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Abstract 

 
Photonic systems integrated into microelectronic systems using the well established 

integrated chips fabrication technologies offer immense opportunity in overcoming the 

bandwidth and power limitations IC faces. The use of deposited polycrystalline silicon in the 

fabrication of photonic devices has the potential of offering monolithic integration, promising 

electrical and optical properties, under optimized micro-fabrication, and lower costs. In this 

thesis, the design, fabrication and optical testing of waveguide devices on polycrystalline 

silicon platform is presented. Single mode polysilicon waveguide devices were fabricated at 

the RIT SMFL. The polysilicon waveguides fabricated successfully coupled and guided light. 

The transmission was measured over several lengths and the cut back method was used to 

quantify the free carrier absorption and propagation losses of polysilicon at 1550 nm 

wavelength. Comparisons were made with data for crystalline silicon. The absorption 

coefficient for polysilicon was found to be 25.9% higher than that of crystalline silicon.  
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Chapter 1 
 

Background 
 
1.1 Introduction 

The aim of this thesis is to investigate the design, fabrication of polycrystalline 

silicon (polysilicon) waveguides and use test results to quantify free-carrier effects in 

polysilicon. Developments in micro-optic technology, integration trends of electronics 

and optics, the transitioning of micro-optics to silicon on insulator and deposited silicon 

technologies and the problems associated will be studied. Several waveguide structures 

are designed, fabricated and tested on the deposited polycrystalline silicon platform to 

prove their performance using equipment at the Rochester Institute of Technology (RIT) 

Semiconductor & Microsystems Fabrication Laboratory (SMFL). 

 

1.2 Impact of micro-optics on electronics 

Though microelectronics has been able to achieve unprecedented integration, its 

limitations such as the need for increased speed and to shrink nodes continue to exist. 

Optics in theory can complement many of the anticipated drawbacks of electronics as it 

possesses several key advantages. It involves the manipulation of photons, which are 

charge-less particles. Because of this optical signals have negligible interference and 

hence low cross talk. This means several optical beams can be guided in the same 

medium while retaining their individual properties. This allows for simultaneous optical 

processing. Light also travels at speeds greater than the electron since it is not inhibited 

by drift velocity or particle mobility. These factors serve to give optical systems superior 

bandwidth and speed [1] as compared to equivalent electrical systems.  
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The limitations for micro-optics are the large size of optical devices and the 

integration in electronic systems. Though there are still some device and integration 

problems yet to be solved, optics has a strong potential in solving problems faced by the 

rapidly evolving electronics industry. 

Semiconductor micro-fabrication technology, used in the creation of integrated 

circuits (ICs) has set the foundation for micro-optical systems fabrication. Semiconductor 

micro-fabrication consists of patterning a substrate using lithography, thin-film 

deposition, etching and doping over several steps to produce devices such as transistors. 

The repeatability of micro-electronic fabrication allows for low cost, high yield, high 

quality devices that power the electronics industry [2]. 

Moore’s law [3] holds that computing power will exponentially increase over 

time, doubling every twenty four months. So far this theory has held true, but in the next 

few years size limitations and RF effects will force a fundamental shift in electronics. 

Micro-optics is a promising option for the next technology generation. Innovative ideas 

like optical interconnects and possibly an optical computer in the near future are some of 

the advancements that will benefit microelectronics. 

 

1.3 Silicon as a micro-photonics platform 

Photonics has benefited immensely from advances in process technology and the 

better understanding of silicon materials. The micro-fabrication infrastructure and process 

knowledge is already in place; therefore the implementation of photonic devices requires 

small modifications of existing process technology to yield significant advantages. The 

ability to accurately etch anisotropically in the nanometer scale provides the foundation 
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for the fabrication of waveguide structures. The ability to define features and make 

alignments through photolithography makes integration of photonic devices with other 

devices possible [2].  

The silicon-on-insulator (SOI) substrate is widely used in electronics. It also 

possesses several advantages in micro-optical systems because it has large index contrast 

between the silicon and silicon dioxide layers – allowing for strong optical confinement. 

The refractive index of silicon is 3.45 while that of silicon dioxide is 1.46 [4]. The light is 

confined in the silicon top layer with the silicon dioxide acting as the lower cladding and 

the air above as the upper cladding.  

Proper cladding allows for Total Internal Reflection which occurs when incident 

light is completely reflected. The critical angle, the angle for this to occur is the angle to 

the normal of the surface and is a function of the ration between the materials – as 

derived from Snell’s law. Because photons flow along the path of least resistance, the 

propagation remains in the region of highest index [5]. Silicon is also optically 

transparent at wavelengths used for long haul communication (between 1.3 and 1.7 µm). 

This allows SOI waveguides and others to be easily integrated into existing silica based 

fiber optic networks [5]. 

The major advantage of the SOI platform is its ability to integrate seamlessly into 

existing CMOS process technology. Monolithic integration of electronics and optics on a 

single substrate will bring together the bandwidth and speed of the optical systems with 

the well-established fabrication methodologies of Integrated Circuits – creating a superior 

hybrid [6].  
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1.4 Problems with SOI platform 

Problems facing SOI are the poor optical properties of silicon. A major 

disadvantage is that compared to the III-V semiconductors, silicon does not exhibit the 

first order electro-optic effect. The electro optic effect is the change in the optical 

properties of a material (refractive index, etc) in response to an electric field passing 

through the material [7]. This effect is the basis for high speed modulators and is the 

main link connecting electronics and optics. Because silicon does not possess the electro-

optic, and higher order effects like the higher order, Kerr effect are too small, direct 

modulation by an electric field in silicon is difficult. Most times it requires the electric 

field to exceed the break down voltage of silicon.  

Methods of modulating the refractive index in SOI photonic devices are non-

linear carrier injection (free-carrier dispersion effect) and the thermal optic effect. The 

insertion of carriers into silicon causes band shrinkage and band filling, which changes 

the refractive index of the material [8]. The Thermal Optic Effect modulates the 

material’s index using the temperature. Both of these effects are proven and useful, 

whoever they provide for decreased bandwidth and modulation speeds in silicon based 

devices – as compared to the electro-optic effect in capable materials. For example, the 

carrier injection method for modulation in silicon has a switching limit of 2.5 Giga-bits-

per-second (Gbps) [9]. Many other modern modulators, like lithium niobate have 

switching speeds of over 100 Gbps. Therefore much improvement is still needed for 

silicon as a modulation medium [10]. 

Silicon also has undesirable optical properties that have to do with its band 

structure. The band structure of material describes the series of “allowed” and 
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“forbidden” electron energy states – and these determine electrical and optical properties 

like conductivity and transmission [11]. The energy bandgap is the energy difference 

between the top of the valence band and the bottom of the conduction band [12]. 

Absorption occurs where the photon energy is close to that needed to excite an electron 

over the bandgap – hence the larger the bandgap the shorter the absorption wavelength 

(and vice versa). Silicon has a bandgap of 1.14 eV, which corresponds to absorption in 

the range of 200 nm to 1.1 µm, with transmission peaks at 1.3 µm and 1.55 µm [13]. In 

order to detect light a photon must possess sufficient energy to create free carriers by 

inducing electrons to cross the bandgap [13]. Because silicon’s bandgap is too large, 

detectors can not be made in the 1.3 to 1.55 µm range, which incidentally is where the 

transmission peaks lie. Photo-detectors are critical in converting optical information into 

an electrical form, so overcoming this issue is vital. 

Methods to address this issue are the doping of silicon with erbium (Er), a rare 

earth element in other to change the absorption spectrum. There is however a limit to the 

maximum allowable Er concentration in silicon [14]. Other approaches such as 

manipulating the bandgap of silicon by inducing biaxial tensile stress in the lattice have 

also been attempted. It has been found that inducing stress in improves electron and hole 

mobility because the potential for ballistic transport is increased due to fewer carrier 

collisions. Strain can be induced by making use of epitaxial growth of silicon.  

Silicon is an indirect semiconductor and is unable to efficiently produce light due 

to issues originating from its band structure. Indirect semiconductors have indirect band-

gaps where electrons in the minima of the conduction band have a different momentum 

from holes in the maximum of the valence band [15]. This result in electrons having to 
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first lose momentum in the form of phonons before recombining with a hole – a result of 

the k-space offset between electrons and holes in this type of material. III-V 

semiconductors are direct semiconductors and have produce light very efficiently, 

however they are costlier and harder to integrate into the standard CMOS process flow. 

As such methods to improve the silicon light emitting properties will be very useful in 

optical-electronics integration. Several methods have been tried so far such as Stimulated 

Raman scattering – with limited success. 

Losses in SOI devices have an impact on the performance of photonic 

components. Since it relies on Total Internal Reflection to optically confine light in a 

waveguide, non-idealities in the structure easily contribute to losses. Examples are 

absorption, scattering due to refractive index inhomogeneity, interface induced scattering 

and coupling of guided modes into substrate modes [16].  The coupling of light in and out 

of devices also account for additional losses.  

SOI material also takes up a large amount of real estate from transistors as they 

share the same silicon layer. The buried oxide thickness in standard SOI is not 

appropriate for waveguide cladding as it is smaller than the optical wavelength. Hence 

because of the numerous issues with SOI, there is a need to explore deposited 

polycrystalline silicon (polysilicon) material. A deposited layer would enable the 

monolithic integration of optical devices in separate layers of an IC chip and provide 

optical design flexibility. 

 

 

 



     7 

1.5 Deposited polysilicon as a solution 

The need for device compatibility and real estate for both electronic and photonic 

devices indicate that separate layers should be used to fabricate each set of devices. It is 

possible to integrate optics and electronics into an SOI substrate using wafer thinning, 

metallization and bonding technologies; however it is not cost effective. Depositing 

silicon layers over the electronic layer and subsequently processing them into optical 

devices are more practical.  

Other deposited films like amorphous silicon and silicon nitride rely on the 

thermo-optic effect [17], and limit the speeds in the MHz range. Deposited polysilicon 

utilizing carrier injection (free carrier dispersion effect) is a promising path as good 

optical and electrical properties are achievable – sub-nanosecond carrier injection and 

optical modulation [9]. Polysilicon based photonics hence provides a solution for multi-

level integration of optical networks in silicon integrated circuits.  

One major limitation of polysilicon based photonic devices is that a relatively 

large propagation loss in polysilicon waveguides due to scattering at the grain boundaries 

and light absorption [18].  

In polysilicon, the fabrication process is a strong factor in determining the amount 

of propagation loss. Historically, polysilicon waveguides fabricated on directly deposited 

layers exhibit very large optical losses - greater than 70 dB/cm - which made the material 

unattractive [19, 20]. The high losses were due to the small grain sizes and the rough 

surface of the polysilicon layer. After using Chemical Mechanical Polishing (CMP) to 

smooth the layer, losses were reduced to approximately 34 dB/cm [20].  
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Using solid-phase crystallization (SPC) of deposited amorphous silicon (a-Si) 

allowed for smoother surface and larger grain sizes [21, 22]. This further reduced loss to 

11 dB/cm. Other techniques like using remote electron cyclotron resonance (R-ECR) 

plasma hydrogenation and using silicon oxide nitride (SiON) as cladding, instead of 

regular silicon dioxide allowed for the propagation loss to be reduced even further down 

to approximately 6 dB/cm [22].  

SPC is a very promising technique that has low cost and produces films with high 

uniformity. It involves depositing amorphous silicon and crystallizing the film into large, 

grained polysilicon using anneal treatments [23]. One anneal treatment induces 

nucleation or the crystallization of the film material while the other anneal induces grain 

growth. Lower temperature recipes can be used to create even larger grain sizes but there 

is the drawback of having much lower throughput. Using higher temperatures will also be 

problematic as such high thermal budgets means the polysilicon layer has to be deposited 

before any doping is done. It is therefore important to reduce the thermal budget for the 

polysilicon waveguide fabrication without reducing the improved optical loss property. 

Polysilicon material differs from the single-crystalline silicon material in three 

main ways that affect electro-optic systems – optical loss, effective carrier mobility and 

effective free carrier lifetime [9]. All three parameters are affected by the grain 

boundaries that populate the polysilicon material, presenting barriers to the flow of 

carriers and reducing effective carrier mobility [18, 24]. Since the polysilicon material is 

very resistive, doping is required to induce charge injection. However while the electrical 

injection is improved when the doping level is increased above the grain boundary trap 

density, the trade-off is reduced optical propagation due to increased free carrier 
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absorption. In addition, some of the carriers may fail to contribute to free carrier 

dispersion – if they fill into grain boundary trap states [18]. This has doubly negative 

consequence - reducing both the optical and electrical properties as free-carrier dispersion 

is and charge injection are reduced.  

As polysilicon material needs to be doped for improved electrical properties, the 

optical problems, like free carrier absorption amongst others, that arise due to doping 

need to be researched more.  

 

1.6 Summary 

Despite the various problems, micro-optics integration into electronics faces, 

there is still considerable promise as fabrication technologies improve. Silicon will make 

integration of photonic devices into micro-electronics cost-effective once the electrical 

and optical obstacles are conquered. Polycrystalline silicon as a deposited material holds 

much promise as it allows for high-speed carrier injection and optical modulation using 

the free carrier dispersion effect. Though there is a trade-off between optical and 

electrical properties when using silicon, polysilicon produces a balance that shows much 

promise and can be improved on. Other than the optical and electrical benefits, the device 

space, and fabrication simplification are other benefits of utilizing deposited polysilicon 

material. 

 

1.7 Thesis research 

The goal of this thesis work will be to design, fabricate and test several 

polysilicon waveguide devices. The free-carrier absorption and the optical loss in 
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polysilicon will be quantified. This will be achieved by doping the polysilicon material 

and using the cut back method, to measure the transmission at different waveguide 

lengths for the various carrier concentrations. The viability of efficiently fabricating these 

devices at the RIT SMFL is examined. 
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Chapter 2 
 

Waveguide Primer 
 
2.1 Electromagnetic wave 

Micro-optics utilizes electromagnetic radiation in the Near Infrared (NI) 

frequency range [1]. Electromagnetic waves have the fundamental properties as 

prescribed in Maxwell’s four differential equations. They relate to the electric field (E), 

the magnetic field (H), current density (J) and charge density (ρ) [2]. 

         (2.1) 

        (2.2) 

        (2.3) 

         (2.4) 

Electromagnetic waves travel at the speed of light in vacuum, and micro-optics is 

concerned with this propagation within the various photonic structures.  

Polarization is a very important property of electromagnetic waves. Transverse 

Electric (TE) and Transverse Magnetic (TM ) fields are the most common, though most 

practically are a superposition of several polarizations. The TE has the electric field 

perpendicular to the plane of incidence while the TM has the magnetic field 

perpendicular. The electromagnetic power flow in a given polarization is represented as a 

vector product of the magnetic and electric components.  
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2.2 Optical waveguide 

An optical waveguide is a structure that has the ability to confine and guide 

electromagnetic waves [3]. Examples of waveguides are fiber optics used in 

telecommunications and micro-fabricated ridges used in semiconductor applications. 

Waveguides rely on a guiding medium, the core of the waveguide, surrounded by a 

cladding – usually material of lower refractive index. Propagation in waveguides is 

described by the optics models (Snell’s law) as shown in Equation 5. 

n1 sin(θ1) = n2 sin(θ2)        (2.5) 

where n are the refractive indices of each medium and θ1 and θ2 are the incident 

angles and refracted angles respectively. An illustration of this representation is shown in 

Figure 2.1. 

 

Fig. 2.1: Refraction of light passing through two mediums [4] 
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If the refractive indices and the incident angle are chosen correctly, it is possible 

to have the refracted light have an angle of 90 degrees – in other words reflected back 

into the starting medium. This condition is termed Total Internal Reflection and it occurs 

at a critical angle of the incident light. The incident angle is calculated as [5]: 

θc = arcsin(n2 /n1)        (2.6) 

A waveguide works using Total Internal Reflection and at an angle greater than 

the critical angle to ensure that the light is continually guided in the waveguide’s core 

region. Waveguides therefore have two materials of lower index sandwiching a layer of 

high index in other to optimize the critical angle and sustain guiding. 

The reflection coefficient is a multiplier that relates the amplitude of the incident 

electric field on a dielectric interface to the amplitude of the reflected field and is 

described by the Fresnel’s equations. These are given for both TE and TM polarizations 

by in equations 2.6 and 2.7 [5] 

.      (2.7) 

      (2.8) 

It can be seen that if the incident angle is smaller than the critical angle, the 

resulting reflection coefficient is less than 1. However if the angle is larger than the 

critical angle the absolute value of the reflection coefficient is 1 – entire wave is 

reflected. 

A limitation to the guiding of electromagnetic waves is that not all angles greater 

than the critical angle allow for propagation, rather propagation is allowed in discrete 
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angles [5]. These discrete angles are called the mode of propagation and it is a standing 

wave perpendicular to the propagation direction and a traveling wave parallel to the 

direction of propagation [6]. The mode concept comes from the fact that the wave vector 

possesses both parallel and perpendicular components in the waveguide and each time a 

ray is reflected there is a phase shift of the perpendicular component. Guiding of the 

wave through a waveguide is possible only when this phase shift is an integer multiple of 

2π. Equations for the TM and TE modes as well as an analysis of the slab waveguide are 

found in [5]. 

Only a finite number of modes can be propagated in a given waveguide. The 

number of modes is calculated from the dimensions of the waveguide and the 

wavelength. The polarization of light also plays a determining role. The fundamental 

mode carries the most energy and is the case where the integer multiple of standing 

waves is equal to one [7]. Waveguides are usually excited by Gaussian distribution field 

and these distributions are represented by a continuum of radiated and guided modes, all 

orthogonal to each other [7]. The guided modes will guide through perpetually without 

loss, in theory, while the radiated modes will be lost after some finite propagation length. 

Maxwell’s equations are used to derive the wave equation that precisely explains 

phenomena – such as optical coupling. The wave equation is given in equation 2.9 

represents the magnetic or electric field while represents the Laplacian operator [5].  

      (2.9) 

       (2.10) 
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The solution to the wave equation becomes progressively more complex for non-

rectangular and multidimensional structures. In order to solve the equation, simulation 

software packages – like Optiwave, are used to find approximate analytic or numeric 

solutions. [5, 7] provide further information. 

 

Fig. 2.2: Modal distributions in slab waveguides [8] 

 

Figure 2.2 shows the field distribution for the first four modes of a slab 

waveguide found by solving the wave equation. 

 

2.3 Single mode waveguide condition 

The devices that will be tested in this thesis are single-mode waveguides, so the 

discussion will be restricted to this condition. The main differences between single and 

multimode waveguides are that single mode have a smaller core, are used for high speed 

data transmission for longer distances and are less susceptible to attenuation than 

multimode. Multimode waveguides on the other hand have much larger cores and are 

best for shorter distances due to their higher attenuation levels [9]. 

Using the single mode condition of waveguide structures has several advantages. 

The single mode condition reduces insertion losses and minimizes the effects of sidewall 
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interference scattering [9]. For these reasons and because of its simplicity, this will be the 

only tested waveguide device in this thesis. 

Only a small range of waveguide dimensions will allow for the single mode 

condition. A ridge waveguide has the ability to support propagation under the single 

mode condition over a wider range of dimensions – removing some of the fabrication 

limitations of producing single mode devices.  

The single mode condition is possible in large dimensioned waveguide devices as 

higher order modes radiate out of the ridge. A mode matching technique to describe the 

approximate single mode condition is given in equation 2.11 [10]. 

      (2.11) 

 Where a and b represent waveguide height and width factors, λ the free space 

wavelength, r the ratio of the thin silicon layer to the total waveguide height, 2bλ. The 

variable q, is defined by: 

        (2.12) 

 Further details on the dimensions calculation is provided in [10]. 

 

Fig. 2.3: Waveguide structure (without cladding) [10] 
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Figure 2.3 shows the waveguide ridge structure with width and height factors 

needed to calculate fabrication dimensions that will ensure the single mode condition. 

 

2.4 Summary 

A basic theoretical foundation of the workings of the waveguide structures 

fabricated and tested in this thesis work. A shallow treatment of the electromagnetic 

wave, the optical waveguide, coupling and the single mode condition were presented. 

The single mode waveguide alone was used to collect results so only the single mode 

condition was treated. 
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Chapter 3 
 

Polycrystalline Silicon Background 
 

3.1 Growth and structure of polycrystalline films 

The mechanisms involved in the formation of crystalline states from vapor or 

liquid phases by condensation depends on the time the clusters of atoms interact to form 

the bonds in stable structures [1]. Crystallization is the long-range ordering of atoms in a 

periodic solid phase lattice at close to equilibrium conditions. 

Polycrystalline materials possess no unique directionality, in other words have 

random grain sizes, shapes and orientational packing. The polycrystalline state has a 

relatively longer short-range order, as compared to amorphous silicon, and the 

thermodynamic stability is not only dictated by the crystalline bonding configurations 

with the lowest free energy but also by the grain boundary energy and surface diffusion. 

The grains in the material are formed by independent nucleation and growth processes 

randomly oriented and spaced with respect to one another [2].  

The grain size is controlled by the number of nucleating sites, which can be 

manipulated by seeding with additives or rapid quenching. Grain growth ceases when 

adjacent grains restrict further growth. The shape of the grain is determined by the 

surface orientations favorable for adatom attachment from the solid, liquid and vapor 

phases. This surface is determined by the orientation with the lower interfacial energies 

such as the {110} or [111} orientation for diamond cubic or zinc blende [1] and the 

{100} orientation for NaCl structures.  

In general deposition of these materials will show a high degree of preferential 

orientation normal to the plane of the substrate.  
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The growth of polycrystalline films is independent of the substrate, whether 

amorphous or crystalline. Amorphous material can also be transformed to the 

polycrystalline state but not vice versa. This irreversibility is because the crystalline state 

has lower lattice energy. The transition from amorphous to polycrystalline state occurs 

due to reduction of internal surface energy [3].  

Several methods are used to deposit polysilicon: Low Pressure Chemical Vapor 

Deposition (LPCVD), Plasma-Enhanced CVD (PECVD), or Solid-Phase Crystallization 

(SPC) of amorphous silicon. 

LPCVD involves the pyrolyzing of silane (SiH4) between 580 and 650 C at very 

low pressures (0.2 to 1 Torr) [4]. The pyrolysis process releases hydrogen. Critical 

process variables for polysilicon deposition include temperature, pressure, silane 

concentration and possibly dopant concentration. Polycrystalline silicon is deposited from 

silane using equation 3.1 [5]. 

 SiH4 = Si + 2 H2        (3.1) 

The rate of polysilicon deposition follows Arrhenius behavior and increases 

rapidly with temperature. The activation energy, Ea, for polysilicon deposition is 

approximately 1.7 eV. Equation 3.2 shows the deposition rate. 

R = A exp (-q Ea / kT)        (3.2) 

It can be seen that the rate of polysilicon deposition increases with deposition 

temperature. There will be a temperature however where the rate of deposition becomes 

faster than the rate at which un-reacted silane arrives at the surface of the wafers. Beyond 

this temperature, the deposition rate no longer increases with temperature as there is a 

lack of silane for reaction. When a polysilicon deposition process reaches this state it is 
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termed ‘mass-transport-limited’ [4] and at this point the reaction rate becomes dependent 

primarily on reactant concentration, gas flow and reactor geometry. 

When the rate of polysilicon deposition is slower than the rate at which un-reacted 

silane arrives then it is termed ‘surface-reaction-limited’ [4]. This process is primarily 

dependent on reaction temperature and reactant concentration. Surface-reaction-limited 

processes result in excellent thickness uniformity and step coverage. 

One major difference between amorphous and polysilicon is that the mobility of 

the charge carriers in polysilicon can be orders of magnitude larger [6]. Also polysilicon 

shows better stability under light-induced stress and electric field. Amorphous silicon 

however possesses lower leakage characteristics. Below 575 C, polysilicon deposition 

rate is too slow while above 650 C, the uniformity suffers greatly and excessive 

roughness will be encountered because of silane depletion and gas-phase reactions. 

PECVD is used to deposit thin films via chemical reactions and with the aid of a 

plasma. The plasma is generated by RF frequency or DC discharge between two 

electrodes [6]. In general PECVD allows for lower temperature deposition than LPCVD. 

SPC involves the deposition of amorphous silicon which is then crystallized to 

form the polysilicon [7]. Layers produced in this manner are shown to produces a more 

conformal layer. This is important when producing waveguide devices on this material as 

sidewall roughness and layer uniformity are key factors in the optical losses. SPC serves 

to minimize this factor. There is however the tradeoff that it takes much longer than 

direct polycrystalline silicon deposition. The two step SPC includes: grain growth and 

nucleation. Grain growth expands the grain size in the forming crystalline film; this has 

the positive effect of limiting optical losses that realize at grain boundaries. The fewer 
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grain boundaries in the deposited film the lower the optical losses. Nucleation is the event 

that transforms a homogenous structure, in this case amorphous silicon into crystallized 

material. The nucleation activation energy is extracted from the time to the beginning of 

crystallization, and this factor dictates the temperature and time of anneal used.  

 

3.2 Grain boundaries in polycrystalline films 

The grain boundary region can be represented as a two-dimensional 

semiconductor with a reduced band gap. 

There are two types of grain boundaries – intrinsic and extrinsic grain boundaries.  

Intrinsic grain boundaries are those with properties controlled by intrinsic effects like 

lattice distortions. Extrinsic grain boundaries are grain boundaries where second-phase 

precipitation occurs or where the doping concentration in adjacent crystalline depletion 

region is appreciably different from that of the bulk crystal dopant concentration. Many 

of the grain boundary effects observed are extrinsic [2].  Molecular beam epitaxy (MBE) 

is a very good way of measuring the grain boundary structures. The secco etch is another.  

 

3.3 Summary 

A short primer on polycrystalline silicon, the material that will be used in this 

thesis work was given in this chapter. The general theory of the material structure and the 

deposition methods available is presented. The next chapter presents the fabrication of 

the waveguide devices on polycrystalline silicon film.  
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Chapter 4 
 

Fabrication of Waveguide Devices 
 
 

 The fabrication of devices designed in this thesis is accomplished at the Rochester 

Institute of Technology (RIT) Semiconductor and Microsystems Fabrication Laboratory 

(SMFL). This chapter will describe the several process steps used for the production of 

the photonic devices. Problems encountered during the fabrication process and their 

impact on waveguide operation and possible ways in which some of the problems can be 

solved in future works are presented. It should be noted that the waveguide structures 

used in this thesis work were produced from a photolithography mask that was not fully 

optimized for polycrystalline silicon, single-mode waveguides. The used mask had a 

number of superfluous photonic structures and only a few single-mode waveguide 

structures, however it was determined that the number of usable structures was sufficient 

enough to not warrant the additional cost of producing a new mask altogether.    

 

4.1 Design layout and mask 

Before fabrication, the photolithography mask needs to be identified or designed 

and produced. The mask used in this thesis is the one used by Eric Harvey [1] in his 

thesis on mono-crystalline Silicon-on-Insulator waveguide devices. For the design of 

masks, design constraints need to be determined by simulation and overcome by the 

layout of the structures. The structures were exported from Optiwave to the Graphical 

data systems (GDSII) layout format [2]. The GDS file was then imported into the IC 

VLSI layout software tool where each structure was positioned in the die framework. The 



     28 

size of the layout is 18.5x18.5mm and it was produced by the MEBES III mask making 

tool at RIT. A diagram of the full mask layout is shown in Figure 4.1. 

 

Fig. 4.1: Mask layout of die [1] 

 

 Each of the layout structures is 15 mm in length with input and output ports very 

well aligned to allow for convenient testing on the same die. The devices were separated 

by 500 µm so that an excited waveguide’s evanescent field would cause negligible 

interaction on neighboring structures. The layout was directly printed by the MEBES III 
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from the GDSII file and was designed as a clear field mask – the chrome remains only 

where the structures and text are located and are cleared everywhere else. This in essence 

means a positive photoresist has to be used as this type of resist becomes soluble when 

exposed to light from the stepper. The fabricated mask is shown in Figure 4.2.  

 

Fig. 4.2: Mask fabricated with the MEBES III 

 

4.2 Wafer processing 

Several process steps were utilized to transfer the waveguide structures onto the 

polycrystalline silicon film. Steps were taken to address issues that might be detrimental 

to optimized waveguide functionality like non-uniform films, rough waveguide side-

walls, implant anneal amongst others. The following sub-chapters will describe the steps 

used to fabricate the final waveguide devices.  
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4.2.1 Preparation 

The starting substrates are basic 6 inch diameter, <100> oriented, silicon wafers 

with no deposited films initially. The wafers are scribed for identification purposes and 

go through the RCA cleaning process. RCA stands for Radio Corporation of America 

which developed the original procedure in 1965. The RCA clean is a set of cleaning steps 

standard in the semiconductor industry performed before high temperature process steps 

such as diffusion, oxidation, chemical vapor deposition (CVD). It includes Standard 

Clean, SC-1, which removes organic contaminants, and SC-2, which removes metallic 

(ionic) contaminants [3].  

The RCA steps vary slightly from cleanroom to cleanroom but have almost the 

same components. The steps used at the RIT SMFL and used for this thesis work go as 

follows: 

SC 1: 10 minutes, 1:1:5 solution, NH4OH + H2O2 + H2O at 75 degrees Celsius. 

Rinse in De-ionized (DI) water: 5 minutes. 

50:1 Hydrofluoric Acid (HF) dip: 1 minute. 

Rinse in DI water: 5 minutes. 

SC 2: 10 minutes, 1:1:5 solution, HCl + H2O2 + H2O at 75 degrees Celsius.  

 

SC 1 removes the organic contaminants but produces a very thin layer of silicon 

dioxide (about 10 Angstroms) and some metallic contaminants. The HF dip step removes 

the silicon dioxide layer and some of the metallic contaminants. The SC 2 step then 

removes the remaining metallic contamination. After this step the wafers are then 

processed in the SRD Rinse/Spin Dry tool, which rinses the wafers with DI water and 
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dries with nitrogen or air. This step prevents the operator from coming into contact with 

dangerous cleaning chemistry. The RCA wet bench is shown in Figure 4.3. 

 

Fig. 4.3: RCA clean wet bench at SMFL [4] 

 

4.2.2 Oxide deposition 

 The first process step is the deposition of 3 µm of silicon dioxide. This layer acts 

as the bottom cladding for the device layer – which contains the waveguides. For speed, 

the AME P5000 Plasma Enhanced Chemical Vapor Deposition (PECVD) tool was used 

to deposit Tetraethyl orthosilicate (TEOS) silicon dioxide.  Deposition my PECVD takes 

approximately 1 hour 30 minutes from equipment startup while depositing 3 µm by an 

oxidation furnace would take over 17 hours. Growing the silicon dioxide by oxidation 
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would also consume approximately 46% of the silicon substrate [5], a factor that is not 

present in PECVD. TEOS layers also have excellent conformality and are deposited at a 

lower temperature - 390 degrees Celsius in this tool. They however have the problem of 

absorbing water molecules from the air, so care has to be taken to keep wafers contained 

most of the time [6]. The TEOS layer suffices as a bottom cladding because it has the 

same refractive index as grown silicon dioxide and hence can provide suitable optical 

confinement due to index difference with the polycrystalline silicon layer that will be 

deposited. The ASME P5000 PECVD tool used to produce this layer is shown in Figure 

4.4.  

 

Fig. 4.4: AME P5000 PECVD tool 
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4.2.3 Polycrystalline silicon deposition 

 A 270 nm thick layer of amorphous silicon (a-Si) is deposited by low-pressure 

CVD (LPCVD) at 550 degrees C from SiH4. This layer is then crystallized into 

polycrystalline silicon by a two-step thermal anneal process. The first anneal step is at 

600 C for 24 hours and then at 1050 C for 10 minutes in pure nitrogen (inert) ambient. 

This is in accordance with Solid-Phase Crystallization (SPC) and produces a layer of very 

low surface roughness [7, 8]. The reason, the layer is deposited first as a-Si, then 

crystallized by SPC is because a layer made in this manner has been shown to possess not 

only a more conformal layer but a layer that produces waveguides with improved 

sidewall roughness [8]. Sidewall roughness accounts for a large part of the optical losses 

in waveguides. Minimizing this factor by using SPC, even though it takes much longer 

than direct polycrystalline silicon deposition, is a very useful step in getting optimized 

devices at the end.  

 The two step SPC includes: grain growth and nucleation. Grain growth expands 

the grain size in the forming crystalline film; this has the positive effect of limiting 

optical losses that realize at grain boundaries. The fewer grain boundaries in the 

deposited film the lower the optical losses. This is performed at 600 C. The grain growth 

rate is extracted from grain progression data [7, 9] and dictated the anneal time. 

Nucleation is the event that transforms a homogenous structure, in this case amorphous 

silicon into crystallized material. In this process, the nucleation is done at 1050 C in a 

Rapid Thermal Processing (RTP) chamber. The nucleation activation energy is extracted 

from the time to the beginning of crystallization, and this factor dictates the temperature 

and time of anneal used. To achieve the largest possible grain, the nucleation energy 
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(process temperature) can be reduced relative to the grain growth process temperature. 

The trade-off is that this causes an increase in throughput through (due to slower 

crystallization).  

 The process steps taken in this work are very similar to other successful SPC steps 

in [10]. The ASM LPCVD tool used is shown in Figure 4.5. There were some problems 

with films produced with the RIT SMFL tool with regards to film’s optical qualities, so 

the initial layer was deposited at the Cornell CNF cleanroom facility. The issues that 

warranted the use of an external facility for this deposition will be addressed later in this 

thesis. 

 

Fig. 4.5: ASM LPCVD tool at RIT SMFL 
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The process parameters used for the deposition where: 

 Temperature: 550 C 

 Gas used: Silane (SiH4); Pressure: 300 mTorr; Flow: 50 sccm 

 Rate of deposition: 35 Angstrom/minute 

 Total film thickness: 270 nm 

The first step of the SPC process was then conducted after an RCA clean. The wafers 

were annealed in the RIT SMFL oxidation furnace (Bruce furnace). The process was in 

nitrogen ambient with a maximum temperature of 600 C for 24 hours. The Bruce 

Oxidation and Annealing furnaces at the RIT SMFL are shown in Figure 4.6. 

 

Fig. 4.6: Bruce Furnace at RIT SMFL 
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The final step is the nucleation anneal. This is done with the AG 610 RTP tool. The 

wafers are annealed at 1050 C for 10 minutes. The AG 610 RTP tool at the RIT SMFL is 

shown below. Figure 4.7 shows the RTP system. 

 

Fig. 4.7: AG 610 RTP tool at RIT SMFL 

  

4.2.4 Bottom Anti-Reflection Coating (BARC) deposition 

After the film depositions, the waveguide structures are transferred unto the 

wafers by photolithography. Prior to performing lithography, a Bottom Anti-Reflection 

Coating (BARC) is applied on the wafer surface to help reduce or possibly eliminate 

standing waves and reflective notching in the photoresist that is applied [11]. A reduction 

in standing waves improves the side wall roughness of the produced waveguides, making 

the deposition of BARC a very useful process step. The XLT-20 is the BARC used. It is 
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spun on using the CEE Spin Coater. It is applied at 4000 RPM for 60 seconds; a resist 

thickness of 2200 Angstrom is obtained. The CEE Spin coater used is shown in Figure 

4.8. A two step post bake is utilized: first at 100 C for 60 seconds and at 168 C for 60 

seconds.  

 

Fig. 4.8: CEE Spin coater at RIT SMFL 

 

4.2.5 Photoresist coating 

A layer of photoresist is then applied to capture the mask pattern unto to the 

wafer. Photoresist is a material which changes properties when exposed to light. A 

positive resist, Arch OIR 620, is used due to the type of mask selected. The resist is 

applied using the automated SSI coat and develop track. The SSI track is a 6” wafer track 

is a full process system which contains spinners and hot plates which bake the resist. The 

SSI track is shown in Figure 4.9.  
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Fig. 4.9: SSI coat and develop track at RIT SMFL 

 

Since a BARC layer has already been deposited, a recipe without HMDS, a 

primer, is used. The “NOHMDS” recipe spins the resist at 4150 RPM for 30 seconds and 

gives a thickness of 9000 Angstrom. A post bake is done at 140 C for 60 seconds to 

solidify the resist. Full recipe detail is available at [12].  

 

4.2.6 Photolithography - exposure 

The photolithography step transfers the layout pattern from the mask to the wafer. 

This is realized when light of known wavelength is incident on a photoresist layer 

through a photomask. The light passes un-hindered in areas of the mask without chrome, 

changing the chemical properties of the resist. The lithography patterning was 

accomplished using the i-line Canon stepper (FPA 2000-il). This tool possesses focus = 
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0.8 µm, NA = 0.52, resolution = 0.5 µm, and wavelength = 365 nm. The Canon stepper 

used is shown in Figure 4.10.  

 

Fig. 4.10: Canon stepper at RIT SMFL 

 

Before exposure the number of replications, the die size and spacing between adjacent 

dies of the mask pattern to be made on the wafer has to be set. This can be done by 

defining variables in the stepper job file. The die size is done by setting the position of 

the blades that limit the area of the mask that is exposed to light. The variables are BL, 

BΓ, Bu, and Bd, which represent the positions of left, right, up and down in a Cartesian 

coordinate system where the origin is the center of the mask. The die layout on the wafer 

is shown in Figure 4.11.  
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Fig. 4.11: Die layout [1] 

 

 The stepper job used in this work has the job name: OGAH, BL = -9.25 mm, BΓ = 

9.25 mm, Bu =9.25 mm, Bd, = -9.25 mm, focus = 0.1 µm, exposure = 260 mJ/cm2. The 

step variables, Stepx and Stepy define the distance between the same points on adjacent 

dies. In this stepper job, Stepx and Stepy are set as 19 mm. This serves to provide 500 µm 

spacing between dies. The stepper job shot 7x7 dies on the wafers for a total of 49. The 

optimal focus and exposure was determined by performing a focus exposure matrix. This 

is a process using the stepper where the focus is varied between each row, and the 

exposure between each column.  

 

4.2.7 Photoresist developing 

After patterning, the unwanted parts of the photoresist are chemically removed by 

using a photo developer. As a positive photoresist was used the parts exposed to light get 

removed.  The developer used is the CD-26 which was applied on the SSI coat and 

develop track and used the “DEVELOP” recipe. The developer was sprayed, and the 
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wafer spun for 2 minutes, there was then a bake at 120 C for 2 minutes. The full recipe is 

available at [13].  

 

4.2.8 Reactive Ion Etch (RIE) of polycrystalline silicon 

The next step in the process is to etch back 200 nm of the polycrystalline silicon 

using the photoresist as a mask. The Trion RIE etch tool is used for this purpose. RIE is 

an etching technology that uses chemically reactive plasma to remove materials. RIE 

generates plasma by using an electromagnetic field at low pressure (vacuum) and inciting 

high energy ions from the plasma to attack the wafer surface. Specifically, it applies a 

large RF electric field to the chamber, which strips electrons off the gas moleucules, 

resulting in plasma. The wafer is DC isolated and the chamber walls are grounded, hence 

electrons build on the wafer, giving it negative potential. The positive ions of the plasma 

are then attracted to the wafer surface and as they collide with force they physically etch 

the target material. 

The waveguide structures are formed by etching away 200 nm of poly silicon 

from the areas not protected by the photoresist mask. The Trion RIE etcher has high 

anisotropy which allows for relatively smooth vertical side walls. The strong electric field 

between the wafer and the plasma allow for this anisotropy [14].  

The specific recipe used on the Trion RIE etch is “Preble-Si-Etch”. Pressure = 

100 mTorr, RF power = 100 W, O2 flow = 3 sccm, CF4 flow = 25 sccm and process time 

= 240 seconds. After this process it was found that 191 nm was etched, meaning this 

recipe has an etch rate of approximately 48 nm/minute. The Trion Etcher used is shown 

in Figure 4.12.  
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Fig. 4.12: Trion RIE etcher at RIT SMFL 

 

4.2.9 Plasma etch of photoresist 

The next step is to strip off the photoresist used as a mask for the polycrystalline 

silicon etch step. This ensures that the resist remaining does not soften up and flow in 

later high temperature processes. This step also makes for clearer viewing, microscopy 

and metrology of structures on the wafer. The etching step, also called an ash step is done 

on the Branson L3200 Asher, using the “Hard Ash” recipe. This is an oxygen ash of fixed 

length used to remove hardened resist. It etches any organic layer (including the BARC), 

leaving behind just the poly silicon layer. The Branson etcher used is shown in Figure 

4.13.  
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Fig. 4.13: Branson L3200 Asher at RIT SMFL 

 

4.2.10 Measurements  

After the waveguides are fabricated, measurements are made to find out if the 

dimensions match expectations. Planar dimensions like the width of waveguide structures 

can be measured via a microscope. The height of the structures was found using the 

Tencor P2 profilometer as seen in Figure 4.14. The tool works by dragging a fine tip over 

the surface of the wafer; an accurate depiction of the wafer topography is acquired from 

the displacement of the tip. This tip displacement is plotted, giving a visual 

characterization of the step height of the structures and the general uniformity of the 

wafer and structure surface.  
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Fig. 4.14: Tencor P2 profilometer at RIT SMFL 

 

4.2.11 Wafer dicing 

The next process step is the dicing of the wafers. This involves the sawing or 

cutting of the wafer to expose a cross section of the devices for testing. In this case, the 

wafer is diced with the Karl Suess KS775 wafer saw as shown in Figure 4.15. The 

decision was made to dice the wafer before the next step, ion implantation, because 

several samples were needed and only a limited number of wafers were available. Sawing 

is an automated and accurate way of individualizing the various dies on a wafer. It also 

does not produce the edge angles that other wafer cutting methods like cleaving cause. A 

disadvantage though is that sawing produces a certain amount of roughness on the wafer 

edges. This roughness causes scattering and hence optical losses. There are several issues 
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that crop up after wafer dicing that affect optical losses and measurements. These factors 

will be addressed later in this chapter and in the next. 

 

Fig. 4.15: KS775 wafer saw at RIT SMFL 

  

Prior to dicing, a layer of photo resist is deposited on the completed wafer, to 

serve as protection from air particles, dust and project debris from the saw amongst other 

impurities in the lab. The dicing is not done in the cleanroom, so the resist deposition is 

especially important to preserve device integrity. Figure 4.16 shows a wafer after dicing. 

The blue material in Figure 4.16 is an adhesive used to hold the wafer die together during 

the cuts. 

Before experimental testing, there will be further wafer dicing. It would involve 

cutting through the ends of the waveguides on both sides, exposing the waveguide cross 

section for testing. The final devices will be cut down into pieces as small as 2 mm in 
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length (18.5 mm in width) and cut down even further in a bid to calculate the absorption 

losses through the material. 

 

Fig. 4.16: Wafer after dicing step 

 

4.2.12 Ion implantation of device wafers 

The penultimate step is the introduction of dopants into the dies. The aim is to 

have several dies with varying carrier concentrations so that the absorption loss can be 

calculated after testing. Ion implantation is a process where dopant ions are implanted 

into a material thereby changing the physical and electrical properties of the implanted 

material. The crystal structure of the target can also be damaged by the energetic 

implanting so post-implant annealing is often necessary. Ion implantation is the most 

accurate method of injecting dopants – it can be used for very shallow implants, very low 

doses and as a low-temperature process is often more attractive than the furnace drive in 
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alternative. Ion implantation consists of an ion source, which produces the ions of a 

desired element, an accelerator, which accelerates ions with high energy electrostatically, 

and a target chamber, where the target is struck by the ions. The ions are extracted from 

the source and analyzed through a magnetic field, where Lorentz force takes the ions 

through a curved path which serves to separate ionic species based on their mass. By 

adjusting the magnetic field strength only the selected ions enter the accelerating column 

and eventually reach the wafer.  

The amount of implanted material in the target is the integral of the ion current 

over time, and is called the implant dose [6]. The ion energy as well as the target and ion 

species used determines the depth of penetration into the target. The average penetration 

depth is the range, which usually falls between 10 mm and 1 µm. As ions travel through 

the target, they gradually lose energy due to collisions with target atoms and a small drag 

from electron orbitals [6]. The eventual loss of ion energy in the target is called stopping. 

The two types of stopping are electronic and nuclear. Electronic stopping is due to 

transfer of energy from impacting ion to the electrons of the target material. It does not 

cause crystal damage. Boron loses its energy mostly by electronic stopping. Nuclear 

stopping is due to transfer of energy from impacting ion to the nuclei of the target 

material. Phosphorus and arsenic lose their energy mostly by nuclear stopping. 

Substantial crystal damage is done on the silicon especially at high doses. 

Dopant ions like boron, phosphorus or arsenic are used from a gas source, for 

higher purity and when implanted create a charge carrier, either hole or electron 

depending on if it is a p-type or n-type dopant. This modifies the electrical and optical 

properties of the semiconductor material.  
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In this work, the polycrystalline silicon waveguides will be implanted with boron 

(holes) and phosphorus (electrons) using the Varian 350D ion implanter as shown in 

Figure 4.17. Carrier concentrations of 1x1016 cm-3, 1x1017 cm-3, 1x1018 cm-3, 1x1019 cm-3 

are implanted for both boron and phosphorus. To achieve this range of carrier 

concentrations, doses of 4.1x1011 cm-2, 3.3x1012 cm-2, 3.4x1013 cm-2, 3.2x1014 cm-2 and 

implant energy of 110 KeV are used for phosphorus (P31) implants respectively. Doses 

of 3.8x1011 cm-2, 3.1x1012 cm-2, 3.5x1013 cm-2, 3.3x1014 cm-2 and implant energy of 40 

KeV the boron (B11) implants respectively. The dose and implant energy values were 

derived via simulations through the Silvaco Athena software. 

 

Fig. 4.17: Varian 350D Ion implater at the RIT SMFL 
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4.2.13 Post implant anneal and final cladding 

The final process steps are the deposition of the top cladding and the post implant 

anneal used to help repair structural damage and to activate dopant ions. The top cladding 

is done by depositing 1 µm of TEOS using the AME P5000 as in section 4.2.2. This 

provides for Total Internal Reflection as the waveguide structures are now sandwiched 

between two high refractive index silicon dioxide layers. This helps minimize optical 

losses. After the cladding, the wafer is then annealed in nitrogen ambient in the following 

steps: 600 C for 30 minutes, 900 C for 15 minutes and 1050 C for 30 seconds. These 

anneal done on an oxidation furnace and RTP system help reduce structural damage done 

at implantation and maximizes the amount of dopant ions that are electrically activated 

[15]. With this step done the wafer are then ready to be diced in preparation for testing. A 

depiction of the cross section of the final device made is shown in Figure 4.18. Only one 

waveguide is shown for simplification. 

 

Fig. 4.18: Depiction of cross section of final device fabricated 
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4.3 Device metrology 

After the final process steps, metrology is conducted to determine that the 

waveguides’ integrity is acceptable from a test point of view. It is of experimental interest 

and future failure analysis to determine that there is not a significant number of 

waveguide breakages, and that the surface roughness and sidewalls are of a sufficient 

standard. In this work the structures where examined with microscopes and Scanning 

Electron Microscopes (SEM). The devices were of a sufficient standard. Figures 4.19 and 

4.20 show some of the final device images.  

 

Fig. 4.19a: Devices under microscope examination 

 

 

Fig. 4.19b: Further microscopy showing resist smudges post dicing 
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Fig. 4.20: SEM examination  

 

4.4 Problems encountered 

During the device fabrication, a significant problem cropped up which delayed the 

thesis work significantly. The problem encountered was the inability to get optical 

transmission through the polysilicon waveguides fabricated at the RIT SMFL using the 

AME LPCVD tool. Initially several etch and anneal recipes were attempted in an effort to 

optimize optical transmission, without any success. Eventually, a decision was made to 

produce the same film with the LPCVD tool at the Cornell CNF cleanroom using the 

exact same recipe. The new film as deposited at the Cornell CNF facility allowed optical 

transmission. The same anneal steps (furnace and RTP) were performed on wafers from 

both tools.   

Ellipsometry was conducted on the two samples and both gave values of 3.46 at 

1550 nm, which is the expected value for silicon. However the ellipsometer used is old 
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and may not have been able to accurately measure very small changes in the refractive 

indices of the materials. A small change in refractive index can alter transmission at 

certain wavelengths. 

Atomic Force Microscope (AFM) tests were performed on samples from both 

facilities and the results are shown in Figure 4.21 and 4.22. 

 

Fig. 4.21: Material produced with the LPCVD tool at the RIT SMFL  

 

 

Fig. 4.22: Material produced with the LPCVD tool at the Cornell CNF (same scale as above) 
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AFM is a type of scanning probe microscopy with a very high resolution – over 

1000 times better than the optical diffraction limit – and as such is one of the foremost 

tools for imaging. The AFM consists of a cantilever, usually made with silicon or silicon 

nitride [16]. At the end of the cantilever is a sharp tip, with a nano-scale radius of 

curvature, which serves as a probe. When the tip comes into proximity of the material’s 

surface, several forces (van der Waals, capillary, electrostatic, chemical bonding, 

mechanical contact, magnetic, Casimir) cause a deflection of the cantilever, obeying 

Hooke’s law. The deflection is measured using a reflected laser from the top of the 

cantilever and utilizing photodiodes. The AFM scans were done at the RIT Electrical 

Engineering department.  

In the results it is clearly visible that there are approximately 80 nm sized grain-

like particles in the film deposited with the SMFL tool. These do not exist on the film 

produced with the Cornell CNF LPCVD tool. Both Figures 4.21 and 4.22 have the same 

scale. After some investigation it is found that due to age, the SMFL tool is not 

completely sealed in. The lack of a full seal during a high temperature process would 

cause additional and unwanted oxygen and nitrogen into the chamber, adding impurities 

to the silane decomposition reaction in an uncontrolled manner. The large grain-like 

structures - which could be localized oxide regions - seem to be an artifact of this.  

These grain-like structures would cause additional optical losses – through 

scattering even before the addition of doping, as losses occur at the boundaries of the 

materials regular grains. It is therefore my conclusion that these structures are a 

significant reason the optical losses in the SMFL deposited film is so high.  
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4.5 Summary 

This chapter has shown the full fabrication flow that is implemented to produce 

the waveguide structures that will be optically tested. The waveguides produced showed 

good rib height and width uniformity. A lack of uniformity can not strongly affect the 

design parameters like the coupling coefficient but can also transform a single-mode 

waveguide into a multi-mode one. Working devices were produced that met expectations 

from a processing point of view.  
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Chapter 5 
 

Experimental Measurements 
 

One of the most important and tasking aspects of waveguide fabrication is the 

testing of its operation. Focusing and aligning light into a well-diced and polished end 

facet of a waveguide is complex and time consuming. This chapter will discuss the 

techniques used to test the polysilicon waveguide devices’ operation, the transmission 

results obtained and the calculated polysilicon absorption values for holes and electrons 

at 1550 nm. A comparison of obtained results will be made with crystalline silicon values 

in [1]. 

 

5.1 Facet preparations 

Before testing, an edge perpendicular to the waveguides that exposes the devices’ 

cross section has to be created. This edge is called an interface facet. It is used to provide 

a point through which an optical fiber can transmit laser light through the waveguide and 

have it measured at the output.  

The two main methods used to create a facet are by cleaving and sawing. 

Cleaving involves using a diamond tip pen-structure to break a wafer along its 1-1-1 

crystal plane. It can produce very smooth facets if done properly, but can also produce 

edge angles which can increase optical loss. Sawing utilizes an automated blade to dice 

the wafer. This avoids edge angles but tend to produce greater edge roughness which can 

increase scattering and hence losses.  

In this work, sawing (dicing) was used as it was more a more accurate and 

consistent method. This was done using the KS 775 wafer saw. Before any dicing is 
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done, a layer of photoresist is applied manually to protect the wafer from dicing debris 

and the non-cleanroom environment of the laboratory in which the wafer saw is located. 

To help reduce the edge roughness and coupling insertion loss, an extra polishing step 

was performed after sawing to give a more uniform edge. A rough edge with several cut 

lines causes scattering which could result in up to 10 dB of optical insertion losses, while 

a smooth edge has been shown to give as low as 1 dB of insertion loss. A quality 

polishing step is therefore desirable. The polishing was done with the Allied Techprep 

grinding and polishing system as shown in Figure 5.1. 

 

Fig. 5.1: Allied Techprep grinding and polishing system 

  

 A photoresist layer is also necessary while polishing, for the same reasons as 

when sawing. One of the disadvantages of polishing is that there is a chance of damaging 

the edge of the wafer or chipping the edge which could remove portions of the waveguide 
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at the edge of the wafer. After the facets have been prepared, the protective layer of 

photoresist is removed to prepare for device testing. The resist is removed with acetone, 

iso-propanol, rinsed with DI water and dried with an air or nitrogen gun. 

 

5.2 Experimental setup 

 To test the fabricated and prepared waveguide devices, light has to be coupled 

into the 2 µm wide waveguide with great precision and minimal losses. An optical test 

setup has to be devised to align a beam of light with the waveguide input end and 

measure the power received at the output end. The experimental setup designed for this 

task is comprised of several laser posts, fiber holders, mounting brackets and optical 

translation tables. An illustration of the test set up used is shown in Figure 5.2. 

 

Fig. 5.2: Waveguide test setup 
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 The setup comprises of four x-y-z translation platforms to provide alignment of 

the die, microscope, input and output fiber. The input fiber has to be stripped and 

prepared. After preparation, the fiber is mounted onto the fiber holder and aligned with 

the waveguides with adjustments made through the x-y-z translation stages. The end of 

the fiber not in proximity to the waveguide is mounted onto a fiber connector and 

attached to the input source, the Ando AQ4321D Tunable laser source. The laser source is 

shown in Figure 5.3.  

 

Fig. 5.3: AQ4321D tunable laser source 

 

The central stage holds the wafer die and can be moved or tilted. On the right 

hand side is the output stage which holds a prepared fiber tip to detect the light coming 

out from the waveguide and transmit it to the measurement device, the Newport power 

meter 2931-C. This is shown in Figure 5.4. This device plots the power of the optical 

signal coming out of the waveguide output end verses the wavelength chosen. 

 The microscope is placed above the three translation stages and has been detached 

from its base and connected to a post in a position directly over the die. The microscope 
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has its own translation stages and can be moved independently in the x-y-z directions. A 

picture of the full set up is shown in Figure 5.5. 

 

Fig. 5.4: Newport power meter – 2931-C 

 

 

Fig. 5.5: Picture of test setup 
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 Another important factor critical to minimizing insertion losses other than the 

quality of the facet and the fiber-waveguide alignment is the coupling technique. In this 

work direct butt coupling with a tapered tip was used. This is made by heating a portion 

of the fiber and pulling, stretching the fiber thin and forming a tip. The advantage of this 

is that the tip is smaller than the width of the waveguide, hence allowing for more light to 

be coupled. A disadvantage is that due to its non-smooth nature, some scattering occurs. 

The Ericson FSU975 fiber fuser is used to make the tapers and is shown in Figure 5.6a. 

An illustrated tapered fiber tip is shown in Figure 5.6b. 

 

Fig. 5.6: a) FSU975 fuser, b) Tapered optical fiber tip 

 

5.3 Results 

 To ensure optimal alignment of the input into the waveguide steps are taken. The 

device die is prepared as discussed above, and placed on the center translation stages; the 

input fiber is inserted into the fiber holder of the input translation stage with extra care to 

ensure the tip of the tapered fiber does not hit a solid surface causing it to break. A visual 
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then camera-based alignment is used to align the optical fiber into the input end of the 

waveguide structures. The optical fiber carries infrared light, 1550 nm wavelength. The 

fiber is then maneuvered in the x-y-z direction, to ensure it is actually well aligned to the 

structures. This can be visually determined by checking for reflections on the facets and 

is well handled after some experience has been gained. The camera has to be set in focus 

to capture the structures properly. The camera, on video mode is shown on the CRT 

connected to it. On the other end of the waveguides, the output fiber is also inserted into 

its fiber holder and aligned to the output of the waveguides to capture the transmission 

through the devices. The infrared light is then turned on and transmission measured. 

Pictures showing the optical fiber illuminating the optical waveguides are shown in 

Figure 5.8 and 5.9. 

 

Fig. 5.7: Input fiber illuminating device 
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Fig. 5.8: Coupled single mode waveguide 

 

 Figures 5.7 and 5.8 show successful coupling of infrared light at 1550 nm 

wavelength into the waveguide devices. Only single-mode waveguides were tested for 

consistency in results. The propagation light in the waveguides is clearly visible because 

there are small amounts of scattering off the edges of the waveguide. The structures were 

2mm in length. This length was chosen because it was decided more consistent results 

could be achieved from smaller lengths. It also allows for fewer waveguide breaks or 

shorts. 

 The pieces that were doped with phosphorus (N-type) and boron (P-type) were 

tested and transmission captured from the output end of the waveguides. After each test, 

the same piece is diced by an additional 0.25 mm using the K&S saw. The cuts made 

were the initial 2 mm, 1.75 mm, 1.5 mm, 1.25 mm and 1.0 mm. However at the 1.0 mm 

cut, significant damage was done to the edges of the waveguide that it was impossible to 
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couple and light in any of the structures. The pieces were essentially destroyed. The 

phosphorus and boron doped 1x1019 cm-3 implanted devices showed very high losses and 

failed to work. Prior to any testing the un-doped pieces was tested to serve as a reference 

and to aid in absorption calculations afterwards. The same pieces that were tested were 

then implanted and repeatedly diced. This was done so that the exact same sets of 

samples were used – improving experimental certainty and reducing wafer processing 

variations. Tables 1 and 2 show the results received for n- and p-type doped samples. 

 

No doping  

Remark: 16.5337 dB/cm loss 

Waveguide length (mm) Normalized Transmission (dB) Δα (cm-1) 

2 -1.2398  

1.75 -0.6394 5.53 

1.5 -0.5094 1.2 

1.25 0.0000 4.69 

 

Phosphorus – 1x10-16 cm-3 

Remark: 22.7779 dB/cm loss 

Waveguide length (mm) Normalized Transmission (dB) Δα (cm-1) 

2 -1.7098  

1.75 -1.0158 6.39 

1.5 -0.8515 1.51 

1.25 0.0000 7.83 
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Phosphorus – 1x10-17 cm-3 

Remark: 29.8662 dB/cm loss 

Waveguide length (mm) Normalized Transmission (dB) Δα (cm-1) 

2 -2.2402  

1.75 -2.5015 -2.39 

1.5 -0.8299 1.54 

1.25 0.0000 7.64 

 

Phosphorus – 1x10-18 cm-3 

Remark: 43.3423 dB/cm loss 

Waveguide length (mm) Normalized Transmission (dB) Δα (cm-1) 

2 -3.2511  

1.75 -1.7304 1.41 

1.5 -1.1804 5.07 

1.25 0.0000 10.9 

Table 5.1: Transmission data for N-type samples 

 

The average Δα values were 3.81, 5.24, 6.88, 9.98 cm-1 for un-doped, 1x10-16, 

1x10-17, 1x10-18 cm-3 respectively. Plots of these values are shown in Figures 5.9. There is 

a significant downward slope signifying a decrease in transmission for longer lengths – 

which is intuitive. The un-doped polysilicon shows a material loss of 16.5337 dB/cm and 

increases for implanted devices. Further analysis of these results will be expatiated later 

on in the chapter. 
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Normalized transmission v. Waveguide length - showing trend 
lines
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Fig. 5.9: Normalized transmission v. Waveguide length for phosphorus doped samples 

  

The same process steps were used for the boron doped samples. The samples had 

severe edge chipping by the 1.25 mm dice, so no measurements were taken for that. 

No doping  

Remark: 14.5 dB/cm loss 

Waveguide length (mm) Normalized Transmission (dB) Δα (cm-1) 

2 -0.726  

1.75 -0.125 5.53 

1.5 0.00 1.15 

 

Boron – 1x10-16 cm-3 

Remark: 21.9997 dB/cm loss 
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Waveguide length (mm) Normalized Transmission (dB) Δα (cm-1) 

2 -1.10  

1.75 -0.46 6.03 

1.5 0.00 4.14 

 

Boron – 1x10-17 cm-3 

Remark: 26.8692 dB/cm loss 

Waveguide length (mm) Normalized Transmission (dB) Δα (cm-1) 

2 -1.34  

1.75 -0.66 6.27 

1.5 0.00 6.08 

 

Boron – 1x10-18 cm-3 

Remark: 37.7606 dB/cm loss 

Waveguide length (mm) Normalized Transmission (dB) Δα (cm-1) 

2 -1.89  

1.75 -0.33 1.43 

1.5 0.00 3.06 

Table 5.2: Transmission data for P-type samples 

 

The average Δα values were 3.34, 5.08, 6.17, 8.69 cm-1 for un-doped, 1x10-16, 

1x10-17, 1x10-18 cm-3 respectively. Plots of these values are shown in Figures 5.10.  
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Normalized transmission v. Waveguide length - with trendlines
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Fig. 5.10: Normalized transmission v. Waveguide length for boron doped samples 

 

 To arrive at the various plots several steps were taken to calculate the 

transmission (in dB) from the output power and eventually obtain the Δα and free carrier 

absorption. First the output power received is converted into decibel (dB), a logarithmic 

unit of measurement. This is done using the conversion equation as shown in equation 

5.1: 

 TdB = 10 log10(P1/P0)         (5.1) 

With P1 and Po being the output and input powers respectively and TdB the 

transmission in dB. The data is then normalized with the lowest data point as reference. 

The values for Δα for each of the implant doses are then calculated by finding the Δα 

across different lengths, then averaging them. The formula for Δα used is derived from 

the Beer-Lambert equation: 
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T =  exp(-α L)         (5.2) 

 Δα = ln (P1/P2) / (L2-L1)       (5.3) 

Where P1 and P2 are powers of different length and L1 and L2 are the 

corresponding different lengths. With this method an average Δα value is arrived at for 

each carrier concentration node.  

Now the aim is to find the absorption due to the free carriers alone, removing 

losses due to other reasons like scattering due to waveguide sidewall roughness, film 

uniformity or insertion losses. This can be done by removing the intrinsic losses from the 

total absorption losses.  

Δαtotal = Δαintrinsic + Δαfree carrier       (5.4) 

 The Δαintrinsic is taken as the Δα value from the un-doped sample. Therefore to get 

the Δαintrinsic for each carrier concentration node the intrinsic (values from un-doped 

sample) is subtracted from the total. This gives the values as shown in Table 3. 

Carrier concentration (cm-3) N-type Δαfree carrier (cm-1) P-type Δαfree carrier (cm-1) 

1x10-16 1.44 1.74 

1x10-17 3.07 2.83 

1x10-18 6.17 5.35 

Table 5.3: Free carrier absorption for polysilicon 

 

 A plot of the values shown in Table 5.3 is illustrated in Figure 5.11 with a trend-

line inserted to show the visible increase in the absorption values as the carrier 

concentration is increased.  



     70 

delta_Absorption v. delta_N for electrons and holes
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Fig. 5.11: Absorption in polysilicon at 1.55 µm v. free carrier concentration 
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Fig. 5.12: Material transmission loss v. carrier concentration for polysilicon 
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Figure 5.12 shows the material transmission loss in dB/cm for each node. The 

values were obtained by averaging out the difference in transmission across several 

device lengths for each carrier concentration node.  

 

5.4 Analysis 

Figure 5.13 shows the Δα value for polysilicon obtained in this thesis work in 

comparison to the Δα values for c-Silicon as obtained in Soref’s work [1].  
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Fig. 5.13: Absorption in polysilicon in comparison to values for c-Si [1] at 1.55 µm  

 

 It is seen here that the absorption values for polysilicon is on the other 3 cm-1 

larger than that of crystalline silicon. This is as expected since the loss is expected to be 

higher due to the number of grain boundaries that populate polysilicon material and 

reduce effective carrier mobility [2, 3]. The slope patterns of both sets of data are also 
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similar, and the polysilicon absorption values follow a trend that is expected, with a 

sharper increase in absorption between the 10-17 and 10-18 cm-3 nodes than from the 10-16 

and 10-17 cm-3 nodes. 

The slopes of for the polysilicon and crystalline silicon follow similar trends, 

however the slope of the polysilicon is slightly higher – a faster increase in absorption 

with step increase in carrier concentration. Now from [1], we have the Drude model, 

absorption equation:   

 Δα = (e3 λ2 / 4 π2 c3 eo n) [ΔNe/mce
*2µe + ΔNh/mch

*2µh]    (5.5) 

 Where e is the electronic charge, eo is the permittivity of free space, n is the 

refractive index of silicon, mce
* is the conductivity effective mass of electrons, mch

*is the 

conductivity effective mass of holes, µe and µh are the electron and hole mobility 

respectively. 

 For crystalline silicon it can be simplified into Equation 5.6 as in [4]. 

 Δα = 8.5x10-18 ΔN + 6 x10-18 ΔP      (5.6) 

 Where Δα (cm-1), ΔN (cm-3), ΔP (cm-3) are the absorption-coefficient, the free 

electron and hole density respectively.  

 For polycrystalline silicon, the values of preceding constants for ΔN and ΔP are 

derived from the Δα slopes - by using Equation 5.7,  

 C = (Δα2 – Δα1)/ (N2 – N1)       (5.7) 

 Where N1 and N2 are the different carrier concentrations and C is the slope 

constant. For my work, I derived the values for polysilicon from my data as: 

 Δα = 10.79x10-18 ΔN + 7.47x10-18 ΔP     (5.8) 
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 This marks a 26.9% increase in absorption due to electrons and a 24.5% increase 

in absorption due to holes. On average this is a 25.9% increase in free carrier absorption 

for polysilicon over crystalline silicon. 

 Comparing experimental data to simulated data, Figure 5.14 is obtained. The 

simulated theoretical data is obtained using Matlab and mobility values in [2] are used. 

Experimental polysilicon absorption in comparison to simulated
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Fig. 5.14: Experimental polysilicon absorption data in comparison to simulated values 

 

 It is seen that the experimental values of absorption at low doping levels is much 

higher than the theoretical data. This changes as the carrier concentration approaches 

1x10-18 cm-3. The higher absorption at low carrier concentrations in the experiment might 

be due to processing reasons, while the higher absorption in the simulated data at 1x10-18 

cm-3 is likely due to an over aggressive modeling of the hole and electron mobility 

values. There is a large variance in the mobility values given for polysilicon but in the 
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literature used, the given mobility value for polysilicon at 1x10-18 cm-3 is much lower 

than my sample would suggest. Also the grain size will play a role in any comparison as 

differing grain sizes - even by a few 10s of nanometers will give differing mobility and 

skew any comparisons. However there is a noticeable similarity in trend between the 

simulated and experimental data. Both crystalline and polysilicon data show the same 

trends of a small increase between 1x10-16 cm-3 and 1x10-17 cm-3 but a much larger 

increase between 1x10-17 cm-3 and 1x10-18 cm-3 

 Figure 5.15 shows a comparison between the transmission losses of polysilicon as 

compared to crystalline silicon loss as obtained from [5].  
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Fig. 5.15: Material transmission loss – comparing polySi and c-Si data 

 

 It can be seen that the additional loss induced by boron or phosphorus doping in 

the polysilicon waveguides increases at a lower rate than in c-Si waveguides. This might 
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be because some dopants in the polysilicon waveguides are segregated at the grain 

boundaries and hence do not contribute carriers – or it might also be due to the 

fabrication processing anneals utilized in [5]. Figure 5.15 shows a normalized plot to 

more clearly illustrate the difference in the rate of increase in waveguide loss as carrier 

concentration increases. 
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Fig. 5.15: Normalized propagation loss  

 

 Hall mobility measurements should be used in future work to help quantify the 

mobilities for each carrier concentration node.  

 The free carrier absorption was calculated by subtracting the absorption of the 

undoped sample from the total absorption and the difference was assumed as the free 

carrier absorption. However additional factors might come into play – other than free 
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carriers - that could affect the absorption. For example, a post implant anneal was 

conducted on the device pieces after implantation to activate the dopants and repair 

implantation damage. This anneal might have grown the polycrystalline grains further or 

caused some other physical effect on the material or device structure. Further work done 

on this topic should take this into account and try to quantify the effects of the anneal on 

the waveguide structures themselves. This can be done by preparing the undoped sample 

and measuring the transmission and calculating the absorption both pre and post anneal. 

This difference can then be subtracted from the free carrier absorption to give a more 

definitive absorption value. 

 

5.5 Summary 

The test apparatus, test process and results have been illustrated in this chapter. 

Several methods used to prepare the facets and get optimize coupling were presented. 

Optical testing was successfully performed on the single-mode waveguide devices and 

the transmission, the absorption coefficient, free-carrier absorption and material 

waveguide loss for polycrystalline silicon were presented. A comparison was made 

between the absorption and loss data for polysilicon with that of crystalline silicon. The 

data obtained followed expected trends from literature. The conclusion that 

polycrystalline silicon has a higher absorption and transmission loss is quantified.  

A simplified Drude’s model equivalent equation for polysilicon is given as: 

Δα = 10.79x10-18 ΔN + 7.47x10-18 ΔP.  
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Chapter 6 
 

Conclusion 
 

6.1 Summary 

Photonic systems on silicon integrated chips offer an opportunity to solve the 

bandwidth and power limitations in microelectronic IC interconnects. The use of 

deposited polycrystalline silicon holds a lot of promise due to the flexibility it provides in 

the design of electronic and optical design on different film layers. It also possesses 

promising electrical and optical properties which can be improved on using advanced 

micro-fabrication techniques. 

In this thesis the potential of polysilicon was reviewed. Single mode waveguide 

devices were fabricated on polysilicon at the RIT SMFL cleanroom. The devices were 

then tested at the Lobozzo Optics lab at the SMFL.  

The polysilicon waveguides fabricated successfully coupled and guided infrared 

light. The transmission was measured over several lengths and the cut back method was 

used to determine the free carrier absorption and propagation losses of polysilicon at 

1550 nm. The Drude model equivalent plots for polysilicon was calculated and compared 

to that of crystalline silicon. A simplified absorption coefficient equation was derived for 

polysilicon. It was found to be 25.9% higher than that of crystalline silicon.  

 

6.2 Improvements and future work 

The polysilicon film performance is strongly influenced by the quality of the 

cleanroom fabrication processing undertaken. Several improvements in the processing 

should be considered to improve the performance of the polysilicon film.  
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Areas of equipment improvement are in the area of plasma etching of the 

waveguide ribs and the deposition of the initial amorphous silicon layer. Using a well-

characterized modern etch tool will reduce the sidewall roughness and improve device 

performance significantly. The amorphous silicon layer problem was corrected in this 

thesis work – by using another LPCVD tool.  

Additional processing improvements that can be undertaken include utilizing 

chemical mechanical polishing (CMP), remote electron cyclotron resonance (R-ECR) 

plasma hydrogenation to remove dangling bonds and replacing silicon dioxide with 

silicon-oxide-nitride to increase high index contrast even further. These steps have been 

known to reduce propagation loss by greater than 90% (in non-SPC polysilicon films). 

Growing oxide on the silicon film and etching with Buffered Oxide Etch (BOE) 

can also help with the surface and sidewall roughness, reducing scattering. E-beam 

lithography could also be employed to improve sidewall roughness and to create smaller 

devices. Future work should also include the use of tapered waveguide ends on the device 

chips to allow for more efficient coupling and to reduce the insertion losses. To achieve 

this more advanced etching and dicing technologies are required.  

Non-processing improvements that can be made for future works in this field 

could be to isolate the effect of the post implant anneal on the quantification of the free 

carrier absorption. This can be done by measuring the change in absorption losses for un-

doped devices pre- and post-anneal. This value can then be subtracted from the calculated 

free carrier absorption to give a more definite representation of the effects of free carriers 

on the absorption coefficient. 
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Appendix  

 
 
% Fred Ogah, Masters Thesis 
% Drude model simulation - Polysilicon 
% February 2010 
% Microelectronic Engineering, RIT 
  
e = 1.60217646e-19; % electron charge in coulombs 
lambda = 1.550;   % wavelength um 
c = 2.99792458e10;   % speed of light cm/s 
epsilon_0 =8.854e-14; % permittivity of free space F/cm 
n_0 = 3.48;         % refractive index of material 
electron_mass = 9.10938188e-31; % electron mass Kg 
  
%constant term 
constant = (e^3*lambda^2)/(4*pi^2*c^3*epsilon_0*n_0); 
  
% polysilicon 
me_psi = 0.33*electron_mass;  % electron effective mass  
mh_psi = 0.55*electron_mass;  % hole effective mass  
  
uh_psi_16 = 40;   % hole mobility cm2/V.s 
uh_psi_17 = 30; 
uh_psi_18 = 15; 
 
ue_psi_16 = 50;   % electron mobility cm2/V.s 
ue_psi_17 = 40; 
ue_psi_18 = 25; 
 
 
% absorption cm-1 
sigma_psi_holes_16 = (constant*((1/(mh_psi^2*uh_psi_16)))) 
sigma_psi_holes_17 = (constant*((1/(mh_psi^2*uh_psi_17)))) 
sigma_psi_holes_18 = (constant*((1/(mh_psi^2*uh_psi_18)))) 
  
sigma_psi_electrons_16 = (constant*((1/(me_psi^2*ue_psi_16)))) 
sigma_psi_electrons_17 = (constant*((1/(me_psi^2*ue_psi_17)))) 
sigma_psi_electrons_18 = (constant*((1/(me_psi^2*ue_psi_18)))) 
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