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Abstract

Problems exist in image sequence processing that require an ordered set of object views.

In some cases, multiple angled images are acquired in random order and the angle of view

information is not available. When this occurs, the poses have to be put into proper order.

For example, in databases containing images of an object or scene taken over a period of

time, each image pose or angled-view with respect to the camera or scene is unknown.

This is important to achieve a complete or partial three-dimensional reconstruction. Other

applications exist in photogrammetry, machine vision, computer-aided design, and mili-

tary intelligence. The main contribution of this thesis is an automated method for ordering

images of random object views. This method uses Principal Component Analysis (PCA)

and a confidence metric in eigenspace. The confidence measure is based on local curva-

ture and correlation of the estimated pose trajectory in a multidimensional manifold. The

use of the confidence metric is for detecting areas in the manifold where poses appear

similar and ordering becomes difficult. It has been extended for use with synchronized

double and multiple camera system by providing a basis for camera selection, choosing

the most salient camera view for pose ordering. By adding multiple cameras, a high

pose estimation accuracy can be achieved. This thesis compares other classification and

recognition methods such as the Scale Invariant Feature Transform (SIFT) and Laplacian

Eigenmaps. The SIFT algorithm struggles with pose sequencing because it computes lo-

cal feature spaces for each image and does not consider the entire set of images. Laplacian

eigenmaps show better results for ordering, but close analysis show it is better suited for

clustering poses than sequencing. Results for ordering many set of objects, theoretical

development, and comparison of methods is presented in this research.
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Chapter 1

Introduction

1.1 Overview

Digital image processing (DIP) is a field that utilizes mathematical theories and models

with various applications. DIP is a broad term that includes several more specific areas of

research. A few areas of research in DIP include but are not limited to pattern recognition,

computer vision,artificial intelligence, surveillance, automation, and 3D modeling. These

areas of research utilize motion estimation, and image segmentation to perform a recog-

nition task. For example, law enforcement uses facial recognition software to identify

criminals [1].

The ultimate goal for most advanced DIP systems is to control machines to perform

a specific task or to notify the user of a specific event. Recognition tasks notify the user

when a specific object has been identified. One problem inherent to performing these

tasks is recognition at varying pose or view-angle. An object that is not perfectly aligned

with the training data will exhibit different spatial features and cause errors because of
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shape and illumination differences. One proposed solution for solving this problem is

to construct a training database that encompasses the entire 360◦ rotation of the object.

However, a continuous sampling of an objects rotation cannot be achieved. This is called

pose resolution, and it leads to another possible source of error. To fix this problem, a

method for pose recognition must be developed.

The most common way to perform pose recognition is by constructing a database of

angled-views. This can be done in two ways, either by manually taking images or videos

of an object in a laboratory, or through an unsupervised method of actively acquiring data

through a strategically placed camera(s). The unsupervised method has two drawbacks:

1. It is difficult and time consuming to place labels on the information that is being

acquired, and

2. the pose database is unordered and needs to be reordered to verify that there is

enough data for proper pose recognition. The amount of data needed for object

pose recognition is determined by its pose resolution.

Other supervised methods capable of recognizing an object in a scene at different

scales and poses have been developed by [2, 3]. These types of algorithms can recognize

the object up to certain pose angle until features become occluded or unrecognizable from

illumination changes.

This thesis proposes an unsupervised object pose ordering algorithm seen briefly in

the research by Massaro et al. [4]. It uses a confidence metric to find possible pose errors

because of indistinguishing views. This method is extended to a multiple camera frame-

work for improved sequencing. The proposed method could also be used in other applica-

tions such as pose recognition, image matching, aerial surveillance, and photogrammetry.
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These topics will be discussed in more detail within the following chapter.

1.2 Random Object Poses

This section discusses the definition of an ordered set of object poses and an unordered

set of random object poses. Proceeding this is the motivation for pose ordering. This

includes database sequencing and 3D model construction, unsupervised learning for facial

databases, and path planning for unmanned aerial vehicles (UAVs). These are all possible

applications for ordered sets of object poses seen as an improvement to current algorithms.

1.2.1 What are random object poses?

Figure 1.1: Example of a video sequence (top) and a randomized video sequence (bot-

tom).

The pose of an object is the view-angle at which an object is observed. Each angled-view

or pose induces illumination changes and 2D shape variation creating different observable

features. The continuous transition of these observable features is a set of ordered object
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poses. Monotonically changing angled-views of an object can be captured by a by a

stationary video camera and a turntable. The motion video captures an ordered set of

object poses. Contrarily, an unordered set of object poses are non-monotonically changing

angled-views of an object. The non-monotonicity of the view-angle is a random set of

object poses. This can be seen in Figure 1.1 where the top figure is an ordered set of

poses, and the bottom sequence is a random set of poses.

1.2.2 Image Databases

The initial motivation for pose ordering was to create a way to automatically find stereo

matching images in a series of random, unordered images. Stereo matching pairs can be

used to create a rough 3D model of the scene or object. The disorderedness of image

poses in the same scene occurs when images are taken at different times under varying

perspective. These types of images are required for capturing perspectives of a scene for

constructing a 3D model.

Random views of objects or scenes can be found in many real-world applications.

Some of these situations are found in remote sensing, and aerial surveillance. The sit-

uation of randomness occurs frequently in these situations because of the variability in

viewing angle of air-born vehicles. The need for an alternative image-perspective based

algorithm arises because GPS and geo-referencing is not enough or may not have been

available to reorder images. The research by O’Dwyer et al. [5] use old imagery from

1953-1972 when the technology was not available for image geo-referencing. Further-

more, these types of images are taken over a period of time under varying circumstances

for the type of mission. For this reason, the perspectives of the same area result in different

images that may need to be ordered for photogrammetry or change detection.

9



Further research has indicated the necessity of ordered images for photogrammet-

ric methods [6]. It has been stated in this research that automated ordering of random

image databases would reduce the effort of ordering manually, which is costly and time

consuming. Moreover, this research states that these processes struggle with making mea-

surements from images with unordered data sets.

1.2.3 Machine Learning

Another motivation for object pose ordering is for supervised pose recognition of objects.

These methods refer to the design of a training databases from random views of an object.

The research in [7] outlines a system for the unsupervised acquisition of human faces for

a humanoid robot. The method explains that this can be achieved when objects and faces

are presented randomly to a camera. Each object or face is grouped into a pose database.

The database requires a method for unsupervised ordering to develop accurate training

data. Human interaction is optional for acquiring labels to faces. The human interaction

is involved in this method is known as inductive learning, while the faces are acquired and

ordered in an unsupervised fashion. Chapter 2 discusses how knowledge of the relative

order of the object or face poses is important for training.
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1.3 Thesis Organization

Figure 1.2: A visual example of a manifold. This image was obtained under the GNU

Free Document License

The following chapters will explain the research path for object pose ordering. Chapter 2

discusses the previous work conducted that relates to this thesis. This includes 3D model

construction methods, image matching, object recognition, image manifolds, and object

pose recognition methods. An example of a manifold can be seen in Figure 1.2. The

research in this section leads to the development of the methodology that will be used

for object pose ordering. Chapter 2 introduces the problem of pose ordering in terms

of Principal Component Analysis (PCA) space. Furthermore, this chapter describes the

methods used for traversing a manifold, and why PCA is chosen. Chapter 3 gives a
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detailed explanation of the method, including mathematical derivations and explanations

of hardware configuration and metrics used for object pose ordering. Chapter 4 contains

results obtained for single and two camera pose ordering, as well as results for a pose

clustering method. Chapter 5 contains the summary, possible future work and testing for

continued research.
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Chapter 2

Related Research and Problem

Formulation

This chapter focuses on research relating to computer vision and pose estimation problems

with emphasis on research related to pose ordering or image sequencing. This includes

image matching, object and face pose recognition, and object manifold analysis. Fur-

thermore, methods that combine pose information from 2D images for constructing 3D

image models is of interest in this section. Researching the relation between combining

2D information for stereo matching and computer recognition was a priority. It is thought

that the ability to link these methods is required for pose sequencing tasks because most

research in constructing a 3D model assumes recognizing the pose of an object.
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2.1 3D Image Reconstruction and Modeling

The purpose of this section is to document some of the methods used in 3D model re-

construction from 2D images. The methods for 3D object reconstruction from 2D images

requires knowledge of the object’s pose relative to the camera. Examples of reconstruction

algorithms can be found in [8–10]. The methods have trouble matching object geometry

with motion, unless a priori knowledge of the sequence of poses is available. This indi-

cates reordering the image sequence to monotonically changing angled views is necessary

for accurate 3D reconstruction.

2.1.1 Structure and Motion Estimation

Joshi et al. [11] describe a method that recovers the shape of an object using three cal-

ibrated cameras. Epipolar geometry is used to find matching frontier points between

cameras in an attempt to recover the structure of the object. The motion can be predicted

and tracked from the silhouette profiles once the structure is known. This method is useful

when the object has very little or no surface features to distinguish between perspective

views. The method would not work well for pose sequencing and struggles with objects

that have similar silhouette shapes. Moreover, using motion estimation to order object

poses is impossible when then the image sequence is random.

2.2 Scale Invariant Feature Transform

The scale-invariant feature transform (SIFT) will be the described in this section. SIFT

has been utilized for 3D model reconstruction from 2D images, object recognition, and
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image mosaicking [12]. In [13], Brown et al. describe a method using SIFT to find

point correspondences between multiple cameras using epipolar geometry. The corre-

sponding points between images were run through a random sample consensus algorithm

(RANSAC) to eliminate outliers. The maximum number of corresponding points be-

tween images represents an image match. A sparse 3D model is constructed from the

point correspondences using epipolar geometry. This is just one example of a method that

has appeared using SIFT. Other research includes [14] which uses PCA as a local image

descriptor.

The first research was presented by Lowe [15] and has been referenced by many and

has been the foundation for many other image matching algorithms. Results for the SIFT

implementation can be seen in Chapter 4. The main steps for computing SIFT is outlined

below. The steps include:

1. Computation of scale-space

2. Detection of scale-space extrema

3. Accurate keypoint localization

4. Eliminating edge responses

5. Orientation assignment

6. Local image descriptor

7. Image descriptor representation

8. Descriptor Matching

15



For brevity, not all steps will be described in detail, but only the most important steps

from Lowe’s first paper [15].

2.2.1 Computation of Scale Space

The scale space of an image is defined as:

L (x, y, σ) = G (x, y, σ) ∗ I (x, y) (2.1)

Where G is a Gaussian filter and I is the input image. The difference of Gaussians (DoG)

is then calculated by:

D (x, y, σ) = L (x, y, kσ)− L (x, y, σ) (2.2)
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Figure 2.1: This figure shows the difference of Gaussian method used to find scale space

extrema. This image was taken from [15]

Where k is a multiplicative factor. After a sufficient number of scales has been found,

the scale that corresponds to 2σ is downsampled by 2 and the DoG calculation is com-

puted for that image. An example of an efficient method for calculating DoG of scale

space extrema can be see in Figure 2.1
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2.2.2 Local Image Descriptor

Figure 2.2: Illustation of computing local extrema

At each frame in scale-space, each point is compared to the eight nearest neighbors and

then compared to the nine nearest neighbors in the scales above and below. A graphical

example of this can be seen in Figure 2.2. If any of these are greater than or less than that

of the point in question then that point is not a local extrema.

Removal of edge dependent image descriptors is necessary for accurate local descrip-

tors at different scales because of shadow illumination differences. This is accomplished

by first evaluating the eigenvalues of the Hessian matrix H from computing Trace (H)

and Det (H) seen in equation 2.3 of the DoG images.

H =

Dxx Dxy

Dxy Dyy

 (2.3)
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Trace (H)2

Det (H)
<

(r + 1)2

r
(2.4)

From equation 2.4, if r is below a certain threshold, eliminate the local extrema, corre-

sponding to the point calculated from equation 2.3.

The remaining image pixel locations are scale invariant keypoints, used for image

matching and point correspondences between images. A nearest neighbor algorithm is

generally used to find point correspondences between images for recognition and match-

ing. The SIFT method was implemented for sequencing by finding the greatest number

of matched keypoints. The results can be seen in Section 4.4.

2.3 Object Recognition

This section discusses recognition methods used for computer vision that take into ac-

count varying pose angle views. These methods concentrate on proper feature space rep-

resentation to include the randomness of an object view angle presented in an image. The

methods of [16–18] propose dimensionality reduction to approximate the image data by

creating a database for matching. The research of are a couple of the first applications

of PCA to computer vision. The methods of [17–19], use a PCA reduced space mani-

fold for matching image sequences. Laplacian eigenmaps is a more recently developed

method used for transforming a reduced space manifold into clusters for classification.

Some results using Laplacian eigenmaps for image ordering can be seen in Section 4.3.
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2.3.1 Recognition and Varying Pose

The method of Murase et al. [17] uses PCA to find image features and to reduce the

amount of image data for storage. This is a supervised learning method that attempts to

classify objects with varying pose. To achieve this two feature spaces are needed. One

is the universal object eigenspace and the other is the object pose eigenspace. The image

data used for the object pose space contains many objects at monotonically changing

view angles. The illumination angle is controlled by a machine, but varies with object

pose. The data used for the universal eigenspace is composed of all objects and pose data.

Classification starts by finding the object in universal object eigenspace using minimum

distance. The pose is found in a similar manner using the pose space. This method is

similar to the proposed method for this thesis. The main difference is this thesis uses a

pose manifold in eigenspace for unsupervised object pose sequencing. The sequencing is

used to find the position of the current camera view to that of the next view.

Moghaddam and Pentland [18] describe a search method using a large facial image

database in reduced feature space to find the closest match to the input face. Preprocessing

is done to the facial image in order to obtain consistency throughout the datasets for

comparison. The preprocessing consists of face flattening and centering. The principal

component projections are computed for dimensionality reduction and feature extraction

of the facial images. The search is conducted by minimizing the distance from feature

space metric (DFFS), which is the euclidean distance in the eigenface space. The pose

angle is identified using a training set of faces at varying poses, then the face is matched to

the face of that pose similar to the method of [17]. The differences are the preprocessing

steps and the use of templates in [16, 18] to select key facial features for frontal face
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recognition. It is important to note that this thesis does not use templates for key feature

selection for tracking. More recent research [2, 13, 14], addresses object recognition at

various poses using SIFT rather than PCA or a combination seen in [3]. These algorithms

do not address the issue of sequencing the pose order of multiple images.

2.3.2 Laplacian Eigenmaps

Laplacian eigenmaps is a new field of research in machine learning, computer vision and

recognition. It is an unsupervised method used for clustering. Laplacian eigenmaps are

applied to a higher dimensional manifold to reduce the space for clustering in a lower

dimensional space.

Wij = exp
(
−‖xj − xi‖

t

)
(2.5)

The process begins with manifold X = [xi . . . xk] with k being the number of vectorized

images in X . A weight matrix Wij is computed using the heat kernel given in equation

2.5. Wij is computed from when xi and xj , is an edge, or nearest neighbor, otherwise

a zero is placed in Wij in the corresponding matrix location. The process is repeated

until all points in the manifold have been visited. Two parameters must be chosen for the

weight map:

1. The value of t.

2. The number of edges to be used in the computation.

Ly = λDy (2.6)

The Laplacian is defined as, L = D−W where D is a diagonal weight matrix calculated

from equation 2.5, such that Dii =
∑
j

Wij . The eigenmap is computed by solving the

generalized eigenvalue problem in equation 2.6.
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From equation 2.6, the eigenvalue with the lowest value corresponding to the matrix

of eigenvectors y is the solution to the Laplacian matrix. The rank of the Laplacian matrix

indicates the number of eigenvectors yielding a trivial solution. For this reason, care must

be taken when selecting the eigenmaps.

2.3.3 Manifold Learning

Constrained manifold learning has been used to estimate camera pose, generate matched

animations, and to match human lip movements. An example for manifold matching

from [19] can be seen in Figure 2.3.

Figure 2.3: This figure shows an example of matching animations of a toy figure

This is a non-iterative method using the concept of diffeomorphism to generate a

map between two manifolds x ∈ X and y ∈ Y . In mathematics, diffeomorphism is

an invertible function that maps one differentable manifold to another. In this case, the
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manifolds are generated in PCA space from images x and y, such that X and Y are the

manifold spaces. Learning manifold maps in [19] is based on computing a local manifold

smoothness. Manifold smoothness in PCA space is used in this thesis as well. Chapter 3

will discuss this in more detail.

2.3.4 Image Feature Distributions

One method described in [14,20] uses the earth movers distance (EMD) to match images

from a database. The EMD operates on image feature distributions and is described as the

amount of work needed to match one histogram of image features xi to another yj . This

method is useful for matching overall image content, such as matching similar background

scenes and characters. However it does not discriminate fine spatial features to capture

and order the motion in the images. This is due to the loss of spacial information when

binning pixels into a histogram. Furthermore, histogram matching needs high variability

in the pixel distributions not considering the variation of an entire data set.

2.4 PCA Solution for Pose Ordering

This section is intended to explain the problem of pose ordering using PCA. A problem

description has been formulated to explain why PCA is chosen as a feature space and the

benefits that PCA can offer. The benefits provided will expose it’s drawbacks for certain

applications.
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2.4.1 PCA Description

The problem for ordering random object poses is viewed as a problem in pose recognition.

This problem is primarily solved using principal component analysis (PCA) because of

it’s simplicity. Moreover, computing PCA on sequences of object poses produces distinct

geometry in eigenspace. This occurs because of the properties and assumptions of PCA:

1. Dimensionality reduction

2. Linear combination of feature components

3. Gaussian distributed feature components

4. Orthogonality of feature components

5. Linear transformation

PCA offers dimensionality reduction for developing large databases of training data

for recognition. Dimensionality is reduced by minimizing the mean square error over the

dataset. Feature selection is performed by choosing a linear combination from the data

containing the maximum variance. The maximum variance across the data set satisfies the

minimum mean square error criteria for embedding the data in a reduced space. This is an

important aspect to any pattern recognition problem. The eigenvectors and eigenvalues

of the autocorrelation matrix of the data correspond to the orthogonal basis function and

the decorrelated variance,respectively. The features are a result from the minimization

of the error of the projection space to the data known as the eigenspace. The number of

components is the rank of the autocorrelation matrix.
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The criteria for dimensionality reduction using PCA assumes the data is Gaussian

distributed with an unbiased mean and variance. PCA is an optimal embedding technique

for Gaussian distributed data, because it captures the mean and variance as defined by a

Gaussian probability distribution. Multimodal data does not follow the know equations

for the mean and variance. This breaks the assumption of an optimal embedding space

for minimizing the mean square error with maximum variance. Important data is now lost

making it impossible for correct classification. However, for image processing purposes

used in this thesis, the manifold from the assumed Gaussian distribution is of interest.

This implies that PCA is optimal for data embedding and comparison.

The optimal embedding space, as stated previously, are the eigenvectors of the auto-

correlation matrix of the image data set. Eigenvectors are known for the property of being

orthogonal to each other. Having an orthogonal space means that each basis dimension is

uncorrelated to the another. This is characteristic of the diagonalization of the autocorre-

lation matrix. This is another source of data loss because linear mixtures may exist within

a single principal component. However, the property is desirable when the objective is to

indiscriminately extract all spatial variant features across the image data set. It comes to

be a problem when specific image features are desired other than the maximum variance.

This thesis shows that neither classification nor clustering is a desired technique for image

pose ordering. Rather the pose ordering method is seen as a process of sequencing images

by the arrangement of the PCA representation of the unordered image set. This offers a

solution to ordering under the condition that it is a scatter of points producing a structured

manifold in eigenspace.

The linearity of PCA is a highly desired characteristic for ordering random object

poses. PCA is the result of the linear combination of the variance and cross-variance
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of each pixel over an entire set of images, is independent of the order of the images.

This implies the input order of the image sequence does not dictate the structure of the

manifold and the multidimensional eigenspace is the same regardless of the random order

of images.

2.4.2 PCA for Pose Recognition

The idea of using PCA for pose ordering comes from the previous work done in super-

vised pose recognition (see Section 2). This work [17] shows results of multidimensional

manifolds in eigenspace for each object at different poses and different illumination. Each

point in eigenspace represents an object pose. As the manifold trajectory is traced to each

image the pose angle changes. The minimum distance to the object space and the min-

imum distance to the pose space is the solution for recognition of the object and pose

view respectively. The shape and the resolution of the manifold will dictate the ordering

results. Increasing the number of image views with varying illumination would achieve a

more accurate pose sequencing. If not, a more sophisticated algorithm will be needed for

high pose ordering accuracy. This will be seen later within the results in Chapter 4.
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Chapter 3

Theoretical Development of the Pose

Ordering Algorithm

3.1 Principal Component Analysis

The rational for using Principal Component Analysis (PCA) has already been provided in

Section 2.4.1. The next section will help to explain the how PCA is applied to a sequence

of images for the purpose of ordering view-angles. Furthermore, this section will show

image examples and explain eigenposes. These are the basis functions used for computing

the geometrical configuration of a set of random object poses. A treatment of PCA can be

found in [21].

3.1.1 Mathematical Description of Proposed Method

Each image xi of size M × N in the randomly captured sequence is formed into an

MN × 1 vector. This is done for the entire set of images and concatenated into a matrix
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X = [x1, . . . , xK ] of random object poses. Normalization is not done across the image

set. This way, illumination and shadows are preserved as these are seen as features for

ordering poses. The next step is to calculate the eigenspace of the random set. The

eigenspace basis matrix E is composed of the L largest corresponding eigenvalues for

some L. The square matrix Q = XXT is computed and singular value decomposition is

done such that:

Q = ETΛE (3.1)

Where Λ is the diagonal matrix of eigenvalues.

g (xi) = xT
i E (3.2)

The projection g (xi), of size L × 1, of the image onto the eigenspace is then calculated

and used as the feature space.

3.1.2 “Eigenpose” Analysis

The eigenvectors were plotted to visualize the dominant features for some test objects.

These plots can be seen in Figures 3.1 and 3.2. The term “eigenposes” was taken from

the term “eigenfaces” in [18]. The first ten principal components eigenvector images are

computed using:

28



Figure 3.1: Eigenvectors for an object with less details

Figure 3.2: Eigenvectors for an object with more details

Where ei is the unit eigenvector found in the ith column of E and λi is the ith diagonal

component of Λ seen in equation 3.1. After this is done, the vector must be rearranged

into an image given width and height dimensions.

Eigenposei =
√
λiei (3.3)

The principal component eigenvalues associated with the eigenposes for each the tape and
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truck images can be seen in Figure 3.3 plotted on a logarithmic scale. It can be noted that

the eigenvalues drop off faster in the truck images than in the tape images.

Figure 3.3: Base ten logarithm of the eigenvalues associated with the first nine eigenvec-

tors seen in Figures 3.1 and 3.2

The number of principal components utilized can be determined from equation 3.4

seen in [17].

I =

∑L
i λi∑MN

i λi
(3.4)

The output, I , is the fractional amount of information that is explained by the variance in

the image set. The information measure should be close to one. For each object tested, I

was computed to represent 99% of the information from the variance and can be seen in

Table 3.1.
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Object PCs Information

Tape dispenser 4 0.9914

Truck 3 0.9916

Airplane 5 0.9917

Stapler 3 0.9936

House 16 0.9901

Cylinder 2 0.9910

Battery 1 0.9937

Table 3.1: Information measurement for each object tested

Table 3.1 shows the number of principal components needed to represent 99% of

the information from the variance. Section 4.2.3 will show experimental results for the

amount of information needed.

3.2 Object Pose Ordering

The proposed approach for ordering images is an iterative process. Let Sj and Θj be the

set of unordered and ordered images at iteration j, respectively. To begin, S0 is the entire

set of unordered images and Θ0 is the empty set of ordered images. At iteration j = 1, a

randomly chosen image is labeled x1 and moved from S0 to Θ0, yielding S1 and Θ1. For

j ≥ 2 an image xj is moved from Sj−1 to Θj−1 such that:

xj = argmin
x∈Sj−1

(‖g (xj−1)− g (x)‖) (3.5)
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Figure 3.4: Block diagram of the single camera ordering algorithm implemented

Thus, the ordering algorithm picks from the unordered set, the image closest to the last

ordered image in eigenspace. The diagram in Figure 3.4 shows the algorithm for single

camera ordering. Once the images have been ordered using the minimum separation,

a confidence measure is computed using local curvature along the trajectory (called the

object manifold) of the ordered images in eigenspace.
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Let dsj be the vector:

dsj = g (xj)− g (xj−1) (3.6)

The cosine of the angle between the vectors is the correlation coefficient:

cos (θj) =
dsTj dsj−1
‖dsj‖ ‖dsj−1‖

(3.7)

The difference between vectors is then computed by subtracting the two vectors. The

difference equation is an approximation to the second order derivative for curvature:

κj =

√
(dsj−1 − dsj)T (dsj−1 − dsj) (3.8)

The confidence in ordering metric is given by:

cj = κj (1− cos (θj)) (3.9)

3.2.1 PCA Based Distance Metrics

Other PCA based distance metrics were tested for the use with pose ordering [22]. For

these equations gi(x) represents each principal element of the projection transformation

from equation 3.2.

• Euclidean distance:

d(g(xj−1), g(x)) =

√∑
i

(gi(xj−1)− gi(x))2 (3.10)

• Angle based distance:

d(g(xj−1), g(x)) = −cos(g(xj−1), g(x)) (3.11)

=

∑
i

gi(xj−1)gi(x)∑
i

gi(xj−1)
2∑

i

gi(x)2
(3.12)
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• Mahalanobis distance:

d(g(xj−1), g(x)) =
∑
i

zigi(xj−1)gi(x) (3.13)

where zi = 1/λi

• Manhattan distance:

d(g(xj−1), g(x)) =
∑
i

zi |gi(xj−1)− gi(x)| (3.14)

where zi = 1/λi

The distance metric that produced the best results was the eucleadian distance. This

is because it takes into account the geometrical separation and preserves the significance

of the principal component transformation. The other metric either normalize the signif-

icance of each component or normalize the distance, which makes it difficult to compare

each image pose angle.
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3.2.2 Confidence Metric

Figure 3.5: The vector representation of the confidence measure

The confidence metric cj attempts to use a combination of three local image projections to

measure the alignment and the curvature. The alignment is equivalent to the congruence

coefficient across three images and is equal to zero when they are in a straight line. The

curvature acts as a weight across the combination of the three images. A low confidence

measure indicates the images are changing slowly and pose classification is more accurate

in this region and a high measure of confidence means the images are changing erratically.

For this confidence measure, a low value is desirable to indicate correct ordering. The

vector representation for these can be seen in Figure 3.5.
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3.2.3 Development of the Confidence Metric

(a) Correct pose manifold trajectory

(b) Incorrect pose manifold trajectory

Figure 3.6: Comparison of the correct manifold and the incorrect manifold

The development of the confidence metric was motivated by the problem of detecting

errors in ordering. A geometrical feature was chosen as a metric because of the trajec-

tory of pose images projected onto the eigenspace seen in Figure 3.6. Figure 3.6(a) was
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produced by direct computation of PCA on the order image sequence. Figure 3.6(b) was

produced using the ordering algorithm seen in Figure 3.4. Differential geometry defines

the trajectory of a moving particle in space to be γ (t). This is the representation of the

object manifold. Therefore, the formal definition of curvature is given as:

κ (t) =
∥∥∥γ′′ (t)∥∥∥ (3.15)

For the purposes of this thesis, the difference equation of this measure is used and was

given in equation 3.8.
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(a) Images 1-10 corresponding to the first two errors

(b) Images 21-30 corresponding to the third error

Figure 3.7: Image data set observed in Figure 3.8
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Figure 3.8: Top: Curvature, Middle: one minus correlation, Bottom: confidence. These

were calculated after pose ordering. The arrows point out the errors observed in pose

ordering

The two types of metrics chosen for ordering are curvature, κj , and correlation, cos (θj),

as described in the previous section. Plots of these metrics for a test object are shown in

Figure 3.8. The single camera algorithm used to produce the results is seen in Figure 3.4.

The figure is intended to show how the combination of the two metrics perform the task of

recognizing errors within the single camera ordering algorithm. The errors are referenced

by the arrows in Figure 3.8. The images that correspond to these errors can be seen in

Figure 3.7(a) and 3.7(b). It is important to note that the confidence is calculated using

three images, therefore each point represents images indices j − 2, j − 1, and j.

It is difficult to observe, by an untrained eye, the errors in pose ordering of Figures

3.7(b) and 3.7(a). Indeed these are 180 ◦ apart in view-angle because of the similarity in
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the front and back views of the object.

3.3 Two Camera Ordering with Confidence

This section is intended to explain, in detail, the confidence metric utility integrated into

the two camera architecture. The main idea is to use the confidence metric to correct the

errors found when ordering using the minimum distance. To achieve this, a second camera

has been included in the experiment. This second camera creates additional information

used for the pose ordering algorithm.

3.3.1 Two Camera Configuration

Figure 3.9: Two camera configuration used in the experiment

The two camera configuration can be seen in Figure 3.9. The two cameras are placed 90 ◦

apart in viewing angle in an attempt to gain more salient object features and eliminate the

180 ◦ errors seen in Figure 3.7, images 9 and 10. These errors are because the pose space

of the object is dominated by side views. Physically the side view is larger containing

more pixels and will be included in a majority of the images. This will effect the PCA
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variance maximization feature extraction. Some eigenvectors were seen in Figures 3.1

and 3.2.

3.3.2 Implementation of the Confidence Metric

The single camera method is extended to the case where two synchronized cameras are

available. Since the cameras are synchronized, we can compare the time indices of each

camera. By independently ordering each camera’s images, it can be said that if the time

indices do not match, then an error in ordering has occurred. The difficulty lies in deter-

mining automatically which camera view is more likely to have incorrectly ordered the

images. This is done by comparing the confidence cj developed in the previous section

and time indices of each camera to determined if an error has occurred and which camera

has the lower confidence of error. If ccamera1
j > ccamera2

j then camera two is chosen for

the next view and vice versa. A block diagram for the algorithm described can be seen in

Figure 3.10.
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Figure 3.10: Block diagram for the two camera ordering algorithm
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3.3.3 Confidence Thresholding

A large confidence metric is intended to exploit problem areas for pose ordering in the ob-

ject manifold. What happens when both confidence values are significantly large? Con-

sider a value T as a threshold to detect outliers in the confidence values. Any confi-

dence value greater than T is an outlier. The ordering method is designed such that: if

ccamera1
j > ccamera2

j and ccamera2
j > T , then reject the hypothesis that camera two is the

correct next pose. This is because the confidence in ordering is not high.

µ =
1

N

∑
j

ccamerak
j (3.16)

and the standard deviation by:

σ =

(
1

N − 1

∑
j

(
ccamerak
j − µ

)2)1/2

(3.17)

and N is the number of confidence values (number of images − 2). This can be seen in

Figure 3.11.

T = µ+ σ (3.18)

To initialize the confidence metric threshold, all confidence values are computed for a

single image. Next, a threshold is chosen from the statistics of the confidence distribution.

This can be seen in equation 3.18, where the mean is calculated by:
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Figure 3.11: Histogram of the confidence values for the two cameras. The threshold and

mean are shown as dotted lines.

If the camera hypothesis for the confidence values is rejected, then the threshold is

increased by a factor (10% is used in the results). By increasing the threshold, the method

will eventually converge to a pose ordering solution. This step can be seen in the block

diagram of the algorithm in Figure 3.10
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Chapter 4

Results

4.1 Procedure

The results were obtained from videos taken of many objects on a turntable. The first test

was pose sequencing with a single camera, and the second test was pose sequencing with

two synchronized cameras. Please refer to Section 3.3.1 for two camera configuration.

The video sequence was scrambled in MATLAB using a uniform random number gen-

erator. The known video sequence is used to help with assessing the results of ordering.

The random number set is used to produce an equal distribution for the full rotation of

the object. This means that no views are repeated and if a histogram of pose angle was

created, then there would be only one count per bin. A set of images that includes a full

rotation of the object ensures that the first and last images are connected in eigenspace. It

also makes error counting and validation of the ordering simpler. The video frame rate is

16 frames/sec and the number of poses in a set varies from 30 to 37 depending on the ran-

dom number seed. The images are downsampled by a factor of four to a size of 80× 60.
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This is done to accommodate the large size of the covariance matrix. The formulation

of the covariance matrix for PCA is not normalized by illumination. It is thought that

illumination is a feature for recognition of objects and scenes used by human vision.

The error rate for object ordering is calculated manually by visual inspection of the

images and counting the number of incorrectly sequenced images. By definition, an error

occurs if the next pose does not correspond to the current pose for the set of images. Error

rate is calculated for the entire set by summing the total number of errors and dividing by

the number of images in the set.

Object Single Camera Two Cameras Gain

Tape dispenser 17.0% 0.9% 16.1%

Stapler 9.1% 0.3% 8.8%

Truck 6.7% 0.3% 6.4%

House 3.0% 0.9% 2.1%

Airplane 1.5% 0.3% 1.2%

Cylinder 0.6% 0.0% 0.6%

Battery 0.3% 0.0% 0.3%

Table 4.1: Error Rate of Ordering Various Objects

Objects without distinct features have failed to order properly in the single camera

case because of the similarity of views. These objects without saliency are referred to in

Table 4.1 as the tape dispenser and the truck. For these types of objects, the recognition

errors generally misclassify the front and back views corresponding to 180◦ of rotation.
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Figure 4.1: Example of errors in the pose manifold reconstruction

Most of the errors occur where the manifold begins to wrap around itself and become

tangled. This can be shown in Figure 4.1, where the circled region represents the problem

area when the next angle-view is not the minimum distance. The dotted line shows the

errors for ordering with a single camera. The solid line in Figure 4.1 shows the correct

manifold reconstruction using two cameras with the confidence metric.
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Figure 4.2: This figure plots both manifolds from camera 1 and camera 2, and shows the

errors in dotted lines and correctly ordered in the solid lines. The confidence value is also

printed for the last manifold connection made

A depiction of how the confidence measure helps to select the correct camera for

viewing can be seen in Figure 4.2. The figure shows the camera whose manifold is chosen

contains the section that is the most flat and is the minimum distance across images. In

the example in Figure 4.2, camera one has made an error and camera two is chosen as the

correct order.
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Figure 4.3: Results for two camera ordering

Figure 4.3 shows an example of the confidence selecting between camera one and

camera two for front and side views of the tape dispenser. The images displayed in Figure

4.3 are seen from the perspective of camera one. As the front view appears, camera one

has trouble with recognizing the next pose, therefore, it switches to camera two.
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4.2 Pose Ordering Error Analysis

Trial # Single Camera Two Cameras

1 5 2

2 4 0

3 7 0

4 5 0

5 6 0

6 7 0

7 5 1

8 7 0

9 5 0

10 5 0

Avg 5.6 0.3

Var 1.04 0.41

Avg error 17.0% 0.9%

Table 4.2: Number of errors for the tape dispenser

In trial seven the single error can be classified as a depth perception error, and can be seen

in figure (input 2 camera results)
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Trial # Single Camera Two Cameras

1 2 0

2 5 1

3 2 0

4 0 0

5 2 0

6 3 0

7 2 1

8 2 0

9 3 0

10 2 0

Avg 2.3 0.1

Var 2.33 0.11

Avg error 6.7% 0.3%

Table 4.3: Number of errors for the truck

51



Trial # Single Camera Two Cameras

1 2 0

2 2 1

3 4 0

4 2 0

5 3 0

6 3 0

7 4 1

8 3 0

9 4 0

10 3 0

Avg 3.0 0.1

Var 0.6 0.09

Avg error 9.1% 0.3%

Table 4.4: Number of errors for the stapler
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Trial # Single Camera Two Cameras

1 0 0

2 0 0

3 0 0

4 3 1

5 0 0

6 0 1

7 3 0

8 0 1

9 1 0

10 3 0

Avg 1.0 0.3

Var 1.8 0.21

Avg error 3.0% 0.9%

Table 4.5: Number of errors for the house
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Trial # Single Camera Two Cameras

1 1 0

2 0 0

3 0 0

4 0 0

5 1 1

6 0 0

7 0 0

8 0 0

9 1 0

10 2 0

Avg 1.0 0.3

Var 1.8 0.21

Avg error 3.0% 0.9%

Table 4.6: Number of errors for the paper airplane
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Trial # Single Camera Two Cameras

1 0 0

2 0 0

3 0 0

4 1 0

5 0 0

6 0 0

7 0 0

8 0 0

9 1 0

10 0 0

Avg 0.2 0.0

Var 0.16 0.00

Avg error 0.6% 0.0%

Table 4.7: Number of errors for the cylinder
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Trial # Single Camera Two Cameras

1 0 0

2 0 0

3 0 0

4 0 0

5 1 0

6 0 0

7 0 0

8 0 0

9 0 0

10 0 0

Avg 0.1 0.0

Var 0.09 0.00

Avg error 0.3% 0.0%

Table 4.8: Number of errors for the battery

This section shows tables of error rates for each object tested. Table 4.1 contains

a summary of all the object results, while Tables 4.2-4.8, contain results for individual

trials for each object. A trial is a different randomization of poses used for each object.

This includes different starting points for the algorithm and different angled-views taken

from the database.
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4.2.1 Single Camera

Figure 4.4: Tape dispenser images 1-10

Figure 4.5: Truck images 11-20
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Figure 4.6: House images 11-20

This section will show image examples in the single camera ordering process. The pre-

vious section shows the errors in terms of the eigenspace representation. This section

displays errors that correspond to image ordering. Figure 4.4 shows 4 errors occuring in

the sequence of ten images. These errors are caused by the confusion between the front

and rear views of the object. The confusion is caused by PCA dimensionality reduction

and it’s inability to select the required features to distinguish between these views. Some

of these object views require certain details that become eliminated when using PCA.

This will be shown in the reconstructed images using nine principal components. These

same results can be seen in figures 4.5 and 4.6.
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Figure 4.7: Image reconstruction using the first nine principal components for the tape

dispenser images. The numbers in parenthesis represent the indices from the original

video

Figure 4.8: Image reconstruction using the first nine principal components for the truck

images. This image can be compared to that in Figure 4.5
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Figure 4.9: Image reconstruction using the first nine principal components for the house

images. This image can be compared to that in Figure 4.6

The inability of PCA to choose the correct features can be seen in the reconstruction of

the image sequences in Figures 4.7-4.8. These views look undistinguishable to a trained

human eye. To verify the validity of ordering, the frame indices from the original video

sequence are shown in parenthesis. These indices are referred to as, in Section 4.1, the

“unscrambled” video sequence indices.
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4.2.2 Two Cameras

Figure 4.10: Example of a depth error induced from camera 1 confidence

This section will show image examples of how two camera ordering improves single

camera ordering and the types of errors seen in using two cameras. Figure 4.10 show

results of two camera ordering with a depth perception error. The error is a result from

camera one similarity and camera two’s inability to distinguish between front views. The

view from camera two cannot be seen, but it is known that it is facing 90◦ apart from

camera one which is facing the side. The two camera configuration is intended to switch

to the camera with the most salient view for image ordering.
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4.2.3 Eigenvalues v. Error Rate

Figure 4.11: Number of principal components versus average error for an object. The

standard deviation has been plotted for each trial.

Figure 4.11 represents the average error of pose ordering given a number of principal

components. The average error has been taken over ten trials. Each trial has been given

a different set of poses for the same object. From the plot in Figure 4.11 the optimum

number of eigenvalues is nine. This is where the error rate reaches a limit and cannot

be improved by adding more principal components. There is actually a slight decline

in performance using higher dimensions. As mentioned in Section 3.1.2, 99% of the

information explained by the variance is not enough to do accurate pose sequencing for

all objects.
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4.3 Laplacian Eigenmaps

In the previous section the object manifold was shown along with the analysis of errors

in eigenspace. The Laplacian eigenmap method acts on the reduced space images of the

manifold seen in the previous section. This method uses a Laplacian kernal to solve the

eigenvalue problem seen in Section 2.3.2 on Laplacian eigenmaps. This section shows

the results of the Laplacian eigenmap on the object manifold are clusters of image poses

in the Laplacian eigenspace.

Figure 4.12: Laplacian eigenmap clustering t = 100
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Figure 4.13: Laplacian eigenmap method t = 500

Figure 4.14: First 10 ordered images using Laplacian eigenmaps, t = 100
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Figure 4.15: Ordered images 11 - 20 using Laplacian eigenmaps, t = 100

The first twenty ordered images, from the clusters seen in Figure 4.12, can be seen in

in figures 4.14 and 4.15. The transition between pose clusters is indicated by the circled

images. This is the region where a jump must be made from one pose cluster to another

from the previously ordered image to the closest point in the next cluster. This is an

undesired result because it is difficult to assess whether the pose is in the correct sequence.

The Laplacian eigenmap method is primarily an unsupervised clustering algorithm to find

a geometric solution to multidimensional data. Although this is a powerful method for

unsupervised learning, it is not very useful for sequencing because the smooth manifold

in eigenspace has been lost.
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Figure 4.16: Single camera pose results for comparing the results of Laplacian eigenmaps

A comparison of the single camera method to the Laplacian eigenmaps helps to con-

vey the idea of a smooth manifold. The types of errors from each method are distinctly

different. Laplacian eigenmaps show errors of discontinuous views between the clusters

and confusion of similar views resulting from dimensionality reduction. The PCA method

contains errors just that of confusion of similar views due to dimensionality reduction.

Figure 4.16 shows a smooth transition from front to intermediate view and intermediate

to side views. The image sequence in 4.15 shows a jump from front views to side views

that are apart approximately 90◦ in rotation. This sequence does not exhibit any transition

to intermediate views before side views. The single camera PCA method clearly shows

that it has no trouble with these types of transitions.
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4.4 SIFT Results

Figure 4.17: Results of the SIFT implementation for the tape dispenser images

Figure 4.18: Results of the SIFT implementation for the truck images

The application of SIFT was found to not be useful for object pose ordering because

similar matching keypoints were found between non-sequential pose views. Object sim-
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ilarities around a 360◦ view confused the keypoint matching metric into finding many

unlike views. This is a result of SIFT’s inability to recognize objects in a scene exceed-

ing a certain angled view. The illumination differences also cause too much confusion

between similar keypoints. Results can be seen in Figures 4.4 and 4.4 with errors circled.
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Chapter 5

Conclusion

5.1 Summary

This paper has outlined and specifically designed a method for ordering image poses of

an object using a single or multiple camera architecture. PCA has been used as a basis

for the algorithm because of its dimensionality reduction and feature extraction proper-

ties. Moreover, PCA has been used in multiple research applications for pose and object

recognition (see Section 2). Data has been presented that shows the method from single

camera ordering can be improved by adding an additional camera. A confidence metric

has been developed that detects errors in ordering. The confidence metric is applied in

eigenspace and allows for the fusion between two or multiple cameras. The fusion can be

defined as choosing between cameras to find the best next view for ordering.
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5.2 Future Work

Other applications for pose ordering such as path planning, which is used for control-

ling and monitoring moving objects, could be seen as a possible application. This is

thought because the path of a vehicle or object that traverses a trajectory is a multidimen-

sional manifold [23]. By using video frames, one could also embed a path into a reduced

eigenspace. The manifold could be used to predict the controls of a vehicle [24]. The idea

of using a camera based UAV control system has been presented in [25].
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