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ABSTRACT 

Evaluation of mottle is an area of on-going research in print quality assessment. We 

propose an unsupervised evaluation technique and a metric that measures mottle in a 

hard-copy laser print. The proposed algorithm uses a scanned image to quantify the low 

frequency variation or mottle in what is supposed to be a uniform field. ‘Banding’ and 

‘Streaking’ effects are explicitly ignored and the proposed algorithm scales the test 

targets from “Flat print” (Good) to “Noisy print” (Bad) based on mottle only. The 

evaluation procedure is modeled as feature computation in different combinations of 

spatial, frequency and wavelet domains.  

The model is primarily independent of the nature of the input test target, i.e. whether 

it is chromatic or achromatic. The algorithm adapts accordingly and provides a mottle 

metric for any test target. The evaluation process is done using three major modules: (1) 

Pre-processing Stage, which includes acquisition of the test target and preparing it for 

processing; (2) Spatio-frequency Parameter Estimation where different features 

characterizing mottle are calculated in spatial and frequency domains; (3) Invalid Feature 

Removal Stage, where the invalid or insignificant features (in context to mottle) are 

eliminated and the dataset is ranked relatively. 

The algorithm was demonstrated successfully on a collection of 60 K-Only printed 

images spread over 2 datasets printed on 3 different faulty printers and 4 different media 

Also, it was tested on 5 color targets for the color version of the algorithm printed using 2 

different printers and 5 different media, provided by Hewlett Packard Company.  
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Chapter 1: Introduction 
 
 
 

Print mottle is a common defect occurring in the printing industry. It is mostly 

associated with printing on paper, but can be observed on all printed surfaces, whether 

porous, like paper, or solid. This thesis addresses a class of defects known as mottle. 

Perceptually, mottle is defined as perceived non-homogeneities in the print due to 

unintentional variations in the lightness of the printed surface when it is viewed under 

homogenous illumination. Objectively, mottle is a laterally varying reflectance in 

homogenous tone areas that expresses itself as stochastic blobs or cloudiness or 

sometimes graininess-type patterns.   

The characterization and evaluation of print mottle is a crucial step in the assessment 

of the printing quality of papers and boards. This assessment is however a subjective 

phenomenon and is usually evaluated by a set of independent observers. For practical 

purposes, it is nevertheless desirable to have a reliable way of establishing a mottle index 

through mathematical image analysis of the digitized printed samples. This allows the 

paper maker to compare different types of furnish, coating layer, operating conditions 

etc., and to analyze their relative importance in the formation of print mottles. It is then of 

course imperative that the mathematical discretization and evaluation of mottle correlates 

well with the visual ranking of the same samples by a group of observers. 

1.1. Motivation 

Measurement of print quality is essential in many applications such as development of 

print-defect detection algorithms and photographic printing. It is imperative for print 
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engines in use today to meet stable image quality requirements as evaluated by various 

metrics. The current marketplace demands the best image quality at competitive costs 

with minimum downtime. Hence, the ability for print engine vendors to efficiently 

achieve the highest levels of quality will ensure them a leadership role in the printing 

industry.  

Ordinarily, these measurements are made by a Print Quality Expert (PQE) using 

various psychometric techniques and methods. Unsupervised measurement of print 

quality is a topic widely being worked upon by most scientists in this field and has 

yielded impressive results. The characterization and evaluation of print mottle is an 

important step in assessment of print quality and is also the parameter of a hard copy 

print. Even though print engines are thoroughly tested during the manufacturing process, 

occurrence of mottle remains inevitable usually due to the uneven ink lay or non-uniform 

ink absorption across the paper surface, especially visible in mid-tone imagery or areas of 

uniform color such as solids and continuous-tone screen builds. 

Many evaluation models have been proposed for assessment of print quality in the 

past. Initial approaches include band-pass analysis, texture analysis, and measurement of 

specific perimeter and coefficient of variation. Some of the most common structural 

artifacts are banding, streaking, mottle, Debris-Centered Deletion (DCD) and debris 

missing DCD’s as seen in electro-photographic (EP) engines [1]. ISO-13660 [2] is the 

first international standard to incorporate a wide range of print quality attributes. ISO 

13660 and ISO 19751 [3, 4] define standards and measurement procedures for some basic 

print quality attributes and artifacts such as streaks, banding, mottle, color rendition, text 

and line quality, and gloss. Applications and limitations of the ISO-13660 are discussed 
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in [5, 6, 7, and 8]. Every printing technology has different print quality characteristics [9] 

and different print artifacts. 

Johansson [10] proposed a method based upon the spatial wavelength analysis and 

named it as Band Pass Analysis (BPA). A modified coefficient of variation highlighting 

the effect of mean reflectance on print mottle was proposed by Fahlcrantz et al. [11]. The 

authors claim the method proposed in [10] overestimates the mottle in dark prints but 

underestimates the lighter ones. Based on theoretical evidence and empirical testing, 

authors in [11] propose a square-root dependency of perceived luminance level on 

physical luminance level instead of the original cube-root relation in the CIELAB 

equation [11]. Moving to evaluation of systematic print mottle, Fahlcrantz [12] proposed 

a model to evaluate variations that were systematic in nature. The model considered the 

variation between wavelengths of 0.25 and 16 mm and used a Contrast Sensitivity 

Function (CSF) of the HVS (Human Visual System) in form of a weighting vector to 

adjust variation in sensitivities at different frequencies. This model lacked the ability to 

perform a local analysis of printed area, and was also sensitive to half-tone screening 

defects due to its sensitivity to high frequencies. 

All the above methods are also compared by Fahlcrantz et al. [13].  They 

conceptually examine and compare different techniques including ISO/IEC 13660 to 

postulate all aspects governing visual print-quality assessment and also question the need 

of a model-dependent ISO standard with emphasis laid upon whether ISO 13660 is a 

complete standard or not. ISO 13660 being based on density variations divides the 

evaluation model into two measurements – Graininess and Mottle, based on crude-band 

pass partitioning where higher frequencies correspond to the former and lower 
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frequencies correspond to the latter, the partition threshold is set at 0.4 cycles/mm (~10 

cycles/inch ).  

More recently proposed color mottle evaluation metric [14, 15] is based on prior work 

done in the grayscale domain. However, the evaluation of color mottle is done by 

assuming conditional independence of channel information. In this thesis, we evaluate 

mottle in test targets printed using K component only in CMYK printers.  

Techniques based on multi-scale and multi-resolution analysis have long been in 

existence in reference to print quality. Eid et al. [16] utilized a combination of the 

Discrete Wavelet Transform (DWT) and the ISO/IEC 13660. The results of this 

technique prove to be a lot better than those of ISO/IEC 13660. Another approach 

proposed by Donohue et al. [17] examines the wavelet analysis exploiting its localized 

spatio-frequency properties for characterizing defects of limited spatial support. 

Current printing environments utilize trained PQEs to visually inspect a subset of the 

output documents in order to ensure that customer hardcopies are free of defects such as 

mottle, banding and streaks that tend to hinder the efficient flow of business in print 

shops for instance. PQE are trained to spot these defects and render an initial 

classification. This process is generally prone to errors, high costs, time consuming, 

inherently variable and often subjective [18]. To minimize these problems, an automated 

mottle analysis system is essential for Quality Assurance (QA). Such a system will help 

the PQE to quickly and objectively locate and quantify mottle with the aid of a scanner 

and thereby select the proper diagnostic procedure in an automated fashion to render a 

corrective action as swiftly as possible. In addition, the system should be user friendly 

and designed for commercial use producing accurate results. Such an automated QA 
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system would prove invaluable for testing, calibrating, benchmarking, monitoring 

applications and optimizing service intervals.  

A number of automated mottle quantification systems have been proposed and are 

categorized into either reference QA systems, where a printed output is compared to a 

reference image to analyze image quality, or blind QA systems, where the quality of an 

image is analyzed without a reference image [19]. In [20], a device independent reference 

QA system was developed to analyze the print quality produced by any printing 

technology. Many device dependent reference QA systems [21-23] are designed for a 

specific printer or a specific ink type in the past. Most of them were laboratory systems 

used only in development and research studies or requires special hardware. Also, 

Streckel et al [24] proposed an objective print quality assessment system to measure 

density variations and print artifacts like mottle, granularity, streaks, banding, and 

satellites. A flatbed scanner is used to capture hardcopies of a flat test target. This system 

is only limited to test patterns and used for comparing print fidelity between different 

printing machines and technologies.  

1.2. Contributions 

The main goal throughout the work has been to present a general objective model that 

can measure print mottle in a way that corresponds well with the way in which it is 

perceived by human observers. A solid print is usually composed of several zones of 

lighter or darker areas around a certain mean where the size and the orientation of these 

zones are random.  

An outline of the proposed algorithm primarily consisting of 3 modules is shown in 

Fig. 1. The first module (M1) is known as the pre-processing module and is responsible 
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for preparing the input image for feature calculation. We make use of a multi-resolution 

approach (dyadic wavelets based) to generate a de-noised perceptual approximation from 

the input image and further process this image in the spatial and frequency domain 

separately, resulting in several features characterizing mottle. In the case of colored test 

targets, we insert a Principal Component Analysis (PCA) phase to primarily find the 

principal component and provide it as the input image to the next module. The second 

module, spatio-frequency parameter estimation (M2) handles feature computation in 

both, spatial and frequency domains and provides the third module (M3) with an a priori 

dataset to sort and remove invalid features. An effective Invalid Feature Removal (IFR) 

technique facilitates the algorithm to result in a meaningful mottle number by removing 

the features which do not characterize the non-uniformity of test targets. Algorithm’s 

performance evaluation is done by comparing ranks of the final metric against each 

target’s visual scaling results, and a measure of performance is calculated in terms of 

correlation between the measured value and the visual scaling. 

In this thesis, a novel methodology is proposed, to quantify mottle for K-only hard-

copy prints and, associate a mottle number with each test target, known as the Spatio-

Frequency Mottle Metric or SFMM. The metric is divided in to two categories: (1) 

Relative SFMM - for several test targets evaluated and rank ordered with respect to each 

other; (2) Absolute SFMM – for a single test target randomly picked from a data set and 

evaluated independently. In our previous work [37], a method to only evaluate mottle on 

a relative scale using six spatial and frequency spectrum based features (ring mottle, 

spectral entropy, angular second moment, inverse difference moment, spatial entropy and 

SFDA feature proposed by Rosenberger [see 34]) was described. The method in [37] was 
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only validated on a set of 10 test targets. For the proposed algorithm, a new set of eleven 

features (including the aforementioned six features) is computed using gray level run-

length matrices (short run emphasis, long run emphasis, gray level non-uniformity, run 

length non-uniformity, and run percentage), explained in detail in Chapter 2. These 

features are further utilized to compute two different mottle numbers– ‘Relative SFMM’ 

and ‘Absolute SFMM’. The algorithm was tested on two different data sets – (1) a small 

data set of 10 targets and (2) a larger dataset of 50 test targets, produced from 

combinations of 3 different printers and 4 types of media. The algorithm is initiated in a 

pre-processing step (cropping and de-noising) followed by computation of the features 

mentioned above. Second, an insignificant feature removal module removes feature(s) 

which are non-significant of mottle across that particular set of test targets (data set 1 or 

2). The final set of features are added together to yield a single number (known as the 

SFMM) followed by rank ordering of these SFMM values on a relative scale by utilizing 

the ranking module in the algorithm. The above steps are explained in detail in Chapter 2. 

Another drawback seen in literature was the absence of an absolute objective mottle 

metric, that characterizes a single target alone and not on a relative scale of several test 

targets. For this purpose, a novel log-weighted absolute metric (Absolute SFMM) is 

proposed here (see Figure 1), also explained in Chapter 2. 

The importance of the current need for a stable and robust print quality model was 

presented hereby summarizing some of the benchmark work done in the past several 

years. Although, these techniques have shown significant improvements over their 

predecessors, there is still not a single standard in this field that is being used universally. 
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The proposed SFMM algorithm is designed for flat prints and not halftones giving a 

better representation of how much mottle was introduced by each printer on each media.  

Crop and 
Convert to 
Grayscale

Pre-processing 
Module

Spatio-Frequency 
Parameter Estimation

Relative Ranking & 
Insignificant Feature 

Removal 

Visual Scaling 

Relative 
MOTTLE 
METRIC

M1 M2

M3
Correlation 

based 
Evaluation Absolute 

MOTTLE 
METRIC

NORMALIZE 

LOG -WEIGHTS 
COMPUTED

830x830 Scanned 
Input (200 dpi)

Multiple test 
targets

 
Figure 1: Overview of the proposed algorithm, showing all modules and output of the 

algorithm. 

The detection of mottle is almost impossible in text areas and ‘busy’ real life images 

but it is clearly visible in ‘flatter’ areas of the image like skies or homogeneous 

background. Therefore, the proposed algorithm is validated on targets that are primarily 

flat or contain large homogeneous regions.  

Low Mottle High MottleMedium Mottle

 Figure 2: Overview of the test targets and the varying scale of mottle in them. 
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A few of the test targets after contrast enhancement are shown in Figure 2. Notice, 

that they are arranged in order of increasing amount of mottle.  

Further, in this thesis we propose an extension of the above work to evaluate color 

mottle by utilizing a computationally simplistic PCA-based approach. As there is a need 

for subjective evaluations of color test targets before reporting the method’s accuracy, we 

present five color test targets in a contrast enhanced manner along with their respective 

PCs for the reader to compare the objective evaluation with their own visual ranking.  

We present a case study to evaluate mottle in color samples printed using CMYK 

printing systems. The idea behind this analysis is implemented by inclusion of a PCA 

based module added to the existing SFMM algorithm. The samples used for the color 

mottle analysis is shown in Figure 3 below. 

Separate 
Color areas

ROI in each color

Evaluate mottle in 
each ROI and final 

mean value

Evaluate mottle in 
each ROI and final 

mean value

Evaluate mottle in 
each ROI and final 

mean value

SFMM for 
Blue

SFMM for 
Green

SFMM for 
Red

 
 
Figure 3: Evaluation methodology for the given design pattern of color print samples. 
There are in total 5 samples such as these on similar type of media. 

1.3. Thesis Organization 

The remainder of this thesis is organized as follows: Chapter 2 describes the 

acquisition and pre-processing of input images obtained from hard copy prints, outlines 
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the spatio-frequency parameter estimation process and introduces the insignificant feature 

removal process. Chapter 3 presents the new method for evaluation of mottle in color 

hard copy prints.  All results are presented and discussed in Chapter 4. Finally, 

conclusions are drawn in Chapter 5. 
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Chapter 2: Theoretical Development 
 
 

 

This chapter is presented in 6 subsections: Image Acquisition, Image Pre-processing, 

Spatio-frequency Parameter Estimation, Ranking Algorithm, Insignificant Feature 

Removal and conclusively the computation procedures of ‘Relative SFMM and ‘Absolute 

SFMM’. It is imperative to know that the theories explained in this chapter have laid the 

foundation for this work and are the fundamental steps to compute the mottle metric 

known as the SFMM. 

 
2.1. Image Acquisition 

Since, the objective of this work is to develop a device independent QA system, all the 

input images need to be calibrated post-acquisition due to the artifacts introduced due to 

the image capture system, in this, a scanner. This calibration can be done in two ways: (1) 

matrix transformations using color CIELAB color space or (2) by using scanners that 

perform the calibration right after the lamps acquire the image and right before it is 

converted into a software-readable format like TIFF or BMP. 

Each test page consists of two targets - (1) K (black) only and (2) Process Neutral, 

scanned at 200 dpi. The scanner used is HP Scanjet G4010 controlled by a ‘back-door’ 

code to set parameters of the scanner. Each test target is acquired twice, once with all 6 

lamps active and subsequently with two green lamps active. Note that, the green lamp is 

the most sensitive to non-uniformities in luminance values. This advantage of the scanner 

eliminates the need for calibration. Two separate TIFF files (printer_media_K.tif & 
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printer_media_N.tif) are generated from each test page. The block diagram in Figure 4 

explains the above process.  

Test Target 
TIFFs

1518

2025

King

CLC

HMF

HML

XBM4200

CLC

HML

XBM4200

CLC

HML

XBM4200

K only 
targets 

Environment: BB
Location: Boise, ID

HP Scanjet 
G4010 

SFMM 
Evaluation 
Algorithm

830x830 test 
target TIFFsHard copy 

prints

 

Figure 4: Steps involved in producing test hard-copies and their acquisition for mottle 
evaluation. 

 
2.2. Image Pre-processing 

The results of this work highly depended on how true the input images were. The 

comparison criterion is subjective rankings (PQEs) of these test targets against the 

SFMM rankings. Hence, it becomes important to make sure that the input image is 

utilized to compute texture features such that these features correspond to the 

observations made by PQEs, therefore, making the model reliable and useful universally.  

The input image acquired from the scanner has dimensions about 830x830 and is 

saved as a TIFF file. This image is converted to grayscale using the MATLAB® routine: 

BGRI gray 1140.05870.02989.0 ++=                                         (1) 

where Igray is the final grayscale image and [R, G, B] are three channels of the TIFF file 

input from scanner. Note that the coefficient of the green channel is greater than the other 
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two coefficients because the green channel is more highly sensitive to changes in 

luminance values than the other two channels. The red and blue channels are included in 

the input image as they may contain variation information which could be lost on 

selecting only the green channel. The resultant grayscale image is cropped with respect to 

center of the original image as shown in Figure 5 such that the features can be computed 

efficiently. Next, the image obtained here goes through the wavelet de-noising stage 

which comprises the most significant portion of this module.  

512 x 512 cropped 
image

Igray

Module 
2

2.56 in

2.56 in

Pre-Processing Module

Wavelet de-noising at 
Level 4

Figure 5: Detailed block diagram pre-processing module (M1) 

The main function of this module is performed by what is known as “Wavelet De-

noising”. Wavelets have long been used in image compression and signal de-noising. 

Wavelet basis functions are spatially localized and give information of both scale and 

frequency. A brief mathematical description of this analysis is as follows. 

2.2.1. Two dimensional Discrete Wavelet Transform (DWT) [33] 

Images are 2-dimensional and are analyzed using a separable 2-D wavelet transform. 

A 2-D separable transform is equivalent to two 1-D transforms in series. It is 
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implemented as a 1-D row transform followed by a 1-D column transform on the data 

obtained from the row transform. Figure 6 shows the filter bank structure for computation 

of a 2-D DWT and IDWT.  

Figure 6: 2-D Wavelet analysis and synthesis with filter bank representation. 

The separable 2-D basis functions can be expressed as the product of two 1-D basis 

functions. Unlike the 2 basis functions for 1-D signals at a given scale, there are four 

basis functions for 2-D signals as given in Eqn. (2)-(5). 

)()(),( vuvu φφφ =           (2) 

)()(),(1 vuvu φψψ =           (3) 

)()(),(2 vuvu ψφψ =           (4) 

)()(),(3 vuvu ψψψ =           (5) 

),( vuφ  performs as the 2-D scaling function; whereas ),(1 vuψ , ),(2 vuψ  and ),(3 vuψ  are 

the three 2-D wavelet functions. For a 2-D input signal ),( vux , the transform coefficients 

are obtained by projecting the input onto the four basis functions given in Eqn. (2) – (5). 

These result in four different sub-bands in the decomposition corresponding to the four 

types of transform coefficients ( ),,(),,,(),,,( )2()1( mjiXmjiXmjNX and ),,()3( mjiX ). 

),,( mjNX is the coarse approximation of the 2-D signal ),( vux  and corresponds to the 
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LL band. ),,()1( mjiX coefficients contain the vertical details and correspond to the LH 

band. ),,()2( mjiX  coefficients contain the horizontal details and correspond to the HL 

sub-band. ),,()3( mjiX  coefficients represent the diagonal details in the image and 

constitute the HH sub-band. The four sub-bands for one level of decomposition are 

shown in Figure 7. 

512 x 512 cropped 
image

Wavelet Analysis 
to 4 levels

1

11

2

22

3

3

3

4

4 4
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V D

H

V D

H

V D

H

V D

1.28 in0.64 in0.32 in0.16 in

(a) (b)
 

Figure 7: (a) Test image; (b) 4 sub-bands for a 4-Level Wavelet decomposition for one 

of the test images. Description: Low- LL level (white boundary-smallest square at Level 

4); H: HL level (Horizontal), V: LH level (Vertical), D: HH level (Diagonal). 

 

Thus, the 2-D DWT can be expressed as four inner products given by equations (6) – (9). 

As shown in Figure 6, it is computed by filtering each row in the image followed by 

filtering each column of the output obtained from the row filtering. 

),,( mjNX  = ∫∫ −−
vu

NNN dudvmvjuvux
,

)2()2(2),( φφ       (6) 

),,()1( mjiX  = ∫∫ −−
vu

iii dudvmvjuvux
,

)2()2(2),( φψ       (7) 
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),,()2( mjiX = ∫∫ −−
vu

iii dudvmvjuvux
,

)2()2(2),( ψφ       (8) 

),,()3( mjiX = ∫∫ −−
vu

iii dudvmvjuvux
,

)2()2(2),( ψψ       (9) 

The above mentioned equations (6), (7), (8) and (9) represent the LL, LH, HL and HH 

sub-bands at level i respectively. 

The synthesis stage corresponds to the 2-D IDWT or the Inverse Discrete Wavelet 

Transform given by Equation (10). The synthesis stage performs up-sampling and 

filtering in the reverse order (column followed by row filtering) to reconstruct the input 

image ),( vux . 

),( vux  = ∑∑ −−
j m

NNN mvjumjNX )2()2(2),,( φφ  

+ ∑∑∑
















−−+

−−+

−−

i j m iii

iii

iii

mvjumjiX
mvjumjiX

mvjumjiX

)2()2(2),,(
)2()2(2),,(

)2()2(2),,(

)3(

)2(

)1(

ψψ

ψφ

φψ

                     (10) 

Multiple levels of decomposition achieve higher de-correlation and are generated by 

iterating the LL output as shown in Figure 7. Note that the LL band is iteratively 

decomposed which results in a pyramid structure for the sub-bands with the coarsest sub-

band at the top and the finest sub-band at the bottom. 

The multi-resolution nature of the wavelet decomposition stores the energy in the 

signal into a small number of wavelet coefficients. For detailed images, much of the 

image energy is concentrated in the LL band that corresponds to the coarsest scale. The 

LL band is not only a coarse approximation of the image but also contains most of the 

image's energy. In addition to this, it is also statistically observed that the energy in the 
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inner sub-bands is also concentrated into a relatively small number of wavelet 

coefficients. The significant coefficients in the finer sub-bands do not occur at random, 

but rather tend to occur in clusters in the same relative spatial location in each of the 

higher frequency sub-bands. This self-similar, hierarchical nature of the wavelet 

transform can be used to make inter-band predictions; the location of the significant 

coefficients in the coarser bands is used to predict the location and magnitude of 

significant coefficients in inner sub-bands. 

2.2.2. Wavelet De-noising 

Here, we use a similar technique described by et al. [25] where the image is down-

sampled using the discrete wavelet transform (DWT) analysis to 4 levels and all details 

(horizontal, vertical and diagonal) are completely removed (set to zero). This leaves only 

the approximation at level 4 or what we strictly call, the low frequency information. This 

approximation is then sent through a process of Wavelet synthesis (explained next) using 

the same filter banks employed in the aforementioned analysis procedure. This yields 

final reduced-noise image or what is also known as the ‘perceptual approximation’. The 

filter banks used for Wavelet analysis/synthesis are the same as used in JPEG2000 

compression standard. 

The down-sampling process is done until 4 levels. The primary reason behind 

choosing the number of levels = 4 is based on the fact that the human eye is governed by 

the Contrast Sensitivity Function (CSF) [26]. The peak of the chosen CSF (explained in 

Section 2.3) occurs at a spatial frequency of 6.25 cycles/inch, this corresponds to a 

wavelength, λ = 0.16 inches or a scale of 32x32 pixels in the wavelet domain. Our input 

image, after being converted to grayscale and cropped to a size of 512x512 pixels is sent 
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through the wavelet de-noising procedure. Thus, as described above, all high frequency 

horizontal, vertical and diagonal details denoted as H, V and D respectively, are removed 

and a de-noised image of resolution 512x512 pixels is synthesized or reconstructed using 

Eqn. 10. The complete pre-processing pipeline is explained in Figure 8. 

512 x 512 cropped 
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(b) 

Figure 8: Pre-processing module: (a) Block diagram of Module 1; (b) Contrast enhanced 

Test samples (Top row) and the corresponding de-noised outputs from the pre-processing 

module (Bottom row). 
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2.3 Contrast Sensitivity Function (CSF) 

Human Visual System (HVS) models have been widely used in the variety of 

applications in image processing and image quality assessment [26]. One of the aims of 

this thesis was to develop a stable visual system to evaluate print defects of a particular 

class, known as mottle. Hence, it becomes necessary to look into all possible models that 

characterize the HVS.  

To serve the purpose of our application, we implemented 5 HVS models. We have 

used only one of them in the algorithm based on the peak sensitivity and the 

corresponding spatial frequency. Kim et al. [26] explained the impact of different HVS 

models on halftoning along with detailed implementation description of different model. 

Campbell et al. [27] proposed and developed a HVS model by measuring the contrast 

threshold for detecting sinusoidal interference fringes generated by an oscilloscope at a 

viewing distance of 57 inches. It achieves a maximum at a spatial frequency ~6.25 

cycles/inch (cpi). The second model implemented for our study was proposed by Mannos 

and Sakrison [28]. They performed subjective tests on images that were coded with 

optimal parameters using the model. The resulting CSF peaked at 7.9 cpi. The third 

model that has been implemented was proposed by Näsänen [29] which primarily 

replicates a low pass filter characteristic. Hence, the maximum for this CSF occurs at 0 

cpi. Daly’s model [30] also has a low pass characteristic, this model is same as the one 

proposed by Mannos et al. but with different parameters. The maximum of this CSF 

occurred at 6.6 cpi. The most general model proposed by Barten [31] is the most widely 

used and can be matched with all the other models above by adjusting this model’s 
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parameters. There are no parameter sets that were included in [30] which generates 

different model than the ones already mentioned. 

We use the Campbell’s CSF in our proposed algorithm as it peaks at a spatial 

frequency which corresponds to the scale (32x32 pixels and 0.16x0.16 in2) of level 4, 

hence, performing a low pass filtering operation in the wavelet domain as just like the 

HVS. 

As described above, five CSF models were implemented (see Figure 9) along with a 

model provided by Hewlett Packard Company for experimental purposes. The radial 

frequency axes for the CSF are implicitly generated by making use of the sampling 

theorem. The size of the image and the scanning resolution (sampling frequency) are set 

at 512x512 pixels and 200 dpi respectively. Our purpose in using the CSF is to simulate 

the behavior of the HVS to compute one of the features in frequency domain. 
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Figure 9: Different 1-D CSF curves implemented originally in 2D for filtering. 
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2.4 Spatio-Frequency Parameter Estimation (M2) 

The parameter estimation module comprises of 2 major sub-modules. One evaluates 

parameters (alternatively referred as features) strictly in the frequency domain, and the 

other computes features in the spatial domain. These two sub-modules and the 

corresponding mottle features are explained in sections 2.3.1 and 2.3.2 respectively. 

In this thesis, the amount of print mottle is evaluated using the information stored in 

the samples’ spatial frequency and spatial distribution. These two characteristics can be 

further described or measured in context of print mottle by different features or measures 

in the frequency domain as well as the spatial domain. For this work, we computed 2 

frequency domain features and 9 spatial domain features. The frequency features are 

computed by transferring the image to the Fourier domain using the Fast Fourier 

Transform algorithm [32]. A block diagram depicting the features in both domains is 

shown in Figure 10. 

512 x 512
De-noised image

Pre-
processing 

Module

Spatio-frequency Parameter Estimation

Remove mean,  
compute 

Fourier P(u,v) 
using FFT

Radial 
Filtering 

using CSF

SFDA

Co-occurrence 
matrices

Mrings, 

Espec 

MottleSFDA

ASM, 
IDM, 

ENTR

Feature Set

Module 
3

Run-length 
Matrix

SRE, LRE, 
GLNU,RLN,

RP

 

Figure 10: Detailed block diagram of Module 2: Spatio-frequency parameter estimation. 
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2.4.1. Frequency Domain Features 

As mentioned previously, the initial objective is to compute features that give a 

measure of variation across the test target.  

A 2-D Fast Fourier Transform (FFT) of the 512 x 512 test image generated at the end 

of the pre-processing stage is computed and the subsequent power spectrum (Squared 

Magnitude) is calculated. We subtract the mean of the image before taking the FFT for 

the purpose of normalization. The effects due to banding and streaking are also 

eliminated by setting the first row and column of the power spectrum to zero. An 

example of a power spectrum is shown in Figure 11(a). To re-iterate the effect of 

removing streaks and banding, Figure 11(b) is a magnified version of Figure 11(a). Note 

that high frequency content was already removed in the pre-processing module by means 

of wavelet domain de-noising. Hence, there is high presence of low frequency content.  

  

(a) (b)

v

u

v

u

 

Figure 11: (a) 2-D Power Spectrum of ‘perceptual approximation’; (b) cropped version 

of (a) to re-iterate the absence of any high frequency content and effects due to streaking 

and banding. 
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Consequently, the power spectrum can now be used to compute the following two 

features: 1) Ring Mottle ( ringsM ); 2) Spectral Entropy ( specE ). To compute ringsM , we 

make use of a technique known as ‘radial filtering’. It can clearly be seen from Figure 11 

that the power spectrum contains only low frequency content. To perform ‘radial 

filtering’, we define radial frequency bands as Binary Radial Band Maps (BRBMs) which 

are each multiplied with the power spectrum and subsequently pixel values are added 

providing energy in each band. BRBM start from the center with a radial width of 1 pixel 

corresponding to the lowest radial frequency. This width may be increased in steps of 1, 

2, 3, 4, 5 and 10 pixels depending on the user’s requirements. A pseudo-color 

representation of these BRBMs together is shown in Figure 12.  

(a) (b)

5 pixels

Figure 12: (a) BRBM (5 pixels width) in image dimensions; (b) BRBM corresponding to 

low frequency content. 

BRBMs are multiplied with the image, to demonstrate the phenomenon of frequency 

domain filtering, subsequently giving energy (measure of variation) in each band. Shown 

in Fig. 7 is the work flow to compute ringsM . The discrete power spectrum P (u, v) of an N 
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x N image where u and v represent frequencies along the X-direction and Y-direction 

respectively (see Figure 11), is multiplied point-by-point with the Contrast Sensitivity 

Function (CSF) described in Section 2.2 resulting in a filtered signal that depicts the HVS 

response. The expression for uniformity in each band is given below: 

[ ] ),(),(),(
1 1

vuHvuCvuPU i

N

u

N

v
i ∑∑

= =

=      (11) 

where, C (u, v) is the CSF (Fig. 4), Hi(u, v) is BRBM  of ith frequency band (Fig. 6) and 

Ui gives the energy in the ith frequency band. Consequently, the Ring Mottle ( ringsM ) is 

computed utilizing the aforementioned uniformity in each band (Eqn. 12): 
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where, f0 = ≤+ 22 vu 70 cycles/inch (HVS response ~ 0) and FFT Size, N = 512. 
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Figure 13: Flow for calculation of Ring Mottle ( ringsM ). 

The values for ringsM  of 10 test targets are summarized in Chapter 4. The next feature 

computed is the Spectral Entropy (Espec), using the probability distribution of the power 

spectrum P (u, v). The following expression is used for computing Espec: 
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is the probability distribution of P (u, v). When the texture of the discrete power spectrum 

is more random, all ),Pr( vu  values are significantly high, yielding large entropy values 

and vice versa. This implies, a highly irregular pattern needs more information to be 

described, hence has a high entropy. The values of spectral entropy for our 10 test targets 

are summarized in Table 1. Note that, spectral entropy is not calculated using the ring-

shaped masks, but over the whole power spectrum (Figure 11). 

Once these features are calculated for the current target, the proposed algorithm 

proceeds to spatial domain analysis, explained in next section, consequently providing a 

parallel nature of computation to the algorithm, in multiple domains. 

2.4.2 Spatial Domain Analysis  

The motive behind exploring the spatial domain is the flexibility provided by various 

tools such as first and second order statistics using the co-occurrence (CO) matrices of 

size L x L (depending on the dynamic range of the image). CO matrices are calculated in 

4 directions (0o, 180o, 90o and -90o) represented in Figure 14 below and then cumulated 

together to give one CO matrix. 

(a) (b)  

Figure 14: Directional setting for Co-occurrence matrix (a) 0o and 180o; (b) 90o and -90o. 
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After the final CO matrix is obtained, a set of pre-selected features is calculated. 

These features include Angular Second Moment (ASM), Inverse Difference Moment 

(IDM), and Spatial Entropy (ENTR) [33]. The following three equations summarize the 

above mentioned features. 
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ASM corresponds to amount of orderliness in the target. Orderliness measures how 

uniform are the pixel values in a window. If the texture is extremely random or the 

variation is high, the value of ASM is low and vice versa. Same is the case for IDM. 

Hence, these values are sorted in descending order to be in accordance with the ranking 

algorithm which works on the principle of lowest to highest (Best to Worst). IDM has 

smaller numbers for images with high contrast, larger numbers for images with low 

contrast. The values for three features from 10 test targets are summarized in Table 1.  

Another set of spatial features based on gray level run lengths is used here. A gray 

level run is a set of consecutive pixels having the same gray level value. Run Length 

Matrices (RLM) are described in [33]: 00RLM and 090RLM are calculated and subsequently 

5 features are computed from each of them (see Eqns. (17) – (21)). Run length features 

represent the textural information related to the number of times each gray level appears. 

A simple 4x4 image is shown in Figure 15 to demonstrate the computation of RLM in 

detail. 
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Figure 15: A sample 4x4 image (4 gray levels) with its corresponding Run Length 

Matrix RLM0. 

 

Subsequently, all features from the two RLMs (5 from each) are averaged to obtain 

the final set of features to be incorporated in the metric. The five features are: (1) Short 

Run Emphasis (SRE); (2) Long Run Emphasis (LRE); (3) Gray Level Non-uniformity 

(GLNU); (4) Run Length Non-uniformity (RLNU); (5) Run Percentage (RP). These 

features [33] are mathematically given by Eqn. (17) – (21): 

           (17) 
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These 5 features were picked because they provide a good range of measures for 

textures with long-scale variations, also known as macro-textures serving the purpose of 

their incorporation into the algorithm. Each feature has its own significance: SRE 

represents the shorter runs of non-uniformity. LRE signifies longer runs of non-

uniformity. GLNU takes small values when the runs are uniformity distributed among 

gray levels. The fourth feature, RLNU takes small values when gray levels are uniformly 

distributed among run-lengths. Lastly, RP represents the average runs per pixel and takes 

small values for smooth and less mottled images.  

Another spatial feature included in our feature set, described by Rosenberger [34] is 

known as the Spatial Frequency Distribution Analysis (SFDA). The motive behind using 

this analysis is that it adds a feature based on local variation information to the final 

feature set. Also, originally this feature is intended to compute the amount of graininess 

in a target, but we modified it to provide us with a measure of mottle in the target. A 

formula different from [34] is used in our metric.  

In any digital image which consists of low frequency gray level variation, the SFDA 

algorithm proposed [34] measures the two dimensional rate of change in luminance 

values and transitions between light and dark throughout the image. Many parameters 

affect our visual system as described in [34]. To corroborate this fact, the author states - 

“The human visual system operates in a three dimensional environment (Subjective 

Analysis setup) composed of the luminance intensities governed by parameters like 

length and height of the viewing area relative to the observer’s visual system”. SFDA 

extracts square contiguous target areas of the same pixel dimensions in an iterative 

fashion, as shown in Figure 16 below: 
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Figure 16: Spatial Distribution: A typical target size (512x512) composed of 16 128x128 
targets. 
 

A rather different metric than SFDA is used here, but is not named differently. The 16 

sub-targets labeled in Figure 16 are further sub-divided into 16 targets each of size 32 x 

32 pixels (See Figure 17). The bigger targets are exactly of size 128x128. As mentioned 

in Section 2.1, the scale of 32 x 32 corresponds to a frequency which is in 

correspondence with the peak visual response of the human eye making it a consistent 

observation. These measurements are made on ‘perceptual approximation’ obtained using 

wavelet de-noising (explained before).  
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Figure 17: Spatial distribution of sub-target no. 1 shown in Fig. 16; (a) 4x4 grid shown 

on  large 128x128 target; (b) expanded view of first 4 sub-targets in (a). 
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In Figure 17, σA,….,σD are the standard deviation values and µA are the mean values 

for each 32x32 sub-target. As seen from Fig. 10, sub-target B has a lower value of σ as 

it’s more uniform in appearance as compared to the other 3 sub-targets. Also, the 

appearance of these sub-targets is contrast-based making them appear lighter as all pixels 

have value between 0 and 10 on a scale of 255.  

If we calculate the above mentioned values for all small 32x32 sub-targets, it yields 2 

vectors, one is αi = [σA, σB, σC, σD, σE , ……, σP] and the other is the Mean vector βi = [µA, 

µB, µC, µD, µE, ……., µP] where i = 1, 2,…,16. We compute 3 attributes using the above two 

vectors to facilitate the final computation of mottle. These are known as µi (Mean of αi), 

σi (standard deviation of αi) and µβi (Mean of βi). The target mean, µβi is a good indicator 

of the diversity of visual intensities or local area contrasts. Next we compute, what is 

called the Local Mottle for each 128x128 sub-target and is expressed mathematically as: 

iiiLocaliM βµσµ=),(                (22) 

where, M(i),Local represents the mottle for each 128x128 sub-target. This process, when 

carried out for all 16 sub-targets, gives us a vector which consists of local mottle values.   

This expression is different from the one proposed by [34] in the sense that original 

SFDA uses the standard deviation of βi rather than the mean. The reason behind this 

change is that the degree of variation amongst αi is a measure of uniformity in the small 

128x128 sub-targets and the mean µβi acts as a local scaling factor for that particular sub-

target. The mean of the standard deviations, µi of smaller 32x32 sub-targets gives an 

average variation inside that 128x128 sub-target. These 3 factors, when multiplied 
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together provide a good local variation estimate. Final SFDA mottle value is expressed as 

a product of standard deviation of M (i), Local and its mean (see Eqn. 23). 

ii MMSFDAMottle µσ=       (23) 

where, σMi and µMi are the standard deviation and mean for local mottle values computed 

in Eqn. 13. The proposed change in the existing algorithm results in a better co-relation 

with the subjective rankings. The values for 10 test targets of SFDA mottle are 

summarized in Table 1 along with other features. 

The parameters given by Eqns. (14) – (21) and (23) give the 9 features that comprise 

the final value of SFMM. To summarize, we provide a high-level block diagram for 

overall parameter estimation in Figure 10 provided at the beginning of Section 2.4. 
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2.5 Ranking Algorithm 

After obtaining all features (attributes) from Module 2 for all 10 test targets, the data 

is organized in form of vectors. These vectors are further normalized with respect to the 

local maximum value. This is done to limit the maximum SFMM value to number of 

features. Next, the normalized parameters are obtained in form of a matrix of size M x N 

where M equals number of test targets (10) and N is the number of features (11) known 

as the Feature Value Matrix (FVM). A tabulated version of FVM for 10 targets out of the 

numerous test samples is given in Table 1 for the ease of understanding of this section. 

 

 

 

 

 

Table 1: Feature Value Matrix for 10 K only Test Targets. 

Note that the numerical values in Table 1 are normalized. Prior to normalization, 

these values were weighted using empirical log-weights. Section 2.5.1 below gives a 

brief introduction to the weighting scheme and subsequently the normalization scheme 

applied to the true feature values. 

2.5.1. Weighting and Normalization of Features 

Due to the nature and intensity values of these samples, the feature values acquire values 

that different across each feature but consistent along sample. Out final objective is to 

come up with one numerical value that signifies mottle in these samples, hence we need 

Test 
Target

Printer Media
Ring 

Mottle
Spec. 

Entropy
ASM IDM ENTR SFDA SRE LRE GLNU RLN RP

1 1 Canon Color Laser 0.06 0.97 0.91 0.06 0.39 0.00 0.74 0.21 0.34 0.08 0.27

2 1 Hammermill Fore 0.11 1.00 0.84 0.22 0.05 0.03 0.71 0.55 0.64 0.15 0.36

3 1 Hammermill Laser 0.17 0.93 0.92 0.22 0.34 0.01 0.51 0.77 0.65 0.16 0.41

4 1 Xerox Bus. 4200 0.51 0.97 0.95 0.21 0.62 0.13 0.76 0.97 0.97 0.54 0.75

5 2 Canon Color Laser 0.11 0.97 0.90 0.26 0.19 0.01 0.55 0.76 0.75 0.16 0.41

6 2 Hammermill Laser 0.40 0.95 0.94 0.25 0.53 0.06 0.65 0.92 0.79 0.31 0.58

7 2 Xerox Bus. 4200 0.70 0.96 0.97 0.31 0.75 0.21 0.77 0.97 0.91 0.55 0.76

8 3 Canon Color Laser 0.15 0.98 0.93 0.20 0.44 0.02 0.59 0.81 0.64 0.18 0.44

9 3 Hammermill Laser 0.47 0.94 0.97 0.27 0.73 0.15 0.76 0.95 0.79 0.42 0.67

10 3 Xerox Bus. 4200 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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to get these features to the same scale and hence normalize them. The first step is to 

eliminate any exponent powers acquired by these features and bring them to a scale 

between 1 and 10. This is done by the following set of equations: 

N

f
toNi

i

Raw

∑
== 1µ      (24) 

[ ]))(log( 1010 raw
featureW µΩ−=      (25) 

where, )()( xroundx =Ω  rounds off x to the nearest integer 

The weights are computed for each feature, and further normalized along each feature 

using the maximum value and brought to a scale of 0 to 1. The following set of tables 

give a brief overview of features and their weighted and normalized values. 

 

 

 

 

(a) 

 

 

 

 

(b) 

Test 
Target

Printer Media
Ring 

Mottle
Spec. 

Entropy
ASM IDM ENTR SFDA SRE LRE GLNU RLN RP

1 1 Canon Color Laser 0.07 6.58 1.80 0.08 1.16 0.00 0.02 7959.48 1463.85 59.67 0.02

2 1 Hammermill Fore 0.12 6.82 2.37 0.02 0.14 0.02 0.02 4660.98 2775.90 108.07 0.02

3 1 Hammermill Laser 0.19 6.34 1.67 0.02 1.04 0.01 0.01 2621.02 2818.75 119.98 0.03

4 1 Xerox Bus. 4200 0.58 6.62 1.39 0.02 1.87 0.10 0.02 696.87 4190.66 397.43 0.05

5 2 Canon Color Laser 0.13 6.63 1.86 0.02 0.56 0.01 0.01 2714.67 3250.15 115.24 0.03

6 2 Hammermill Laser 0.46 6.49 1.49 0.02 1.59 0.04 0.02 1173.33 3422.95 225.58 0.04

7 2 Xerox Bus. 4200 0.80 6.51 1.22 0.02 2.24 0.15 0.02 677.50 3933.94 406.38 0.05

8 3 Canon Color Laser 0.18 6.65 1.57 0.03 1.32 0.01 0.02 2226.79 2774.58 130.46 0.03

9 3 Hammermill Laser 0.54 6.41 1.26 0.02 2.19 0.11 0.02 894.24 3405.38 312.86 0.05

10 3 Xerox Bus. 4200 1.15 6.59 0.96 0.01 3.00 0.74 0.03 379.88 4330.83 737.99 0.07

Test 
Target

Printer Media
Ring 

Mottle
Spec. 

Entropy
ASM IDM ENTR SFDA SRE LRE GLNU RLN RP

1 1 Canon Color Laser 0.07 6.58 0.82 0.08 1.16 0.00 0.02 2.04 1.46 0.60 0.02

2 1 Hammermill Fore 0.12 6.82 0.76 0.02 0.14 0.02 0.02 5.34 2.78 1.08 0.02

3 1 Hammermill Laser 0.19 6.34 0.83 0.02 1.04 0.01 0.01 7.38 2.82 1.20 0.03

4 1 Xerox Bus. 4200 0.58 6.62 0.86 0.02 1.87 0.10 0.02 9.30 4.19 3.97 0.05

5 2 Canon Color Laser 0.13 6.63 0.81 0.02 0.56 0.01 0.01 7.29 3.25 1.15 0.03

6 2 Hammermill Laser 0.46 6.49 0.85 0.02 1.59 0.04 0.02 8.83 3.42 2.26 0.04

7 2 Xerox Bus. 4200 0.80 6.51 0.88 0.02 2.24 0.15 0.02 9.32 3.93 4.06 0.05

8 3 Canon Color Laser 0.18 6.65 0.84 0.03 1.32 0.01 0.02 7.77 2.77 1.30 0.03

9 3 Hammermill Laser 0.54 6.41 0.87 0.02 2.19 0.11 0.02 9.11 3.41 3.13 0.05

10 3 Xerox Bus. 4200 1.15 6.59 0.90 0.01 3.00 0.74 0.03 9.62 4.33 7.38 0.07
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(c) 

Table 2: Results from 10 test targets: (a) Raw Feature values (fi), (b) Weighted feature 

values, (c) Normalized and Weighted feature values (FVM). 

 
The final weighted and normalized values are shown in Table 2(c). This table is 

known as the Feature Value Matrix (FVM) which is used for a priori ranking process 

explained in the following section. 

2.5.2. Cumulative Ranking (a priori ranking) 

The a priori ranking is obtained by arranging most of the features in ascending order, 

although this is not the case with ASM, IDM and SRE which are ranked in descending 

order to maintain the consistency with other 8 features. FVM is ranked along columns 

and resulting matrix is known as the Feature Rank Matrix (FRM). The FRM is shown in 

Table 3(a). In each column of FRM, rank 1 corresponds to the “Best sample” and 10 

correspond to the “Worst Sample”. Rankings can be compared along columns, each 

target contains a majority rank which has the highest frequency of occurrence and is 

known as the Cumulative Rank (CR). For our testing purposes, we implemented two 

methods of obtaining the cumulative rankings. One method is mode-based (Section 

2.4.2.1) and the other method is weight-based (Section 2.4.2.2) as explained in the 

following two sections. 

Test 
Target

Printer Media
Ring 

Mottle
Spec. 

Entropy
ASM IDM ENTR SFDA SRE LRE GLNU RLN RP

1 1 Canon Color Laser 0.06 0.97 0.91 1.00 0.39 0.00 0.74 0.21 0.34 0.08 0.27

2 1 Hammermill Fore 0.11 1.00 0.84 0.26 0.05 0.03 0.71 0.55 0.64 0.15 0.36

3 1 Hammermill Laser 0.17 0.93 0.92 0.25 0.34 0.01 0.51 0.77 0.65 0.16 0.41

4 1 Xerox Bus. 4200 0.51 0.97 0.95 0.27 0.62 0.13 0.76 0.97 0.97 0.54 0.75

5 2 Canon Color Laser 0.11 0.97 0.90 0.22 0.19 0.01 0.55 0.76 0.75 0.16 0.41

6 2 Hammermill Laser 0.40 0.95 0.94 0.22 0.53 0.06 0.65 0.92 0.79 0.31 0.58

7 2 Xerox Bus. 4200 0.70 0.96 0.97 0.20 0.75 0.21 0.77 0.97 0.91 0.55 0.76

8 3 Canon Color Laser 0.15 0.98 0.93 0.31 0.44 0.02 0.59 0.81 0.64 0.18 0.44

9 3 Hammermill Laser 0.47 0.94 0.97 0.21 0.73 0.15 0.76 0.95 0.79 0.42 0.67

10 3 Xerox Bus. 4200 1.00 0.97 1.00 0.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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2.5.2.1. Mode-based method 

In this ranking process, n test targets are ranked in r different rankings according to 7 

features. A vote count Vir is evaluated in the ith test target for rth rank, resulting in a vote 

vector called the Vi. The maximum value in Vi is searched for and the index 

corresponding to this value is given as the rank for the corresponding test target. For 

example, if test target 1 has been voted 4 times as rank = 1, then clearly the maximum 

value in Vi would be V11 = 4 where 1 is the cumulative rank (CR) for this target (See 

Table 3 and Eqn. 26). The process is repeated for all targets.  

 CR i = r if   Vir = max (Vi)                              (26) 

 

 

 

 

 

Table 3: FRM for 10 test targets (‘1’ = Least Mottle; ….‘10’=Most Mottle) using the 

Mode-based method. 

There are ranks along each row which are considered as insignificant features. For 

example, if seven features rank a target as ‘1’ and the remaining four features rank it 5 

and 6, then these two features would be considered as insignificant features as they 

completely disagree with the consensus as well as the Cumulative ranks. This process can 

be corresponded to linear regression followed by elimination of outliers for better 

understanding. 

Test 
Target

Ring 
Mottle

Spec. 
Entropy

ASM IDM ENTR SFDA SRE LRE GLNU RLN RP
Cumulative 

Rank
1 1 5 3 10 4 1 6 1 1 1 1 1
2 2 10 1 7 1 5 5 2 3 2 2 2
3 5 1 4 6 3 3 1 4 4 4 4 4
4 8 7 7 8 7 7 8 8 9 8 8 8
5 3 8 2 4 2 2 2 3 5 3 3 3
6 6 3 6 5 6 6 4 6 7 6 6 6
7 9 4 9 2 9 9 9 9 8 9 9 9
8 4 9 5 9 5 4 3 5 2 5 5 5
9 7 2 8 3 8 8 7 7 6 7 7 7

10 10 6 10 1 10 10 10 10 10 10 10 10
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2.5.2.1. Weight-based method 

Given 10 test targets, these are ranked in r different rankings according to m features. 

First, a sum of rank values is computed using the following expression: 

 
(27) 

 

Where i represent the ith image and vary from 1 to 10. The index k gives the rank that 

varies from 1 to 10. The term ikf  represents the number of features that give the ith image 

a rank k.  The term kR  is a vector in the reverse order to k and is given by 1+−= knRk . 

Finally, these values of iS  are arranged in descending order and the indices 

corresponding to this order are given as ranks to the images corresponding to i. The 

rankings from this method are presented in Table 4. The final ranking obtained is known 

as the Cumulative Rankings (CR) vector. 

 

 

 

 

 

 
Table 4: FRM for 10 test targets (‘1’ = Least Mottle; …. ‘10’=Most Mottle) using the 

Weight-based method. 

Conclusively, any of the two methods can be used here for ranking as the difference 

between the two Cumulative rankings is not large for the two respective methods. Hence, 

either of the two methods can be used. These ranking matrices are used for the next stage 

∑
=

=
n

k
kiki RfS

1

Test 
Target

Ring 
Mottle

Spec. 
Entropy

ASM IDM ENTR SFDA SRE LRE GLNU RLN RP
Cumulative 

Rank
1 1 5 3 10 4 1 6 1 1 1 1 1
2 2 10 1 7 1 5 5 2 3 2 2 2
3 5 1 4 6 3 3 1 4 4 4 4 4
4 8 7 7 8 7 7 8 8 9 8 8 8
5 3 8 2 4 2 2 2 3 5 3 3 2
6 6 3 6 5 6 6 4 6 7 6 6 6
7 9 4 9 2 9 9 9 9 8 9 9 9
8 4 9 5 9 5 4 3 5 2 5 5 5
9 7 2 8 3 8 8 7 7 6 7 7 7
10 10 6 10 1 10 10 10 10 10 10 10 10
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of the algorithm i.e. Insignificant Feature Removal Stage (IFRS) explained in Section 2.4. 

The final metric is computed after the insignificant features are removed. 

2.6 Insignificant Feature Removal Stage 

This part of the algorithm removes the insignificant features using a maximum 

correlation based criterion between each feature rank and the CR obtained previously 

from maximum voting. The last row in Table 5 gives the correlation between CR and 

corresponding feature ranks. The criterion for removing the insignificant features is a 

correlation threshold. If the correlation between CR (also known as apriori ranks) and the 

rank of the corresponding feature is less than 80%, it is declared as an insignificant 

feature. This value is fixed at 80% fulfilling the level of accuracy we require initially and 

is still not a final threshold value. The columns for insignificant features are set to 0 in the 

FVM (See Table 2(c)). Depending on the color of the test target and the amount of 

variation, the eliminated features may vary.   

 

 

 

 

 

 

 
Table 5: Corresponding correlations of each feature with the resulting cumulative ranks. 

The insignificant features are marked (Red) in the table. 

The features which were detected to be below the 80% correlation threshold are the 

Spectral Entropy (Spec. Entropy), The Inverse Difference Moment (IDM) and the Short 

Test 
Target

Ring 
Mottle

Spec. 
Entropy

ASM IDM ENTR SFDA SRE LRE GLNU RLN RP
Cumulative 

Rank
1 1 5 3 1 4 1 6 1 1 1 1 1
2 2 10 1 4 1 5 5 2 3 2 2 2
3 5 1 4 5 3 3 1 4 4 4 4 4
4 8 7 7 3 7 7 8 8 9 8 8 8
5 3 8 2 7 2 2 2 3 5 3 3 3
6 6 3 6 6 6 6 4 6 7 6 6 6
7 9 4 9 9 9 9 9 9 8 9 9 9
8 4 9 5 2 5 4 3 5 2 5 5 5
9 7 2 8 8 8 8 7 7 6 7 7 7
10 10 6 10 10 10 10 10 10 10 10 10 10

CORR %
(with CR) 98.4 -26.9 96.0 62.1 92.5 92.5 70.3 99.5 86.7 99.5 99.5 100.0
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Run emphasis (SRE). The algorithm has been tested over a set of 10 unique test targets 

and also a set of 50 targets which consisted of 5 samples each for 3 printers and 4 media. 

These targets were subjectively observed by several PQEs and as expected, were 

classified to have some or large amounts of mottle. This can corroborated by the fact that 

the correlations between the CR and these features are low and these features do not 

characterize mottle. Thus, these features may be ignored from being included in the 

Spatio-frequency Mottle Metric (SFMM). 

The next step is to compute the mottle metric that we proposed in the beginning of 

this thesis. This novel metric characterizes each sample based on the amount of mottle.  

2.7 Relative and Absolute Mottle Metric 

2.7.1 Relative SFMM - for multiple targets 

As seen from the previous section, 8 significant features characterizing mottle are 

selected by the algorithm based on regression analysis using correlation. These features 

have values between 0 and 1, as shown in Table 2(c). This method is utilized to obtain a 

scale and a metric for a dataset of multiple test targets, in this case 10 K (black) only flat 

printed using 3 printers and 4 media as shown in Table 2(c). Given the nature of the 

features and how they were computed, the mottle metric is termed as the Spatio-

Frequency Mottle Metric or SFMM. For clarity, SFMM for multiple test targets is called 

‘Relative SFMM’ whereas for a single test target, it is known as ‘Absolute SFMM’ 

(explained in the next section). To obtain the Relative metric, all feature values shown in 

Table 2(c) were simply summed along the rows to obtain a single number associated with 

each target which is the above defined ‘Relative SFMM’. Eq. 28 represents the 

expression for each target’s SFMM value. Further, these 10 SFMM values are rank 
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ordered to obtain the relative ranks for the purpose of comparison with the subjective 

rankings. 

∑
=

=
8

1
)(

k
kiR FSFMM      (28) 

where SFMMR(i) represents the value of the mottle metric on a relative scale (subscript R) 

for the  ith test target (i ranges from 1 to 10) and Fk represents the kth feature (kth column) 

in Table 3. The final SFMM values are presented in Chapter 4. 

2.5.1 Absolute SFMM – for a single target 

As mentioned before, the primary objective of this work was to devise a metric that 

provides a measure of the amount of mottle on an absolute scale in comparison to a 

relative scale, which depicts the comparison of a test target with other targets in the 

dataset.  For example, two targets may be selected randomly from a large data set known 

to have mottle and a rank on a relative scale. When these targets are evaluated in an 

isolated manner, that is, independent of each other, the two mottle numbers associated 

with each test target are expected to correspond with the behavior shown by the relative 

metric, hence providing the quality experts with a fair approximation of how much mottle 

there is in each target instead of a relative measure. Such a metric is proposed here, that 

provides an acceptably accurate absolute measure of the amount of mottle in each target.  

Since in this case, there is only a single test target (single feature vector), the method 

of normalization was replaced by a method of weighting, where each feature was 

weighted based on its exponential powers. A logarithm based technique is used here, 

such that each feature is scaled down to a value between 0 and 10.  

Firstly, any exponent powers acquired by these features are eliminated and brought to 

a scale between 1 and 10. This is done by the following set of equations: 
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Feature
Mean 

Weight

Ring 
Mottle X
ASM 1 - X*10-1

ENTR X
SFDA X
LRE 10 - X*10-3

GLNU X*10-3
RLN X*10-2

RP X

Test 

Target
Media

Ring 
Mottle

ASM ENTR SFDA LRE GLNU RLN RP
Absolute 
SFMM

1 Canon Color Laser 0.07 1.80 1.16 0.00 7959.48 1463.85 59.67 0.02 6.18
2 Hammermill Fore 0.12 2.37 0.14 0.02 4660.98 2775.90 108.07 0.02 10.27
3 Hammermill Laser 0.19 1.67 1.04 0.01 2621.02 2818.75 119.98 0.03 13.49
4 Xerox Bus. 4200 0.58 1.39 1.87 0.10 696.87 4190.66 397.43 0.05 20.93
5 Canon Color Laser 0.13 1.86 0.56 0.01 2714.67 3250.15 115.24 0.03 13.22
6 Hammermill Laser 0.46 1.49 1.59 0.04 1173.33 3422.95 225.58 0.04 17.49
7 Xerox Bus. 4200 0.80 1.22 2.24 0.15 677.50 3933.94 406.38 0.05 21.44
8 Canon Color Laser 0.18 1.57 1.32 0.01 2226.79 2774.58 130.46 0.03 14.24
9 Hammermill Laser 0.54 1.26 2.19 0.11 894.24 3405.38 312.86 0.05 19.40

10 Xerox Bus. 4200 1.15 0.96 3.00 0.74 379.88 4330.83 737.99 0.07 27.19
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)})({log( 1010 raw
featureW µϑ−=      (30) 

where )()( xroundx =ϑ is an operator that rounds off x to the nearest integer. 

The computed weight values for each feature (Wfeature) are shown in form of exponent 

powers in Table 4(a). Note that, the features used for computing the absolute metric are 

the ones selected after the regression analysis done using the CR values. In this case, 8 

raw feature values (see Table 1(a)) were used to compute the absolute metric as shown 

below: 

∑
=

=
8

1k
kkAbs FWSFMM      (19) 

For clarity and better understanding of this section, we have provided the absolute 

SFMM values for the 10 test targets in Table 6(b) below along with the raw feature 

values from Table 1(a). 

(a)                                                                     (b) 

Table 6: Absolute SFMM; (a) empirically observed weight equations. Note that ASM 

and LRE are reversed (explained before) prior to calculation of Absolute SFMM. (b) Raw 

feature values from Table 2(a) for 10 test targets and their Absolute SFMM values 

computed using (a). 
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Chapter 3: Case Study on Color Test 
Targets 
 
 

3.1 Introduction 

The evaluation of achromatic test targets on the basis of mottle is a widely researched 

topic and has encouraged the print vendors and researchers to tackle the problem of 

colored mottle. This case study concerns with non-uniformities that occur due to all 4 

printer primaries (C, M, and Y) when combined as halftones or solid areas. The aim of 

this case study is to apply the proposed algorithm to colored test targets. 

There has been a considerable amount of concern amongst the researchers in this field 

to develop a universal metric for evaluation of mottle in color prints. A more recently 

proposed color mottle evaluation metric [14, 15] is based on prior work done [13] for 

evaluation of mottle in single channel (e.g. K-only). The model proposed in [14] is based 

on an assumption of conditional independence of channel information. We follow a 

different approach which utilizes the Principal Component Analysis. A similar approach 

was used by Ugbeme et al. [37] for detection of Debris Centered Deletion (DCD) defects 

in color printed targets. 

The proposed method was validated on five preliminary test targets with the design 

pattern shown in Figure 13 below. The design pattern consists of Red, Green and Blue 

flat printed areas with varying amount of mottle. As these areas are larger than usual K-

only targets used previously (830x830 pixels) and also not square contiguous, we use a 
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Divide-and-Cumulate feature computation technique (explained later) to evaluate each 

spatial and frequency domain feature for each colored area. 

 

 

 
 
 
 
 
Figure 18: High level block diagram of the proposed algorithm for Color targets 
 
3.2 Proposed PCA module for color targets 

After the proposed algorithm was tested on about 70 K-only test targets, we 

performed the visual evaluations on these test targets. The idea behind evaluating the 

achromatic targets has been extended to evaluation of colored test targets. In an RGB 

image, it is hard to identify the channel which characterizes mottle. It is possible that 

there may be more multiple channels that are representative of the amount of mottle in 

the considered test target. The technique used here to extract information from all three 

channels (CMY or RGB) is known as Principal Component Analysis (PCA) [36]. A 

digitally scanned image is transformed into the CMY domain using simple linear 

transforms and this CMY image is sent through a PCA module to find the principal 

component (PC) corresponding to maximum energy or the maximum Eigen value. This 

component is used as the input to the SFMM algorithm. Note that, the PC obtained as a 

result is single channel and can be treated as a valid input to the SFMM algorithm. 
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To start with, we explain the process of principal component analysis [36] and its use 

and advantages in context to this work. The RGB scanned output, as mentioned 

previously, is converted to the CMYK intensity values using the following linear 

transformations: 

C = G + B                                                                   (31) 

M = R + B                                                                   (32) 

Y = R+G                                                                     (33) 

Principal Component Analysis (PCA) is a linear data reduction technique used to 

optimally project data, originally in a d-dimensional space onto a lower-dimensional 

space in a mean-squared error sense. The transformed axes are aligned with the directions 

of maximum variance of the data. Let ψ1, ψ2 and ψ3 represent the three printer primaries 

C, M and Y. Then, ][ 321 ψψψ=Ψ , a 3 x N2 matrix, is obtained by ordering each 

channel (C, M and Y) lexicographically where N is the x or y dimension of each image 

channel. The mean vector is computed next and is given by ][ 321 mmmm =  followed 

by the covariance matrix V, given by Eqns. (34) - (35). 
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The covariance matrix, C is a real, symmetric and is expressed as: 
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TEEV Λ=       (36) 

where E is a 3 x 3 orthonormal matrix of eigenvectors corresponding to the ordered Eigen 

values 321 λλλ ≥≥ contained in the diagonal matrix Λ = diag( 321 ,, λλλ ). Finally, the 

principal components are computed as: 

][ 321 PPPEP T =Ψ=      (37) 

Hence, the variation of the original information is now distributed amongst the Eigen 

values where the first component P1 corresponds to the component with largest variance. 

The first PC is henceforth selected as the input (high contrast gray-scale image) to the 

proposed SFMM algorithm explained in Chapter 2. 

Note that, the above explained method works in an iterative way such that each color 

is divided into 3 sub-targets before the PCA. The proposed algorithm computes features 

for the three sub-targets and utilizes the average feature value for further steps. For 

simplicity, we name this technique as Divide-and-Cumulate. Note that, this methodology 

reduced the computational burden as the given test target patterns were large and 

rectangular in shape (as seen from Figure 18). After all features have been computed, the 

SFMM value is obtained using the proposed algorithm explained in Section 2. Results of 

this preliminary methodology are shown in Section 4 along with a brief discussion based 

on the nature of color mottle.  

Subjective evaluations were not done for these sets of colored test targets; instead we 

provide a set of contrast enhanced images for the readers to perceptually evaluate mottle 

of the five color test targets used for this case study in Chapter 4.  
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Chapter 4: Experimental Results and 
Discussions 
 
 

 

The proposed algorithm was tested with 70 printed outputs of 12 electronic originals 

obtained from 3 different printers and 4 different media. We divided these samples into 2 

datasets. Set-1 consists of 10 test samples and Set-2 consists of 60 test samples which are 

primarily 12 test targets each printed 5 times. The correlation between the obtained 

SFMM rankings and subjective rankings obtained from 34 PQEs at Hewlett Packard 

company for 10 K-only targets (data set 1) ~ 94%.  

The Visual Evaluation Procedure (VEP) is explained below followed by the results 

obtained from it. Next, the results of the algorithm are compared side by side with these 

subjective rankings and the visual metric. A brief discussion of results is provided at the 

end. 

4.1 Visual Evaluation Procedure (VEP) 

There have been many weighted sums based algorithms proposed to find one 

psychometric ranking derived from many human visual observers. A similar technique is 

used here to find the cumulative ranking which is described in [35]. 

Given 10 test targets, these are ranked in r different rankings according to m 

observers. First, a sum of rank values is computed using the following expression: 

 

(16) ∑
=

=
n

k
kiki RfS

1
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where i represent the ith image and varies from 1 to 10. The index k gives the rank and 

also varies from 1 to 10. The term fik represents the number of observers that give the ith 

image a rank k.  The term Rk is a vector in the reverse order to k and is given by Rk = n - k 

+ 1. Finally, these values of Si are arranged in descending order and the indices 

corresponding to this order are given as ranks to the images corresponding to i.  

To corroborate the results of the algorithm, expert observers scaled these test targets 

visually under a standard set of conditions. The experiment was performed using pair-

wise comparison (HP). A mottle value was given to each target based on its uniformity. 

A target that is flat and uniform is given a higher value than the target which is less 

uniform and contains more mottle. In this way, Print Quality Experts ranked these 

samples and the results obtained are shown below in Fig. 19 and Table 7.  
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Figure 19: Visual scaling experiment results carried out at a HP facility by ~30 print 

quality observers. Scale Value / Scale Rank ~ 10 imply best print quality. 
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Table 7: Tabulated summary of visual rankings along for two models. 
 

In Table 7 there are numbers corresponding to the two models. The difference 

between the two is only between the number of subjects performing the experiment, that 

is, model 1 contains 18 observers and model 2 contains 30 observers. The difference 

between the rankings is not too large except in the case of two samples which can be 

explained by the increased number of observers. 

The data obtained from visual scaling done at HP is then correlated with the results of 

the algorithm, that is, the SFMM rankings. The correlation observed was impressive at 

96.5% except one target. The best sample has a value of 10, and the worst sample has a 

value of 0 on visual scale (See Table 7). In contrast, the SFMM provides the lowest value 

for the highest quality sample and the highest value for the worst quality sample. 

 

 

Printer Media
VISUAL 

(M1)
VISUAL 

(M2)
1518 Canon Color Laser 1 1
1518 Hammermill Fore 5 4
1518 Hammermill Laser 2 2
1518 Xerox Bus. 4200 8 8
2025 Canon Color Laser 3 3
2025 Hammermill Laser 7 7
2025 Xerox Bus. 4200 9 9
King Canon Color Laser 4 5
King Hammermill Laser 6 6
King Xerox Bus. 4200 10 10
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4.2 Experimental Results 

The experiments were performed on 70 test targets. All targets were from combinations 

of 3 printers – (1) 1518; (2) 2025; and (3) King and 4 printing media – (1) Canon laser 

color (2) Hammermill Fore; (3) Hammermill Fore and (4) Xerox business multipurpose 

4200. The first data set, as mentioned before consists of 10 targets with the combinations 

shown in Figure 19(b). The second dataset consists of all ten possible combinations 

between the printers and media. Five test targets are produced for each combination, 

resulting in a total of 50 test targets. 

The SFMM results were compared against those obtained from the VEP to analyze its 

overall performance. We compared the SFMM against the visual rankings obtained 

previously, on the basis of ranking-correlations. 

4.2.1 Data Set 1 – 10 test targets 

It is important to understand that the validity of the proposed algorithm can only be 

verified with testing on random test targets produced with a random amount of mottle. 

The targets in consideration in this section were carefully produced from 3 different 

printers using 4 different media. Note that, although three media (CLC, HML and XMB) 

have a sample each corresponding to the three printers (9 samples) but “Hammermill 

Fore” is only printed with printer 1 - 1518 making a total 10 targets.  

This thesis presents a detailed analysis of with and without the Hammermill Fore 

sample. By removing the Hammermill Fore sample, the correlation increases 

significantly. The contrast enhanced test targets are shown in Figure 20(a) whereas their 

de-noised versions (input to the algorithm) are shown in Figure 20(b). 
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Figure 20: (a) 10 Test targets (contrast enhanced) used for validation of the algorithm. 
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Figure 20: (b) De-noised versions of 10 Test targets (contrast enhanced). 

4.2.2 Discussion 

The graphical representation is shown in Figure 21 followed by a tabulated summary of 

SFMM, Visual Evaluation Procedure and their correlation in Table 8. It would be fair to 

say that the selected features for this data set are closely correlated. Together, these 

features are able to uniquely identify the test targets based on mottle (and sub-categories 

of mottle) as the spatial distribution (gray area non-uniformities) of each target is unique. 
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Different features computed in frequency and spatial domains are able to characterize 

these targets based on this different spatial frequency distribution.  
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IDEAL SCALING
Corr. with 1518 HMF (10 targets) : 93.94 %
Corr. without 1518 HMF (9 targets) : 96.54 %

531 7 9

 
 

Figure 21: Correlation curve between SFMM (X axis) and Visual Rankings (Y axis) 

In Fig. 21, a separated correlation distribution of test results is seen. An ambiguity 

where one of the samples - “1518 Hammer Mill Fore” was given a rank 5 on the 

uniformity scale by the observers and SFMM ranked it to be the best sample, lowers the 

correlation considerably from 96.5 % to 94%. We intend to look more carefully at this 

particular sample and find out why the disagreement exists.  

In Table 8, a sorted list of data is given according to the scanning sequence of targets. 

In total 3 printers were used in generating the test targets – (1) “1518”; (2) “2025” and (3) 

“King”. Further, four different media were used to print about 20 test targets, 10 K Only 
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and 10 Process neutral. These media were – (1) Canon Color Laser (CLC); (2) 

Hammermill Fore (HMF); (3) Hammermill Laser (HML); (4) Xerox Business 

Multipurpose 4200 (Xx). The printer type and media type are mentioned for each test 

target in Table 5. Next, the selected features after the insignificant feature removal 

process are summarized for all targets along with the column with SFMM value. Note 

that the maximum SFMM value does not exceed the number of features for the worst 

sample (~8). This was done to maintain consistency and to identify the number of 

features finally included in evaluation of Absolute and Relative SFMM. The last two 

columns are replicated from Table 7 and consist of the VEP results. 

Test 
Target

Printer Media
Ring 

Mottle
ASM ENTR SFDA LRE GLNU RLN RP

Relative 
SFMM

RANK Absolute 
SFMM

RANK VISUAL 
(M2)

1 1 CLC 0.06 0.53 0.39 0.00 0.05 0.34 0.08 0.27 1.73 1 6.18 1 1
2 1 HMF 0.11 0.41 0.05 0.03 0.09 0.64 0.15 0.36 1.82 2 10.27 2 4
3 1 HML 0.17 0.59 0.34 0.01 0.11 0.65 0.16 0.41 2.45 4 13.49 4 2
4 1 XMB4200 0.51 0.70 0.62 0.13 0.34 0.97 0.54 0.75 4.56 8 20.93 8 8
5 2 CLC 0.11 0.51 0.19 0.01 0.09 0.75 0.16 0.41 2.22 3 13.22 3 3
6 2 HML 0.40 0.67 0.53 0.06 0.28 0.79 0.31 0.58 3.61 6 17.49 6 7
7 2 XMB4200 0.70 0.79 0.75 0.21 0.59 0.91 0.55 0.76 5.24 9 21.44 9 9
8 3 CLC 0.15 0.63 0.44 0.02 0.15 0.64 0.18 0.44 2.65 5 14.24 5 5
9 3 HML 0.47 0.76 0.73 0.15 0.33 0.79 0.42 0.67 4.32 7 19.40 7 6
10 3 XMB4200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 10 27.19 10 10

Table 8: Spatio-Frequency Mottle Metric summary table for 10 test targets 

Features from each test target were evaluated using the proposed algorithm. The 

‘Absolute SFMM’ and ‘Relative SFMM’ values were computed and are shown in Table 

8 above. Also shown is a regression curve depicting how well the subjective evaluations 

correlated with the objective results. It was seen that absolute and relative metrics 

correlated very well to each other as well as the subjective rankings. Another form of 

representation of results is given in Figure 22(a) where, the SFMM values and the VEP 

scale values are represented using a bar graph for a sample-by-sample based comparison. 

Figure 22(b) simply represents the SFMM ranks and the visual evaluation ranks 
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corresponding to the values shown in the previous table. Note that the SFMM bars are 

inverted using a linear transformation to plot them in accordance to the VEP scale 

(Highest value ~ Best Quality), hence a high value of SFMM represents a better rank (~ 

rank 1). In Fig. 21, a correlation distribution of results is seen. The observed correlation 

between the ‘Relative’ and ‘Absolute’ SFMM equal to 100% and each of them were 

found to be correlated to the subjective evaluations by ~ 94%. To test the robustness of 

the algorithm, we further tested 50 test targets that were essentially reproductions of the 

above 10 parent test targets (5 child targets for each parent) in order to report the 

consistency of the algorithm. From the above graphs, one major disagreement was 

observed in terms of subjective evaluations and proposed algorithm’s results between two 

test targets – P1 HMF and P1 HML. This change did not affect the results much, as it was 

observed that removing the P1-HMF target increased the correlation to ~ 96%, showing a 

change of 2% only. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)       (b) 
Figure 22: Bar plot representation of SFMM values against the VEP results. (a) SFMM 

metric value versus the Visual Evaluation Scale; (b) SFMM Ranks versus the Visual 

ranks from (a). 
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It can be clearly seen from the results presented above and also is evident from Figure 

12 that the most mottle was seen in targets printed using ‘XEROX® Multipurpose 

Business 4200’ or the XMB4200 which is a low grade copy paper, whereas the least 

mottle was observed in targets printed on ‘Canon® Laser Color’ which is a high grade 

photo printing paper. It has been a long known fact, that most of the mottle is introduced 

due to poor quality of the media, hence questioning the need for such an algorithm that 

characterizes printers only. It can easily be inferred that a high quality paper would 

introduce the least amount of mottle. A possible use of the proposed metric is for 

characterizing printers irrespective of the media or to compare behavior of mottle from 

several printers on the same media. This is the primary motivation for developing such an 

algorithm that rank orders the targets on an absolute as well as a relative scale. As seen 

from the results, the combination King-CLC is ranked amongst the worst half of the test 

targets with an ‘Absolute SFMM’ value more than twice the value for 1518-CLC, even 

though it is the best quality of media. This need for comparisons put across by print 

vendors serves the purpose for devising such algorithms. 

4.2.3 Data Set 2 – 50 test targets 

For the purpose of testing the robustness of the algorithm, a new dataset using the 

previously used three printers and four media (same as dataset 1), was generated by 

Hewlett Packard Company in form of fifty test targets where five targets corresponded to 

a single test target known as the parent target. A parent target is a unique combination of 

one printer and one media, hence giving us a total of 10 parent targets. Five child targets 

for each parent were generated one after the other in order to understand the consistency 

level of the algorithm in terms of repeatability and redundancy. The test targets were 
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divided into five batches – A, B, C, D, and E. Each batch consisted of ten unique child 

targets. To make the comparisons easier to interpret, five batches were evaluated using 

the algorithm repeatedly and the mean SFMM values for each parent target were 

computed by utilizing each batch’s evaluation corresponding to that particular test target 

as shown in Table 10. Consequently, ten SFMM values for each unique parent are 

reported and finally rank ordered. Finally, error in the ‘Relative SFMM’ and 

corresponding ranks across the five batches are computed as the standard deviation for 

each parent target. As expected the proposed algorithm performed with minimal variation 

across the five batches.  

Having obtained the ‘Relative SFMM’ statistics for this data set, there is still a need 

to determine how the ‘Absolute SFMM’ values are distributed across these fifty test 

targets. This application would be useful in case of two random test targets from different 

printers and the same media are to be compared. Another, useful application is when the 

effects of printing environment on the same combination of printer and media are to be 

recorded and corrected for. An absolute measure of the targets generated under different 

printing conditions would yield a better understanding of behavior of mottle for that 

combination of printer and media. 

Table 9 shows these feature values for the 50 test targets. This feature matrix is 

divided into 10 groups along the rows signifying the uniqueness in respect to the printer 

name and media associated with it.  
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Test Target Printer_Media_Run Ring 
Mottle ASM Entropy SFDA LRE GLNU RLNU RP

1 HB_CLC_A 0.108575 0.57444 0.45914 0.00705 0.02977 0.39866 0.32937 0.3911
2 HB_CLC_B 0.118072 0.56919 0.49492 0.01127 0.02894 0.3772 0.27664 0.37236
3 HB_CLC_C 0.1129 0.5074 0.53021 0.00576 0.02978 0.43373 0.32655 0.42618
4 HB_CLC_D 0.108845 0.50225 0.61775 0.00742 0.02967 0.37885 0.28293 0.37087
5 HB_CLC_E 0.102709 0.61738 0.4189 0.00584 0.03093 0.43874 0.32237 0.43122
6 HB_HMF_A 0.278536 0.49591 0.60779 0.06224 0.03519 0.42255 0.33279 0.44718
7 HB_HMF_B 0.270494 0.52825 0.48243 0.0708 0.06298 0.5572 0.41822 0.56038
8 HB_HMF_C 0.290613 0.50602 0.50937 0.10918 0.04372 0.47063 0.33738 0.47819
9 HB_HMF_D 0.293978 0.50483 0.54746 0.10806 0.04155 0.42833 0.30204 0.44298

10 HB_HMF_E 0.258674 0.59318 0.4132 0.07761 0.04252 0.475 0.36086 0.49532
11 HB_HML_A 0.19279 0.71966 0.23701 0.04777 0.06169 0.54296 0.39289 0.53951
12 HB_HML_B 0.17258 0.73226 0.1932 0.03309 0.0595 0.52164 0.36945 0.51619
13 HB_HML_C 0.180321 0.79749 0.01407 0.02156 0.12483 0.70407 0.51953 0.6949
14 HB_HML_D 0.197603 0.80264 -0.02281 0.01824 0.13627 0.72707 0.57135 0.71855
15 HB_HML_E 0.208927 0.837 -0.14377 0.04674 0.14451 0.78128 0.61186 0.77198
16 HB_Xx_A 0.493635 0.66043 0.31703 0.23446 0.08248 0.54739 0.46147 0.6069
17 HB_Xx_B 0.530491 0.61855 0.26196 0.25607 0.09032 0.48161 0.4746 0.61123
18 HB_Xx_C 0.529887 0.66325 0.24142 0.26798 0.10383 0.57752 0.53531 0.65723
19 HB_Xx_D 0.502172 0.55159 0.41141 0.189 0.07539 0.47837 0.3749 0.54817
20 HB_Xx_E 0.518846 0.55167 0.37091 0.24017 0.07179 0.4451 0.40486 0.5503
21 Owl_CLC_A 0.198473 0.6056 0.40593 0.05696 0.03281 0.44045 0.3397 0.45287
22 Owl_CLC_B 0.214845 0.48872 0.71982 0.0454 0.02689 0.30305 0.23553 0.33488
23 Owl_CLC_C 0.128093 0.48799 0.9828 0.01212 0.02345 0.16232 0.71569 0.14751
24 Owl_CLC_D 0.130878 0.48605 1 0.0092 0.02402 0.18342 0.49745 0.16806
25 Owl_CLC_E 0.123932 0.48822 0.92725 0.01006 0.02407 0.21628 0.33142 0.20379
26 Owl_HMF_A 0.331133 0.85733 -0.19266 0.08704 0.81139 1 1 1
27 Owl_HMF_B 0.280917 0.99447 -0.20471 0.08838 0.64243 0.98576 0.92414 0.97661
28 Owl_HMF_C 0.269802 0.9238 -0.19237 0.06166 0.18793 0.8929 0.7955 0.88531
29 Owl_HMF_D 0.281088 0.82691 -0.12922 0.05581 0.21348 0.91872 0.84226 0.91116
30 Owl_HMF_E 0.280603 0.83305 -0.14533 0.06065 0.25163 0.92559 0.84487 0.9182
31 Owl_Xx_A 0.717784 0.80189 -0.14576 0.63248 0.26924 0.82514 0.86631 0.93229
32 Owl_Xx_B 0.846185 1 -0.26966 0.36638 1 0.90055 0.83226 0.95684
33 Owl_Xx_C 0.502171 0.92488 -0.23999 0.26854 0.35926 0.92499 0.87445 0.94682
34 Owl_Xx_D 0.506304 0.97997 -0.20147 0.11919 0.28028 0.90183 0.75881 0.90127
35 Owl_Xx_E 0.440517 0.83803 -0.18642 0.14212 0.31461 0.92304 0.8318 0.93196
36 King_CLC_A 0.165465 0.75709 0.18811 0.04572 0.02592 0.29786 0.18428 0.30167
37 King_CLC_B 0.138197 0.73179 0.24503 0.03636 0.03503 0.43496 0.30423 0.43355
38 King_CLC_C 0.17689 0.70386 0.29846 0.02378 0.04239 0.49914 0.44074 0.49221
39 King_CLC_D 0.151661 0.51952 0.51904 0.01731 0.0276 0.35117 0.2534 0.35136
40 King_CLC_E 0.159903 0.73914 0.16087 0.02035 0.06234 0.54994 0.40071 0.5452
41 King_HLJ_A 0.313851 0.82033 -0.2418 0.09059 0.15074 0.68867 0.62954 0.78265
42 King_HLJ_B 0.323866 0.83808 -0.17675 0.08286 0.17178 0.78329 0.6459 0.79738
43 King_HLJ_C 0.350982 0.88359 -0.16831 0.09341 0.16462 0.7942 0.64073 0.7882
44 King_HLJ_D 0.480227 0.83407 -0.16699 0.16324 0.17988 0.81557 0.64458 0.81993
45 King_HLJ_E 0.428288 0.87148 -0.22024 0.10765 0.1777 0.78372 0.62791 0.81773
46 King_Xx_A 0.801137 0.81803 -0.30829 0.36989 0.19622 0.68972 0.84759 0.91264
47 King_Xx_B 0.852735 0.78634 -0.1628 0.65849 0.25894 0.76339 0.9406 0.94805
48 King_Xx_C 0.712224 0.78906 -0.20147 0.6214 0.17432 0.64002 0.70852 0.82645
49 King_Xx_D 0.903141 0.77858 -0.09948 0.68849 0.1848 0.68532 0.79338 0.89371
50 King_Xx_E 1 0.81952 -0.3002 1 0.2961 0.77173 0.87619 0.95083  

Table 9: Feature Value matrix for Data set-2 consisting of 60 test targets. 

The minimum SFMM value error observed in a test target across the five batches was 

~ 0.18 (2025-HML) and a maximum of ~0.96 (2025-XMB4200). The maximum 

deviation seen across the ranks for each test target across the five batches did not exceed 
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~1.2. These results indicate that the proposed algorithm is consistent when tested for 

attributes like repeatability and redundancy. If an experiment was to be designed with an 

aim to obtain ideal printer performance characteristics for several printers, the proposed 

algorithm could prove to be efficient and acceptably accurate in terms of characterizing 

printers and suitable media based on mottle.  

Parent 
No.

Printer Media A Rank B Rank C Rank D Rank E Rank SFMM (Mean ± 
Std. dev)

Rank (Mean ± 
Std. dev)

1 1518 CLC 1.55 3 1.36 2 1.13 2 1.36 3 0.97 2 1.27  ±  0.23 2  ±  0.55
2 1518 HMF 2.17 5 2.53 6 1.67 5 1.96 5 1.32 3 1.93  ±  0.46 5  ±  1.1
3 1518 HML 2.50 6 2.13 5 1.95 6 2.78 7 1.99 6 2.27  ±  0.36 6  ±  0.71
4 1518 XMB4200 3.35 7 3.29 7 2.64 8 2.65 6 1.99 7 2.78  ±  0.56 7  ±  0.71
5 2025 CLC 1.26 1 1.34 1 0.56 1 1.21 1 0.77 1 1.03  ±  0.34 1  ±  0
6 2025 HML 1.46 2 1.71 3 1.37 3 1.77 4 1.44 5 1.55  ±  0.18 3  ±  1.14
7 2025 XMB4200 5.90 10 5.43 9 4.14 10 4.69 9 3.51 9 4.73  ±  0.96 9  ±  0.55
8 KING CLC 2.00 4 1.76 4 1.41 4 1.33 2 1.37 4 1.57  ±  0.29 4  ±  0.89
9 KING HML 3.64 8 3.50 8 2.52 7 3.72 8 2.35 8 3.14  ±  0.66 8  ±  0.45

10 KING XMB4200 5.25 9 5.75 10 3.78 9 5.10 10 4.31 10 4.84  ±  0.79 10  ±  0.55

BATCHTEST TARGET INFO RELATIVE SFMM

 
Table 10: Results for 50 targets data set divided in to five batches along with ‘Relative 

SFMM’ and corresponding rank statistics for ten test targets. 

Parent 
No.

Printer Media A Rank B Rank C Rank D Rank E Rank SFMM (Mean ± 
Std. dev)

Rank (Mean ± 
Std. dev)

1 1 CLC 9.36 3 8.96 2 9.74 2 8.84 3 10.14 2 9.41  ±  0.54 2  ±  0.55
2 1 HMF 9.95 4 11.52 5 10.67 4 10.10 4 10.83 4 10.61  ±  0.63 5  ±  0.45
3 1 HML 11.73 6 11.58 6 13.60 7 13.85 7 14.52 7 13.06  ±  1.32 7  ±  0.55
4 1 XMB4200 12.08 7 12.03 7 12.60 6 11.38 6 11.36 5 11.89  ±  0.52 6  ±  0.84
5 2 CLC 7.20 1 7.93 1 0.43 1 2.09 1 3.82 1 4.29  ±  3.23 1  ±  0
6 2 HML 8.67 2 10.21 3 9.89 3 10.32 5 10.53 3 9.92  ±  0.74 3  ±  1.1
7 2 XMB4200 15.27 10 15.85 10 15.87 10 15.52 10 15.68 10 15.64  ±  0.25 10  ±  0
8 3 CLC 10.32 5 10.62 4 11.10 5 8.67 2 11.93 6 10.53  ±  1.2 4  ±  1.52
9 3 HML 14.38 8 14.68 8 14.70 9 14.89 9 14.82 8 14.69  ±  0.2 8  ±  0.55

10 3 XMB4200 15.01 9 15.18 9 14.31 8 14.52 8 15.44 9 14.89  ±  0.47 9  ±  0.55

BATCHTEST TARGET INFO ABSOLUTE SFMM

 

Table 11: Results for 50 targets data set divided into 5 batches along with ‘Absolute 

SFMM’ and corresponding rank statistics for ten test targets. 

Another possible application could involve comparing one printer’s performance 

across several media. To illustrate these applications, the ‘Absolute SFMM’ values for 

the 50 targets were evaluated and variations across the 5 batches for each test target are 



- 60 - 
 

shown with the help of a bar plot presented in Fig. 23. The variations are observed to be 

minimal as these test targets were printer under similar environments. 
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Figure 23: Comparison bar plot depicting variation level for each target across 5 batches. 

The minimum ‘Absolute SFMM’ error observed in a test target across the 5 batches 

was ~ 0.2 (P3-HML) and a maximum of ~3.23 (P2-CLC). This unusually large variation 

was observed to be due to varying values of the features – LRE (Long Run Emphasis) 

and ENTR (Spatial Entropy). The cause of variations in these particular features in not 

known and currently being studied. There was no variation observed in the ranks across 

the 5 batches of P2-CLC, hence other causes for this large variation were not explored in 

detail. Maximum deviation seen across the ranks for each test target did not exceed ~1.6. 

Interestingly, it was observed that ranks for the ten test targets derived from the mean 

‘Absolute SFMM’ did not vary much from those derived from the ‘Relative SFMM’ 

results. The results presented above are evidence of our proposed algorithm being 
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independent of a relative scale, hence providing a complete tool for evaluation of print 

mottle for any data set.  

Prior to summarizing results for the color test targets, an important observation to be 

explained is the difference in results for dataset 1 (10 targets) and dataset 2 (50 targets) 

even though they are produced for similar combinations of printer and media. This proves 

that the phenomenon of print mottle is non-causal, that is, it is not necessary that the 

amount of mottle introduced by the same printer on the same media may remain constant 

under different conditions, such as time of printing, humidity and temperature. It also 

depends on the grade of toner used. Our research was focused on developing a model to 

help print vendors identify mottle and characterize targets after they have been printed. 

The above mentioned variations need to be accounted for, as an extension to this work 

but not in this thesis. 

This concludes the results presented in for K-only samples. It is important to note 

that the test targets used here were printed using K color only and no halftones. It is also 

imperative to know that the proposed algorithm may perform differently for halftones and 

the spatial analysis may have to be adjusted accordingly. 

4.2.4 Results for Color Test Targets (Chapter 4) 

The proposed method for color targets was validated using 5 preliminary test targets with 

the design pattern shown in Fig. 13, presented earlier. The design pattern consists of red, 

green and blue flat printed areas with varying amount of mottle.  

Shown in Figure 24 is one red test target along with each of the single channel images 

in RGB and CMY space. Also shown in this image is the first principal component 

selected that is essentially the grayscale input image for the proposed algorithm. All other 
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modules of the proposed algorithm remain unchanged and metric is calculated as shown 

above for the 5 color test targets for each color (R, G and B). 

(a) (b) (c) (d)

(e) (f) (g) (h)  

Figure 24: Example ‘R’ color test target with respective single channel images: (a) RGB, 

(b) R; (c) G; (d) B; (e) Cyan; (f) Magenta; (g) Yellow; (h) First Principal Component. 

The image shown in Fig. 24(h) was used as the input to compute the ‘Relative 

SFMM’ values across the 5 colored test targets. The process was repeated for red, green 

and blue regions of the test target. Note that, the design of the test targets was such that 

red, green and blue regions share boundaries across the whole page. We utilized a color 

gradient based thresholding scheme to extract each color and store it as a separate image. 

Further, each color is evaluated one by one and the SFMM value is reported here. As the 

extracted colored sub-target is rectangular and larger in size in comparison to the 

conventional K-only design pattern used in the experiment before, it was further sub-

divided into 3 equally sized targets (512x 512), as illustrated in Fig. 13 presented earlier, 

and their average SFMM value is reported as the final value for that color. 
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Figure 25: First Principal component of colored test targets indicated accordingly for 5 

targets. 



- 64 - 
 

As there was no subjective experiment performed to evaluate these targets visually, 

there is no ground truth to compare the algorithm’s results. For these reasons, the 

principal components extracted from the five test targets are presented in Fig. 16 to 

facilitate the reader comparing the results obtained from the algorithm with the reader’s 

own results. This methodology needs to be validated on a greater number of test targets 

and compared with subjective evaluations obtained under laboratory controlled 

conditions. 

Test 
Target

SFMM Rank
Probable 

Visual Rank
8.98 5 5
7.98 4 4
7.64 5 5
6.88 4 4
6.38 3 3
6.36 4 4
1.92 1 2
3.18 2 2
3.22 2 2
2.16 2 1
2.53 1 1
2.25 1 1
3.85 3 3
8.47 5 5
4.34 3 3

Color

Red

Blue

Green

Red

Red

Blue

Green

A

B

C

D

E

Green

Green

Red

Blue

Green

Red

Blue

Blue

 

Table 12: Summary of Results for 5 color test targets (see Figure 25) with their probable 

visual ranks. 

As mentioned earlier, it is left to the reader to evaluate these targets visually and 

compare them with the results of the algorithm. Principal components corresponding to 

each of the three printed colors from the five test targets are presented in Fig. 18. The 

amount of mottle in the target presented here can be perceived with ease, given that 
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observers are well-versed with the concept of print mottle and the perception properties 

related to it. These targets were accordingly evaluated with the help of a preliminary 

experiment performed by 5 trained observers. Readers may also be able to perform these 

experiments and approximately assign ranks to each target. These results are presented in 

Table 12 along with the SFMM values and corresponding ranks.  

The visual ranks presented above may vary slightly from the reader’s visual 

evaluations as the above rankings are representative of the mean rankings of a population 

of 5 observers. Note that this method requires modification using precise RGB-to-CMY 

look-up tables in order to quantify actual amount of mottle. The current technique utilizes 

a simple subtractive transformation as mentioned before in Chapter 3. 

Considering the advantages of this new model over previous models available, the 

most important contribution is the introduction of a combinative analysis using spatial 

and frequency features with prior pre-processing using wavelets. To our knowledge, no 

attempt has been made to combine these features together and make a single model for 

evaluation of print mottle on a relative and, more importantly, an absolute scale using the 

same set of features. 
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4.3 Graphical User Interface 

For the purpose of dissemination, a GUI was developed based on the proposed 

algorithm. It consists of two modes – “Single File Mode” and a “Multiple File Mode” 

which evaluate one file and multiple files (relative to each other) respectively. Snapshots 

of the two modes of the GUI are shown below in Figure 25. 

 

 

 

(a) 

 

 

 

 

 

 

 
 
(b) 
 
 
 
 

 

 

 

Figure 26:  Graphical User Interface (GUI) in two modes: (a) Single File Mode; (b) 

Multiple Files Mode. 
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Chapter 5: Conclusions 
 
 
 
This thesis proposes a methodology of evaluating only low frequency content using a 

novel combination of Spatial and Frequency domains with Wavelet domain 

preprocessing and also introduced a novel metric that provides a fairly accurate estimate 

of mottle in a given test target. The proposed metric - SFMM correlated well with the 

visual evaluation rankings ~ 96.5% for 9 test targets and 94% for 10 targets (including 

1518 Hammermill Fore). 

Two types of mottle metrics – ‘Relative SFMM’ and ‘Absolute SFMM’ were 

described and compared. The proposed algorithm was able to quantify mottle in a single 

target (Absolute SFMM) and was benchmarked successfully against the corresponding 

‘Relative SFMM’ value with 100% accuracy. Both metrics were computed for 2 datasets 

of K-only flat printed test targets. Further, the SFMM rankings correlated to be at ~94% 

with the subjective evaluations performed by ~30 Print Quality Experts under laboratory 

conditions. Relative and Absolute SFMM values showed a similar behavior for the 

second data set and their respective ranks correlated with minimal variation. One 

important observation made from the results of the relative mottle metric and the features 

eliminated facilitated in selection of valid features for computation of the absolute metric. 

Features such as Spectral Entropy (Espec), Short Run Emphasis (SRE) and Inverse 

Difference Moment (IDM) showed a low or even negative correlation for both datasets. 

Eventually, these features were not included in the computation of the ‘Absolute SFMM’ 

values. Given the performance of the proposed algorithm, we extended it to colored test 

targets by utilizing a PCA module for converting the image into a single channel image 
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as the input to the algorithm. Results were presented and correlated well with a 

preliminary subjective ranking obtained from 5 observers. Future work would include 

results from testing the algorithm on more color test targets given their subjective 

evaluations as well as modifying the proposed methodologies for evaluation of mottle in 

halftone prints.  

Concerning the advantages of this new model over previous models available, the 

most important contribution is the introduction of a combinative analysis using spatial 

and frequency features with prior pre-processing using wavelets. After reviewing the 

literature, it is fair to say that no prior attempt has been made to combine these features 

together and make a single model for evaluation of print mottle. All our results, in fact, 

indicate that this rather straightforward method works well in a variety of printing 

conditions. The second important advantage of our approach is of the scanner being used. 

The scanned image, being acquired using 6 lamps and a customized routine adds to the 

algorithms robustness and eliminates any questions related to calibration and acquisition 

errors. 
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Addendum: Future Work 
 

This work is proposed to be extended to another level of complexity. The next step 

would be to test the existing metric with more K-only targets for validation. It could then 

be developed into a complete robust tool to disseminate among the research community 

and the approach can also be extended for CMY solid prints and halftones.  

Another scope lies in evaluation of print mottle in real life images. This is an area 

which still remains unexplored (See Fig. 26). Any such algorithm has, to our knowledge, 

not yet been published or developed. Currently, the proposed algorithm is compatible 

with only flat uniform images. But the existing algorithm can be integrated with a 

segmentation algorithm to extract the flat regions in the images and evaluate these 

regions for mottle. Real life images consisting of regions with varying levels of optical 

density and uniformity need to be handled and evaluated differently.  

 

 

 

 

 
 
 
 
 
 
 
Figure 27: A proposed methodology to directly evaluate real life complex images, using 

the SFMM and the HP-RIT image segmentation algorithm. 
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