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Abstract 

Analysis of Symmetric Key Establishment based on Reciprocal Channel Quantization 

David M. Wagner 

Supervising Professor: Dr. Gill R. Tsouri 

 

 Methods of symmetric key establishment using reciprocal quantization of channel parameters in 

wireless Rayleigh and Rician fading channels are considered. Two important aspects are addressed 

through generic analysis: impact of a proximity attack by a passive eavesdropper and achievable 

key establishing rates. The analysis makes use of the National Institute of Standards and 

Technology statistical test suite applied to the channel quantization bits as the outputs of a random 

number generator. For proximity attacks, a passive mobile eavesdropper with an ability to 

approach one of the communicating parties and a possible signal-to-noise ratio advantage is 

assumed. The minimal required distance from the eavesdropper in order to maintain perfect 

secrecy during key establishment is evaluated as a function of the Rician factor and quantization 

depth. For key establishing rates, the maximal rates are evaluated while ensuring that the generated 

secret key bits pass the entire statistical test suite. The generic analysis is applied to channel-phase 

quantization and performance in practical systems is considered as well. 
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Summary of Contributions 

 

• Generic approach of analyzing eavesdropper proximity attacks on key establishment 

methods that use reciprocal quantization of channel parameters. The analysis 

determines the minimal required distance from an eavesdropper to maintain perfect 

secrecy while establishing the key. 

• Generic approach of analyzing achievable key refreshing rates for key establishment 

methods that use reciprocal quantization of channel parameters. The analysis 

determines maximum key establishing rates while insuring that the resulting key is a 

true random sequence. 

• Determination of secure eavesdropper-receiver distances and key refreshing rates for 

carrier-phase quantization in Rician fading environments.  

• Implementation in Matlab of entire NIST 2008 statistical test suite for Cryptographic 

Random Number Generators. The Matlab code would be made available online at:  

http://people.rit.edu/grteee/communicationLab.html 

• Publication: 

D. Wagner and G. R. Tsouri, “Analysis of Symmetric Key Establishment Based on 
Reciprocal Channel Quantization: Proximity Attacks and Key Establishing Rates”, 
submitted for review to IEEE Transactions on Information Forensics and Security – 
special issue on Physical Layer Security.  
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Chapter 1: Introduction 

1.1 Motivation 

 The broadcast nature of wireless communication links exposes them to eavesdropping and 

therefore securing a wireless link is paramount in many applications. In traditional symmetric 

encryption systems, a large pre-deployed secret key is shared by the two communicating parties. 

The same key is used to encrypt and decrypt information. A prominent example is the Advanced 

Encryption Standard (AES) [1], where a 128 bit key is typically used. Asymmetric encryption is 

based on public-key cryptography where the public key is not secret and is used to encrypt 

information. Decryption can only be performed using a private key which is secretly kept. A 

prominent example is the Rivest-Shamir-Adleman (RSA) [2] algorithm. Both types of encryption 

methods are based on security by complexity and provide adequate security. Symmetric methods 

are characterized by lower algorithmic complexity, while asymmetric methods are characterized 

by lower key management complexity. To minimize complexity one could use a simpler 

symmetric encryption method such as a stream cipher [3] coupled with periodic key establishing to 

compensate for its weak encryption strength. To this end a method of securely establishing a 

symmetric encryption key is needed. A prominent method used in practice is the Diffie-Hellman 

algorithm [4] which reintroduces high algorithmic complexity. 

 AES and the Diffie-Hellman algorithm involve the use of considerable online computation 

power, memory space and communication overhead. Therefore, these methods could prove 

impractical in resource-constrained devices such as implanted medical devices, compact mobile 

devices and wireless enabled bio-sensors. The costs associated with securing a wireless link in 

resource-constrained devices received considerable attention in the past – see [5] for example. A 
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low-complexity alternative for establishing a symmetric key is attractive provided that it is secure 

from eavesdropping. Such an alternative would allow the use of low-complexity symmetric 

encryption coupled with frequent key establishment.  

 

1.2 Literature Survey 

 In recent years there has been increased attention to the use of wireless physical layer security to 

establish information theoretic security as a low cost alternative to standard encryption methods 

which are based on computational complexity such as AES. Previous work on the secrecy capacity 

of wireless fading channels showed they have an intrinsic property of concealing information from 

an eavesdropper – see [6-12] for prominent examples. In addition, the literature depicts many 

attempts to practically use the secrecy-capacity to implement information theoretic security - see 

[13-21] and references therein for examples. We focus our attention on methods of symmetric key 

generation based on reciprocal quantization of channel parameters such as those reported in 

[15-21]. In [15] knowledge of the channel-phase is used to encrypt data with some arbitrary 

quantization. In [16] reciprocal random fluctuations in the signal amplitudes are quantized to 

generate keys. In [17] key generating is simulated for ultra wideband channels, while in [18-21] 

the channel phase and/or amplitudes are directly quantized to generate secret key bits.  

 

1.3 Novelty 

 In this contribution we propose two generic analysis approaches applicable to key establishment 

methods which are based on reciprocal quantization of channel parameters. The first approach is 

for assessing the impact of proximity attacks by a mobile passive eavesdropper with possible 
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Signal to Noise Ratio (SNR) advantage. The second approach is for evaluating achievable key 

establishing rates. For the scope of this work we consider Rician fading channels, a passive 

eavesdropper, and no quantization errors. Note that quantization errors and key establishing rates 

are intimately tied, since failures to establish a key due to quantization errors means the 

communicating parties must perform multiple attempts to establish the key resulting in slower 

establishing rates. It follows that the analysis results in an upper bound on key establishment rates. 

Our analysis makes use of the Rician channel model reported in [22], the National Institute of 

Standards and Technology (NIST) random number generator test suite [23], a supporting lemma 

we define and prove, and Clarke’s Rayleigh channel model in [24]. The model in [22] offers high 

accuracy with regard to the random nature of the Rician factor and was successfully used in the 

past to model Rician fading channels, and the NIST test suite [23] is used extensively to evaluate 

many cryptographic random number generators. We are unaware of previous attempts to use the 

NIST test suite to quantitatively evaluate the limits of key generating methods based on channel 

randomness. As an example, we apply the generic approach to key establishment based on single 

antenna reciprocal channel-phase quantization and use the result to evaluate the applicability for 

practical systems and standards. 

 

1.4 Outline 

 Chapter 2 details the foundational concepts in cryptography and information theory required for 

analysis. Chapter 3 presents analysis of proximity attacks and key refreshing rates in a strong 

multipath environment with no line-of-sight (based on Clarke’s Rayleigh fading model) and in 

multipath with line-of-sight channels (based on the novel Pop-Beaulieu [22] Rician fading model). 
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We consider the three Industrial-Scientific-Medical (ISM) frequency bands around 433MHz, 

915MHz and 2.45GHz. Chapter 4 concludes the treatment and provides direction for future work. 
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Chapter 2: Background 

2.1 Theoretic Secrecy 

 Most secrecy systems today rely on practical security by using a large key; for example AES 

uses a 128-bit key. For these systems, a brute force attack by an eavesdropper would require 

exhaustive search through 2
��  different possible keys. Even with today’s computational 

resources, the search duration would exceed the system’s lifetime. However, these systems can 

theoretically be compromised since the eavesdropper gains a modicum of information from each 

ciphertext sample available to him. 

 In 1946, Claude Shannon published a seminal paper [25] on secrecy systems which addresses 

achieving theoretic secrecy in the presence of an eavesdropper with unlimited resources. In a 

keyspace 
 � ������
|�| , a message space � � ������
|�| , and a cryptogram space � � ������
|�| , the 

function ��  is a rule that assigns elements of � to elements of � . For theoretic secrecy, the 

probability of �� occurring must be the same as the probability of �� occurring given that any �� 

occurred previously, or �� !��" � �!��". Therefore, two conditions must be met: |�| # |�| and 

|
| # |�|. If both of these are met, we may construct a mapping ��  that ensures �� !��" �
�!��". All plaintext messages are equiprobable and so the eavesdropper may not glean any 

information from any individual ciphertext, and therefore from unlimited ciphertexts.  

 In most practical systems |
| $ |�| and so �� !��" % �!��".  In this case, by intercepting a 

cryptogram the eavesdropper will obtain information about the probability distribution of the 

messages. The unicity distance is defined in [25] as the number of cryptograms required by the 
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eavesdropper to uniquely determine the message by using cryptanalysis. In systems without 

theoretic secrecy, the unicity distance is a finite number. 

 

Fig. 1 – Communication System with Eavesdropper 

 

 In Fig. 1, we apply the concept of theoretic secrecy to a wireless communication system. An 

eavesdropper (Eve) is attempting to understand the communication between the transmitter 

(Alice) and the receiver (Bob). The channel formed between Alice and Bob is designated &'(), 

and the channel between Alice and Eve is &�*+. Since the communication is over-the-air, Eve is 

able to receive the signal with her antenna. The secrecy capacity of the Alice-Bob channel is 

defined as the maximum quantity of information that may be transmitted over the channel with 

theoretic secrecy. Previous work [9] has shown the secrecy capacity of the Alice-Bob channel to 

be 

,- � .,� / ,
;     ,� 1 ,
0;                ,� $ ,
 3                                                         !1" 

where ,�*+ designates the channel capacity in [bits/Sec] of Eve’s channel and ,'() represents the 

channel capacity of Bob’s channel. For a Gaussian Identity [9] Channel, we have 

, � log� 81 9 :;<                                                              !2" 
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where 
=> denotes the Signal-to-Noise Ratio (SNR) in which S is signal power and N is noise power. 

For a wireless channel, this relation is invalid because of the multipath, but C is still proportional to 

SNR. Assuming Eve has unlimited resources, she can design an optimum antenna and have a 

signal with extremely high SNR, and therefore CCDE F ∞. This would indicate that theoretic 

secrecy is impossible with a powerful eavesdropper. However, the relation in (1) does not hold if 

hCDE and hIJ are independent [21]. If the channels are independent, Eve’s unicity distance will 

remain at infinity even if she gains an arbitrarily large SNR advantage.  

 

2.2 Random Number Generators 

 A True Random Number Generator (TRNG) is an information source whose instantaneous 

outputs are selected from the states of an underlying random process. TRNGs are often based on 

observations of physical phenomena, for example the alpha emissions in a radioactive decay 

process, and measurements of atmospheric noise. Humans have many applications for TRNGs, 

including Monte-Carlo simulations of physical phenomena, random sampling among a population, 

generation of keys in cryptography, selecting lottery winners, and even for creation of content in 

the arts. However, harnessing physical processes is challenging and often does not provide the 

demanded quantity of random data. Also, the concept of randomness is counterintuitive to the 

human brain and thus cannot be synthesized by man. Therefore, humans have thoroughly 

investigated and developed deterministic means of approximating TRNGs. These generators are 

termed Pseudo Random Number Generators (PRNG). PRNGs produce a stream of numbers that 

strive to emulate properties of randomness. Starting with an initial number seed, each next number 

is generated by a deterministic transformation on the previous number. 
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 A simple example of a PRNG is a Linear Feedback Shift Register (LFSR [26]). The LFSR of 

order K generates each n-bit number as a function of the previous number according to the 

exclusive or (XOR) gate connections between the registers. Depending on the initial seed, the 

LFSR progresses through different cycles of states. A LFSR which produces a maximal length 

sequence of 2L / 1 is called an m-sequence generator. The XOR connections of any m-sequence 

generator correspond to a primitive polynomial. 

 Another simple PRNG is the Linear Congruential Generator (LCG) [26], which generates 

subsequent numbers as residues of the previous number weighted and shifted by a constant value. 

Its deterministic expression is MLN
 � OML 9 P !�QR �", and it starts with a seed MS. Even with 

carefully chosen values for O, P, �, MS the sequence has a period of at most �. 

 PRNGs can also be complex, consisting of a series of cumbersome deterministic 

transformations. One example is the Mersenne-Twister algorithm [27], which is currently 

implemented in Matlab as the rand() function. The Mersenne-Twister algorithm is a 

computationally intensive PRNG which has a period of 2
TTUV / 1. 

 In some cases, it is desirable to have pseudo-randomness rather than pure randomness. For 

example, in Code-Division-Multiple-Access (CDMA) systems, Pseudo-Noise (PN) spreading 

sequences are used for coding and decoding messages for an individual user. 
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2.3 Random Number Generator Evaluators 

 Due to the high demand for random data, much research has been conducted on identifying 

previously untapped TRNGs and also on creating new PRNGs. Since humans cannot intuitively 

judge randomness, a need has arisen for RNG assessors which accurately determine where a 

particular RNG stands on the spectrum between deterministic and random. Humans do understand 

properties of deterministic sequences, and so these assessors are designed to filter out RNGs that 

generate sample sequences with deterministic properties. Typically, the assessors consist of a 

battery of tests, each of which detects a different type of underlying determinism or predictability. 

 One such RNG assessor is the National Institute of Standards and Technology (NIST) statistical 

test suite [23].The NIST statistical test suite consists of multiple tests designed to evaluate the 

effectiveness of a RNG which is specifically meant for use in cryptographic applications. The suite 

consists of 15 unique tests, each of which judges the randomness of an incoming bitstream, and 

returns one or more P-values. These values are typically obtained by transforming the input 

sequence and observing some properties of it, and then performing a chi-squared test to compare to 

the expected properties of a truly random sequence. The chi-squared test ensures that the sum of 

probabilistically weighted squares of the differences between the observed and expected values is 

less than a certain threshold. Statistically, the P-values represent the strength of the evidence 

against the null hypothesis; which is that the sequence is nonrandom. For each P-value, the 

sequence is statistically random with a significance level of α if PDYZ[E # α. However, a Type I 

error can occur if a random sequence produces a P-value below the significance level. Also, a 

nonrandom sequence may occasionally produce a P-value which passes, which is a Type II Error. 

In order to reduce the effect of these statistical errors, NIST specifies [23] that at least 

\ sequences 

be tested. To determine whether a generator is indeed random, one may either conduct a chi-square 
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test on the produced P-values to assess their uniformity, or simply observe whether the percentage 

of passing P-values is above a specified threshold determined by α.  

 The NIST tests are not completely independent in terms of the aspects of non-randomness they 

catch. They also don’t span the entire testing space, since no battery of tests could conclusively 

prove that a sequence is random. Nonetheless, they are the industry standard of RNG and PRNGs, 

especially for those generators to be used in cryptographic applications. 

Test 
Number 

Test Title 
 

1 Frequency 
2 Block Frequency 
3 Runs 
4 Longest-run-of-ones in a block 
5 Binary Matrix Rank 
6 Discrete Fourier Transform 
7 Non-overlapping Template Matching 
8 Overlapping Template Matching 
9 Maurer's "Universal Statistical" 
10 Linear Complexity 
11,12 Serial 
13 Approximate Entropy 
14, 15 Cumulative Sums 
16-23 Random Excursions 
24-41 Random Excursions Variant 

Tab. 1 – NIST statistical tests 

 

 Tab. 1 shows a list of the tests available in the suite. Each test is designed to filter out a different 

kind of non-randomness. The Frequency test is the simplest one and can be used as a filter before 

applying any of the other tests. It detects whether the distribution of zeros to ones is uniform 

enough for randomness. The Block Frequency test assesses the uniformity of the bits in local 

blocks which are subsets of the bitstream. The Runs test detects abnormally large or small streaks 

of ones, and the Longest-run-of-ones-in-a-Block test is a local version of this test within blocks. 
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The Spectral test rejects sequences that have repetitive patterns. The Template Matching tests 

detect whether the frequency of occurrence of a specified bit sequence is atypical of that of a 

random sequence. The Universal Statistical test determines if the sequence’s entropy is consistent 

with its length, i.e. if the sequence cannot be compressed. The Linear Complexity test determines 

whether the length of the sequence’s generator linear feedback shift register is too small. The 

Serial test judges the uniformity of the distribution of overlapping subsequences of a certain 

length, and returns two P-values based on different sequence indices. The Approximate Entropy 

test employs a different method to test the same aspect of non-randomness as the Serial test. The 

Cumulative Sums test detects whether there a certain value is over-represented at the extremities 

of the sequence. It returns a P-value for traversing through the sequence forward and for traversing 

backward. The Random Excursions test creates a random walk out of the sequence, and examines 

the frequency of occurrence for each of 8 states, returning a P-value for every state. The Random 

Excursions Variant test creates multiple random walks and measures the occurrence rate of each of 

18 states, also returning a P-value for every state. 

 NIST has a website [28] where one may download ANSI C implementation of the test suite. In 

order to better understand the tests in the suite, we wrote a Matlab implementation of each test. 

Several challenges were encountered in this pursuit. The biggest challenge was encountered with 

the Linear Complexity test, which required coding a binary version of the Berlekamp-Massey 

algorithm [29]. This algorithm detects the smallest size LFSR able to generate the given sequence. 

Finding the minimal LFSR for a sequence requires on the order of K� bit operations [26], where K 

is the sequence length. The test required dividing the sequence of length at least K � 10] into ; 

blocks of � bits each, whereK � �;, 500 _ � _ 5000 and ; # 200. The Berlekamp-Massey 

algorithm would then be run on each block and a table of minimal LFSR would be constructed, 
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after which a chi-squared test would be conducted on the table. Ignoring any processing associated 

with the chi-squared test, this test requires quadratic complexity with a constant times `!��" a ; 

bit operations. In the best case, this corresponds to `!500�" a 2000  bit operations. On a 

3cde 32-bit architecture CPU with the maximum 2cf of Random Access Memory allocated to 

Matlab, this test took an average of approximately 8 seconds to execute, compared with a fraction 

of a second required by each other test on average. Evaluating a RNG with a significance level of 

0.01 requires generating 100 sequences and running every test on each sequence. Therefore, the 

additional delay incurred by the Linear Complexity test drastically increased the time of a large 

amount of simulations. 

 In order to test the correctness of the Matlab implementation, we subjected random and 

deterministic sequences to the newly implemented tests. For the random sequence we used data 

from the Random.org [30] TRNG, which is based on atmospheric noise. We requested data in 

blocks of 10h bits until accumulating enough for a sequence of length 10]. For the deterministic 

data we used a LFSR of length 27 with gate connections corresponding to the polynomial 

1 9 i
V 9 i�� 9 i�U 9 i�V to generate a sequence of length 2�V / 1. We used 10� bits of this 

data to form 100 sequences of length 10] . The Matlab implementation passed the sequence 

harvested from Random.org, and it failed the sequences generated by the LFSR. 

 



20 

 

 

Chapter 3: Analysis 

3.1 Opening Remarks 

 We consider the scenario depicted in Fig. 1, where two communicating parties (Alice and Bob) 

are establishing a key using reciprocal quantization of some channel parameter by alternating the 

roles of transmitter and receiver. The eavesdropper (Eve) performs a proximity attack in attempt to 

decipher the key by approaching Bob or Alice during key establishment. Other than approaching 

one of the communicating parties, the eavesdropper is passive. We consider the distance of the 

eavesdropper from the current receiver, who is attempting to establish a key.  

 We assume that some efficient method is used by both legitimate communicating parties to 

accurately estimate a channel parameter. Following the assumptions made in [12-21], we too 

assume that the channel is reciprocal for sufficient time such that the transmitter and receiver 

estimate the same value. The channel estimate is quantized with an arbitrary quantization depth to 

generate encryption key bits. The process is periodically repeated to generate the necessary 

amount of secret bits to form the encryption key. For the sake of analysis, we consider each bit of 

the quantization separately as if the key is generated by accumulating a single bit per quantized 

estimate. 

 We assume that the reciprocal key generating method being used is designed such that maximal 

key entropy is achieved, i.e., all possible keys are equally probable [27]. This means that the 

probability for any generated key bit to be zero or one is the same. This could translate to 

performing non-uniform quantization depending on the Probability Density Function (PDF) of the 

parameter being quantized. In addition, note that since the eavesdropper and receiver are in close 

proximity their fading channel statistics are expected to be the same. We regard the quantized 
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channel parameter estimate at the receiver as a binary vector of  f secret key bits denoted by 

jk � l�
m , ��m , … , �'m o. 
 Since we require perfect secrecy during key establishment and key establishing rates which 

remain secure, we decouple analysis of proximity attacks and key establishing rates. In what 

follows, we assume a secure key establishing rate is used when performing analysis of proximity 

attacks, and that sufficient space separation between receiver and eavesdropper is in place when 

performing analysis of key establishing rates.  

3.1.1 Proximity Attacks 

 In most reported work on symmetric key generation, it was assumed that the eavesdropper is 

sufficiently distanced from the intended receiver so that the channel from transmitter to receiver is 

independent of the channel from transmitter to eavesdropper [13-20]. Under this assumption, 

channel estimates at the receiver are unique and the eavesdropper is blocked access to them due to 

space selectivity of the wireless channel, resulting in independent channels and therefore perfect 

secrecy for key establishment. In a real world scenario, an eavesdropper can make an attempt to 

near the intended receiver and compromise the basic assumption of independent channel 

estimates. In other words, the eavesdropper can perform a proximity attack to reduce the space 

selectivity of the wireless channel. As a result the eavesdropper would be able to gain knowledge 

of the channel estimates at the receiver based on its own channel estimates and thereby deduce the 

key being established with some certainty. In an extreme scenario the eavesdropper could attach its 

antenna to that of the receiver so that they would experience the same channel with the transmitter. 

This implies that an effective proximity attack would hinder any practical method based on 

channel randomness. The question is: what is the minimal required distance of an intended 

receiver from a potential eavesdropper to securely establish the key? An analysis of security 
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strength in the face of proximity attacks is crucial for evaluating the efficacy of encryption 

methods based on channel randomness and for promoting their possible acceptance as alternatives 

to traditional methods. 

 There is limited reported work on the vulnerability of practical symmetric key generation 

methods using channel randomness in the presence of a proximity attack. The most relevant work 

to date was recently reported in [21], where a measurement campaign was conducted to evaluate 

the limits of key establishment based on reciprocal quantization of Multiple-Input-Multiple-Output 

(MIMO) channels in the presence of a passive eavesdropper. In [21] information theoretic analysis 

is used to find the percent of vulnerable secret bits out of the total number of generated bits as a 

function of the distance between eavesdropper and receiver. The difference in SNR of the channels 

to eavesdropper and receiver, the number of multipath components, presences of line of sight and 

number of antenna being used are considered as system parameters and affect the ratio of 

vulnerable secret bits.  

 In this contribution we present a generic approach to evaluate the effect of proximity attacks on 

any practical method which makes use of reciprocal quantization of channel parameters. Our 

generic approach evaluates the minimum required distance between receiver (either one on the 

communicating parties) and eavesdropper for such methods to remain secure, regardless of a 

possible SNR advantage of the eavesdropper and the number of antennas being used. The analysis 

results in a threshold on the required separation between eavesdropper and the communicating 

parties to achieve perfect secrecy for key establishment as a function of the Rician factor and 

quantization depth. Such absolute thresholds are useful for practical systems where the channel 

environment changes dynamically resulting in variable and unknown SNR advantage for the 

eavesdropper or when the number of antennas at the eavesdropper is unknown.  
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3.1.2 Key Establishing Rates 

 Key establishment rates received considerable attention in the past [6-21]. In general, the 

achievable key refreshing rates depend on channel decorrelation in time. If key refreshing rates are 

too fast, the channel doesn’t decorrelate sufficiently to ensure that successive channel estimates 

and subsequent generated secret bits are uncorrelated. The strength of the key is diminished if 

successive secret bits are correlated. Past reported work on achievable key refreshing rates applied 

an information-theoretic approach based on the secrecy capacity. Using this approach, the 

achievable key rates largely depend on channel conditions. For example, in a single antennas 

system if the capacity of the channel from transmitter to eavesdropper is higher than that from 

transmitter to receiver, the secrecy capacity is zero and secure key establishment is not possible.  

In this contribution we present a generic approach to evaluate achievable key establishing rates of 

practical methods making use of reciprocal quantization of channel parameters. We treat the 

sequence of generated secret bits as the output of a Random Number Generator (RNG). Assuming 

the eavesdropper is sufficiently far from the communicating parties to render a proximity attack 

ineffective, we are left with the need to validate the output of our channel-based RNG. To this end 

we use the NIST statistical test suite [23] in its entirety as was previously done for other novel 

RNGs. 

 

3.2 Analysis of Key Establishing Rates in Rayleigh fading 

 We use Clarke’s Rayleigh fading model, assuming the channel is narrowband with infinite 

scattering [24]. The received signal can be decomposed into in-phase and quadrature components, 

which are on different dimensions and are therefore independent.  
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The autocorrelation function in time of the components is [24] 

���!�" � ���!�" � �m�S!2����"                                                         !6" 

�{ � ���                                                                             !7" 

where �� and �- respectively indicate the in-phase and quadrature components of the received 

signal, �m denotes the received power, and JS indicates the zero-order Bessel Function of the first 

kind.  

 After sampling the components in (3) and (4) with period T�, the goal is to obtain the vector of 

channel parameter samples �������
z
. To this end, we define the following covariance matrix of the 

jointly normal elements in the quadrature component: 

C �
��
�� �
� ��
 … �z
�
� ��� … �z���
z

���z �… ��z� ��
��                                                            !8" 

�  % �, ��� � ��� � �mOKR��� � ��� � �m|!� � |  / �|T�"                           !9" 

Since both components are drawn from this distribution, we may use (8) to independently generate 

samples of �� and �-. We may then extract a channel parameter by applying a function to these 

components. In the case studied in this work, we would extract the phase and perform 

quantization. This would verify the results of using the Rician model for 
 � 0. 
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3.3 Analysis of Proximity Attacks in Rayleigh fading 

 In order to incorporate decorrelation across distance, we invoke a low-pass equivalent model for 

the correlation between two antennas in a diversity system [18] 

ρ£ � ���!R" � ��-!R" � �S 82�R¤ <                                                !10" 

�¥ � R¤ � RP�� .                                                                      !11" 

This model assumes no correlation in time, so we set ¦- � 1§�P  to eliminate correlation of 

samples in time. This is justified for a case when the devices wait long enough for the channel to 

de-correlate before estimating the next key bit. This leads to  

C �
��
�� �
� �m�S!2����" … �m�S!2���!; / 1"�"�m�S!2����" ��� … �m�S!2���!; / 2"�"��m�S!2���!; / 1"�" ��m�S!2���!; / 2"�" �… ��z� ��

��  ¨ I>J>   !12" 

assuming �m � ��ª����
z � 1. We define the following vectors of component samples, in which 

samples of the received components and samples of the eavesdropper components are generated: 

l���  �m���
z �   «  �Z­  �+���
z � o                                                       !13" 

l��-  �m���
z �   «  �Z�  �+���
z � o                                                       !14" 

We form the new covariance matrix  

,m+ � ® ¯z°z �¥¯z°z�¥¯z°z ¯z°z ±.                                                      !15" 

Due to space-time independence, (15) generates random variables in the form of (13) and (14).  

 Once again, after obtaining Z­², Z�², Z­E, Z�E we may apply a given function to Z­², Z�² and to Z­E, Z�E 

to obtain a channel parameter. If the parameter is phase, we could compare to the results from the 

Rician case where  K � 0.  
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3.4 Analysis of Proximity Attacks in Rician fading 

We use the time-based model given in [22] to describe the varying channel in space. This is 

justified due to the channel duality between space and time [23]. We use the following variable 

translation between space and time: 

R¤ � ��r                                                                         !16" 

where ¤ is the wavelength associated with the frequency of operation,�� is the maximal Doppler 

shift and ́ � � 2���. This equivalency is also evident in [24] for the Rayleigh fading scenario. 

Further discussion on space-time duality in wireless channels is given in [31]. 

Using the model in [22] and we form the space-based model: 

��!R" � 
√z ∑ cos ·�¸¥¹ PQ§!tL"º 9 »L" 9 √
 cos ·�¸¥¹ cos!¼S" 9 »SºzL�
 √1 9 
           !17" 

       �-!R" � 
√z ∑ sin ·�¸¥¹ PQ§!tLº 9 »L" 9 √
 sin ·�¸¥¹ cos!¼S" 9 »SºzL�
 √1 9 
            !18" 

where ��!R" and �-!R" represent the in-phase and quadrature components respectively at the 

eavesdropper, R  is distance in meters, 
 is the Rician Factor, ;  is the number of multipath 

components, ¼S is the angle-of-arrival of the Line of Sight (LoS) component, »S is the initial phase 

of the LoS component, �»L� are the initial phases of the scattered components, and�tL� are the 

angles-of-arrival of the scattered components. Note that the model in (17) and (18) allows for 

evaluating the correlation between any two points in space. This is useful for modeling single as 

well as multiple antenna scenarios.  

 The quantized channel parameter estimate at the eavesdropper is denoted by the vector j½ �
l�
+ , ��+ , … , �'+ o. If j½ and jkare independent the eavesdropper would not be able to deduce jk.  

We define the following binary random variable: 
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Δ� � ��m ¿ ��+                                                                 !19" 

where ¿ is the modulo 2 sum operation (exclusive or) and   is chosen out of 1, … f to reflect a 

specific bit in the quantized binary vector. 

3.4.1 Supporting Lemma for ensuring independent eavesdropper channels 

Let M and À be discrete binary random variables each uniformly distributed and let � � M ¿ À. 

Mand À are independent if and only if � is uniformly distributed. 

Proof: 

Uniformity of M and À means that their PDFs are given by 

�Á!i" � 12 �° 9 12 �°Â
 

�Ã!Ä" � 12 �Å 9 12 �ÅÂ
                                                             !20" 

It follows that 

�Á!0" � �Á!1" � �Ã!0" � �Ã!1" � 12                                              !21" 

� is 0 only if M and À have the same value. Using the joint PDF of M and À�Á,Ã!i, Ä" gives 

��!0" � �Á,Ã!1,1" 9 �Á,Ã!0,0"                                                    !22" 

��!1" � �Á,Ã!0,1" 9 �Á,Ã!1,0"                                                    !23" 

Using marginalization and the discrete nature of M  and À  to derive �Á!i"  and �Ã!Ä"  from 

�Á,Ã!i, Ä" we have 

�Á!i" � Æ �Á,Ã!i, Ä"Ç
ÂÇ RÄ � �Á,Ã!i, 1" 9 �Á,Ã!i, 0"                                     !24" 

�Ã!Ä" � Æ �Á,Ã!i, Ä"Ç
ÂÇ Ri � �Á,Ã!1, Ä" 9 �Á,Ã!0, Ä"                                     !25" 
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12 � �Á!1" � �Á,Ã!1,1" 9 �Á,Ã!1,0"                                                    !26" 

12 � �Ã!1" � �Á,Ã!1,1" 9 �Á,Ã!0,1"                                                    !27" 

12 � �Á!0" � �Á,Ã!0,1" 9 �Á,Ã!0,0"                                                    !28" 

12 � �Ã!0" � �Á,Ã!1,0" 9 �Á,Ã!0,0"                                                    !29" 

Equating (26) with (27) and (28) with (29) respectively results in the following symmetries 

�Á,Ã!0,0" � �Á,Ã!1,1"                                                           !30" 

�Á,Ã!1,0" � �Á,Ã!0,1"                                                           !31" 

Using (30) in (22) and (31) in (23) gives 

��!0" � 2�Á,Ã!1,1" � 2�Á,Ã!0,0"                                               !32" 

��!1" � 2�Á,Ã!0,1" � 2�Á,Ã!1,0"                                               !33" 

Case I. Assuming uniformity of � means that 

��!1" � ��!0" � 12                                                           !34" 

Using (34) in (22) and (23) gives 

�Á,Ã!0,1" � �Á,Ã!1,0" � �Á,Ã!0,0" � �Á,Ã!1,1" � 14                               !35" 

It follows that �Á,Ã!i, Ä" is given by 

�Á,Ã!i, Ä" � 14 �°�Å 9 14 �°�ÅÂ
 9 14 �°Â
�Å 9 14 �°Â
�ÅÂ
 

� 812 �° 9 12 �°Â
< 812 �Å 9 12 �ÅÂ
<                                                !36" 

Using (20) in (36) gives 

�Á,Ã!i, Ä" � �Á!i"�Ã!Ä"                                                           !37" 
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so M and À are independent. 

 

Case II. Assuming independence between M and À means that 

�Á,Ã!i, Ä" � �Á!i"�Ã!Ä"                                                           !38" 

Using (20) in (38) gives 

�Á,Ã!i, Ä" � 812 �° 9 12 �°Â
< 812 �Å 9 12 �ÅÂ
<                                        !39" 

� 14 �°�Å 9 14 �°�ÅÂ
 9 14 �°Â
�Å 9 14 �°Â
�ÅÂ
                            
which is equivalent to 

�Á,Ã!0,1" � �Á,Ã!1,0" � �Á,Ã!0,0" � �Á,Ã!1,1" � 14.                               !40" 

Using (40) in (22) and (23) results in 

��!0" � ��!0" � 12                                                            !41" 

so � is uniformly distributed. 

È 

 The quantized bits are binary random variables, each uniformly distributed. It follows from 

Lemma 1 that if Δ� is uniform, ��m  and ��+  are independent and the eavesdropper can gain no 

knowledge on the established key bit by observing its own channel estimates. 

 In order to test uniformity of Δ�, we invoke the NIST statistical test suite [23]. Using the channel 

model, we generate a bitstream of a single bit position of Δ� for a given distance, and then apply 

the NIST frequency monobit test to the bitstream. The frequency monobit test assesses the 

uniformity of a binary random variable. If the proportion pass-rate exceeds the threshold 

determined by the sequence length, the bit position of Δ� is considered to be uniformly distributed. 
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It follows that the eavesdropper’s key observations are independent to those of the receiver and the 

eavesdropper can gain no knowledge of the generated key. This means that the space selectivity of 

the wireless channel determined by the distance between eavesdropper and receiver is sufficient to 

securely generate an encryption key by quantizing the channel estimates. 

 

3.5 Analysis of Key Establishing Rates in Rician fading 

 Consecutive samples of a single bit from the quantized channel parameter comprise a random bit 

sequence which is the secret key. We apply the entire NIST test suite from Tab. 1 to the bit 

sequence per quantization bit as if it originated from a RNG.  

 In order to formulate a testing strategy, we observe the channel in-phase and quadrature 

autocorrelation functions in the time-based Rician fading channel model in [22]: 

É�Ê�Ê!�" � É�Ë�Ë!�" � �S!´¥�" 9 
PQ§!´¥�PQ§ !¼S"2 9 2
                                     !42" 

Where �S is the first kind Bessel function of the zeroth order. We plot these functions as a function 

time normalized to the Doppler shift and 
 Ì l0, 1, 3,5,10o in Fig. 2. 
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Fig. 2 –Rician channel correlation in time 

 

The randomness of the phase for a particular sampling period is related to the component 

autocorrelation value at that time. We observe that sampling at a zero crossings in Fig. 2 would 

produce a channel estimate which it completely uncorrelated with the previous channel estimate. 

In an ideal world, we would sample at this zero-crossing and achieve an extremely high key refresh 

rate. However, sampling precisely at the zero-crossing would require impractical precision. For 

example, a Doppler shift of 100 de would produce a period in the phase decorrelation function 

of10�§.We assume the worst case of sampling on a peak or trough. Thus, for a particular Rician 

channel, we must extract and test the sequence of sampling periods corresponding to the extrema 

of the autocorrelation functions. For each sampling period a sequence of quantized channel 

estimates is generated using f bits per estimate. The quantized estimates are partitioned into 

separate sequences of random bits each corresponding to a specific bit in the 
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quantization l�
m , ��m , … , �'m o. Each such sequence is evaluated using the entire NIST statistical test 

suite. The smallest extrema which passes all NIST tests is the smallest secure sampling period, 

since a small sampling offset would not increase the correlation across samples. The inverse of this 

sampling period is the maximum secret bit generating rate of a specific quantized bit position and 

is denoted É)ÍÎÏ.  

 

3.6 Carrier-phase Quantization 

We now apply the two generic approaches to key establishing based on reciprocal quantization of 

the channel-phase. We assume that an accurate estimation method is used by both parties to 

accurately estimate the fading channel phase, using signals going back and forth in rapid 

succession [13-21]. The phase estimate is quantized to generate encryption key bits. The process is 

periodically repeated to generate the necessary amount of secret bits to form the encryption key. 

Given a sampled channel phase – � $ ¼�!K¦" _ �, we shift and scale to 

¼�Ñ lKo � ¼�!K¦" 9 �2�                                                            !43" 

and uniformly quantize these phases into B bits per phase, 

¼�| � Ó¼�ÔlKo a 2'Õ2' .                                                             !44" 

3.6.1 Proximity Attacks using Carrier-Phase Quantization 

 The phase at the eavesdropper and receiver is given respectively by 

¼+ � tanÂ
 Ø�-!R"��!R"Ù                                                               !45" 

and 
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¼m � tanÂ
 Ø�-!RS"��!RS"Ù                                                             !46". 
In order to generate the phase of a Rician fading channel, we first generate the received in-phase 

and quadrature components. Loosely stated, if the sign of �- and �� are considered, full phase 

mapping is obtained and ¼+ , ¼m Ì l/�, �". The phases are uniformly quantized to obtain j½and jk, 

where f � 6 bits. 

 Without loss of generality we assume the eavesdropper and receiver are at a distance of R and RS  

respectively from some reference point placed on a straight line going through receiver and 

eavesdropper positions, and that the receiver is at the reference position (RS � 0). For distances 

R and RS, we used ; � 8 multipath components, which was shown in [22] to be a sufficient 

number of components to model the channel. The frequency monobit test requires a bitstream 

length of at least 100, and  a significance level of t � 0.01 requires 

Ú � 100 bitstreams. We 

generated 10Û  phases, which we then quantized to f � 6 bits. We formed Δ�  and generated 

1000 bitstreams of sequence length 100 for each of the 6 bit-positions, which were then input into 

the NIST frequency monobit test. 

 For generality we normalize the distance R  by the carrier wavelength ¤. We considered a 

normalized distance of 0 $ ¥¹ _ 1, assuming the eavesdropper is always able to be within a 

wavelength of the receiver. We found the largest distance in this range for which the NIST 

monobit test failed. The distance up to the failing distance is the minimal required distance to 

securely generate the key and is noted  R��L. If a distance of R � ¤ failed the NIST test, we 

declare key generation as a failure. 

 The aforementioned strategy was executed on each of the 6 quantized bit-positions with 


 Ì l0,10o. Fig. 3 shows the results. For brevity we omit failed attempts (R��L 1 ¤) from the 
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graph. It is apparent that as 
 increases R��L increases as well. This is because a higher 
  results 

in less multipath and hence less randomness of the channel. We observe that deeper quantization 

bits help increase  R��L. This is because deeper quantization bits are sensitive to smaller channel 

variations across space. As long as the quantization noise is tolerable, the loss of channel 

randomness due to high 
 can be compensated by using a deeper quantization bit. Note the 

discrete levels of R��L for varying 
.This is a manifestation of the hard-decision threshold output 

of the NIST frequency monobit test and is useful for determining clear requirements for R��L as a 

function of 
.  

 

Fig. 3– Minimum required distance as function of Rician factor for various quantization bits 

 

 The results in Fig. 3  help determine how far a receiver must be from the eavesdropper to foil a 

proximity attack in practical systems. For example, transmission in the ISM bands 2.45cde, 
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915�de  and 434�de  correspond to a wavelength of 12.2P� , 32.7P�  and 69.1P� 

respectively. The third Most Significant Bit (MSB#3) of the phase quantization can be used 

for
 $ 1if the receiver is at least 2.5P�, 6.6P� and 13.8P� away from the eavesdropper for 

2.45cde , 915�de  and 434�de  respectively.If MSB#4 is used the same distances ensure 

security for 
 $ 6. If MSB#4is used in a2.45cde IEEE 802.15.4 system and the channel is 

known to be Rician fading with 
 _ 8  a distance of at least 7.5P�  between receiver and 

eavesdropper is required. These distances seem reasonable for many practical systems. For 

quantization depth higher than five bits the required distance is below ¤/10, which corresponds to a 

minimal distance of 1.2P� , 3.3P�  and 6.9P�  for 2.45cde , 915�de  and 434�de 

respectively. 

3.6.2 Key Establishing Rates using Carrier-Phase Quantization 

 The channel-phase using the time model in [22] is given by 

¼�!K¦" � tanÂ
 Ø�-!K¦"��!K¦"Ù ;  K � 1,2, … , e                                              !47" 

We observe that (47) generates a sequence of consecutive phase of length e. We generate � total 

number of sequences of length z. We scale and quantize these phases according to (45) and (46). 

After quantizing, we have a matrix of bits of size m by e by f. We select a bit position Ý _ f and 

reshape the data into m bitstreams of length e.  

 We ran Monte Carlo analysis over a sweep of phase sampling period  ¦- . We took a quantization 

depth of f � 8 bits since that is a conservative estimate of common Analog to Digital Converter 

(ADC) depths. We set the number of multipaths equal to ; � 8 as was done previously in [22]. 

We set the bit positions to Ý Ì l3, 4, 5, 6,7,8o and the Rician factors to 
 Ì l0, 1, 3, 5, 10o. We then 

applied the NIST test suite with sequence length e � 10] so that we could execute all the tests. We 
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used a significance level t � 0.01 , requiring � � 
Ú � 100  sequences. Tab. 2 shows the 

parameters used for the tests. 

 

Test Parameter Value 

Block Frequency 
  

block size 100000 

# blocks 10 

Longest Run of Ones 
  

block size 10000 

# blocks 75 

Binary Matrix Rank 
  

# matrix rows 32 

# matrix cols 32 

Non-overlapping Template Matching 
  
  
  

# blocks 8 

block size 125000 

template size 9 

Template 000000001 

Overlapping Template Matching 
  

template size 9 

Template 000000001 

Maurer's "Universal Statistical" 
  

block length 7 

# blocks 1280 

Linear Complexity 
  

block length 1000 

degrees of freedom 7 

Serial block length 3 

Approximate Entropy block length 2 

Random Excursions States {-4..-1}{1..4} 

Random Excursions Variant States {-9..-1}{1..9} 
Tab. 2 – Parameters for NIST tests 

 

We determined  É)ÍÎÏ � 1/¦- , which simultaneously meets the randomness threshold for every 

test, across the aforementioned space of !
, Ý". For generality, time is normalized by the Doppler 

shift. Fig. 4 shows the results. 
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Fig. 4 – Maximum key refreshing rates as a function of quantized bit position for K � l0,1,3,5,10o. 
 

We note that É)ÍÎÏ varies inversely with 
, since a higher 
 increases the ratio between LoS and 

scattered power resulting in reduced randomness. We also observe that É)ÍÎÏ increases with a 

higher Ý, since a deeper quantization bit is more sensitive to small variation of the channel over 

time. 

 The results in Fig. 4 are useful for determining achievable key establishing rates in practical 

systems. For example, consider a stationary scenario with no LoS (
 � 0), where changing 

environment corresponds to a low Doppler shift of �� � 5de. In such a scenario, one may attain 

the following key refresh rates:4 i 10Â� )�{--+� a  5 � 0.2 )�{--+�  using �:f #6 and 5 i 10Â
 )�{--+� a 5 �
2.5 )�{--+�  using �:f #7 . This means that it would take 320§�P  to establish a 64  bit key 
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usingonly�:f #6 , and 25.6§�P  to establish the same key using only�:f #7 .As another 

example, consider a mobile vehicular environment corresponding to �� � 100de with a LoS 

component corresponding to 
 � 10. In such a scenario, using only  �:f #7 to establish a 128 

bit key would require 10Âh a 100 a 128 � 1.28§�P. 
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Chapter 4: Conclusion 

4.1 Closing Remarks 

 Symmetric key establishment using reciprocal quantization of channel parameters in wireless 

Rician fading channels was considered. Two aspects were addressed through generic analysis: 

impact of a proximity attack by a passive yet mobile eavesdropper with possible SNR advantage 

and achievable key establishing rates. Analysis made rigorous use of the NIST statistical test suite 

applied to the channel quantization bits as the outputs of a random number generator. The analysis 

was applied to channel-phase quantization and performance in practical systems was considered as 

a special case. 

 For proximity attacks, the NIST frequency monobit test was used in conjuncture with a lemma 

that was defined and proved. The minimal required distance from the eavesdropper in order to 

maintain perfect secrecy during key establishment was evaluated as a function of the Rician factor 

and quantization depth. The analysis proved useful for determining the required distance from the 

eavesdropper to securely establish the key. For example, in the ISM bands 2.45cde, 915�de and 

434�deperfect secrecy is achieved for environments with a Rician factor of 
 _ 8 by using 

�:f #5  with a minimum receiver-eavesdropper distance of 6.9P�, 3.3P�,  and 1.2P� 

respectively.   

 For key establishing rates, we assumed that a proximity attack is not possible, i.e., the 

eavesdropper is sufficiently far from the legitimate parties. The maximal achievable key 

establishment rates were evaluated by treating a given quantization bit of the channel phase as a 

cryptographic RNG and applying the complete NIST statistical test suite to its output bitstream. 

The analysis proved useful for evaluating achievable key refreshing rates in practical scenarios. 
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For example, when using �:f #7 in a Doppler shift of 5 de and no LoS between transmitter and 

receiver, a 64 bit key can be established in 25.6§. Alternatively, in a vehicular scenario where the 

Doppler shift is 100de and the Rician factor is 10, a  128 bit key is established in 1.28§�P. 

 

4.2 Improvements and Future Work 

 The entropy inherent in a wireless channel is present in all the channel parameters. Therefore, 

the channel phase is only one possible keying variable. The case of using the phase was 

particularly convenient since its uniform distribution allowed uniform quantization.  Any function 

on the channel parameters should be considered as a key generator. For example, the channel 

amplitude of the Rician channel may be used. This amplitude has Rice distribution 

�Á!i" � 2!
 9 1"i�� �Â�Â!àáâ"Ïãäå �S æ2iç
!
 9 1"�� è                              !48" 

where �� represents the LoS power, 
 is the ratio of LoS to scattered power, and �S is the zero 

order Bessel function of the first kind. 

 If using a quantization of this amplitude as a key generator, one would need to adjust the 

sampling such that the regions in a sampled Rice amplitude distribution would have equal area. In 

order to determine where to sample, we must solve this equation for �i����
m+-  

Æ �Á!i"Ri°â

S
� Æ �Á!i"Ri � é �°ã

°â
Æ �Á!i"Ri                                      !49"°êëË

°êëËìâ
 

where p�§ represents the degree of granularity of the sampling and �i����
m+-  represent the sampling 

indices. 
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 The results in this work have been generated with practical intent. It is our hope for the system 

analyst to use these results as a guideline for preventing proximity attacks while using the channel 

phase to generate keys for a symmetric cipher. Even if the channel has properties outside the range 

of those tested here, one may still use the trends we have outlined in Fig. 3 and Fig. 4. We have 

explained the general trends encountered when varying the environment, quantization bit, and 

frequency. 

 Many improvements could be made to the work here, especially for those with theoretical 

interest. One could perform additional simulations for more ISM frequencies, a deeper level of 

quantization bits, and a wider and higher resolution sweep of Rician 
 values. Future work could 

also be in the form of gathering more accurate channel statistics through a real world measurement 

campaign or through instrumentation which simulates a wireless channel. 
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