪ
൰ ቆെ

2Ըሺݎଶ௡ିଵ݄ଶ
∗ሻ െ 2Ըሺݎଶ௡

∗ ݄ଵሻ

ସߪ
ቇ

൅ ݄݊ܽݐ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆെ

2Ըሺݎଶ௡
∗ ሻ

ସߪ
ቇ

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆ

2Ըሺݎଶ௡
∗ ሻ

ଶߪ
ቇ ቆെ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ସߪ
ቇ	

߲ଶखሺӨሻ

߲݀ଶ
ൌ ෍െ

4
ଶߪ

൅ ଶ݄ܿ݁ݏ
ே/ଶ

௡ୀଵ

ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ ൬
2Աሺݎଶ௡ିଵሻ

ଶߪ
൰
ଶ

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆ

െ2Աሺݎଶ௡
∗ ሻ

ଶߪ
ቇ
ଶ

	

߲ଶखሺӨሻ

ଶߪ߲߲݀
ൌ ෍

4݀
ସߪ

൅ ݄݊ܽݐ ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ

ே/ଶ

௡ୀଵ

൬െ
2Աሺݎଶ௡ିଵሻ

ସߪ
൰

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇ ൬
2Աሺݎଶ௡ିଵሻ

ଶߪ
൰ ቆെ

2Ըሺݎଶ௡ିଵ݄ଶ
∗ሻ െ 2Ըሺݎଶ௡

∗ ݄ଵሻ

ସߪ
ቇ

൅ ݄݊ܽݐ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆ

2Աሺݎଶ௡
∗ ሻ

ସߪ
ቇ

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆ

െ2Աሺݎଶ௡
∗ ሻ

ଶߪ
ቇ ቆെ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ସߪ
ቇ	
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߲ଶखሺӨሻ

ଶଶߪ߲
ൌ ෍

2
ସߪ

ே/ଶ

௡ୀଵ

െ 2
ଶ௡ିଵ|ଶݎ| ൅ ଶ௡ݎ|

∗ |ଶ ൅ 2|݄ଵ|ଶ ൅ 2|݄ଶ|ଶ

଺ߪ

൅ ݄݊ܽݐ ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇቆ2

2Ըሺݎଶ௡ିଵ݄ଶ
∗ሻ െ 2Ըሺݎଶ௡

∗ ݄ଵሻ

଺ߪ
ቇ

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଶ

∗ሻ െ 2Ըሺݎଶ௡
∗ ݄ଵሻ

ଶߪ
ቇቆെ

2Ըሺݎଶ௡ିଵ݄ଶ
∗ሻ െ 2Ըሺݎଶ௡

∗ ݄ଵሻ

ସߪ
ቇ
ଶ

൅ ݄݊ܽݐ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆ2

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

଺ߪ
ቇ

൅ ଶ݄ܿ݁ݏ ቆ
2Ըሺݎଶ௡ିଵ݄ଵ

∗ሻ ൅ 2Ըሺݎଶ௡
∗ ݄ଶሻ

ଶߪ
ቇቆെ

2Ըሺݎଶ௡ିଵ݄ଵ
∗ሻ ൅ 2Ըሺݎଶ௡

∗ ݄ଶሻ

ସߪ
ቇ
ଶ

	

Numerical	integration	is	used	to	find	the	statistical	expectation	of	each	entry	in	the	following	fisher	

information	matrix.	

ሺӨሻࡵ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ െॱ ቈ

߲ଶखሺӨሻ

߲ܽଶ
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

߲߲ܾܽ
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

߲߲ܽܿ
቉ 						െ ॱ ቈ

߲ଶखሺӨሻ

߲߲ܽ݀
቉ 				െ ॱ ቈ

߲ଶखሺӨሻ

ଶߪ߲߲ܽ
቉

				െॱ ቈ
߲ଶखሺӨሻ

߲ܾ߲ܽ
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

߲ܾଶ
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

߲ܾ߲ܿ
቉ 						െ ॱ ቈ

߲ଶखሺӨሻ

߲ܾ߲݀
቉ 				െ ॱ ቈ

߲ଶखሺӨሻ

ଶߪ߲ܾ߲
቉				

െॱ ቈ
߲ଶखሺӨሻ

߲߲ܿܽ
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

߲߲ܾܿ
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

߲ܿଶ
቉ 						െ ॱ ቈ

߲ଶखሺӨሻ

߲߲ܿ݀
቉ 				െ ॱ ቈ

߲ଶखሺӨሻ

ଶߪ߲߲ܿ
቉

െॱ ቈ
߲ଶखሺӨሻ

߲߲݀ܽ
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

߲߲ܾ݀
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

߲߲݀ܿ
቉ 						െ ॱ ቈ

߲ଶखሺӨሻ

߲݀ଶ
቉ 				െ ॱ ቈ

߲ଶखሺӨሻ

ଶߪ߲ܾ߲
቉

െॱ ቈ
߲ଶखሺӨሻ

ଶ߲ܽߪ߲
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

ଶ߲ܾߪ߲
቉ 					െ ॱ ቈ

߲ଶखሺӨሻ

ଶ߲ܿߪ߲
቉ 						െ ॱ ቈ

߲ଶखሺӨሻ

ଶ߲݀ߪ߲
቉ 				െ ॱ ቈ

߲ଶखሺӨሻ

ଶଶߪ߲
቉

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	

This	is	then	used	to	find	the	CRLB	for	the	SNR	as	follows,	

ሺܴܵܰሻܤܮܴܥ ൌ
்߲ܴܵܰ

߲Ө
ଵሺӨሻିࡵ

߲ܴܵܰ
߲Ө

					

5.6	STBC	NDA	SNR	estimation	using	the	EM	algorithm.	

In	the	coming	SNR	estimation,	BPSK	data	will	be	used,	but	one	may	choose	any	signaling	scheme.	

The	EM	algorithm	will	be	used	to	estimate	the	SNR.	The	EM	algorithm	will	iteratively	estimate	the	

channels	and	the	noise	variance	which	then	be	used	to	estimate	the	SNR.	The	problem	is,	given	the	

received	 samples	 R	 without	 the	 knowledge	 of	 the	 transmitted	 symbols,	 estimate	 the	 unknown	

parameters.	At	each	time,	we	receive	a	sample,	we	don’t	know	to	which	of	the	four	mixtures	does	

this	sample	belongs	to.	Our	received	data	will	be	incomplete	which	won’t	be	easy	for	the	MLE	to	be	
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used	to	estimate	its	parameters;	we	resort	to	an	iterative	method	like	the	EM	algorithm.	We	start	by	

writing	the	auxiliary	function,	

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ॱ௣ሺ௓/௬,Өೖሻ൛ࢍ࢕࢒	ሺ݌ሺࡾ, ܼ/Ө
௞ାଵሻሻหࡾ, Ө௞	ൟ									

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍ ,ሺ߱௠/ܴሺ݊ሻ݌ Ө௞ሻ

ெ

௠ୀଵ

ே/ଶ

௡ୀଵ

,ሺܴሺ݊ሻ/߱௠݌	ࢍ࢕࢒ Ө௞ାଵሻ

൅෍ ෍ ,ሺ߱௠/ܴሺ݊ሻ݌ Ө௞ሻ

ெ

௠ୀଵ

ே/ଶ

௡ୀଵ

																																																																																௞ାଵሺ߱௠ሻ݌	ࢍ࢕࢒

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍݌ሺ	߱௠/ܴሺ݊ሻ, Ө௞ሻ ൜െ ቄሺܴሺ݊ሻ െ ௠௞ାଵሻு∑௠௞ାଵߤ
ିଵ
ሺܴሺ݊ሻ െ ௠௞ାଵሻቅൠߤ

ே/ଶ

௡ୀଵ

ெ

௠ୀଵ

൅ ෍ ෍݌ሺ	߱௠/ܴሺ݊ሻ, Ө௞ሻ ൜െ ቄࢍ࢕࢒		൛	ሺ2ߨሻ஽ห∑௠௞ାଵหൟቅൠ

ே/ଶ

௡ୀଵ

ெ

௠ୀଵ

൅ ෍ ෍݌ሺ	߱௠/ܴሺ݊ሻ, Ө௞ሻ	ࢍ࢕࢒		ሼܥሽ

ே/ଶ

௡ୀଵ

ெ

௠ୀଵ

	

݌	ࢍ࢕࢒ ቀܴሺ݊ሻ/߱௠,Ө
݇൅1ቁ ൌ െࢍ࢕࢒	ቄߨଶߪସ

௞ାଵ
	ቅ െ

ฮܴሺ݊ሻ െ ௞ାଵܵ௠ฮܪ
ଶ

ଶ௞ାଵߪ
		

࣫൫	Ө௞, Ө௞ାଵ൯ ൌ ෍ ෍݌ሺ	߱௠/ܴሺ݊ሻ, Ө௞ሻ ൝െࢍ࢕࢒	ቄߨଶߪସ
௞ାଵ

	ቅ െ
ฮܴሺ݊ሻ െ ௞ାଵܵ௠ฮܪ

ଶ

ଶ௞ାଵߪ
ൡ

ே/ଶ

௡ୀଵ

ெ

௠ୀଵ

	

Ө௞ାଵ ൌ ݔܽ݉݃ݎܽ
Ө

࣫ሺ	Ө௞, Ө௞ାଵሻ						

߲࣫൫	Ө௞, Ө௞ାଵ൯
߲ܽ௞ାଵ

ൌ െ෍ ෍ ,߱௠/ܴሺ݊ሻ	ሺ݌ Ө௞ሻ

ெ

௠ୀଵ

ே/ଶ

௡ୀଵ

߲
߲ܽ௞ାଵ

ฮܴሺ݊ሻ െ ௞ାଵܵ௠ฮܪ
ଶ

ଶ௞ାଵߪ
	

ܽ௞ାଵ ൌ
1
ܰ
෍ ෍ ,߱௠/ܴሺ݊ሻ	ሺ݌ Ө௞ሻ

ெ

௠ୀଵ

ே/ଶ

௡ୀଵ

Ըሺݎଶ௡ିଵݏଶ௠ିଵ െ ଶ௡ݎ
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where	M=4	 in	 our	 PBSK	 case,	 and	 N	 is	 the	 received	 sample	 size.	 Also,	 the	mixtures	 classes	 are	

assumed	 equally	 likely.	 Equations	 (5.8)‐(5.12)	will	 be	 used	 to	 update	 the	 parameters	 iteratively	

starting	 from	 initial	 values	 for	 those	 parameters.	 Luckily	 that	 our	model	 has	 one	 global	 optimal	

parameters,	which	keep	us	away	from	thinking	that	the	values	which	we	estimated	might	be	local	

maxima.	The	MSE	&	CRLB	will	be	drawn	for	different	values	of	N.		
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Figure	5.4.	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=128.	

	

Figure	5.5.	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=512.	
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Figure	5.6.	The	MSE	&	CRLB	in	dB2	vs.	SNR	in	dB	when	N=1024.	

	

Convergence	time,	τ	of	the	EM	Algorithm.	(	SNR=8dB):		

Data	size,	N	 Convergence	time,	τ	in	
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Convergence	time,	τ in	
seconds	for	2000	Monte	
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Convergence	time,	τ	in	
seconds	for	10000	Monte	
Carlo	simulations	

	
	 													τ1		 			 				τ2000 									τ10,000	

	 	

					N=128	 						0.131456		 			6.881052	 				34.264368	

	 	

				N=512	 						0.140788		 		27.668970	 				139.303882	

	 	

			N=1024	 						0.173774		 		91.254040	 				456.952999

The	simulations	were	performed	using	MATLAB	version	7.13.0.564	(R2011b),	with	processor	
Intel(R)	Core(TM)	i7	CPU	860 @ 2.80	GHz	with	RAM	4	GB.	
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Fig.	5.7.	The	MISO	with	STBC	BPSK	case.	

	

Fig.	5.8.	The	SISO	BPSK	case.	
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6. 	Conclusions		

In	this	research,	transmit	diversity	is	used	as	a	way	of	improving	the	SNR	estimation	accuracy.	The	

SNR	was	estimated	using	the	EM	algorithm	in	a	NDA	manner	using	space‐time	block	coding	(STBC)	

which	 was	 done	 by	 Alamouti	 [12].	 Also,	 the	 CRLB	 for	 the	 DA	 and	 NDA	 case	 were	 derived	 and	

plotted	which	then	be	used	to		assess	the	performance	of	our	estimator.	This	was	done	for	the	BPSK	

constellation	system.	It	is	being	done	for	different	sample	sizes,	N;	128,	512,	and	1024.	We’ve	seen	

that	the	CRLB	and	MSE	are	inversely	proportional	to	the	sample	size,	N.	In	addition,	as	we	increase	

the	SNR,	CRLB	and	MSE	become	closer	and	closer	to	each	other	till	 they	match	at	some	high	SNR	

point.	In	general,	the	detection	problem	depends	highly	on	the	SNR	and	N.	It	is	a	tradeoff	between	

these	two	factors.	For	example,	if	the	SNR	is	low,	then	we	need	to	increase	N	in	order	to	decrease	

the	 error	probability	 and	 the	MSE	estimate.	On	 the	other	hand	however,	 if	 the	 SNR	 is	 high,	 then	

small	N	will	work	 for	us.	 	This	 technique	was	 then	compared	with	 the	SISO	[3],	 [4],	 [8],	 [10]	and	

SIMO	[5],	[9]	models.	SIMO	systems	would	have	some	drawbacks	especially	when	being	applied	for	

mobile	 phones	 like,	 size	 and	 cost	 of	 the	 phone,	 and	 power	 consumption.	 Instead	 of	 having	 the	

diversity	done	at	each	remote	unit,	instead,	it	is	being	done	at	the	base	station.	For	example,	having	

two	antennas	at	the	base	station	covering	hundreds	of	remote	units	(having	one	receive	antenna)	

would	be	more	economical	than	having	hundreds	of	remote	units	(each	having	two	antennas)	and	

one	 transmit	 antenna	 at	 the	 base	 station.	 This	 is	 the	 main	 reason	 of	 choosing	 MISO	 with	 STBC	

systems	over	SIMO	systems.		

	

7. Future	work	

	

1. SNR	estimation	using	the	EM	algorithm	with	other	linearly	modulated	signals	other	than	

BPSK	like	M‐QAM	and	M‐PSK.	

2. Bayesian	SNR	estimation.	

3. MIMO	SNR	estimation	using	the	EM	algorithm.	

4. SNR	estimation	in	non‐Gaussian	noise.	
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