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Abstract 

Designing a digital system that implements an assortment of specialized high-

performance algorithms can be costly. Considerable non-recurring engineering costs are 

required to develop an application specific integrated circuit (ASIC). Additionally, 

updating or adding features to a design requires the ASIC to be redesigned and re-

fabricated. An alternative to using an ASIC is the field programmable gate array (FPGA). 

The modern FPGA's ability to be partially reconfigured at runtime allows for the device 

to have the flexibility normally associated with a processor, while also being able to 

implement digital logic like in an ASIC. This capability allows for multiple digital 

functions to be loaded into the device at runtime only as needed. 

This thesis focuses on developing a reconfigurable framework that enables 

stream-oriented applications to make more effective use of FPGA resources and to 

manage partial reconfiguration operations across multiple tasks. This multichannel 

framework addresses several shortcomings of past research that evaluated various 

dynamic partial reconfiguration techniques using a color space conversion (CSC) engine. 

This framework allows for multiple different computations to be performed 

simultaneously, further improving throughput and flexibility of applications implemented 

within it. Performance of the system is evaluated by comparing its computational 

throughput to previous efforts using the CSC engine as well as the performance gained 

from the flexible scheduling that the framework allows. Implementations using the CSC 

engine show that performance can be improved up to 5 times faster than previous works, 

as a result of exploiting parallelism. 
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Chapter 1: Introduction 

In digital design, using an application specific integrated circuit (ASIC) to process 

data is the solution of choice when computational speed is a priority. Although, the 

performance advantages of an ASIC may be appealing, development costs can be 

prohibitively high. If an application is required to perform a variety of specialized, time-

critical computations, one or more ASICs need to be designed, fabricated, and 

maintained. By their very nature, ASICs are often very inflexible. The incorporation of 

new  features requires the design and fabrication of a new device, which incur significant 

costs and lead times. These non-recurring engineering costs can be significant enough to 

make the use of an ASICs justifiable only in large quantities. 

Field programmable gate arrays (FPGAs) are viable alternatives to ASICs, since 

they can be configured to perform a wide variety of functions directly off the shelf. 

Although, FPGAs have a significantly higher per-unit cost than ASICs, they are well-

suited for specialized low quantity designs because of significantly lower non-recurring 

engineering costs [1]. Since FPGAs are purchased as completed units, a customized 

system can be developed far more quickly than an ASIC. SRAM-based FPGAs also 

present the ability to be reconfigured multiple times. This makes hardware updates easy 

to roll out as a product matures. 

Digital logic in an FPGA is implemented using look up tables and configurable 

interconnects. Because of this, significantly more physical logic is required to implement 

a function. A design implemented on an FPGA is on average 35 times larger in area than 

if it was implemented in an ASIC [1], which may make it infeasible to fit all logic 
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functions into the FPGA fabric simultaneously. One solution is to take advantage of a 

feature that many modern FPGAs support: partial reconfiguration (PR). By swapping in 

and out modular functions over time using PR, one can implement all of the required 

functionalities of a device as they are needed [2]. Normally, the entire FPGA must be 

held in a reset state during a reconfiguration operation. Modern FPGAs eliminate this 

requirement by allowing portions of the device to be reconfigured while others remain 

active. This feature is called dynamic partial reconfiguration (DPR). 

Another noteworthy feature of modern FPGAs is the inclusion of hardwired, high-

speed serial transceivers. Both Xilinx’s and Altera’s leading FPGA models feature 

multiple serial transceivers capable of 28Gbps transfer speeds each [3, 4]. Combining the 

throughput of multiple transceivers allows for very high data transfer rates: on the order 

of terabits/sec. These transceivers present the opportunity to apply FPGAs in applications 

that work with large data sets and require high data bandwidth. Unfortunately, when 

migrating an ASIC design to an FPGA, it is common to experience a clock speed 

reduction of 3.4 to 4.6 times [1]. This means that for more complex designs, the 

application’s computational capabilities would likely be bounded by the FPGA’s internal 

clock speed rather than the device's data throughput capabilities. 

Integration of reconfigurable processing devices such as FPGAs into computing 

systems has been done in a variety of ways. Frequently, the reconfigurable logic is 

coupled to a traditional program-executing processor. K. Compton and S. Hauck [5] 

classify several typical coupling methods, which range from a deeply integrated 

functional unit within the processor core to a stand-alone network-attached 

reconfigurable unit. Tightly coupled systems such as the reconfigurable functional unit 
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implement custom instructions within the CPU. Such a closely coupled system on chip 

has the advantage of extremely low-latency communication with the host CPU at the cost 

of being restricted to smaller working sets. Systems that are loosely coupled experience 

the opposite effects. A network-attached unit is not able to closely communicate with the 

host processor which lends itself to be used in applications that require less processor 

intervention such as ones with larger task sizes. One of the most common coupling 

methods is implementing the reconfigurable device as an attached processing unit. This 

type of device lies in the middle of the coupling spectrum and commonly uses interfaces 

that are readily-available in consumer processor platforms such as PCI or PCI-Express. 

Using the integrated serial transceivers available in current FPGAs, it is possible to 

directly interface with a host processor. 

This thesis demonstrates a framework for an attached processing unit tailored for 

stream-oriented data processing operations. The proposed framework leverages the high 

data throughput of a PCI-Express interface and reconfigurable logic to facilitate the 

implementation of high-bandwidth stream-oriented data processing applications into an 

FPGA. An existing digital system, a color space conversion engine (CSC) that operates 

on large image data sets, is used to evaluate the design. 

In the following chapter, several other research works are presented that have 

similar characteristics to the CSC engine. The characteristics of the CSC engine are also 

described in more detail along with other research that used it as a test vehicle for various 

reconfiguration methodologies. In Chapter 3, a set of requirements for a proposed DPR 

methodology are collected. Using this set of requirements, the concept for a proposed 

reconfigurable framework is developed. Chapter 4 describes, in significant detail, how 
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the reconfigurable framework was designed and implemented during the course of this 

research. In Chapter 5, the methods in which the framework were evaluated are described 

and the results of these tests are discussed. Finally, Chapter 6 concludes the research and 

also presents potential future work that could further improve the performance of the 

reconfigurable framework. 
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Chapter 2: Background 

In recent years, the amount of resources available on an FPGA has increased to 

the point where it is possible for some systems to be implemented within a single device 

[6].  Such systems commonly consist of multiple independent modules that collectively 

perform the required tasks. If the system's requirements vary over time, some modules 

may remain unused. With DPR, it is possible to define a dynamic region in the FPGA 

fabric where modules can be loaded only when the system needs them. By time-

multiplexing functions instead of implementing all of them at once, one can significantly 

reduce area requirements (Figure 2.1). In turn, this can also reduce static power 

consumption by allowing a smaller FPGA to be used [7]. Dynamic power can be reduced 

as well by swapping in and out high-performance modules only as needed and using 

lower power variants when high performance is not as necessary [2]. Also, with a 

reconfigurable region, the amount of functions that can be performed over time is only 

limited by the resources available in that region and the amount of storage space available 

for reconfiguration data.  

 
Figure 2.1: Reducing Area using Module-based PR 

The implementation of DPR does not come without its challenges. The design of 

a system using DPR must consider the time it takes to configure a module, in addition to 
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the processing time. This has a significant impact on scheduling and architectural 

considerations of the design. Compared to traditional FPGA design, some additional 

steps are required during the design flow [8]. Reconfigurable regions are described in the 

top level of the static design as black-boxes. Doing so defines generic interfaces to the 

reconfigurable module. Each variant of the module is then synthesized separately and 

linked to the static design in a later step. Another required step in the PR design flow is 

the floor-planning of the implemented design where regions in the FPGA fabric are 

manually defined for each reconfigurable partition. Special consideration must be made 

so that each partition allocates sufficient FPGA resources to be able to accommodate any 

of the module variants. 

2.1 Related Work 

Partial reconfiguration of modules can be done in two ways: self or external 

reconfiguration. A self-reconfigurable system initiates module reconfiguration internally 

and often stores bitstream information locally. An external reconfigurable system uses 

logic outside of the FPGA such as a processor to initiate PR operations and supply 

bitstream data. R. Fong et. al [9] demonstrate a system that is capable of self-

reconfiguration. In this framework, the FPGA is largely a standalone device that is 

loosely coupled to a host processor through a network interface. Through this interface, 

PR bitstreams can be sent to the device and stored locally. The system is classified as 

self-reconfigurable because it is designed to initiate reconfiguration of its modules on its 

own, and as needed. Partial bitstream configurations are cached in an off-chip 

configuration data medium and loaded into the RR as required. Using this DPR method, 
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it is possible to time-multiplex the implementation of a number of modules and only be 

limited by the amount of local storage available. By storing bitstreams locally, it is also 

possible to sever the link to the host processor entirely and operate as an isolated system. 

Although, this is an interesting solution for managing bitstream data, such a loosely 

coupled device would not be well suited for extremely high-bandwidth data processing. 

One notable implementation of module-based dynamic partial reconfiguration is 

in Xilinx’s Joint Tactical Radio System (JTRS) software-defined radio (SDR) kit. In an 

SDR system, radio frequency (RF) signals are modulated and demodulated digitally in 

real-time instead of using dedicated analog RF hardware [10]. This allows for a 

significant amount of flexibility since modulation methods can be modified in software. 

Traditionally, a four-channel SDR system would use up to 12 digital signal processors 

(DSPs) to handle the large amount of computing and data bandwidth required. By 

transitioning to an FPGA, both the large power consumption and cost of the DSPs could 

be reduced by 2-3 times [11]. The JTRS SDR system also took advantage of the FPGA’s 

PR capability by dynamically swapping out different signal processing logic. In an 

implementation with multiple SDR channels, an algorithm for a video stream could be 

reconfigured without interrupting processing of the audio channel [11]. 

Other research by P. Ostler et al. [12] presented a system where a PCI-Express 

(PCIe) interface was used to transmit partial reconfiguration bitstreams from a host 

processor to an FPGA. At startup, only a PCIe core and basic support logic is configured 

into the FPGA fabric using traditional configuration interfaces. Once the PCIe link is 

initialized, user circuits can be loaded into a large reconfigurable region through the static 

PCIe link. This type of flexible framework presents the ability to easily time-multiplex 
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hardware algorithms through a widely available high-speed data interface. The PCIe 

interface makes the system more closely coupled to the host processor allowing for 

higher data bandwidth and tighter control. In this example, the external host processor 

both initiates the reconfiguration of the user-region and supplies the bitstream data to the 

FPGA. This method of external-reconfiguration allows for a simplified system that does 

not require additional hardware to store partial bitstreams. 

Another interesting application of the FPGA is for scanning and detection of 

malicious content within network packets. Conventional network firewalls, which only 

inspect the header information in a Transmission Control Protocol (TCP) packet, are 

unable to detect application-level attacks which are usually hidden within the payload of 

the packet. Deep packet filtering systems, such as the open-source Snort system, perform 

more comprehensive scanning by matching the payload data against a set of known 

malicious signatures. Traditionally, the Snort network intrusion detection system (NIDS) 

is implemented using a Von Neuman-style architecture which does not scale well as the 

size of the signature database grows. For example, implementing a filter with 500 

patterns is only able to achieve a throughput of 50 Mbps using a dual-core, 1 GHz 

Pentium III system [13]. To remedy this, Y. Cho and Mangione-Smith [14, 15] mapped 

the Snort rule set to pipelined pattern matching filter logic and implemented it on an 

FPGA. The pattern rules, stored in the FPGA's block RAM, could be updated without 

modifying the logic by loading a new string table into memory. Using this architecture, it 

was possible to match a stream of TCP packets against a set of almost 3000 rules at a 

sustained rate of up to 2.3 Gbps. 
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An additional research group [16] further enhanced the implementation of the 

Snort NIDS on an FPGA by adding a hashing module. Instead of checking against each 

pattern separately, the hashing module determines which pattern is a possible match to 

the TCP payload. The hashing logic is implemented as a binary hash tree within the 

FPGA's reconfigurable fabric as opposed to a ROM-based solution. Unfortunately, since 

the hashing module is tailored to the specific set of pattern strings, it is unable to be 

updated with just a simple RAM access. I. Sourdis et.al. [16] also increased throughput 

by further parallelizing the filtering process by implementing a second duplicated 

datapath. Although it was not attempted in this research, applying dynamic partial 

reconfiguration techniques to this architecture would enable the hashing module to be 

updated without requiring the filter to be taken offline. 

2.2 The Color Space Conversion Engine 

Previous research investigated various dynamic partial reconfiguration techniques 

in FPGAs and evaluated them using an existing color space conversion (CSC) engine. 

This image processing engine, provided by Hewlett Packard Company (HP), has been 

used numerous times as a resource to evaluate various PR methodologies [17-20]. The 

purpose of the CSC engine is to convert the numerical representation of a color from one 

coordinate system, or color space, to another. One conversion commonly used is from a 

3-dimensional red-green-blue (RGB) color space, which is used to represent colors in 

additive technologies such as displays, to a 4-dimensional cyan-magenta-yellow-key 

(CMYK) color space. The CMYK color space is typically used in color printing that 

requires subtractive primary colors [21]. The CSC engine provided for this research is 
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being used in various HP products to perform such color conversions as well as color 

adjustments. 

The CSC engine consists of a multi-stage, pipelined architecture that can process 

a stream of pixels at up to one per clock cycle. The conversions are performed on either 

three-channel or four-channel pixel inputs. The pixel conversions themselves are 

performed by using pre-computed color lookup tables that store the conversion values for 

the transformation. Providing an exhaustive lookup table for each possible color 

combination would require an impossibly large amount of storage (on the order of 

exabytes for a 4-channel input and 4-channel output operation). Instead, a lower precision 

lookup table is stored and any intermediate values are interpolated. An advantage of this 

method is that the time required to perform a color conversion is always constant which 

lends itself for implementation in a deterministic pipeline architecture. 

 
Figure 2.2: CSC Engine Overview 

The pipeline architecture is comprised of several stages of processing modules 

which, depending on the conversion to be performed, are active or can be bypassed. At 

the core of the engine, two main conversion units perform the conversion between the 

color spaces (Figure 2.2). The 3D processing module performs conversions for pixels 

represented using a 3-dimensional color space, while the 4D processing module is used 

for 4-dimensional inputs. Depending on the input image color space, only one of the 

modules is required. In the ASIC implementation of the CSC engine, both modules are 
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present in the pipeline, but either can be bypassed by configuring internal registers 

through the CSC’s register bus (reg bus).  

2.3 Prior Research Using the CSC as a Test Vehicle 

The CSC engine has been used in the past as a test vehicle to investigate various 

FPGA design techniques; specifically, dynamic partial reconfiguration (DPR).  The CSC 

engine is an interesting candidate for testing DPR techniques because it contains two 

processing modules, the 3D and 4D portions, which operate mutually exclusively. With 

this knowledge, it is possible to merge the two into a single reconfigurable module. 

Loading a new configuration bitstream into this module switches its function as required 

by the particular image processing operation. Methods of managing these reconfiguration 

operations have been attempted in several different ways by making effective use of 

various FPGA resources. 

In previous research, S. Patil [19] identified that the use of these 3D and 4D 

modules is mutually exclusive and, when implemented in an FPGA, can be time-

multiplexed using a reconfigurable 3D/4D module. Patil’s implementation achieved 

external partial reconfiguration by sending bitstream data for the 3D/4D module to the 

FPGA using the conventional JTAG programming interface. In subsequent research, J. 

Galindo [20] enhanced the CSC engine’s register bus so that bitstreams could be 

transmitted through the existing data interface. The bitstream would then be passed into 

the FPGA's internal configuration access port (ICAP) to reconfigure the 3D/4D module. 

One challenge of managing a dynamically reconfigurable system is that PR 

operations require a significant amount of time to complete which can incur processing 
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delays. In the most recent iteration of research using the CSC engine, R. Toukatly [17] 

investigated one method of hiding these configuration delays by taking advantage of 

dynamic PR and the large amount of logic resources available in modern FPGAs. In this 

implementation, two instances of the CSC engine, each containing a reconfigurable 

3D/4D module, were instantiated in the FPGA (Figure 2.3). Since during pixel 

processing, the register bus remains unused, it was possible to overlap configuration time 

with processing time. With two independent copies of the CSC, it added the possibility to 

perform image processing on one pipeline while simultaneously performing partial 

reconfiguration of the 3D/4D region in the other pipeline. The advantage of this was that 

configuration operations could be overlapped with processing regardless of what kind of 

color conversion was required. 

 
Figure 2.3: Dual-Pipe PR CSC Engine 

Another notable achievement of this design was the successful coupling of the 

system with a host processor using a high throughput PCI-Express interface. In 

Toukatly's design, the register bus and pixel bus interfaces were preserved throughout the 

PCIe interface by transmitting a snapshot of each of the CSC's signals for every clock 
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cycle. Although, the 128-bit wide snapshots contained a significant amount of redundant 

information, this simplified the migration of the interface to a PCI-Express bus. 

The dual-pipeline implementation of the CSC was able to improve performance 

by reconfiguring portions of the engine while performing pixel conversion at the same 

time. However, for all of the tests performed, reconfiguration time was always 

significantly shorter than image processing time. Because of this, hiding configuration 

operations only resulted in minimal speedup and became negligible as image sizes 

increased. Although, the design allowed for reconfiguration to be completely hidden, it 

nearly doubled logic utilization while providing no benefit to actual image processing 

time. A more efficient approach would be to allow both pipelines to be able to process 

image data simultaneously after being configured. 

Although this research will continue using the CSC engine as a test vehicle, the 

DPR techniques developed can also be applied to other computational engines with 

similar characteristics. Systems such as the JTRS software defined radio [11] and the 

deep network packet filters [13-16] are all implemented using some form of a 

deterministic pipeline that operates on a stream of data much like the CSC.  All of them, 

if enhanced with DPR techniques, require some method of managing their 

reconfiguration. Additionally, the throughput of these systems can be further enhanced by 

exploiting the inherent parallelism of the operations performed. This research will 

continue work on further enhancing the partial reconfiguration techniques used in the 

CSC engine as well as improving its overall throughput by making efficient use of the 

FPGA resources available. 
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Chapter 3: Proposed Methodology 

In order to improve upon DPR methodologies, the shortfalls of the approaches 

used in prior research were examined along with the computational characteristics of the 

CSC engine and other similar applications. This information was used to infer a set of 

requirements that the proposed solution must meet. Using this set of requirements, the 

concept for a reconfigurable framework was developed. This chapter describes some of 

the benefits and shortfalls of prior methodologies that influenced the development of the 

requirements as well as the general concept of the proposed reconfigurable framework. 

3.1 Requirements 

The ultimate goal is to develop a generalized framework that enables stream-

processing applications, such as the CSC engine, to take advantage of FPGA features 

such as dynamic partial reconfiguration to increase the application's overall processing 

throughput.  

Prior work by Toukatly [17] developed a reconfiguration latency hiding method 

targeted for the CSC engine. When implemented using an FPGA, computational latencies 

were successfully hidden by using two identical pipelines and overlapping configuration 

and computation operations. For test cases using small images, where configuration time 

was comparable to image processing time, an overall speedup of up to 1.3 was achieved 

when enabling overlapping using the two pipelines. Unfortunately, tests using large 

images resulted in negligible speedup since hiding the comparably small reconfiguration 

latencies became insignificant. Since only one of the two CSC engines could process 
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image data at a time, the other would remain idle, needlessly occupying logic resources 

within the FPGA. 

Research groups working with the Snort packet filter described in section 2.1 also 

experimented with the concept of datapath duplication [16]. However, instead of 

duplicating logic for reconfiguration delay hiding, an additional processing pipeline was 

added to increase computational throughput by enabling both to process data in parallel. 

It is clear that, if managed properly, multiple processing datapaths can be used to 

parallelize certain computations as well as hide latencies related to partial 

reconfiguration. 

In the JTRS software defined radio [11], multiple processing datapaths are also 

used but to perform different operations concurrently. Parallel signal processing datapaths 

are used to decode multiple radio receive channels such as an audio and video channel. 

This concept can be applied to the CSC engine to allow for unrelated images to be 

processed at the same time as well. To accomplish this, these processing channels should 

be logically isolated in order to allow multiple tasks to be performed independently. 

Doing so will allow for more application flexibility as well as more effective utilization 

of the available FPGA resources. 

Another drawback of the dual-pipe CSC architecture [17] was that the system's 

total throughput was dictated by the processing speed of a single processing pipeline. 

This was due to the limitation that only one pipeline could process pixel data at a time. 

The slower pipeline speed is due to the CSC engine reference design's clock to be 

constrained to a maximum of 50 MHz. This clock speed correlates to a maximum data 

throughput of 3.1 Gbps which is considerably less than the PCIe interface's peak of 10 



   16

Gbps [22]. Combined with an inefficient data structure of the input data stream, the PCIe 

interface was left to be severely underutilized. To achieve improved performance, the 

proposed architecture should be able to accommodate for processing engines that require 

lower datapath clock speeds. Additionally, the data rate of the architecture's data interface 

should be able to scale to higher throughput protocols such as PCIe and beyond. 

3.2 Resulting Architecture Concept 

In order to address the above requirements, the concept of a multichannel 

framework (MCF) has been developed (Figure 3.1). The MCF allows for multiple 

instances of a stream-oriented processing core to operate simultaneously. This is 

advantageous for the CSC engine because pixel conversions are completely independent 

from each other, allowing greater parallelism in image processing. With multiple 

instances of the CSC engine, it is possible to not only overlap configuration operations 

between pipelines, but image processing as well. These processing datapaths are also 

logically isolated from each other which allows for multiple unrelated image processing 

operations to occur concurrently. Due to the isolated nature of the user circuit channels in 

the MCF, the efficiency of logic utilization can be greatly improved. In Toukatly's 

design, only one of the two instances of the CSC could perform image processing 

operations at any time. Since each channel within the MCF is independent of the others, 

it is possible to process image data on all of them simultaneously, resulting in more 

efficient logic utilization.  
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Figure 3.1: Basic overview of the MCF 

Within the framework, the individual clock speeds for the user circuits are fixed at 

50 MHz which allows for ASIC cores such as the CSC engine to continue to operate 

without requiring modifications to satisfy timing constraints. The PCIe interface used in 

Toukatly's research and in this thesis buffers input and output data through a FIFO that 

can be read and written to 8 bytes at a time, at a rate of 250 MHz. Coincidentally, during 

image processing, the CSC engine requires at most 8-bytes of unique pixel data at each 

clock cycle as well. With five instances of the CSC engine accepting 8-byte packets of 

pixel data each 50 MHz clock cycle, the collective throughput of all the channels can be 

matched to the limit of the PCIe FIFO interface of 8-bytes at every 250 MHz clock edge. 

Distribution and clock conversion to each channel is done by sending a 

sequentially interleaved stream of data for each channel through the PCIe interface. 

Channel data packets are shifted into an 8-byte wide shift register and latched for 

synchronization with the channels’ clocks. Resulting data from the user circuits is also 

latched and shifted out of the framework. By using this architecture, it is possible to 
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preserve the maximum clock rate of 250 MHz for the PCIe FIFO interface, while 

seamlessly allowing a slower clock frequency for the user circuits. 

Command and control of the MCF is performed through the same interleaved data 

stream using an instruction-based interface. As described in Section 2.2, the data format 

through the PCIe interface in Toukatly's implementation preserved numerous redundant 

signals. During pixel processing, which consisted of the majority of the device's 

operation, half of these signals remained unused. The MCF eliminates these unnecessary 

data transfers by utilizing an instruction-based data format which allows for large 

payloads of data to be transmitted without any overhead. Figure 3.2 illustrates the 

difference between the two data formats. In the Snapshot of signals method used in 

Toukatly's research, each 64-bit block of pixel data (white) was transmitted along with 

two bits of control signals (dark grey). The remaining data (light grey) remained static 

during the course of a pixel processing operation. With an instruction-based interface, 

each pixel processing operation is initiated with an instruction header. This type of 

interface is useful for not only the CSC engine, but other processing systems that operate 

on large sets of data. The specifics of the instruction-based interface is described in 

further detail in section 4.4. 

 
Figure 3.2: Comparison of PCIe Data Formats 
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3.3 Constraints 

Although, the concept of the MCF emphasizes its flexibility, there are a few 

design constraints to which the framework must conform. First, applying the 

multichannel framework is only beneficial for applications that have a slower operating 

data throughput than the interface they are connected to. For the CSC engine, the 

datapath clock frequency is limited to a maximum of 50 MHz. This reduced clock 

frequency is a result of the CSC engine being a design originally intended for 

implementation in an ASIC. When first implemented in an FPGA by S. Patil [19], the 

engine was only modified to enable partial reconfiguration, not to enhance the clock rate.  

Another, more stringent, constraint is that the data rate of the streaming interface 

must be an integer multiple of an individual channel's data rate. This multiple must also 

be equal to the number of channels used. For example, the PCIe's FIFO interface is able 

to exchange 8-byte packets every 250 MHz clock cycle. The CSC engine operates on 8-

byte pixels on every 50 MHz cycle. This combination results in a stream to channel clock 

ratio of 5:1 and requires 5 channels to be used. Once implemented, this clock ratio is 

fixed at runtime and must be equivalent for each channel. 

The last constraint relates to the dynamic partial reconfiguration capability of the 

framework. Although, several datapaths within the MCF can process data 

simultaneously, only one reconfiguration operation can be performed at a time. This 

constraint will be discussed in further detail in section 4.4. 
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3.4 General Applicability of the Proposed Solution 

The major benefit of the multichannel framework is that it's methodology can 

potentially be applied to many stream-oriented data processing applications. In the case 

of the JTRS software defined radio, each RF decode filter could be mapped directly to a 

processing channel within the MCF. By doing so, stream processing and reconfiguration 

for the audio or video channels can be managed independently. I. Sourdis et. al. 

demonstrated that their implemetation of the deep network packet filter benefited from 

datapath duplication to improve performance. Using the MCF, it would be possible to 

manage multiple instances of the filter as well as enable it to be updated dynamically 

using the MCF's reconfigurability. With a generalized instruction-based interface, it is 

possible to add instruction words in order to accommodate a variety of other processing 

engines. Commanding and controlling the deep packet filter or the JTRS software defined 

radio could be done by adding several application-specific opcodes to the instruction set. 

Different applications are likely to require a variety of data bandwidth 

requirements. With the proposed MCF concept, the clock ratios between the processing 

channel and the data stream interface is configurable at design-time. An application that 

is not able to operate a high clock rate (a high stream-to-channel clock ratio) can be 

parallelized into numerous channels while an application able to operate at a high 

frequency (low stream-to-channel clock ratio) would not require as many channels. 

Another feature of the proposed MCF concept is that the array of processing 

channels does not have to be homogeneous. If desired, several entirely different 

processing applications can operate simultaneously. In addition, each channel's partially 
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reconfigurable partition is not required to be the same. One channel may not require a 

partially reconfigurable region at all while another channel may be entirely contained in a 

PRR. With a fully reconfigurable channel, one could swap out entire applications instead 

of just modifying them. The potential heterogeneity of the MCF is not limited to just the 

individual channel. Adjacent processing channels can potentially be merged together to 

create a single, wider datapath if the application requires it. Although possible, methods 

of merging channels will not be explored in this thesis.  
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Chapter 4: Implementation 

In the previous chapter, the areas of improvement in past and related works were 

investigated and a set of desired system requirements were generated. These requirements 

have been used to develop a general concept for a reconfigurable multichannel 

framework. In this chapter, the process of implementing every aspect of the MCF is 

discussed in detail. 

To simplify the hardware description language (HDL) implementation of the 

MCF, the design is divided into several distinct functional units as shown in Figure 4.1. 

By dividing up the framework in such a way, each component can be designed and tested 

separately. Breaking down a system into smaller components also helps the designer by 

reducing the individual task size, making the overall design process quicker. This chapter 

describes, in detail, the design and implementation of various HDL and software 

components that make up the Multichannel Framework. 

 
Figure 4.1: Module-level Organization of the MCF 
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4.1 PCI-Express Interface 

To provide an interface between the host processor and the MCF, an existing 

PCIe interface based on the reference design provided by Xilinx's ML605 Connectivity 

Kit is used. Originally, the HDL and software for the PCIe reference design only 

implemented a loopback. Previous work by R. Toukatly had already modified the design 

to enable a useable data path. To further improve the interface's performance, several 

modifications to the software drivers were made.  

First, the Linux driver was further streamlined. Originally, an intermediate ring-

buffer was used to store outgoing packets before committing them to the direct memory 

access (DMA) buffer. Subsequently, it was discovered that the ring buffer was not 

necessary and was therefore eliminated. Second, the vecSender program written by R. 

Toukatly, which communicates with the PCIe driver to send and receive test data, was 

also enhanced to improve performance. Originally the program used two threads: one to 

write to the PCIe device, and another one to poll the device for data received. When 

experimenting with the software, it was discovered that the program would spend an 

excessive amount of time polling the PCIe device without sending additional packets. 

Since the MCF operates constantly on a stream of data, additional output data cannot be 

produced if no input data is received. To alleviate this condition, the vecSender program 

was consolidated into a single thread that would switch between writing to the PCIe 

device and polling it in a far more predictable fashion. 

Several aspects of using the PCIe reference design were simplified as well. 

Originally, the HDL code consisted of several sub-modules along with numerous 
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interface-related signals instantiated at the top-level of the design. To ease the process of 

merging the PCIe reference code with the MCF code, the former was compartmentalized 

by placing it into a wrapper module. 

The PCIe reference design provides a data interface to the user using two first-in 

first-out (FIFO) buffers. To handle communication between the PCIe's FIFOs and the 

MCF, a new HDL module, called the I/O Stream Abstraction unit, was created. Both of 

the PCIe's FIFO buffers are designed to provide the number of bytes available to be read 

or written. Unfortunately, documentation for the reference design indicates that these 

values are delayed by a clock cycle, making the interface slightly cumbersome. Also, 

since the MCF does not require input data to be stalled at any time, the abstraction unit 

forces data to be read from the input FIFO as soon as it is available. Doing so further 

simplifies communication between the MCF and PCIe. Whenever a new 8-byte packet is 

available and has been read, the abstraction unit asserts a data_valid signal indicating 

to the MCF that a new packet is available. The output FIFO is handled similarly: If data 

from the MCF is available, it is written to the output immediately. In order to prevent an 

output FIFO overflow, the abstraction unit monitors the number of free bytes remaining. 

If the value reported from the FIFO drops below a threshold, the abstraction unit throttles 

back the amount of data being read from the input FIFO. Since the MCF is designed for 

pipelined systems, reducing the data flow on the input will reduce the amount at the 

output, allowing the output FIFO to recover. 

Embedding an input/output (I/O) abstraction unit is also advantageous because it 

can simplify the migration of the MCF to another interface. Future adaptation to different 
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buffer styles or DMA-like interfaces is greatly simplified by abstracting the MCF's inputs 

and outputs to a single data bus and a corresponding data_valid signal. 

4.2 Global Clock Synchronization 

To drive the logic within the MCF and its user circuits, three main clock signals 

are used. A 250 MHz clock is used for the PCIe FIFOs as well as the channel 

multiplexing logic for the MCF. Another 50 MHz clock is used for all channel-based 

logic including the user circuits. Lastly, a 100 MHz clock is used to drive the ICAP 

interface which will be described in greater detail in section 4.4. All three of these clocks 

are derived from the same external 200 MHz clock source. This differential clock is 

connected to a Mixed-Mode Clock Manager (MMCM) which uses a PLL to synthesize 

multiple output clocks. One useful feature of these output clocks is that they all have a 

fixed phase relationship. For example, every fifth rising edge of the 250 MHz clock will 

be aligned with each rising edge of the 50 MHz clock. This phase relationship is valuable 

when moving data between clock domains because it eliminates the requirement for 

multi-staged synchronizers to account for metastability. 

When moving data between clock domains, transfers are only done when the two 

clocks' rising edges are aligned. Doing so allows signals in the slower clock domain to 

propagate for the entire clock period, resulting in the longest setup time possible. 

Unfortunately, the MMCM does not provide information on when the clocks share a 

rising edge so a synchronization module is developed to do so. The clock synchronization 

module is designed to generate a sync pulse whenever a pair of phase-locked clocks are 

going to have matching rising edges. In order to facilitate reliable resetting of the MCF, 
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the module also translates an asynchronous reset pulse into corresponding synchronous 

reset signals for each clock domain. The synchronous reset signals ensure that the first 

rising edge in each clock domain is the one that is also synchronized with the other clock. 

Figure 4.2 illustrates an example of the synchronizer's startup procedure with a 

hypothetical pair of clocks with a 3:1 frequency ratio. In the MCF clock ratios of 5:1 and 

2:1 are used when synchronizing from the 250 MHz to 50 MHz domains and 100 MHz to 

50 MHz domains. 

 
(Example using 3:1 clock ratio) 

Figure 4.2: Clock synchronizer waveform 

When moving signals between clock domains, registers using the faster clock use 

the generated sync signal as a clock-enable (Figure 4.3). Registers are also reset using the 

corresponding generated reset signal. In addition to generating the sync and reset signals, 

the synchronizer module monitors the status of the clocks. If for whatever reason 

synchronization is lost, the module will reset the system. 

 
Figure 4.3: Synchronization between clock domains 
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4.3 Channel Multiplexing 

Data is distributed to and from each channel's user circuit using a process called 

demultiplexing and multiplexing. In communication systems, a demultiplexer is defined 

as a mechanism that breaks a high-rate data stream into multiple lower-rate channels. A 

multiplexer performs the opposite operation and recombines the channels back into a 

single higher-rate stream. For the MCF, the input data from the host processor is 

organized as a time-divided stream of 8-byte packets. Every consecutive set of five 

packets, each of which corresponds to a separate channel, is called a frame. The packets 

arrive sequentially from the PCIe link and are read from the FIFO buffer one at a time at 

a clock rate of 250 MHz. The demultiplexer must then ensure that each frame of packets 

must arrive at the channel inputs both aligned with the proper channels and synchronized 

with the slower 50 MHz channel clock.  

The MCF's demultiplexer essentially consists of two stages of shift registers. As 

described in section 4.1, the input stream can generate up to one packet available at every 

clock cycle. Occasionally, due to latencies within the PCIe interface, gaps in the input 

stream occur and packets may not be available for several clock cycles. Additionally, the 

PCIe abstraction unit simplifies the interface by enforcing the restriction that if data is 

available to be read, it must be accepted by the input demultiplexer on the same clock 

cycle. The demultiplexer must be able to buffer these packets so that it can correct for 

any breaks in the transmission and pass along the packet frames to the channels intact. 

All of this is done by implementing a primary shift register and a secondary shift register 

as shown in Figure 4.4. The figure also describes every possible data transfer within the 

demultiplexer architecture. These actions are executed depending on the state of the 
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primary shifter, whether input data is available, and if the next 250 MHz clock edge 

coincides with the rising edge of the 50 MHz channel clock. Every possible case and the 

corresponding actions are presented in a logic table in Figure 4.5. 

 
Figure 4.4: Input Stream Demultiplexer and its Actions 

 

 
Figure 4.5: Input Strem Demultiplexer Action Logic Map 

To further illustrate how the input stream demultiplexer operates, two examples 

showing packet data flow are included below. In Figure 4.6, an input packet is available 

at every cycle and fills up the primary shift register (a-e). Since the packet frame is 

already aligned with the phase of the 50 MHz channel clock, the primary shifter contains 

an entire frame (e) which can be transferred to the channel input registers in time for the 
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rising edge of the channel clock. At the same time, the first packet in the following frame 

can be loaded into the now-empty primary shifter (f). 

If an input packet is not available to be read by the demultiplexer at any cycle, the 

packet frame may become desynchronized with the channel clock. Figure 4.7 illustrates 

the worst-case example of how the MCF's demultiplexer compensates for any 

misalignment. Once again, input packets begin to fill the primary shift register. On the 

fourth rising edge of the figure (d), an input packet was not available and the primary 

shifter was not able to be filled in time for the rising edge of the channel clock. To correct 

this, the frame is stored until the following rising edge of the 50 MHz clock where it can 

be transferred to the channel registers in its entirety (j). During this time, the following 

packets are stored in the secondary shifter until the primary shifter has been emptied. 

 
Figure 4.6: Input Demultiplexer - Example with an uninterrupted data stream 

 

 
Figure 4.7: Input Demultiplexer - Example with a break in the data stream 
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The MCF's output multiplexer operates significantly differently from the input 

demultiplexer (Figure 4.8). Because the outputs from the channels' user circuits do not 

always generate data, it is not possible to simply interleave each channel's packet 

sequentially back into the output stream. Instead, when a new frame is loaded from the 

channels, the frame is compacted by shifting valid packets into slots that did not generate 

an output. The compacted frame is then transferred to another shift register that transfers 

the frame to the output stream 8-bytes at a time. A 1-byte bit flag header is prepended to 

each frame that indicates which channels generated a valid output. In this implementation 

of the MCF, output packets are only 6-bytes in size. This is because the converted pixel 

data from the CSCs output requires at most 48-bits. Using the optimal packet size 

eliminates any overhead from the bit-stuffing that would be required if using an 8-byte 

packet. 

 
Figure 4.8: Output Stream Multiplexer 
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4.4 Implementation of the MCF Instruction Set 

The instruction-based interface organizes the input data stream into 8-byte 

packets. Each packet can serve as an instruction word or a payload of raw data. The 

instruction words are used to control either the MCF itself or execute user-defined actions 

within the user circuits. Additionally, an instruction word can initiate a burst transfer 

when a large payload of data is required for a particular command. After a burst 

instruction, the specified number of packets of raw data are transmitted and are not 

interpreted as instruction words. This allows large amounts of data to be transferred with 

minimal overhead. 

 
Figure 4.9: General Instruction Word Format 

Each packet that is to be interpreted as an instruction word uses its most 

significant 8 bits as the opcode (Figure 4.9). The upper three bits of the opcode are used 

to indicate what kind of instruction it is. The first bit, if set, indicates that the instruction 

is user-defined and intended to be decoded by the user circuit. Otherwise, the instruction 

is a non-processing command that controls the operation of the framework itself. 

Both processing and non-processing commands may require a large payload of 

data. If the operation requires a burst of data, the burst start bit in the opcode is set. This 

indicates that subsequent packets will be raw data and are not to be interpreted as 

instructions. When the burst start bit is set, the number of raw data packets following the 
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instruction is indicated by the burst count value in the lower 32-bits of the instruction 

word. If the burst start bit is not set in the opcode, the operation is atomic and the 

following packet for the channel is interpreted as a new instruction word. 

The third bit in the opcode, when set, indicates that the FPGA's internal 

configuration interface is required for a reconfiguration operation. The remaining 5-bits 

of the opcode are used to further identify which operation is to be performed. Except for 

burst instructions, the remaining 56 bits can be used as needed if additional information is 

to be passed along with the instruction word. Table 4.1 summarizes all of the MCF's 

opcodes used for both non-processing commands and CSC-specific processing 

operations. 

 Bit position 63 62 61 60 … 56 

  
User 

Instruction Burst Start 
PR 

Instruction Operation 
Resulting 
Opcode 

Non-Processing Commands: 
No Operation 0 0 0 0x0 0x00 
Start PR Data Burst 0 1 1 0x1 0x61 
Flush MCF 0 0 0 0x2 0x02 
Channel Sync 0 0 0 0x8 0x08 

CSC Commands: 
RegBus Write 1 0 0 0x1 0x81 
Start Pixel Burst 1 1 0 0x2 0xC2 

Table 4.1: Instruction Word Opcodes 

After the input stream is demultiplexed, each channel’s data passes through an 

instruction-decode stage which contains the logic necessary to interpret non-processing 

command opcodes. In order to keep track of which packets are raw data and which are to 

be interpreted as instructions, a burst counter generates an is_burst signal for each 

channel’s instruction decode logic. If the burst counter detects a packet with the burst 

start bit set, it latches the burst count value and counts packets until the counter expires. 

During this time, the is_burst signal is asserted. 
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   63  56  55 0

No Operation  0x00    

   63  56  55 32 31 0

Start PR Data Burst  0x61     burst_count 

   63  32 31 0

PR Burst Data  pr_word_1  pr_word_0 

63  56  55 0

Flush MCF  0x02    

   63  56  55 4  3  0

Channel Sync  0x08     channel_id 

   63  56  55 50 49 32 31 0

Register Write  0x81     reg_addr  reg_data 

63  56  55 32 31 0

Start Pixel Burst  0xC2     burst_count 

   63  48 47 32 31 16  15  0

Pixel Burst Data  csc_data_3  csc_data_2  csc_data_1  csc_data_0 

Figure 4.10: Packet Format 

Several non-processing instructions are defined to facilitate control of the MCF. 

First, a synchronization instruction ensures that all subsequent interleaved channel 

packets are aligned to the corresponding user-circuit channel. Next, to facilitate partial 

reconfiguration of the user-circuits, a PR burst instruction is included so that a 

configuration bitstream can be loaded directly into the FPGA’s configuration interface. 

Finally, a flush instruction is used at the end of a computation stream to ensure that any 

remaining data inside the user-circuit pipelines is propagated fully to the host machine 

through the PCIe interface.  
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To control logic within the channels’ user-circuits, custom instruction words can 

be defined provided they do not conflict with existing non-processing MCF instruction 

words. For the implementation of the CSC engine into the MCF, two additional 

instruction words are defined. One allows data to be written into the CSC's internal 

configuration registers through its native Reg-bus. The other initiates a pixel-processing 

burst. Once initiated, an image can be processed with minimal overhead. Packet 

formatting for both non-processing MCF commands and CSC operations is included in 

Figure 4.10. 

At the start of a processing job, it is necessary to ensure that the sequence of 

packets in the interleaved stream is aligned and synchronized with the input 

demultiplexer. This is done using the channel sync instruction that verifies frame 

alignment and re-establishes it if necessary. First, the host processor sends a single frame 

consisting entirely of sync commands. Along with its opcode, each sync packet includes 

the channel ID that it is intended for. Each channel compares the ID that it receives with 

its actual ID. If any of the channels’ IDs do not match, the demultiplexer is notified and it 

discards the appropriate number of input packets to re-establish frame alignment. 

Since several packets may be discarded in the process, the host processor must 

also send at least 3 frames of no-operation (NOP) instructions following a sync operation. 

This ensures that no actual commands get discarded. The sync command also performs a 

hard reset of all of the logic within the user-circuits. 
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Figure 4.11: ICAP Interface State Diagram 

The Virtex-6 FPGA being used contains an Internal Configuration Access Port 

(ICAP) that allows the device to be configured using a data path other than the traditional 

JTAG interface. The MCF provides user access to this port through another instruction 

type. The PR Burst Start instruction is used to initiate a burst of PR bitstream data. Since 
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the ICAP interface can accept 32-bit words at a speed of up to 100 MHz, each incoming 

channel packet is split and multiplexed to this higher frequency. Figure 4.11 illustrates 

the ICAP control logic state machine which operates on the 100 MHz clock. The ICAP 

clock (100 MHz) and the channel data clock (50 MHz) are edge-synchronized using a 

clk_sync signal. During a PR operation, the corresponding channel’s output signals 

are overridden to prevent invalid data to be latched into the output multiplexer. 

One important limitation of the PR instruction is that only one channel can 

perform a PR operation at a time. This is because the Virtex-6 only has one 

reconfiguration data path available1. If the host processor erroneously issues two PR 

instructions, the operation that is already in progress or the channel with the lower ID 

number takes priority while the other operation is ignored. 

In the PCIe reference design, input and output stream data is transmitted in 4kB 

packets. Because of this, all transactions between the MCF and the host processor must 

be a multiple of 4096-bytes long. To satisfy this restriction, a flush instruction is 

implemented. This instruction ensures that all pending output data from the user circuits 

make it back to the host processor at the end of a processing job. To implement this, each 

user circuit generates a pending_data signal which indicates if, based on recent 

instructions received, valid output data will be generated. When the MCF receives a flush 

command, the output multiplexer waits until all channels indicate that no more data will 

                                                 

1 The Virtex-6 actually contains two identical instances of the ICAP that are both connected to the 
same reconfiguration data path. Only one ICAP can be active at a time. The other instance exists solely for 
redundancy purposes. 
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be generated. Once this condition is met, the output PCIe stream is padded with null data 

until the total length of the output is a multiple of 4kB. 

4.5 User Circuit 

To evaluate the effectiveness of the MCF, each user circuit was populated with an 

instance of the CSC engine. Each channel's CSC engine can be divided into three parts: 

reconfigurable CSC region, static CSC logic, and the CSC abstraction layer. The 

reconfigurable CSC region is a black-box module reserved for the CSC's 3D/4D modules. 

Originally identified by S. Patil, the 3D and 4D modules of the CSC engine are never 

used simultaneously and can be swapped in and out of the engine using partial 

reconfiguration. The reconfigurable region's logic can be changed using the MCF's PR 

instruction which feeds a partial bitstream into the ICAP. The static CSC logic contains 

all non-reconfigurable portions of the original CSC engine. Finally, a new CSC 

abstraction layer is added to the user circuit. 

The abstraction layer decodes two additional MCF instructions and generates the 

appropriate signals native to the CSC engine. First, to configure the engine's internal 

registers, a Register_Write instruction is used. Each instruction word contains the 

internal address of the CSC register as well as the data to be written to it. A second 

command, called the Pixel_Burst instruction, initiates a burst of pixel data that is to 

be converted. This instruction includes the burst count value (bits [31:0]) described in 

section 4.4 which indicates the number of pixels that will be sent following the command. 

Instead of implementing a fixed CSC engine in the user circuit, it is also possible 

to define the entire channel as a PR region. By doing so, any type of stream-oriented 
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processing engine can be loaded into the channel at run time provided that enough logic 

resources have been allocated. 

4.6 Physical Layout 

After completing the capturing the MCF logic into Verilog HDL, the source code 

is synthesized into netlists. All of the static logic (PCIe, MCF, and static CSC modules) 

are synthesized into one static netlist. Both 3D and 4D variants of the reconfigurable CSC 

module are synthesized into their own respective netlists as well. These netlist are all 

imported into Xilinx's PlanAhead tool which facilitates partitioning of the FPGA's 

resources for partially reconfigurable designs. 

The five reconfigurable black-box regions defined in the static netlist must first be 

constrained to physical regions within the Virtex-6 FPGA. The size of each 

reconfigurable partition is defined by the maximum amount of resources required by the 

3D or 4D modules. Because both modules require heavy-use of block RAMs, this is the 

driving factor of the size of the reconfigurable region. During the implementation of the 

design, it was found that the placement of reconfigurable regions (RRs) had a significant 

influence on whether or not the PCIe reference design's logic would be able to meet its 

timing constraints. The best results occurred when the RRs were placed on the outskirts 

of the FPGA fabric as shown in Figure 4.12. Doing so prevented timing-critical PCIe 

logic from being bisected during placement. 
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Figure 4.12: Floorplanned Virtex-6 FPGA 

Another version of the MCF was attempted where the entirety of each channel 

was a reconfigurable region. Although this would inevitably increase the sizes of partial 

reconfiguration bitstreams, it would enable the function of the user circuits to be changed 

entirely. Unfortunately, sizing the PRRs to be able to fit an entire CSC engine into each 

resulted in insufficient resources for the remainder of the static logic. By constraining 

each CSC engine within a partition, the design tools were no longer able to pack the logic 

together as tightly as they did with the 3D/4D PRR version. 
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4.7 Software Tools 

To facilitate development and testing of the MCF, several C programs were 

written. Each of the programs is designed to handle a specific portion of the MCF test 

process: Generation of the test vector, transmission of the vector to the FPGA, and the 

interpreting the resulting output vector (Figure 4.13). All of the programs (except for 

vecSender) are written using standard C libraries so they can be compiled without 

modification for both Windows and Linux hosts. 

 
Figure 4.13: The MCF Toolchain 
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One of the most significant programs written for the MCF Toolchain is the 

mcfJobCompiler program. The program allows processing jobs for the MCF to be easily 

scheduled and described textually using basic commands. In this job script, operations to 

be performed for each channel are described. If an operation requires data from an 

external source, such as an image file or a reconfiguration bitstream, the relative path to 

the file is included. An example of a generic job script is included in Appendix A. The 

mcfJobCompiler program interprets the provided job script and combines any external 

data sources to generate individual vector files for each channel. These vector files 

contain a binary stream of packets that each channel will receive. 

After the job compiler generates the channel vector files from the job script, they 

are fed into the mcfMerge program. This program sequentially interleaves the packets 

from each channel vector and combines them into a single vector file. The resulting 

vector file contains the exact data that is sent through the PCIe link to the MCF. In 

addition to merging the channel vector files, mcfMerge performs several other operations. 

Before copying packets from each channel vector, the program prepends a channel sync 

command along with the appropriate number of no-operation (NOP) instructions to the 

beginning of the stream. This ensures that all of the following packets are properly 

aligned to their respective channels. The mcfMerge program also interprets each channel's 

vector files as it copies them and ensures that simultaneous PR operations do not collide. 

If this condition is detected, NOP are inserted to stall the start of another channel's PR 

command. Finally, the end of the merged vector file is padded with additional NOP 

instructions to ensure that the total length is a multiple of 4096 bytes, the packet size 

defined by the PCIe driver. 
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Next, the vecSender program which was originally written by R. Toukatly during 

his research, sends the merged vector files through the PCIe link to the MCF. Any data 

received from the MCF is also written to a binary output file for later interpretation. 

Aside from performance enhancements described in section 4.1, only one major change 

was made to the vecSender program to facilitate the evaluation of the MCF's 

performance. This will be discussed in further detail in section 5.2. 

The output stream received from the MCF consists of a collection of packets with 

header bytes followed by packets of data from the corresponding channels. To decode 

this output stream, the mcfSplit program is written. mcfSplit de-packetizes the output file 

and splits into a separate file for each channel's output. Doing so makes interpretation of 

each channel's output more straightforward. 

The last program in the MCF Toolchain (not shown in Figure 4.13) compares the 

output vector files with known good results in order to verify that the MCF is operating 

properly. In the original job script, an enhancement to the syntax allows for the paths to 

the expected output files to be captured. The mcfJobVerify program interprets the Job 

script and compares the split output files with the expected outputs. 

4.8 Validation Procedures 

One important aspect of the design methodology was that the components of the 

MCF were tested as they were completed. Since the MCF was divided into several 

functional units, each could be simulated upon completion using Xilinx's ISim to verify 

proper operation. This verification process was done by writing custom behavioral 

Verilog testbenches that stimulate the input signals of the component under test and 
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verify the outputs. Being able to simulate the MCF's components also provides virtually 

unlimited visibility of internal behavior which proved to be invaluable during any 

debugging processes. To take full advantage of the simulation software, the MCF code 

was written to be able to be simulated in its entirety as well. 

Unfortunately, not every aspect of the MCF can be simulated. The PCIe reference 

design used to send data to and from the framework was not designed to be simulated. To 

remedy this, a behavioral Verilog emulation of the PCIe link was written that reads and 

writes vector files to and from the file system just like the vecSender program does. 

Vector files are streamed in and out of the MCF through an interface identical to the 

actual PCIe FIFO interface. The PCIe emulator code also was designed to mimic the 

latencies and gaps in the data stream observed in the actual hardware. Using this PCIe 

emulator, it is possible to easily integrate the HDL simulations of the MCF with the MCF 

software toolchain. 

Another feature of the MCF that cannot be simulated is the partial reconfiguration 

of user circuits. Because of this, the reconfigurable regions could only be simulated with 

a static configuration.  
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Figure 4.14 : MCF Verification Process 

Now that the entire MCF can be simulated using Xilinx's ISim, the framework's 

functionality can be verified in both software and in hardware. In order to fully verify that 

the CSC within the MCF is functioning properly, a verification software flow is 

developed (Figure 4.14) where converted images are compared to known good outputs. 

These verification output images are generated using a software version of the CSC 

engine that was provided by HP. This CSC_Application accepts a set of register 

configuration data and an input image file. The application processes the image's pixels 

according to the configuration and outputs the converted image file in a TIF format. To 

simplify the verification process, all images are converted into a hexadecimal text file 

format using a MATLAB conversion utility. These "known good" outputs are generated 

for each configuration to be tested and saved for future verification. 

Since an output vector from an MCF channel can contain multiple converted 

images within a single job, an additional program is developed to simplify the 
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verification process. The original job script file used to generate the input vectors also 

includes paths to the expected "known good" output files for each channel's operations. 

The mcfJobVerify program extracts these paths from the job script and uses them to 

verify the computed images received from the MCF. The program reads the split output 

channel vector files and compares the images to the known good ones. Verification 

results are printed to the terminal, indicating if any invalid packets were received. 
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Chapter 5: Results and Discussion 

In this chapter, various aspects of the multichannel framework are evaluated. In 

the first section, methods and procedures used for verifying correct functioning of the 

MCF are discussed. Next, the computational performance of the MCF is measured and 

analyzed using several different operating conditions and scheduling methods. In the last 

section, a brief overview of the logic utilization of the MCF along with the CSC engine is 

presented. Power consumption estimates generated by the Xilinx tools are tabulated as 

well. 

5.1 Validation of Design 

The actual verification of the MCF was done in three phases. First, a static version 

of the MCF with the CSC engine was tested. Each channel's user circuit contained a fixed 

configuration of the CSC engine using only the 3D processing module. By doing so, the 

entire project could be simulated using Xilinx's ISim to confirm that the MCF's logic is 

behaviorally correct. One shortfall of a behavioral simulation is that it does not simulate 

the effects of timing delays for signals. For this reason, it was still necessary to perform a 

hardware test of the MCF using the physical Virtex-6 FPGA. Once the design was 

verified in simulation, the MCF was synthesized and implemented. Since this variant of 

the MCF did not contain any reconfigurable partitions, the entire compilation process 

could be done within Xilinx's ISE suite without requiring the use of the PlanAhead 

software. The hardware implementation of the MCF was tested from the Linux host 

machine and verified using the procedures described in section 4.8.  
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The static hardware test phase was able to verify that the MCF and CSC engine 

functioned correctly in hardware. The only component that was not verified was the 

MCF's PR capabilities. For this testing phase, a stripped down version of the MCF is 

implemented that does not contain the CSC engine in its user circuits. Instead, the user 

circuits are synthesized as black boxes that can be loaded with a configuration at runtime. 

For simplicity sake, two trivial variants of the user circuit logic are designed: one that 

bypasses any burst data through the channel and another that doesn't. When partitioning 

these regions in PlanAhead, only several slices were required to implement these variants 

which greatly reduced the time taken for the implementation phase of compilation. To 

test the PR capabilities of the MCF, a job script was written that effectively turns on and 

off a data loopback through the MCF by sending the partial bitstreams for the 

reconfigurable regions. By observing which data was returned through the PCIe link, it 

was possible to verify that the MCF's PR burst commands were functioning properly. 

The final phase of verifying the MCFs functionality was testing the completed 

system using the CSC engine and reconfiguring each channel's 3D/4D module. The job 

script written for this test was not written for optimal scheduling, but so that each channel 

would experience a reconfiguration from the 3D variant to the 4D variant and vice versa. 

Once again, since PR operations cannot be captured by a behavioral simulation, ISim was 

not able to be used to verify the design. Instead, the implemented design was tested only 

by the hardware and verified against the expected output images using the process 

described in section 4.8. 
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5.2 Performance Evaluation 

Computational performance of the MCF was evaluated by observing the effective 

throughput when processing a single image of various sizes. The worst case scenario was 

assumed where each channel’s reconfigurable region must be configured prior to the start 

of pixel conversion. Since pixel operations are data-independent of each other, a single 

image can be divided between the five available channels to maximize the throughput. 

The architecture's theoretical throughput capability has been calculated by assuming that 

the input stream can always provide packets of data to the MCF at its maximum rate of 

250 MHz. As expected, small images did not result in high processing throughput due to 

the significant configuration overhead. In addition, images smaller than 460k pixels 

cannot be scheduled to use all 5 available processing channels. As the image size 

increases, configuration overhead becomes less significant and the processing throughput 

approaches its theoretical maximum of 250 megapixels per second. 

 
Figure 5.1: Effective Throughput vs. Image Size 
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Figure 5.2: Processing Time vs. Image Size 
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MCF. Any data returned from the MCF is discarded. Since vecSender no longer performs 

any file operations, this completely eliminates any hard-drive accesses. The resulting 

performance is consistently 1/3 the speed of the theoretical architecture capability as a 

result of PCIe-related latencies. 

Framework Architecture 
Active 

Pipelines 
Operating 
Frequency 

Throughput (Mpix/sec) 
Arch. Capability PCIe PCIe+HD 

ASIC (no framework) 1 167 MHz 167 - - 
R. Toukatly's Dual-pipe 1 (2) 2 50 MHz 50 15.9 7.9 

MCF 5 50 MHz 250 89.6 27.3 

Table 5.1: Peak pixel processing pate comparison under various throughput conditions 

Due to the pipelined design of the CSC engine, its performance is directly 

proportional to the data rate in and out of the core. For all implementations discussed, the 

CSC reads a single 8-byte pixel input and produces a converted 6-byte pixel output in 

each clock cycle. As shown in Table 5.1, the original ASIC CSC is capable of processing 

up to 167 million pixels per second which directly correlates to the pixel-bus clock of 167 

MHz. In previous designs not using the MCF, the CSC engine is constrained to a clock 

speed of 50 MHz. Even with the dual-pipe design proposed in R. Toukatly's research, 

only one CSC pipeline is able to process pixel data at a time. One significant advantage 

of the MCF is that user circuits in one channel can operate completely independent of 

user circuits in any other channel. With five instances of the CSC engine instantiated 

within the MCF running at a 50 MHz clock each, an effective pixel processing 

throughput of 250 megapixels per second can be achieved. Measured performance with 

PCIe and HD latencies are also included in Table 5.1. 

                                                 

2 Two CSC pipelines were implemented however only one could process image data at a time 
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Another advantage of the MCF is that by using an instruction-based design, the 

CSC’s control and register bus signals are handled within the IO abstraction unit without 

consuming extra data bandwidth from the PCIe interface. Since pixel data is sent to the 

CSC core using a burst command, the only data overhead is from the instruction word 

that initiates the processing operation. Data sent through the PCIe interface in previous 

designs not using the MCF not only included pixel data, but also a snapshot of all of the 

CSC’s control and register bus signals. While this simplified migration from ASIC to 

FPGA, each clock cycle snapshot required 128-bits with at most 64 of the bits being pixel 

signals. This resulted in half of the data sent from the host machine being redundant 

during regular pixel processing. 

Lastly, tests were performed on the MCF evaluating the effectiveness of being 

able to use multiple channels to process images. For this test set, three identically sized 

images (images A, B and C) are scheduled to be processed using different CSC 

operations. Image A is processed using a 1D conversion which does not require the use of 

the 3D/4D module (it is bypassed) and images B and C are processed using a 3D and 4D 

conversion respectively. Since images B and C require the use of the 3D/4D 

reconfigurable module, it must be loaded with the proper bitstream prior to image 

processing. It is assumed that the configuration of the module is not known at the start of 

the test. 

Figure 5.3 illustrates the channel scheduling for each test case. PR operations are 

indicated with grey boxes and image processing operations are labeled with their 

respective image name. For the small 50k pixel images, startup configuration for images 

B and C takes only slightly less time than the image processing itself. Because of this, it 
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cannot be justified to schedule the use of more than two channels for such small images. 

The 500k and 10M pixel sizes for the other two test cases are large enough to justify 

utilizing all five available processing channels. Each test case is also compared against a 

scheduling using only one channel. Based on the resulting stream lengths, the theoretical 

pixel processing rates were calculated for each case. Actual computation times in 

hardware were measured as well. 

 
Figure 5.3: Overlapped Processing Test Case Scheduling 

(Dashed lines illustrate relative task scale) 

As shown in Table 5.2, significant theoretical improvements to processing 

throughput can be achieved by utilizing the parallelism of the MCF. In each case, 

increasing the number of channels used for an operation improved processing throughput. 

With all five channels in use, processing time was reduced by nearly 5 times when 
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converting large images compared to using just a single pipeline. As expected, processing 

speed suffered when tested in hardware due to interface and hard-disk latencies. The test 

case with 10 megapixel images on a single pipeline suffered especially from these 

latencies due to the large size of the file that had to be read from the hard disk and 

transferred. This resulted in a significantly slower processing speed for that particular test 

causing the relative speedup to be greater than the theoretical maximum of 5. 

Image 
Size 

# Ch. Used 
Theoretical 
Mpix/sec 

Theoretical 
Rel. Speedup 

Measured 
Mpix/sec 

Measured Rel. 
Speedup 

50k pixels 
1 28.67 

1.71 
5.34 

1.48 
2 48.89 7.91 

500k pixels 
1 46.54 

4.24 
9.98 

2.42 
5 197.51 24.17 

10M pixels 
1 49.81 

4.95 
1.45 

7.72 
5 246.39 11.17 

Table 5.2: Overlapped Processing Results 

5.3 Logic Utilization and Power Consumption 

When observing the total resource utilization of the implemented design (Table 

5.3), it is clear that logic overhead for the MCF itself is minimal. The MCF support logic, 

consisting of the input & output shifters and instruction decode logic, accounts for 

approximately 2% of the design and only 1% of the Virtex-6 ’s (xc6vlx240t) resources 

(Flip-flops and LUTs only). The PCIe adds considerable resource requirements due to the 

added complexity of the interface. 

Table 5.4 further breaks down the logic distribution for the reconfigurable regions 

and their utilizations for the 3D and 4D module variants. Due to floor plan geometries, it 

was required to allocate an excess amount of slices to also enclose the required block 

RAM primitives. It is also important to note that due to the different partition geometries 

of channels 0 and 4, the logic utilizations differ slightly. 
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Slices FFs LUTs BRAM DSP48 BUFG BUFR MMCM

MCF 2546 1857 2447 0 0 0 0 0 
PCIe 12094 26721 20568 75 0 11 2 2 

User Circuits: 
Static 

11265 12865 25385 160 0 0 0 0 

User Circuits: 
PRRs 

9440 75520 37760 160 256 0 0 0 

Total Used: 
35345 
(94%) 

116963 
(39%) 

86160 
(57%) 

395 
(95%) 

256 
(33%) 

11 
(34%) 

2 
(6%) 

2 
(17%) 

R. Toukatly: 
17138 
(45%) 

35297 
(12%) 

42463 
(28%) 

195 
(47%) 

64 
(8%) 

10 
(31%) 

2 
(6%) 

2 
(17%) 

Available in 
xc6vlx240t: 

37680 301440 150720 416 768 32 36 12 

Table 5.3: FPGA Resource Utilization 

Slices FFs LUTs BRAM DSP48 

RR: Ch 0&4 1840 14720 7360 32 32 
RR: Ch 1-3 1920 15360 7680 32 64 
Utilized: 3D 952 908 3805 32 16 
Utilized: 4D 1208 1298 4828 32 24 

Table 5.4: Reconfigurable Region Resource Allocation & Utilization 

After the implementation of the MCF, static and dynamic power approximations 

were collected from post-implementation reports. The estimated power consumption of 

the Virtex-6 FPGA under projected clock conditions for each module is shown in Table 

5.5. These values are calculated automatically by Xilinx's tools during implementation 

and make assumptions on logic activity based on their own internal heuristics. Once 

again, the MCF support logic incurs minimal power consumption overhead to the design, 

requiring only 0.34% of the total dynamic power. 

mW

Dynamic Power 
(By component) 

MCF 9 
PCIe 2590 

User Circuits: Static 33 
User Circuits: PRRs 24 

Totals 
Dynamic Power 2656 

Quiescent Power 6756 
Total 9412 

Table 5.5: Power Consumption Estimates 
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Chapter 6: Conclusion 

In this thesis, a methodology for managing multiple partially reconfigurable 

datapaths has been developed and evaluated. In order to evaluate the multichannel 

framework developed, a color space conversion engine is implemented in an FPGA. By 

leveraging the framework's features, image processing is able to be improved when 

compared to previous efforts using reconfigurable techniques. The main contribution to 

previous research efforts is that the framework provides a lower-overhead method of 

implementing the CSC engine in an FPGA. This is in regards to both FPGA logic 

utilization and overhead in the data stream. The multichannel framework developed also 

makes high-bandwidth data processing possible without requiring the user-logic to 

operate at a prohibitively high clock rate. This reduces the need for increasing the 

pipeline depth of an ASIC core being migrated to an FPGA. Because of this, the 

multichannel framework is able to improve previous efforts’ performance by up to 5x and 

allows for significantly more flexibility by including fully-reconfigurable user circuit 

channels. 

The MCF was evaluated using a complete testing platform using an FPGA 

connected to a Linux host PC using a PCI-Express link. The platform was used to both 

verify proper operation of the developed framework as well as measure its performance. 

Both theoretical ant measured results show that the MCF is able to drastically increase 

processing speeds using multiple simultaneous channels while overlapping 

reconfiguration operations.  
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Some disadvantages of the design were observed as well. One shortfall discovered 

was that the Virtex-6 FPGA is only capable of performing a single partial reconfiguration 

operation at a time. This restriction can result in a significant delay in the MCF in the 

event that all of the channels must be reconfigured upon startup. During hardware tests, 

significant latencies from the PCIe interface and hard-disk access times within the Linux 

host machine were observed. This resulted in significantly decreased MCF performance. 

For this reason, a more closely coupled embedded system is preferable. 

In order to further improve the MCF, future research will target Xilinx’s 

upcoming ZYNQ platform. ZYNQ combines reconfigurable FPGA fabric along with a 

dual core ARM Cortex CPU on the same silicon die. The reconfigurable logic in ZYNQ 

contains several times more resources than the Virtex-6 allowing for significantly larger 

designs. By including a hard-wired CPU on the same silicon die, the FPGA fabric can be 

coupled significantly closer to the host processor. This would significantly reduce 

latencies and would enable the MCF to operate at its full potential. 
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Appendix A: Example MCF Job Script 

# This is a line-comment. 
# Any blank lines with or without comments will be ignored 
# Each line describes an operation to be sent to a single channel. 
# A line starts with the name of the operation followed by any related parameters. 
 
# Job files can also be interpreted by mcfJobVerify which compares the output with the expected 
# output defined in the job file. mcfJobVerify commands are preceded by a '#@' 
# Available verification commands are: 
# #@outputs <file> - Compares output with specified file 
# #@skip <number n> - N packets are expected to be generated. Skip them in verification. 
# 
# See channel 3 for examples. 
 
#=================================================================================================== 
channel 0                      # All the following commands are for channel 0 
PR channel0_bitstream1.bit     # Generates vector data that loads the specified PR bit file 
cscLUT ../HP_3d                # Loads CSC LUT data. Point to a directory of text hex files 
cscImage test_image.bin        # Sends image data to CSC from a binary file. 
cscRandomImage -n 1000 -s 1234 # Sends a pseudorandom image. 1000 pixels, using a seed of 1234 
NOP 256                        # Insert 256 NOP cycles. (In case other ICAPs would still be busy) 
PR channel0_bitstream2.bit     # Another PR operation 
cscImage test_image2.bin       # Another Image 
 
#=================================================================================================== 
channel 1    # Descriptions of tasks for another channel 
PR channel1_bitstream1.bit 
cscImage test_image.bin 
 
#=================================================================================================== 
channel 2    # generates the channel file but it will be empty since no tasks were assigned to it 
 
#=================================================================================================== 
channel 3 
cscImage input_image.bin    #@outputs output_image.bin # comments can be added after another '#' 
cscImage ignored_image.bin  #@skip 512 # skips 512 packets 
#=================================================================================================== 
channel 4 
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Appendix B: 
Hardware and Software Used 

Hardware 

 FPGA Development Board 
o Xilinx ML605 
o FPGA Family: Virtex-6 LXT 
o Device: xc6vlx240t-1ff1156-1 
o Programming Interface: JTAG over USB 
o Debugging Interface: UART over USB 

 Development and Implementation PC: 
o OS: Microsoft Windows 7 (x86, SP1) 
o CPU: Intel Core 2 Duo, 2.66 GHz 
o RAM: 3 GB 

 Testing PC: 
o OS: Linux Fedora 10 (2.6.27.5 Kernel version) 
o CPU: Intel Core 2 Duo, 2.40 GHz 
o RAM: 2 GB 
o PCI-Express slot populated with ML605 FPGA card. 

Software 

 Windows 7 Development PC: 
o Xilinx ISE Design Suite: 13.1 System Edition (incl. April 2011 patch) 
o ISE Project Navigator 
o PlanAhead (incl. PR license) 
o iMPACT 
o Cygwin 

 GNU C Compiler 
 GNU Make 

o Tera Term v4.64 

 Linux Fedora Testing PC: 
o GNU C Compiler 
o GNU Make 
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