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ABSTRACT

Page layout analysis has been extensively studied since the 1980‘s, particularly after computers be-

gan to be used for document storage or database units. For efficient document storage and retrieval

from a database, a paper document would be transformed into its electronic version. Algorithms

and methodologies are used for document image analysis in order to segment a scanned document

into different regions such as text, image or line regions. To contribute a novel approach in the

field of page layout analysis and classification, this algorithm is developed for both RGB space

and grey-scale scanned documents without requiring any specific document types, and scanning

techniques. In this thesis, a page classification algorithm is proposed which mainly applies wavelet

transform, Markov random field (MRF) and Hough transform to segment text, photo and strong-

edge/line regions in both color and gray-scale scanned documents. The algorithm is developed

to handle both simple and complex page layout structures and contents (text only vs. book cover

that includes text, lines and/or photos). The methodology consists of five modules. In the first

module, called pre-processing, image enhancements techniques such as image scaling, filtering,

color space conversion or gamma correction are applied in order to reduce computation time and

enhance the scanned document. The techniques, used to perform the classification, are employed

on the one-fourth resolution input image in the CIEL*a*b* color space. In the second module,

the text detection module uses wavelet analysis to generate a text-region candidate map which is

enhanced by applying a Run Length Encoding (RLE) technique for verification purposes. The

third module, photo detection, initially uses block-wise segmentation which is based on basis vec-

tor projection technique. Then, MRF with maximum a-posteriori (MAP) optimization framework

is utilized to generate photo map. Next, Hough transform is applied to locate lines in the fourth

module. Techniques for edge detection, edge linkages, and line-segment fitting are used to detect

strong-edges in the module as well. After those three classification maps are obtained, in the last

module a final page layout map is generated by using K-Means. Features are extracted to classify
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the intersection regions and merge into one classification map with K-Means clustering. The pro-

posed technique is tested on several hundred images and its performance is validated by utilizing

Confusion Matrix (CM). It shows that the technique achieves an average of ∼85% classification

accuracy rate in text, photo, and background regions on a variety of scanned documents like ar-

ticles, magazines, business-cards, dictionaries or newsletters etc. More importantly, it performs

independently from a scanning process and an input scanned document (RGB or gray-scale) with

comparable classification quality.
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CHAPTER 1: INTRODUCTION

1.1 Objectives and Motivations

In the late 1980’s, document databases started to shift from hard-copy to soft-copy with the ap-

pearance of fast computers, large computer memories, and inexpensive scanners. They were stored

digitally in large document databases and called document images. In the beginning of the 1990’s,

methodologies, algorithms and systems were invented and developed for document image analy-

sis in order to extract information from document images in a “human-like” fashion. Extracting

information from a document refers to locating and extracting line, photo or text regions hierarchi-

cally [1]. A hierarchy of document processing is illustrated in Fig. 1.1.

Fig. 1.1: A hierarchy of document processing. [1]

Today, the outcomes of research in document processing can be seen in many applications.

Object-oriented rendering, extracting flowcharts and body diagrams from a scanned document for

computer storage, document retrieval, query-images/texts and optical character recognition (OCR).

Specifically, the millions of old paper volumes now in libraries will be replaced by computer

1
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files in document images that can be searched for content. Signatures will be analyzed in the

software-world for verification and security access [1]. These type of document analysis systems

will enable to extract information without depending on the file formats. Automated mail-sorting

and address recognition will become quicker and more accurate with text information extraction in

the document. The number of mis-filed, mis-shelved or lost of material will be decreased by these

document analysis techniques [2]. These examples serve as motivations for exploring potential

solutions for document image analysis.

1.2 Literature Review

Document/Page segmentation is one of the topics researched in document processing to achieve

homogeneity criteria for the connected regions of text, graphics and space. It is preferably used as

an initial step for document structure analysis such as OCR [3, 4, 5] and document retrieval [6, 7, 8]

[see also [9, 10] for comprehensive surveys in OCR and document retrieval].

There are three-main approaches in document segmentation. The top-down approach looks for

global information on the page, such as black and white stripes, for the purpose of splitting the

document image into blocks, blocks into lines, and lines into words. Fisher et al. presented the

automatic segmenting of a document image which was enhanced by applying morphological op-

erations, skew correction and adaptive filtering [11]. Then, the process continued with Run length

encoding (RLE) algorithm to calculate the connected components’ locations and statistics. Es-

posito et al. utilized the page layout feature which consists of geometrical characteristics in order

to segment the image [12]. It was based on inductive generalization of a document layout style.

Haralick et al. extended the scope of algorithm in [12] by adding various document images in

the testing stage [13]. Automated text block extraction with image skew correction, which was

based on a growing procedure guided by local information in complicated layout documents, was

proposed by Zlatopolsky [14]. Sharma et al. also used a top-down approach by finding rectangu-

lar blocks in scanned documents and applying vertical and horizontal projections to a document
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image [15]. Shi et al. proposed a top-down approach by using local connectivity property for

document page segmentation [16].

The bottom-up approach starts with local information such as connected components in a spe-

cific region or block and first locates the words, then merges the words into lines, the lines into

blocks and the blocks into columns. Wahl et al. utilized from run length algorithm to divide the

page into rectangular regions [17]. Then, meaningful features are computed in these regions and

a linear adaptive classification scheme is constructed to discriminate text regions from others. The

Lam’s et al. study employed a method which segments a newspaper document image into labeled

macro zones and filters connected components to determine the content of the zones as text or non-

text [18]. The drawback of [17] and [18] was that segmentation was achieved upon the assumption

that the document image consists of rectangular areas. Antonacopoulos et al. proposed a technique

that used the structure of the background white space, surrounded by the printed zones [19]. The

benefit of the approach in [19] was that it did not make any assumptions about the shape or struc-

ture of the regions as opposed to [17] and [18]. It was capable of detecting complex shape regions

more accurately than the existing methods. Drivas et al. incorporated a bottom-up document seg-

mentation algorithm [20]. It utilized connected rectangular block based initial segmentation and

then extracted simple histogram based features in order to determine textual and non-textual zones

in a document image. Simon et al. developed and generalized the Kruskal’s algorithm [21] and ap-

plied a special distance-metric between the components to construct a physical page structure [22].

The study reflected all the significant advantages of bottom-up systems such as being independent

from text spacing and different block alignments. Jain et al. used traditional bottom-up approach

based on the connected component extraction to achieve page segmentation and region identifica-

tion [23]. Grover et al. extracted textual regions separating from the graphics portion by utilizing

sharp edge features which were missing in image regions [24].

The hybrid approach achieves the document segmentation and classification based primarily

on extracted features. The document image is subdivided into blocks and then required features
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are computed. Jain et al. proposed a segmentation method for document images based on a mul-

tichannel filtering approach to texture segmentation [25]. Two-dimensional Gabor filters were

used to extract texture features for text and non-text (image) regions. Duong et al. presented a

document analysis system which segments the image as text and non-text zones [26]. The method-

ology retrieved a region of interest (ROI) from grey-scale document images via cumulative gradi-

ent considerations. Then, geometric and texture features are utilized in classification. In Randen

and Husoy’s study [27], a critically sampled filter bank was applied to the image, and local sub-

band energy features were extracted to classify text/image regions by using K-Means algorithm.

Fletcher et al. introduced a methodology which generated connected components [28]. Next, it

grouped the connected components by using Hough transform into logical character strings in

order to separate text from graphics. Tombre et al. extended the work in [28] to make it more

applicable for graphics-rich documents by extracting features from an histogram of the connected

components, filtering and thresholding [29]. Lin et al. utilized five Grey Level Co-occurrence Ma-

trix (GLCM) that sub-divided the image into blocks to classify contents of document images as

graphics, text and space [30]. Then, according to those features, connected blocks are clustered by

applying K-Means.

Instead of selecting the features manually, they could be extracted by automatically which

was presented in the work by Wang et al. [31]. This approach was an efficient and forward

selection algorithm that iteratively constructed one linear feature at a time until a desired error

rate was achieved. Although the proposed approach was applicable to many databases in liter-

ature, it was strongly data-driven and restricted to linear features. They improved their work in

Wang’s et al. study by extracting more features and evaluating on different document databases

which contain images, graphics, handwriting and machine-printed text regions [32].

All the studies mentioned above solve the segmentation or classification problem in an unsuper-

vised way. In other words, they did not require any a-priori information to achieve segmentation

or classification. Another reason why unsupervised segmentation was employed particularly at the
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end of the 80’s and the beginning of 90’s was the computation time issue. The training phase,

not surprisingly, was very time consuming stage with 90’s processor technology. However, this

computation time issue began to be addressed with 2000’s processor technology. Therefore, there

was also research literature involving supervised segmentation or classification to solve the page

segmentation problem. Chaudhury et al. presented a model-guided segmentation and document

layout extraction scheme [33]. The proposed system extracted features which consist of contextual

information and spatial configuration of a given document. It learned the relations between the lay-

out specifications using Hierarchical Conditional Random Fields (CRFs). Baird et al. developed

an automatically trainable methods for grey level and color document images which first obtained

the pixel-wise features, trained them and then classified the regions by utilizing k-Nearest Neigh-

bor (k-NN) learning technique [34]. Zheng et al. proposed a novel approach by treating noise

as a separate class, modeling it based on selected features and classifying the text regions with

trained Fisher classifiers [35]. Besides using Fisher classifiers, layout structure was obtained by

using Markov Random Field (MRF) as a post-processing stage. Decision-tree classifiers and self-

organizing maps were employed in the work of Shin et al. by using “visual similarity” of layout

structure features such as content regions, column structures, relative point sizes of fonts etc. [36]

Kumar et al. developed a novel approach for text segmentation in document images by applying

globally matched wavelet filters [37]. The framework broadened to detect picture and background

components in the image by combining multiple two-class Fisher classifiers and MRF formulation-

based pixel labeling scheme to utilize from contextual information. In the core of the methodology,

established by Caponetti et al., neuro-fuzzy supervised technique was incorporated to perform the

segmentation [38]. Initial segmentation was achieved by multi-scale processing, and a set of clas-

sical morphological operators was utilized for merging the pixels into coherent text, graphics or

background regions. However, supervised techniques discussed above were computationally ex-

pensive when compared with unsupervised ones.
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1.3 Contributions

In this thesis, a new unsupervised document classification algorithm is proposed. The benefits of

the algorithm are the followings:

1) Robust classification for complex color and grey-scale scanned documents.

2) Independence from a type of scanned documents.

3) Utilization of both a textual map and a non-textual map to classify intersection regions of the

text and photo map.

4) A potential solution that meets the computational efficiency constraint for most practical ap-

plications.

5) Independence from a scanning technique.

An overview of the proposed approach is shown in Fig. 1.2. The algorithm starts with a pre-

processing module which applies image enhancements techniques such as image sizing, color

space conversion, gamma correction and morphological operation. Sizing is applied to reduce

the computation time and increase the speed to achieve the algorithm in real-time environment.

Color-space conversion gamma correction are applied to color and grey-scale scanned documents,

Fig. 1.2: Overview of the proposed approach.
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respectively [see Fig. 1.2]. As a final stage in pre-processing module, to enhance the text compo-

nents such as characters in text regions, dilation, called morphological operation, is performed on

lightness (L*) component of CIEL*a*b* color space, called enhanced L* channel. All the steps

in the pre-processing module mentioned above, are explained explicitly in Section 3.1. Three dif-

ferent modules follow the pre-processing stage to detect text, photo/image and strong edge/line

regions. The modules process the enhanced L* component of the image separately. The main core

of the photo detection stage relies on block-wise segmentation, proposed by Won [39], and MRF -

maximum a-posteriori (MAP) optimization segmentation. Wavelet decomposition [40] is utilized

to extract features and classify text regions in the document image. For confirmation purpose,

Run-Length Encoding (RLE) is applied to obtain a final text map. Strong edge/line regions are

extracted by employing the Hough transform on the enhanced L* channel. The resultant three sep-

arate classification maps are combined with the K-Means clustering to classify the blocks/pixels

either text, photo or strong edge/line and merge into one final map. Although it converges to a local

solution, it has low computationally complexity and provides satisfying result. The fundamental

concept and detailed explanation of the modules can be found in Background [see Chapter 2] and

Proposed Algorithm [see Chapter 3] chapters.

The aforementioned procedure is applied to both simple and complex background document

images. In addition, it provides a solution for both color and grey-scale scanned documents. The

proposed algorithm is entirely implemented in MATLAB R© and tested on a large database of∼700

document images which are scanned with 300 dots per inch (dpi). The performance evaluations

show that the proposed algorithm is robust and accurate enough for the applications discussed in

Section 1.4, and less computationally complexity.

The work discussed in this thesis is published in the following organizations.

1) M. S. Erkilinc, M. Jaber, E. Saber, and P. Bauer, "Page layout analysis for complex scanned

documents", SPIE Opt. Eng. + Apps. Conf.: Apps. of Digital Image Proc. XXXIV, 2011.

2) M. S. Erkilinc, E. Saber and P. Bauer, "Page layout analysis for complex scanned documents",
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SPIE Newsroom, Electronic Imaging and Signal Processing.

1.4 Potential Applications

Document segmentation has been widely used in OCR, document retrieval process where an ef-

ficient memory consumption and a quick retrieval are required. In addition, database update and

efficient cartridge usage while printing the documents in different resolutions are other typical

application. The proposed methodology is developed for a commercial purpose emphasizing per-

formance time and accuracy. In this section, a few applications are presented which could utilize

the proposed algorithm.

1.4.1 Content based document retrieval

One of the objectives of document classification application, and of document image analysis in

general, is to recognize and extract text and graphic components for use by people throughout the

world. Today, imaging systems, particularly scanners, are used to store great numbers of document

images in databases so they can be retrieved. Additionally, different resolutions can be embedded

while printing the documents by extracting text and graphic regions. This provides a better and

more efficient print quality. A typical document retrieval framework and a methodology for better

print quality, are demonstrated in Fig. 1.3.

The scanned document image printed is classified by using the proposed algorithm. Then, both

the classification map and the input image are sent to the printer to print the document image

in different resolutions. The proposed technique detects text, photo and strong egde/line regions.

While text regions are printed in low resolution (LR), photo and strong edge/line regions are printed

in high resolution (HR). The demonstration for the system is given in Fig. 1.3(a). There are five

text regions which cover almost half of the document, and one image which covers the rest of it

[see Fig. 1.3(a)]. By using low resolution to print the textual areas, a considerable amount of ink

can be saved.
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(a) Printing in different resolutions. (b) Query based document retrieval.

Fig. 1.3: Content based document processing applications.

From a user perspective, high resolution is not required for text regions, because a reader or a

user does not need a high resolution to read them. The only requirement is that they are legible.

Since low resolution can meet this requirement, printing the regions in high resolution wastes ink.

On the other hand, photo and strong-edge/line regions should be printed in high resolution in order

to satisfy the user in terms of quality. The aim is to use printers more efficiently and prevent

cartridge or laser waste.

Furthermore, the same approach can be utilized for document retrieval, illustrated in Fig. 1.3(b)

in large databases. After classification is achieved, extracted components can be labeled with a

group name which best describes them. This yields to group the documents under the same group

name as well. The labeling process provides faster access to the documents in the database. In

other words, the several megabytes (MB) of raw data in the database can be culled in a much more

concise way by assigning semantic or logical description to the extracted components (textual and

graphical regions).

Depending on the query, requested documents can be retrieved by extracting their functional
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parts while the database stores the original document images with their classification maps. For

instance, over a million pieces of mail are handled in one day by the United States post office. The

proposed document classification method to perform sorting mail according to its image content

and/or address recognition (text content) would be especially useful for processing this volume of

mail more quickly, and accurately.

1.4.2 Optical character recognition

Two primary categories, presented in Fig. 1.1 sum up the entire field of document processing:

Textual processing deals with text zones (particularly achieving OCR) and finding columns, para-

graphs, text lines, and words. Besides this, graphical processing deals with images, photos, block

diagrams, tables and logos, etc. OCR is an electronic translation of scanned images of handwrit-

ten, typewritten or printed text into machine-encoded text. OCR techniques, presented in Fig. 1.4

below, are widely used in detecting and examining signatures at banks, converting books and doc-

uments into electronic files, or publishing text on a web-site.

Three main modules, discussed in Chapter 3, generate three different classification maps. For

OCR, text map can be broken into paragraphs, words and text characters depending on the query.

For instance, the word “MELIOS” is considered as a query, and it is a military term. The hierarchal

order of how it is recognized is exhibited Fig. 1.4. The query can be anything as long as it can be

represented in a textual region. The framework is provided to edit the text, search for a word or

phrase, store it more compactly, and apply techniques such as machine translation, text-to-speech

and text mining to it.

1.5 Thesis Outline

The remainder of the thesis is organized as follows: Chapter 2, Background, a review of the con-

cepts is outlined and examined to implement the proposed algorithm successfully. The proposed
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Fig. 1.4: Optical character recognition system.

methodology is introduced in Chapter 3 and consists of five sections: Pre-processing, Text De-

tection, Photo Detection, Line Detection and Map Combination. Section 3.1 explains the pre-

processing module that is performed before the main core of the algorithm to enhance the image,

increase accuracy of the algorithm and obtain lower computation time. Section 3.2, 3.3,and 3.4

describe how text, photo and strong edge/line map are obtained. Combination and merging proce-

dure of the maps are described in Section 3.5. Experimental results are presented and performance

of the segmentation algorithm is evaluated by confusion matrix methodology in Chapter 4. Con-

clusions are drawn in Chapter 5.



CHAPTER 2: BACKGROUND

This chapter clarifies some technical concepts, and provides technical background for the algo-

rithms that are employed in the proposed document classification technique. Wavelet transform

(WT), MRF, Hough transform and RLE algorithms, which are the main parts of text, photo and

strong edge/line detection modules, are discussed with their mathematical insight. First, wavelet

transform and MRF are discussed separately because of the individual roles they play in the art of

image processing. Moreover, the formulation of Hough transform and RLE algorithms, and how

they are applied to the images, is explained.

2.1 Wavelet Transform

In mathematics, a wavelet series is a representation of a square-integrable (real-or complex-valued)

function by certain orthonormal series generated by a wavelet. It is a powerful tool which can de-

compose a signal into various frequency bands. These bands are generally taken as horizontal,

vertical, and diagonal spatial frequency characteristics of the data. Basics of the wavelet transform

are presented in Section 2.1.1 to establish the foundation for multiresolution image representation.

Furthermore, discrete conversion of the theory and its performance in discrete domain are ex-

plained explicitly. Detailed mathematical analysis of initial multiresolution image representation

both in 1-D and 2-D, introduced by Mallat [41], is given in Section 2.1.2.

2.1.1 Fundamentals of wavelet transform

Every vector in a vector space can be represented as a linear combination of the basis vectors in

that vector space. This concept can be easily generalized to functions by replacing the basis vectors

with basis functions.

f(t) =
∑
k

µkφt(k), (2.1)

12
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where f(t), and φt(k) the signal and basis function, respectively. µk is the corresponding basis

function coefficient. Furthermore, basis functions in any domain should both be orthogonal to span

the space completely and orthonormal for normalization purpose, as given in Eq. 2.2. Additionally,

it has sufficient properties for reconstruction, recovering the signal by inverse wavelet transform.

< f(t), g(t) > =
∫ b
a
f(t)g∗(t)dt = 0,

< f(t), f(t) > =
∫ b
a
f(t)f ∗(t)dt = 1.

(2.2)

where ∗ denotes complex conjugation. According to the above definition of the inner product, the

Continuous WT(CWT) can be written as the inner product of the signal and basis function(wavelet)

in Eq. 2.3.

CWTΨ
f (τ, s) = ΓΨ

f (τ, s) =

∫ b

a

f(t)Ψ∗τ,s(t)dt, (2.3)

where ΓΨ
f (τ, s) and Ψ(t) are the wavelet coefficient and mother wavelet, respectively. Mother

wavelet, defined in Eq. 2.4 , is the basic wavelet which is utilized to generate different wavelets by

scaling and translation operations [42].

Ψτ,s =
1√
s

Ψ

(
t− τ
s

)
, (2.4)

where s and τ are the scale and translation factors. The factor of s−1/2 stands for the energy

normalization. Eq. 2.3 shows how a signal, f(t), is decomposed into a set of wavelets, Ψτ,s.

The variables s and τ are the new dimensions, scale and translation, after the wavelet transform.

The expression for the CWT, given in Eq. 2.3, shows that the wavelet analysis is a measure of

similar frequency content between the wavelets, Ψτ,s, and the signal, f(t). CWT coefficients,

ΓΨ
f (τ, s), represent the degree of closeness of a signal to a wavelet. Thus, the inner product of a

wavelet and signal will give a relatively large number, corresponded to the ΓΨ
f (τ, s) if the signal is

represented better by the employed wavelet in the inner product operation in Eq. 2.3. As previously

mentioned before, original signal can be also reconstructed by integrating the wavelet coefficients
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and corresponding wavelets in the domain of S and T , shown in Eq. 2.5 since WT is an invertible

operation [42].

f(t) =

∫ ∫
s∈S τ∈T

ΓΨ
x (τ, s)Ψ∗τ,s(t)dτdt. (2.5)

To enable the reconstruction without loss of information, square integrable functions (wavelets),

Ψ(t), should satisfy the admissibility condition, given in Eq. 2.6.

F [Ψ(ω)] =

∫ π

−π

|Ψ(ω)|2

|ω|
dω =< +∞. (2.6)

In Eq. 2.6, F [Ψ(ω)] denotes for the Fourier transform (FT) of a wavelet. The admissibility condi-

tion implies that the FT of Ψ(t) vanishes at the zero frequencies, i.e.

|Ψ(ω)| |
ω=0

= 0. (2.7)

In other words, wavelets must have have a band-pass like spectrum. Eq. 2.7 also indicates that the

average value of the wavelet in the time domain must be zero,∫ ∞
−∞

Ψ(t)dt = 0. (2.8)

Therefore it must be oscillatory or a wave. As shown in Eq. 2.3, the 1-D WT is fundamentally 2-D

because of the parameters, τ and s. Thus the 2-D WT is four-dimensional. The time-bandwidth

product of the WT increases exponentially since the input signal is squared. Hence, a scale, denoted

by s, is added to ensure that the WT is decreasing rapidly [42].

Moreover, the wavelet function should have some smoothness and concentration in both time

and frequency domains. Regularity condition is explained by using the concept of vanishing mo-

ments. The wavelet transform, given in Eq. 2.3, can be defined by utilizing the Taylor series at

t = 0 until the order n and letting τ = 0 for simplicity [43].
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Γ(s, 0) =
1√
s

[∑
m=0

nf (m)(0)

∫
tm

m!
Ψ

(
t

s

)
dt+O(n+ 1)

]
, (2.9)

where f (m) is the mth derivative of f and O(n + 1) stands for other orders in expansion. Also,

moments of a wavelet Mm is defined in Eq. 2.10 as,

Mm =

∫
tmΨ(t)dt. (2.10)

So, Eq. 2.9 can be re-written by using Eq. 2.10,

Γ(s, 0) =
q√
s

[
f(0)M0s

1 +
f (1)(0)

1!
M1s

2 +
f (2)(0)

2!
M2s

3 + · · ·+ f (n)(0)

n!
Mns

n+1 +O(sn+2)

]
.

(2.11)

From the admissibility condition, it is already known that the 0th moment,M0 = 0, so that Eq. 2.11

is simplified as shown in Eq. 2.12,

Γ(s, 0) =
q√
s

[
f (1)(0)

1!
M1s

2 +
f (2)(0)

2!
M2s

3 + · · ·+ f (n)(0)

n!
Mns

n+1 +O(sn+2)

]
. (2.12)

If a wavelet has N vanishing moments, then the approximation order of the wavelet transform is

also N since the moments up to Mn are very small values compared to N . Then, the wavelet

transform coefficients, Γ(s, τ), can diminish as fast as sn+2 for a smooth signal [44].

So far, the discussion has dealt with only continuous case. It is essential to convert it into

discrete case for practical purposes. Unlike continuous wavelets, discrete wavelets can only be

scaled and translated in discrete steps. This can be achieved by modifying the mother wavelet,

given in Eq. 2.4.

Ψæ,k(t) =
1√
sjo

Ψ

(
t− kτ0s

j
0

sj0

)
, (2.13)

where j and k are integers and s0 > 1 is a fixed dilation step. The translation factor, τ0, depends
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on the dilation step. The effect of discretizing the wavelet is that the time domain is now sampled

at discrete intervals. s0 is usually chosen as 2 in order to correspond to the dyadic sampling for

the sampling of a frequency axis. In the same manner, the translation factor, τ0, is assumed to be

1 to have dyadic sampling of the time axis as well. These assumptions are reasonable for practical

applications involving computers [43].

A continuous signal can be represented as a series of discrete wavelet coefficients, called

wavelet series decomposition, but this decomposition is must be reversible. In other words, the

continuous signal can be reconstructed by its own wavelet series decomposed signals using its

own discrete wavelet coefficients. For stable reconstruction, the energy of the wavelet coefficients

should be bounded by two positive numbers, shown in Eq. 2.14.

A ‖f‖2 ≤
∑
j,k

|〈f,Ψj,k〉|2 ≤ B ‖f‖2 , (2.14)

where ‖f‖2 is the energy of f(t), A > 0B <∞whileA,B are independent of f(t). In addition to

stability condition, orthogonality and orthonormality conditions should be satisfied for reconstruc-

tion. As previously discussed, discrete wavelets can be represented in terms of mother wavelets so

that they can satisfy the condition given in Eq. 2.2 by adjusting scaling and translation constants in

mother wavelets [43].

∫
Ψj,k(t)Ψ

∗
m,n(t)dt =


1 if j = m and k = n

0 otherwise

. (2.15)

If all the conditions mentioned above are satisfied, any type of signal can be reconstructed by the

linear combination of wavelet basis functions weighted by the wavelet coefficients.

Still, the process needs an infinite number of scaling and translation constants to calculate the

wavelet transform since the signal spectrum is infinite. Wavelets have a band-pass like spectrum

[see Eq. 2.7] which serves as a finite spectrum. Hence, an infinite set of wavelets with infinite

spectrum can be replaced by finite scaling function. This property yields a conclusion that if
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one wavelet can be seen as a band-pass filter, then a series of dilated wavelets can be seen as a

band-pass filter bank, which covers all spectra of the signal as well. The filter bank covers all

spectrum according to the center frequencies and the width of each filter spectrum depends on a

ratio, referred as the fidelity factor, Q. Eventually, if the wavelet transform is assumed to be a filter

bank, then taking a wavelet transform of a signal can be considered as passing the signal through

this filter bank, called sub-band coding. The output of each filter stage in the filter bank gives the

wavelet and scaling function transform coefficients. The technique discussed above is illustrated

in Fig. 2.1 [41].

Fig. 2.1: Replacing one scaling function instead of infinite a set of wavelets [41].

The sub-band coding scheme can be implemented in two ways. One approach is to build many

band-pass filters independently. Although it provides freedom in determining the width of each

band, all the filters should be designed separately to segment the spectrum into different frequency

bands. Thus, it requires extensive computation time. Another approach is to split the entire spec-

trum of the signal hierarchically into two equal parts, a low-pass and a high-pass part at each filter

stage. While the low-pass part is covering relatively flat or smooth surfaces, the high-pass part cov-

ers details such as edges or transition regions. As a continuation of the procedure, if the low-pass

part at a certain filter stage contains some details, not captured in the high pass part, the signal can

continue splitting in two equal parts iteratively to obtain more features (detail information) from
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the signal or image. This explained scheme requires a design of only two filters. However, the filter

spectrum width is fixed in the process, unlike the previous coding scheme. The demonstration for

1-D signal is depicted in Fig. 2.2. In Fig. 2.2(a), splitting a 1-D signal spectrum into various bands

is represented and the corresponding filter operation is shown in Fig. 2.2(b).

(a) Spectrum representation. (b) Filter-bank representation.

Fig. 2.2: Splitting 1-D signal spectrum with an iterated filter bank [42].

In the previous paragraph, it is assumed that taking a wavelet transform of a signal is achieved

passing the signal through a filter bank. In this manner, while the wavelets provides the band-pass

bands, the scaling functions resultantly represent the low-pass band. Thus, a wavelet transform

is a sub-band coding scheme using a constant-Q filter bank. This decomposition technique is

called multiresolution analysis, explained explicitly in Section 2.1.2, since it decomposes a signal

in different resolutions [41].
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2.1.2 Multiresolution analysis

A set of wavelets can be estimated by employing a scaling function to cover the entire wavelet

spectra in discrete case as it is depicted in the previous section. In this purpose, if the scaling

function is treated as a signal, it can be decomposed into its wavelet components like in Eq. 2.16:

ψ(t) =
∑
j,k

Γ(j, k)Ψj,k(t). (2.16)

However, Eq. 2.16 still uses an infinite number of wavelets up to a certain scale j. If a wavelet

spectrum is added to the scaling function spectrum, a new scaling function with a spectrum twice

as wide as the first is obtained. This expression is formulated in Eq. 2.17. The effect of this addition

can be expressed in terms of the first scaling function, shown in Eq. 2.16 by summing the second

scaling function with the first scaling function [41].

ψ(2jt) =
∑
k

hj+1(k)ψ(2j+1t− k). (2.17)

In Eq. 2.17, a set of wavelets can be also expressed in terms of the first scaling function so that a

set of wavelets in each decomposition level can be replaced by a translated scaling functions. The

wavelet at level j can be written as;

Ψ(2jt) =
∑
k

gj+1(k)ψ(2j+1t− k), (2.18)

where Ψ(2jt) and gj+1(k) are the wavelet and band-pass filter. Eq. 2.5 implies that a signal, f(t),

can be expressed in terms of dilated (scaled) and translated wavelets up to a level j−1. This yields

the result that f(t) can be also expressed in terms of dilated and translated scaling function at a

level j.

Ψ(2jt) =
∑
k

gj+1(k)ψ(2j+1t− k) +
∑
k

Γj−1(k)Ψ(2j−1t− k), (2.19)

where the first term,
∑

k gj+1(k)ψ(2j+1t − k), represents the signal in terms of scaling functions
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up to a level j − 1 and the second term,
∑

k Γj−1(k)Ψ(2j−1t − k), denotes the signal at level j in

terms of wavelets. If the scaling functions, ψj,k(t) and Ψj,k(t), are orthonormal to each other, then

the coefficients, λj−1(k) and Γj−1(k), can be found by using Eq. 2.20.

λj−1(k) = 〈f(t), ψj,k(t)〉

Γj−1(k) = 〈f(t),Ψj,k(t)〉
(2.20)

where the wavelet, Γj−1(k), and scaling function, λj−1(k), coefficients are expressed in a closed-

form solution. By combining Eq. 2.17 and Eq. 2.18 with Eq. 2.20, open-form solution can be

written as;

λj−1(k) =
∑

m h(m− 2k)λj(m)

Γj−1(k) =
∑

m g(m− 2k)Γj(m)
. (2.21)

These two equations indicate that the wavelet and scaling function coefficients on a certain scale

can be found by calculating a weighted sum of the scaling function coefficients from the previous

scale. Eq. 2.21 means that the weighting factors of h(k) corresponds to a low-pass filter since the

coefficients, λj(k), originates from the low-pass part of the splitted signal spectrum.

(a) Image representation (b) Filter-bank representation

Fig. 2.3: Multiresolution image representation [43].
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The weighting factors of g(k) corresponds a high-pass filter since the coefficients, Γj(k), origi-

nates from the high-pass part of the splitted signal spectrum. From an digital signal processing

perspective, one stage of an iterated digital filter bank can be established by using h(k) and g(k).

In Fig. 2.3 above, implementation of the iterated digital filter bank is demonstrated by using 2-D

signal (image). In the figure, h(m − 2k) and g(m − 2k) in Eq. 2.21 are denoted as hL(k) and

hH(k), respectively.

2.2 Markov Random Field Modeling

A random field is a 2-D sample sequence where each sample is a random variable. Each outcome

in the sample space produces a realization of the random field. MRF theory provides a useful and

consistent modeling for context dependent units such as image pixels. It characterizes the units

depending on the effect of neighborhood units using conditional MRF distributions. This theory

was established by Hammersley and Clifford [45] in 1971, and developed by Besag [46].

The joint distribution information is required for MRF modeling in most applications. However,

deriving the joint distribution from conditional distributions is a very difficult problem for MRFs.

Hence, Gibbs distribution (GD) is incorporated with MRFs, called MRF-GD theorem, to obtain the

joint distribution from conditional distributions. The theorem provides a mathematical convenience

in terms of statistical signal processing in applications such as image analysis [47].

The MRF theory is utilized to model a a-priori probability of context dependent patterns. A

particular MRF model favors its own labeled class of patterns by assigning larger probabilities than

other pattern classes. Maximum a-posteriori (MAP) probability is one of the most popular statis-

tical criteria for optimality. The MRF-MAP framework, introduced by Geman and Geman [48],

develops algorithms to solve various vision problems such as image and video processing using

probabilistic approach [49].

The objective is to maximize the joint posterior probability of the MRF labels in MAP-MRF
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framework. The framework is constituted and the parameters are selected by using Bayes for-

mulation in which the objective function depends on the joint prior distribution of the labels, the

conditional probability of the observed data, and the probability of the observed data.

Section 2.2.1 outlines the fundamentals of Bayes estimation. The MRF-MAP modeling process

of the conditional probability of the observed data is discussed in Section 2.2.2, and Section 2.2.3

explains the joint prior distribution of the labels explicitly.

2.2.1 Bayes estimation

Bayes theorem is a fundamental theory in estimation theory. It points out that when both prior

distribution and the likelihood function of a pattern are known, the best estimation can be obtained

by Bayes labeling. The MAP optimization is a special case of the Bayes theorem. In Bayes

estimation, a risk is minimized in order to obtain the optimal estimate. The objective function,

risk, is defined as:

O(x̂) =

∫
xεF

C(x̂, x)P (x|I)dx, (2.22)

where I is the data, C(x̂, x) is a cost function, P (x|I) is the conditional posterior distribution and

F is the 2-D field. By using the Bayes rule, P (x|I) can be calculated by using Eq. 2.23.

P (x|I) =
p(I|x)P (x)

p(I)
, (2.23)

where P (x|I) is a-priori probability of labeling of I , also referred as segmentation map in image

processing, p(I|x) is the a-posteriori probability or likelihood function of x for fixed I and p(I) is

the a-priori probability of I , which is given and can be assumed as deterministic in the problem.

The cost function, C(x̂, x), is the error constraint while determining how the estimation is accurate

for actual data, x. There are two popular choices for the cost function. The one which is based on

the Euclidean distance, shown below:
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C(x̂, x) = ‖x̂− x‖2 . (2.24)

Second one, called ε(0− 1), is given in Eq. 2.25,

C(x̂, x) =


0 if ‖x̂− x‖ ≤ ε

1 otherwise

(2.25)

where ε > 0 is any small constant. If Eq. 2.24 is placed in Eq. 2.22, the variance of the estimate

can be writen as follows;

O(x̂) =

∫
xεF

‖x̂− x‖2 P (x|I)dx. (2.26)

The minimal variance estimate which is the mean of the posterior probability can be found by

letting δO(x̂)
δx̂

= 0,

x̂ =

∫
xεF

xP (x|I)dx. (2.27)

For the ε cost function, the objective function becomes

O(x̂) = 1−
∫
x:‖x̂−x‖≤ε

P (x|d)dx, (2.28)

when ε→ 0. Furthermore, Eq. 2.28 can be approximated by

O(x̂) = 1− ζP (x|d). (2.29)

where ζ is the volume of the space containing all points x for which ‖x̂− x‖ ≤ ε. Minimizing the

cost function, given in Eq. 2.29, corresponds to a maximization of P (x|I);

x̂ = arg max
x∈F

P (x|I), (2.30)
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which is known as the MAP estimate. P (x|I) is proportional to the joint distribution, shown in

Eq. 2.31 since p(I) in Eq. 2.23 refers to an image whose probability is 1,

P (x|I) ∝ P (x, I) = p(I|x)P (x). (2.31)

Then, the MAP estimate is equivalently found as follows:

x̂ = arg max
x∈F

[ p(I|x)P (x) ] . (2.32)

2.2.2 Modeling conditional probability distribution (likelihood) function

As mentioned in Bayes estimation section, P (x|I) is the posterior distribution of a MRF. The

derivation of the distribution can start with a simple assumption. Let us assume that image surfaces

are flat, then joint prior distribution of x can be written as follows;

P (x) =
1

Q
e−E(x), (2.33)

where E(x) =
∑

i

∑
j(xi−xj)2 is the prior energy for a flat surface. The noise on this flat surface

can be also assumed as Gaussian noise, ωi = xi + ni, where ni ∼ N(µ, σ2) then the likelihood

distribution can be written as shown in Eq. 2.34.

p(I|x) =
1∏M

i=1

√
2πσ2

e−E(I|x), (2.34)

where

E(I|x) =
M∑
i=1

(ωi − xi)2/2σ2 (2.35)

is the likelihood energy. Since Q =
∏M

i=1

√
2πσ2 is the normalization factor, the posterior proba-

bility in an optimization process becomes,

P (x|I) ∝ e−E(x|I), (2.36)
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where

E(x|I) = E(I|x) + E(I)

=
M∑
i=1

(xi − ωi)2/2σ2
i +

M∑
i=1

(xi − xi−1)2 (2.37)

is the posterior energy. The MAP estimate is equivalently found by minimizing the posterior

energy function,

x̂ = arg min
x
E(x|I). (2.38)

2.2.3 Gibbs distribution

Gibbs Distribution (GD) is first introduced by Derin et al. [50], and utilized to model an image

data. Since image is a discrete signal in computer applications, we are interested in discrete 2-D

random fields. It is defined over a finite N1xN2 rectangular lattice of points (pixels) which is also

defined as L = {(i, j) : 1 ≤ i ≤ N1, i ≤ j ≤ N2}. As a second step, definition of a neighborhood

system on lattice, L, and the associated cliques are presented below.

Definition1: A collection of subsets of L can be described as;

η = {ηi,j : (i, j) ∈ L, η0 ⊆ L} (2.39)

which is a neighborhood system on L if only ηi,j the neighborhood of pixel(i, j) is such that

1) (i, j) /∈ ηi,j .

2) if (k, l) ∈ ηij , then (i, j) ∈ ηk,l for any (i, j) ∈ L.

Two types of a neighborhood system are presented in Fig. 2.4. The neighborhood system, nm, is

called the mth order neighborhood system. The image pixels at the edges can be ignored or can be

modeled with smaller cliques in GD unless the image is assumed periodic.

The associated cliques with a lattice-neighborhood pair (L,η) is defined as follows:

Definition2: A clique of the pair (L,η), denoted by c, is a subset of L such that
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(a) 1st order neighborhood system, η1, and η1 clique types.

(b) 2nd order neighborhood system, η2, and η2 clique types.

Fig. 2.4: Neighborhood systems and their associated clique types [50].

1) c consists of a single pixel, or

2) for (i, j) 6= (k, l), (i, j) ∈ c and (k, l) ∈ c implies that (i, j) ∈ ηkl. .

The collection all cliques of (L, η) is denoted by C = C(L, η). Definition3: A random field

X = {Xij} defined on L has Gibbs Distribution(GD) or Gibbs Random Field(GRF) with respect

to η if its joint distribution is in the form of

P (X = x) =
1

Z
e−U(x), (2.40)

where

U(x) =
∑
c∈C

Vc(x) energy function

Z =
∑
x

e−U(x) associated potential with clique c, (2.41)
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and Vc(x) is the clique potential. Vc(x) which depends on the pixel values in c is the only arbitrary

variable, since Z is a normalizing constant. In other words, Vc(x) is the only variable that will be

taken into account in optimazion/estimation process.

The physical meaning of the joint distribution in Eq. 2.40 is that the minimum energy function,

U(x), can be satisfied by the field which belongs to a same class labels. Although GD is an

exponential distribution, a wide variety of distributions for random fields can be formulated as

GD by choosing the clique potential function, Vc(x), properly. A more detailed discussion can be

found in Besag [46].

2.2.4 Iterated conditional modes

Hence, Besag [51] proposes a deterministic algorithm called “iterated conditional modes” (ICM)

which maximizes local conditional probabilities iteratively. It uses the “greedy” strategy in the

iterative local maximization, and makes two basic assumptions; one based on the contents of im-

ages, and another based on the noise process. The first assumption is that neighboring pixels tend

to have the same values because images consist of regions that tend to have roughly the same pixel

values except the regions at the edges. There could be seen sharp pixel level changes at the edges

in the image. The benefit of this assumption is that it provides an opportunity to change the pixel

label, corrupted by noise, by utilizing its local neighborhood information. The second assumption

claims that each pixel is corrupted independently, and with some probability, generally considered

as Gaussian distribution. In other words, the noise does not corrupt two pixels dependently. If one

pixel label is changed by noise, any possible change in its neighbor has again the same probability.

Given the data, I , and the other labels, y(k)
S−[i], the algorithm iteratively updates each y(k)

i into

y
(k+1)
i by maximizing the conditional probability, P (y

(k)
i |I, y

(k)
S−[i]), with respect to yi. From two

assumptions stated above, and the Bayes theorem, discussed in Section 2.2.1, it follows that,

P (y
(k)
i |I, y

(k)
S−[i]) ∝ P (y

(k)
i |Ii, y

(k)
Ni

) = p(Ii|y(k)
i )P (y

(k)
i |y

(k)
Ni

), (2.42)
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where y(k)
Ni

denotes the current labeling in the neighborhood, N . Obviously, maximizing a proba-

bility of a specific region in the image, P (y
(k)
i |Ii, y

(k)
Ni

), is more preferable than a probability of the

entire image region, p(y|I), since it has less computationally complexity. In addition, maximizing

Eq. 2.42 is equivalently minimizing posterior potential, given Eq. 2.43.

yk+1
i ← arg min

y
(k)
i

V (y
(k)
i |Ii, y

(k)
Ni

), (2.43)

where V is considered as the summation likelihood energy function, found in Eq. 2.34, and poten-

tial energy function, shown in Eq. 2.40.

2.3 Hough Transform

The set of all straight lines in an image plane, x − y, forms a two-parameter family. An arbitrary

straight line can be described by a single point in the parameter space, assuming that the parameter

family is fixed. The parametrization, given in Eq. 2.44, defines a straight line by specifying its

angle, θ, and its algebraic distance, ρ, from the origin.

ρ(θ) = xcos(θ) + ysin(θ), (2.44)

where θ is defined in [0, π). Every line in x − y plane can be mapped to an unique point in θ − ρ

plane. It is also demonstrated in Fig. 2.5.

Fig. 2.5: The line parameters in θ − ρ plane [52].
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Suppose that a set of straight lines that fits into a set of {(x1, y1), · · · , (xn, yn)} of n points

wants to be found. The point, (xj, yj), is transformed into the sinusoidal curves in the θ − ρ plane

defined in Eq. 2.44 by replacing (xj, yj) instead of (x, y). Hence, the problem of detecting collinear

points can be converted to the problem of finding concurrent curves [52]. In summary, 1) a point

in x−y plane corresponds to a sinusoidal curve in the θ−ρ plane and 2) a set of points constitutes

a straight line in x− y plane correspond to curves passing through a common point in θ− ρ plane.

Since Hough transform is a reversible process, 1) and 2) properties run in both ways.

2.4 Run-Length Encoding Algorithm

A run-length encoding (RLE) algorithm has been first introduced by Wahl et al. in order to detect

long vertical and horizontal white lines in document images [53, 54]. It is improved and utilized to

compress the data by Wong et al. [55]. The algorithm is supported by bitmap files such as .tiff, .pcx

or .bmp. It can be used to extract information from scanned documents to confirm the segmenta-

tion of candidate text regions as a post-processing stage [see [56] and [57] for further explanation].

It is also utilized to create databases by assisting in encoding and converting the images/texts in

digital documents into computer-processable form. The compression or encoding scheme does

not depend on the input’s information content. However, its content affects the compression ra-

tio. The significant advantage for RLE algorithm is that it is easy to implement and requires less

computation time. Thus, it is preferable to using a complex compression algorithm, or applying no

compression technique to an image.

The basic RLE algorithm is applied to a binary sequence in which black pixels are represented

by 0’s and white pixels by 1’s. The binary input sequences, x, is converted into an output sequence,

y according to two rules.

1- 0’s in the input are changed to 1’s in y if the number of adjacent 0’s is less than or equal to a

threshold C.

2- 1’s in x are copied to y exactly.
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For instance, with C = 6 the sequence x is mapped into y as follows:

x: 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 1,

y: 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.

To merge into a better segmentation map, it is the best if neighboring black/white zones are

linked or separated according to the threshold, C. The threshold value depends on the resolution

level. The same technique can also be applied to a document image as a column by column

operation, since in some cases the vertical spacing information might be as useful as the horizontal

spacing information when determining the text regions.

There are various run-length encoding styles. In a row-by-row operation, the algorithm treats

the image as a 1-D data map, rather than as a 2-D data map by starting at the upper left corner and

proceeding from left to right across each scan line to the bottom right corner of the map, shown

in Fig. 2.6. Alternatively, it can be encoded by starting from the left upper corner and proceeding

along the columns, or converting into 2-D tiles, or following a diagonal direction in zig-zag fashion

[see Fig. 2.6].

Fig. 2.6: Run length encoding along the X-axis, along the Y-axis, in 2-D tiles and in zig-zag fashion [53].



CHAPTER 3: PROPOSED ALGORITHM

We propose a page layout classification algorithm that takes RGB or grey-scale image as an input.

The algorithm starts by a pre-processing module for filtering, image re-sizing, color space trans-

formation, morphological operation and gamma correction which are utilized to limit artifacts

because of re-sampling, reduce computation time, eliminate noise, and enhance text characters

and illumination effects. Gamma correction is applied to the input grey-level image. If the input

image is colored, a color space conversion stage in the pre-processing module transforms the im-

age from RGB color space to CIEL*a*b* space. Then, the lightness channels (L*) is used by the

text, photo and line/strong edge detection modules generate three different maps. As a last step,

K-Means clustering algorithm is utilized to combine these three maps into one single page layout

classification map. A flowchart of the proposed algorithm is shown in Fig. 3.1.

Fig. 3.1: Flowchart of the proposed algorithm.

3.1 Pre-processing Module

This module has different stages for low pass filtering, image re-scaling, color space transforma-

tion, morphological operation and gamma correction. The scanned document can be a colored or

grey-level image. The objectives of the pre-processing module are to prevent aliasing, reduce com-

putation time, eliminate noise and illumination variations and enhance the edges in text regions. A

31
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block diagram of the module is given in Fig. 3.2.

Fig. 3.2: Block diagram of the pre-processing module.

3.1.1 Filtering and image re-scaling

In this study, a typical document size 8, 5 × 11 inch is used. It is scanned with 300 dots per inch

(dpi) which yields an input image of the size 3300× 2600 pixels. This technology provides a high

resolution image which is advantageous in document classification applications. A drawback how-

ever is that it causes the entire process to be computationally expensive. To offset this, the image

is down-sampled by a scale factor, k = 0.25 using “Bi-cubic interpolation”. Before interpolation,

11× 11 pixel sized low-pass filter is applied to reduce the effect of ripple patterns that result from

aliasing during down-sampling. This limits the impact of aliasing on the output image, and mini-

mizes the artifacts that might occur. In bi-cubic interpolation, the output pixel value is computed

by weighting the average of the pixels in the nearest 4-by-4 neighborhood. The scheme of image

re-scaling step is presented in Fig. 3.3.

Fig. 3.3: Scheme of image re-scaling.
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3.1.2 Color space transformation

In 1976, the Commission International de lÉclairage (CIE) proposes CIEL*a*b* color space which

is a uniform color space, to model the human perception of color, and to provide a standard scale

for comparison of color values. This color space system is often used in the quality control of

colored products since it is based on human color perception [58]. For instance, if the color of a

production sample is detected in the CIEL*a*b* color space, color differences in the production

sample can be compared with the predetermined standards.

In a uniform color, the differences between points plotted in the color space correspond to

visual differences between colors plotted. It is designed in a cube form. The L* axis lies from top

to bottom between 0, representing black, and 100, representing a perfect light diffuser. The a* and

b* do not necessarily lie between specific numbers. +a and -a is red and green. +b and -b is blue

and yellow. The colors in the color space can be considered as the combinations of red and yellow,

red and blue, green and yellow, and green and blue. 3-D coordinate system is introduced in order

to determine the exact combination of these colors in a product.The configuration of the coordinate

system is depicted in Fig. 3.4 below.

Fig. 3.4: CIEL*a*b* color space [58].

Color space transformation is applied to the original scanned document when it is scanned in

RGB color space, as presented in Fig. 3.2. One of the benefits of this color space transformation is
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to provide perceptual uniformity. It conforms to many digital image manipulations better than the

RGB space in image sharpening and artifacts removal. Besides this, the color components (a* and

b*) can be isolated by employing only L* component since CIEL*a*b* color space transformation

separates the color and lightness information.

In this study, the down-sampled image is transformed to the CIEL*a*b* color space where the

only L* component is used in the proposed algorithm. The color transformation which is described

from Eq. 3.1 to Eq. 3.3, can be achieved by first transforming the image from RGB to CIEXYZ

space, given in Eq. 3.1, and then from CIEXYZ to CIEL*a*b* space as shown in Eq. 3.2 and 3.3.

This transform is based on ITU-R Recommendation BT.709 using the D-65 white point reference.

The error in transforming from RGB to CIEL*a*b is approximately 10−5.
X

Y

Z

 =


0.412 0.357 0.180

0.212 0.715 0.072

0.019 0.119 0.950



R

G

B

 . (3.1)

After RGB to CIEXYZ conversion is performed, the components of the CIEL*a*b* color space

can be computed by

L = 116f(Y/Yn)− 16

a = 500[f(X/Xn)− f(Y/Yn)], (3.2)

b = 200[f(Y/Yn)− f(Z/Zn)]

where

f(t) =


t1/3 if t >

(
6
29

)3

1
3

(
29
6

)2
t+ 4

29
otherwise

. (3.3)

In Eq. 3.3, Xn, Yn and Zn are the CIEXYZ color space tristimulus values of the D-65 white point

reference.
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3.1.3 Gamma correction

The RGB to CIEL*a*b* color space conversion has an inherent gamma correction. Therefore, to

simulate similar behavior for gray-scale scanned document, a gamma correction process is applied.

It is performed on gray-level scanned documents to eliminate their illumination variances, and to

suppress the noise at the background region. In general, the gamma correction process, a nonlinear

operation as shown in Eq. 3.4, takes linear light information (video or still imagery) and changes

it into a display more harmonious with the way the eye actually processes information. The aim of

the gamma correction is to create a realistic image in terms of shading, intensity, luminance and/or

brightness. Plots of the Eq. 3.4 for various values of γ are demonstrated in Fig. 3.5.

Iout = c(Iin)γ, (3.4)

where Iout and (Iin) are the output image and input image and c is a constant, generally considered

as 1. The gamma factor, γ, is taken as 2.2 in this study.

Fig. 3.5: Plots for various values of γ.
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3.1.4 Morphological operations - dilation

A pre-processing module based on morphological dilation operation is employed to enhance high-

frequency (edge) regions in the enhanced L* component of the map. The dilation operation scans

the input intensity image to find local maxima in a given direction over a small window. The oper-

ation is employed twice to emphasis high-frequency regions in horizontal and vertical directions.

These two maps (DilationHorizontal and DilationV ertical) are averaged and subtracted from the

input L* channel as shown in Eq. 3.5. The |.| sign stands for absolute value in the equation.

EnhancedL∗ =

∣∣∣∣L ∗ −1

2
(DilationHorizontal +DilationV ertical)

∣∣∣∣ . (3.5)

3.2 Text Detection Module

The text detection module uses the enhanced lightness channel (L*) as described in the pre-

processing module. Multiple-scale wavelets decomposition is applied and local energy (a variable

size window operation) is computed in high frequency sub-images as horizontally, vertically, and

diagonally. The energy maps are up-sampled to the size of the input enhanced lightness channel,

and averaged to generate a text-candidate map. Finally, a module based on RLE is utilized to verify

text regions in the text-candidate map. These sub-modules are detailed in the following sections.

3.2.1 Wavelet decomposition and energy sub-module

The goal of this operation is to identify the candidate text regions. We employ a basic assumption

which is that text regions have high variation in a small neighborhood area, in addition to contrast-

ing with a background. This addresses the most extreme case of having text with a small font size

and a background with too little contrast. The proposed algorithm also handles more complicated

scanned documents where have complex background as exhibited in the Chapter 4.

The proposed technique starts by applying wavelets decomposition to the EnhancedL∗ gener-

ated by using Eq. 3.5. The DWT methodology is utilized where multiple levels are applied to the
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low-frequency approximated sub-image as shown in the block diagram in Fig. 3.6. The energy is

computed using a variable-size sliding window. The window size varies in relation to the original

document spatial size, and to the wavelets decomposition level. Notice that the average value of

the wavelets coefficients in the given window has been subtracted from all coefficients. This is

to eliminate any bias in energy values that could be caused by lighter grey-scale background. In

other words, it is performed to emphasize the contrast between the text and background regions to

prevent the color of the background region from dominating the energy values. This procedure is

applied twice where first the local average of the neighboring coefficients (I
′

local) is used and then

the global average of all coefficients (I
′

global) in the sub-image is used in the other term of Eq. 3.6.

TextEnergyMap =

√ ∑
x,y⊂W

(
I(x, y)− I ′

local

)2
+

√ ∑
x,y⊂W

(
I(x, y)− I ′

global

)2
, (3.6)

where W stands for the local window and I(x, y) is the wavelets coefficient at the location x and

y.

Fig. 3.6 shows a block diagram for the wavelets decomposition and energy maps sub-module.

Two DWT levels using Daubechies 4-tap filter-banks are shown in the figure. However, up to four

levels of DWT can be applied depending on the spatial size of the original scanned document. The

range of the energy maps is normalized before up-sampling them to the original document size and

generating their average map. Bi-cubic interpolation [see Section 3.1.1] technique is used to resize

the energy with the scaling factor (2s) where s is the wavelet scale (level).

The purpose of the wavelets and energy computation is to generate a text-candidate map that

outlines the exact text-candidate regions. However, these operations generate grey-scale maps that

signify high-frequency regions such as text, texture, and edges. Therefore, a thresholding operation

based on Otsu’s method [59] is employed to generate the binary map. Some of the target scanned

document in our test database have text written using deferent colors or gray-levels where they

yield different energy levels. Hence, applying histogram (intensity value) adjustment operation

before the thresholding stage helps to reduce the energy variation due to text color or gray-level
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difference. Another image enhancement operation is applied to the binary text-candidate regions

as a post-processing process by removing any region with insignificant size less than 0.03% of

scanned document size.

Fig. 3.6: Block diagram of the wavelet decomposition and energy maps sub-module.

A illustration for this step is demonstrated in Fig. 3.7. Almost entire text region, corresponded

to true positives, is successfully detected in this step as observed in Fig. 3.7(b). Additionally,

background region manages to be extracted from the map, as well. Nevertheless, big portion of

the photo region cannot be excluded from the text map since high frequency content is utilized in

this step. To eliminate the photo region from the text map, a validation stage called Text region

confirmation is utilized to obtain more accurate text map.
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(a) Original image. (b) Initial text map after wavelet analysis.

Fig. 3.7: Initial text region classification.

3.2.2 Text region confirmation

This module uses the text-candidate maps generated in Section 3.2.1 and the enhanced L* channel

of the original scanned document. It is assumed that a text region is typed in a line or multiple

lines or paragraphs format. If any text-candidate region is considered by itself, its structure should

follow this assumption. That is, it generates a set of peaks and valleys if averaged in horizontal or

vertical direction (at least in one direction). The characteristics of these peaks and valleys indicate

the font size used in the written text and the distances between the lines.

Fig. 3.8 shows an example of vertical and horizontal projections of a text region. These projec-

tions are normalized by the image height and width, respectively. The RLE algorithm is applied to

the projection vectors and the mean and standard deviation (SD) are computed. If the paragraph is

written in a consistent font and the spacing between the lines is fixed, this will generate a relatively

low SD value in comparison with the average line width which indicates a text region. Therefore,
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(a) Input image. (b) Normalized vertical projection. (c) Normalized horizontal projection.

Fig. 3.8: Example of vertical and horizontal projections of text region.

if the average line width is higher than the variation (SD) at least in one direction, the image region

is identified as a text region. This is given that there is a pattern (peaks and valleys) at least in one

of the projections in Fig. 3.8, otherwise, it is not a text region.

In Fig. 3.9, final text classification map is presented with one of the scanned documents which

is used to evaluate the performance of the algorithm. Obviously, the main body of the photo

region is well-segmented and omitted from the final text map [see Fig. 3.9(c)] as compared to

the intermediate map in Fig. 3.9(b). Additionally, although there are many separate text zones

in different font-sizes, they are classified accurately which shows that text detection module is

font-size independent.

(a) Original image. (b) Initial text map after wavelet analysis. (c) Final text map after RLE.

Fig. 3.9: Intermediate results of the algorithm.
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3.3 Photo Detection Module

Similar to the text detection module, the enhanced lightness channel (L*) is used as an input for

the photo detection module. The broken characters in the text regions are enhanced by morpho-

logical operation to bridge the gaps between the text characters. The enhanced image is initially

segmented into three classes, background, text and photo, by employing basis vectors with pro-

jection method. After initial segmentation is achieved, MRF-MAP with ICM is applied to utilize

contextual information and merge a more accurate photo map. As a last step, missing blocks (false

positives) which are fully surrounded by detected image block(s) are included in the final photo

map. A block diagram of the photo detection module, where its sub-modules are explained in the

following sections, is drawn in Fig. 3.10.

Fig. 3.10: Block diagram of photo detection module.

3.3.1 Block-wise segmentation based on basis vectors projection

Block-wise segmentation based on projection basis vectors is first proposed in [39]. However,

the raw image is used as an input in his study. In other words, no pre-processing technique is

applied to the input RGB color image. Additionally, the technique introduced in [39] determines

the optimum block-size by utilizing alternating blanks between words and text lines. The constraint

for an optimum block size is to include sufficient information number of text lines in the block. On

the contrary, the block size is fixed to 32 × 32 pixels in this study. If there is any sizing operation

applied to the input image in the pre-processing module, an updated block pixel size, denoted by

B × B, is obtained by multiplying the 32 × 32 window with the scaling factor. Besides this, the

decision criterions for background, text and photo are modified to yield a more robust segmentation

map for different types of scanned documents which have complex color background.
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Initially, block-wise segmentation is achieved by utilizing projection basis vectors. These differ-

ent types of basis vectors represent either text, background or image regions. The image is divided

into S × S non-overlapping blocks. For each block, the gray levels are horizontally projected in

order to constitute a row-vector, P = [p(0), p(1) · · · , p(31)]T where it represents the projection

values for horizontal line in selected block. p[n], given in Eq. 3.7 takes either +1 or −1 depending

on whether nth line is the text or background. +1 and−1 are for text and background respectively.

p[n] =


+1 if

[∑S−1
j=0 I{Ψ(i, j)}

]
> 32× T2

−1 if otherwise

, (3.7)

where

I{Ψ(i, j)} =


+1 if Ψ(i, j) > T1

0 if otherwise
, (3.8)

where Ψ is the image and I{Ψ} is the corresponding binarized image. First, the image is binarized

with thresholding method according to the threshold value, T1. Then, if the corresponding line,

n, represents a text line, then most of the pixels at that line in the block takes lower values than

T1. Otherwise, it takes higher values and indicates background. Eq. 3.8 can be interpreted as

binarization formula for Eq. 3.7. Then the number of 1’s are computed in each horizontal line of

the block, p[n], to determine whether the corresponding line is a text or background [see Eq. 3.7].

The basis vectors, shown in Fig. 3.11, are introduced to decide which class the corresponding

block belongs to. It is apparent that any of the two basis vectors in Fig. 3.11 are not only orthogonal

to each other but also orthonormal as formulated in Eq. 3.9,

〈Φi,Φj〉 =
8∑

k=1

φikφjk = 0 〈Φi,Φi〉 =
8∑

k=1

φikφik = 1, (3.9)

where 1 ≤ i, j ≤ 8 for ∀i, j and 〈.〉 represents the inner product of any two basis vectors. Φ1 and

Φ2 represents a background/image region patterns and the rest represents a text region patterns.
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Fig. 3.11: Basis vectors for the determination of the best fit for the region in the block [39].

B = [Φ1,Φ2 · · ·Φ8] . (3.10)

Eight basis vectors are generated and projection vector, P , is re-arranged to multiply with 8 × 8

basis matrix, B, given in Eq. 3.10. In other words, P vector is grouped by k to yield 1× 8 vector

by using Eq. 3.11 given below.

P
′
=

l+1×S/8∑
n=1

p[n], (3.11)

where l = 1, · · · , 8. P ′ becomes equal to P ′
= [ p

′
[1], · · · , p′

[8] ]T for initial block segmenta-

tion purpose. Then, the re-organized vector, P ′ is represented by using basis vectors with some

weighting coefficients. P ′ can be re-written by using the basis matrix and weighting coefficients,

presented in Eq. 3.12.
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P
′

= [a[1]Φ1 + a[2]Φ2 + a[3]Φ3 + a[4]Φ4 + a[5]Φ5 + a[6]Φ6 + a[7]Φ7 + a[8]Φ8] , (3.12)

where a[n] represents the weighting coefficient of how good P ′ fits into the corresponding basis

vector, Φn. Moreover, a[n] is obtained by the inner product of P ′ and Φn as shown in Eq. 3.13.

a[n] =
〈
P

′
,Φn

〉
= p

′
[1]Φ1 + p

′
[2]Φ2 + · · ·+ p

′
[8]Φ8. (3.13)

To finalize the initial block segmentation, class labels, x, are assigned as 2 for background, 1

for image, and 0 for text according to Eq. 3.14.

x =


2 if |a[1]| ≥ |a[m]| and |a[1]| >

∑8
i=2 |a[i]| and a[1] > 0

1 if |a[1]| ≥ |a[m]| and |a[1]| >
∑8

i=2 |a[i]| and a[1] < 0

0 if otherwise

, (3.14)

Where m = 2, · · · , 8. If |a[1]| ≥ |a[m]| and |a[1]| >
∑8

i=2 |a[i]|, then the first coefficient, a[1],

becomes the most dominant coefficient. In addition to this condition, if a[1] > 0, the pixels values

in the selected block tend to have monotone levels, corresponding to a background region. On the

other hand, if |a[1]| ≥ |a[m]| and |a[1]| >
∑8

i=2 |a[i]|, then the first coefficient again becomes

the most dominant coefficient. However, in this case, if a[1] < 0, then the pixels values in the

selected block tend to have both monotone and non-white levels which represent a image region.

Otherwise, the block belongs to a text region which consists of a set of horizontal gaps between

the words.

A demonstration of this stage is presented in Fig. 3.12. Notice that, although there are some

false detections, main body of the photo zone (entire image) are well-extracted which ensures

fairly accurate detection rate for the next phases of the module. Additionally, the stage overcomes



45

the reflection at the background and eliminates from the actual document after utilizing the pre-

processing module explained explicitly in Section 3.1. However, there are some false positives

that fail to be included in photo map at this stage. For instance, lighter pixels on balloons [see

Fig. 3.12(a)] are detected as background presented in Fig. 3.12(b). Besides this, text regions are

also eliminated appeared under the printer images in Fig. 3.12(b) since their patterns matches with

the projection vectors which represents a text region pattern.

(a) Original image. (b) Initial map after block-wise segmentation.

Fig. 3.12: Block-wise segmentation based on basis vectors projection.

3.3.2 Markov random field: MAP segmentation

In basis vectors projection based segmentation, contextual information is not considered. This

yields some false detection. To eliminate these blocks, block-based MRF-MAP image segmen-

tation algorithm is employed. Additionally, the class label field, X = x, is assumed to be MRF

model and ICM is utilized to increase the convergence rate. The aim is to find the expression in

Eq. 3.15.

argmax
y

p(y|x) ∝ argmax
y

p(x|y)p(y)

p(x)
, (3.15)

where p(y) is a-priori probability assumed to be Gibbs distribution, shown in Eq. 3.16, p(x) is the

S × S block, selected from the image which can be ignored since it is deterministic and p(x|y) is
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conditional probability distribution function (pdf).

p(y) =
1

Q
exp

{
−
∑
c∈C

Vc(y)

}
, (3.16)

whereC is the set of cliques in S×S block,Q is the Gibbs constant and Vc(y) is shown in Eq. 3.17.

Vc(y) =


β if the class labels in the pair clique are different

−β otherwise
. (3.17)

In Eq. 3.17, β is a constant for clique potential which is chosen to be 1.6. Each S × S non-

overlapping block is assumed to be independent and have a Gaussian distribution. To find the

conditional pdf for the image, a formulation is required which is given below in Eq. 3.18 [see

Section 2.2.2 for detailed explanation].

p(Y = y|X = x) =
∏
i∈I

p(Yi = yi|Xi = xi)

=
∏
i∈I

1√
2πσ2

xi

exp

{
−(yi − µxi)2

2σ2
xi

}
, (3.18)

where µxi , σ
2
xi

and I are the mean, variance and the given image, respectively. They are sufficient

statistical features to formulate the blocks. After defining each variable, by using Eq. 3.16 and 3.18,

the expression in Eq. 3.15 can be re-written as follows;

Emax = max {p(Y = y|X = x)p(Y = y)}

= max


(

1√
2πσ2

x

)S×S

exp

{
−

S∑
i=1

S∑
j=1

[y(i, j)− µ2
x]

2

2σ2
x

}
× 1

Q
exp

[
−
∑
c∈C

Vc(y)

] .

(3.19)

In Eq. 3.19,
(

1√
2πσ2

x

)S×S
and 1

Q
can be omitted from the expression since they are constant and

have no effect in optimization process. In addition, if (−) sign is combined with maximization

argument, it becomes equal to minimization operation as given in Eq. 3.20.
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Emax = max

{
exp

[
−

S∑
i=1

S∑
j=1

[y(i, j)− µ2
x]

2

2σ2
x

]
× exp

[
−
∑
c∈C

Vc(y)

]}

= min

{
exp

[
S∑
i=1

S∑
j=1

[y(i, j)− µ2
x]

2

2σ2
x

]
× exp

[∑
c∈C

Vc(y)

]}
. (3.20)

Then, take the ln() of both sides, this yields to Eq. 3.21.

E = min

{
S∑
i=1

S∑
j=1

[y(i, j)− µ2
x]

2

2σ2
x

+
∑
c∈C

Vc(y)

}
. (3.21)

where the first term corresponds to the constraint region intensity to match available data and

the second one imposes spatial continuity. The formula in Eq. 3.21 computes the energy over

the entire image which is computationally time consuming. Hence, ICM is applied to minimize

the computation time while the algorithm performance is maintained. Instead of considering the

entire image which is represented by
∑S

i=1

∑S
j=1 exp[· · · ], the energy term, E, is computed for the

neighborhood pixels/blocks. Hence, Eq. 3.21 takes the form in Eq. 3.22. The detailed discussion

about ICM can be found in Section 2.2.4.

E = min

{∑
i∈ζm

∑
j∈ζm

[y(i, j)− µ2
x]

2

2σ2
x

+
∑

c∈C y∈ζm
Vc(y)

}
, (3.22)

where the pixel, (i, j) is the center pixel of the given neighborhood system, ζm. It represents the

pixels in mth order neighborhood system. “2nd order neighborhood clique system” is used in ICM

iterations. This iterated approach is executed until the convergence condition, denoted by CC and

given below, is satisfied. Current class labels are updated with the following steps;

1) For given current class labels, x, calculate (µ0, σ
2
0), (µ1, σ

2
1) and (µ2, σ

2
2) which are the mean

and variance of text, image and background zones.

2) Compute E, given in Eq. 3.19, for each block in the image and update current class labels of

the blocks, x′, by selecting the class (0, 1 or 2) which maximizes E.
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3) If the CC =
∑B

i=1

∑B
j=1 sign[x′(i,j)−x(i,j)]

B2 < T = 0.1, stop. Otherwise, go to step 1.

where

sign [x′(i, j)− x(i, j)] =


1 if x′(i, j)− x(i, j) are different

0 otherwise
. (3.23)

Note that, only if x′(i, j) and x(i, j) have different class labels, the result of the summation will

change, otherwise no effect will be seen. The algorithm usually converges in 2− 3 iterations.

After MRF-MAP segmentation, the original image, and intermediate photo maps are illustrated

in Fig. 3.13. Many false detections (false positives) in the scanned document especially the text

regions in many locations are included in photo classification map by utilizing the contextual and

spatial location information with MRF-MAP optimization. It is worth noticing that, text regions

under the printer images and at the bottom of the document are detected successfully although they

are mis-classified at the previous step [see Fig. 3.13(b) and (c)]. However, some regions cannot be

still included in the photo map since they are large enough to force the MRF-MAP optimization

technique an error.

(a) Original image (b) Initial map (c) Intermediate map after MRF-MAP

Fig. 3.13: Segmentation maps before post-processing.



49

3.3.3 Photo map enhancement process

After MRF-MAP optimization segmentation is completed, photo map enhancement step is per-

formed to eliminate false negatives (black pixels in Fig. 3.14(a)) which are surrounded by classified

blocks (white pixels in Fig. 3.14(a)) and to merge final photo map as it is illustrated in Fig. 3.14(b).

For connectivity, second-order neighboring system is used. This stage consists of several dilation

operations and it continues to iterate until the contour of the initial sub-image (the rings with black

pixels in Fig. 3.14(a)) fits under a main detected sub-image (the rings in Fig. 3.14(b)). The process

stops when further dilation causes changes at the shape (contour) of the main detected image.

(a) Before photo map enhancement process. (b) After photo map enhancement process.

Fig. 3.14: Photo map enhancement process.

Fig. 3.15 exhibits the effect of the stage on photo map. The false negatives that cannot be

detected in the previous stages are well-classified and included in the photo map. Although MRF-

MAP segmentation technique misses these regions since the neighboring blocks do not provide

enough information to segment them as a photo, the enhancement stage achieves to detect these

false negatives and yield the module an accurate photo map [see Fig. 3.15(a) and (b)].
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(a) Intermediate photo map after MRF-MAP (b) Final photo map after enhancement

Fig. 3.15: Segmentation maps for MRF-MAP and enhancement process.

3.4 Strong Edge / Line Detection Module

Lines are detected in the proposed algorithm using Hough transform. It starts by employing Canny

edge detection methodology to generate an edge map of the input enhanced L* channel. Next, the

Standard Hough transform (SHT) is applied where the parametric representation of a line, given in

Eq. 2.44, is used.

Applying the Hough transform for all edge points in the edge map generates a parameter space

matrix whose rows and columns correspond to ρ and θ, respectively. Peak values in this space

represent potential lines in the input image. Several parameters that are essential for the success of

the line detection algorithm are set empirically based on the test data-set. They are as follows:

1) A threshold value equals to 20% of the maximum peak is used to identify potential lines.

2) The maximum number of peaks to identify in parameter space matrix is set to 30.

3) A scalar value that specifies whether merged lines should be kept or discarded. Lines shorter

than 300 pixels are discarded.

4) A scalar value that specifies the distance between two line segments associated with the same

Hough transform bin. When the distance between the line segments is less than 15 pixels, the
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Hough methodology merges the line segments into one single line segment.

It is critical to identify strong edges such as outlines of objects in scanned documents to ensure

a seamless transition when applying different image enhancing techniques to neighboring regions.

Edges are ideal locations to embed the transition boundary, for example different color quanti-

zation tables for memory color regions such as sky and grass. Imagine an image in which sky

and grass meet at the horizon. Enhancing these memory colors (blue for sky and green for grass)

separately, and implanting the transition region over the strong edge (horizon line) in the image

would enhance the image’s overall visual quality, while minimizing any fault caused by the color

correction process.

The strong-edge detection technique uses the edge map, generated by the Canny edge detection

algorithm, as an input. Edge pixels are linked together into lists of sequential edge points, one list

for each edge contour. A contour or edge-list starts/stops at an ending or a junction with another

contour/edge-list. A thresholding technique is utilized to eliminate short edges where contours less

than 200 pixels long are discarded.

3.5 Map Combination

In this module, train maps for text and image regions are determined in order to obtain features by

utilizing text and photo maps which are obtained in the text detection and photo detection module.

Besides train maps, an intersection map, common regions in both text and photo map, is calculated

as shown in Eq. 3.24. Features are then extracted by utilizing train maps to characterize the images

in the intersection map. They are selected to maximize the margins between two classes. A block

diagram of the map combination module is shown in Fig. 3.16. A demonstration of the module

is also exhibited in Fig. 3.17 where the rectangular, shown in cyan color in Fig. 3.17(a), is the

intersection region which is merged into photo, text or both maps.

The regions in blue and green in Fig. 3.17 are the train maps for photo and text regions which

are used for feature extraction. After the features are computed, K-Means clustering algorithm is
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Fig. 3.16: Block diagram of the map combination module.

applied by minimizing the Euclidean distance to merge the final text and photo map, illustrated in

Fig. 3.17(b). This module is skipped if there is no intersection map, or the data in the train maps is

not sufficient to compute the features.

(a) Before map combination process (b) After map combination process

Fig. 3.17: Map combination process

3.5.1 Training/Testing maps for text and photo regions

Features are extracted to find a better fit for the intersection map. These features are obtained by

using training maps. An intersection map represents common regions in both maps. The photo

and text train maps are the regions in the initial photo and text maps except the intersection regions

which are given in Eq. 3.24.
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intersectMap = PhotoMap ∩ TextMap

PhotoTrainMap = PhotoMap− intersectMap (3.24)

TextTrainMap = TextMap− intersectMap.

Train maps are computed as shown in Eq. 3.24. The photo train map includes only photo region

and the text train map consists of only text region as well. After training and test maps are defined,

three different features, standard deviation (SD) in x and y-direction and entropy, are utilized to

classify the regions in the intersection map.

3.5.2 Feature extraction

Standard Deviation in x and y direction

SD in x and y direction are computed by dividing the train maps into the same fixed window size

used in block-wise segmentation, S × S. Each window gives one SD value which constitutes a

vector for the entire region in both train maps. To illustrate the concept, train maps for both regions

and plots of the corresponding features are presented in Fig. 3.18.

(a) Text train map. (b) Photo train map.

Fig. 3.18: Train maps.
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(a) Horizontally standard deviation for text train map. (b) Horizontally standard deviation for photo train map.

Fig. 3.19: Standard deviation of the train maps in horizontal direction.

(a) Vertically standard deviation for photo train map. (b) Vertically standard deviation for text train map.

Fig. 3.20: Standard deviation of the train maps in vertical direction.

Not unexpectedly, text region have greater standard deviation values in x direction than image

region because background and text pixels form a relatively better contrast than the image regions.

SD in y direction is also considered because text might be written in y direction as well. However,

this case is not applicable for this image. Although the image regions may also form some contrast

with the background, it cannot be as high as the text regions particularly in the image region itself,

as observed in Fig. 3.19 and 3.20). In addition, an image region can also consist of monotonic

pattern or texture which presumes lower standard deviation values. Therefore, greater standard

deviation is anticipated to see for the text region both horizontally (x) and vertically (y).
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Entropy

Entropy is a statistical measure of randomness that can be used to characterize the texture of the

input image. It is defined as follows;

EntR = −
S∑
i=1

S∑
j=1

plog2(p), (3.25)

where p is a vector which contains the probabilities of each gray level that appears in the input

image and R is the target region, text or photo. p vector can be easily obtained by utilizing the

image histogram. For photo regions, this randomness should be lower than text regions since some

areas in photo regions have specific type of pattern like in Fig. 3.21. That is, it is expected to

repeat itself in all regions, and result in very low entropy values. However, the text regions have no

specific type of pattern unlike photo regions except the spaces between the words. For this reason,

they have greater entropy compared to text regions as observed in Fig. 3.21.

(a) Entropy of text train map. (b) Entropy of photo train map.

Fig. 3.21: Entropy of the train maps.

3.5.3 K-Means algorithm minimizing Euclidean distance

This sub-module uses the intersection map generated in Section 3.5.1. K-Means algorithm is

employed to obtain final segmentation map by utilizing the features generated in Section 3.5.2.
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Three different features form 3-D space and text, and photo train maps generate two different,

separable centroids as shown in Fig. 3.22. The coordinates of the centroids are the average value

of SD in x, y direction and the entropy. After several iterations, each block in the intersection map

is classified as either a text or an photo region and adds to the corresponding map. However, the

some of the class members are mis-classified since the classes are not linearly separable as shown

in Fig. 3.22(b). To reduce the computation time, centroids are not updated unlike usual K-Means,

since the amount of training data used for extracting features is much larger than the test data.

(a) Initial centroids obtained from train maps. (b) Intersect map data distribution.

Fig. 3.22: K-Means.



CHAPTER 4: RESULTS AND DISCUSSIONS

The proposed algorithm is tested on a large database that contains a variety of simple to complex

color and grey-scale documents. While selecting a database to evaluate the proposed system, there

are several quality constraints that are determined in order to test an algorithm in wide aspect. An-

tonacopoulos summarizes the characteristics that a data-set is required to have to test and examine

a performance in detail [60]. The three main desirable characteristics are the followings:

i. Realistic: The data-set should span the real documents that are scanned in daily-life at work-

ing places.

ii. Comprehensive: It should contain various type of documents in order to evaluate the perfor-

mance and robustness of a proposed algorithm.

iii. Flexible structured: It should be easy to find a document in the database if the user needs to

pick several documents under a specific condition.

Thus, the MediaTeam document database from Oulu University [61] provided by MediaTeam re-

search group is used to validate the performance of the proposed document classification technique.

The test data-set includes many different type of scanned documents such as articles, advertise-

ments, newsletters, business cards or dictionary documents. Among 19 different type of scanned

documents, MUSIC, PROGRAM-LISTING and LINE-DRAWING type of the documents are ex-

cluded since the figures/images in the documents are considered as line art rather than photos. The

generated page layout classification map outlines (as a rectangular box) text and photo regions

while detected lines and edges are shown as in a edge map [see Fig. 4.1]. The average execution

time for images with average size of 3000× 2000 pixels is 15 seconds running on a 2.4 GHz dual

core PC implemented in MATLAB R©.

57
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The proposed technique is able to produce both pixel-wise and box-wise maps. The box-wise

map is generated to measure the accuracy of the technique since the database provides the clas-

sification results with bounding rectangles for region representation. The box-wise classification

map for each type of scanned document are compared with the ground-truth, exhibited in figures

below. The accuracy rates are also presented in tables. Moreover, the results are bench-marked

quantitatively and discussed extensively by utilizing confusion matrix (CM) [for detailed explana-

tion of a confusion matrix, see Section 4.1.1]. However, strong edge/line detection results cannot

be shown quantitatively in performance evaluation section because their ground-truths are not pro-

vided in the MediaTeam Oulu document database. Therefore, line and strong edges classification

in pixel-wise and box-wise maps are only demonstrated in Fig. 4.1 below.
Fig. 4.1 illustrates the generated page layout maps for two documents where text, lines, and

strong edges are found. The original color documents are shown in Fig. 4.1(a).

(a) (b) (c) (d)

Fig. 4.1: Results for line detection:(a) Original image, (b) enhanced L channel, (c) pixel- and (d) box-wise final clas-
sification map.

The color space conversion (RGB to CIEL*a*b*), employed in the proposed algorithm, eliminates

artifacts in background regions as shown in Fig. 4.1(b). The enhanced document enables better
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detection accuracy as demonstrated in Fig. 4.1(c) and (d) where strong edge/line and text regions

are colored in yellow and green, respectively. The documents shown in Fig. 4.1(a) have frames

(box-lines) that outline the pages and they are detected fairly accurately in both images. It is worth

noticing that the written text with large font-size is detected as strong edges that can be observed in

the second example page (second row of Fig. 4.1(a)). Additionally, the pictorial structure shown in

the document is also detected. Besides this, note that if the spaces between words are significantly

noticeable, the pixel-wise classification can detect these spaces and exclude from the detected text

region as can be observed in Fig. 4.1(c). On the other hand, it is not possible to achieve to exclude

these spaces from the text region in box-wise segmentation map [see Fig. 4.1(d)] since the boxes

are generated according to the coordinates of four corners of a rectangular-box drawn around the

classified region.

In Fig. 4.2, three different sample documents are demonstrated to show how the strong edge/line

detection algorithm works on the scanned documents that have both photo and text zones. Frames

of the first document [see Fig. 4.2(a)] are well-extracted with the text regions. Notice that, although

there is no actual line around the photo region in Fig. 4.2(b) and (c), the strong edge/line detection

module classifies some pixels as edges. The reason is that they locate at the boundaries so that they

are considered as strong edges. However, there are some false detections such as some pixels in

the photo region are mis-classified as strong edges in Fig. 4.2(b).

In Fig. 4.3, 4.4, and 4.5, 15 different types of scanned documents whose classes are ADDRESS-

LIST, ARTICLE, ADVERTISEMENT, BUSINESS-CARD, CHECK, COLOR SEGMENTATION,

CORRESPONDENCE, DICTIONARY, FORM, MANUAL, NEWSLETTER, OUTLINE, PHONE-

BOOK, STREET-MAP and TERRAIN-MAP, respectively are illustrated. Photo regions are rep-

resented with blue and text zones are shown as green in the ground-truth, colored and grey-scale

classification maps. Moreover, cyan regions correspond to a common zone when photo and text

regions overlap.
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(a) (b) (c)

Fig. 4.2: Results for line detection: Document (a) without image, (b) and (c) with strong edge/line, text and photo.

Firstly, a document from ADDRESS-LIST class, whose background can be considered as com-

plex, is shown in Fig. 4.3(a) below. Corresponding color and grey-scale generated page layout clas-

sification maps correlate well with the human-generated ground-truth except a tiny region (false

positive) in the photo region detected as both photo and text. Fig. 4.3(b) shows an ADVERTISE-

MENT type of document. The proposed algorithm generates an accurate classification map for

both colored and grey documents except for missing a big font-size text photo region (ELEKTOR)

under the small photo region at the right bottom. The figure captions (at the top and bottom of the

page) in the document of ARTICLE class are mis-classified as background in both classification

maps [see Fig. 4.3(c)]. It seems that the algorithm in Fig. 4.3(d) misses the great portion of the

photo region compared to the ground-truth although the main body of the region is well-detected.
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(a) (b) (c) (d) (e)

Fig. 4.3: Final classifications map for:(a) ADDRESS-LIST, (b) ADVERTISEMENT, (c) ARTICLE, (d) BUSINESS-
CARD and (e) CHECK scanned document.

However, the missing region contains only three stripes. These stripes introduces false positives

since they are connected to photo region and represented in boxes. Moreover, although the text re-

gions in class of BUSINESS-CARD and CHECK documents are separated with significant spaces,

the ground-truth classifies these regions in the same box. However, the proposed technique is able

to notice these spaces and omit these spaces from the classification map [see Fig. 4.3(d) and (e)].

First of all, it is worth noticing that the colored and grey page layout classification maps for

five different types of scanned documents illustrated in Fig. 4.4 are nearly same. The scanned

document in Fig. 4.4(a) consists of only photo region. In other words, there is no text region as

shown in the classification maps and ground-truth. The CORRESPONDENCE type of document

is presented in Fig. 4.4(b). The proposed algorithm manages to detect all text and photo regions.
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(a) (b) (c) (d) (e)

Fig. 4.4: Final classification map for: (a) COLOR SEGMENTATION, (b) CORRESPONDENCE, (c) DICTIONARY,
(d) FORM and (e) MANUAL scanned document.

However, some part of the photo region is also classified as text since the text region at the left

of the photo is segmented in the same box with top of the photo. Text and photo regions in the

DICTIONARY and FORM types of scanned documents are detected fairly accurately except the

text regions at the footer and header compared to ground-truth because the database is classified

the regions according to their contents [see Fig. 4.4(c), (d), and (e)]. The same phenomena in the

Fig. 4.4(e) can be observed at the body of the document in the last text box.

Last set of scanned documents which consists of NEWSLETTER, OUTLINE, PHONE-BOOK,

STREET-MAP, and TERRAIN-MAP are presented in Fig. 4.5. Again, it is worth noticing that both

page layout classification maps are nearly same. Text zones in NEWSLETTER document are well

extracted but photo region at the top of the page (circle with stars) is missed since the main body
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(a) (b) (c) (d) (e)

Fig. 4.5: Final classification map for: (a) NEWSLETTER, (b) OUTLINE, (c) PHONE-BOOK, (d) STREET-MAP
and (e) TERRAIN-MAP scanned document.

of the region includes background [see Fig. 4.5(a)]. The body of text zone in OUTLINE scanned

document in Fig. 4.5(b) is very accurately detected. And notice that, photo module achieves to dif-

ferentiate a real photo region and the grey part of the background at the left-side of the document

which is considered as complex background. Text regions in Fig. 4.5(c) are well-segmented and

photo detection module in both segmentation maps is accurate in differentiating the complex back-

ground and any photo region. In STREET- and TERRAIN-MAP scanned documents, the maps

are classified as photos in the ground-truth and they are well-segmented as photo in segmentation

maps, as well [see Fig. 4.5(d) and (e)]. Small text regions, corresponded to country or street names,

are mis-classified as text in our classification maps as opposed to the ground-truths.
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(a) Text map (b) Intersection map (c) Photo map

Fig. 4.6: Before map combination module.

A demonstration is illustrated in Fig. 4.6 and 4.7 with one of the scanned documents in the

database in order to show the obtained results. This module is not included in performance evalua-

tion since the database does not limit the classification maps such that the region of interest (ROI)

has to belong either text or photo map. It can be associated with the both segmentation maps. The

module is developed for the internal data-set. In Fig. 4.6 above, initial maps obtained from text and

photo detection module are presented with the intersection map in Fig. 4.6(b). There are significant

portion of text regions detected by the photo detection module shown in Fig. 4.6(c). Besides this,

some photo regions are included in the text map which are supposed to be shown only in the photo

map [see Fig. 4.6(a)].

Final maps are presented in Fig. 4.7. Text and photo regions are fairly detected and joined to

the corresponding correct maps as shown in Fig. 4.7(a) and (c). Nearly all the text regions are

included in the final text map by being independent from their font-size although the text train map
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does not contain significant information. In addition, the photo regions in the intersection map are

well-segmented and joined to the final photo map as well. Final intersection map which contains

unclassified pixels/blocks is also shown in Fig. 4.7(b). The experiment results indicate that these

pixels/blocks correspond to border of the segmented regions so that they can be represented in

either photo or text final map without causing any false positives.

(a) Text map (b) Intersection map (c) Photo map

Fig. 4.7: After map combination module.

As discussed above, the algorithm is evaluated on a publicly available database of scanned

documents and reported the performance in Section 4.1. Furthermore, it has been also tested on

various internal document-sets that are gathered from several scanners. The proposed page layout

classifier shows enhanced performance independently from scanning technique.
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4.1 Performance Analysis and Evaluation

In the past two decades, the developments and improvements in page segmentation techniques to

handle with several problems have induced a necessity in performance evaluation. Therefore, var-

ious methodologies are introduced in order to evaluate proposed systems. Sufficient performance

metrics which are proposed by those methodologies are required to test and evaluate the proposed

algorithms comprehensively.

To objectively measure and evaluate the quality of the segmentation results, a feasible and

convenient visualization tool is required. In this regard, the Confusion Matrix (CM), introduced by

Kohavi & Provost [62] in 1998, is utilized. It is a performance evaluation technique which contains

information about actual and predicted classifications obtained by Townsend [63].

4.1.1 Confusion matrix (CM)

In the field of artificial intelligence, a confusion matrix, called also matching matrix, is a way of

visualizing a performance of an algorithm used in supervised and unsupervised learning systems.

It is a square matrix that represents the count of a classification function’s predictions with respect

to the actual classifications [63]. Each column of the matrix represents the instances in a predicted

class, while each row represents the instances in an actual class. Besides this, each row of the

matrix should be added up to 100% in order to have a consistent performance metric, assuming

that the actual data (ground-truth) is placed to the rows of the given table. An example for 2 × 2

confusion matrix is illustrated in Table 4.1 below.

Table 4.1: Sample confusion matrix.
XXXXXXXXXXActual

Predicted
Negative Positive

Negative a b
Positive c d

where

- a is the number of correct predictions that an instance is negative,
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- b is the number of incorrect predictions that an instance is positive,

- c is the number of incorrect of predictions that an instance negative, and

- d d is the number of correct predictions that an instance is positive.

Aim of the technique used in the application is to maximize diagonal entries of the matrix when

the performance is evaluated by the confusion matrix. One benefit of using a confusion matrix

is that it enables to be observed which classes are labeled accurately and mis-labeled instead of

presenting only correct classified units. This yields more comprehensive interpretations about the

proposed technique such as where the algorithm fails.

Moreover, several standard measures have been defined for the 2-class confusion matrix.

• The accuracy (AC) is the proportion of the total number of predictions that are correctly

detected as calculated using Eq. 4.1:

AC =
a+ d

a+ b+ c+ d
. (4.1)

• The recall or true positive (TP) rate is the proportion of positive cases that are detected accu-

rately and the false positive (FP) rate is the proportion of negatives cases that are mis-detected

as positive, as measured using Eq. 4.2 below:

TP =
d

c+ d
, and FP =

b

a+ b
. (4.2)

• The true negative (TN) rate is defined as the proportion of negatives cases that are determined

correctly, while the false negative (FN) rate is the proportion of positives cases that are mis-

classified as negative, formulated in Eq. 4.3 below:

TN =
a

a+ b
, and FN =

c

c+ d
. (4.3)

• Finally, precision (P) is the proportion of the predicted positive cases that are correct, as given

in Eq. 4.4 below:
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P =
d

b+ d
. (4.4)

Notice that TP + FN and TN + FP are both equal to 1.

In some cases, the accuracy determined using Eq. 4.1 is not an adequate performance metric

when the number of negative cases is much greater than the number of positive cases. For this

reason, another performance measure, called F-Measure, is introduced by Lewis & Gale [64] as

defined in Eq. 4.5.

F =
(β2 + 1) ∗ P ∗ TP
β2 ∗ P + TP

, (4.5)

where β has a value from 0 to infinity and is used to control the weight assigned to TP and P .

4.1.2 Quantitative evaluation of the proposed classification technique on different type of

scanned documents

The confusion matrices for classification accuracy rates are presented with tables and their corre-

sponding classification maps. Confusion matrices are given separately for ARTICLE, NEWSLET-

TER, CORRESPONDENCE, and ADVERTISEMENT scanned documents since the data-set is

large enough to validate the algorithm. However, MANUAL, OUTLINE and DICTIONARY

documents are combined to obtain a larger data-set. Additionally, the classification results for

ADDRESS-LIST, PHONE-BOOK, TERRAIN- and STREET-MAP, BUSINESS-CARDS, CHECK,

FORM and COLOR SEGMENTATION documents are presented in one confusion matrix.

Article

The proposed algorithm is tested on 233 ARTICLE documents. Three typical article documents

are presented below [see Fig. 4.8]. The photo regions in the first and second documents are well-

extracted. Main body of the text regions in all three documents are also classified correctly. Notice
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that, although the background is not white, the photo and text detection module manage to classify

the regions in Fig. 4.8(c). However, the algorithm fails to detect the figure captions as discussed

above. The accuracy rate for text, photo and background regions are presented in Table 4.2.

(a) (a) (b) (c)

Fig. 4.8: Final classification map for three ARTICLE documents.

Table 4.2: Confusion matrix for ARTICLE document
hhhhhhhhhhhhhhhhhGround Truth

Proposed Algorithm
Text Photo Background

Text 0.88 0.03 0.09
Photo 0 0.96 0.04

Background 0.01 0.02 0.97

Newsletter

The algorithm is tested on 42 NEWSLETTER documents. They are similar to the article docu-

ments in terms of background structure. Mainly, the background is white and they consist of text
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(a) (a) (b) (c)

Fig. 4.9: Final classification map for three NEWSLETTER documents.

regions. The text and photo regions are classified well except a few false detections [see Fig. 4.9].

These false detections occur because the classified regions are represented in boxes. Suppose that

a line includes a long sentence and it is connected with the previous line which has a short sentence

or a word. When the algorithm detects these lines, it draws a box around the long sentence which

introduces false detections for the previous line. Table 4.3 summarizes the classification accuracies

for the regions.

Table 4.3: Confusion matrix for NEWSLETTER document
hhhhhhhhhhhhhhhhhGround Truth

Proposed Algorithm
Text Photo Background

Text 0.89 0.04 0.07
Photo 0.05 0.87 0.08

Background 0.03 0.13 0.84
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Correspondence

24 CORRESPONDENCE documents are used for testing purpose. Three different type of corre-

spondence documents are illustrated in Fig. 4.10. The regions are classified accurately except a

small photo region in Fig. 4.10(a). Additionally, it is worth noticing that although the background

in Fig. 4.10(a) is very complex, photo detection module does not fail in these type of complex

background documents.

(a) (a) (b) (c)

Fig. 4.10: Final classification map for three CORRESPONDENCE documents.

The ground-truth classifies the text regions depending on the content (title, body, header, footer

etc. ). For this reason, it might box the regions including the background [see Fig. 4.10(c)]. On the

other hand, the proposed algorithm classifies each region independently so that our boxes mainly

do not include any background regions between the paragraphs or words if they are well-separated.

Therefore, this phenomena causes false negatives between background and text zones as presented
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in Table 4.4 as well.

Table 4.4: Confusion matrix for CORRESPONDENCE document
hhhhhhhhhhhhhhhhhGround Truth

Proposed Algorithm
Text Photo Background

Text 0.91 0.01 0.08
Photo 0.02 0.94 0.04

Background 0.01 0.05 0.94

Advertisement

24 ADVERTISEMENT documents are tested to validate the performance of the proposed algo-

rithm. They are considered as complex color documents since they consist a great number of

different color tones. The photo and text regions in Fig. 4.11(a) and (b) are classified fairly well.

Again, complex background is separated from the real content of the document and the regions are

well-segmented [see Fig. 4.11(c)].

(a) (a) (b) (c)

Fig. 4.11: Final classification map for three ADVERTISEMENT documents.
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However, the photo regions at the bottom of all documents demonstrated in Fig. 4.11, (PANA-

SONIC and National), are mis-classified as text. This results in false positives between text and

photo regions as observed in Table 4.5. Besides this, the algorithm misses the photo region that

has same color tone with the background [see Fig. 4.11(c)].

Table 4.5: Confusion matrix for ADVERTISEMENT document
hhhhhhhhhhhhhhhhhGround Truth

Proposed Algorithm
Text Photo Background

Text 0.91 0.06 0.03
Photo 0.09 0.89 0.02

Background 0.04 0.12 0.84

Manual & Outline & Dictionary (MOD)

35 manual, 19 outline, and 12 dictionary documents are used to evaluate the performance of the

proposed algorithm. One sample document from each class is presented in Fig. 4.12.

(a) (a) (b) (c)

Fig. 4.12: Final classification map for MOD documents.
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The reflection at the background is successfully eliminated from the original document and

text regions are classified correctly except the footer at the top left corner [see Fig. 4.12(a)]. In

Fig. 4.12(b) and (c), text regions are detected with very high accuracy. A few regions causes

false negatives because of representing the regions in box-wise. Again, our algorithm is able to

separate the text regions if they are disconnected enough. Nevertheless, the ground-truth classifies

the regions according to their contents as mentioned above.

Table 4.6: Confusion matrix for MOD documents
hhhhhhhhhhhhhhhhhGround Truth

Proposed Algorithm
Text Photo Background

Text 0.87 0.03 0.1
Photo 0 0.92 0.08

Background 0 0.09 0.91

Address-list, Phone-book, Terrain- & Street-map, Business-cards, Check, Form and Color segmentation (OTHER)

Totally 62 documents are utilized in this section. One scanned document from each class is demon-

strated to demonstrate the results in Fig 4.13. Some false negatives are observed in Fig. 4.13(a)

and (b) because of high-frequency content in the document. Although there are some text regions

in Fig. 4.13(b), the ground-truth does not consider them as text. The classification maps given

in Fig 4.13(c), (d) and (h) are fairly matches with the ground-truth. The text and photo regions

are well-detected and classified correctly with few exceptions because of box-wise representation

phenomena [see Fig. 4.13(e), (f) and (g)].

Table 4.7: Confusion matrix for OTHER documents
hhhhhhhhhhhhhhhhhGround Truth

Proposed Algorithm
Text Photo Background

Text 0.84 0.01 0.15
Photo 0.03 0.79 0.18

Background 0 0.05 0.95
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(a) (a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4.13: Final classification map for OTHER documents.

4.2 Comparison with the techniques in literature

In this section, the performance of the proposed technique is compared with two algorithms from

the state-of-the-art. All of the proposed techniques [26, 39] are used pixel accuracy rate as a

performance metric.

4.2.1 Comparison to work done by Duong et al.[26]

Duong et al. propose a two-step document analysis system which detects the regions using cumula-

tive gradient considerations and classifies the regions as text and non-text zones utilizing geometric

and texture features [26]. Entire MediaTeam document database [61] that includes ∼ 500 docu-

ment images, is employed to validate the performance of the proposed system. Text regions are

extracted approximately as rectangular areas defined by their bounding boxes. For each scanned

document, the accuracy rates are obtained by the following Eq. 4.6:
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Accuracy(%) =
|t|
|T |

, (4.6)

where T is the set of the rectangular text regions defined by the database and t is the set of text

regions segmented successfully by the proposed system [26]. According the performance met-

ric given in Eq. 4.6, the accuracy rate comparison for each class between our algorithm and the

proposed technique in [26] is presented in Table 4.8.

Table 4.8: Performance comparison between Duong et al.[26] and Our classification technique
Document Class (MediaTeam la-
bels)

Number of samples Average Performance (Av.
Perf.) [60]

Our Av. Perf.

ADDRESS-LIST 6 0.75 0.81
ADVERTISEMENT 24 0.95 0.91
ARTICLE 233 0.75 0.88
BUSINESS-CARDS 11 0.96 0.91
CHECK 3 0.93 0.81
COLOR-SEG-IMAGES 10 N/A N/A
CORRESPONDENCE 24 0.82 0.91
DICTIONARY 12 0.97 0.95
FORM 23 0.86 0.82
MANUAL 35 0.88 0.87
NEWSLETTER 42 0.86 0.89
OUTLINE 19 0.84 0.80
PHONE-BOOK 7 0.88 0.93
PROGRAM-LISTING 12 0.92 0.78
STREET-MAP 3 1.00 0.87
TERRAIN-MAP 5 0.93 0.90
MATH 17 0.67 0.78
MUSIC 9 0.84 N/A
LINE-DRAWING 7 0.95 N/A

Since no text zone at COLOR-SEG-IMAGES is specified in their corresponding ground-truth,

this class is not considered. The grey-scale version of the documents are tested in [26] although

they are scanned in RGB space. However, since our proposed system has no dependency on

the number of channels of an input image, the comparison is performed. MUSIC and LINE-

DRAWING documents are excluded in our data-set. In most of the documents, both algorithm

provide almost same accuracy rates. Our algorithm performs better significantly in ARTICLE,
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CORRESPONDENCE and MATH classes as shown in Table4.8. On the contrary, the work in [26]

gives considerably better classification results in CHECK and PROGRAM-LISTING. When all

the document types are considered, the overall performance of the proposed algorithm achieves

87% accuracy while the methodology in [26] performs with an average of 81% accuracy rate.

4.2.2 Comparison to work done by Won [39]

An algorithm for extracting images in digital documents has been proposed by Won [39] where

233 article scanned documents provided by MediaTeam [61] are utilized to evaluate the algorithm.

The proposed technique is also used at the photo detection module in our proposed technique with

some modifications. The document is enhanced by pre-processing module which is not applicable

in Won’s study. In addition, the optimal block size is fixed depending on the size of the scanned

document and post-processing technique is utilized instead using a block-size reduction step since

they are very computationally expensive process. The performance results are presented in terms

of total error rate, false negative and positive which are explained and discussed explicitly in Sec-

tion 4.1.1. Fig. 4.14 shows the false detections including total error rates.

(a) Won et al. [39] (b) Proposed system

Fig. 4.14: Error rates(%).

Documents that have photos/images introduce more false positives in our proposed technique

compare to the study in [39] since the optimal block-size is fixed and block-size reduction is not

applied. Therefore, the pixels at the boundaries are detected as image although they are non-image

pixels. However, non-image regions are better classified in our system as seen in false negative
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plot. Moreover, false positives in documents without images (i.e.,non-image regions are classified

as image regions) are less than the proposed technique in [39]. This implies that pre-processing

module in our system provides a document that has better enhanced text and image regions. This

prevents our system from a text region to be mis-classified as an image region. Note that, the false

negatives in documents without images is zero for both proposed systems since there is no image

region defined. The average error rate for all 233 documents in [39] and our technique is ∼ 2.9%

and ∼ 4.1%, respectively [see Fig. 4.14]. However, more importantly, although his algorithm

is developed for grey-scale scanned documents which are assumed to have a white background

region, our algorithm achieves 89% accuracy in ∼ 500 documents photo classification in both

RGB and grey-scaled scanned documents.



CHAPTER 5: CONCLUSIONS AND FUTURE WORK

An algorithm for document classification has been proposed in this paper where text, photo, and

strong edge/line regions are identified for both color and grey-scale scanned documents. The

proposed technique is primarily based on wavelet decomposition, run-length encoding, projec-

tion based on basis vectors, MRF-MAP optimization, Hough transform and edge linkages and a

merging procedure by using K-Means clustering. It has been tested on large databases of scanned

documents, obtained by different scanning techniques. A variety of simple, complex, color, and

grey-scale documents are used to evaluate the proposed technique. Experimental results indicate

that the algorithm works with an average of 85% accuracy for text, photo and background regions

on both color and gray-level scanned documents. And more importantly, it provides consistent

results for different types of documents. For this reason, it gives an opportunity to use on sev-

eral different types of scanned documents where the other methods cannot provide this feasibility.

Although they usually consider one specific type of scanned document, the proposed technique

achieves very close accuracy compared to the other proposed methods as represented with num-

bers in the results presented above. The accomplishments of the proposed work are summarized

below.

1) The proposed algorithm is an efficient classification method designed for colored and grey-

scale scanned documents.

2) Text, photo, strong-edge/line and background regions can be shown in one classification map

instead of only segmenting the document as text and non-textual region.

3) Scanning artifacts and reflections occurred in the background are eliminated so that the algo-

rithm is a robust technique against these artifacts.

4) High accuracy is achieved although several different types of simple and complex colored

scanned documents are employed in testing stage.

79
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5) It is independent from a scanning technique since the algorithm is tested on MediaTeam

database and documents obtained from the industry.

The objectives of future work are to:

1) Increase the overall performance and reduce the computation time because it yields more

reliable system for document retrieval applications. Some identified drawbacks are:

• Mis-detection of figure captions or text regions written on photo region.

• Lower accuracy in lower resolution scanned documents.

2) Recognize additional objects such as gradients, 1D or and 2D bar-codes.

3) Develop a computationally efficient algorithm for text recognition, mainly OCR, from scanned

images.

4) Assign semantic and logical relations to the classified text, strong edge/line, photo and back-

ground regions by utilizing the generated map.
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