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Abstract 
  

 In this work, advanced III-V quantum dot (QD) materials are discussed and 

examined theoretically. The significance of substrate miscut with regards to QD growth 

is discussed and previous experimental data are examined to show established trends 

with regards to favorable miscut degree. In order to examine the miscut effect further, 

multiple testing techniques are presented which characterize material quality as it 

pertains to optoelectronic device performance, including optical and electrical 

spectroscopic methods.  

 The optical probing techniques of photoluminescence (PL) and photoreflectance 

(PR) are used to experimentally characterize the optical properties of GaAs baseline 

and InAs/GaAs one-layer QD samples. Experimental results reveal conclusive trends 

concerning QD energetic transitions and material quality as it relates to substrate 

miscut.  

 Deep level transient spectroscopy (DLTS) was investigated as an experimental 

method to inspect possible non-radiative defects or other QD defect properties which 

may contribute to PL signal degradation in miscut samples. Included in the DLTS 

evaluation section, I-V and C-V analyses are presented to pinpoint deep traps for 

profiling, as well as obtain general material parameters and trends. The deep defect 

profiling suggests differences between miscut samples. 

 The behavior of the reduced PL signal, corresponding to reduced radiative-

recombination in certain miscut samples, is discussed as related to the compilation of 

data obtained through optical and electrical probing.
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Chapter 1 

Introduction 

 Epitaxial growth of semiconductor superlattices, or man-made semiconductor 

crystals, has been investigated since the 1970s as a venue of improvement for solid 

state devices. Termed low dimensional structures, the size of the semiconductor crystal 

formed is comparable with interatomic distances on the nanometer scale, thus popularly 

referred to as nanostructures. The electronic properties of nanostructures are different 

from bulk single-crystalline material in that they are influenced by quantum effects1. The 

quantum limitations (confinement) produced by these nanostructures - dependent on 

their size and shape - changes the spatial overlap of electrons in the conduction and 

valence bands, directly related to the transition energies and strength of optical 

transitions observed2. These properties favor a growing generation of enhanced 

electronic devices with precisely engineered optoelectronic properties1,2. 

 Semiconductor material epitaxially grown by monolayer, or a single layer of 

atoms, allows the control of the underlying physics governing nanostructure formation 

and has become the foundation for advanced optoelectronic devices such as high-

performance lasers, LEDs, detectors, solar cells, etc. Nanostructures with enhanced 

carrier confinement - where increased confinement results in structures such as 

quantum wells (QWs) (two-dimensional), quantum wires (QWRs) (one-dimensional) or 

quantum dots (QDs) (zero-dimensional) - allow greater spatial precision in device 

engineering2. Recent research efforts involving semiconductor device improvement 

using nanostructures includes: QW infrared cascade detectors in the AlGaAs/GaAs 
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material system operating at 90 K and above3, nanowire superconducting field-effect 

transistors4, and QD radiation sensors based on ZnO and CdTe exhibiting excellent 

stability under photon irradiation5. 

1.1 Quantum Dot Devices 
  

 In QWs, electrons are confined to a two-dimensional layer between high 

bandgap semiconductor layers providing a space where electron energies and 

thresholds for excitation are customized by changing the well thickness. Carriers in 

QWRs are confined to movement along the one-dimensional wire axis, and in QDs the 

carrier can experience no free motion or very limited motion2. In the mid-1980s, the 

potential of QDs to outperform QWs and QWRs was recognized as their unique optical 

properties were further explored. QDs experience reduced phonon scattering, longer 

carrier lifetime, and lower detector noise (from zero-dimensional confinement)6. Also, 

the possibility of isolating single photon emission from QDs, the potential to manipulate 

the spin state of carriers, and other novel properties continue to be scrutinized in many 

semiconductor device fields1. In the following section, a brief overview of the potential 

and realized device applications for epitaxially-grown QD structures will be presented 

that includes the most prominent fields of QD technology (although many other QD 

semiconductor applications exist) such as state-of-the-art lasers, light-emitting diodes, 

detectors, and solar cells.  

1.1.1 Lasers 

 The QD laser ideal model is made up of an array of uniform spherical shapes in 

the QD layer encompassed by a higher bandgap material to confine carriers7. 
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Advantages of the QD laser system originate from the increasing density of states while 

electron dimension travel is limited8.  QD laser operation is workable due to the QD 

heterostructure that exhibits positive gain for high carrier injection levels9. QD lasers 

have been in development since 1993, and Kirstaeder et al. presented the Fabry-Perot 

injection laser in 1994 using embedded InGaAs/GaAs QDs9. QD laser research since 

has involved the realization of predicted improvements in laser performance, such as 

temperature-insensitive threshold currents and increased modulation speed10. Many QD 

laser advancements have been realized, including high power performance, relaxed 

cooling requirements, and improved wall-plug efficiency9.  

 In 1996, Singh identified the QD inter-sublevel optical transitions as candidates 

for developing an advanced infrared (IR) laser, and Vorob’ev et al. reported the 

pronounced enhancement of spontaneous far IR emission in a near IR QD laser9. Mid-

IR emission from QD lasers has since out-performed their QW counterparts by an order 

of magnitude7. More advanced applications include using QDs in vertical cavity surface 

emitting lasers (VCSELs) for fiber optic communications and auspicious results have 

been observed for 1.3 µm lasers on GaAs substrates8.  A world-record threshold current 

density for a laser was reached in 2000 at 19 A/cm2 [8] and ultrahigh material gain as 

well as suppression in gain saturation has been developed7. 

 1.1.2 Light Emitting Diodes (LEDs) 

 QD structures were first introduced as LEDs in a GaInAsP/InP system9. QDs aid 

the construction of miniature, single or multicolor LEDs with high luminous efficiency, 

that are lower in cost and weight11. Zhang et al. produced ZnSe and CdTe QDs for blue, 

green and red emission in 200811. Also, vertically aligned, electronically coupled QDs 
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are used in research, including studies done by Solomon et al., as the active region in 

LEDs operating at room temperature12. The broad emission and gain characteristics in 

QDs can produce superluminescent LEDs (SLEDs) as well10. Advanced research also 

involves spin QD LEDs where radiative recombination in the LED’s active region follows 

radiative selection rules, driven by the injection of spin-polarized carriers. 

1.1.3  Detectors 

 QD detectors reside on the inverse side of the above LED discussion. Single QD 

photodiodes have demonstrated resonant optical excitation in the QD ground state (or 

the state closest to the valence band) and photocurrent detection is possible13. QD IR 

detectors (QDIPs) have been realized as another device application, and are found to 

be high-performing detectors due to reduced phonon scattering, higher temperature 

operation, and lower dark current14. In future research and proposals put forth by 

Phillips et al., QDIPs are expected to achieve the highest IR detector performance15. 

1.1.4 Solar Cells 

 QDs are an exciting research field in advanced solar cell technologies, as the 

precise control of the nanoparticle size allows bandgap tuning or engineering (taking 

advantage of the near-infrared and infrared solar spectrum)22. Typical III-V single-

junction photovoltaics (PV) absorb only a portion of the available spectrum in space, 

and theoretical efficiency limits have been developed by Shockley and Queisser of 33% 

for single material absorbers22. QDs can enhance the performance of solar cells by 

introducing sub-host states into the band structure that act as separate effective 

bandgaps20. Their existence allows the material to absorb lower energy (higher 

wavelength) photons available from the solar spectrum, which would otherwise optically 
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pass through the host material. This should theoretically increase the number of carriers 

collected. Particularly in GaAs solar cells, the limiting bandgap is about 1.42 eV or 870 

nm, thus any photons below this energy would not be converted into electronic power. 

 Furthermore, crystalline III-V materials stacked in series, called a tandem or 

multijunction design, have been analytically scrutinized in detail and are currently in 

wide use as an improvement to the single junction solar cell16,17. These tandem designs, 

however, are current-limited by the cell producing the lowest short-circuit current 

(typically the GaAs layer in the popular InGaP/GaAs/Ge system), and QD introduction 

has been demonstrated to increase the limiting short circuit current by 8%18,19. Also, the 

existence of multiple bandgaps available for capturing lower energy photons due to QD 

formation20  has been shown to enhance current in concentrator PV21, where the 

photonic energy available from the sun is concentrated to several hundred times its 

original intensity on to a small area of PV material. 

 Another theoretical solar cell design has been dubbed the intermediate bandgap 

solar cell (IBSC) and was first examined by Martin and Luque in 199722,24.  The 

introduction of an intermediate band (IB) in the forbidden gap of the host material is the 

foundational concept for the IBSC. This IB concept is an extension of the impurity effect 

in semiconductors, where impurities are brought close enough so their wavefunctions 

overlap into a continuum22,24. As seen in Figure 1, this state within the material allows 

the absorption of less-energetic photons by adding two different energetic pathways for 

the electron - from valence band (VB) to IB and from IB to conduction band (CB) - and 

can thus assist electrons to the conduction band using NIR or IR light22. The setup seen 

in Figure 1 thus reduces the loss experienced by a single-junction solar cell. 
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Figure 1: The intermediate band solar cell (IBSC) concept illustrated: the material makes use of photonic 
energy that would not be absorbed by the host bandgap by using an intermediate band (IB) which assists 
electrons to the CB. 

  

 The ideal band structure for this material can be derived from a detailed balance 

model for the current produced from each absorption process while considering the 

spectral flux incoming to the cell22. Solving for the energy band separations so as to 

maximize efficiency, these ideal bandgaps (for light that is not concentrated) are as 

follows: conduction to valence band (VB) separation, ECV (a host material bandgap) of 

2.41 eV, a valence to intermediate band separation, EIV of 1.49 eV, and an intermediate 

to conduction band separation, ECI of 0.92 eV22,23. The maximum theoretical efficiency 

under these conditions is 46.8%22. Progress toward a material realization of the IBSC 

continues since the introduction of this concept, and QDs have been identified as a 

realizable solution22,24.  

  With periodically spaced QD arrays, tunneling between the dots becomes a 

higher probability. This tunneling electron transfer could form the effectively continuous 

intermediate band as envisioned by Marti and Luque39. The bandgap properties of the 

InAs/GaAs QD system are very well understood and have been widely used  to test the 
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IB concept23, but the energy transitions of this system are not ideal (with EVC of 1.42 eV, 

EIV of ~1.00 eV, and ECI of ~0.30 eV). Well-controlled growth behavior of this system, 

however, allows the study of possible optimizations toward realizing the IBSC23. 

NanoPower Research Labs has completed extensive research in the study of these 

crystalline PV materials, including optimizations involving the InAs/GaAs QD system, 

thus the bulk of this work will concern this specific QD structure. 

1.2 Theory and Growth of Nanostructures and Quantum Dots (QDs) 
 
 In device applications, the uniformity and size of QD arrays is of prime 

importance with regards to high quality and performance. To achieve high functionality 

and precisely-controlled QD energy states, however, a solid understanding of the 

quantum effects in QDs is required. Equally significant to device operation is the 

integrity of QD formation as affected by various growth techniques for these 

heterostructures. 

1.2.1 Theory 

 A heterojunction forms when two different semiconductor materials are put in 

contact. A special case of a repetitive semiconductor heterojunction is a heterostructure, 

where a thin layer of narrow bandgap material is placed between two layers of wider 

bandgap material. If the width of the narrow bandgap layer is sufficiently small, quantum 

properties begin to emerge in the structure25. Since the late 1950s, the use of such 

ultra-thin layers to produce quantization effects has been continuously investigated9.  

 Quantum properties mostly refer to the existence of discrete energy states where 

an electron may reside below the continuum of unconfined bulk states2. As discussed 
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earlier, lower dimensional structures (where dimensionality refers to the degrees of 

freedom in electron momentum) exhibit characteristics much different from that of bulk 

semiconductor material. These lower dimensional structures produce quantum 

confinement effects due to their dimensions being smaller than the Bohr exciton radius 

(on the nanometer scale)22, and are thus named nanostructures. Thus, quantum 

confinement limits electron-hole Coulomb properties as well as single-particle density of 

states; electron-hole binding increases with confinement so thermalization effects are 

weaker and discretized transition energies may be engineered and are dependent on 

the nanostructure size2. 

 Nanostructures may confine electron movement to two dimensions (QWs), one 

dimension (QWRs), or zero dimensions (QDs). In this study, the zero dimensional QD 

case is explored, as the many state-of-the art optoelectronic applications’ success 

depend on the uniformity and controllability of QD properties (as outlined in the section 

above). The size limitations for a spherical QD at room temperature are dictated by a 

critical diameter, Dmin so that at least one discrete energy level exists, as shown below9, 

���� � �ħ�	�
�∆�            Equation 1  

where ħ is the modified Planck’s constant, ���  is the electron effective mass, and ∆�� is 

the conduction band offset. For an InAs/GaAs QD system, this critical diameter is 

typically 2 or 3 nm22. In typical III-V materials, the transition to strong confinement 

occurs when the QD diameter equals about 10 nm and weak confinement at about 100 

nm [2]. 



9 
 

 A QD is often referred to an artificial atom1, or an “atom in a cage”9. To better 

approximate the electron confinement behavior, however, the spherical representation 

of a QD can be simplified to that of a quantum box26. In a quantum box, energy 

sublevels exist that may be modeled using the three-dimensional Schrödinger equation 

where an infinite potential is assumed separating the box interior from the exterior. For 

the infinitely deep barrier case, the solution to this equation may be written as below, 

��,�,� � ħ���
	�� ������� � ������ � ������ �                                                             Equation 2 

where ��,�,� are the energy sublevels in the QD, �� is the carrier effective mass, �� , �� , 

and ��  are the box Cartesian dimensions, and  �,  �, and  � are the three quantum 

numbers used to designate each energy state. From this equation, the utility of QDs in 

bandgap engineering is easily conveyed, where the exact energy transitions desired 

can be realized by customizing QD size (�� , �� , and �� ).  

 The quantum box approach is well-established as a quantification of discrete 

energy states in a QD, however iterative solutions to the spherically symmetric 

Schrödinger equation are treated elsewhere26. Boxes and spheres aside, real QD 

systems such as InAs/GaAs become much more theoretically complex. Actual QDs 

form as discs or pyramids and modeling of these systems includes eight-band k•p 

theory and pseudopotential approaches; these calculations are considered more 

accurate as they couple dispersion and strain effects27. The precise engineering of 

quantum-confined states in a QD system via theoretical treatment is not the focus of this 

research, however, thus the broader approximation of the quantum box will suffice as a 

general understanding of possible zero-dimensional energy states. 
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 QDs are easily formed in the intrinsic region of a p-i-n junction39, a semiconductor 

structure widely used in the device areas listed above, and a band diagram view of this 

system is shown below. The electrical and optical properties of QD material, such as 

photonic absorption abilities, change with dot dimensions as put forth in the theoretical 

treatment above22. As mentioned, a QD is a three-dimensionally confined structure, 

where a few discretized energy levels for electron/hole transfer appear as seen in 

Figure 2 below, as opposed to the much more dense availability of states in the CB of 

the host material35. An inverse relation exists between the particle size and the photon 

energy, hv it is able to absorb, i.e. the greater height of the dot (given the diameter 

meets dimension requirements as seen in Equation 1), the lower the energetic 

transition28,22. Figure 2 below depicts the band diagram of a hetero QD material and the 

multiple energetic transitions possible within the bandgap, Eg of the original material.  

 

  

Figure 2: Band diagram showing QDs in the i-region of a p-i-n photovoltaic stack. Multiple discrete energy levels are 
depicted within the QD as well as the wetting layer (WL) (considered a QW). Note that a VB offset is present due to 
the introduction of QDs, which has been shown to cause a reduction in the device open circuit voltage. 
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 The wetting layer (WL) depicted is treated as a QW and will discussed further in 

the QD growth section. An effective quasi-continuum of states is observed in the VB 

offset of the QDs29 due to hole effective masses being significantly higher than that of 

the electron, thus according to Equation 2, confined energy levels in the VB are more 

closely spaced and comparable to the bulk continuum of states30, as illustrated in the 

figure above. The VB offset paired with the offset from the CB of the WL may also be 

the cause of a reduced open circuit voltage in quantum dot solar cells (QDSCs) due to a 

reduction of the effective material bandgap31. Other material factors such as QD 

uniformity and the density of QDs in the intrinsic layer also affect the band-to-band 

transition energies32. From a device perspective it is usually precisely uniform and 

closely spaced QDs are desirable, especially in the optoelectronic applications 

discussed previously.  These theoretical and design considerations are taken into 

account during QD growth to control optoelectronic material properties, as will be 

discussed in the following section. 

1.2.2 QD growth 

 In general, research encompasses two different QD systems of 1) inorganic 

colloidal QDs made by chemical synthesis, for example CdSe, or 2) epitaxial or vapor 

phase-grown crystalline QDs, such as III-V compounds and group II-IV 

semiconductor22. The second group of epitaxial QD structures will be investigated in this 

study, due to their aforementioned device applications. Using single-crystalline 

molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD), 

precise growth of many heterostructures is possible, where abrupt interfaces allow 

semiconductors of different bandgaps to be sandwiched together2. Compared to MBE, 
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where gaseous elements are physically deposited by condensing them on the sample 

wafer, the growth of crystals in MOCVD is by chemical reaction. In MOCVD, precursor 

organic gas molecules are combined with the atoms of the inorganic crystalline material 

to be deposited and flow over a hot semiconductor wafer in a vacuum chamber33. The 

heat pyrolyzes the organic molecules leaving the desired atoms on the surface; this 

method is repeated layer by layer, growing thin, high quality semiconductor layers with a 

crystalline structure perfectly aligned with that of the substrate. Finally, by varying the 

gas composition, the atomic properties of the crystal may be modified. Recently, 

MOCVD has proven to be an excellent producer of high-quality nitrides for the best 

performing photonic devices, and is also deemed the most versatile technique for III-V 

and II-IV compounds33, and is thus the preferred method in this study. 

 QDs, when grown under the correct conditions, can self-assemble into tens of 

billions of dots per square centimeter with high uniformity1. This self-ordering occurs due 

to an inhomogeneous state in the hetero material, where long-range strain causes the 

single-domain (or planar) state to be less energetically favorable, thus a multidomain 

state develops9. Several growth methods exist, but thermodynamic diffusion-driven 

growth methods are widely known for formation of coherent or defect-free material9,22. 

These growth modes include: Volmer-Webber, Frank-van der Merwe, and Stranski-

Krastanov. Due to the higher incidence of dislocations in the first method and the two-

dimensional properties of the second, the Stranski-Krastanov (SK) growth mode is used 

in this study. 

 In SK growth, crystals of slight lattice mismatch and low interfacial energy are 

brought together, such as Indium Arsenide (InAs) and GaAs34,35, the materials used for 
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this study. QDs may also be formed by AlP, GaP, InP,  InSb and GaN as well as a 

combination of Si and Ge39. The lattice constant diagram below36 in Figure 3 illustrates 

the mismatch between InAs and GaAs, as well as other materials’ lattice parameters.  

The lattice mismatch between InAs and GaAs is typically about 7%69. 

 

 After an initial layer-by-layer two-dimensional type growth (InAs is typically 

deposited in multiples of monolayers, ML or a single layer of atoms), the strain energy 

between the two materials reaches a level where three-dimensional heteroepitaxial 

islands are more energetically favorable than planar growth37,35. The growth of the 

crystal islands results in locally developing facet edges that act as boundaries for the 

effective surface stress relief; thus reducing the overall surface energy of the island35. 

This spontaneous formation due to interfacial strain induces a rounded lens type shape, 

thus christened a QD. Their nucleation sites (where the dots prefer to appear) are 

periodically spaced with the least common multiple of the InAs/GaAs lattice 

constants34,35. This concept is pictured in Figure 4 where the QDs form ordered arrays 

Figure 3: The crystal growers’ chart showing material lattice constants dependent on energy gap in eV (or 
bandgap in µm) and on the ratio of materials used36. 
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along the crystalline lattice step edges38. A small amount of crystalline material is 

needed to build up strain to form a QD, and thus leaves a thin layer of InAs below the 

QDs, termed the wetting layer (WL) 37,38,39. An atomic force microscopy (AFM) image of 

the surface of a GaAs substrate with deposited InAs QDs is shown in Figure 4 below38. 

As QD growth methods have advanced, highly uniform and defect-free InAs/GaAs QD 

have been demonstrated40. 

 

 Common QD sizes range from about 4 to 20 nm in diameter35 and 5 to 10 nm in 

height39. Dot densities range between 2x1010 cm-2 and 1x1011 cm-2 with typical size 

distribution of approximately 10%7. The size distribution of QDs upon the crystalline 

substrate takes a Gaussian or Lorentzian form due to formation probabilities9,41. 

Dependent on the growth conditions (such as changing nucleation sites, a topic which 

Figure 4: InAs QDs grown on GaAs substrate pictured using AFM38. Note the lined appearance of the 
substrate, which demonstrates the concept of favorable nucleation sites. 
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will be discussed further shortly), one particular size of QD may be the most statistically 

favorable, with other QDs following the standard bell-shaped size distribution42. 

1.3 Substrate Misorientation (or Miscut) Optimizations 

  Single-crystalline GaAs has a well-defined atomic structure, forming a Zincblende 

lattice belonging to the tetrahedral phase, and is usually depicted as two inter-

penetrating face-centered cubic lattices, as seen in Figure 5, where a is the lattice 

constant of the material43. The planes formed by these extremely uniform lattice 

surfaces have a significant effect on the material deposited above, as in the case of 

epitaxial growth. Miller indices define the different possible crystal planes with regards 

to three axes (defined with respect to the material’s unit cell)43, as seen in Figure 5 as 

well.  

 

 
Figure 5: Top: Zincblende lattice structure of two intersecting cubic structures, one of Ga and one of As. 
Below: representation of miller indices used to directionally indicate crystal planes with regards to the 
three axes defining the  material’s unit cell44. 

 

 The different planes of the Zincblende surface expose different atomic structure 

of the GaAs lattice; for example, the crystal surface is terminated with Ga in the (111) 
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plane. Once an ingot of single-crystalline material is grown, it can be cut along a precise 

crystal plane in order to terminate the surface of the material at Ga or As faces. Hence, 

substrate misorientation (or miscut) refers to the degree at which the substrate is cut 

from the material ingot as seen in Figure 6, which varies the atomic terraces seen on 

the substrate surface. Sumitomo Electric provided 2” diameter, approximately 350 µm 

thick, n+-type (Si doped) GaAs substrates used in this research, and Figure 6 below 

provides their specifications for wafer miscut direction, where the (111’) face shows the 

group V element or As and the (111) surface shows the group III element or Ga. A 2º 

cut off a (100) plane towards the [110] plane direction has been the historical choice for 

GaAs substrates for NanoPower Research Labs due to better quality formation of 

QDs38.  

 

Figure 6: Depiction of substrate misorientation or miscut. The cylindrical material ingot (not pictured here) 
is cut at different angles from the normal (100) surface, changing the atomic step edges on the substrate. 
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 Three different miscuts are examined in this study, a 2K, 6K, and a 6N. In the 

nomenclature used by Sumitomo, 2K (6K) means 2 (or 6) degrees off the (100) lattice 

toward the [110] plane. 6N means 6 degrees off the (100) toward [111], a Ga terminated 

face (see Figure 6). Since the step edges run parallel to the [011] lattice plane, these 

tilts change the atomic terraces on the surface of the substrate in shape and width. 

Incorporation of n+-type doping in the substrate varies with miscut degree and plane, 

where the 2K miscut is Si doped between 1.10-1.18x1018 cm-3, the 6K 1.43-1.66x1018 

cm-3, the 6N 1.24-1.36x1018 cm-3.  

 Usually miscut is used as a control factor for improved surface morphology 

(affected by the symmetry of the crystal lattice) and electrical properties for 

semiconductor materials; the optimum degree and plane of the cut is highly dependent 

on the materials used and the full extent of miscut effects are still being catalogued and 

researched. Okano et al. found that the angle of GaAs substrate miscut varies the 

conduction properties of the n-type, Si doped GaAs epitaxial layer45. Kuech and Veuhoff 

found that substrate misorientation affected carbon incorporation on Arsenic surfaces46, 

and substantial drops in carbon doping have been observed with increasing 

misorientaton from the (100) surface. This drop in carbon was attributed to the increase 

in atomic H on the semiconductor surface from a higher AsH3 pyrolysis rate. Ching-Wu 

Wang concluded that misorientation on GaAs substrates exhibited different degrees of 

surface roughness, testing 3, 5, and 15 degree miscut samples47. The increased 

surface roughness (the highest in the 5 degree sample) was supposed to induce more 

stacking faults in the deposited epilayers, thus causing the formation of dislocations 
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acting as non-radiative recombination centers. Stacking faults are encompassed by 

dislocations, decreasing carrier lifetime and degrading most optoelectronic devices48. 

 In terms of confined semiconductor structures, Lobo and Leon discovered that 

carrier diffusion lengths shortened and densities of grown heterostructure islands 

increased by an order of magnitude on miscuts on (311)A GaAs substrates49. Also, 

changes in the Al content of an AlGaAs/GaAs QW have been observed on miscut GaAs 

substrates, this modulated content ascribed to the large step formations on the atomic 

surface50.  

 The primary goal in variation of miscut, with regards to QD growth, is to change 

the nucleation site properties, where QDs are more likely to form. Nucleation sites that 

are more closely spaced and precise (i.e. limit QD growth to one dot of a particular 

dimension in ordered arrays) help increase the uniformity, density, and size distribution 

during QD growth and thus the overall optical properties of the material can be better 

controlled. For example, a higher-degree miscut would theoretically increase the 

number of atomic step edges on the substrate’s surface thus increasing the density of 

nucleation sites and finally QD density. As seen in previous studies, QD nucleation is 

energetically favorable along these steps, and strings of QDs at multi-atomic steps have 

been observed51.  Increase in the concentration of incoherent QD islands and island 

bunching, however, on higher surface steps may be a concern51.   

 Hubbard et. al found in numerous studies that the 2 degree substrate 

misorientation is in fact preferable to the 6 degree miscut as related to QD material 

quality38. Photoluminescence (PL) - a technique which reveals the optical transitions in 
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a material - taken of samples with differing miscut, revealed no significant signal for the 

6 degree samples. The technique of PL will be qualitatively discussed further in the 

following chapters, and PL data of the sample set used will be reviewed. The effect of 

miscut and the reasons behind worsening QD formation in the 6 degree samples will 

then be further investigated with another optical technique, photoreflectance (PR) and 

an electrical technique to identify particular material defects, deep level transient 

spectroscopy (DLTS). 

1.4 Test Samples 
  

 Epitaxially grown n-type materials were fabricated in a 3 x 2” Veeco D125LDM 

metal organic vapor-phase epitaxy (MOVPE) reactor (exactly the same as the MOCVD 

process) at NASA Glenn Research Center in Cleveland, Ohio. Precursors of 

trimethylgallium (TMGa), trimethylindium (TMIn), and arsine (AsH3) were used for alkyl 

(column III) and hydride (column V) sources, respectively. Si2H6 flows with the gas as 

an n-type dopant in the grown material. A baseline set of samples was developed as a 

control using 2K, 6K, and 6N GaAs substrate miscuts. The baseline samples consist of 

a GaAs substrate (from Sumitomo Electric, specifications as outlined in the previous 

section) with a 500 nm layer of n+-type Silicon doping of 2.4x1018 cm3 followed by a 500 

nm layer of n-type Silicon doping of 4.5x1016 cm3 grown at 685°C.  

 A set of QD samples using the same 2K, 6K, and 6N GaAs substrate miscuts 

were grown as follows: 685°C growth of a 500 nm n +-type GaAs (Si 2.4x1018 cm3) base 

layer over the GaAs substrate, then a 1000 nm layer of n-type GaAs (Si 4.5x1016 cm3); 

the intrinsic region is then grown: 33 nm of low doped GaAs (Si 2x1015 cm3), followed by 

2 ML of InAs where the growth temperature was ramped down to approximately 450°C 
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for QD formation, and approximately 40 nm of low doped GaAs following; the 

temperature was brought back up to 685°C for a final 4 00 nm layer of n-type GaAs. Due 

to material deposition differences in the growth chamber, the QDs tend to form in higher 

densities on specific parts of the sample wafer, which will be discussed further in the 

experimental sections of this report. Figure 7 provides a graphical depiction of the final 

baseline and QD samples produced. This specific layer structure was chosen in 

consideration of the DLTS study, due to requirements of depletion region width, WD for 

measurement purposes, as will be discussed in detail later. 

 

 Thus a total of six samples were grown, one baseline and one QD sample for 

each of the 2K, 6K, and 6N miscuts. A full sample wafer is shown below in Figure 7, 

where the sample was halved in order to accommodate both the optical spectroscopy 

and the defect analysis. For the DLTS study, the samples have about 600 nm of 

Ge/Au/Ni/Au acting as a back ohmic contact and 500 nm Au contacts were used to 

create Schottky diodes on the surface of the samples. The diodes are circular and 

Figure 7: Sc stack of testing samples, showing the baseline configuration and the 1-layer (1x) QD sample. 
The lightly doped (considered effectively intrinsic) region of GaAs surrounds the QDs, the rest of the stack 
is composed of Silicon doped n or n+-type GaAs. 
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range from 100 µm to 600 µm in diameter. For PL and PR measurements, the samples 

were left as-grown. The samples will be further discussed in the following chapters as 

the sample characteristics pertain to the testing method used.  

 

Figure 8: Top-down view of a sample wafer, halved where the left half is fabricated with Schottky diodes 
on the surface for DLTS testing and the right half is left as-grown for optical analysis. 

 

1.5  Organization of This Work 

 The following chapters introduce the theoretical testing methods as they are 

utilized to characterize the sample set. The optical methods presented act as a 

complementary analysis to defect analysis, where optical energetic transitions and thus 

the band structure of the semiconductor may be explored as opposed to the activation 

energies and definitive properties of any existing localized or extended defects, 

respectively. 

 Chapter 2 delves deeper into the optical characterization methods of 

photoluminescence (PL) and photoreflectance (PR). The theory behind the PR 

spectroscopic technique is developed analytically, and the assumptions behind actual 

data treatment are presented. The experimental set-up, procedure and operation are 

discussed in detail. Finally data results are presented and evaluated. 
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 In regards to the second characterization method of deep level transient 

spectroscopy (DLTS), Chapter 3 follows the same format as the previous chapter. 

 Chapter 4 presents discussion of the data obtained, including a comparison to 

published results of similar studies. Conclusions based on the preceding analysis are 

presented as well. 
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Chapter 2 

Optical Spectroscopy 

 The interaction of carriers and photonic energy resulting in semiconductor band 

transitions, via single band gap material or material with many interband transitions, are 

an important metric when discussing semiconductor devices. The particular behavior of 

the incoming/outgoing photonic energy as related to carrier transitions within the 

material determine the capabilities of any device made with this semiconductor, be it for 

photovoltaic conversion, image detection, light emission, etc52. 

 As mentioned previously, QDs can change the band gap of a material, and 

ordered QD arrays may realize the concept of the IBSC23. By observing the exact 

photonic energies absorbed or emitted by a QD semiconductor, the impact of QDs on 

material band transitions can be partially scrutinized and material optimizations toward 

the realization of a high-performance QD optoelectronic devices may be catalogued.   

 The spectroscopic methods mentioned in the introduction serve to identify the 

multiple band gaps present in QD material, which correspond to the QD size 

distribution, uniformity and density. Optical spectroscopy is of special interest in this 

study, as the method of optical probing is contactless and does not require device 

fabrication53. Thus the semiconductor material properties can be observed previous to 

any processing. 

2.1 Photoluminesence (PL) Qualitative Theory  

 The optical spectroscopic method chosen in this study differs from PL, as will be 

explained in detail shortly. A qualitative understanding of PL is useful, however, as part 
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of the background for optical spectroscopy methods in general and in comparison to the 

method described in this thesis. PL is an optical probing method widely used for its ease 

of implementation53. The method concept is developed by first considering injecting a 

material with a high density of photons with energy higher than the material band gap, 

i.e. illuminating the sample with a focused laser beam. As illustrated in transition (a) of 

Figure 9, electron hole pairs (EHP) are created in the material, as electrons are 

energetically excited above the conduction band. As the carriers relax, seen in transition 

(b) of Figure 9, some of the energy is released thermally, and once reaching a state in 

the conduction band of the material the electron recombines and emits a photon at the 

transition wavelength. The emitted photons disperse from the probe area of the sample 

in a Lambertian pattern, hence a detector is placed perpendicular to the sample to 

collect the maximum amount of emitted light, as pictured in (c) of Figure 9. The 

measured peak emission photonic energies correspond very closely to the band gaps 

present in the material, where near the band edges the energy, hv of the emitted photon 

is given by the joint dispersion relation below, 

!" � #$ � ħ%&%
%'(�            Equation 3 

where Eg is the energy gap of the material, k is the Boltzmann’s constant, and �)� is he 

reduced effective mass, combing both carrier effective masses54. Spontaneous 

emission rate, I is dependent on this emitted photon energy as, 

*+# � !", - �# . #$ /01 2. #&34         Equation 4 

where T is the temperature, �� . �5 is related to the joint density of states, and 

exp 2. 9:4 to the distribution of carriers according to Boltzmann statistics. Plotting this 
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function of intensity versus energy, hv it is found that the peak of the PL spectrum is 

offset by �5 � 9:	 , where 
9:	  at room temperature is about 0.01 eV. This correction is 

omitted in the following analysis due to the incorporation of other instrumental error. 

Also, the intensity of the emitted photons increases with carrier generation produced by 

the power of the laser source. 

  

 

 For quantum confined material such as QDs, this method can be useful in 

determining the interband transitions, where the emission from the occupied discrete 

states within the QD occurs by state filling from diffusion of excited carriers in the GaAs 

CB to the QDs (before radiative recombination to the VB)7. An intense luminescence 

signal from confined structures is typically observed due to the state filling from 

diffusion, but only if 1) the relaxation mechanism from bulk states to confined states is 

faster than radiative recombination from the bulk states to the VB, and 2) if there are 

only a few eigenstates for each QD energy sublevel. Either of these mechanisms may 

Figure 9: A laser pumps a sc sample, creating an EHP in the valence band (VB) as in (a), the electron is 
promoted above the conduction band (CB) and then loses energy due to thermalization and radiative 
emission as in (b). The emitted light radiates off the sample in a Lambertian pattern and a photodetector 
measures the intensity of emitted photons versus wavelength as in (c). 
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be disrupted if the QDs are of insufficient dimensions. The Gaussian or Lorentzian-type 

emission spectra are fitted with distributional curves of that form, these distributional 

forms being a function of the apportionment of QD shapes across the wafer, and thus 

the discrete energy levels associated with varying dot size. Numerical analysis has 

shown a statistically favorable QD size appears after growth with less-favorable sizes 

distributed in a bell-shape 55, as seen in Figure 10 below, where the peak intensity of 

the curve indicates the highest transitional probability and thus the probable energy 

state of the most prominent QD, called the QD ground state. When attempting to 

observe multiple emission peaks such as WL and lower order QD transitions, however, 

the character of the Gaussian curves may be difficult to resolve; as the peaks become 

more convolved, the higher intensity emissions can drown out the signal of other 

transitions56. 

 

Figure 10: Photoluminescence for a 10-layer InAs/GaAs QD sample. The QD peak is fitted with multiple 
Lorentzian distributional forms shown in green, the sum of which is represented by the red fit line; however, it 
is difficult to conclude that the smallest peak is an actual QD transition energy, rather than an artifact of the 
fit. 
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 For complete material characterization, and to efficiently observe the effects of 

changing material parameters on QD growth, it is necessary to resolve even the 

weakest interband transitions, as this relates to QD formation in terms of size, 

uniformity, and density. One may qualitatively consider a method that relies on a zero-

crossing to identify a transition point, instead of a peak. This derivative measurement 

would essentially achieve better resolution of interband transitions, as peak emission 

intensity could be correlated directly to each zero-cross point. Thus PL is used in this 

study to verify and contrast data obtained by a more resolved derivative spectroscopy. 

2.2 Photoreflectance (PR) Theory 
  

 PR is an optical modulation (derivative) spectroscopy method that characterizes 

semiconductor materials by observing a change in a material’s dielectric function due to 

the variation of electric field57. The electric field in the sample is varied by an optical 

pump, usually a chopped laser signal. This modulation in the electric field changes the 

permittivity of the material and thus changes the reflectance of the sample and the 

intensity of the detected photons. 

 An optical detector collects both the modulated reflectance signal produced by 

the chopped laser and the constant reflectance signal produced by a probe light beam 

at a particular wavelength. The probe light, usually produced by a monochromator, is 

scanned over a range of wavelengths to produce the full PR spectra with 

measurements taken at specific intervals. This spectrum is related to I(λ)∆R(λ) and 

I(λ)R(λ) respectively; both terms are dependent on the wavelength, λ of the probe light, 

where I(λ) is the intensity of the signal and R(λ) is the reflectance component. Taking 

the ratio of these signals eliminates the intensity element and the normalized ∆R(λ)/R(λ) 
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values plotted versus wavelength reveal the optical transitions present within the 

material. 

 To extract material band transitions from the derivative reflectance spectra, first 

the relation between reflectance and material dielectric function will be examined. Note 

that the dielectric function of a material, ; can be written as having both real and 

complex parts as below, 

; � ;) � <;�          Equation 5 

 Knowing that the varying reflectance of the material, R is proportional to the 

dielectric constant, ;, and both are modulated by the incident laser signal, a general 

equation may be written as below, 

∆== � >= ?=?@( ∆@( � >= ?=?@A ∆@A         Equation 6 

where ∆;) and ∆;� represent changes in the complex dielectric function due to laser 

modulation and the relation 
BCBDE and 

BCBDF are yet unknown. The relation between ∆R/R and 

the material’s dielectric function can also be written as below, 

∆CC � G+;) , ;�,∆;) � H+;) , ;�,∆;�       Equation 7 

where α and β are Seraphin coefficients58 related to the unperturbed dielectric function, 

∆єr and ∆єi are the changes in the real and complex dielectric function, respectively, due 

to modulation57. The Seraphin coefficients are fractional optical constants, functions of 

photon energy that have been experimentally determined for different materials and 

change dependent on observed spectral region, as seen in Figure 11. 
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 For the energy range studied for QD transitions, below 2 eV, the first coefficient, 

α dominates as seen in Figure 11 above and thus the imaginary part of Equation 7 is 

neglected. This is also referred to as the low field regime of reflectance spectroscopy57, 

and the region where the fundamental band edge of the material exists58.  This low-field 

case is defined by the electro-optic energy given by ħΘ being smaller than the spectrum 

broadening parameter, Г. The energy ħΘ can be written as, 

+ħI,J � K�ħ�L�
	MNN           Equation 8 

where q is Coulombic charge, ε is the electric field, and µII is the reduced interband 

effective mass accelerated in the direction of the uniform field. 

 The evaluation for the low field regime involves consideration of perturbation 

theory in its third derivative form for a good approximation to interband transitions59. 

Perturbation theory recognizes two related energies: that characteristic to the 

perturbation and that characteristic to the energy of the system. These relate 

Figure 11: Seraphin coefficients, a and b for GaAs changing dependent on incident energy added to the 
semicondctor58. 
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respectively to the potential change in the material, qεa0 (where the electric field, ε is not 

lattice-periodic and thus is directionally dependent with constant a0) and to the energy 

separation being considered, Eg
59. According to perturbation theory Equation 8 above 

may be written as, 

+ħI ГQ ,R � K�ħ�L�
	MNNГS �  K�+L·U&,�V+&,W        Equation 9 

where k is a wavevector; notice the introduction of the broadening term, Г. 

 The change in dielectric function of a material, ∆; is related to the electric field, X 

and the third derivative approximation of the unperturbed dielectric function, Y+Г, �, 

as59,  

∆;+X, Г, �, - X	Y+Г, �+&,,        Equation 10 

where Χ(Г,E) is defined as the linear optical susceptibility coefficient, and E is the probe 

wavelength. 

 The relation between the broadening parameter, Г and the wavevector, k as 

seen in Equation 9 can be exploited in combination with Equation 10 to find the 

dielectric function, є(Г,E) of a material as60, 

; - Z[\+� . �5 � ]^,_�`        Equation 11 

where Eg is the unknown material band gap, Γ is the spread or width of the lineshape 

and used as a fitting parameter, and m is a lineshape factor which changes dependent 

on the material band gap being investigated, be it a bulk band gap or interband QD 

transitions57. Again, only the real part of the dielectric function is considered for the low 

to intermediate field regimes due to the weighting of Seraphin coefficient α. If the state 

transition exhibits Lorentzian or Gaussian type dispersion (as in the case of QDs), the 
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value of m is equal to two59. This yields the final form of the relation between differential 

reflectance and material band gap as, 

∆CC � Z[\ab[�cd� . �5 � ]^e_	`        Equation 12 

where C1 is a constant relating to the magnitude or intensity of the PR signal, and θ is a 

phase angle.  

2.3 Experimental 
  

 In this section, both PL and PR data are presented. PL data is used to verify the 

energy transition values obtained from PR and to illustrate the differences between 

miscut samples as observed previously by Hubbard et al. To reiterate from section 1.3, 

in the nomenclature used here, 2K (6K) means 2 (or 6) degrees off the (100) lattice 

toward the [110] plane. 6N means 6 degrees off the (100) toward [111]. Six samples 

were grown for testing, three baseline samples and three QD samples with 2K, 6K, and 

6N miscuts. The sample stack is pictured in Figure 7. Each sample was cleaved in half, 

and one side was left as-grown (no surface or backside metallization) for optical testing. 

2.3.1 PL set up 
   

 A Spectra-Physics Argon-ion laser at 514.5 nm with adjustable power up to 130 

mW is used as the excitation source for optical probing of the samples. The laser signal 

is physically modulated by a mechanical chopper at a frequency of 377 Hz. A 780 nm 

cut-on filter is placed in front of the IHR 320 Monochromator to filter out any spurious 

laser signal. The PL signal is focused into a 2 mm slit of a selective-wavelength IHR 320 

Monochromator (with 3 gratings at 330 nm, 750 nm, and 1500 nm blazes, respectively), 
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which greatly reduces any background distortion, and feeds the low-noise signal 

through a 2 mm exit slit to a thermoelectrically cooled Ge photodiode.  The A.C. signal 

from the detector is measured by an SRS 830 lock-in amplifier, which phase-locks to 

the chopped signal. The PL is setup is shown below, 

 

Figure 12: PL set up for optical probing of the sample. 

 

 The PL spectra obtained for all the QD samples are shown below. PL was taken 

for the baseline samples as well (not pictured) and each sample revealed a GaAs band 

edge transition of 873 nm or 1.42 eV.  As examined previously, the PL signal from the 6 

degree miscut QD samples is much weaker than in the 2 degree sample. The QD signal 

can be observed between 1.0 eV and 1.3 eV and the WL between 1.3 eV and 1.4 eV. 
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Figure 13: PL spectra taken for the QD samples. The QD signals of the 6 degree miscut is very poor 
compared to the 2 degree sample. 
 

 The degradation in signal intensity seen in the 6 degree samples could be 

attributed to a decrease in radiative recombination, and corresponding increase in non-

radiative recombination. It is generally found that large PL signals correlate with good 

interface properties61. Nevertheless, PL degradation may not be due to an increase in 

extended defects above the QD layer, as Lobo et al. observed strong radiative emission 

from QDs, even after formation of a dislocation array51. Other studies suggest that a 

sharp drop in luminescence intensity from InAs/GaAs QDs is associated with increasing 

density of incoherent (lacking disc or pyramidal structure) InAs islands, citing these 

incoherencies as being optically inactive62. This argument could be supported by the 

above PL data, where the WL signal for the 6 degree samples is more intense than that 

of the 2 degree, indicating poor QD formation where the optically active QDs are less 

dense in this material. The suggestion of an increase in non-radiative recombination in 
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the 6 degree samples as related to defect generation will be further explored in the 

DLTS section of this report. A shift in QD peak versus transition energy is observed in 

the PL spectra from sample to sample, as tabulated below. These peak values were 

found using a Gaussian fit to the observed QD peaks, and error values result from the 

quality of convergence of the fit.  

Table 1: Gaussian fits were used to extract these peak values which correspond to energetic transitions 
within the QD and WL. 

Sample 

WL Error QD1 Error QD2 Error 

  (eV) (meV) (eV) (meV) (eV) (meV) 

2K 1x 1.32 0.3 1.1578 0.1 1.2425 0.6 

6K 1x 1.32 0.2 1.2109 0.3 - - 

6N 1x 1.32 0.2 1.2241 7.3 - - 

 

 Note that only the 2K sample resolved a second Gaussian peak, indicating a 

different QD transition and thus a greater concentration of QDs with this transition 

energy than in the 6 degree samples. The shift in energy between the 6 degree QD 

samples and the 2 degree sample is about +50 meV or a 5% change. This is indicative 

of changing QD size, where the higher transition energy would suggest a QD level 

closer to the conduction band, or a smaller QD. 

2.3.2 PR Set up 
 
 The experimental setup for PR measurements is shown in Figure 14. Light from 

an Optronics Laboratories OL750 Monochromator is reflected off the sample, as well as 

the modulated optical signal produced by a Spectra-Physics Argon-ion laser at 514.5nm 

with adjustable power up to 130 mW. The laser signal is physically modulated by a 

mechanical chopper at a frequency of 377 Hz.  
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 Both the A.C. modulated signal and the D.C. signal are collimated by an 8 cm 

focal length lens and focused by a 150 cm focal length lens. A 780 nm cut-on filter is 

placed in front of the IHR 320 Monochromator to filter out any spurious laser signal. The 

signal is focused into a 2 mm slit of a selective-wavelength IHR 320 Monochromator 

(with 3 gratings at 330 nm, 750 nm, and 1500 nm blazes, respectively), which greatly 

reduces any background distortion, and feeds the low-noise signal through a 2 mm exit 

slit to a thermoelectrically cooled Ge photodiode. 

 The A.C. signal from the detector (proportional to I(λ)∆R(λ) where I(λ) is the 

signal intensity at a specific wavelength) is measured by an SRS 830 lock-in amplifier, 

as pictured in Figure 15. The D.C. signal from the detector, or I(λ)R(λ), is measured by a 

Keithley 2400 Digital Multimeter. A LabView computer program coordinates the 

wavelength scan for each measurement, and reads the two signals which are then 

normalized to ∆R(λ)/R(λ) to eliminate the intensity factor and generate the PR spectra 

plot over versus wavelength, as shown in Figure 15. Typically I(λ)∆R(λ) is 10-4 to 10- 6 of 

I(λ)R(λ)57. 

Figure 14: PR set-up. 
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2.3.3  PR Testing Results 

 Error for all measurements was based on error characterized in the test set-up 

and was found to vary for each data point taken, where modulations in the AC signal 

closer to zero experienced greater error due to the detector noise floor of ~1x10-7. Error 

from the respective fits of each signal is given in tabular form for each data set. For the 

following data, the average error for the evaluated signal was about 5%, and any data 

that experienced measurement error of 10% or above was not treated.  

 Outside of the main sample set presented in the introduction, several other QD 

samples were tested to explore the utility of the PR testing method and verify 

functionality of the system. First, an identification of the QD and WL signals was 

performed, both by comparative study of previously reported transition energies in 

InAs/GaAs QD materials and by visual inspection of the PR signal. The differences in 

the PR signal, as seen in Figure 16 can be attributed to differences in confinement, 

where the WL acts as an effective QW and thus exhibits different changes in 

reflectance. The QD and WL transitions are fit according to the third derivative 

Figure 15: PR signal detection and interpretation. Computer outputs graphical PR spectra. 
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functional form of Aspnes from Equation 12. Typical wetting layer energies have been 

shown to be present just below the GaAs material band gap of 1.42 eV and extend to 

values of approximately 1.3 eV, and QD signals can be shown to be below ~1.3 eV64.  

 

 The PR signal in Figure 16 was collected from a 10-layer QD sample, where 

multiple InAs QD layers have been deposited in sequence, separated by a GaAs buffer 

layer. Details of this growth can be found elsewhere38. Table 2 below shows the 

comparative study of the extracted QD transitions from this 10 layer QD sample and 

other PR studies from Rowland et. al64 of a 2-layer sample and from Pollak et. al57 1-

layer samples. Percent error is shown between the measured values and those 

reported in literature.  

Figure 16: PR spectra highlighting the differences in signal between QD and wetting layer transitions. 
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Table 2: 10 layer QD stacked structure energetic transition values extracted from PR compared with 
other transitions experimentally observed in literature. 
Transition 10 layers +/- Rowland64 

2 layers 
%Error Pollak57 

1 layer 
%Error 

Energy (eV) (meV)     

QD1 0.960 0.1 1.053 9% - - 

QD2 1.059 0.1 1.105 4% - - 

QD3 1.122 0.2 1.160 3% 1.140 2% 

QD4 1.173 0.1 1.224 4% 1.219 4% 

QD5 1.240 0.2 1.277 3% 1.260 2% 

WL1 1.300 6.3 1.365 5% 1.373 5% 
 

 Note that the lowest QD transition energy shifts from 1.14 eV, with one layer of 

QD structure, to 0.96 eV with 10 layers, and that only three QD signals in the 1 layer 

material have been resolved. Also a shift to lower energies of about -50 meV is 

observed in general from 2 layers to 10 layers. This could suggest that increasing QD 

layers may have an effect on QD size, uniformity, and density.  With a shift towards 

lower QD energies with increasing number of layers, the addition/subtraction of layers 

could prove to be an effective QD engineering tool to control the exact properties of 

such a material. Stacks of 20, 40, and 60 layers of repeating QD structures have been 

grown, hence further investigation of these properties could conclusively confirm these 

trends. 

 From the theoretical discussion previous, a low-field assumption was the basis 

for the development of the TDFF; however, if the low-field criterion is not satisfied the 

dielectric function can exhibit Franz-Keldysh oscillations (FKOs)57, as shown in Figure 

17. In this case, oscillations in the reflectance signal are observed resulting from the 

bulk (GaAs) bandedge transition, i.e., beginning at energies around 1.42 eV and 

continuing to higher energies. The subsequent x-axis crossings (labeled En in Figure 
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17) are no longer indicative of an energy transition within the material. The period of 

these FKOs is determined by the value of the dominant electric field in the structure. 

The sample used for the FKO analysis was a simple n-type GaAs baseline sample on a 

2K miscut GaAs substrate. 

 

Figure 17: FKOs observed for a GaAs sample. 

 The energy values extracted by the TDFF fit of the GaAs bandgap, Eg and FKO 

extremum, En can be plotted versus an index number ‘n’, this gives a linear trend, the 

slope of which is (ħθ)3/2 as below57, 

fg � 2hR4 \+#f � #$,/ħj`R/%        Equation 13 

where n is an integer value used as an index number for each extremum En. The linear 

plot of these FKO transition values is show in Figure 18 below, 
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Figure 18: Linear fit to the extracted transition energy of the FKO PR data versus index number n. 

 

 The slope,  (ħθ)3/2  of this fit may be used as below to extract the electric field (F) 

within the material, 

+ħj,R � k%
ħ

%l%/%m||         Equation 14 

where o|| is the reduced interband mass. The value for the electric field in this sample 

obtained from using FKO analysis was found to be 120 kV/cm (with a standard fitting 

error of +/- 2.5 kV/cm). A theoretical calculation of the field expected in this sample was 

determined as below, 

|l| � kpqrs@t            Equation 15 

and the field from this ideal equation was calculated to be 64.8 kV/cm, about half the 

extracted value. This method thus could be an accurate method for finding material 

electric fields, a parameter which is very important as related to carrier transportation in 

the semiconductor material. When investigating QD samples, FKO may indicate 

changing fields dependent on the QD region, a possibility for the continuation of this PR 

work. 
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2.3.4 PR and Miscut Results 

 All the bandedge transitions observed in the PR data corresponded exactly to the 

PL data values of 873 nm or 1.42 eV (with an error of 2 meV), as shown in Figure 19. 

Only the 2K sample showed enough modulation in reflectance in the QD/WL region to 

resolve a distinct PR signal, as shown in Figure 20. The QD transitions which can be fit 

according to the third derivative functional form of Aspnes from Equation 12 (in green in 

Figure 20) are labeled as QD1, QD2, QD3, and QD4 below. One transition is 

characterized as starting with a positive peak and then reaching an inflection point 

(where the energy state value is measured) and a subsequent negative peak in the 

signal. These transitions were found by evaluating the error (which was high below 

about 980 nm); any transition with error values less than or equal to 5% was defined as 

a QD state. Above 1100 nm, no change in reflectance signal was observed, indicating 

that QD1 is the ground state (or lowest QD transition) of the material. The resolved 

transitions are shown in Table 3, where the WL signal (not shown in Figure 20) was fit 

independently of the QD signals. 

 



 

Figure 19: PR data for the GaAs bandedge of a QD sample.
GaAs transition at 1.42 V. 

Figure 20: PR signal obtained in the QD region for the 2
 
Table 3: Extracted QD transition energies for the 2

 
WL +/- 

 Sample (eV) (meV) 

2K 1x 1.34 2 

 The resolution of two lo

as accurate due to fitting error, but would represent a distribution of QD sizes. Also, the 

transition of 1.20 eV or 1.22 eV

in the PL of the 6 degree samples, and could indicate that growth related to the 6 

degree miscut inhibited formation of QDs to an extent. The PR data collected for the 2

sample corresponds nicely to PL data, where the ground state transitions resolved from 

both methods varies by only 0.1%, and is found to be about 1.16 eV. 

this sample, however, could be better resolved with an optimized set

goal of future work in this area.

he GaAs bandedge of a QD sample. All baseline and QD samples showed a 

 
PR signal obtained in the QD region for the 2K sample. 

Extracted QD transition energies for the 2K samples. 

QD1 +/- QD2 +/- QD3 +/- QD4 

(eV) (meV) (eV) (meV) (eV) (meV) (eV) 

1.16 2 1.18 60 1.20 110 1.22 

The resolution of two lower-order QD transitions of 1.20 eV and 1.22

as accurate due to fitting error, but would represent a distribution of QD sizes. Also, the 

or 1.22 eV could be correlated to the ground state transitions seen 

in the PL of the 6 degree samples, and could indicate that growth related to the 6 

degree miscut inhibited formation of QDs to an extent. The PR data collected for the 2

sample corresponds nicely to PL data, where the ground state transitions resolved from 

both methods varies by only 0.1%, and is found to be about 1.16 eV. The PR signal for 

this sample, however, could be better resolved with an optimized set-up, as will b

goal of future work in this area. 
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2.3.5 Optical Spectroscopy Miscut Discussion 

 The results obtained from optical examination of the material confirm those 

previously obtained by Hubbard et al.38 where the 2 degree miscut samples showed 

notably stronger PL signal for the QDs than the 6 degree sample, thus indicating a 

decrease in radiative recombination within the QD region. Also the 6 degree samples 

showed a shift in QD transition energy of +50 meV, where the 6 degree QD transitions 

occurred at a higher energy than the 2 degree sample. This would suggest a 

diminishing QD size from 2 to 6 degree miscut substrate, where the 6 degree miscut 

substrates develop QDs with higher transition levels (i.e., the QD confined energy state 

is closer to the CB). 

 PR results obtained show WL and QD energetic transitions similar to those 

observed in PL for the 2 degree sample. Also, the energetic transitions extracted for the 

WL and QD correspond well to those previously observed in literature63,64  where the 

WL energetic transition values lay between 1.3 eV and 1.4 eV and the QD transitions 

appear between 1.0 eV and 1.3 eV. The ground state QD transition for the QD sample 

was found to be at 1.16 eV. Several lower-order transitions, correlating to QD energetic 

transitions of 1.18 eV, 1.20 eV and 1.22 eV were observed as well, better revealing the 

QD size distribution within the sample. 

 PR signal for the 6 degree miscut samples were not resolved, thus the change in 

reflectance, ∆R signal for this material is not strong. The ∆R signal corresponds to the 

A.C. output of the detector, as discussed in Chapter 2. The limit of this detector is 

~1.6x10-7, and thus the incremental changes in ∆R may have been below this threshold.  
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Chapter 3 

Deep Levels and Deep Level Transient Spectroscopy (DLTS) 

3.1 Deep Levels and Effects on Device Performance  

 Deep levels are typically defined as those energy states that exist within the 

middle third of the material band gap, as shown in Figure 21. However a more rigorous 

definition describes deep levels as having highly localized wave functions65. Compared 

with shallow defects that can be approximated with an effective hydrogen model, deep 

levels are characterized by very high binding energies that interact strongly with the 

crystal lattice and can trap a significant amount of carriers.  Also, Fermi level pinning 

may occur due to deep level behavior65. This pinning leads to band bending and the 

creation of carrier barricades or traps. The activation energy, capture cross section and 

concentration of these defects change with each material and processing factors. 

 

 

 The deep levels in III-V materials are usually viewed as degrading overall device 

performance, such as decreasing carrier lifetime. For example, in GaAs-based devices 

it is postulated that common shallow donors combine with unknown defects, termed 

defect X, and form deep DX centers that are non-radiative65. Also, the arsenic anti-site 

Figure 21: Showing the energy band characteristics of deep levels versus shallow impurities, where deep 
levels typically reside in the middle third of the band gap. 
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defect known as EL2, with activation energy between 0.80 eV and 0.85 eV66 is a 

commonly cited GaAs deep level65. For a more complete list of common deep levels in 

GaAs, please refer to Appendix I.  

 The reduction in the effective carrier lifetime (u) caused by these defects can 

cause a gain in recombination current (Ire) in solar cells as illustrated by Shockley-Read-

Hall theory below81, 

*(v - >w /01 2 kxf&34          Equation 16 

where V is the applied voltage and n is the ideality factor. This leads to lower cell 

efficiencies where increased recombination current lowers the current available for 

extraction82, and the introduction of deep levels can also cause lower open-circuit 

voltages67 and other negative device effects. In transistors, deep levels can cause a 

variety of degradation, including drain lag and current collapse68.  

 As stated in the introduction, dependent on material composition ratio, lattice 

mismatch between GaAs and InAs is fairly minimal (around 7%)69. Following this, 

although QDs can now be fabricated with a high degree of lattice precision, defects 

causing non-radiative recombination and carrier trapping in the lattice structure of the 

QD device, such as dislocations and point defects, may still have a significant effect on 

the material performance70,71. Thus an effective method for probing these deep level 

defects and characterizing the trap parameters has much utility with regards to 

understanding device operation and possibly eliminating or compensating for 

degradation effects. Such defects have been probed using a variety of methods 

including low-energy positron beam measurements for defect depth profiling72, photo-
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induced current transient spectroscopy (PICTS)73,74, and deep level transient 

spectroscopy (DLTS)71,70. Capacitance and admittance methods, where 

characterization of the material requires multiple measurements at different frequencies 

and temperatures75, is also a well-known method of deep defect profiling. However 

these methods have limitations in flexibility76. 

 In this study, DLTS is the preferred defect characterization technique, as the 

sensitivity of this method is specific to the space-charge region (SCR) of a junction. 

Thus the QD transition properties and QD-induced defects in proximity to this region 

can be effectively observed and highly resolved79. Also, DLTS reveals accurately the 

thermal activation energies, trap concentration, and cross-sectional dimensions of deep 

level defects, data which other defect characterization methods mentioned previously 

do not disclose completely76,77. This defect data corresponds to the Fermi level behavior 

of traps which may be caused by QD growth, and thus can produce metrics related 

directly to current density and voltage limiting behavior in QD semiconductors78. 

 As mentioned, the growth of QDs in the i-region of a solar cell, i.e., InAs/GaAs 

QDs, may introduce defects78. Dislocations, especially in the emitter region of the p-i-n 

solar cell, can degrade the performance of the cell overall and in some cases the 

resulting current degradation completely balances the current enhancement produced 

by the QDs23. Also, a lowered open-circuit voltage in QDSCs has been consistently 

observed22,23. For this reason it is important to investigate the defect levels associated 

with QD insertion, specifically deep levels which can significantly affect solar cell 

performance.  
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 The sub-band gap behavior of QDs are theorized to trap and emit charge similar 

to processes of point and extended defects79. Hence, most studies of QD devices with 

DLTS to date have characterized the QD properties alone, such as sub-band levels and 

carrier emission from the QD states (which require sub-77K temperature scans due to 

the QD states being less prone to thermal emission effects). A study of DLTS QD 

transition states was not performed here, as the complementary optical methods of PL 

and PR are able to easily extract these discrete energy transition values within the QD 

at room temperature. The main concern of this study is the evolution of defects within 

the sample as related to QD growth. A DLTS study published in February of 2010 

comprehensively shows such defect profiling in multi-layer 

GaAs(001)/InAs/InGaAs/GaAs QD samples71. The effect of the different QD growth 

optimization techniques used in this study on defects observed using DLTS may thus be 

compared with the DLTS data gathered by Asano et al. and others, further advancing 

the understanding of how deep level defects evolve within QD material. 

3.2 Practical and Theoretical Discussion of DLTS 

 Lang introduced DLTS in 1974 as a spectroscopic method for characterizing 

deep level defects in semiconductors77. The original method is based on capacitance 

transients measured across a p+/n junction diode. His system produced a plot of these 

capacitance transients versus temperature, i.e., a transient spectrum, revealing a peak 

associated with each deep level or trap. Thus DLTS can be used to observe majority 

and minority carrier traps, especially those close to the Fermi level77. 

 Here, a special case of a p+/n junction will be considered for the development of 

DLTS theory. The sample is held at a certain reverse bias, VR while a filling pulse 
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voltage, VP  varies the reverse bias seen by the diode and in turn varies the width, WD of 

the depletion region in the p+/n junction. The transient can qualitatively be understood 

as follows: during the positive pulse (VP) the depletion region (WD) shrinks as WD is 

proportional to   �+|yC| . yz,  and the junction capacitance (C) increases significantly as 

this is proportional to 1/ WD. The testing method is illustrated below.  

 

 Most notably, during the positive filling pulse, +VP, the former depletion region is 

now swamped with electrons, which become quickly trapped by any donor-type deep 

levels (marked at an energy ETn in the energy band diagram in part (b) of Figure 23), as 

shown in parts (c) and (d) in Figure 23. Once the pulse is over and VR is restored, the 

trapped electrons are now brought into the depletion region (shown in part (e) of Figure 

23), lowering the n-side effective doping thus slightly expanding the depletion region 

further to that side of the junction, hence decreasing the observed capacitance. These 

Figure 22: Illustration of the testing method for a p+/n diode using DLTS, where WD is the width of the 
depletion region, A is the area of the diode pad being probed. 
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electrons are eventually thermally emitted back to the conduction band, shown in part 

(e) of Figure 23. This rate of emission is proportional to [_�{| where en is the electron 

thermal emission coefficient. As the electrons leave the depletion region, WD is returned 

to its original value at VR and the capacitance follows a nearly exponential restoration to 

its previously constant value, C(VR). This change in capacitance, from its lowered value 

during the filling pulse to its static value at constant VR, observed in a specific time 

interval defines the capacitance transient, C(t).  

 The measured capacitance transient, C(t) curve versus temperature is 

dependent on a time interval specified by the tester, called the transient window. Often 

DLTS is referred to as a rate window analysis, where the width of a measurement 

window, twindow is based on the beginning and end time of the measurement, t1 and t2 

respectively, as pictured in Figure 24. Thus the change in capacitance C(t) is found by 

taking the difference between the sampled values of C(t1) and C(t2). This capacitive 

change may become more rapid dependent on temperature, as thermally activated 

traps begin to capture more carriers and subsequently release them, as illustrated by 

the changing capacitance rate decay observed over temperature in Figure 24. At lower 

temperatures, the transient decays slowly such that the difference C(t) is near-constant, 

and at high temperatures the signal reaches its quiescent value before the start of the 

transient window, t1. 
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Figure 23: Part (a) shows the normal p+/n 
junction, and part (b) then supposes a trap near 
the Fermi level at energy ETn. Parts (c) and (d) 
show the junction at VR and the process of carrier 
injection and trapping as +Vpulse is administered. 
The change in depletion region width, WD directly 
produces the capacitance transient, C(t) as shown 
in part (e). The area of the diode pad, A as seen in 
Figure 1 also affects capacitance (see part (c)). 

(a) (b) 

(c) (d) 

(e) 
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 A peak in C(t), monitored by the capacitance meter and normalized by the 

constant capacitance C(VR) of the sample, over temperature indicates an active trap 

and it would follow that trap parameters may be extracted from this transient.  To fully 

describe this process quantitatively and relate trap concentration, capture cross section, 

and activation energy to the capacitance transient, the differential equation from 

Shockley Read Hall theory that describes electron occupancy of a trap may be 

examined as below, 

}�~}| � �� �| � [��| . [� | .  ��� |       Equation 17 

Figure 24: Sampled data points of C(t) = C(t2) - C(t1) measured versus temperature which produce the 
DLTS spectra, pictured here as the red curve. C(t) is normalized by the constant reverse bias 
capacitance, C(VR). 
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where nt (pt) is the concentration of filled (empty) electron traps in number per cm3, cn 

(cp) is the electron (hole) capture coefficient in cm3 per second, en (ep) is the electron 

(hole) thermal emission coefficient in seconds-1, and n (p) is the free electron (hole) 

concentration in number per cm3. The processes of capture and emission from the trap 

level can be represented in the energy band diagram as below, 

 

Figure 25: Band diagram illustrating the mechanisms of electron and hole capture (cn and cp) and 
emission (en and ep) from a trap state. 

 Equation 17 can be simplified if we consider only electron traps in the n-type 

material, so p and ep are neglected. Also in the depletion region, electron emission 

greatly dominates capture rates, hence cnn << en and Equation 17 can be re-written as 

below, 

}�~}| � .[� |             Equation 18 

for the time following the end of the pulse, t > 0 where VP is applied when t < 0. If the 

initial condition is taken to be nt(0) = Nt’, where Nt’ is taken to be the active trap 

concentration at a given temperature, the solution to the above first-order differential 

equation is as below, 

 | � �|�[_�{|          Equation 19 
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 The above equation describes the emission transient observed following a 

voltage pulse. The relation between this emission transient and junction capacitance 

follows rather simply, considering the charge density in the depletion region to be 

� � ����  where ���  is an effective donor concentration produced by �� .  |+�,. Using 

this ���  in the typical relation for capacitance in a one-sided p+/n junction, Equation 20 is 

obtained. 

a+�, � � KD�	+��F���, � ��� .  |+�,        Equation 20 

where y�� is the junction built-in junction potential, and ;� is the dielectric constant of the 

semiconductor material. This can be further simplified by multiplying the right hand side 

by ���/��� where the constant background capacitance, a+yC, is as below, 

a+yC, � � KD���	+��F���,         Equation 21 

Hence Equation 21 can then be written as below, 

a+�, � a+yC, � ��� .  |+�,��  

� a+yC, � �1 . �~+|,��          Equation 22 

 Finally assuming  |+�,/�� � 1, the above can be approximated using the 

binomial expansion, 

a+�, � a+yC, � �1 . �~+|,	�� �        Equation 23 
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thus describing the capacitance transient in terms of deep level occupancy. Combining 

this with the result derived for trap emission in Equation 19, the final relation between 

trap concentration and the capacitance transient can be written as below, 

a+�, � a+yC, � �1 . �~�	�� [_�{|�       Equation 24 

hence confirming that the capacitance transient follows an exponential form, and 

showing that the peak or magnitude of this transient has a dependence on trap 

concentration, �|�  and a time constant related to the thermal emission coefficient, en.  

Note that some traps or defects may not follow the dependence on emission through an 

exponential decay, for example isoelectronic traps. 

 Determining the rate coefficient, en which is constant for a specific set of 

experimental inputs defining the transient window, represented as twindow=t2 - t1 is a 

matter of observing the given capacitance values at time t1 and t2 as below, 

a+�	, . a+�b, � a+yC, � �~�	�� \[_�{|� . [_�{|�`     Equation 25 

 Differentiating this with respect to time in order to find the maximum decay rate at 

a specific temperature associated with a defined transient window, where the only time 

dependence on the right hand side is assumed in the exponential term, and equating 

the result to zero gives the maximum (or resonance vs. temp) of the thermal emission 

coefficient as, 

[� � �� +|� |�Q ,
|�_|� � �� +|� |�Q ,

|�_|�         Equation 26 
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where, as mentioned previously, t1 and t2 define the transient window chosen by the 

operator. From the calculated rate coefficient, the trap concentration can be found as 

below, where all parameters on the right hand side are determined from experiment. 

�| � ����d��e� � �|¡+|�,_¡+|�,|
\�¢
{~�_�¢
{~�`         Equation 27 

where Nt is the evident total defect concentration, and Max|C(t2) – C(t1)| is the 

magnitude of the DLTS spectrum at the peak emission temperature. 

 For the system used in this study, the defect concentration is given as below, 

�|+��_J, � £����� �+|¡+|,|,¡+��,          Equation 28 

where ND is the dopant concentration, Max(|C(t)|) is the maximum peak capacitance 

observed and C(VR) is the background capacitance entered or measured by the user. 

The constant numerical value is determined from the system constant of t2 = 5.3*t1. 

 Upon further examination of this method, as the transient window widens or 

shrinks based on the user’s input (i.e., the change in capacitance, C(t) is observed over 

a larger or smaller time interval) the C(t)/C(VR) peak observed over temperature shifts 

slightly, as seen in Figure 26, representative of multiple DLTS spectra. An example of 

multiple peak points taken from DLTS spectra plots of varying transient windows is 

shown in Figure 27. 
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Figure 27: DLTS spectra of a GaAs diode taken with multiple varying rate windows with VR=-3.0 V and 
VP=+2.5 V. The peak points of the normalized capacitance transient, C(t)/C(VR) and their corresponding 
temperature values are used in the data treatment following to extract trap capture cross section, σn and 
apparent activation energy, Ea. 

Figure 26: Illustration of multiple DLTS spectra, where the peak energies are shifted in intensity and 
versus temperature by changing the size of the time window over which the capacitance transient, C(t) is 
observed. 
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 To examine this data and extract the last two trap parameters of capture cross 

section, σn, and activation energy, Ea, detailed balance gives the thermal emission 

coefficient from a deep level as below80, 

[� � 2¤� ¥ ¦� § ��5{4 exp +_∆9: ,       Equation 29 

where σn is the majority-carrier capture cross section, ¥ ¦� § �  �3©ª ��Q  is the mean 

thermal velocity of minority carriers, �� � 2 ¬2�}�©ª ®	Q ¯J/	  is the effective density of 

states in the minority-carrier band, gn is the degeneracy of the trap level, ∆E is the 

energy separation between trap level and the majority carrier band, T is the 

temperature, and k is Boltzmann’s constant. In this case ∆E is taken as the apparent 

thermal activation energy of the trap, Ea.  

 The exponential relation between [� and 1 ªQ  can be exploited if several spectra 

of C(t) are taken versus temperature with different transient windows. The peaks in 

these spectra as pictured in Figure 27 and related to Equation 29 above may be used in 

an Arrhenius plot to extract trap activation energy and capture cross-section. The log-

linear plot follows as ln ¬ª	 [+ ,Q ¯ ¦². 1000 ªQ  where ln ¬ª	 [+ ,Q ¯ �  . ln ¬[+ , ª	Q ¯  
produces a positive slope, T2 represents the temperature dependence of the mean 

thermal velocity (T1/2) and the density of states (T3/2) combined, and [+ , represents the 

thermal emission coefficient at different peak points with integer index n=1,2,3,(…); the 
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unknowns in Equation 29 taken to be σn and ∆E. Relating the thermal emission 

coefficient to the Arrhenius plot, a general form of Equation 29 can be written as follows,  

:�
�+�, � Hexp +G � bµµµ: ,        Equation 30 

where H is related to known parameters ¥ ¦� § �� ¶�Q  and the yet-unknown apparent 

capture cross section, σn, and G is related to the known parameter of 1 ©Q  and the 

unknown apparent activation energy, Ea. Note, Ea is equivalent to Ea’ + ∆Eσ where Ea’ is 

the energy needed to get to the CB and ∆Eσ is the energy barrier of the apparent 

capture cross section, σn which is equivalent to σn0exp(-∆Eσ /kT). Thus capture cross-

section has temperature dependence itself. In this study, ∆Eσ is assumed negligible. 

 A linear fit to the Arrhenius plot yields y = ax + b where a is the slope and b is the 

intercept of the fit line. These can be related to the thermal emission equation as 

follows, 

ln 2 :�
�+�,4 �  · 2bµS

: 4 �  ¸        Equation 31 

where H and G can thus be described in terms of the line fit parameters as, 

H � exp +] �[¹�[��, ¸,        Equation 32 

G � +²º»�[, ·, � 1000        Equation 33 

 The fit slope and intercept values finally yield the capture cross and activation 

energy as below,  

a·��¼¹[ a¹»²² ½[��]»  +��	,, ¤� � 1/+5.917Á10	b � H,    Equation 34 
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Â��]¦·�]»  � [¹¶Ã +[y,, �  � +8.62Á10_Æ, � G      Equation 35 

 where the numerical values represent the aforementioned constants contained in H and 

G.  In the software used for evaluation, the value (mde
3/mC)1/2  (contained in the density 

of states term, �� �  +2.511 × 10bÇ ��_J, +ª / 300 È, �}�J/	 and the thermal velocity 

term, ¥ ¦� § �  �3©ª ��Q  ) is simplified by assuming the effective mass value for Silicon 

for both the density of states effective mass in the conduction band, mde and the carrier 

effective mass, mC.  This value is treated as a constant applicable to all materials and 

both bands, the supposition being that the measurement error exceeds the accuracy 

gained by using a more exact calculation.  Thus all three apparent deep level 

parameters of trap concentration, Nt, capture cross section, ¤�, and activation energy, 

�  are derived.  

 Although DLTS can also be used to measure minority carrier traps, the 

experimental techniques used in this study only examine majority carrier traps. Hence 

the detailed theoretical treatment of minority carrier trap parameters related to 

capacitance transients will be omitted. In general, the theory becomes slightly more 

complicated due to the difficulties associated with completely filling the traps. Using a 

constant forward bias as opposed to VR, holes are injected into the n-type side and can 

become trapped by deep levels. The theoretical analysis follows the dual of the majority 

carrier emission analysis above (now eliminating those parameters in Equation 17 that 

are negligible in the hole emission process), but the hole traps will only saturate if hole 

capture dominates both electron capture and hole emission, i.e. cpp >> ep + cnn, which 

may be difficult to achieve in the n-type material.  
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3.3 Experimental 

3.3.1 Sample Review  

 As put forth in the introduction section 1.4, the samples used for DLTS analysis 

comprise a set of two different stack structures (baseline and 1 layer QDs) and three 

different miscuts of the GaAs substrate (2K, 6K, and 6N), for a total of six samples. 

Sumitomo Electric provided the 2” diameter, approximately 350 µm thick, n+-type (Si 

doped) GaAs substrates used in this research. Each sample was halved, one half to be 

fabricated for DLTS testing, the other reserved for optical probing. Schottky diode 

contacts were made with 500 nm thick gold circular pads on the halves for DLTS 

testing, designed to varying in diameter from 600 µm to 100 µm (with a tolerance of ~4 

µm), and an image of a fabricated 600 µm diode is shown in Figure 28. Figure 28 below 

also shows one half-wafer which received the diode mask. Each section of the wafer 

has been categorized: near the flat (used as a reference for sample positioning during 

growth), middle, and away from the flat (bottom). The wafer may see V-III ratio variation 

across its surface during the growth process, thus the wafer sections were designated 

as in Figure 28. The diodes are distributed evenly across the wafer, and each diode was 

assigned a numerical designation for testing purposes. 
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Figure 28: Left: Top-down view of the wafer half used in DLTS analysis, marked so as to designate 
different areas of the wafer. This is significant due to placement in the growth chamber, where the flat 
receives a different flow of III-V gas than the bottom. Right: microscopic image of a fabricated Schottky 
diode designed to be 600 µm. 

 The semiconductor stack used for each sample is pictured in Figure 7 for 

reference. This particular stack was chosen based on the limitations of the DLTS testing 

system used, where the capacitance meter can accurately read down to 10 pF and 

reaches its maximum at 1000 pF or 1 nF. Due to the capacitance limitation, the DLTS 

system can thus only probe down to a certain depth, based on the relation, 

a � É�D�Ê�            Equation 36 

where C is the capacitance, A is the area of the diode pad, and єs is the material 

dielectric constant (which is assumed to be 12.9 * 8.854x10-14 F/cm for GaAs81). From 

this the maximum probing depth of the system was found to be approximately 4000 nm 

for a 600 µm diameter diode and 1800 nm for a 400 µm diode, and  hence the samples 

were designed so the semiconductor to be probed was safely within these depth limits.  

Lightly doped n-type GaAs was chosen as the material to be probed below and above 

the QD layer, and thus in the baseline samples, since the depletion width also follows 

the equation, 
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Ë� � �	D�+Ì�F�|�E|_ÍÎÏ ,
K��          Equation 37 

where ψbi is the built-in voltage (assumed to be between 0.9 V and 1.05 V for Au 

Schottky contacts on GaAs81), and ND is the donor doping concentration. In order to 

reach the desired depth with a reasonable VR the donor doping concentration was 

designed to be between 1x1016 cm-3 and 5x1016 cm-3. The final doping of the n-type 

GaAs region above and below the QD layer (and in the top layer of the baseline 

samples) was approximately 4.5x1016 cm-3, where the QD layer could be reached at 

reverse bias between 5 V and 6 V, corresponding to a depletion width (or probing depth 

into the semiconductor stack) of approximately 400 nm to 440 nm.  

3.3.2 Current-Voltage Characterization 

 A material defect within a diode may be revealed by the current-voltage (I-V) 

characteristic by showing an ideality factor of n ≥ 2 at low forward biases, where this 

ideality factor indicates increased recombination in the space charge region (SCR). 

Non-idealities in the material, such as defects (carrier-recombination centers that do not 

allow the carrier to be extracted as current), change the appearance of the current-

voltage characteristic which, under non-ideal circumstances, follows the equation 

below82,  

Ð � Ðµ+[ Ï�{ÍÎ . 1,         Equation 38 

where n is the ideality factor. If n=1 the diode is ideal. In reverse bias the quality of a 

diode may be explored as well, where leakage current will increase incrementally as 

reverse bias increases. Every diode on the sample wafers was characterized using an 
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Agilent B1500 Semiconductor Parametric Analyzer to probe I-V in order to identify the 

non-ideal (n > 1.05) diodes. The n > 1.05 criteria for determining diode non-ideality was 

decided as 5% above the ideal case of n=1. All I-V curves were taken in the dark at 

room temperature. The diodes showing the strongest non-idealities were chosen as 

good candidates for deep level defects, as the higher ideality factor indicates non-

radiative recombination in the SCR and thus a potential defect to be effectively probed 

by DLTS (being based on SCR modulation). Diodes showing ideal characteristics were 

tested as well to verify no DLTS signal could be observed. 

 The I-V information for the non-ideal diodes was plotted as the log of the 

absolute value of I versus V for determination of the Schottky barrier height and ideality 

factor in the forward bias region (shown in Figure 29), using the standard equation to fit 

a Schottky diode I-V curve as below83, 

Ð � ÂÂ�ª	 exp+.HÑ��, �exp 2Ò�� 4 . 1�       Equation 39 

where A is the area of the diode pad, A* is Richardson’s constant (assumed to be 8.4 

A/cm2K2 for GaAs84), β is the inverse thermal voltage or q/kT, ψbn is the Schottky barrier 

height, V is the applied forward bias, and n is the ideality factor. 

 The total amount of diodes showing non-ideal I-V characteristics (i.e. n > 1.05 and 

tagged as non-ideal) were summed in the different regions of each wafer, and divided 

by the total amount of diodes in that region to arrive at a percentage of diodes with non-

ideal characteristics and to observe how this non-ideal distribution changed across 

samples and across the wafer itself. The results of this analysis are tabulated below, 
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where the miscut is noted in the sample title as well as its designation as a baseline 

sample (labeled base) or a 1 layer QD sample (labeled 1x). 

Table 4: The percentage of non-ideal diodes found in I-V characterization categorized by location on the 
sample. 

Sample Position 
on the 
Wafer 

% Non-
ideal 
Diodes 
found 

2Kbase flat 17% 
  middle 22% 
  bottom 17% 
6Kbase flat 17% 
  middle 0% 
  bottom 0% 
6Nbase flat 56% 
  middle 56% 
  bottom 21% 
2K 1x flat 0% 
  middle 0% 
  bottom 17% 
6K 1x flat 8% 
  middle 17% 
  bottom 11% 
6N 1x flat 28% 
  middle 17% 
  bottom 17% 

 

 It can be noted from this analysis that the 2K and 6K samples have less 

percentage of non-ideal diodes than the 6N samples. Also, the non-ideal diode 

distribution in the 6N samples is fairly uniform across the wafer, whereas in the 2K and 

6K one-layer (1x) QD samples, the defect distribution is heavier away from the flat (at 

the bottom). Also the addition of quantum dots seems to actually improve material 

quality in the 6N samples, where the 6N 1x sample has less non-ideal diodes on a 

percentage basis than the baseline sample. The prevalence of diodes with n ≥ 1.05 may 
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not indicate a defect, however, and could be processing related. Further analysis with 

DLTS will help better determine the defective characteristics of these samples. 

 In the 2K and 6K baseline samples, no ideality factors greater than n=1.17 were 

found. For the 2K and 6K 1x, one diode on each wafer was identified away from the flat 

(near the bottom) with n ≥ 2. The I-V data and fits for each of the 4 diodes identified as 

having the highest ideality factor for the 2K and 6K samples are pictured in Figure 29. 

  

   

Figure 29: I-V analysis for the 2K and 6K baseline and 1x samples. The calculated ideality factors and 
built-in potential associated with each fit are displayed on the graph. 
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 Note that for the 1x diode curves, the I-V characteristic recovers to an ideality 

factor of n=1 at higher forward bias as diffusion begins to dominate recombination in the 

SCR, i.e., state filling occurs in the SCR due to increased carrier injection. Also, the 

leakage current in reverse bias shows a deviation from the ideal Schottky diode, as 

leakage current increases steadily with higher VR.  

 For the 6N baseline sample, the diodes having a high ideality factor (approaching 

n=2) were identified mainly in the middle of the wafer. However for the 6N 1x sample, 

no diode was identified with an ideality factor greater than n=1.13. The I-V plots and 

fitted values for the 6N samples with the highest ideality factors are pictured below. 

 

 Note that the leakage current for the 6N 1x diode is much steadier as VR 

increases compared to both the 6N baseline sample and the 6K and 2K 1x samples. 

Also, the barrier heights measured tend to increase from the baseline samples to the 

one-layer QD samples, as tabulated below, 

Figure 30: I-V characteristic for the 6N baseline and 1x samples.  
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Table 5: Tabulated extracted values of Schottky barrier height, ψbn for all samples, taken from I-V 
analysis. 

Degree 
Miscut 

Baseline 
ψbn 

QD 
ψbn 

% 
Increase 

2K 0.850 0.947 10% 
6K 0.899 1.025 12% 
6N 0.885 0.895 1% 

 The trend is slight, but is outside of the error (which is not more than 5% in all 

cases) of the fit from Equation 39 for the 2K and 6K. This indicates increased band 

bending as the conduction band increases in potential and may suggest shallower trap 

levels in the QD samples.  

 The results from I-V analysis show a greater concentration of diodes with non-

ideal characteristics in the 6N baseline and QD samples, as seen in Table 4. Also it is 

noted that the concentration of defects in the 2K and 6K QD samples is weighted 

towards the bottom of the wafer, as opposed to a more even distribution in the 6N 

sample. From fits of the I-V curve using the Schottky diode current voltage relation, 

ideality factors for the diodes are obtained. The 2K and 6K baseline samples have 

diodes with ideality factor, n ≤ 1.17 whereas the 6N baseline sample contained diodes 

with n ≤ 1.87. Thus the 6N baseline sample diodes appear to be the most non-ideal 

overall. The opposite trend is observed in the QD samples, however, where the 2K and 

6K QD samples have diodes with n ≥ 2, and the 6N QD sample has diodes with n ≤ 

1.13. Hence simply taking the I-V data into account, the 6N substrate degrades the 

material grown above, and the QD layer actually improves material quality. Whereas in 

the 2K and 6K samples, the material grown on these substrates is initially relatively non-

defective, but defects become more prominent once the QD layer is grown. Overall, the 
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K miscut samples may experience formation of incoherent QD islands or bunch due to 

higher step edges, as discussed previously. 

 The identified diodes were used in the DLTS analysis following for deep level 

identification (as a control, random ideal diodes were tested as well). It must be noted, 

however, that the diode coverage of the semiconductor surface was not complete. Only 

about 5% of the semiconductor surface has a diode pad, due to the metal pattern 

design. Thus although general conclusions based on Table 4 could be drawn 

concerning the overall semiconductor quality and the concentration of defects in a 

certain part of the wafer, due to the extent of surface it is very possible that a deep 

defects exists where no diode pad is found.   

3.3.3 Capacitance-Voltage Characterization 

 Capacitance-voltage (C-V) analysis was also performed on diodes (ideal as well 

as those test candidates with non-idealities) where capacitance was monitored as a 

function of reverse voltage using the Agilent B1500 Semiconductor Parametric 

Analyzer. All C-V curves were taken in the dark at room temperature. This analysis 

allowed the extrapolation of sample doping, ND, built-in voltage ψbi, and the verification 

of calculated depletion width values over reverse bias, VR, verifying the probing depth. 

Using a plot of 1/C2 versus voltage, the doping can be extracted as, 

�� � 	KD� �. b}+b ¡�,/}� ⁄          Equation 40 

where the change in 1/C2 versus the change in voltage or Ô+1 a	,/Ôy ⁄  can be found as 

the slope of a linear line, fitted to the 1/C2 plot. Also, ψbi can be determined from this 

linear fit, as the x-axis crossing (in the forward voltage region)81.  
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 Figure 31 is an example of the C-V data extracted, and also shows calculated 

depletion width values using Equation 36 for each data point taken. The extraction of 

WD parameters allows the more accurate analysis of probing depth for DLTS 

investigation. The plots also compare diodes on the 2K and 6K 1x samples, showing 

data for good diodes (where n=1) and the bad or defective diodes selected for DLTS 

testing (where n ≥ 2). These samples were chosen for this graphical comparison as the 

defective diodes found displayed the highest ideality factors of the sample set. 

Figure 31: C-V characteristics of the 2K and 6K 1x samples, where 1/C2 and WD are plotted as a 
function of Vr. The graphs compare a non-ideal “bad” diode identified from I-V analysis with an ideal 
“good” diode of n=1. 

 Observe that for the defective diodes, the capacitance characteristic is lower in 

magnitude over reverse bias than the ideal case, corresponding to a greater depletion 

depth. In other words, the QD layer is reached faster with increasing magnitude of 

reverse bias than in the ideal diodes. Note that these plots are not linear with reverse 

bias, as would be contrary to expectations for uniform doping. This non-uniformity is 

attributed to the QD layer, which is reached approximately 400 nm to 440 nm below the 

semiconductor surface. Figure 32 illustrates the difference between the appearances of 

a uniform doping C-V characteristic as opposed to the QD sample characteristic. In the 



70 
 

2K samples compared below, it is observed that the QD layer is not reached in the 

range of reverse voltages shown for the QD sample.  

 

Figure 32: On the upper left, the 2K baseline sample and 2K QD sample are compared, where the linear 
1/C2 trend indicates uniform doping. On the upper right and lower center graphs, this linear trend is also 
observed in the baseline samples; however, the kink in the QD samples at approximately -4.0 V reverse 
bias indicates the QD layer has been reached. This can be correlated to depletion depth, also plotted, 
where the QD layer is reached about 400 nm to 440 nm beneath the surface. 

 It is interesting to note that the 6 degree miscut samples deplete much faster with 

reverse bias than the 2 degree sample. This may be explained by the differences in n-

type doping in the layer above the QDs.  

 To extract doping and built-in potential values, the most linear part of the curve 

was taken from the C-V plots for fitting, typically from 0 V to -1.0 V or -2.0 V, depending 
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on the linearity of the observed data. As the curve reaches greater reverse biases, 

some deviation from linearity can be seen, which could be attributed to the possible 

defect states, as well as an intersection with the QD area. In the 6K sample, the 

capacitance drops off much faster over increasing reverse bias than in the 2K sample, 

thus the depletion region reaches the QD layer faster with reverse bias and actually 

passes through that layer, as evidenced by the plotted depletion width values (the QDs 

are located ~440 nm from the semiconductor surface). This decay of capacitance in the 

6K and 6N samples could be due to differences in leakage current, which appears to be 

higher in the 2K defective diode, as observed in I-V analysis in Figure 31. In general, 

the capacitance values are lower in the defective or bad diodes as compared to their 

ideal counterparts, thus the depletion region is extended more quickly with lower 

reverse bias. The results for doping values and built-in voltages are tabulated in Table 

6; some of the samples selected for DLTS testing are highlighted as a comparison to 

the non-defective diodes (not highlighted). Standard error values were determined from 

the quality of the linear fit. 

 Several comparisons based on these extracted values can be made between 

samples and across the wafer of a single sample. First, the doping found in the 2K and 

6K 1x defective diode samples is lower than the corresponding ideal diode that was 

measured on the same part of the wafer (see rows 2 & 3 and 7 & 8 in Table 6), which 

could be correlated to the lowering of effective doping due to a majority-carrier trapping. 

With a lower doping, one would suspect a lower built-in voltage. However, ψbi appears 

to increase from the ideal samples to the non-ideal.  
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Table 6: Tabulated C-V data, using a linear fit to extrapolate values. 
Number Sample Position Ψbi (V) +/- (mV) Doping (cm-3) +/- (cm-3) 
1 2K1x flat 1.371 11 5E+16 4.65E+14 
2 2K1x bottom 0.820 1 4.1E+16 2.05E+14 
3 2K1x bottom 0.914 5 3.84E+16 1.14E+14 
4 2Kbase flat 0.783 0 4.46E+16 3.69E+13 
5 2KBase bottom 0.728 4 3.72E+16 8.80E+13 
6 6K1x flat 1.730 -9 8.88E+15 6.66E+13 
7 6K1x bottom 0.975 1 2.6E+16 1.87E+14 
8 6K1x bottom 1.116 -6 1.44E+16 1.26E+14 
9 6Kbase flat 0.727 1 2.35E+16 7.88E+13 
10 6Kbase bottom 0.674 1 2.24E+16 3.87E+13 
11 6N1x flat 0.761 0 1.91E+16 -3.98E+13 
12 6N1x bottom 0.745 0 2.70E+16 -4.71E+13 
11 6Nbase flat 0.757 0 2.87E+16 1.73E+13 
12 6Nbase bottom 0.753 0 2.67E+16 6.40E+12 

 Also, the 2K samples (both baseline and 1x) have almost twice the doping levels 

of either the 6K or 6N, which suggests differences in the Si2H6 incorporation due to local 

variation in V-III ratio following gas flow patterns in the growth reactor. Finally, across 

the individual wafers, an increase in doping from the bottom of the wafer to the flat is 

observed in general, excluding only the 6K and 6N QD samples. This is best illustrated 

in tabular form (see Table 7), where a percentage increase in doping from the bottom of 

the wafer to the flat is observed in all samples excluding the 6K 1x. The percent 

variation value shown in Table 7 is calculated as, 

% y·¹]·�]» � �Ö���5 ×Ø |_�Ö���5 �Ö||Ö��Ö���5 ×Ø | � 100      Equation 41 

Table 7: Variation of doping across the sample wafers 
Sample Doping 

bottom 
Doping 
flat 

% 
Variation 

2kbase 3.72E+16 4.46E+16 20% 
6Kbase 2.24E+16 2.35E+16 5% 
6Nbase 2.67E+16 2.87E+16 8% 
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Sample Doping 
bottom 

Doping 
flat 

% 
Variation 

2K1x 3.97E+16 5.00E+16 26% 
6K1x 2.02E+16 8.88E+15 -56% 
6N1x 2.70E+16 1.91E+16 -29% 

 

 Finally, an increase in  ψbi from the bottom of the wafer to the flat follows the 

trend of increasing doping, corresponding to the changing Fermi level, EFn which is 

closer to the CB with higher doping and thus would pull the CB further down further.  

3.3.4 C-V Summary  

 The observation that the doping values are greater near the flat of the wafer (see 

Figure 28 for wafer orientation), would correspond to enhanced Si-dopant incorporation 

towards the flat during growth. Also, the 6 degree samples reveal a doping of 

approximately half that of the 2 degree samples, which illustrates how Si-dopant 

incorporation is affected by miscut degree. Interestingly, the C-V profiles comparing 

non-ideal diodes on the 2K and 6K QD samples to ideal diodes measured on the same 

part of the wafer show a decrease in n-type doping, yet an increase in built-in voltage 

from the non-ideal to the ideal diodes. Finally, a point-by-point calculation of depletion 

width (inversely related to capacitance) is also plotted and it is revealed that the 6 

degree samples deplete much faster with lowering reverse bias, thus the QD layer may 

be reached with less applied voltage, |VR|. This corresponds to lower capacitance 

values (and thus doping) in the 6 degree samples. 
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3.3.5 DLTS Set Up 

 The experimental set-up described herein was assembled for the purposes of 

this study and is the only functioning DLTS system at Rochester Institute of Technology. 

For temperature-controlled experiments, the sample was placed in a Janis Cryogenic 

probe station cooled using liquid nitrogen (LN2), temperature controlled by a Lakeshore 

331 TC, and brought to vacuum level (~1x10-6 mBar) by a Varian Turbo-V 81-AG pump. 

The sample was pulsed through the diode pad on top of the stack, or anode, and 

probed through the ground ohmic contact, or cathode. The Sula Technologies Basic 

DLTS Unit used includes: a pulse generator which produces a square-wave 

superimposed on a negative DC bias as well as the 1 MHz measurement signal used to 

determine sample capacitance (the pulsed bias voltage and the capacitance 

measurement signal are mixed before appearing at the pulse generator output); a 

capacitance meter consisting of a self-balancing bridge circuit which detects small, rapid 

changes in capacitance following a pulse and can also be used for static C-V 

measurements; and correlators which use a boxcar integration technique where the 

capacitance of the second correlator is subtracted from the first to yield the capacitance 

transient over the defined transient window, t2 – t1 (where t2 = 5.3*t1), and multiple rapid 

measurements are taken and then averaged. Finally, the signal is converted so as to be 

interpreted by the Sula DLTS Version X.8 computer software program as described in 

the theoretical development above, which produces a plot of the DLTS spectra, 

|¡+|,|¡+��,  ¦².  ª. Figure 33 depicts the experimental set-up graphically. The Sula DLTS 

system is made up of several different components, as pictured in Figure 34. 
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Figure 34: Full Sula DLTS system, including correlators, capacitance meter, and pulse generator. 

  

 The pulse generator and reverse bias settings are controlled by coarse adjust 

knobs, as seen in Figure 35. The period and width of the pulse generator can be set as 

well. In this study the pulse width was set at 1 ms to ensure complete filling of the traps 

states, with the period determined from the width of twindow in milliseconds as, 

�[¹]»Ô � �Ù��}ÖÙ � 10 � �¼º²[ Ú]Ô�®       Equation 42 

where the period is set within safe limits in order to obtain the capacitance transient 

within the designated rate window before the beginning of the subsequent pulse. On the 

Figure 33: Block diagram of DLTS experimental setup. 



76 
 

capacitance meter, as seen in Figure 35, a knob controls the range of capacitance 

displayed, where the capacitance measured follows, 

a·�·�]�· �[ Û[·²¼¹[Ô +�Ü, � Z· ¶[ Á �]²�º·Ã[Ô y·º¼[    Equation 43 

 The Sula manual generally recommends that the display reads between 0.1 and 

1.0 for reliable measurements (insuring the meter does not overload or reach a value 

too low to measure). The push buttons, seen below the range knob on the capacitance 

meter in Figure 35, allow the user to view the reverse bias (marked as V), the leakage 

current (i), and the mixed output of the pulse generator (П), i.e. the constant reverse 

bias overlaid with the filling pulse.  The DLTS system can handle reverse leakage 

currents up to 150 µA. 

 

Figure 35: Pulse generator module and capacitance meter for rate window control and  transient 
measurement. 

  

Display 
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 Finally, the output of the pulse generator module is fed to the anode of the 

sample being tested (or the Schottky contact diode pad on the surface of the sample), 

which is placed in the cryogenic station pictured in Figure 36 for probing. The cryogenic 

station contains four probe arms and two outputs to ground. The input of the 

capacitance meter leads from the cathode of the device (or the ground probe of the 

cryogenic station) and the output feeds the correlator module of the DLTS system, also 

pictured, which uses a boxcar integration technique to treat the signal and feeds the 

capacitance transient to the computer. The initial delay knob sets the width of twindow as 

discussed above, and the pre-amp gain knob picture in Figure 37 is not used in the 

DLTS set-up (it is used for a differential DLTS method, an option for the DLTS system). 

The DLTS software shows a real time display of the normalized capacitance transient, 

or C(t)/Cbackground as the measurements are taken over a temperature range specified by 

the user. 

 

Figure 36: Cryogenic probe station. The sample is viewable through the window. 
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Figure 37: Correlator module on the DLTS system. The initial delay defines the size of twindow in 
milliseconds. The pre-amp gain knob is not relevant to the DLTS set-up here. 

 Once the samples are placed in the cryogenic chamber, a microscope is used to 

view the sample through the chamber window in order to contact the device. The output 

of the microscope is displayed on an LCD screen for accurate probing, as pictured 

below. Due to a drifting of the probe needle during testing resulting from temperature 

changes, the 100 µm devices were not tested in this study. In other studies, small 

diodes (less than 100 µm) are usually tested by wire bonding to the diode surface. 

However, this approach was not realized here. 
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Figure 38: Output display of the microscope, looking down into the cryogenic chamber for diode probing.  

 

3.3.6 DLTS Testing Results  

 Error for DLTS testing was characterized by observing the temperature 

hysteresis effects of the system, where the ∆C/C peak drifts slightly in subsequent 

measurements due to the lag between the thermocouple (placed very near the sample) 

temperature read-out and the actual sample temperature in the cryogenic chamber. 

This can be quantified by taking two temperature sweeps with the same rate window 

and biasing, noting the change in ∆C/C peak height and position with regards to 

temperature. For this analysis, it was found that the trap carrier concentration, Nt 

experienced an error of about 9%, as this value is based directly on the max 

capacitance peak height. The error values for capture cross section and activation 

energy were found to be about 4%. 
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 As a preliminary test to verify the DLTS system operation, a lightly-doped n-type 

AlGaAs sample on the standard 2K GaAs substrate was tested, with the same 

fabrication methods applied as for the test sample set discussed previously in section 

1.4. This sample was chosen as a well-known and prominent defect center is often 

found in AlGaAs. The DLTS spectra for multiple rate windows and the Arrhenius plot of 

the peak data are shown in Figure 39. 

 

Figure 39: Left: Multiple DLTS spectra for the AlGaAs sample. Right: Arrhenius plot fit to the peak 
capacitance transient points. 

 The values extracted from the fit were capture cross section of ~5x1019 cm2, a 

concentration of ~6x1015 cm-3, and activation energy of 0.32 eV. This was identified as a 

DX center, so named due to an unknown “defect X” being coupled with an isolated 

donor in the semiconductor material, where the appearance of a deep state results from 

the band structure being modified by pressure or alloying, not necessarily the 

inhomogenity of the crystals85. This test successfully verified the operation of the Sula 

DLTS system. 



81 
 

3.3.7 DLTS Miscut Results 

 The 2K and 6K baseline samples did not reveal any deep level characteristics. 

Multiple diodes and areas of the wafer were tested, including those diodes that showed 

both ideal (n=1) I-V characteristics and those showing non-ideal (n > 1.05) 

characteristics, at different reverse biases and filling pulses, varying from -5.0 V to -0.2 

V and +5.0 V to +0.2 V, respectively. Since no strong non-idealities were revealed for 

these samples in I-V characterization (i.e. n ≥ 2) it is supposed that no prominent deep 

levels exist in the SCR which can be probed by the DLTS method. 

 The 6N baseline sample, however, did reveal non-idealities, with ideality factor 

approaching 2 (the maximum ideality factor found for this sample was n=1.87). The 

DLTS spectra for multiple rate windows taken by probing a defective diode for this 

sample are shown below. The reverse bias was held at -0.5 V, corresponding to a 

depletion region width of approximately 250 nm, and was pulsed with a filling voltage of 

+0.5 V. These values were chosen in order to stay within the limits of the DLTS system 

capacitance meter. 

 

Figure 40: Multiple DLTS spectra taken at different rate windows for the 6N baseline samples. 
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 Note that the peaks for the sample appear noisy. This can be correlated to the 

low capacitance values of the sample being probed, where gaps in the curvature 

indicate the capacitance transient was below the DLTS system’s measurable value of 

10 pF. The extracted peak points for this curve were used in a log-linear Arrhenius plot 

as described in the theoretical portion of this chapter, and were fit iteratively with a 

linear trend line, as shown below. 

 

Figure 41: Arrhenius plots of the peak data extracted from DLTS probing of the 6N baseline sample. 

 The trap capture cross section and apparent activation energy were successfully 

determined from the intercept and slope of the fitted line, respectively. This data is 

shown in Table 8 below. 

Table 8: Extracted capture cross section and activation energy observed above. 
Sample Capture Cross 

section 
Plus/Minus Activation 

Energy 
Plus/Minus 

  cm
2 cm

2 eV meV 

6N base 1.25E-21 5.00E-23 0.325 13 
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 Note that the capture cross section for this deep level is small, correlating nicely 

to the ideality factor of n < 2 indicating a weaker defect, as well as the gaps seen in the 

spectra of Figure 40. This activation energy suggests a common GaAs deep level 

observed around 0.30 eV, named EL6 (see Appendix I)66,86, and is similar to trap donor 

levels found in GaAs87. The trap concentration for this defect was determined from the 

maximum capacitance transient peak, obtained by probing the sample at lower reverse 

biases until the peak transient value did not change, indicating the trap was filled 

completely. The concentration for this trap was found to be 5.90x1015 cm-3 (+/- 

5.31x1014 cm-3) using Equation 28. 

 Other diodes probed on the 6N baseline sample showed even weaker 

characteristics of this defect (as indicated by the lower ideality factor, n < 2), where the 

gaps as seen in the curves of Figure 40 widened and the signal was unable to be 

resolved using different rate windows and reverse biases. An example of a noisy scan is 

shown below, where the small transients observed may indicate a peak (outlined in 

red), but do not conclusively indicate a strong deep level.  

 

Figure 42: DLTS spectra characteristic of other non-ideal diodes probed on the 6N baseline samples. 
Although a noisy spectrum is observed, which may indicate a trap, the signal could not be resolved with 
the DLTS system. 
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 Similarly, no strong defects were found in the 6N QD sample, which would be 

expected from the data presented in Table 4, as the 6N QD sample was in general less 

defective than the baseline sample.  

 The 2K and 6K one-layer QD samples, however, did show diodes with strong 

non-idealities in the SCR, with n ≥ 2. These diodes were those away from the flat, near 

the bottom of the wafer where the greatest concentration of non-ideal diodes exists in 

both samples, as evidence by Table 4. For the 2K QD sample a -0.2 V reverse bias was 

used to probe the level with a +0.2 V filling pulse. This level was chosen to insure the 

capacitance transient for the deep trap did not saturate the DLTS capacitance meter, 

and also to insure the diode did not break down. This corresponded to a depletion width 

(calculated using Equation 36) of about 180 nm, thus scanning the semiconductor from 

the surface to about half-way down to the QD layer. The DLTS results for multiple rate 

windows are shown in Figure 43. 

 

Figure 43: Capacitance transient characteristic for varying rate windows, twindow for the 2K QD sample 
using a -0.2 V reverse bias and a +0.2V filling pulse modulation. 
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 For the 6K QD sample a -0.5 V reverse bias was used to probe the level with a 

+0.5 V filling pulse. This reverse bias is slightly higher in this sample to observe stronger 

defect characteristics. This corresponded to a depletion width (calculated using 

Equation 36) of about 400 nm, thus scanning the area just above the QD layer to the 

surface of the sample. The DLTS results for multiple rate windows are shown in Figure 

44. 

 

Figure 44: Capacitance transient characteristic for varying rate windows, twindow for the 6K QD sample 
using a -0.5 V reverse bias and a +0.5V filling pulse modulation. 

 

 The change in peak transient intensity from the 2K QD sample to the 6K QD 

sample is most likely a function of the differences in probing depth, as the 6K sample 

depletes more quickly with reverse bias. The peak data values for each transient 

window seen in Figure 43 and Figure 44 were used in the log-linear Arrhenius plots to 

extract capture cross section and trap activation energy as seen below. The plots were 

fit with a linear trend line iteratively to minimize fit error. The deep level activation 
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energies and cross sectional area are tabulated below, extracted from the best linear fit 

of the above plots. 

 

Figure 45: Arrhenius plots of the peak data extracted from DLTS probing of the 2K and 6K QD samples. 

Table 9: Extracted trap parameters for the deep levels found in the 2K and 6K QD samples. 

Sample Capture Cross section Plus/Minus Activation Energy Plus/Minus 

  cm2 cm2 eV meV 

2K 1x 4.54E-17 1.81E-18 0.626 25 
6K 1x 1.03E-17 4.11E-19 0.602 24 

 The concentration profile for these traps was extracted by probing the sample at 

lower reverse biases until the transient reached a maximum peak, indicating the trap 

was completely filled. The concentration data for these deep levels is tabulated below.  

Table 10: Trap concentration extracted for the deep levels found in the 2K and 6K one-layer (1x) QD 
samples. 

Sample Trap 
Concentration 

Plus/Minus 

  cm-3 cm-3 

2K 1x 2.35E+15 2.12E+14 
6K 1x 1.17E+16 1.05E+15 
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 The traps display very similar characteristics, with apparent activation energies 

between 0.60 eV, and much greater capture cross sections than those observed in the 

6N baseline sample (about four orders of magnitude larger), suggesting an extended 

dislocation. The size and concentration of these traps could account for the changes in 

doping and built-in voltage revealed for the defective diodes in C-V analysis (see Table 

6). Also, this activation energy does not correlate well to any common levels seen in 

GaAs (see Appendix I), especially the dominant EL2 level around 0.80 eV. To 

determine the origin of this deep level, whether originating from the QD layer or below 

the QD layer, spatial profiling of the sample was performed. Such a profiling can be 

realized by using different reverse biases to probe the sample down to a known depth, 

and choosing a filling pulse so as to only observe those defects residing in a certain 

region of the semiconductor stack, i.e. above the QD layer, around the QD layer, or 

below the QD layer. The C-V data for both the 2K and the 6K sample was examined in 

order to selectively control the probed region for each sample, as shown in Figure 46. 

The region below the QDs corresponds to a probing region depth of approximately 500 

nm to 600 nm. To probe through the QD layer, a reverse bias and filling pulse was 

chosen for each sample so as to probe between 400 nm and 460 nm below the 

semiconductor surface. Finally the region above the QDs was probed, corresponding to 

a depletion depth of about 400 nm. 
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Figure 46: Depth profiling of the deep level defect observed in both the 2K and 6K QD samples. Reverse 
biases and filling pulse magnitudes were chosen based on the probing depth desired to be achieved. 

 Note that the reverse bias required to reach the QD layer (pictured in Figure 46 is 

lower for the 2K QD sample, which corresponds to the differences in doping seen in the 

C-V profiling. Also, the 6K sample DLTS signal is much more prominent, corresponding 

to the order of magnitude higher concentration shown in Table 10. Most notably, the 

transient disappears below the QD layer, and appears in scans around the QD layer, 

suggesting that this deep level originates from the QDs. In the 2K QD sample, the peak 

of the transient in the QD layer is not aligned with the peak above the QD layer, which 

could indicate the defect peak signal above the QD layer is a combination of two 

thermally active defects, or that the QD layer seeded one type of defect that acted a 

catalyst for the formation of the second extended defect through the top layer. 

3.3.8 DLTS Miscut Results Discussion 

 In DLTS analysis, no deep level transient is resolved for diodes with an ideality 

factor, n ≤ 1.87. Thus the 2K baseline, 6K baseline, and 6N QD samples have no 

corresponding deep level data to be discussed. The 6N baseline sample, however, 

reveals a trap level that is small, with a capture cross section of about 1.2x10-21 cm2. 
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The sample was probed approximately 250 nm below the surface and an Arrhenius plot 

of the peak points observed over multiple transient windows allowed the extraction of 

the capture cross section and the activation energy, which was revealed to be about 

0.33 eV. This energy level corresponds to a common GaAs deep level defect termed 

EL666. This is one of the three most common deep levels found in GaAs and is 

categorized as a medium deep donor level that displays DX characteristics86. DX 

centers are so named due to an unknown “defect X” being coupled with an isolated 

donor in the semiconductor material, where the appearance of a deep state results from 

the band structure being modified by pressure or alloying, not necessarily the 

inhomogenity of the crystals88. Since this defect was only found in the 6N baseline 

material, it may be concluded that the miscut off the (100) surface toward the [111] 

direction (of the Ga terminated face) is generally less favorable and more prone to the 

development of such DX centers. As mentioned above, the 6N QD sample not only had 

more ideal diodes as seen in I-V analysis, but correspondingly revealed no prominent 

deep levels, thus the material quality is actually improved by the introduction of QDs. 

Thus it may be said that the QD layer suppresses the propagation of this defect through 

the semiconductor grown above. 

 Further DLTS analysis shows strong deep levels in the 2K and 6K QD samples 

near the bottom of the wafer (away from the flat), with activation energy around 0.62 eV 

to 0.60 eV, respectively. This level does not correlate well to any trap levels commonly 

found in GaAs, notably EL2 at ~0.80 eV, EL3 at ~0.55 eV and EL6 at ~0.30 eV66,86. The 

capture cross section of this trap was many magnitudes greater than the level revealed 

in the 6N baseline sample and the capacitance transient response for this deep level 
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was thus much stronger. The concentration of this defect in the 6K QD sample was 

higher by an order of magnitude (~1x1016 cm-3) as compared to the 2K sample (~1x1015 

cm-3). A depth profiling of both samples revealed that the defect was visible in spectra in 

the layer above the QD layer and through the QD layer, but not below. This indicates 

the defect originates from the QD layer and is a result of QD growth. In a similar study, 

Asano et al. (2010) 71 probed QD InAs/GaAs QDs of similar structure to find levels 

associated with the semiconductor above and through the QD layer around 0.71 eV and 

0.44 eV activation energies. Also, Lin et al. (2005)89 found a deep level at ~0.50 eV in a 

similar QD system and Kim et al. (2009)90 found a 0.60 eV level they termed a “native 

defect”. The farthest any researcher has gone to explain the actual origin of these 

defects was Kaniewska et al. (2005)92. They found a level at 0.57 eV termed an 

“intrinsic point defect-oxygen complex”, and went further to say deep levels around the 

QD layer formed during a growth interrupt between GaAs buffer layer growth and the 

InAs QD layer growth, enhancing incorporation of excess As and background impurities. 

Note that this defect is not found in the 6N QD sample, where the N miscut may 

suppress formation of this specific deep level.  
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Chapter 4 

Conclusions, Summary and Future Work 

4.1 Defect Mechanisms and Changes in Optical Material Characteristics 

 Optical probing, serving as a complement to defect identification where the actual 

energy transitions within the material are observed, reveals that the 2 degree sample 

forms QDs with significantly higher radiative recombination, correlating to higher 

photovoltaic conversion efficiency, where the inverse of a radiative process is the 

absorption of photonic energy. With low PL signals, the 6 degree samples show less 

radiative recombination, indicating more non-radiative recombination as would be 

observed in the SCR of the material.  

  From I-V and DLTS analysis of the sample set, the 2 degree and 6 degree 

sample with a miscut off the (100) lattice toward the [110] plane display similar 

characteristics in defect concentration across the wafer and deep levels detected. The 6 

degree baseline and QD samples miscut off the (100) toward [111] plane show uniform 

defect distribution across the wafer and with a higher ratio to semiconductor material 

(see Table 4). This would suggest different mechanisms govern the defect behavior of 

the N and K miscuts, regardless of degree.  

 From C-V analysis, a correspondence between both 6K and 6N miscuts does 

exist, where doping is half of that seen in the 2 degree sample, indicating less Si 

inclusion. Also an opposite trend than that seen in the baseline 6 degree samples 

(doping increasing from the bottom of the wafer to the flat) is observed across the 6 

degree one-layer QD samples, as seen in Table 7. This suggests that from the 6 degree 

baseline to the 6 degree QD samples, Si incorporation characteristics have changed. 
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Thus the decline in radiative recombination in the 6 degree samples as a result of Si 

incorporation issues is highly probable, as opposed to an increase in material defects in 

the 6 degree material. Thus, the decline in the 6 degree samples’ PL signals may not be 

due to an increase in extended defects above the QD layer (recall Lobo et al. observed 

strong radiative emission from QDs, even after formation of a dislocation array51). Other 

studies suggest that a sharp drop in luminescence intensity from InAs/GaAs QDs is 

associated with increasing density of incoherent InAs islands, citing these incoherencies 

as being optically inactive91. Thus the 6 degree miscut samples may be prone to this 

type of incoherent QD formation. 

4.2 Summary 

 The application of advanced III-V nanostructures is discussed with regards to 

optoelectronic device operation, and specifically the QD structure is examined in detail. 

The ability of this material to realize the intermediate band solar cell (IBSC) concept as 

proposed by Marti and Luque is also explored. The dependence of QD formation on 

lattice nucleation sites generated by the underlying substrate, limitations of QD 

formation and possible associated defects are also presented. The specific effects of 

substrate miscut on QD traits is thus proposed, and previous PL data from Hubbard et 

al.38 establishes the precedent of a 2 degree miscut performing much better with 

regards to radiative processes than 6 degree material. 

 A sample set with varying miscuts of 2 and 6 degrees off the (100) lattice toward 

the [110] plane and 6 degrees off the (100) toward [111] plane is developed with an n-

type GaAs baseline and a one-layer InAs/GaAs QD system capped with 400 nm of n-

type GaAs. This sample set is examined with PL and displays the same characteristic 
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behavior discussed above. A PR signal is obtained for the 2 degree miscut sample 

which reveals lower-order, higher energy QD transitions than the ground state at 1.16 

eV. 

 Schottky diodes are formed on the samples to electrically probe the material for 

deep defects using a DLTS system. The diodes are characterized by I-V and C-V, 

revealing non-idealities and doping characteristics. The 2K and  6K samples show very 

similar defect ratios across the semiconductor surface, as well as deep level 

characteristics with the one-layer QD samples showing a defect with activation energy 

~0.60 eV which originates at the QD layer and propagates through the layer above. The 

6N sample in general appears the most defective, and the baseline sample shows a 

weaker defect with activation energy of 0.33 eV, identified as the common GaAs defect 

EL6. The 6N QD sample is less defective than the corresponding baseline, and no deep 

level defects are found, suggesting that the QD layer improves the semiconductor 

material quality above the QD. Differences in the defect properties of the K and N 

miscut samples, regardless of miscut degree, implies that the defect-formation 

mechanisms present in these samples differs and is dependent on the crystallographic 

direction of the cut. 

 As no common defect mechanism between the 6K and 6N samples is 

established, it is supposed that the reduced PL signal (and thus radiative 

recombination) in the 6 degree samples is governed by Si incorporation compared to 

the 2 degree samples. This is assumed by the observation of the marked disparity in 

doping concentrations across the wafers of the 6 degree QD material as opposed to the 

baseline samples and the 2 degree QD sample. The differences in dopant incorporation 



94 
 

could imply a changing atomic step surface, or may increase formation of incoherent 

QD islands. 

4.3 Future Work 

 Although extremely versatile, the DLTS method only reveals trap parameters as 

opposed to their cause or origin, thus further work should be done to resolve the defects 

further. DLTS probing of the layer around the QD region may reveal seeding traps with 

activation energies different than those found in the extended defects above the QD 

layer (as may be indicated in the 2K QD depth profiling), and thus give clues as to the 

formation of these deep levels. DLTS tests examining a more varied set of miscut 

samples may help uncover the origin of the deep level seen in the K miscut samples, 

paired with other evaluation methods, such as secondary ion mass spectroscopy 

(SIMS) to determine molecular composition of the semiconductor surface. Using DLTS 

to examine changing growth interrupt times and temperature could resolve the deep 

level evolution of these defects as well and help optimize the growth process. Atomic 

force microscopy (AFM) studies of the surface of uncapped QD samples grown under 

the same conditions and miscuts could verify the suppostion of incoherent QD islanding 

in the 6 degree samples.  

 The PR system should be optimized further so as to detect changes in 

reflectance signals for the miscut samples and conclusively define the different QD 

energy states present.  PR evaluation across the surface of the wafers, where multiple 

PR spectra are taken for different areas of the wafer creating an effective PR map, 

could also be paired with I-V and C-V analysis to determine the effects of Si 
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incorporation on QD size. PR could also be used to study the electric field changes, in 

the miscut samples (if any) and in QD samples with increasing number of layers. 

 Finally, in this study an n-i-n QD sample structure was developed to identify 

electron traps in the QD samples using DLTS. However as it pertains to many devices 

and especially solar cells, it would be very useful to test the majority and minority carrier 

traps in a p-i-n or n-i-p devices. As QDs are usually formed in the i-region of these 

junctions, the differing effects of a p or n base underlying layer on defect evolution in the 

p or n capping layer may deviate significantly from the results shown here.  

 The future of the PR and DLTS methods may be applied in a variety of ways, by 

observing changing optical and defect properties of QD material while varying number 

of QD layers, growth conditions, material factors, etc. This type of evaluation compared 

to the data already obtained may help develop a portfolio on optimized QDs.  
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Appendix I 
Common GaAs Deep Levels, Literature Study 

Source Sample  Dopant Donor 

Concentration 

Deep 

Level 

Activation 

Energy 

Ohmic 

Contact 

Schottky 

Contact 

      cm
-3   eV     

2000 Kaniewska
92 GaAs Silicon 1.00E+16 EL10 0.17 AuGeNi Au 

2001 Kazukauskas
87 GaAs   1.00E+14   0.22     

2001 Kazukauskas
87 GaAs   1.00E+14   0.32     

2001 Kazukauskas
87 GaAs   1.00E+14   0.37     

2002 Markov
93 p-GaAS Chromium 2.00E+16 EL2 0.43   Au 

1974 Lang
77 n-GaAs   5.00E+15   0.43     

2001 Kazukauskas
87 GaAs   1.00E+14   0.47     

1990 Nishizawa
94 p-GaAs Zinc 2.90E+17 EL2 0.48     

2000 Kaniewska
92 GaAs Silicon 1.00E+16 EL4 0.52 AuGeNi Au 

2001 Kazukauskas
87 GaAs   1.00E+14   0.54     

2002 Markov
93 p-GaAS Chromium 2.00E+16 EL2 0.65   Au 

1990 Nishizawa
94 p-GaAs Zinc 2.90E+17   0.72     

1997 Halder
95 n-GaAs Silicon 1.52E+17 EL2 0.74   Au 

2002 Markov
93 p-GaAS Chromium 2.00E+16 EL2 0.75   Au 

1974 Lang
77 n-GaAs   5.00E+15   0.76     

1991 Samara
96 n-GaAs   1.00E+15 EL2 0.78 In Au 

1990 Nishizawa
94 p-GaAs Zinc 2.90E+17   0.90     

1990 Nishizawa
94 p-GaAs Zinc 2.90E+17   1.03     



97 
 

 

Figure 47: Documented deep levels compiled from Lang and other sources66 
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