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Abstract
Implementation of Multi-CLB Designs
Using Quantum-dot Cellular Automata

Chia-Ching Tung

Supervising Professor: Dr. Eric Peskin

CMOS scaling is currently facing a technological barrier. Novel tech-
nologies are being proposed to keep up with the need for computation power
and speed. One of the proposed ideas is the quantum-dot cellular automata
(QCA) technology. QCA uses quantum mechanical effects in the device at
the molecular scale. QCA systems have the potential for low power, high
density, and regularity.

This thesis studies QCA devices and uses those devices to build a sim-
ple field programmable gate array (FPGA). The FPGA is a combination of
multiple configure logical blocks (CLBs) tiled together. Most previous work
on this area has focused on fixed logic and programmable interconnect. In
contrast, the work at the Rochester Institute of Technology (RIT) has de-
signed and simulated a configurable logic block (CLB) based on look-up
tables (LUTs). This thesis presents a simple FPGA that consists of multi-
ple copies of the CLB created by the RIT group. The FPGA is configured
to emulate a ripple-carry adder and a bit-serial multiplier. The latency and
throughput of both functions are analyzed. We employ a multilevel ap-
proach to design specification and simulation. QCADesigner software is
used for layout and simulation of an individual CLB. For the FPGA, the
high-level HDLQ Verilog library is used. This hybrid approach provides a
high degree of confidence in reasonable simulation time.
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Chapter 1

Introduction

As of 2009, the transistor density or the number of transistors on an inte-
grated circuit (IC) chip is approaching a limit. The semiconductor industry
is still able to fabricate devices exponentially smaller according to Moore’s
law [25], but as transistor sizes are shrinking to the nanometer scale, it be-
comes extremely difficult to continue packing more and more computational
power into our microprocessors. In the near future, the operation of transis-
tors will be dominated by the physics of the quantum world. Conventional
complementary metal-oxide-semiconductor (CMOS) transistor is facing its
physical limitations [8, 9] related to power dissipation, interconnects, and
fabrication. Research on a novel technology to replace the current technol-
ogy is necessary. The new method has to take advantage of quantum effects
and nanoscale physics in order to keep up with the ever growing need for
computation power and speed.

1.1 Motivation

Currently, CMOS is the mainstream technology for fabricating chips. As
more transistors are being put into the processors, the issues related to dop-
ing regions, oxide thickness, diffusion barriers, power dissipation, and leak-
age current etc. become difficult to scale. All these issues call into question
the feasibility of CMOS in the future.

There is much ongoing research to find a way to replace the standard
CMOS technology. Quantum-dot cellular automata (QCA) [18], carbon
nanotube transistors (CNT) [3], silicon nanowires [12], etc. are all possi-
ble technologies. The international technology roadmap for semiconductors
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(ITRS) [1] describes the difficulty that the current semiconductor technol-
ogy will face. The biggest concern that the CMOS is facing is the difficulty
on setting more and more devices on the chips. Approximately at 25 nm
technology the fabrication process might fail to achieve this goal [8]. Quan-
tum mechanical effects have an important role in device performance and
induce uncertainty. QCA is an emerging nanotechnology that provides a
revolutionary approach to substitute for the traditional CMOS technology
for very-large-scale integration (VLSI) fabrication. QCA technology ad-
dresses the inevitable nanoscale level issues, such as interaction between
devices and operation of devices. The interaction between devices at the
nanoscale level is a roadblock on further scaling of the CMOS devices.
QCA also has the following potential advantages: low power consumption,
higher device density, and implementation on the nanoscale level.

The current ongoing research in the field of QCA has two directions.
One direction is to find a method for stable fabrication of QCA devices. In
order to compete with CMOS technology, the device must have low cost,
be able to operate at room temperature, and be able to handle high clock
frequencies. Some significant examples of such research are [4, 10, 21, 23,
24]. Three types of QCA fabrication process have been proposed, metal-dot
QCA [21], molecular QCA [23], and magnetic QCA [5]. However, there
has not been a successful attempt to create a testable circuit of molecular
QCA, and only small circuits have been fabricated by metal-dot QCA, and
magnetic QCA.

The other direction of research is on the nanoarchitecture level [34],
which is the primary focus of this thesis. This area of research has focuses
on using QCA technology for circuit implementation. Taskin et al. suggest
that the general nanoarchitecture design is able to be studied by modeling
QCA dots at a higher level of abstraction [34]. The high-level design is in-
dependent of the manufacturing technology. Unlike power dissipation, area
of the device, and operating clock frequency, the architecture level does not
require hardware manufactured devices to perform experimental testing.

Field programmable gate arrays (FPGAs) [6] are reconfigurable logic
devices. FPGAs can implement any combinational or sequential functions.
FPGAs consist of programmable logic or programmable interconnect or
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Figure 1.1: Fixed logic FPGA.

both. The logic blocks have the ability to compute complex functions of
given inputs. The outputs of the logic blocks are connected and wired to-
gether. FPGAs have a regular pattern in design, which may facilitate self-
assembly when fabricated in nanotechnology. FPGAs can emulate many
applications. If an FPGA can be built using QCA technology, it would al-
low many applications to run on QCA. Therefore, creating an FPGA using
QCA technology is an interesting application of QCA.

FPGAs mainly consist of an array of multiplexers, look-up tables (LUTs),
memory cells, and special hardware blocks. As mentioned in the previous
paragraph, FPGAs depend on programmable logic, programmable intercon-
nect, or both [7, 46]. FPGAs with fixed logic consist of a sea of fixed logic
elements interconnected by a mesh of wires. The programmability is made
at the point of intersection of the wires. Figure 1.1 shows a general exam-
ple of fixed-logic-type FPGA. The switch blocks decide the signal routings
based on the users’ configurations. Figure 1.2 shows an FPGA with pro-
grammable logic. The inputs and the outputs on each side of the block are
connections to the next nearest block. Each block is a configurable logic
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Figure 1.2: FPGA with programmable logic.

block (CLB) with fixed connections to the neighboring CLBs. Most com-
mercial FPGAs consist of both types of circuits. The configurable logic
blocks are linked by programmable interconnect. Programmable intercon-
nects are switching blocks that can be programmed to give various connec-
tions between the logic blocks for different functions. Such an arrangement
is shown in Figure 1.3. The black lines in Figure 1.3 represent the intercon-
nections between the CLB and the switch blocks.

This thesis focuses on the programmable-logic method. This method
achieves the goal through the use of LUTs. The LUT consists of a 16-bit
memory and two 2-to-4 decoders. It is capable of serial write and parallel
read operations with low read latency.

1.2 Previous Work

Previous work on QCA-based FPGAs has focused on programmable inter-
connect [2,15,26,27,39]. Niemier et al. [26,27] present a QCA-based FPGA
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Figure 1.3: FPGA with programmable logic and programmable interconnect.

based on programmable interconnect. In [27], authors develop an intercon-
nect design with flexible routing. The interconnects between each block are
operated by QCA cells. If the connection is to be established, the clock sig-
nal is applied to the interconnect to make the QCA cells operate. When the
clock is not given to the QCA cells, the connection is not established, and
the cells act as open circuits. The logic block in [26,27] consists of a NAND
gate. The size of logic blocks for data processing are equal to the size of the
interconnect blocks. This allows the shape of the FPGA to be more compact
and organized. These articles discuss the use of programmable interconnect
with fixed logic, which is the FPGA architecture represented in Figure 1.1.

Amiri et al. [2] created a tree of multiplexers to be the fixed logic cell for
the FPGA. The fixed logic presented has six inputs and one output. Two of
the six inputs are the control signals that decide which inputs will be routed
to the output. The module can emulate any two-input or three-input logic
function such as NAND, AND, OR, and NOR. The authors believe their
proposed circuit could operate at terahertz frequencies. Similar to [27], the
directions of all input signals are controlled by one or two control signals.

Jazbec et al. [15] designed a programmable switch matrix (PSM) as the
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programmable interconnect in the FPGA. The PSM allows the logic blocks
of the FPGA to be interconnected when needed. The PSM acts as a con-
troller in the system to decide the direction and the destination of all the
signals.

In contrast to the above articles, Lantz and Peskin [16] explored the
method of building FPGA by programmable logic. A novel CLB design
for FPGAs implementation in QCA has been presented. The CLB is built
by using four look-up tables (LUTs), each of them corresponding to one of
the four directions: north, south, east, and west. Each LUT is equipped with
a decoder and 16-bit memory blocks. Each LUT is capable of taking four
inputs and producing one output. The complete CLB is formed by joining
four LUTs together. The CLB has separate inputs for data and for LUT
reconfiguration that may be used independently. Therefore, it is possible
to reconfigure the memory of the LUT while data is being processed. This
CLB has four inputs and four outputs that can also combine with other CLBs
or stand alone to perform digital functions. A disadvantage of the design is
its high latency. The read operation requires 30 clock cycles. An FPGA is
made up of an array of CLB blocks. Each CLB is capable of implement-
ing an independent function. The output of the CLBs can be combined to
implement a complex function of the input variables. The signals will tra-
verse multiple CLBs. Therefore, the latency will accumulate and become
an important issue. Optimizing to reduce the latency and area of the design
is necessary.

Rungta [32] presents an improved version of CLB from work [16]. The
latency is reduced from 30 clock cycles down to 16 clock cycles. The
throughput performance of one read per cycle is still maintained from [16].
In contrast with [16], the memory cells of the LUT are arranged in a two-
dimensional array. This gives a rectangular LUT. The result of this is that
a given input signal traverses fewer clock zones before it reaches the input
of the logic block. The interconnect requires the most latency, but the area
structure of the design can be more compact, which also helps to improve
the latency and input signal routing issues. Unlike Lantz and Peskin’s pro-
posed CLB with a tree-based structure which results in a large unused area,
Rungta [32] designed the CLB with linear row and column decoders like
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CMOS memories to avoid unused area. The FPGA studied in this thesis
will be an array of multiple copies of the CLB presented by [32, 36].

1.3 Contributions

In contrast to [2, 15, 26, 27, 39]. This thesis presents an FPGA based on
configurable logic. In contrast to [16, 32], this thesis creates a small FPGA
consisting of multiple CLBs.

1.3.1 Proposed Design

This thesis presents the design and simulation of a CLB-based FPGA us-
ing QCA technology, and applications along with the FPGA. The FPGA in
the thesis is considered to be the composition of configurable logic blocks
(CLBs). The FPGA architecture presented in the thesis is formed through
tiling multiple CLBs together with nearest-neighbor connections only. The
primary inputs and outputs of the FPGA are on the outer perimeter of the
FPGA. Unlike other types of QCA-based FPGAs, which focus on pro-
grammable interconnect [15, 27], the presented FPGA is formed using pro-
grammable logic. The FPGA can be designed in any size and for different
purposes. Each CLB consists of four LUTs and has four pairs of inputs
and outputs associated with it. QCADesigner [41] is used for layout and
simulation of the design. However, when the layout design requires a sig-
nificant amount of time to simulate, another tool is needed to reduce the
simulation time. HDLQ [29] is a Verilog library, which is also used for sim-
ulation purposes. The results from both QCADesigner and HDLQ match
each other. A ripple-carry adder (RCA), a bit-serial multiplier (BSM),
and glitchless reconfiguration are demonstrated on the proposed FPGA. The
proposed FPGA has not been fabricated. However, the simulation results
match the expected results.
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1.3.2 Applications

Every device needs to be tested by applications to ensure its reliability. The
applications designed for this simple FPGA are the following: 4-bit ripple
carry adder (RCA), 4-bit serial multiplier (BSM), and partial reconfigura-
tion. To speed up simulation, HDLQ [29] is used. Each level of the design
drawn in QCADesigner is also modeled and re-simulated using HDLQ Ver-
ilog library. For levels up to the CLB, the layout is simulated in QCADe-
signer and the HDLQ model is simulated using ModelSim. The results
match bit for bit and cycle by cycle. The designs with multiple CLBs are
only simulated using the HDLQ model in ModelSim. For each application,
the results match the expected results.

1.4 Organization

This thesis is organized as follows: Chapter 2 provides the QCA background
for an understanding of QCA technology. It also includes a brief discussion
of various types of implementation techniques of QCA devices. Chapter 3
presents the architecture of the completed FPGA. It also describes the nec-
essary components embedded within it. Chapter 4 presents simulated re-
sults for the applications of the FPGA. Chapter 5 concludes this thesis and
discusses directions for future work.
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Chapter 2

QCA Background

The concept of quantum cellular-dot automata (QCA) was introduced by
Tougaw and Lent [18] in 1993. They proposed this new technique to be an
alternative method for fabricating electronic devices. The concept was very
theoretical in the beginning. Many mathematical equations were used to
prove its feasibility and strengths. In the following decade, this topic drew
more attention and improved in both design and fabrication.

QCA technology provides a computation method which is different from
that used in traditional transistor-based circuits. This section explains the
basic operation of QCA technology and its associated components, such as
a cell, wire, majority gate, and inverter. The layout designs of the QCA
circuits are the combination of all the mentioned components. More infor-
mation can be obtained in [18, 22, 41]. Mainly, there are two categories of
current QCA research, physical implementation and nanoarchitecture. This
thesis is focused on the nanoarchitecture. The logic design is independent
of the implementation technique. Once the implementation becomes more
stable for fabrication, the design can be set into a real hardware device.

2.1 Basic QCA Operation

This section describes the basic principles of QCA operation, starting from
a single QCA cell, and on to a QCA wire, and then logic gates. Finally, the
basic clocking scheme is also described.
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Figure 2.1: Binary interpretation of the states of a QCA cell.

2.1.1 QCA Cell

QCA circuits are made up of QCA cells [20]. Generally, each QCA cell
contains four electron wells and two electrons. The electron wells are held
at a low potential and are coupled to each other by tunnel junctions. The
interpretation of the states of a QCA cell is dependent on the position of
the electrons in the electron wells. The electron position is calculated by
a Schrödinger equation through a quantum-mechanical Hamiltonian [17].
The electrons repel each other to opposite corners of the cell. This gives
two stable configurations — one for each diagonal. One diagonal is used to
represent a binary ‘0.’ The other diagonal is used to represent ‘1.’ Figure 2.1
shows the two stable configurations and their binary interpretation.

2.1.2 QCA Wire

The QCA cells can be placed next to each other to form a chain of QCA
cells. This chain is called a QCA wire. Figure 2.2(a) shows an example
of a QCA wire carrying a logic ‘0.’ Each cell is polarized to “-1” due to
Coulombic interaction. It can be seen in the first cell that the occupied dots
in the cell distance themselves from the other occupied dots in the cell. The
second cell reproduces the logical value from the first cell and passes this
on to the next one. This process is called a domino effect, in which all cells
adopt the same polarization. Figure 2.2(b) shows the same wire carrying a
logic ‘1.’
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INPUT OUTPUT

(a) Output = Input = ‘0.’
INPUT OUTPUT

(b) Output = Input = ‘1.’

Figure 2.2: QCA normal wire.

INPUT OUTPUT

(a) Even cells ‘0,’ and odd cells ‘1.’
INPUT OUTPUT

(b) Even cells ‘1,’ and odd cells ‘0.’

Figure 2.3: QCA inversion chain.

Besides the normal QCA wire shown in Figure 2.2, there is another type
of QCA wire called inversion chain. Figure 2.3 demonstrates the two stable
configurations of the QCA inversion chain with (a) logic ‘0’ and (b) logic
‘1’ inputs. All the cells in the inversion chain are rotated 45 degrees with
respect to the normal QCA cells. A QCA inversion chain consists of an
array of 45-degree orientated cell. In the inversion chain, the neighboring
cells are aligned in opposite polarization for stable configuration. As the
information is being transmitted, the polarizations alternate between ‘1’ and
‘-1’. This means that the QCA inversion chain can be considered as a serial
chain of inverters. A normal QCA cell can be tapped off the inversion to
obtain buffered or inverted outputs.

2.1.3 Wire Crossing

The feasibility of multi-layer layout in QCA technology has not yet been
proven. However, co-planar wire crossing may be feasible in QCA. As
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OUTPUT 1

OUTPUT 2

INPUT 2

INPUT 1

Figure 2.4: Wire crossing.

mentioned in Section 2.1.2, there are two types of QCA wires, normal wire
and inversion chain. It is possible to have wire crossing between a normal
wire and an inversion chain, because the signals will not interfere with each
other. The cell at the intersection must be an inverted cell. Figure 2.4 shows
a wire crossing between a vertical inversion chain and a horizontal normal
wire.

2.1.4 Majority Gate and Inverter Gate

One of the major components in QCA technology is the 3-input majority
gate. The Boolean function of the majority gate is F = AB+BC+AC. If
two of the inputs are fixed at ‘0’, the output will be ‘0.’ If two of the inputs
are fixed at ‘1,’ the output will be ‘1.’ The majority gate can implement a 2-
input AND or a 2-input OR gate by setting one of the inputs to constant ‘0’
or ‘1.’ Figure 2.5 (a) shows the majority gate configured as a 2-input AND
gate, and Figure 2.5 (b) shows the 2-input OR gate. Table 2.1 shows the
configuration needed to implement a 2-input AND and a 2-input OR gate.

Another important component is the inverter. Figure 2.6 shows QCA
schematic of the inverter. The function of the inverter is to change the input
value from either logic ‘0’ to logic ‘1’ or from logic ‘1’ to logic ‘0.’ In an
inverter gate setup, the input wire is set as a two-prong fork. The output
wire is aligned vertically between the two prongs of the fork on the edge.
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B

‘0’

A and BA

‘1’

B

A or BA

(a) AND gate (b) OR gate

Figure 2.5: QCA majority gate.

Table 2.1: Truth table for majority gate.
(a) with C = 0, F = A ∧B (b) with C = 1, F = A ∨B

C B A F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

C B A F
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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INPUT OUTPUT

Figure 2.6: QCA inverter.

The logic value is passed to the edge of the two-prong fork. The output is
driven by the diagonally opposite force from the two-prong fork input. The
logic value of output is then forced to be opposite to that of the input by the
Coulombic interaction.

2.1.5 QCA Clock

The electron in the electron well requires high potential energy to tunnel
through the junction. This potential energy is provided by the QCA clock. In
this thesis, a four-phase clock system is adopted. The electrons are allowed
to move between the wells when the clock is high, because the potential
barrier is low. On the other hand, the electron is trapped in the well when the
clock is low due to the raised potential barrier. Electrons will then assume
the polarization of their neighbors. QCA circuits adopt a four-clock-phase
technique to power the circuits.

CMOS clocking is implemented adiabatically to reduce the power dissi-
pation. Typically, four-phase clocking is used for QCA logic synchroniza-
tion. The four phases are switch, hold, release, and null. The clock wires are
embedded directly under the physical layer of QCA cells. In the hold state
where the clock is low, the QCA cell is holding the current position of the
electrons. The rising edge of the clock is the release state, where electrons
tunnel down to the bottom of the QCA cell due to the electrons attraction.
When the clock is high, the QCA cell enters the null state. At the falling
edge of the clock, QCA enters the switch state where the electrons are re-
pelled from the clock plane and tunnel to other positions. Figure 2.7 shows
the clock mechanism for four phase clocking. It is a shifting movement over
time. In the figure, s stands for switch phase. h stands for hold phase. r
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Figure 2.7: Clock zones and phases.

stands for release phase. Finally, n stands for null phase.
The four clock zones are zone 3, zone 2, zone 1, and zone 0. Figure 2.7

shows the clock zone signals behavior. In a QCA circuit, each cell must
be assigned to a clock zone. Although all the cells will experience the four
phases of the clock over time, each cell still needs to be given a specific
clock zone in the design. The arrangement of clock zones determines the
direction of information flow. The direction of information flow is from
zone 0 to zone 1 to zone 2 to zone 3, then back to zone 0 of the next clock
period. The clock signal in all QCA-based circuits has to be a global signal
where all cells share the same clock. Unlike CMOS technology, the clock-
ing of QCA is implemented underneath the layer upon which QCA cells are
placed [34].

2.1.6 Design Rules

Certain restrictions must be met for correct QCA operation. This section
describes some of these conditions. I believe these conditions are funda-
mental to QCA. However, these conditions were observed during QCADe-
signer simulation. These rules have not been tested in a fabricated hardware
device.
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Figure 2.8: Normal wire connects to inversion chain.

Input 1 Output 1

Buffered Output

Input 1 Output1

Inverted Output

Figure 2.9: Inversion chain tapping off.

Length of Clock Zones If there are more than 10 cells in the single clock
zone, the signal seems to be inaccurate. On the other hand, a minimum
of two cells in a single clock zone is required. This minimum of two is
sufficient for QCADesigner. However, for ease of fabrication, it may be
necessary to group more cells in each clock zone [37].

Normal and Inversion Chain Connection In the design process, connections
might be required between a normal wire and an inversion chain. The con-
necting cell needs to be translated by half a cell width in order for the de-
sired signal to transfer properly. Figure 2.8 shows an example of how such
a connection can be established.

Inversion Chain Taps Off An inversion chain is a special type of QCA wire.
Each cell within the inversion chain takes an opposite polarization from its
previous cell. Therefore, a buffered or an inverted signal can be obtained
from inversion chain, depending on the location of tapping off. Figure 2.9
demonstrates examples of such behavior. A normal cell shifted by half a cell
width to meet with the inversion chain. The location of the tap determines
whether the output is buffered or inverted.
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OUTPUT 2

INPUT 1 OUTPUT 1
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Figure 2.10: QCA wire crossing between normal and inversion.

Normal Wire Crossing Inversion Chain Wire crossing between normal wires
and inversion chains is complex. During design process, a couple of behav-
iors were explored during the simulation. Some restrictions were developed
to ensure the correct simulation.

1. The intersection cell should be an inversion chain cell.

2. A minimum of two cells of the normal wire before the intersection
should have the same clock phase as the inversion cell at the intersec-
tion.

3. A minimum of one additional inversion cell on each side of the in-
tersection must be the same clock phase. Figure 2.10 illustrates these
minimal phase concepts.

4. The normal chain should move to the next clock phase after crossing
the intersection.

2.2 QCADesigner

QCADesigner is an easy and useful program to design and simulate QCA
circuits. QCADesigner is not just a switch-level simulator. It simulates
QCA using the quantum mechanics of QCA. It has a friendly graphic user
interface (GUI). QCA cell and wire are already a tool icon on the GUI. Once
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the cell is placed in the schematic, it is easy to change its clock zone or the
rotation of the cell. By double clicking on the cell, the user can name the
cell to be either input or output. To simulate the circuit, there are two steps
to do. The first step is to set up the simulation engine, and the second step is
to set up the simulation type. Simulation engine has two choices, coherence
vector and bistable. This thesis uses the bistable simulation engine for all
the proposed designs. The simulation type is to allow the user to set up the
input test vectors. User can add in more test cycles in the table. The more
cycles there are, the more boxes there are for clicking. Checked boxes repre-
sent an input of ‘1’, and unchecked boxes represent input of ‘0.’ Once all the
set up is completed, choose start simulation from the simulation menu on
top to start the process. There are more details and a user guide from [40].
However, there are still certain limitations of QCADesigner.

2.2.1 Limitations

All the proposed designs are simulated in QCADesigner version 2.0.3. The
simulating computer is equipped with 3 GB of memory and a Pentium(R) 4
3.2 GHz CPU and works under Windows XP professional with service pack
3. The time required to simulate for one CLB is approximately 12 hours.
The total cells used are 22,558. The shape of the design was constructed
to be a rectangle with area of 48.41 µm2, but the occupied area is only
7.31 µm2. This is the largest scale design possible for simulation. When
tiled multi-CLB together and perform simulation in QCADesigner, the error
message always occurs to state that “out of memory.” During the design
process, there are certain things that were explored in the simulation such
as number of cells in the clock zones.

2.3 QCA Implementation

Three types of QCA implementation have been proposed. The first one is
called metal dot junction QCA [4, 21], the second type is called molecular
QCA [23, 24], and the last type is called magnetic QCA [10]. Each imple-
mentation method has its own advantages and disadvantages and yet none
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(a) (b)

Figure 2.11: Metal dot QCA cell: (a) SEM image, and (b) schematic diagram. Reproduced
from [28] with permission of the publisher.

has been completely developed.

2.3.1 Metal Junction QCA

Metal junction QCA [4,21] was the first fabrication technique developed to
demonstrate the concept of QCA. It was not intended to compete with the
current CMOS technology in the sense of speed and practicality. The basic
idea of metal dot QCA is to build quantum dots using aluminum islands.
The cell size is approximately 60 nm by 60 nm, with junction capacitance of
400 aF [4]. The method has the advantages of an easier fabrication process,
reliability, and ease of modeling and analyzing. However, it has one major
drawback, which is the operating temperature. The prototype only operates
at 10◦K or below. The required quantum-mechanical effects only happen at
this operating temperature. Metal dot QCA is meant as a proof-of-concept
implementation. Figure 2.11 shows a scanning electron microscope (SEM)
image of the metal dot QCA and its diagram.
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Figure 2.12: Two views of a molecule as a QCA cell. Reproduced from [19] with permis-
sion of the publisher.

2.3.2 Molecular QCA

To address the issues of metal junction QCA, molecular QCA was pro-
posed [23, 24]. In molecular QCA, each device is built by molecules. The
basic concept of molecular QCA is that each molecular QCA cell consists
of a pair of identical allyl groups as shown in Figure 2.12. The molecule
shown in Figure 2.12 is also known as a 1, 4-diallyl butane radical cation.
This is formed by two allyl groups connected by a butyl bridge in between.
This molecule is neutral on one end and the other end behaves as a cation.

This molecule has an extra hole or electron that allows the quantum tun-
neling effect needed by QCA to happen. If an electrical field is placed near
one end of the molecule, it can create either a repelling or attracting force.
It has been calculated that the molecule in Figure 2.12 has nonlinear switch-
ing characteristics, which make it an ideal switch. When the molecules are
placed next to each other with a distance of seven angstroms, the electro-
static interaction will cause the holes to be at opposite ends, which makes
the propagation of the electron feasible to create the state of the QCA cell.
Figure 2.13 shows the different states of the molecular QCA. Part (a) is a
+1 state, part (b) is a non-ideal state which is not needed, and part (c) is a -1
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(a) (b) (c)

Figure 2.13: Different states of a molecular QCA cell: (a) +1 state, (b) non-ideal state, and
(c) -1 state. Reproduced from [19] with permission of the publisher.

state. At this scale, the required quantum-mechanical effects can happen at
room temperature.

Molecular QCA is believed to have the following advantages: high den-
sity, high clock frequency from the gigahertz range to the terahertz range,
low power consumption, low power loss. An individual molecular QCA
cell has been demonstrated. However, no complete circuit using molecular
QCA has yet been demonstrated [43].

2.3.3 Magnetic QCA

A magnetic QCA (MQCA) cell consists of a single circular nanodot [10,
13, 14, 30]. A magnetic Supermalloy (mainly Ni) [10] is used to create the
nanodot. Each nanodot is 110 nm in diameter and is 10 nm in thickness.
Nanodots are placed 20 nm apart on a straight line. The basic operation
is to use an oscillating field on the dot to have it point to a certain direc-
tion to represent the binary value. Magnetic QCA cell is capable of op-
erating at room temperature. Other advantages include high density and
low power loss. The operating frequency is low (in the MHz range) when
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Figure 2.14: SEM image of a fabricated MQCA network. Reproduced from [10] with
permission of the publisher.

compared to CMOS [4]. A NOT gate and a majority gate have been demon-
strated [11, 14]. Figure 2.14 shows a SEM image of a fabricated magnetic
QCA network.

2.4 QCA Concept Relative to the Thesis

QCA is a nanotechnology, and it depends on quantum-mechanical effects,
in particular, quantum-tunneling. However, the use of QCA does not imply
quantum computing. Quantum computing depends on the superposition of
the states. The circuits implemented in Section 2.1 are standard logic gates.
Those gates are built based on the QCA concept. The output of each gate is
either ‘0’ or ‘1’ at any given clock cycle. The circuits built from these gates
do not depend on superposition. Hence, this is not a quantum computing
method.

It is suggested that QCA has potential for low power dissipation com-
pared to CMOS technology. This fact is based on the theory that QCA
interactions rely on the position of electrons within each cell. CMOS tech-
nology relies on the current flow through the wires and devices. However,
another issue also needs to be considered for the overall power performance,
which is the clock power. In CMOS technology, the clock is only needed for
sequential elements in synchronous design. In QCA, even wires and gates
must be clocked. These clocks are embedded underneath each QCA cell in
the implementation. This means all cells will require additional power for
data transmission. Without actual hardware testing, it is hard to determine
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which technology has better overall power performance. However, it is one
key idea to keep in mind for future work.
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Chapter 3

Architectures

This chapter describes the hierarchical architecture of the design presented
in this thesis. The layout of the design is shown in QCADesigner. The
description flows in a top-down format. The FPGA is explained first, and
second the CLB, next the LUT, and finally the memory component.

3.1 FPGA

The proposed architecture for the FPGA is a cellular array of CLBs tiled
together. Figure 3.1 demonstrates an example of the proposed FPGA. The
number of CLBs tiled together determines the size of the applications that
can be performed on the FPGA. Each side of a CLB block has a single input
and a single output. The outputs of each CLB are connected to the adjacent
CLB’s input for data communication purposes. Besides the input and output
lines shown on the figure, there are also some configuration bits used to
configure the CLB memory on the right side of the FPGA (not shown on the
figure) and the output of those bits are on the left side of the FPGA.

The CLBs are designed so that they can be set up next to each other (as
in Figure 3.1) to form a simple FPGA. With the setup of the configuration
bits, each CLB can be programmed differently. The memory configuration
process is described in Section 3.4.
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CLB CLB CLB

CLB CLB CLB

Figure 3.1: Architecture for QCA FPGA.

3.2 CLB

The CLB is composed of four look-up tables (LUTs). The LUTs are placed
in a 2 × 2 array to form the CLB. Figure 3.2 shows the block diagram of
the CLB. It has four data inputs: n, s, e, w, and four data outputs: N , S, E,
W . There are 16 additional configuration inputs to the CLB, which are not
shown on the Figure 3.2, but will be explained in Section 3.4. The four data
inputs come from the four corners of the CLB and travel to the center. The
signals are then evenly distributed to the four LUTs. Each input line must
incur the same number of clock cycles of latency to ensure a throughput of
one read operation per clock cycle. The CLB was first developed by [16],
and then optimized by [32]. It takes seven clock cycles for the data to travel
from n, s, e, and w to the LUTs. Then each LUT takes nine clock cycles to
produce an output signal. The CLB has a total latency of 16 clock cycles.

As mentioned above, the CLB is made up of four LUTs. They are iden-
tical. However, to connect the input and output lines, the LUTs are flipped
with respect to each other and arranged as shown in Figure 3.2. It is impor-
tant to make sure that the outputs and inputs are lined up, so that multiple
CLBs can be tiled together without extra wiring. Figure 3.3 shows the lay-
out design of the CLB. It is drawn and simulated in QCADesigner [41]. A
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Figure 3.2: Block diagram of CLB.

Verilog model using HDLQ [29] is separately developed. The completed
simulations in both programs are shown in Chapter 4.

3.3 LUT

The LUT is made up of three major components: a decoder, a 16-bit mem-
ory, and an output circuit. Figure 3.4 (a) shows the block diagram of the
completed LUT. The number next to each signal on the figure indicates the
clock cycles of latency relative to the initial inputs applied to the decoder.
As the numbers on Figure 3.4 (a) indicate, the inputs are coming from the
top left corner. All the latencies are with respect to the arrival of the in-
put signals. The vertical arrows represent the column decoder rails. The
only exception is the most right vertical arrows that represent the vertical
OR chain outputs. The horizontal arrows are shorthand for the row decoder
rails, the data input rails, the read/write enable rails and the OR chain rails.
Those signal rails will be explained in Section 3.3.1. The clock cycle in-
formation on the arrows applies to row and column decoder inputs. Those
numbers indicate the clock cycles required by an address input to arrive at a
specific unit memory location. No matter what path is chosen to travel for
the signal, the delay remains the same, with exactly one clock cycle delay
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Figure 3.3: CLB layout in QCADesigner [41].
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between each cell. This enables a throughput of one read per cycle. The to-
tal latency from the decoded address to arrive at a valid output is nine clock
cycles.

At the bottom right of the LUT, there is the output of the LUT. It is the
OR of the enabled outputs of all 16 memory cells. The decoder ensures
that only one memory cell is enabled. Thus, the output of the entire LUT is
equal to the value stored in the enabled cell.

The decoder used in the LUT is similar to the traditional CMOS memory
design, which has separate row and column decoders. This decoder is capa-
ble of decoding four inputs to 16 outputs that matches with the 16-memory
block in the design. Figure 3.5 shows the schematic and layout of the 2-to-4
decoder. The row and column decoders are identical to each other. The only
difference is the rotation. The outputs of the row and column decoders are
ANDed together to form the enable signals inside the memory blocks.

Figure 3.4 (b) shows the schematic of the LUT. The decoders are located
on the top and left side. The 16 cells in the middle are arranged in a 4 ×
4 array. The bottom right is the output circuitry that combines all the 16
memory outputs. To configure the LUT, there are four input lines for the
memory entering from the right side, and there are also four input lines for
a Read/Write (RW) signal entering from the left side. The device has a read
latency of nine clock cycles and a throughput of one read operation per clock
cycle. It is designed in a way that it is possible to rotate it and to connect it
to another LUT. Arranging four LUTs in a 2×2 array gives the CLB shown
in Figure 3.2.

3.3.1 Unit Memory

The 16 memory blocks in the LUT are made up of 16 copies of the unit
memory cell. Figure 3.6 shows the schematic and layout of the unit mem-
ory design. The clock zones on Figure 3.6 (a) are calculated precisely in
order for DATA IN (DI) to match with RW IN (RW) and configure the unit
memory to hold the desired value. The time required for unit memory to
store one value and pass data to the next memory cell is exactly one clock
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Figure 3.4: LUT.
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Figure 3.5: Decoder.

cycle. One more important idea in the design is the way that memory is con-
figured. Memory is only written when the RW signal encounters a pulse on
the DI signal. Otherwise, the memory is not being configured and remains
unchanged. The configuration process is discussed in Section 3.4.

3.3.2 Output Circuitry

The output circuitry merges the outputs from all the memory cells such that
the enabled cell determines the output of the LUT. QCA does not have tris-
tate buffers. Therefore, the use of logic for selecting a single output from
the memory cells is required. The proposed LUT used a series chain of
OR gates to achieve one read per clock cycle. The decoder and the output
circuitry are arranged in a way that the input information and the output
information flow in the same direction as each other. The proposed design
ensures a fully pipelined operation. The design has similarity to that of [42].
However, the throughput frequency is unclear from [42].

The output circuitry is split into five OR chains shown in Figure 3.7.
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Figure 3.6: Unit memory cell.
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Four OR chains are running horizontally, and one is running vertically. The
horizontal chains combine the value stored in the memory within a row, and
the vertical chain merges the values from four horizontal chains. Each OR
chain is made up of three gates, and it is executed in parallel with the row
and column decoders. This two-stage OR gate circuitry and the row and
column decoders are designed specifically for selecting a single memory
cell out of the 16-bits memory of the LUT. In Figure 3.7, besides the three
OR gates on the vertical (rightmost chain), all other OR gates are embedded
within the unit memory cell of Figure 3.6.

Figure 3.7 (b) shows the layout of the output circuitry. The latency of the
OR chain is one clock cycle for a single OR operation. This is important
because the row and column decoders also have the same latency to ensure a
fully pipelined structure for the LUT. The delay along the OR chain matches
the delay along the array of Figure 3.4 (a) for a throughput of one read
operation per clock cycle.

3.4 Configuration

The method to configure the memory of the CLB and FPGA is the same. As
described earlier, the FPGA is a combination of multiple CLB blocks tiled
together. Therefore, the memory configuration bits are also tiled together.
Thus, the row of memory cells across the entire FPGA forms the fundamen-
tal unit of reconfiguration of the proposed FPGA. Reconfiguring any part
of the row requires reconfiguring the whole row of memory, but each row
of memory can be reconfigured independently. This is similar to the Xilinx
FPGA architecture in which the frame is the fundamental unit of reconfigu-
ration. The difference is that Xilinx has a column memory, and the proposed
FPGA reconfiguration is a row. Figure 3.8 shows all the inputs and outputs
of the CLB, including those used for configuration. On the right side of the
CLB are the memory inputs, and on the left side are the Read/Write signal
inputs. The memory values come in from the right, and RW signals come
in from the left. The memory is configured when both signals meet. There-
fore, it is required to calculate the precise timing and sequence necessary to
configure the desired function.



33

0

4

1

2

3

8 12

5 9 D

A E6

7 B F

OUT

(a) Schematic.

OR_IN_0

1.00

ENABLE_4

OR_IN_1

1.00

ENABLE_5

OR_IN_2

1.00

ENABLE_6

OR_IN_3

1.00

ENABLE_7

1.00

ENABLE_8

1.00

ENABLE_C

1.00

ENABLE_9

1.00

ENABLE_D

1.00

ENABLE_A

1.00

ENABLE_E

1.00

ENABLE_B

1.00

ENABLE_F

1.00

1.00

1.00

OUTPUT

(b) Layout.

Figure 3.7: Output circuitry.



34

Figure 3.8: A single CLB.

A CLB consists of four LUTs. Each LUT has 16 memory cells, which
means a complete CLB has 64 bits of memory. Figure 3.9 shows how the
memory is allocated in the CLB. Each DATA IN signal forms a pair with
its matching RW signal. Each such pair controls an entire row of memory.
Based on this type of configuration, to set up a desired function, a truth table
must be written first. In Figure 3.9, the memory is divided into four sections.
The top right section is associated with the N output. The top left section is
associated with the W output. The bottom right section is associated with
theE output. Finally, the bottom left section is associated with the S output.
The input to the CLB block is in a (e, w, s, n) pattern. For example, when
an input of 0111 is given to the CLB, the CLB must return the values stored
in the location of 7 in all four sections. Equations (3.1) and (3.2) show the
full adder logical behavior.

si = ai ⊕ bi ⊕ ci (3.1)
ci+1 = aibi + bici + aici (3.2)

Table 3.1 shows a truth table of a full adder. The first row represents the
functional logical name, and the second row represents the corresponding
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W N

15 11 7 3 3 7 11 15
14 10 6 2 2 6 10 14
13 9 5 1 1 5 9 13
12 8 4 0 0 4 8 12
12 8 4 0 0 4 8 12
13 9 5 1 1 5 9 13
14 10 6 2 2 6 10 14
15 11 7 3 3 7 11 15

S E

Figure 3.9: Position of each address within the LUT of the CLB.

port of the CLB. It is simple to match the truth table with memory config-
uration. This table is set so that it increases its value from 0 to 15 in the
binary system. The addresses in Table 3.1 correspond to the locations in
Figure 3.9. In this example, N and E are all meaningless (don’t care) val-
ues. Therefore, the memory associated with them, the top right and bottom
right sections, should be set to ‘0.’ si and ci+1 correspond to the bottom left
and the top left sections. Those memory units must be configured as shown
in Tables 3.2 and 3.3. Based on the setup and the memory configuration
input from Figure 3.8, each DATA IN controls a row of memory. Table 3.4
shows the inputs needed to configure the CLB into a full adder. Between
each valued input, there must be a delay cycle to match the RW signals.
There are eight of memory units in each row, so eight valid inputs are re-
quired to configure the memory unit. The first eight cycles from Table 3.4
configure the left part of the memory in the CLB. The last eight cycles con-
figure the right part of the memory in the CLB. In the table, X indicates a
don’t care bit. It is just because this full adder example does not require the
right part of memory to function. When users design their own functions,
they will have to figure out the memory input for them. RW signals travel in
the opposite direction from that of the DATA IN signals. Each RW signal
must have the input sequence of 0000000001000000. This sequence starts
the RW pulse with the correct timing to meet each bit of the DATA IN at
the appropriate cell. Once the full adder is configured, the top left memory
contains EE88 in hex and bottom left contains 9966 in hex, and the other
two memory units contain 0000 in hex.
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Table 3.1: Full adder truth table.
Address Inputs Outputs

ci bi ai ci+1 si

e w s n W S N E

0 0 0 0 0 0 0 X X
1 0 0 0 1 0 1 X X
2 0 0 1 0 0 1 X X
3 0 0 1 1 1 0 X X
4 0 1 0 0 0 0 X X
5 0 1 0 1 0 1 X X
6 0 1 1 0 0 1 X X
7 0 1 1 1 1 0 X X
8 1 0 0 0 0 1 X X
9 1 0 0 1 1 0 X X

10 1 0 1 0 1 0 X X
11 1 0 1 1 1 1 X X
12 1 1 0 0 0 1 X X
13 1 1 0 1 1 0 X X
14 1 1 1 0 1 0 X X
15 1 1 1 1 1 1 X X

Table 3.2: si memory configuration.
1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0

Table 3.3: ci+1 memory configuration.
1 1 1 1
1 1 0 0
1 1 0 0
0 0 0 0
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Table 3.4: Input for configuration.
Input clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DATA IN3 1 - 1 - 1 - 1 - X - X - X - X -
DATA IN2 1 - 1 - 0 - 0 - X - X - X - X -
DATA IN1 1 - 1 - 0 - 0 - X - X - X - X -
DATA IN0 0 - 0 - 0 - 0 - X - X - X - X -
DATA IN4 1 - 1 - 0 - 0 - X - X - X - X -
DATA IN5 0 - 0 - 1 - 1 - X - X - X - X -
DATA IN6 0 - 0 - 1 - 1 - X - X - X - X -
DATA IN7 1 - 1 - 0 - 0 - X - X - X - X -
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Chapter 4

Simulation and Analysis

Two different simulators, QCADesigner [41] and HDLQ [29] with Model-
Sim, are used for the simulation. The layout was first drawn and simulated
using QCADesigner. However, at the one-CLB level, the simulation time
requires more than 12 hours. To reduce the significant amount of simula-
tion time, HDLQ with ModelSim is used for designs with more than one
CLB. All the architectures below the CLB level are rebuilt in HDLQ and
simulated for verification. The results from both QCADesigner and HDLQ
match each other. However, HDLQ is possible for large-scale simulation.

QCADesigner is an open-source software package that many QCA re-
searchers have been using. However, QCADesigner simulator (V.2.0.3) was
last updated at 2005. Although the tool allows simulating of multi-layer
QCA, not enough evidence is provided to support the feasibility of such de-
sign. Therefore, all the architectures presented in this thesis use a single
layer. HDLQ [29] is a Verilog library for behavioral simulation of QCA
architectures. Unlike QCADesigner, which models QCA at the physical
level with quantum-mechanics, HDLQ models QCA circuits by assuming
an ideal logical model of QCA operation. This is important for a fast proto-
typing of complex QCA circuit. The complex QCA circuits are composed
of different logic blocks. For example, wire, fanout, inverter, and majority
voter blocks are provided in the HDLQ library. The unit memory, LUT,
CLB, and FPGA are formed as structural interconnections of these blocks.
In each level up to the CLB, the simulation results match those of QCADe-
signer.

The CLB of Figure 3.3 is simulated in QCADesigner version 2.0.3 using
the bistable simulation engine with a radius of effect of 50 nm. The total
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Figure 4.1: Full adder symbol.

number of samples is 300,000. All remaining parameters use the default
values provided by QCADesigner.

4.1 Full Adder

In the first step of design verification, the 1-bit full adder (FA) is simulated
using QCADesigner. The FA implements Equations (3.1) and (3.2). Fig-
ure 4.1 shows the schematic view of the FA. Figure 3.3 shows the layout. In
this circuit, inputs and outputs are given, as shown in Figure 4.1. Table 4.1
shows a general input and output relationship. Our CLB has a latency of 16
clock cycles, which means for any given input vector to the system, the cor-
responding output is expected after 16 clock cycles. As for this full adder
testing, only three inputs, ai, bi, and ci, are given. To run an exhaustive test,
eight test vectors are given to the system.

Figure 4.2 shows the output of the full adder only under the QCADe-
signer simulator. The latency of the system is 16 clock cycles. Figure 4.2
(a) shows the cycles from 19 to 27, which represent the input to the FA, and
Figure 4.2 (b) shows the cycles from 25 to 43, which represent the output of
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Table 4.1: Full adder result.
Inputs Outputs

Clock Cycle ci bi ai Clock Cycle ci+1 si

20 0 0 0 → 36 0 0
21 0 0 1 → 37 0 1
22 0 1 0 → 38 0 1
23 0 1 1 → 39 1 0
24 1 0 0 → 40 0 1
25 1 0 1 → 41 1 0
26 1 1 0 → 42 1 0
27 1 1 1 → 43 1 1

(a) Input (From cycle 19 to 27).

(b) Output (cycle 35 to 43).

Figure 4.2: FA simulation in QCADesigner.

the FA. IN NORTH , IN SOUTH , and IN EAST are the three inputs:
ai, bi, and ci. OUT SOUTH is si, and OUT WEST is ci+1.

Figure 4.3 demonstrates the input and output waveform in HDLQ. There
is a signal named zone1 in the figure. It represents the clock provided to
the cells in clock zone 1 of the QCA system. Only one clock is shown
here because the output signal changes its status based on this clock. On
Figure 4.3, each cycle is 100 ns with the exception of the first cycle being
75 ns to match the clock cycles in QCADesigner. These times are arbitrary.
The actual clock period needed for correct operation would depend on the
physical QCA implementation used. data0 in0 and data0 in1 are the two
input line used to configure the memory of the LUT. in a, in b, and in c
are the three inputs of the FA. Comparing Figure 4.2 and Figure 4.3, the
same results are obtained. Therefore, to reduce the simulation time for the
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Figure 4.3: Simulation result of full adder in HDLQ.

3248 0

0

16

16

c0c1

a
0

s
0

b
0

0

16

32

c2

a
1

s
1

b
1

32

48

48

c3

a
2

s
2

b
2

64

64

c4

a
3

s
3

b
3

48

16

32

NW n e

S

E

s

w

NW n e

S

E

s

w

NW n e

S

E

s

w

NW n e

S

E

s

w

Figure 4.4: RCA block diagram.

larger-scale design, HDLQ is used to replace QCADesigner.

4.2 Ripple Carry Adder

A 4-bit ripple-carry adder (RCA) is constructed by tiling four 1-bit full
adders together. Figure 4.4 shows the block diagram of the design. The
HDLQ Verilog model is simulated using ModelSim. To achieve a 4-bit plus
4-bit RCA, the FPGA is made up of four CLBs tiled together horizontally.
For two 4-bit numbers, there are nine inputs to the system and five outputs
from the system. Figure 4.4 shows how CLBs are tiled together to form
the 4-bit RCA. CLB0 is the least significant block. It takes three inputs, c0,
a0, and b0, to produce two outputs, c1, and s0. The behavior of the RCA
is calculated based on Equations (3.1) and (3.2), from which the expected
output from each bit can be calculated.

As shown in Figure 4.4, CLB0 produces s0 and c1 for CLB1. CLB1

follows the same behavior for CLB2 and then CLB3. The final five output
bits are c4, s3, s2, s1, and s0. The result is simulated under HDLQ, using



42

an exhaustive test set of all 512 input combinations. Figure 4.4 depicts
four CLBs configured to implement the RCA. Within each shaded CLB, the
inputs are n, s, e, w, and the outputs are N,S,E,W. The function is then
determined by the memory configuration. The gray arrows in Figure 4.4
represent inputs to and outputs from the CLBs that are not used by the RCA
design.

The number next to each signal on the figure indicates the clock cycles
of latency relative to the initial inputs applied to the least significant bit. For
a given test vector, if a0, b0 and c0 are all applied at clock cycle t, then any
signal marked with the number n in the diagram occurs at clock cycle t+n.
For an input signal, this means that the user must apply that input at the
indicated cycle. For an output, this means that the output must be read at
that cycle.

The latency on the critical path from the least-significant inputs to the
most significant outputs is 64 clock cycles long. However, the adder is fully
pipelined. Note that all the inputs to a given CLB arrive with the same
latency. The least significant bits for the next pair of addends can be applied
in cycle t + 1. Thus, a throughput of one addition per clock cycle can be
maintained. Figure 4.5 shows the partial waveform result from HDLQ.

Here is an example of the addition process. If 0111 + 1110 are given
to the RCA, Table 4.2 shows the input and output sequences of the RCA.
The inputs need to be staggered. That is why 0111 and 1110 are split and
given to the RCA in four different clock cycles, and there are also four
outputs associated with each given input after 16 clock cycles. The Xs in
the table are the do not care bits. Table 4.2 only shows one addition process.
However, it does not mean that the clock cycles in between are idle. Those
clock cycles in between are also calculating other sets of addition process.

Calculating the exact number of cycles for a signal to arrive at certain
time seems like a wave pipeline. Wave pipelining is to send in a steam of
signals from different directions and have them converge at the expected lo-
cation and time. The main difference is the clock. Wave pipelines have no
clock, but QCA circuits do have clocks. However, since QCA has clock sig-
nals everywhere, it feels like the clock becomes “time.” Signals are given at
certain “times” and expected it arrive the desired locations at certain “times.”
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(a) Cycle 189 to 221.

(b) Cycle 222 to 254.

Figure 4.5: Partial 4-bit RCA waveform result form HDLQ.
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Table 4.2: RCA result.
Clock Cycle Input Bit Carry Bit Output Bit

190 a0 = 1, b0 = 0, c0 = 0
206 a1 = 1, b1 = 1, c0 = 0 c1 = 0 s0 = 1
222 a2 = 1, b2 = 1, c0 = 0 c2 = 1 s1 = 0
238 a3 = 0, b3 = 1, c0 = 0 c3 = 1 s2 = 1
254 c4 = 1 s3 = 0

In this sense, a QCA circuit operates as a wave pipeline. In the test bench
design, all the inputs are pre-designed and sent into the system like a wave
of signals. The complete simulation waveform of the RCA can be found in
Appendix B.

To run an exhaustive test on the 4-bit RCA requires a long list of vectors.
To avoid mistakes in the test bench, a spreadsheet is used to compute the
inputs and expected outputs. After the results are constructed, each input is
staggered according to the CLB latencies. The table is saved into a text file.
This file contains the input to the system and also the expected output from
the system in each cycle. The test bench is able to read from this file, so it
knows in which cycle what inputs are given to the RCA and what outputs
are expected. The test bench compares the actual outputs from the RCA
with the expected outputs from the text file. If there is mismatch from the
comparing process, the mismatch cycle is reported on the screen.

4.3 Bit-Serial Multiplier

Another application for the proposed FPGA is a bit-serial multiplier (BSM).
The BSM is capable of taking two 4-bit numbers and multiplying them to-
gether. Figure 4.6 shows the block diagram of the BSM.A = 〈a3, a2, a1, a0〉
is the multiplicand and is input to the system in parallel. XIN represents
one bit of the multiplier from X = 〈x3, x2, x1, x0〉 and is input serially ev-
ery other cycle. Each input is delayed for one clock cycle when it passes
through the AND gate to the FA block. However, for the proposed FPGA,
the latency between each CLB is 16 cycles. This increases the serial input
to the system from every other cycle to every 32 cycles, and the inputs are
also delayed from one cycle to 16 cycles. To produce one 8-bit product from
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two 4-bit factors, 256 cycles are needed. The design is tested under HDLQ
with ModelSim. The test bench was written to compare the simulation out-
put to the expected output from the file. To run an exhaustive test, 65,536
test vectors are needed. The simulation results match to the expected result.
Therefore, the proposed FPGA is proven to handle BSM. Partial waveform
results are shown in Appendix C.

BSM is chosen to be one of the test applications because of the delays
in the design. The proposed CLB is a heavy pipelined structure. Initially,
the array multiplier seems to be a good application for the proposed CLB
because of the pipelined block structure. However, it turns out that the signal
cannot always arrive at desired time because different paths between the
same two points can have different latencies. The internal delay makes the
array multiplier hard to implement using the proposed FPGA. Instead BSM
has a lot of internal signal delays, which fits to the delay of the proposed
CLB. 12 CLBs in an array format of 3× 4 are used to implement the BSM.
Each CLB in the middle row is configured to be a 1-bit full adder. Each
CLB in the top row is configured as an AND gate for ANDing ai and XIN .
In Figure 4.6, there are many delay boxes shown on the schematic. Those
delays can be taken care by the proposed CLB internal delay. Each CLB in
the bottom row is configured to be a feedback loops.

4.4 Glitchless Reconfiguration

Partial reconfiguration [33, 45] is a process to configure part of an FPGA
while the whole FPGA is still operating. Partial reconfiguration is interest-
ing in many areas. Patterson [31] applied the partial reconfiguration tech-
nique to the data encryption standard (DES) algorithm. DES is a private
key algorithm that is used to encrypt or decrypt the information transferred.
The FPGA implementation uses a circuit that is specialized for a particu-
lar key to improve performance. Patterson uses partial reconfiguration to
replace the key-specific portion of the circuit leaving the rest unchanged.

Even in FPGAs that support partial reconfiguration, there is typically
some minimum unit of reconfiguration, such that reconfiguring any part of
the unit requires reconfiguring the entire unit. In the case of the proposed



46

023 1

3 2 1 0

IN

Figure 4.6: BSM block diagram.
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FPGA, this unit consists of one row of configuration bits. Therefore, par-
tially reconfiguring a region that does not span the full width of the device
requires reconfiguring areas on either side of the target region. In these ar-
eas, the new configuration bits are equal to the old configuration bits. If the
user circuits in the side region are to keep operating uninterrupted during
partial reconfiguration, it is important that this operation does not cause a
glitch in any configuration values in the side regions. An FPGA is said to
support glitchless reconfiguration if, when a bit holds the same value be-
fore and after reconfiguration, the act of reconfiguration is guaranteed not
to cause a glitch [33].

Figure 4.7 shows the result of glitchless reconfiguration from QCADe-
signer. It uses the same example of a 1-bit full adder. Table 4.3 shows the
inputs and memory results with clock cycles. Data IN 3...0 and Data IN 7...4

are used to configure the memory. It needs 17 cycles to configure the 8× 8
memory of the proposed CLB. Cycle 1 to 17 from Table 4.3 shows the vec-
tors to configure the memory to emulate the CLB. The address inputs are
given when the configuration process is completed. However, to observe the
reconfiguration process, Data IN 3...0 and Data IN 7...4 are given the same
configuration bits once again, while the input vectors are also given to the
system. Figure 4.7 shows the simulation waveform from QCADesigner.
Table 4.4 shows the output result of this simulation. The adder performs
its function uninterrupted while re-programming of memory is occurring.
The results in Table 4.3 prove that the memory contents do not change even
when the re-programming process is happening. It is clear that the results
validate the original assumption. Therefore, the proposed CLB is capable
of handling glitchless reconfiguration. The complete waveforms are shown
in Appendix D.
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Table 4.3: Glitchless reconfiguration.
Cycle Data IN 3...0 Data IN 7...4 RW IN Address input NMC EMC

1 E 9 0 0 zzzz zzzz
2 - - 0 0 zzzz zzzz
3 E 9 0 0 zzzz zzzz
4 - - 0 0 zzzz zzzz
5 8 6 0 0 zzzz zzzz
6 - - 0 0 zzzz zzzz
7 8 6 0 0 zzzz zzzz
8 - - 0 0 zzzz zzzz
9 - - 0 0 zzzz zzzz

10 - - 1 0 zzzz zzzz
11 0 0 0 0 zzzz zzzz
12 - - 0 0 Ezzz 9zzz
13 0 0 0 0 EEzz 99zz
14 - - 0 0 EE8z 996z
15 0 0 0 0 EE88 9966
16 - - 0 0 EE88 9966
17 0 0 0 0 EE88 9966
18 - - 0 0 EE88 9966
19 - - 0 0 EE88 9966
20 E 9 0 0 EE88 9966
21 - - 0 1 EE88 9966
22 E 9 0 2 EE88 9966
23 - - 0 3 EE88 9966
24 8 6 0 4 EE88 9966
25 - - 0 5 EE88 9966
26 8 6 0 6 EE88 9966
27 - - 0 7 EE88 9966
28 - - 0 0 EE88 9966
29 - - 1 1 EE88 9966
30 - - 0 2 EE88 9966
31 0 0 0 3 EE88 9966
32 - - 0 4 EE88 9966
33 0 0 0 5 EE88 9966
34 - - 0 6 EE88 9966
35 - - 0 7 EE88 9966
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Figure 4.7: Simulation result of glitchless reconfiguration.

Table 4.4: Full adder result during partial reconfiguration.
Inputs Outputs

Clock Cycle ci bi ai Clock Cycle ci+1 si

20 0 0 0 → 36 0 0
21 0 0 1 → 37 0 1
22 0 1 0 → 38 0 1
23 0 1 1 → 39 1 0
24 1 0 0 → 40 0 1
25 1 0 1 → 41 1 0
26 1 1 0 → 42 1 0
27 1 1 1 → 43 1 1
28 0 0 0 → 44 0 0
29 0 0 1 → 45 0 1
30 0 1 0 → 46 0 1
31 0 1 1 → 47 1 0
32 1 0 0 → 48 0 1
33 1 0 1 → 49 1 0
34 1 1 0 → 50 1 0
35 1 1 1 → 51 1 1
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Chapter 5

Conclusions and Future Work

This thesis presents the design, layout and successful simulation of a LUT-
based CLB in QCADesigner and HDLQ. A collection of four CLBs and
another collection of 12 CLBs acting as a very simple FPGA are also sim-
ulated in HDLQ. Previous work on FPGAs in QCA has focused on pro-
grammable interconnect. In contrast, this thesis presents what we believe to
be the first QCA design to use multiple CLBs consisting of look-up tables
(LUTs).

QCA depends on the use of clocks throughout. Even logic gates and
wires are clocked. Thus, even simple operations incur multiple clock cycles
of latency. This forms a fundamental design challenge in QCA. To achieve
high throughput, QCA designs must be heavily pipelined. The LUTs pre-
sented here adopt a two-dimensional memory structure with separate row
and column decoders inspired by CMOS memories. These are carefully de-
signed such that inputs and outputs all flow in the same direction and delays
are matched. This allows the LUTs to maintain a throughput of one trans-
action per clock cycle. The proposed CLB has just over half the area and
incurs just over half the latency of the CLB of [16].

We have demonstrated a sample application of a four-bit ripple-carry
adder (four-CLB) and a four-bit bit serial multiplier (12-CLB) running on
the simple FPGA. Although the latency of the critical path is 64 clock cy-
cles, the adder maintains a throughput of one sum per clock cycle. This is
achieved by applying the same strategy as that used to design the LUT.

The CLB unit is tested for glitchless reconfiguration in both QCADe-
signer and HDLQ. The simulation results prove that the proposed FPGA
has this property. Our design supports this feature due to the way that the
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memory is configured [16, 36]. Although the reconfiguration bits are input
serially, they are not shifted from cell to cell. Instead, each bit only changes
the value of its destination cell.

Once more realistic applications are implemented, we will be in a better
position to compare the effectiveness of configurable logic to that of config-
urable routing in the context of QCA. The FPGA presented here relies en-
tirely on configurable logic. Most commercial FPGAs use both configurable
logic and configurable routing. Possible future work could investigate com-
bining our CLB with configurable routing of existing QCA designs.

Currently, all the applications presented here rely on hand-mapping for
all the memory allocation, which takes time and has a high possibility of
error. To reduce the error and time, an electronic-design automation (EDA)
tool must be developed to efficiently map applications to our design.

An issue in the proposed FPGA design is that the function cannot always
have matched latency from every signal. QCA is a pipelined technology.
Hence, everything must be pipelined. The CLB presented in this thesis
maintains a throughput of one transaction per clock cycle. However, in a
user design, different paths might cross different numbers of CLBs before
converging. Such mismatch delays interfere with pipelining. This issue has
been studied in other fields [35, 44]. In those papers, the proposed FPGA
is considered as fixed-frequency FPGA. They proposed an idea to solve this
issue by adding a programmable delay at the input or output of each CLB to
balance the path delays. Further research can apply the techniques of [35,
44] to the CLB presented in this thesis.

The CLB itself can be further optimized. Grouping the cells into larger,
more regular clock zones will facilitate robust fabrication [38]. The current
design has many small, irregular clock zones. These clock zones result in
more power consumption and also require more latency for data transmis-
sion. Furthermore, when it comes to the fabrication point of view, the small,
irregular clock zones create a certain degree of difficulty. We will also in-
vestigate a multi-layer version without coplanar wire crossings. Fabricating
a prototype is an important next step.
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Appendix A

Full Adder Waveform Simulation

This appendix shows the completed simulation waveforms of the full adder
in both QCADesigner and HDLQ. The waveforms show the complete sim-
ulation from configuring the memory unit, and then test vectors are shifted
in. Figure A.1 to Figure A.6 are the waveforms in QCADesigner. The sig-
nals OUT SOUTH and OUT WEST are the outputs of the full adder, si

and ci+1. Data Bus 1 and Data Bus 2 are used to configure the CLB into
desired function. In this case, the desired function is the full adder. N MC,
E MC, W MC, and S MC are the memory contents that determine the
function of the CLB. IN NORTH , IN SOUTH , and IN EAST are the
test vectors for full adder, ai, bi, and ci. The test vectors are not given to the
full adder until the memory is completely configured into desired function.
Once the test vectors are applied for testing, the corresponding outputs are
expected after 16 cycles.

Figure A.7 to Figure A.9 are the waveforms of full adder in HDLQ with
ModelSim. data0 in0 and data0 in1 are used to configure the CLB as a
full adder. in a, in b, and in c are the test vector inputs, ai, bi, and ci.
Zone 1 is the clock when the outputs are triggered. MC0 east, MC0 west,
MC0 south, and MC0 north are the memory contents that determine the
function of the CLB. c1 and s0 are the simulating outputs, si and ci+1.
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Figure A.1: Full adder waveform in QCADesigner 1 of 6.
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Figure A.2: Full adder waveform in QCADesigner 2 of 6.
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Figure A.3: Full adder waveform in QCADesigner 3 of 6.
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Figure A.4: Full adder waveform in QCADesigner 4 of 6.
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Figure A.5: Full adder waveform in QCADesigner 5 of 6.
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Figure A.6: Full adder waveform in QCADesigner 6 of 6.
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Figure A.7: Full adder waveform in HDLQ 1 of 3.

Figure A.8: Full adder waveform in HDLQ 2 of 3.

Figure A.9: Full adder waveform in HDLQ 3 of 3.



67

Appendix B

RCA Waveform Simulation

This appendix shows part of the exhaustive test waveforms of the RCA. The
following addition processes are being simulated. Beginning with cycle
190, each cycle a new test vector is given to the RCA. Table B.1 shows the
test vectors applied to this RCA simulating waveform. The complete 4-bit
A = 〈a3, a2, a1, a0〉 and B = 〈b3, b2, b1, b0〉 are given 48 cycles after the
first bits are shifted in. counter is a variable that keeps track of the clock
cycles and starts to count when the test vectors are applied. data0 in0 and
data0 in1 are used to configure all the memory units in the CLB, which are
all theMC signals. in a, in b, and in c are the test vector inputs, A, B, and
c0. c1 to c4 and s0 to s3 are the outputs of the RCA.

Figure B.1 to Figure B.6 show how the memory contents are being con-
figured to be the RCA. Figure B.7 to Figure B.12 demonstrate the test vec-
tors applied from Table B.1 and the associated outputs.
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Table B.1: RCA test vectors applied.
Set Test vectors
1 0111 + 1110
2 1111 + 0110
3 1111 + 1110
4 0001 + 0001
5 0001 + 1001
6 1001 + 0001
7 1001 + 1001
8 0001 + 0101
9 0001 + 1101

10 1001 + 0101
11 1001 + 1101
12 0101 + 0001
13 0101 + 1001
14 1101 + 0001
15 1101 + 1001

Figure B.1: RCA waveform in HDLQ 1 of 12.
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Figure B.2: RCA waveform in HDLQ 2 of 12.

Figure B.3: RCA waveform in HDLQ 3 of 12.
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Figure B.4: RCA waveform in HDLQ 4 of 12.

Figure B.5: RCA waveform in HDLQ 5 of 12.
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Figure B.6: RCA waveform in HDLQ 6 of 12.

Figure B.7: RCA waveform in HDLQ 7 of 12.
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Figure B.8: RCA waveform in HDLQ 8 of 12.

Figure B.9: RCA waveform in HDLQ 9 of 12.
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Figure B.10: RCA waveform in HDLQ 10 of 12.

Figure B.11: RCA waveform in HDLQ 11 of 12.
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Figure B.12: RCA waveform in HDLQ 12 of 12.
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Appendix C

BSM Waveform Simulation

This appendix shows the partial waveforms of the BSM. Table C.1 shows
the test vectors applied in the simulation. counter is a virtual clock used in
the test bench. a3 to a0 join together to form the 4-bit multiplicand A. x0 is
one bit of the multiplier, which is input serially. east L8 is the actual output
from the BSM, and csf0 is the expected output. The outputs are produced
in the reverse order every other cycle in serial. For an example, Figure C.1
shows the process of 1111 × 1111. The answer is 11100001. The actual
outputs received are 10000111. According to the counter, 16 cycles are
needed to produce one product. However, the counter is a virtual clock for
this simulation. One counter cycle is actually 16 clock cycles, because the
proposed CLB has 16 clock cycles of latency.

Table C.1: BSM test vectors applied.
Set Test vectors
1 1111× 1111
2 1110× 1111
3 1101× 1111
4 1100× 1111
5 1011× 1111
6 1010× 1111
7 1001× 1111
8 1000× 1111
9 0111× 1111
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Figure C.1: BSM waveform in HDLQ 1 of 5.

Figure C.2: BSM waveform in HDLQ 2 of 5.

Figure C.3: BSM waveform in HDLQ 3 of 5.

Figure C.4: BSM waveform in HDLQ 4 of 5.

Figure C.5: BSM waveform in HDLQ 5 of 5.
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Appendix D

Glitchless Reconfiguration Simulation

This appendix shows the completed simulation waveforms of glitchless re-
configuration in QCADesigner. The function used is still the full adder but
the CLB is configured twice while test vectors are applied. Figure D.1
to Figure D.7 are the waveforms in QCADesigner. OUT SOUTH and
OUT WEST are the outputs, si and ci+1. Data Bus 1 and Data Bus 2
are used to configure the CLB into the desired function, which is stored in
N MC, E MC, W MC, and S MC. IN NORTH , IN SOUTH , and
IN EAST are the test vector inputs, ai, bi, and ci.
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Figure D.1: Glitchless reconfiguration waveform 1 of 7.
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Figure D.2: Glitchless reconfiguration waveform 2 of 7.
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Figure D.3: Glitchless reconfiguration waveform 3 of 7.
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Figure D.4: Glitchless reconfiguration waveform 4 of 7.
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Figure D.5: Glitchless reconfiguration waveform 5 of 7.
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Figure D.6: Glitchless reconfiguration waveform 6 of 7.
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Figure D.7: Glitchless reconfiguration waveform 7 of 7.
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