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ABSTRACT

In this thesis, the problem of quantization noise is presented,
and recent efforts in this area are reviewed. With the motivation for
further investigation into the problem explained, the purpose of this
thesis is stated to be the determination of peak harmonic distortion
due to quantization for predominantly single frequency inputs. Two cases
were examined with pure sinusoid and sine wave plus Gaussian bandlimited
white noise, The method used was to simulate the suantﬂzation process on
the computer, and to use a Fastl Fourier Transform algorithm to analyze
the spectra of the quantlized signals.

For pure sinusoidal inputs, the location of the peak harmonic
distortion in the quantiization noise spectrum was found to be very
sensitive to the degree of loading of the quantizer. However the maagnitude
of the peak distortion when plotited as a function of the number of bits
totally used by the input was fitted very well with a straight 1ine of
slope -6dB/bit. Moreover the largest component in the quantization noise
spectrum was observed tio be about 4dB above the average noise spectral
density across the entire frequency band of observation. The addition of
noise to the sine wave was anticipated to have a smoothing effect on the
quantization noise spectirum. This phenomenon was observed for a specific
set of input noise samples but the results are not conclusive, becuase
after further investigation of the noise generation mechanism, the
statistical properties of the synthesized noise signal were found to
be unsuitble for analysis of power spectra.

However since the pure sinusoidal inputs represent the worst case

condition for harmonic distortion due to quantization, the measured peaks



will provide the upper bounds necessary for specifications in engineering

system designs.
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I. INTRODUCTION
In recent years it has become increasingly popular to use digital
techniques to process analog signals. In the field of communication,
digital modu1a£10n schemes, for example pulse code modulation (PCM),
are preferable over analog methods, for example amplitude modulation
(AM), where the performance index 1s measured in terms of error rate
and the efficient use of the available channel capacity [1]. With
the advent of nigh speed and low priced comnuters, mnre and more nrocesses,
in chemical plants for example, employ direct d1g1;a1 control (DDC), for
better error performance in the systems [2]. Moreover in the field of
filtering, which is applicable to both communication and automatic
control, digital filters are becoming popular because of the accurate
control over the transfer functions and the attainability of sharp
skirt characteristics which are beyond the reach of analog filters.
However between the domain of logic circuits and the real world
of continuous signals which may be voice, or sonar echoes, or system
parameters being monitored by sensors, there is a vital 1ink which
consists of a sampler and a quantizer. The effect of sampling is well
known via Shannon's sampling theorem [3], so this thesis is primarily
concerned with the "damage" done to the original signal by the quantizer.
A quantizer is a nonlinear device which produces the sarme output values
for a1l input amplitudes which 1ie in each of a finite number of amp1itude
ranges. This kind of a "stairecase" transfer function is illustrated in
figure 1. The error signal which is given by the difference between the
input and output signals of the quantizer is commonly referred to as

quantization noise. As we shall see in the next section, the subject of



quantization noise or more specifically, the noise spectrum, has been of
considerable interest to engineers both in the communication and control
fields, and consequently a fair amount of study has already been done
in this area, Therefore the question arises: why should there be another
investigation of the spectrum of quantized signals,

The motivation of this thesis was derived from an engineering
problem in sonar applications. The problem deals with the measurement
of harmonic distortion due to sonar transducers. A]though transducers
are often used as linear devices, their linear transfer characteristics
are really only first order approximations to nonlinear functions,
sufficiently accurate for small siqgnals., Consequently when the transducer
is used as a projector, operating at high power, the acoustic signal
transmitted into the medium will contain many harmonics due to the
nonlinearity of the transfer function, even though the {nput signal may
be a pure sinusoidal. In order to measure the harmonic distortion
introduced by the projector, the acoustic signal is recelved by another
hydrophone and harmonic analysis i1s performed. If the siqgnal processing
and data transmission are to be done digitally, then the signal received
at the output of the hydrophone will have to be sampled and quantized.
The question arises: how many bits should be used in the quantizer,
such that the quantization noise wi1l not contribute any significant
inaccuracy to the determination of harmonic distortion which would be
performed after additional signal processing. This information is important
because 1t affects the design of the special-purpose hardware for signail

processing and the bit rate for data transmission.



Since the quantization noise spectra for predominantly single
frequency inputs are very irreqular and each harmonic amplitude varies
widely depending on the loading of the quantizer, it is more important
for our purposes to know the upper bound of the noise spectrum, regard-
less of where the maximum spectral density may be located. Therefore the
purpose of this thesis is to determine the peak harmoni¢ distortion due
quantization as a function of the number of bits in the quantizer. This
relationship will enable an engineer to determine the optimal size of
the quantizer used in the system to meet a set of accuracy specifications
subject to such contraints as cost and bit rate.

After a survey of the literature on the problem of quantization
it was decided that the best approach would be experimental - using
computer simulation, and a Fast Fourier Transform (FFT) algorithm to
perform the spectral analysis. Before the experimental procedures and
results are described, . review of the recent efforts in the area of
quantization is presented in the next section, to justify the choice

of approach in this thesis.
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I1. HISTORICAL BACKGROUND

As soon as one begins a literature survey on the subject of
quantization noise, one discovers that the work of Bennett[4] is the
reference quoted by almost all the authors. In 1948 Bennett published
his investigation of the spectra of quantized signals for uniformly
spaced quantizers, which means, in terms of figure 1, 2 41" = Za]
and by 41=by = by for 1< k<N/2.

Bennett derived a simple but extremely useful expression for the
mean square error of quantization or the noise po;er. He observed that
for input signals which have amplitude variations much larger than the
quantum step, b] = Za]. the error signal resembles a saw=-tooth waveform,
going from -a) to +a] with arbitrary slope. Exceptions occur when the
slope of the input signal changes sign within a quantum step resulting
in large deviation from a saw=tooth, but with the assumption of large
rms value for the input signal as compared to the quantum step, these
exceptions are rare, The mean square value of a saw=tooth function with
arbitrary slope and bounded by ta] is easily calculated. The equation
of a typical line segment of the function is :

e (t) = st, for -ay/s<t<+a,/s
where s is the slope and t is arbitrarily referenced to the midpoint of
the segment. Then the mean square error for this segment is
a)/5

el(t) = (s/Zaﬂf el (t)dt
_a,/s
f3|//5

= (s/22,)(£°/3)
-3,%

. (2a1)2/12 (2.1)
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Since eé(t) is independent of the slope s, then the calculated mean
square error of (Za‘f712 is true for the entire error spectrum,
Panter[5] derived a more general expression for the mean square
error (which reduces to equation(2.1)), from a statistical point of
view, The assumption of uniform step si2 is removed but unity slope
1s sti1]l maintained in the transfer function, i.e.
b = (ak. *+a,)/2 for 1< k< N/2,
Let p(x) be the probability density function of the input signal., Then
the mean square error voltage <(x-by)®> associated with the quantization
of the input signal assianed to a, is given by

s |

L(x=by) > = / (x-b)* p(x)dx (2.2)

W,
A

Panter made an assumption that the probaoility density function is
effectively constant within each step, but allowed it to vary from
step to step. This assumption is basically the same as the one made by
Bennett with reoard to sufficiently small quantum step relative to

siagnal variations., Then it follows that equation (2.2) can be evaluated

ak+l »
Dkf (x=by) dx

Ak,

as:

Z(x=b ) >

3
(dx) p,/12
Where ’_{K = ak+l 'ak

ak-tl

and p, = 7t-Jf p(x)dx,
a

K
Inother words p, 1s the average probability density for a < x<a,,, and

(p“dy ) is the probability that the input signal lies in the same range,

2



The overall mean square error <e?y , which is the total noise power due
to quantization, is the sum of the mean square errors introduced at

each quantized levels, Therefore

<e®r = L <beb 'Y = (11T, depy
= (1/12) 7. dic(p, )

2 <d > /12 (2.3)
where <:dﬁ‘> is the weighted average of the square of quantum step
sizes, Note that for uniform quantizers, dk = d {s a constant
yielding

ce?> = d)12 (2.4)
which is the same as equation(2.1), except that the latter is a
time average while equation(2.4) is an ensemble average.

Equation(2.1) is quite accurate as Bennett had observed experi=-
mentally and generally provides sufficient information to detenrmine
the degradation of system performance due to quantization in terms
of signal-to-noise ratios. However if one is interested in more
details about the spectrum of the quantization noise , then further
analysis is necessary.,

Analyses of nonlinear problems are usually mathematically tedious
and yield theoretical results which, in general, are not easily inter-
preted physically, Therefore in order to get meaningful results, the
analyses have to be restricted in their scone, so that aporoximatinns
can be applied. In the case of the quantizer, which has a nonlinear

transfer function, the output spectra of only a limited class of input



signals are analyzed,

Bennetit observed that with single or double frequency signals,
the noise spectra are "ragged", and the amplitudes of the harmonics
generated oscillate violently with the input magnitudes. Consequently
he chose to use narrowband Gaussian white noise as the inputl. Since both
the autocorrelation function and the probability density functlion of
the input signal are well defined, the autocorrelation function, and
therefore the power spectrum, of the quantized error at the output can
be calculated in a straightforward manner. However.we shall only outlline
the approach, without the dethiled mathematical manipulations.

Assuming the quantization noise to be stationary and ergodic, the
autocorrelation function of the output error is, by definition, given
by:

Re(v) = ETETETERY
<e(t)e(thv)>
<f(x]-md)(x2-nd)> for myn = 0,41,+2,...

=J/n-fr(xl-md)(xz-nd)p(x].xz)dx1dx2 (2.5)

where X and x, are the amplitudes of the input signals atl time tl and

t+vy md and nd are the output levels assigned by the quantizer to
x, and x, respectively; d is the uniform quantium step; and p(x].xz)
is the two-dimensional probability density function which {s Gaussian,
The correlation coefficientl, j" is given by

p(v) = Ry(v)/Ry(0) (2.6)
where Ry(t) is the autocorrelation function of the input signal, and

since the input spectrum is assumed to be narrowband and flat, R1(t)

is a "sinc" function, Again under the assumption of small quantum
-|g -



step size as compared to input rms, 1.e. da<3< Ri(O). equation(2.5)

can be solved and approximated as

Re(v) ¥ (a*/mr®) 2 (1/n2)exp (=an*n?[1- Y{(v)1/K) (2.7)
n=i
where k is dafRi(O). The power spectrum of the quantization noise
Se(f) is given by taking the Fourier Transform of Rg(v).

Se(f) = (k/2m2)(3k/21)°B(3kf2/R) (2.8)

©
where B(z) = :E: (1/n®)exp (-z/n?),

Bennett measu::J the power spectrum of quantization noise for 5,6
and 7-bit quantizers, with inputs of thermal noise and a 16-tone
signal, and found good agreement with the spectrum predicted by
equation(2.8).

Nonlinear problems are quite common in science and engineering,

and one of the standard techniques to solve these problems is the
“transform method"{6], where the nonlinear characteristics are Fourier
transformed to facilitate analyses. Banta[7] and Rowe[8] applied this
method to uniform quantizer where the error characteristics,as a
function of the input amplitude,is periodic, Actually since any real
quantizer only has a finite number of bits, the error function is of
finite duration and therefore not periodic. However if we assume that
the input signal would never overload or saturate the quantizer, then
equivalently there are infinite number of steps in the quantizer, and

the error characteristic is periodic., In Bennett's analysis, this

=10



assumption of an infinite size was also used and in his experiments,

he observed that the peak voltage of thermal noise never exceeded

appreciably four times its rms voltage. Since a Gaussian probability

function 1s assumed for the amplitude of the noise, the probability of

the instantaneous voltage exceeding four times the standard deviation is

less than 10'4. Therefore Bennett was able to avoid saturating the quantizer.
The error characteristic of an infinite, uniform quantizer, as

aiven by the difference between the output and the.input amplitudes, can

be expanded as a Fourier series in x, the input.

e(x) = (1/d) > coemn(g2mfox) (2.9)

N=—oo

where f° = 1/d,
fd/Z

and ¢, -M} e(x) exp(-jZnnfox)dx
-d/2

intearating by parts, u = e(x) = x, and dv = exp(-jZnnfox)dx,
d/R d/2

[x exp(=j2nnf x) - exp(=j2rinf x)dx]/(=-j2nnf )
-d/R d/2

(d/2)[exp(-j2mf d/2) + exp(j2mfd/R) = 01A(-j2nnf,)

(3d?/8m)[exp(=3m) + exp(imn)]
(3d?/2m) (-1)"/n



Then for any input signal x(t), the error signal is given by

e(t) = (3a/2m) > ((-1V/n) exp(s2mx(t)/d) (2.10)

ngo

Rowe solved equation(2.10) for a pure sinusoidal input,

e(t) = (jd/2m) Z ((=1)7n) exp(32nnAsin2nft)/d

MNz=o

= (-2d/n)'j§: sin2rkft [ j;: ((«1)7n) Jk(innA/d)] (2.11)
k=1 nsi
k- odd
where {Jk(z{} are Bessel functfions of the firstl kind,
For bandlimited Gaussian noise input, Rowe obtained the same result
as Bennettl for the autocorrelation functiion of the quantiization
noise, which reduces to equation(2.7) under the same conditions
stated before.

Banta went one step further and used a combination of a deter-
ministic signal and Gaussian noise as input. The result obtained for
the autocorrelation functiion of the outbut noise due to quantization
is exact and general, except for the assumption of statistical
independence between the signal and the noise. However the expression
is extremely difficult to use and one special case was treated, where
there was no signal component and the input noise autocorrelatlion
function is trianqular. After finding the quantization noise spectrum
to be bounded by a certain value, Banta concluded thatl a low=-pass
filter with bandwidth comparable to the main lobe of the input noise
spectrum will effectively suppress the quantization noise relative to

the input, This same conclusion could probably be arrived at by



observing that the quantization noise {s broadband as compared to the
input spectrum, because of the cross=modulation of the input frequency
components due to the nonlinearity. Consequently the best way to recover
the input signal is by low pass filtering.

The analyses of quantization noise discussed so far are 1imited
to uniform quantum steps only, but there are some practical situations
where nonuniform quantizers are more desfrable. Bennett did some
experiments with tapered quantizers, because in voice transmission
it 1s advantageous to emphasis the weak signal cémponents. Max[9]
analyzed a more interesting problem, He defined the distortion of
quantization to be the expected value of some function of the error
between the input and the output. Then for a fixed number of quantum
steps and a given input probability density function, the step sizes
are chosen to minimize the distortion, allowing the quantizer to be
saturated. The equations cannot be solved analytically, so Max
tabulated scme numerical results for a Gaussian noise input. Algazi[10]
used an even error weighting functfon (mean square, for example) for
distortion measure and provided some useful approximations to the
equations given by Max, Hurd[11] also used the transform method to
derive the output autocorrelation of a nonuniform quantizer, when
the input is a sine wave plus stationary Gaussian noise.

Returning to the problem stated in the previous section, where
we are interested in uniform quantizer, we can see that one approach
to solve the problem is to use equation(2.10) and for different kinds
of input signals, the autocorrelation and the power spectrum of

quantization noise can be calculated. However in view of the complexity

«13=



of equations(2,10) and (2.11). it is anticineted that numerica’ methods
have to be used, in which case, we feel that an exnarimental annroach

would be much simnler, Since snoctral analvsis can he nerfarmed ouickly
and ecennmicallv by the comnuter, using the Fast Fourier transform (FFT)

algnrithm, the whnla svstem was simulated on the comnuter,

Y.



ITI, DESCRIPTION OF COMPUTER SIMULATION

In this section we shall describe the various aspects of the
computer simulation as shown in finure 2: the neneration of input
signals, the quantizer and the Fourier transformer.

As it had been mentioned in Section I, the motivation for this
investigation is the measurement of harmonic contents in the output
nf an acoustir transducer for nurely sinusoida’l inputs. As enaineers
are constantly making the transfer function of the transducer more and
more linear which means less harmonic d1stortio€. rather than introducinn an
arbitrary amount of harmonic contents in the simulated acoustic sinnals,
we have restricted our study to quantizer input sinnals which have
nnly a sinagle frequency comnonent. However to simulate the actual
simals received by the measurina hvdronhone , which will be be
contaminated with ambiert noise, bandlimited white faussian notse
is also added to the pure sinusoid. Therefoare two kinds of sianals
were used as inputs tn the quantizer:pure sine wave, and fundamental
plus noise. The aeneration of a pure sinusnid can easily be done by the
computer but the aeneration of the noise is more comnlicated. (ne
anproach is to use an IBM scientific subroutine which aenerates
random numbers with an approximately Gaussian distributinn, Hewever
since we prefar better control over the npise spectrum, the noise
sirnal is first svnthesized in the frequency domain and then Fourier
transformed into time, The noise nower snectrum is chrser to be flat
and have handwidth of about half the samplina frenuency. The randorness
is introduced when the nower spectrum i< converted into a frequency
snectrum by choosing the phase annles of the different fraquency

¢omponents  from a random number aznarating subroutine with uniform

-15-



nrobabi1ity density function from zero to 2w, This synthesized noise
sianal has 63 frequency components and is shown in Appendix A to
approximate Gaussian noise verv well,

The innut noise power of the fundamental plus noise sianal is
chosen to be comparable to the noise nower due tn quantization,
because if the inout noise lavel is much hicher than that of the
Auantizing noise , then the innut rather than the quantizinn noise
wold nlace a Timitation on the accuracy of the harmonic measurements,

The quantization nrocess is quite similar to the truncation of
floating noint to fixad pnint numbers in the computer, However since
the computer truncates the absolute value of a number and then outs
back the sinn, for numbers which ranae from nerative to nnsitive, the
transfer characteristic of this truncation process has a step size at
zero output twice as larne as at any other level . To avoid this
nonuniform quantizina reaion, the subroutine which simulates a
quantizer first linearly translates all innut values to the nonsitive
domain, performs the truncation and then centers all values back
around zero,

The number of bits in a quantizer can he very larae, but with
the contraints of sianal- to-nnise ratines in the real world, a 12-bit
quantizer is quite adequate. Mnreover the entire dynamic range of the
quantizer is sometimes not utilized, so that the quantizer has effectively
an even smaller number of bits. For our purposes, we will use quantizer
sizes ranging from 3- to 12=hit, where the sian is also included,

In nractice to avoid saturation of the nuantizer the input amnlitude
is estimated a priori and the quantizer is only loaded half way by

the nredicted value. Similarlv in the simulation the quantizer is

-16-



Toaded half way by the amplitude of the fundamental component, and
the effect of small chanades in loadina (within one quantum step) is
also investigated,
The numerical counterpart of the continunus Fourier transform
is the discrete Fourier transform (DFT) operatinn on denumerably
infinite sets which can be interpreted as time and frequencv samples,
However since the computer can only work with finite data blocks, we
must assume that the continuous sianal 1s periodic and bandlimited
so that only a finite number of samples within a beriod is sufficient
tn describe the signal completely. The use of tie DFT to analyze signals
not satisfyina the abave assumntion would result in truncation and
aliasinn errors[12]. However since the sirnals used in the simulation
are both bandlimited and periodic (includina the noise), the noise
spectra generated are exact. The subroutine used to perform the
Fourier transform is a radix-2 fast Fourier transform(FFT) alaorithm.
The input sianal is put through the quantizer and the error,
which 1s the difference between input and output, is Fourier transformed.
Another subroutine converts the Fourier coefficients (complex) into
maanitude in dB referenced to the amplitude of the fundamental comnonent
and the peak harmonic error is searched. One final comment on the
simulation is that word size of the computer used in this experiment
was 32 bits, so that the roundoff (quantization) errors introduced
by the machine in comnutation wer2 neqlinible as compared to the

measured quantization noise for word sizes of 12 bits and less.
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IV. DISCUSSION OF TEST RESULTS

Throughout the simulation, a data block size of 128 points was used
and the dynamic range of the spectrum analyzer (FFT subroutine) was more
than 110dB, which also included the effect of the impurities of the sine
wave generation subroutine in the computer.

Single frequency signals of f,,3f,, 9f,, 15f,, 21f,, 33f, and 63f,
were used as inputs, where f, is equal to 1/128 of the sampling frequency.
The number of bits in the quantizer occupied by the input signal ranged
from 3 to 12, sign included, and the peak input ampaitudes were scaled
to equal the maximum quantizer output for the chosen number of bits
(full loading). To demonstrate the effect of slight changes in loading,
the quantizer was also down loaded to 20% of a quantum step from the
max{mum,

Figures 3 and 4 show the quantization noise spectra for input
frequency of f, and 3=, 6=, 9= and 12-bit quantizers. Since the inputs
were pure sfnusoids, the output noise spectra consisted of spectral
1ines which were odd harmonics of the input frequency (see equation
(2,11)). However for the purpose of comparison between different spectra,
in figures 3 and 4, straight 1ines were drawn between the spectral peaks,
neglecting all the even harmonics. The spectral density was plotted on
a dB scale referenced to the input amplitude.

From figures 3 and 4, we observe that the magnitudes of the spectral
14nes are very irregular, and only the 3=bit curve shows a decreasing
trend for increasing frequency. For the other curves the spectral
1ines have local maxima which are sometimes separated by less than
1dB. On the same curves, the effect of down loading by 20% of a

quantum step is also demonstrated. For a fixed number of bits,

-19-



we observe that a slinht change of loadina resulted in a completely
different quantization noise spectrum, Of most significance to this
thesis is the ebservation that the location of the highest spectral
1ine {| within the bandwidth of half the samnlinn frequency) is very
sensitive to the loadina of the quantizer and no apparent functional
relationship ran be observed,

It should be pointed out that althounmh the ratio of samplina
ty sinnal frequency was 128 in fioures 3 and 4, the effect of aliasing,
or the folding of the noise spectrum into a band;idth of half the
samnlino frequency, is unavoidable., Therefore the curves shown are
already results of interactions betw2en different. spectral lines,
reinforcements or cancellations dependinn the relative nhases. In
practice the samnlinq frequency is probably not even rationally related
to the innut frequency, so that there would not be any interaction.
Hovever as Rennett had observed, the spectrum of the unsampled noise
is very irreqular and decays very slowly, so that the probability of
having two strong spectral lines adding almost alnebraically to yield
a spectral linz higher than the true peak without aliasinn should be
small, Consequently as lona as we make the ratio of the samnling to
sional frequency rational rather than inteqra®, keepina the interaction
of the spectral lines to a minimum, our estimate of peak harmonic
distortion would be accurate, This hynothesis is observed to be true
in the invariancy of the maanitude of the peak harmonic distortion to
channes in the input frequency.

Table I shows both the location and the magnitude of the
ohserved neak spectral lines in the quantization noise snectra for

different combinations of input frequency and number of bits. First

-?=



we observe that the magnitude of the peak distortion is independent of
the input frequency, for number of bits ranging from 3 to 8, and for
larger number of bits, the separation is as much as 2.5dB for different
input frequencies. Next we cbserve that although the location of the
peak harmonic distortion is unpredictable as a function of the number
of bits, the location for the different input frequencies can be
calculated from the one at f, by multiplying by the appropriate ratio
and modulo 128 reduction., For example in the '6=bit' column of Table Ib,
the location for M=3 can be obtained by k27x3)modf128ﬂ = |81 mod 128
247, Similarly for M=9, k47x3]mod 128ﬂ = |141 mod 128| = 13, and M=15
|(47x5)mod 128| = |235 mod 128| = 21. The reason for taking the absolute
value is that we are only observing in the bandwidth between 0 and 64f .
The exception to the stated rule is in the '12-bit' column of Table Ib.

The reason for the two observed phenomena of regularity can easily
be explained based on the assumption that the location and magnitude of
the peak harmonic distortion are almost unaffected by sampling. We recall
that the quantizer is a nonlinear device which means the output is
dependent on the input amplitude, but it 1s also frequency independent.
Therefore for the same degree of loading by different pure sinusoids,
without sampling the quantization noise spectra are identical except
for a scale factor in frequency, i.e. the magnitude and the harmonic
number of the largest spectral 1ine are identical. Assuming 1ittle
interaction between spectral 1ines, the largest spectral line will remain
to be the maximum, and the effect of sampling is only to bring the line
into the basic bandwidth., As a result the location can easily be

calculated. The exceptions for larger number of bits can be attributed



to the slower decay of the quantization noise spectrum, 1.e. the noise
becomes less correlated, resulting in a wider bandwidth.

The most significant result of this thesis is observed when the
peak harmonic distortion 1s plotted as a function of number of bits
in figure 5 for input frequency of 3f,. The experimental data can be
fitted very well with a straight line of slope -6dB per bit, Table II
tabulates the wideband quantization noise power and the results for 3f
are plotted in figure 6 along with the theoretical noise power for white
noise input (d*/12). The fit of total power data b; a -6dB/bit line can
be expected by reasoning that by throwing away one bit, the available
voltage aperture is halved and therefore the noise power will effectively
increase by 6dB., However there is no apparent reason for the peak
harmonic distortion to fall off approximately at -6dB/bit, especially
considering the randomness of the location of the peak. This result is
significant because 1t gives a simple relationship between the peak
harmonic distortion and the average spectral density (a difference of
about 4dB), which 1s independent of frequency and the size of the
quantizer., It should be noted that in order to obtain the spectral
density from figure 6, it is necessary to subtract the bandwidth.

For the inputs of pure sinusoid plus noise, the noise power had
been chosen to be comparable to the quantization noise power due to the
sinusoid alone. For a specific set of noise samples used in the computer
simulation, a phenomenon as illustrated in figure 7 is observed. In other
words the effect of introducing input noise is a reduction of the peak
distortion with respect to the average quantization power, a smoothing

effect. The crossover point is around NL/N%-1.where N; and N% are the

=22a=



input and quantization noise powers repectively. This phenomenon can be
expected because as the root-mean-square value of the input noise becomes
comparable to quantum step size, the relationship between the quantization
noise and the input sinusoid is masked and no particular harmonic can

be expected to dominate the output nofse spectra.

Since in any simulation of a probabilistic system, it is necessary
to determine the variance of the measured parameters, power spectra in
this case, which are only estiimates of the true values, we ran the
simulation several times with different sets of noise samples. The output
noise spectra were quite different and the increase of block size to
512 did not result in any sign of convergence to one another. Consequently
the noise generating mechanism was investigated in greater details and
we discovered that the proposed synthesized noise signal is ergodic only
up to the second moment, as shown in Appendix B, This means that the
third and higher statistical characteristics of the time-samples
generated are dependent on the specific set of phase angles chosen and
do not agree with one another. Since the variance of the estimate of the
autocorrelation function (power spectra) is dependent on the fourth
moment of the noise, our observation about the quantization noise
spectra for pure sinusoid plus bandlimited white Gaussian noise cannot

be generalized,

=23



U0 13403340 J}UOWMRH Yedqd JO apnjjubey °*e] alqel

gzl /fousnbauy Bul|dwes = J4030Ry UO}IRZ}|RWMOU AOUBNDAL Iy

90°'68- [9°8L- [0°lL- Sv°99- tv°LS- 6¥°2G- 2ZL°9p- [£°8E- 60°EE- [L0°92- €9
26°€8- 9E°9/- €8'0L- ©L°99- S¥°LS- 1G'2S- 2ZL°9p- L£°8E- 60°EE- L0°92- €€
06°28- #9°9/- 98°0L- 69°99- 9v°L[S- 16°25- <ZL°9v- [E°8E- 60°EE- L0°9¢- ¥/
€G°€8= L1°9/- [6°69- 6G/°99- SGb'LG- 0§°25- ¢L°9v- [£°8E- 60°EE- L0°92- Gl
ZL'€8- 6E£°GL- GL°69- [0°99- 9¥°L[G- 16°25- 2L°9b- [LE'8E- 60°CE- L0°9¢- 6
€9°28- €£°'G/- 91°69- +0°99- 9p°LG- 16°2G- ZL'9y- [E°8E- 60°tE- L0°92- €
69°28- ¥E°GL- 9L°69- G0'99- 9¥°LG- 16°2G- 2ZL°9v- [E°8E- 60°€E- L0°92- L
xAouanbady
andug
l LL oL 6 8 L 9 g b € (ep)

5118
40 o\

uol3J4o3sia
JjucuwJRH jead
40 9pn3 Lubej




U0 3403540 djuowdey yead 40 Adudnbauy °qr aiqey

g2L/Adusnbauaj Hujjduwes = 403004 UO|IRZ || eUMOU AUdNDAL L,

Lt S5 14 6f €2 4 LE 14 14 Ly €9
15 87 L S S5 Lt S L L 6t €e
€9 L9 LS Ll Gt L G5 LS LS L2 ¥4
St 62 SS L9 S¢ S 4 6S SS L |
L2 (X% €e 6% 1| € £l X 2 14 6
X LS L 65 S L Ly L {1 (s €
SE 6l 6¢€ €2 Ly e Lz 6€ 6¢ Ll L
sAouanbauy
jnduj
2l Lt oL 6 8 L 9 S 1 €

Uo 3403540
djuowdeH jyeaqd
30 Aduanbauyg

s1i8
30 °ON

@28s



J3M04 BS|ON UOj3eZl3uURNY |B3O0L °*II @|qel

82L/Aoudnbauy buj|dwes = 403084 uojjezjjeuwuou Kouanbadjx

18°9L= ¢v°lL= LE°S9- 1€£°09- 89'25~ 62°Lp- 20°Lv=- Lb°vE- LE€°82- 66°02- €9
9L°9L- SE'LL- O0E'S9~ LE'09- §9°2G= 62°Lv- (O0°Ly- Lb°vE- LE°B2- 66°02- X
bL*9L= 9E°LL- 9€°G9- O0E€°09- 99°2S- 62°Lb= LO0°Ly= (L¥'vE- 1£°82- 66°02- Le
9L°9/= GE'lL- VE°S9- €£°09- 99°2S- OE°Lt- LO°Lv- (Lb°vE- LE°82- 66°02- 11
22'9L= 2E°lL= 6GE°G9- l€°09= 99°25- OE°Lt=- LO°Llb- Lb°pE- 1€°82- 66°02- 6
L2°9L= GE°lL= GE°G9- 2€°09= 99°2S- OE°Lv- LO°Lv- Lbt'vE- LE'B2- 66°02- €
0€°9L- GE°LL~ GE'G9= 2€°09- 99°25- O0e°Lv- (O°Ly= (Lb'vE- (£°82- 66°02- L
£Aouanbaug
Induj
cl Lt oL 6 8 L 9 G 14 €

s3i8

J0 ‘oN

Leyol

-26-



F{'?ure 3

Freguency (Sampling Rate //128)

i T rm T r .
T ™7 SayEeEjaRasIsEeb saTby AL T 3| =2 ssa RN RRRRs EEn e T HH
H i st 1 HHH 0 .
m : ; _
1 .
f 13 ; 1 a
b H 5
RlEIEss H ) B i
aman I8 I
i ]
1 iy T . T H 1 5s
jul HE A EEFRESRSES SR | H 1
" I pags 8 {1
] R s jainkeasn 1 HEE T RESR
i : H I : , g5Ess adsassepnidtte] AR AECat
t
T
1 I THH o 1 T
t 1 = I 15 H - : HT 1 rH
+ ] T 1 T [ T 1] 1
b EiB n_ﬁmwr A o i
i " H T HH HH- = P H
¥ i m u u 1 e I T
=t il ] T T 1 BV SEY . T
5 51 SR H 83358 H i ssbosaaas
H r H
£ as ! aaA 1 L T sans
us AT 8 T 2 § ua HH
7 i : Hig : ! ;
: H HH 1 H 1 es
| T ] »
1 o e T “,f + “ - 1 H1 ¥ .
1 t us i r ]
T - .
T - T 1 vu pw—ma 1 T 3 luﬁ._.
H I 1 = ﬂu RS 8 ¥ T 1+
HH T a8 1 1 ] ! i + :
s 1 . { T .
= N £ T !
it w EH IS |
+ - T Ju s 1
! I i ; T
H ] I T T =
n HH B “ 4 - 3
=1t
= 1 It T
HH 13H ; 7
= : ; T
I 1] b
I I 8 T T I
113 T T 1
H : ;
e
T B T e H
] H ks ii
H I
" T T
1 ] HH +
1 . , T T - 1
H # = 1 I
mung yaaa
0 B ; :
= ;2nsas 1 :
+ . - o -
1 I T
T 1 H
1 I 1 T
s e + :
T t T pay e T
T 3 T T I s ¥ EgnEE i
HH maE ) i
1 ; . ! . HH
HH T h o HRE HH
1rid T | == v_
! [l I 1 fRaa
T : . han ) IT T 1 _||n_
1 s M - = L ! : . 1
T T e HH
I 1 HHEHE fhans
i e fuann
s 1 £F = 1 -
= Lt [EE! T
ﬂ : BT s e aie it £
; il
t
- r f t
I T
. . t| » -
H T H
naiy T, :
H ﬁ tFR FEA RN
o H
mruna B ans 1
et e ! : ak
T
I 1 +H
PR w I HHG Siogr i
gas E e T T
_ I i “
t e 4 1 1 b
- 1
T I s T
1t 1 T
{ 1
z pmm !
7T
I =
8 T £ -
i & | ¢
Ghs e H 14
f 4 rtt i




T I T 4 T 14 | -
TT in RRagas! EEaaanE t H T T
T T 1 .l s 1 T T ' T i
¥ T I T L T
i B
e
T
1 1 i
mammmas T T
i N v - T
x FEET 1 msmEwE
L EY -
.. 'H T Tr RS TR RS H- HH
H- T —HHH TF Th 1
1 4 ] T ERANEE
B ama i 1
i | e
HRET Empas s H Hinor mnan
[n. - H N
T u
T
T i T sum T T
T 3 1 T ] T
Y ¥ i WRSERN L
u i | i
nn “eddh T prmsacy 5 _ P T
. T ¥ o THT mam - ;8 8! Iy g
= 5 . =Y A
{ m H J -
sEadbn e H F ] I t RO 1 1 mmaRE
uEN T 1 1 1 1 1 T ,ﬁ
. ] 1 1 I mrrt 1 1
11 I " " gus T I
3 fue ypanEEy T Fr
. i . 4] SEENEENRENEESS T 1 ] T
& + = : RSt i _
T 1T ! T u T T T
s L~ jmans TaT ! ! 11
13 R m 1
vE mrne T " T 1
T} mi + : ; o T
T\\\Aw ”u I 1 I N
o= Setss
HfE 5s fies ! f H1 s tHH
R ” b | b 1 I
HH Anmen m T n ¢
a H T T i
P w ! I s bnsapen T T 1 : 1
s . ] I
HH ,, o M 1 1 F t
m } T i T T
HH mm T 1 . -ﬁ_[.‘ >
H ! og aaal 1 HHH
H 3 md s ] H L e
H T = T aani miagual wu T HH
: : £ f S ataseal 151 e : 5% a H
1 T T T
I 1 T 1 }
! 1 54 snbE H P 1
1 nﬂ. e
L 1 =T T ¥
I T I T X T HEHTE u
T e m = T T
[ - T 1 T |
+ H T T e
t T T SRUNE SNRNN I I nasd
) ' 3 ¢ BESS
++ { T a 1 ] 1
In T 1 7 1
- T 1
asashinag T maan
san™ 7 r T T
I - L=
e I TTTh
T Z aup 1]
4 Bgns HHH H Fo
T snEan
- R
1 i T B ] ag i T 1 "
H
ro mun gl n. SEEE H
H T
I L
" ' T 1 1
I T 1T
- SEen i ; TR M
H e 17 i dn 4
3 Pl ’ 3 1
I 13 u gung PR 2338 I am
14 T - -~ S H ¥ *
at T ...W. 1 H ] 1
+ t T LT o :
5 ; Al jaagae N LEEIRE A b
I et L 1
<] R L
[T 7 T aphd s i
T T Eais ¥ T T
T i T - e
I -t
! s ] !
=~ EEss jEassa 1 T Euwn
F i s s 1 et 1
H py Sy by | 1 t . o B T
W I'tl Icl.l,n 1 L 11 T ﬂ Al L1 al i [1T1
M b |”E T T T 1 i RS
T tHo o i HTH HEHH Hi % i ]

(gp)

B

suad] \Okkvwnu\m,

fj?une:i

-2-

| (Sam ling| Rofe/}’Za)

F?E%uenqy



B T ymy T T T T TTF H T
u T 18 + T 1
T PHAHLE 1] + B ¥ } 7 T 1
1 T.Lll 1 I
Pt T HH T L
b T T e . 1 Y
T "
T T i !
HH i ! ins
" 1 1
t I o 4 “
1 1 T 1= i
T H
1 } T THHE t H ]
i i I T T
; I SR }
1 I
I
AT t T T
H T
T a2
T T
I ! u " T
1
_ HHH
14 1
-
e - 1 T
i T
T jar 2 b1 I RaEm=rhismis
1 1 a8 T t t 1
2 s T TS | _
10T s T TT 2
TH- I T T | T
] H ; SR TR
aEAE in 8 . } AT
| H 1
u T I T I T
T T T 1 N}
T T T T 3 T T
; e | ] il j T
” 1 L e T 1 }- * I
s F - 1
I8 T o 1 T +
I " 1 1 T
- 1
1H + ¥
hS { i T
1 = Sausm
1 4
) ] ; ; £t
T r n
i ! y
T T = . uas
T
5 28]
" s
=
H T I
T T T
T 1T
ey t
F 7
T : I
T ” +
T + T t
- — l I 1 1
+ T 1 [
samN i3 T 1 1
7 T T
I 8 + i
I T i 1 "
H o : : ] i
T b ui T T yupl
i | 1
{ t
! 1 - r mEs
T i 1
— 1 + I T
: ;
- T
;
T i 1
T T ¥ |
unER { i3 b2 1 I :
'y s T I H -
I L 1 I
1 T + E3E
T
H 1
]
o ] H H
1 Jfasass
: t T e
rl
T : T
T i
1 I
i
i
i
| +
' I
JE RS auSa! ¥ o T T
i t I
t i T man akas an
b T T BN b
T IIT 1 + IT
i suni I Bun uns

F:'glure 5



T T T T T TTT
I T I : FE T = T 1 + T T 1T 1
1 " T 14 T 1 T T 1T
! T + , I I 25! ga
FH T g ! t + ¥ u = :E " THH! .
E - » R o J\H T I n H——-
T T 1
¢ -
rus T 1 I pEs gRAn an:
" T T T T i T H
FEERBES L 1 pragenan
i " & 1
i H
_ HHE s e fE i ;
SEsa i HH fdes HiaH
e :
H [ 1 +
T ¥
- || T T i §
HH H HIH T H HH mEa 3
+ § I H{ 1
HHH ¥ F 7 I
11 1 F H + % +
e
s ] sam ! -
Ht it =t 198 naEE 5 e ! = 8 SEaa
99 g nd I - + H Ll sam
T ie 1aaan T T 2 e
* 1 H t 1
143 1 t
T T
1 T
HH 1 H « : !
AEEEN 1 1 1 b+ oy : “
+ ans t
b +
T 1 1 t + __ i
: > iEaussana! o i
t f 1 T T ! ! " 3 :
T ;
T EEE T T
HE Seiescaif ast dxset e B E R D -+ S3E31 seabiSEoen HEdspRad: Ry Sists
¥ 1Tt + T L 1 P R T 3 T +
ABREE VN P :m . T "t 1 T 12 |0 B T
HT : T T t 2 T I f
P B = S | ¥
35eest Tarhie i iH e s w
H 1 T ; Tyl T B T T F_T. H InE o H 2 e s
I 1 T 1 1 1 ™ 1
T T . t | nNma i H 1
1] . 3 + -
T - ' T t T
n 1 1 ¥ Ea
g T T T sENEN
: HiT TR _ 3
| — H al » . M T N
1 T ol 4 m I munn
T T 1 ] *
1 e
¥ S T EaRESE JATARERE
s T w11
ar r r T Tt T T T u
T 1 i T - T T
I - . r il 1
+ T T 1 T
1 puEaN RS Bui
T+ t
: i , ! ! ]
T - e ian
sgusgs nSgEE z 1 5 su8 u Rpae
1 T e
11 T 1 ¥ 111l
- T T
Lot : i 11~
T B [T
T H e
T I | mBE H - 3 [y~
: I " I ;
1 L 1
e ow T T 1
T H T T !
T T T
i b3 bt N
+ T ! 3 0 b T
- _ T h } R i
a Ha L .
T
4 f t EuR EmaEwE B
Tt t
s : : ; :
T T T mas
1 L 1
-1 o T 1 T
T I t 1 HiHHHH 1 1
et T 1 1 T } : '
T _ " T T |
e ¥ + 4 z -
T T
: H 1! S SE Ny aRaEg r e 8s - HT BeE I
" punm T mmaa i
- = ¥ 1T
il | . 1 T
n T ]
i ¢ 1
o T H+H 1 T
= I 1 I T
I M 1 I 3
H 7 . Il 1 T T T
Bansas = T T T T T 1 3 i " I T
" e . ] T TTiEH 3 s e
: v u o . 8 L :
— + t + X s
HT ! HH HPTHET I3 T:w § 2 : " B w fm
+- w + T Ll I T I ] 1 1
P SEsiaee seasssasaatesy S H : HETH : ; i T

F/_'gure 6

«30-



Rate of Peak To Average ‘f;f*c»c?m{ Den-.;i\'\j

Peak Harmonic Disfertion vs Input Noise Bwer

448 4+
0dB+
° ! Ni/ﬂ%
Figure 7.

e



V. CONCLUSION

In this thesis the quantization noise spectra for single frequency
inputs were investigated in terms of the maximum spectral line. We found
that the peak harmonic distortion follows a =6dB/bit curve and is about
4dB above the average noise spectral density, regardless of the number of

bits in the quantizer and the sampling frequency.
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Appendix A, APPROXIMATION TO GAUSSIAN NOISE

In this section we shall demonstrate how well a synthesized signal
which consists of 63 statistically independent frequency components
with uniformly random phases, approximates bandlimited white Gaussian
noise in terms of the initial moments of the two random variables,

The synthesized signail can be written as:

63 6
X = ZA sin(nwst+d,) =ixn (A7)

n=| n=|\

where A is a constant and ¢,s are statistically independent phases

uniformly distributed between 0 and 2w, Since x is a finite sum of cosine

waves with identical amplitude, the sianal has a flat bandlimited spectrum.,
The central moments of x can be computed from either the probability

density function (pdf) of x or its characteristic function which is the

Fourier transform of the odf. However since x is the sum of 63 independent

random variables, the characteristic function is simply the product of

the individual characteristic functions., Therefore the central moments

of x will be determined by sucessively differentiating the characteristic

function,

The characteristic function of x, is given by:
6alv) = pxplivxaly= | |explivAsin(nwit+d)] p(¢l) do

substituting in p(d ) = 1/27W for 0<P < T, which is the pdf of §,

2
Gn(v) = (1/2m) f exp[ivA sin(nwt+4)] d¢f

=33~



nwet+2n
Galv) = (1/2M) exp[jvA sin(u)] du u=n wet+ P

nut

= Jg(VvA) (A.2)

where J,(z) 1s the Bessel function of the first kind and zeroth order.
Notice that equation (A.2) is independent of n and t. Itl follows that

the characteristic function of x is aiven by
63
6(v) = T Gu(v)
=g
- 63
= [Jo(vA)] (A.3)
and the k=th initial moment of x is
me = 376 (0) (A.4)

For our purposes, we shall evaluate my for k=1,2,..6, and to avoid any
confusion of theswerscript for derivatives and powers we shall denote

the n=th derivative of Jo(vA) as Jn.

V=0
m, = -3 63 Jo°J,
m, = =63(620% 4% + J524,)
my = 363(62-61 Jo u® + 62 J°'+3 3,0, + 95°0,)
59 4

m, = 63(62-61-60 J5°J; + 62:61 Jo*6 JiJ, + 62 J5'+3 I3 + 62 J5-4 J,J3+d500, )

a3



mg = -363(62-61-60-59 J5°J° + 62-61.60 J3%10 29, + 62.61 J5°(15 J, &2
$10 J'J,) + 62 ;' (10 3,0, + 5 J,9,) + 95°0,)

m = -63(62:61-60+59-58 J; J° + 62-61:60-59 J;°15 J*J, + 62-61.60 J.°
(45 9205 + 20 070,) + 62.61 J° (15 J} + 60 J, 3,0, + 15 32J,)
+ 62 05 (1005 + 15 3,0, + 6 J,d5) + J5°4,)

determine the J.'s, the series expansion of J,(z) will be used.

jo; -1y zf"
‘Jo(z) = 22n (h |)2

=1 - 2/84 + 2%/64 - 2°/2308 + ... (A.5)

Jo = Jo{(Av) = ]

V=0

(=AZv/2 + A*v16 - A°v5/384 +...) =0

[N
"

¥=0

= -A*/2

v=0

(-A%/2 + 3 A*v2/16 - 5 A°v*/384 + ,..)

Cs
M
[ ]

(3 Klv/8 - 5 A°v3/96 + ...)

Cs
w
']

V=0

= 3A%/8

V=0

(3A%/8 - 5 Av3/32 + ...)

(A
Iy
u

(=5 A°V/NN6 + ...)

[
[
u

v=0

(-5 A°M6 + ...) = -5A%/16

[
o
u

V=0



Substituting the J,'s into the m,'s, we obtain

3
[}
o

63 A%/2

3
n
[]

m, = 0

m, = 3-63°(A%/2)° (1 - 1/126)

m, = 5.3-63 (A%/2) (1 - 5/(6(63%))
The central moments of the Gaussian distribution are given by
m{, = T(2k-1)1!, mj,, =0 (A.6)

where @2 {s the variance, and k!! = 1-3-5-++k, for odd k.

Evauating equation (A.6) for k=1,2,3, we obtain



Me= 0

m, = 5:3¢°

Since the variance of the sum of N independent random variables is

the sum of the individual variances,
o?a 63 A%/R.

Comparing the two sets, {my} and {m;}. we find that there. are
discrepancies only for k=4 and 6, and these are 0,0079 and 0,0002}
respectively.

Consequently we can conclude that the synthesized noise sianal
used for the computer simulation is a good approximation to band-

1imited white, Gaussian noise.
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Appendix B. ERGODICITY OF SYNTHESIZED NOISE

In this section we shall demonstrate that the sgnthesized noise

signal as given by equation (A.1) is ergodic only up to the second moment.

The sional can be expressed as:

43
x(t) = Az sin(nuw.t + ¢,)

Ne|

Six initial moments have been calculated in appendix A by ensemble

averaqing, and we shall repeat the calculation by time averaaing,

<
m, = x{4) = (1/T)j x(t) dt where T = 2T/w,
:3 Al
= (A/T)Z fsin(nunt + &,) dt
=0 (8.1)

m, = x*(t) = (1/T)f x=(t) dt

63 63 [
= (AZ/IT)§§ sin(mwe,t + &) sin(nwt +¢,) dt
:5 63_ °_‘_
= (A%/2T) J[cos([m-n]wat+¢m-¢n) = cos ([mnJwot+dmtd,)] dt

63 T

a (A2/2T)chos([n-n]wat+d‘,\-¢n) dt - 0

N=\ -

2 63 (A*/R) (8.2)

=3B



o= X (t) = (mr)f x3(t) dt

63
(As/TJ zzﬁnumwg sin(mwa+d,) sin(nwet+da) dt
1=v m=1 n=y

63 63

(AS/ZTizg:zg:zgijlin(1wot+¢§)[cos[m-n]umt+$m-¢m) - cos([mnJwet+ .+ 0,] dt

-1 mzy n=

63 63 63

(A3/4T§§§ [[sin([1+m-n]wot+¢ﬁ+¢m-$r)

f=1 M= Nz Jo

sin([]-m-!-n]wat'l-i’f "¢' +¢n)
= sin([lemen]wot+d, = 4, =3,)
= sin([1+mn]wt+d +4,42,.)] dt

(A /4) [§§sin(-¢,+¢ +32) +§Zs.1n(cf;t TR

=2 mn m=2 f{,n
2 " {+nzvn

§§smu+¢ -4,) - 0]

f—*-w' v

(3A3/4)ZZS'M( +d4d,) (.3)
=2 mn

VItdys = {

Comparing the three "“time" moments to those calculated in Appendix A,
we see that the first two aaree, but the third moment aiven by equation (B.3)
is dependent on the specific set of phase annles and its value is certainly
not zero in all cases, Similarly we can induce that all the hinher “"time"
moments are functions of the phase annles and they do not necessarily aaree
with the ensemble moments. Consequently we can conclude that the synthesized
noise signal used in this thesis is not ergodic for moments hiaher than the
second, so the computer aenerated noise samples do not have consistent

statistical properties.
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