
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2010

Pond IDE: Machine level program development environment and Pond IDE: Machine level program development environment and

register transfer level simulator for a massively parallel computer register transfer level simulator for a massively parallel computer

architecture architecture

Jesse Muszynski

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Muszynski, Jesse, "Pond IDE: Machine level program development environment and register transfer level
simulator for a massively parallel computer architecture" (2010). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F7142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/7142?utm_source=repository.rit.edu%2Ftheses%2F7142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Pond IDE: Machine Level Program Development
Environment and Register Transfer Level Simulator for a

Massively Parallel Computer Architecture
by

Jesse J. Muszynski
A Thesis Submitted

in
Partial Fulfillment

of the
Requirements for the Degree of

MASTER OF SCIENCE

in
Electrical Engineering

Approved by:

Dr. Dorin Patru, Assistant Professor
Thesis Advisor, Department of Electrical and Microelectronic Engineering

Dr. Eric Peskin, Assistant Professor
Committee Member, Department of Electrical and Microelectronic Engineering

Dr. Daniel B. Phillips, Associate Professor
Committee Member, Department of Electrical and Microelectronic Engineering

Dr. Sohail A. Dianat, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

August, 2010

Thesis Release Permission Form

Rochester Institute of Technology
Kate Gleason College of Engineering

Title:

Pond IDE: Machine Level Program Development Environment and
Register Transfer Level Simulator for a Massively Parallel Computer

Architecture

I, Jesse J. Muszynski, hereby grant permission to the Wallace Memorial Library to
reproduce my thesis in whole or part.

Jesse J. Muszynski

Date

iii

c© Copyright 2010 by Jesse J. Muszynski

All Rights Reserved

iv

Dedication

This thesis is dedicated to my parents, grandparents, and Carrie Crowley for their
unending support throughout my academic career.

v

Acknowledgments

I would like to acknowledge my advisor, Dr. Patru for his contributions to this work and
my committee members for their guidance and feedback in the preparation of this
document. Additionally I would like to acknowledge Trevor West, my friend and

colleague, for his help consulting me on the proper development of the Computer Science
related portions of the IDE, and time spent aiding me with resolution of difficult to solve

software bugs.

vi

Abstract
Pond IDE: Machine Level Program Development Environment and Register

Transfer Level Simulator for a Massively Parallel Computer Architecture

Jesse J. Muszynski

Supervising Professor: Dr. Dorin Patru

As computing architectures are being implemented in late and post silicon technologies,
fault tolerance and concurrent operation are becoming increasingly important. It is already
common knowledge that manufacturers are putting two, four or even more cores on a sin-
gle silicon die to improve computing performance. The proposed architecture far exceeds
this number by grouping thousands or even millions of simple reduced instruction set com-
puting (RISC) processors, each of which is capable of a single operation at a time, and
to communicate with its eight nearest neighbors. In this architecture, if a single core or
cluster of cores have defects at the time of manufacture, or later in the life of the system, it
is possible to test and disable them as necessary.

A fine-grained architecture of this kind calls for a parallel programming style. One
approach to this problem is the use of a parallelizing compiler. Another approach may be
to use one of the several application programming interfaces (APIs) available for standard
text based programming languages, with some built-in features for parallel programming.

This work has generated a solution for creating machine level parallel programs for the
massively parallel computer architecture described above using text and graphical means.
To support this programming method, an integrated development environment (IDE) and
a zero communication latency, register transfer level (RTL) simulator have been devel-
oped. Experimental results include the implementation of fundamental data processing
algorithms and complex functions.

vii

Contents

Dedication . iv

Acknowledgments . v

Abstract . vi

1 Background and Motivation . 1

2 Architecture Organization . 4
2.1 Architecture Overview . 4
2.2 Instruction Set . 8
2.3 Communications . 11
2.4 Entity Movement . 18
2.5 Input/Output . 19
2.6 Entity Abutment . 21
2.7 Instruction Execution . 21
2.8 Function Calls . 22
2.9 Loops . 24

3 Programming Environment and Simulation Model 27
3.1 Integrated Development Environment GUI 27
3.2 Model of a Processor . 33
3.3 Specialty Tokens . 34
3.4 Simulator Basics . 36
3.5 Creating a Function Definition . 38

4 Experimental Results . 39
4.1 Sequential Code Example - Fibonacci Series 39
4.2 Concurrent Code Example - Vector Addition 40
4.3 Integer Multiplication using the Left-Shift Algorithm 42

viii

4.4 Floating Point Packing and Unpacking . 44
4.4.1 IEEE Floating Point Standard . 47
4.4.2 Unpacking the Sign . 47
4.4.3 Unpacking the Exponent . 48
4.4.4 Unpacking the Significand or Mantissa 48
4.4.5 Packing Floating Point Numbers 50

4.5 Floating Point Multiplication . 52
4.5.1 24-bit Fixed-Point Multiplier . 52
4.5.2 Function Calls to Perform Floating Point Multiplication 56

4.6 Integer Division . 59

5 IDE Development and Programming . 65
5.1 Program Structure . 65

5.1.1 GUI Related Classes . 66
5.1.2 Data Related Classes . 67
5.1.3 Simulator Related Classes . 69

5.2 Future Development of the IDE . 71
5.2.1 Loops . 71
5.2.2 Re-annotate IDs and Non-unique IDs 73
5.2.3 Token Quick View and Print . 73
5.2.4 Data Structures (Data Element Arrays) 74
5.2.5 Additional Opcodes . 74
5.2.6 Partially implemented IDE Features 75

6 Conclusion . 79

Bibliography . 80

A IDE User Guide . 89
A.1 Menus . 89

A.1.1 File Menu . 89
A.1.2 Edit Menu . 90
A.1.3 View Menu . 91
A.1.4 Tools Menu . 93
A.1.5 Help . 93

A.2 Left Hand Tool Bar . 95

ix

A.3 Project Files . 96
A.4 The Property Grid . 96
A.5 Tokens on the Layout Grid . 98
A.6 Conditional Tokens . 100
A.7 Breakpoints . 102
A.8 Function Calls . 102

B IDE Development Guide . 106

x

List of Tables

2.1 Information stored by one atomic processor, and its significance. Storage
requirements, in bits, for 64K and 1T seas of atomic processors. 9

2.2 The reduced instruction set. To meet the self-imposed requirement that
each atomic processor has to be a low complexity, processing element, we
have included in the instruction set only fundamental arithmetic, logic, and
control flow instructions. 10

2.3 Communications handshake codes. 13
2.4 Message routing scheme used during a global or entity casts. 15
2.5 Message formats. The numbers of bits in the shaded boxes change with the

size of the sea of atomic processors and/or size of operands. The message
codes are described in Table 2.6. ID = Identification number; S = Source;
D = Destination; I = Intermediate. 18

2.6 Message codes and descriptions for non-result message types. 20

4.1 Definition of bits for the IEEE 754 standard for floating point numbers. . . 47

xi

List of Figures

2.1 The sea of atomic processors. Each atomic processor can communicate
with its eight adjacent neighbors. The input / output ports, illustrated in
bold lines, can be located at the periphery, or can penetrate the sea. 5

2.2 A snapshot of the sea of atomic processors. Programs are broken down into
functions. A function copy is stored in a function definition entity. When a
function is called, the function definition creates a copy, called a function
instance. This moves away and abuts with the data structure entity it has
to process. 5

2.3 The communications hardware is divided into a send and receive layer.
Each layer uses a set of 8 handshake buffers and one message buffer. This
allows full-duplex message passage. 12

2.4 A complete communications cycle. Atomic processor x is transmitting a
message to its neighbor, atomic processor y. 14

2.5 Routing and propagation of a beamed, entity, and global cast messages. In
a beamed cast, the maximum number of atomic processors the message has
to pass through is equal to max {|xs − xr|, |ys − yr|}, where the sender is
at (xs, ys) and the receiver is at (xr, yr). In an entity cast the propagation
stops at the edge of the entity. 16

2.6 A moving entity is forced to move around another entity. Elements of the
moving entity move counterclockwise as many times as needed, and correct
their course as soon as possible afterwards. 17

2.7 An entity enters the sea of atomic processors, when viewed from a → f ,
or exits the sea of atomic processors, when viewed from f → a. Large
entities may be input or output via multiple ports and associated atomic
processors. 20

2.8 Routing and propagation of a global cast message. Using the scheme in
Figure 2.9, no atomic processor will receive duplicates of the message. . . . 25

xii

2.9 The execution of a loop without loop carried dependencies (a), and with
loop carried dependencies (b). The gray shaded function instance elements
are part of the loop iteration. 26

3.1 Text based code for the first four tokens of the 32-bit multiplier shown in
Figure 4.7. 29

3.2 IDE Property Grid . 32
3.3 Different tokens placed on the layout grid. 35

4.1 C code that calculates the first twelve elements of the Fibonacci series. . . . 40
4.2 Screen Capture of the Fibonacci Program showing the calculation of the

first twelve elements of the Fibonacci series. AP 10 returns the twelfth
element to the calling function. Call out boxes have been added to show
the values within each processor. 41

4.3 C Code that performs vector addition for two eight element vectors. 42
4.4 Screen Capture of the Vector Add Program showing two eight element ar-

rays of data elements, DEs 1 through 7 and 8 through 16, being added
by APs 17 through 24. Call out boxes have been added indicating the
operands, operation and output of each of the tokens. 43

4.5 C Code that performs integer multiplication using a left shift multiplication
algorithm. 44

4.6 Screen Capture of 32-bit Left Shift Integer Multiply Function Definition . . 45
4.7 Screen Capture of 32-bit Left Shift Multiply Simulation, multiplying un-

signed integers 5 and 10 to yield a result of 50. Call out boxes have been
added to show the values within each processor. 46

4.8 C Code that unpacks the sign bit from the floating point number represen-
tation. 48

4.9 The sign bit of a floating point number is unpacked by simply masking the
MSB. Call out boxes have been added to show the operation performed by
each processor. 49

4.10 C Code that unpacks the exponent portion of the floating point number
representation. 50

4.11 The exponent of a 32-bit floating point number is unpacked by masking off
the exponent bits, right shifting 23 places, and subtracting the bias of 127.
Call out boxes have been added to show the operation performed by each
processor. 51

xiii

4.12 C Code that unpacks the mantissa or significand portion of the floating
point number representation. 52

4.13 The significand of a 32-bit floating point number is unpacked by masking
off the least significant 23 bits and adding a 1 in the 23rd bit position, where
bit 0 is the LSB. Call out boxes have been added to show the operation
performed by each processor. 53

4.14 C Code that packs a sign, exponent, and mantissa into the IEEE Floating
Point representation. 54

4.15 Packing operation for a 32-bit floating point number. The function defini-
tion takes a sign, exponent and mantissa as inputs and outputs a floating
point number. Call out boxes have been added to show the operation per-
formed by each processor. 55

4.16 C Code that performs a 24-bit fixed point multiplication using a right shift
multiplication algorithm. 57

4.17 Right Shift Integer multiplier for 24 bit fixed point multiplication used in
floating point multiplication algorithm. Call out boxes have been added to
show the operation performed by each processor. 58

4.18 C code that implements the top level floating point multiplication algorithm
by making calls to the previously mentioned C code. 60

4.19 Floating point multiply program with function calls to floating point un-
packing and packing operations and right shift fixed point (24bit integer)
multiplier. Call out boxes have been added to show the operation performed
by each processor. 61

4.20 C Code to perform division through iterative subtraction. 63
4.21 Example integer division algorithm [1]. 63
4.22 Screen Capture of sample division algorithm with Next Row to Execute

field and non-unique ID numbers indicated in call out boxes (Simulation
non-functional). 64

5.1 Export to Human Readable Code for the first four tokens of the 32-bit mul-
tiplier shown in Figure 4.7. 76

A.1 Example Project Properties Dialog from the 32-bit floating point number
packing function. 92

A.2 Sample Error and Warning list from 32-bit floating point packing operation. 94

xiv

A.3 Toolbar Buttons: A) Atomic Processor, B) Concurrent Array, C) Sequential
Array, D) Data Element, E) Function Call, F) Design Mode, G) Simulation
Mode. 95

A.4 IDE Property Grid . 99
A.5 A) The lines coming into AP1 are highlighted for easier reading, the line

exiting AP1 is in its normal unhighlighted state. B) The source token for
AP2 has been deleted, a red stub remains. 100

A.6 Conditional Tokens A)Before Simulation tokens are yellow, B)During Sim-
ulation tokens change green or red based on if the condition is met. 101

A.7 Example of the 32-bit Left Shift Multiplier stopped at a breakpoint. 103
A.8 Example of the 32-bit Left Shift Multiplier stepped one step forward after

a breakpoint. 104
A.9 Example function call property grid for the Floating Point pack operation

called in the floating point multiplication program. 105

1

Chapter 1

Background and Motivation

Parallelism and concurrency are inherent in many computational tasks. Techniques that ex-

ploit instruction and thread level parallelism in traditional von Neumann architectures have

been successfully applied in single processors, as described by Hennessey and Patterson

in [2]. During the past decade researchers and manufacturers have turned to multi-core

processors, which at the present time are limited to just a few cores [3–8]. Scaling up the

techniques used to exploit instruction and thread level parallelism in single core processors

to many core processors is challenging for both hardware and software designers [9–12].

As pointed out by Hennessy and Patterson in [2], multi-core processors are a combi-

nation of computer architecture and communications architecture. Computer networks on

a chip or cluster computing on a chip are adapting the vast knowledge base of designs

and architectures of macro computer networks to the micro scale, [13–26]. Marculescu

et al. in [27] classify outstanding research problems related to networks on chip into 15

categories. Predominant are problems related to communications infrastructure and com-

munications paradigms, as illustrated by [28–54]. Dongarra et al. explore the potential

symbiosis between networks on chip and multicore processors in [55].

Late and post silicon era integrated circuit fabrication technologies will continue to in-

crease the number of components on a chip to billions and trillions. The sheer increase in

2

number will not translate into an increase in performance unless new parallel and concur-

rent architectures are developed, as pointed out by Rabaey and Malik in [56], and Wen-mei

et al. in [57]. These new architectures will have to address reliability at the circuit and

system levels because some components will experience premature, transient or permanent

failures, as highlighted by Austin et al. in [58]. Lei Zhang et al. address reliability and fault

tolerance in networks on chip in [59]. Power dissipation will have to be mitigated starting

at the system level. This is already being considered in multicore processors [60, 61], and

in networks on chip [62–67]. Nano architectures attempt to specifically address the afore-

mentioned challenges posed by late and post silicon technologies [68–76].

Taking into account the above considerations, a focus has been placed on exploring the

feasibility of a hardware design in massively parallel processing. The design itself consists

of an undetermined, but large number of simple, interconnected processing elements re-

ferred to as a sea of processors. Each element has the ability to communicate only with its

eight nearest neighbors through a dedicated message passing layer. Messages intended to

be passed a distance further than a nearest neighbor must propagate from processor to pro-

cessor using algorithms designed to optimize message passing using the shortest number

of hops to get to the intended recipients. While the design of the underling hardware is im-

portant and is discussed in Chapter 2, it is not the primary research focus. The architecture

organization and communication algorithms have been developed and described by Adam

Spirer in his thesis [1].

Accordingly, the current work focuses on the development of a machine level program-

ming environment, and register-transfer level simulator, for a massively parallel architec-

ture. The register-transfer level simulator assumes zero-latency communications. Initially,

the method of programming for the aforementioned architecture was performed in a C

like, text based format, but this quickly proved inadequate. The programming environment

proposed as a result of these inadequacies, instead uses both text and graphics to layout

3

program flow and register level information.

The organization of the architecture, including communications and operation, is cov-

ered in Chapter 2, followed by the description of the programming environment and sim-

ulation model of the architecture in Chapter 3. Experimental results are shown and dis-

cussed in Chapter 4, and development of the programming environment and simulator are

described in Chapter 5.

4

Chapter 2

Architecture Organization

An introduction to the architecture has been given in this chapter to provide the reader a

basis of what the machine level program development environment and register-transfer

level simulator aims to model. The chapters following this overview require this basis

for a solid understanding of the implemented model. The work introduced in this chapter

describing the development of the architecture is primarily the focus of Adam Spirer’s

thesis [1].

2.1 Architecture Overview

The proposed architecture is comprised of a sea of atomic processors, or atomic processing

elements, arranged in an orthogonal structure, as shown in Figure 2.1. All atomic proces-

sors are physically and functionally identical, but operationally independent. Each atomic

processor is a low-complexity processing element, capable of:

• Storing and executing one instruction, and storing its associated operands and result,

or

• Storing a data structure element comprised of one data word.

5

Input /

Output

Port

AP

(i,j)

AP

(i-1,j)

AP

(i-2,j)

AP

(i+1,j)

AP

(i+2,j)

AP

(i,j-1)

AP

(i-1,j-1)

AP

(i-2,j-1)

AP

(i-2,j-2)

AP

(i-1,j-2)

AP

(i,j-2)

AP

(i+1,j-2)

AP

(i+1,j-1)

AP

(i+2,j-1)

AP

(i+2,j-2)

AP

(i-2,j+1)

AP

(i-2,j+2)

AP

(i-1,j+1)

AP

(i-1,j+2)

AP

(i,j+1)

AP

(i,j+2)

AP

(i+1,

j+1)

AP

(i+1,

j+2)

AP

(i+2,

j+1)

AP

(i+2,

j+2)

Figure 2.1: The sea of atomic processors. Each atomic processor can communicate with its
eight adjacent neighbors. The input / output ports, illustrated in bold lines, can be located
at the periphery, or can penetrate the sea.

FI moving

around

dead APs

DS moving

between two

other DSs

FD = Function Definition
DS = Data Structure

DS = Data Structure

FI = Function Instance

Dead Atomic Processors

APs = Available

Atomic Processors

FD = Function Definition

Figure 2.2: A snapshot of the sea of atomic processors. Programs are broken down into
functions. A function copy is stored in a function definition entity. When a function is
called, the function definition creates a copy, called a function instance. This moves away
and abuts with the data structure entity it has to process.

6

In the sea of atomic processors, programs and data structures are organized as morpho-

logical entities, as shown in Figure 2.2. These can move, abut, and dissolve. As in the

C programming language, programs are broken down into functions. A function’s code is

stored in a function definition. When a function is called at runtime, the function defini-

tion creates an instance of the function. The function instance moves away, and eventually

abuts with the data structure that was passed to it by the calling function instance, before

commencing execution. Upon completing execution, the called function instance returns a

value or the result of processing in the form of a data structure.

Thus, in the sea of atomic processors as shown in Figure 2.2, we distinguish the follow-

ing morphological entities:

1. Function Definitions - FD. These are functions / programs not actively associated

with any data set or structure. An element of a function definition entity is an in-

struction word and its associated operand(s). In conventional architectures, these

entities are equivalent to copies of programs stored on hard disk or other high ca-

pacity storage media. These entities also include functions, which assist with input

/ output operations, and system level housekeeping. In conventional architectures,

these are equivalent to operating system functions.

2. Function Instances - FI. These are runtime instances of function definitions, which

can be or are already actively associated with a data set or structure. An element of

a function instance is an instruction word and its associated operand(s) and result. In

conventional architectures, these entities are equivalent to copies of programs loaded

at runtime into main memory.

3. Data Structures - DS. These are collections of associated data elements, which would

be processed by the same function instance. An element of a data structure is a data

word. Data structures can be as simple as one-dimensional arrays, or as large and

7

complex as files on a hard disk or other high capacity storage media in conventional

architectures.

Not classified as morphological units, Dead Atomic Processors are individual or groups

of atomic processors, which have been rendered not functional as a result of one or more

internal faults.

The architecture is inspired from the field of microbiology. The morphological entities

in the sea of atomic processors shown in Figure 2.2, move, change shape, and adapt like

microorganisms in a medium. The shape of an entity may change in the course of a nor-

mal move, a move around other entities or dead atomic processors, or to group together

associated elements.

Each atomic processor can store at the same time a function definition element, and a

function instance or data structure element. This breaks down the sea of atomic processors

into two functional layers: the definition layer, in which function definition elements are

stored, and the execution layer, in which function instance or data structure elements are

stored. In addition, in each layer the atomic processor stores configuration information

associated with each element.

The storage requirements for an atomic processor are summarized in Table 2.1. We

show for reference the size of each field in bits for a 64K (216) and 1T (240) seas of atomic

processors. The 64K sea of atomic processors is typical for a computer system used in

an embedded application, while the 1T is typical for a computer system used in desktop

applications. The morphological entity type indicates the momentary functional role of the

atomic processor. The hardware identification number contains the x and y coordinates of

the atomic processor, and does not change during the lifetime of the system. The entity

identification number specifies the entity to which the element belongs, and the element

8

identification number identifies the element within the entity. The target entity identifica-

tion number and (x, y) coordinates are used during the move and abut processes, which are

described in Sections 2.4 and 2.6, respectively. The primary and secondary operand source

identification numbers indicate which element within the entity will provide the value of

these operands. Either of these can also be initialized. There can be up to 16 data types, of

which we currently encode: Boolean, character, character string, unsigned and signed in-

tegers of 16, 32, and 64 bits, single and double precision fixed and floating point numbers.

The previous execution order, execution order, execution count and execution count iden-

tification number are used for execution flow control, as described in Sections 2.7 and 2.9.

The operation code distinguishes between 256 different possible operations in the instruc-

tion set. Each instruction can be executed unconditionally or conditionally on the value of

four status bits. Their true and complemented values are stored in the execution conditions

field. The values of the status bits are produced by the element whose identification number

corresponds to the status bits source identification number.

2.2 Instruction Set

The reduced instruction set is listed in Table 2.2. To meet the self-imposed requirement that

each atomic processor has to be a low complexity processing element, we have included in

the instruction set only fundamental arithmetic, logic, and control flow instructions. Com-

plex or compound operations like multiplication or division are implemented as functions,

as shown in Chapter 4.

9

Table 2.1: Information stored by one atomic processor, and its significance. Storage re-
quirements, in bits, for 64K and 1T seas of atomic processors.

Name 64K 1T Value
METype 2 2 Morphological Entity Type (element)

0=Unoccupied; 1=FD ; 2=FI ; 3=DS
Hardware ID 16 40 (x, y) coordinates of the atomic processor
Entity ID 16 40 Entity element identification number
Element ID 16 40 Entity element identification number
Target Entity ID 16 40 Target entity identification number used during the

move and abut processes.
TargetEntityXYCoordinates 16 40 Target entity (x, y) coordinates used during the move

and abut processes.
PrimaryOperandSourceID/
DataWordID

16 40 FD/FI: Primary operand source identification number;
corresponds to an associated DS element data word ID

SecondaryOperandSourceID 16 40 FD/FI: Secondary operand source identification num-
ber; corresponds to an associated DS Entity ID or Ele-
ment ID

PrimaryOperandType/
DataWordType (Execution)

4 4 FD/FI: Primary operand type; DS: Data word type

SecondaryOperandType
(Execution)

4 4 FD/FI: Secondary operand type

PrimaryOperandValue/
DataWordValue (Execution)

32 64 FD/FI: Primary operand value; DS: Data word value

SecondaryOperandValue
(Execution)

32 64 FD/FI: Secondary operand value

PrevExecutionOrder 16 32 FD/FI: ExecutionOrder number, of element(s) that
must execute before this element

ExecutionOrder 16 32 FD/FI: Element execution order number
ExecutionCount (Execution) 16 32 FI: How many times must this FI receive a result

broadcast with a particular execution order number
(from a previous instruction) before executing itself?

ExecutionCountID 16 40 FI: Associated DS Element ID that also stores the Ex-
ecutionCount value

StatusBitsSourceID 16 40 FD/FI: Element ID whose execution result produces
the status bits for this instruction (compared against
Execution Conditions)

SourceStatusBitsValues 8 8 FD/FI: Status bits values received from Status-
BitsSource

OperationCode 8 8 FD/FI: Instruction/operation code
ExecutionConditions 8 8 FD/FI: Status bits (C, N, V, Z, !C, !N, !V, !Z) required

for execution of instruction
ResultValue (Execution) 32 64 FI: Result value of last execution
ResultStatusBitsValues
(Execution)

8 8 FI: Result status bits of last execution

Cast Type 8 8
Total to Store: 386 754
To move FD/FI element: 274 538
To move DS element: 148 276

10

Table 2.2: The reduced instruction set. To meet the self-imposed requirement that each
atomic processor has to be a low complexity, processing element, we have included in the
instruction set only fundamental arithmetic, logic, and control flow instructions.

Mnemonic Operation Code Operation
NOP 0x00 No operation.
ADDPS 0x01 Add primary and secondary operands.
ADDPC 0x02 Add carry and primary operand.
ADDPSC 0x03 Add primary operand, secondary operand, and carry.
SUBPS 0x04 Subtract secondary operand from primary operand.
SUBPC 0x05 Subtract carry from primary operand.
SUBPSC 0x06 Subtract secondary operand and carry from primary

operand.
INC 0x07 Increment primary operand.
DEC 0x08 Decrement primary operand.
INV 0x09 Bitwise inversion of primary operand.
AND 0x0A Bitwise AND of primary and secondary operands.
OR 0x0B Bitwise OR of primary and secondary operands.
XOR 0x0C Bitwise XOR of primary and secondary operands.
SETC 0x0D Explicitly set ‘carry’ flag.
SETZ 0x0E Explicitly set ‘zero’ flag.
SETN 0x0F Explicitly set ‘negative’ flag.
SETV 0x10 Explicitly set ‘overflow’ flag.
RSTC 0x11 Explicitly reset ‘carry’ flag.
RSTZ 0x12 Explicitly reset ‘zero’ flag.
RSTN 0x13 Explicitly reset ‘negative’ flag.
RSTV 0x14 Explicitly reset ‘overflow’ flag.
SHL 0x15 Shift left primary operand, pad with zeros.
SHR 0x16 Shift right primary operand, pad with MSB.
SHLC 0x17 Shift left primary operand through carry, pad with zeros.
SHRC 0x18 Shift right primary operand through carry, pad with MSB.
CALL 0x19 Function call instruction; requests the function defini-

tion whose identification number is stored in the primary
operand value to create an instance; the created function
instance will process the data structure whose identifica-
tion number is stored in the secondary operand value; the
execution of this instruction completes when it receives a
RETURN result from the called function instance.

RETURN 0x1A Function return instruction; broadcasts return value of
function instance to the corresponding CALL instruction
in the calling function instance; the primary operand value
holds the data word to be returned, and the secondary
operand value holds the entity identification number of the
calling function instance.

11

2.3 Communications

Communications in the sea of atomic processors are constrained to the Moore neighbor-

hood, i.e. each atomic processor can only communicate with its eight adjacent neighbors.

This self-imposed design constraint is justified by the desire to eliminate the need for long

interconnects, which in nanometer technologies scale slower than devices. As a conse-

quence, communication latency becomes a key factor that affects the performance of the

architecture. To minimize the communication latency, we have developed a minimum over-

head, custom communications protocol.

Communications are used to pass messages, which contain operational information

and/or data. In the sea of atomic processors, messages can be broadcast in all directions,

i.e. over the entire sea of atomic processors (global cast), or just to a specific entity (beamed

cast). Within an entity, messages are sent to all elements of the entity (entity cast), to all

eight neighbors (local cast), or to only one neighbor (point-to-point cast).

From a hardware point of view, communications use eight handshake buffer pairs,

which are used to exchange handshake codes, as shown in Table 2.3, and two message

buffers, which are used to exchange messages, as shown in Figure 2.3. The transfer of a

message from atomic processor x to atomic processor y is called hereafter a communication

cycle, and is illustrated graphically in Figure 2.4. It proceeds as follows:

1. Atomic processor y resets its receiving handshake buffer once it is ready to receive a

handshake code. This does not mean it is ready to receive a message yet.

2. Atomic processor x repeatedly checks the receiving handshake buffer of atomic pro-

cessor y. When it sees that the latter has been reset, it uploads the handshake code of

the message it wants to send.

3. Atomic processor y checks the uploaded handshake code, and compares it to other

12

handshake codes it may have received from other neighbors. This comparison is used

to prioritize transfers, where handshake code 1 in Figure 2.6 has the highest priority.

Once it is ready to receive the message from atomic processor x, atomic processor y

resets its receiving handshake buffer again.

4. Atomic processor x checks repeatedly the receiving handshake buffer of atomic pro-

cessor y. When it sees that it has been reset again, it transfers the message into the

message buffer of atomic processor y.

HB HB

HBHB

MB

HBHBHB

HB

HBHB HB

MB

HBHBHB

HBHB HB

MB

HBHBHB

HBHB HB

MBHB HB

HB HBHB

HB HBHB

HB

S e n d L a y e rS e n d L a y e r

R e c e i v e L a y e rR e c e i v e L a y e r

AP xAP x AP yAP y

Figure 2.3: The communications hardware is divided into a send and receive layer. Each
layer uses a set of 8 handshake buffers and one message buffer. This allows full-duplex
message passage.

The handshake code received by an atomic processor is used for two purposes: first, to

prioritize transfer requests received in the same cycle from different neighbors, and second,

to determine how the message will be processed. There are 16 different handshake codes,

13

Table 2.3: Communications handshake codes.
Code Operation Description

0 (0000) AP is ready The atomic processor is ready to receive the next hand-
shake code.

1 (0001) Global cast The message has to be propagated throughout the entire
sea of atomic processors.

2 (0010) Beamed cast The message has to be propagated to a specific location
in the sea of atomic processors.

3 (0011) Entity cast The message has to be propagated only inside an entire
entity; the propagation of the message will end at the
edge of the entity.

4 (0100) Local cast The message has to be sent only to the atomic proces-
sor’s eight neighbors.

5 (0101) P2P cast The message has to be sent only to a single neighbor.
6 (0110) Function

Definition
Move request

The message is a P2P cast, in which a function defini-
tion element request to move into a neighboring atomic
processor.

7 (0110) Function
Instance Move
request

The message is a P2P cast, in which a function instance
element request to move into a neighboring atomic pro-
cessor.

8 (0110) Data Structure
Move request

The message is a P2P cast, in which a data structure
element request to move into a neighboring atomic pro-
cessor.

9 (0111) Abut request The message is a P2P cast, in which an abutment be-
tween two associated entities is requested.

10-14 Reserved Reserved for future expansion
15 (1111) AP is not

functional
If an AP is deemed non-functional, then its receiving
handshake buffers are all set to 1111; this indicates to its
neighbors that it is not functional and not able to com-
municate.

14

APx checks

APy receiving

HB for zero

APy resets its

receiving HB

APx uploads

handshake

code in APy

receiving HBAPx

APy

APy compares

handshake code

to determine

priority

When it is ready to

receive the

message, APy

resets again its HB

APx checks

APy receiving

HB for zero

APx transfers

message in

APy MB

t

t

Figure 2.4: A complete communications cycle. Atomic processor x is transmitting a mes-
sage to its neighbor, atomic processor y.

which are shown in Table 2.3. Code 0 indicates the atomic processor’s readiness to accept

the next handshake code from its neighbor. Codes 1-5 encode the five different cast types.

Codes 6-8 are used during the move process, and code 9 is used during the abut process.

Code 15 is used to indicate that the atomic processor is not functional. The remaining codes

are currently reserved for future extensions.

Each of the two communication layers shown in Figure 2.3 comprises one set of hand-

shake buffers and one message buffer. Thus, an atomic processor can receive and send a

message at the same time. This eliminates the possibility of lockup if both atomic proces-

sors try to send a message to each other at the same time.

To avoid duplicate transmissions of the same message to the same atomic processor,

during a global, or beamed, or entity cast, a message is routed according to the scheme

presented in Table 2.4. For example, if the message is received from the neighbor to the

north, it is sent to the south, southeast and southwest neighbors. Messages received from

east, south and west are routed in a similar way. Alternatively, if for example the message

is received from the neighbor to the northeast, it is sent to the southwest neighbor only.

The routing and propagation of a global cast message is shown in Figure 2.5. This is also

applicable to an entity cast, except the propagation stops at the edge of the entity. The

routing and propagation of a beamed cast, along with other examples of global and entity

15

casts are shown in Figure 2.6. In a beamed cast, the maximum number of atomic processors

the message has to pass through is equal to max {|xs − xr|, |ys − yr|}, where xs, ys, xr,

and yr are the (x, y) coordinates of the sending and receiving atomic processors.

Table 2.4: Message routing scheme used during a global or entity casts.

Receive From
Transmit To

N NE E SE S SW W NW
N 4 4 4

NE 4

E 4 4 4

SE 4

S 4 4 4

SW 4

W 4 4 4

NW 4

We have identified the need for two message formats, as shown in Table 2.5a and 2.5b.

A type 0 or result message is entity cast either by a function instance element or a data

structure element. The former entity casts it after it has executed its instruction. The latter

entity casts it during the execution initialization phase, which follows the abutment with

the associated function instance. Message types are described in Table 2.6, and their usage

explained in Sections 2.4 through 2.6.

16

BeamedBeamed

GlobalGlobal

EntityEntity

Figure 2.5: Routing and propagation of a beamed, entity, and global cast messages. In a
beamed cast, the maximum number of atomic processors the message has to pass through
is equal to max {|xs − xr|, |ys − yr|}, where the sender is at (xs, ys) and the receiver is at
(xr, yr). In an entity cast the propagation stops at the edge of the entity.

17

Desired PathDesired Path

Alternate PathAlternate Path

Moving Entity

Element

Moving Entity

Element

Target AP

for Abutment

Target AP

for Abutment

Figure 2.6: A moving entity is forced to move around another entity. Elements of the
moving entity move counterclockwise as many times as needed, and correct their course as
soon as possible afterwards.

18

Table 2.5: Message formats. The numbers of bits in the shaded boxes change with the size
of the sea of atomic processors and/or size of operands. The message codes are described
in Table 2.6. ID = Identification number; S = Source; D = Destination; I = Intermediate.

a) Result Message Format
Sea Size Message

Type
Message

Source ID
Result
Value

Primary/
Secondary
Operand

Execution
Order

Number

Status
Bits

Reserved Total
Bits

64K 4 16 32 32 16 8 20 128
1T 4 40 64 64 40 8 44 256

b) Message Formats for types 1-11
Sea Size Message

Type
Message

Source ID
Message
Dest. ID

Intermediate
ID

ID Type:
S/D/I

Reserved Total
Bits

64K 4 16 16 16 2 / 2 / 2 70 128
1T 4 40 40 40 2 / 2 / 2 126 256

2.4 Entity Movement

An entity element moves from atomic processor x into atomic processor y as follows:

1. Atomic processor x requests to move an entity element into atomic processor y by

setting its handshake buffer to code 6, if the element is a function definition element,

or to code 7 if the element is a function instance element, or to code 8 if the element

is a data structure element, as described in Table 2.3.

2. Atomic processor y resets its handshake buffer back to 0 if it is ready to receive the

new element. It can only do so if it is not storing any other similar entity element.

3. Once the move request is accepted, atomic processor x transfers the entity element

information through the message buffer.

The move is further triggered and sustained through the use of the Move to Abut mes-

sage type, shown in Table 2.6. As calculated in Table 2.1, for a function definition or

19

function instance element in the 64K and 1T seas of atomic processors, 274 bits and 538

bits, respectively, have to be transferred. The size of the message buffers being 128 bits

and 256 bits, respectively, three transfers through the message buffer are necessary, and

therefore steps 1 - 3 are repeated three times for these kinds of elements. A data structure

element needs to transfer 148 bits and 276 bits, respectively, and therefore steps 1-3 are

executed twice.

In the course of a move, an entity element may encounter unavailable atomic proces-

sors. In this case, it first moves in an alternative direction, and then corrects its course by

moving again towards the target location. For example, in Figure 2.6 the moving entity

element encounters an unavailable atomic processor to the southeast. Then it tries the next

counterclockwise neighbor. In the example, the neighbor to the east is available, and it

moves into it. Then it tries again to move southeast but encounters another unavailable

atomic processor. Thus, it tries the next counterclockwise neighbor, and so on. Finally,

after five moves due east, it can turn southeast and move towards the target direction. If the

front of the moving entity gets stuck, the back is forced to move around and become the

new front. Thus, entities will not get stuck during moves.

2.5 Input/Output

Two special kinds of moves are the input and output of entities into the sea of atomic

processors. These occur through atomic processors which are connected to the input /

output ports, illustrated in bold in Figure 2.1. The input of function definition entities is not

time critical. Thus, it can be performed serially, following the steps illustrated in Figure 2.7.

As for data, the amount and speed to be input and/or output are application dependent. In

these cases, an entity may transfer via several input / output ports and associated atomic

processors.

20

Table 2.6: Message codes and descriptions for non-result message types.
Code Function Description
0x0 Result The result entity cast by a function instance element after it has

executed its instruction; or by a data structure element during the
initialization phase, following abutment with the associated func-
tion instance.

0x1 Instantiate
Function

Beamed cast by a function instance element executing a CALL in-
struction; it instructs the function definition, if it exists, to create a
function instance of itself in the execution layer; after it has been
created, the latter moves away, abuts with the data structure it has
to process, and commences execution.

0x2 Instantiate
Function
(Interrupt)

Similar to 0x01, except the source of the call is an interrupt source.

0x3 Return Value Beamed cast by the called function instance to the calling function
instance, after it has completed execution.

0x4 Return Value
(Interrupt)

Similar to 0x03, except the returning function is an interrupt service
routine.

0x5 Move to Abut Triggers elements of an entity to continue moving to abut.
0x6 Abutment

Completed
Entity cast by a function instance element once it has abutted with
an element of the associated data structure entity.

0x7 Terminate
Function Instance
Entity

Entity cast by the function instance element that executes the RE-
TURN instruction, after it has beamed cast the return value.

0x8 Request Location
of Function
Definition

Global cast by a function instance element executing a CALL in-
struction; it requests the (x, y) Coordinates or Hardware ID of the
function definition it wants to call.

0x9 Acknowledge
Location of F.D.

Beamed cast by a function definition element in response to 0x8.

0xA Request Location
of Data Structure

Global cast by a function instance element executing a CALL in-
struction; it requests the (x, y) Coordinates or Hardware ID of the
data structure the called function will have to process.

0xB Acknowledge
Location of D.S.

Beamed cast by a data structure element in response to 0xA

A) B) C) D) E)

Figure 2.7: An entity enters the sea of atomic processors, when viewed from a → f , or
exits the sea of atomic processors, when viewed from f → a. Large entities may be input
or output via multiple ports and associated atomic processors.

21

2.6 Entity Abutment

After moving diligently towards the target location, at some point a function instance ele-

ment encounters a data structure element. The function instance element initiates an abut

request, using handshake code 9 and a point-to-point cast, and provides its entity identifica-

tion number. In return, the data structure element provides its entity identification number.

If the identification numbers match, the function instance element, entity casts an abutment

complete message, type 6 in Table 2.6. Because the move and abutment processes are

asynchronous, multiple function instance and data structure elements may abut at the same

time, so multiple abutment complete messages may be entity cast. The function instance

entity abutted to its associated data structure entity will hereafter be called a superentity.

Once they receive the abutment complete message, all data structure elements entity cast

their current data word values over the superentity. These are then received by all function

instance elements which have to update their primary and/or secondary operand values.

This means that before execution commences, all function instance elements have their

operands available, less the values updated at runtime.

2.7 Instruction Execution

Once abutment completes, and all data structure elements entity cast their data word val-

ues, the first instruction executes as soon as it has its operands available. At run-time, all

function instance elements monitor all entity casted result messages. If the message source

identification number matches one of their own source identification numbers, they update

their primary operands, and/or secondary operands, and/or source status bits values. At

the same time, they check the ExecutionOrder number in the result entity cast message. If

the received ExecutionOrder number matches their own PrevExecutionOrder number, and

22

all operand and source status bits values are available, the function instance element ex-

ecutes the instruction. The ExecutionOrder and PrevExecutionOrder numbers, which are

statically assigned, are the means through which the architecture implements the necessary

execution flow control. The operand values, source status bits values and ExecutionOrder

number may arrive in the same or different result entity cast messages, and in arbitrary

order. The instruction cycle completes when the function instance element entity casts the

result of its instruction execution.

There are obviously no structural dependencies. Data and control dependencies are

explicit, and therefore automatically resolved. Instruction level parallelism is exploited

dynamically and it is maximized, because an instruction executes as soon as it has its

operands, source status bits, and knowledge of the fact that the previous instruction in

the execution flow has executed.

At runtime, all result messages are entity cast over the entire superentity, and so also

reach all data structure elements. A data structure element updates its data word value

when there is a match between the message source identification number and its element

identification number. This means that when the function instance completes execution and

is ready to return the data structure, the latter is up to date.

All instructions defined in Table 2.2 execute as described above, except for CALL and

RETURN, which are described in the next section.

2.8 Function Calls

A function call involves four entities: the calling function instance, the called function

definition and its instance, and the data structure to be processed. A complete function call

and return cycle comprises the following steps:

1. An element of function instance X executes the CALL instruction, by asking the

23

function definition Y of the called function to create an instance of itself, which

should move to location (xZ , yZ) and process data structure Z. If the calling function

instance X knows the location of the function definition Y , it uses a beamed cast.

Else, it uses a global cast. In either case, it provides its own (xX , yX) coordinates.

2. Function definition Y replies with a beamed cast, in which it provides its current

coordinates and a confirmation that the function instance Yi has been created and

moves towards data structure Z. Function definition Y instantiates Yi by simulta-

neously creating a copy of its elements from the definition layer into the execution

layer.

3. Function instance Yi moves to, abuts with, and processes data structure Z, as de-

scribed in the previous four sections.

4. The last instruction executed by function instance Yi is a RETURN. The element of

function instance Yi that executes the RETURN, beam casts a return value message,

see Tables 2.5 and 2.6, to the calling function instance X . It also entity casts a termi-

nate function instance entity message, if the function instance is no longer needed.

During the entire call-return cycle, the element of function instance X that executes the

CALL instruction cannot move, because it has to receive the RETURN beamed cast. Mul-

tiple CALL instructions may call for multiple instantiations of the same function definition,

to process different, independent data structures.

Input / output port requests or interrupts are handled in the same way, except for the

fact that the calling function is actually an input / output port. If and which currently run-

ning function instances are halted, or affected by the exception, is decided by the function

instance that services the exception.

24

2.9 Loops

If there are no data and/or control dependencies between the iterations of a loop, they

are executed concurrently, as shown in Figure 2.9a. In this case, each loop iteration is

implemented by a separate set of elements or function instance entities. These iterations

complete out-of-order and the last instructions of all iterations will entity cast the same

ExecutionOrder number. This is received and counted by the first instruction after the loop.

When the count value is equal to the ExecutionCount value, it proceeds to execution and

the loop is completed. Double counting is eliminated because the same entity cast cannot

reach the same element twice, as is illustrated in Figure 2.8. If there are dependencies,

loop iterations have to be executed in sequence, as shown in Figure 2.9b. In this case, it is

not effective to create or instantiate elements or function instances for each iteration of the

loop. The single instance of the iteration is executed repeatedly. The last instruction in the

iteration, which can also manipulate the index, executes if the condition to repeat is true.

It entity casts the ExecutionOrder number of the instruction before the loop, triggering the

instructions in the loop to execute again. The first instruction after the loop executes if the

condition to repeat is false. This is equivalent to a for loop in which the first iteration is

always executed. Alternatively, the condition can be tested by the first instruction of the

iteration, which creates the possibility to skip the execution of the loop altogether.

25

Figure 2.8: Routing and propagation of a global cast message. Using the scheme in Fig-
ure 2.9, no atomic processor will receive duplicates of the message.

26

m-1

m

m+n

m+n+k+1

m+1

m+n+1

m+k

m+n+k

m+n+k+1

m-1

m

m+n-1

m+n m+n+1

m+n+2

a) b)

Last elements

before the loop

Independent

iterations of a loop

execute concurrently

First elements

after the loop

Loop dependent

iterations of a loop

execute sequentially

The last elements of

each iteration of the loop

Figure 2.9: The execution of a loop without loop carried dependencies (a), and with loop
carried dependencies (b). The gray shaded function instance elements are part of the loop
iteration.

27

Chapter 3

Programming Environment and Simu-

lation Model

This chapter describes the model of the architecture, which was described in the previous

chapter. This model is used in the integrated development environment and simulator.

Furthermore, justification for several of the software design decisions are introduced here

and further discussed in Chapter 5. Finally, a short discussion has been provided describing

the creation of a function definition in the IDE.

3.1 Integrated Development Environment GUI

As our computing environments continue to look for ways to exploit more concurrency and

focus less on executing a sequential string of commands, programming these upcoming

massively parallel architectures is a challenge. Code development for a massively paral-

lel architecture such as the one discussed in Chapter 2, is a difficult task when presented

with the choice of the standard text based coding languages such as C, C++ and Visual

Basic, just to name a few, which primarily are sequential in nature. Much work has been

done to create concurrent programming languages in addition to using APIs such as the

Message Passing Interface (MPI), OpenMP and POSIX Threads with standard sequential

28

languages [77–79]. An alternate approach is a compiler designed to automatically extract

parallelism from sequential code, but such compilers have very limited success and are

typically aimed toward specific applications [80]. Many of these parallel programming

techniques are designed for a limited number of processors or processors that are far more

complex then the RISC processors in the architecture examined in this research. Because

of this, an alternate programming method and environment are required.

Hence, an initial approach at programming the massively parallel architecture was at-

tempted using a C like, text based format. It was quickly discovered that this format was

cumbersome and lacked an easy way to convey important information, such as program

flow control. Each time a change was desired, even in a simple program, it had to be made

in several locations throughout the code. In anything more than a simple algorithm this

meant that thousands of lines of code would have to be browsed through. Figure 3.1 shows

an example of this text based code for one of the example algorithms discussed later. Ulti-

mately, the limitation of a text only programming language is that text conveys sequential

information.

In contrast, a graphical programming environment allows for multiple threads of a pro-

gram to be displayed simultaneously. An example of this is provided by Mathworks’

Simulink, in which several dynamic systems can be graphically diagrammed within the

same project. While Simulink offers several libraries for control theory and digital signal

processing, its use in implementing a programming environment for a massively parallel

computer architecture would require the development of a custom library and significant

add-ons. Similarly, one of the several commercially available schematic capture programs

would serve adequately for diagramming the model of a massively parallel program. How-

ever, these tools would still require an add-on for simulation purposes.

Furthermore, programming tools provided for field programmable gate arrays (FPGAs)

and complex programmable logic devices (CPLDs), by manufacturers such as Altera and

29

����������	
����

���������������
����������

���������������������� ����
���������������������� ����
���������������������� ����
�� ��!
��!������������ ���
�� ��!
��!" ���!������ ����# �!��$�# �!��"�# �!��%�# �!��
��������� ������������ ��&���������� ��
'��� �(���� ���������� ���
'��� �(���� ��)(������ ��&�!��������������
'��� �(���� ��" ������ ��*	*�+
�
������ �(���� �������� ���
������ �(���� ��)(���� ���
������ �(���� ��" ���� ���
���� ����������������� ��$�'�&���������� ��
� !������������������� �������(���������� ����$��,�����������������$��,���

�� ��!
��!�'��� �(���� ���
-
��������*�

���������������������� ����
���������������������� ����
���������������������� ����
�� ��!
��!������������ ���
�� ��!
��!" ���!������ ����# �!��$�# �!��"�# �!��%�# �!��
��������� ������������ ��&���������� ��
'��� �(���� ���������� ���
'��� �(���� ��)(������ ��&�!��������������
'��� �(���� ��" ������ ��*�����
������ �(���� �������� ���
������ �(���� ��)(���� ���
������ �(���� ��" ���� ���
���� ����������������� ��$�'�&���������� ��
� !������������������� �������(���������� ����$��,�����������������$��,���

�� ��!
��!�'��� �(���� ���
-
��������������
��������'����!!���*�

���������������������� ����
���������������������� ����
���������������������� ����
�� ��!
��!������������ ���
�� ��!
��!" ���!������ ����# �!��$�# �!��"�# �!��%�# �!��
��������� ������������ ��&���������� ��
'��� �(���� ���������� �����
'��� �(���� ��)(������ ���
'��� �(���� ��" ������ ���
������ �(���� �������� ���
������ �(���� ��)(���� ��&�!��������������
������ �(���� ��" ���� ��*�
���� ����������������� ���$.�&���������� ��
� !������������������� �������(���������� ����$��,�����������������$��,���

�� ��!
��!�'��� �(���� ���
-

���������������
��������'����!!���
�

���������������������� ����
���������������������� ����
���������������������� ����
�� ��!
��!������������ ��*�
�� ��!
��!" ���!������ ����# �!��$�# �!��"�# �!��%�# �!��
��������� ������������ ��&���������� ��
'��� �(���� ���������� ���
'��� �(���� ��)(������ ��&�!��������������
'��� �(���� ��" ������ ����
������ �(���� �������� ���*�
������ �(���� ��)(���� ���
������ �(���� ��" ���� ���
���� ����������������� ���..'��%���
� !������������������� �������(���������� ����$��,�����������������$��,���

�� ��!
��!�'��� �(���� ���

' ���*

Figure 3.1: Text based code for the first four tokens of the 32-bit multiplier shown in
Figure 4.7.

30

Xilinx exhibit similar problems. Logical models of processors in the proposed architecture

could be created in these tools and simulated, but computing needs would be excessive. The

shortcomings of these tools leads to the conclusion that a custom environment is needed.

Moreover, a common textbook approach to modeling a parallel program is the depen-

dency graph [81]. A typical dependency graph shows the dependencies between objects

and allows one to determine the order or lack of order that the objects must be evaluated in.

This method is often used to aid in decisions about the appropriate program flow in concur-

rent algorithms. The proposed integrated development environment (IDE) allows the user

to indicate concurrency and dependencies of each processing element for a given function

or set of functions in a manner similar to a dependency graph.

Once the programmer considers an algorithm complete, the option is provided to parse

the visual display and check for errors as well as provide warnings about potential mistakes.

If the program is parsed without any errors, the program is simulated using a simulation

engine designed to match the proposed architecture. The simulator does not account for

communication delays between processors as would exist in actual hardware because of the

large amount of resources required for this type of simulation. Instead, the communication

latency is assumed to be zero, allowing for a purely functional simulator used for algorithm

development. This is similar to how one may functionally simulate VHDL or Verilog code

without hardware timing delays to get an idea of how a given algorithm works. Henceforth,

the combined IDE and simulator will be referred to as the IDE for the remainder of the

document.

The goals set forth for the prototype IDE are to show proof of concept for the proposed

visual programming method and to functionally simulate simple algorithms, intended pri-

marily for embedded applications, on the proposed architecture. A typical embedded appli-

cation may differ from a desktop or server system in that it often has real time constraints

for the processing of data and may be used in signal processing applications. Additionally,

31

these applications also quite frequently require that system memory and power consump-

tion are kept to a minimum. In many cases, the only system memory is part of the processor

chip itself [2]. One example of an embedded application is a cell phone; it requires real

time processing of radio signals in a small, low-power package.

Accordingly, the user interface is intended to mimic a dependency graph in some re-

gards and is based on a layout grid that the user can place tokens onto. The grid is arranged

such that when the user places a token, it will snap to that grid location automatically. The

grid is divided into rows and columns. A token is assigned an (x, y) location based on the

row and column into which it has been placed. Each row signifies a concurrent step to be

simulated so that all tokens on a given row execute in parallel. Columns provide no signif-

icance in the user interface beyond allowing each token to be assigned a unique location

on the grid. There are several types of tokens that can be placed on to the layout grid. The

token types include atomic processors (APs), data elements (DEs), function calls (Fns),

inputs, sequential arrays (SAs) and concurrent arrays (CAs). The different types of tokens

will be discussed in more detail later in this chapter, but for the purpose of this description,

each token represents a single atomic processor, with the exception of the array tokens.

Once tokens are placed onto the design grid, properties for each token can be defined

in a table, called the property grid as shown in Figure 3.2, by selecting the desired token.

If a user indicates that a token should take one of its operands from another token, a line is

drawn connecting the two tokens to indicate the data dependency. Additionally, information

defining a processor’s operation code, status bits, execution order and broadcast type are

editable from the property grid. Currently, the execution order and broadcast information

have no effect on the simulator, due to the exclusion of communication delays from the

functional simulator and the implied program flow of the IDE’s graphical user interface

(GUI). If the IDE was further developed to compile code for a communication accurate

simulator or actual hardware, these fields would likely be generated at compile time to

32

Figure 3.2: IDE Property Grid

33

avoid the tedious and error prone process of populating them by hand.

3.2 Model of a Processor

Each processor is modeled by a single token placed on the layout grid. The basic building

block of the architecture, an atomic processor, is modeled by an AP token. Each AP token

is capable of performing a single arithmetic, logic, status bit or function return operation

as discussed in Chapter 2. Function calls, while represented by a standard operation code

are handled by a separate token in the IDE. An AP token provides the user with fields for

primary and secondary operands which can be defined within the token by providing a type

and value or received from another token on the layout grid. Status bit value and source

fields are also provided to allow for conditionals within the token. As with operands, if

another token is provided as a source for the status bits its values will override the internal

values.

Additionally, conditional tokens can be used to make program flow decisions based on

status bits passed from other processors or as defined within a processor. When a token

is made conditional, by defining a condition in its property grid, it will change to yellow

and display a conditional symbol on the face of the token. During a simulation conditional

tokens change color based on the program flow. If a conditional token executes, it becomes

green. If it does not execute, it becomes red.

Furthermore, there are two types of conditionals in the simulator: conditional execution

and conditional operation. Conditional execution blocks the broadcast of any information

from the token in the event the condition is not met. Conditional operation is non-blocking

and allows a broadcast of information from the token, but does not perform the indicated

operation on the operands when the condition is not met. A false conditional operation is

analogous to a NOP, which broadcasts its primary operand unaltered as the result.

34

Finally, other fields included for an AP fall into categories of broadcast information and

execute order fields. These fields are provided to the user solely for the export to human

readable text function of the IDE. They have no effect on the simulator which handles

execution order and message passing internally.

3.3 Specialty Tokens

In addition to the standard AP tokens, five other token types are available to the user, Input

Tokens, Function Calls, Data Elements, Concurrent Arrays and Sequential Arrays. The

different token symbols are shown in Figure 3.3. Input tokens are added to the IDE through

the view menu by selecting the project properties dialog, currently the number of input

tokens is limited to ten. Input tokens do not represent physical processors in hardware, but

are a means for debugging a function definition during its development. Default values are

provided by an input token so a function definition can be simulated without instantiating it

from another Pond project. When a function definition is instantiated from another project

the default values provided by the input token are instead overridden by values being passed

into the function instance. Input tokens only provide fields for the default operand value

and type, and input description and label fields to aid the user in selecting the proper inputs

during a function call.

The remaining token types are added to the IDE the same way AP tokens are added,

through the left hand side tool bar, shown to the left of Figure 3.3. Function call tokens

allow the user to instantiate a function definition from within a project. Each function call

token has a field for the .pnd file that the function definition is stored in. Upon populating

this field, the file is read and the appropriate number of input source fields show up in

the property grid interface for the user to define. Each input source field provides a label

and description to the user in the help box at the bottom the property grid. While this

35

Figure 3.3: Different tokens placed on the layout grid.

36

method of calling functions differs from the actual description of how a function is called

in hardware, which requires a normal atomic processor with the function to instantiate in

the primary operand field and a reference to the data structure of data elements with the

function inputs as the second operand, this seemed impractical in the IDE. The primary

reason for this decision was the lack of a way to use a file name as a primary operand in an

atomic processor, and a still-to-be-determined way to define or reference a data structure

in the IDE. Overall the function call token still models what happens in hardware from the

underlying simulation engine by instantiating a function definition and providing it with

data to process. When a function instance reaches its return token, the function call token

is provided with the returned operand to pass as an output to the rest of the project that

called the function.

Data element tokens represent entries within a data structure as defined by the archi-

tecture in Chapter 2. Each data element has fields for first operand source, value, and type.

Each is capable of providing data to other tokens or receiving data from a source token.

Currently, the sequential and concurrent array tokens have no function in the simulator,

they have been left for a future implementation of the IDE. The original thought behind the

array tokens was to allow the user to represent several tokens performing the same opera-

tion with only a single token, thus reducing the amount of time spent placing replica tokens

on the layout grid. Each array token has an array size field and operand source index fields

in addition to the standard AP fields. These fields would allow the user to indicate the

number of tokens in the array and how to process source inputs to the array, respectively.

3.4 Simulator Basics

When a simulation is started by the user by selecting simulate under the tools menu or

by clicking on the simulate mode (SM) button on the left hand side tool bar, the design

37

is parsed. During the parsing process, each token’s properties are read in and checked for

errors. If an error is found during parsing, an error list is returned to the user indicating the

problem. Warnings can also be returned to the user indicating a potential problem, but do

not stop simulator execution. If a token’s information is successfully read in without errors,

a simulation operation for that token is created. Once an entire row is parsed successfully

without errors, a simulation step that contains each of the simulation operations for that

row is created. An overall simulation path is assembled from steps that represent each row

of the layout grid, as further discussed in Section 5.1.3.

Likewise, during simulation, the simulator calls the step for each row, which in turn

calls the operation for each token. Operations are split into math, logic, status, no, function

and call operations. The math and logic operations are called if an operation code defined

in a token is an arithmetic or logic type operation. Status operations are called for manipu-

lations to status bits and no operations are called if a NOP is desired. Function operations

handle returns from a function instance and call operations handle function instantiation

calls.

Furthermore, the simulator can run all the steps at once or an option is provided to step

through them one at a time. Breakpoints are provided for the simulate all option to stop

simulator execution at a desired location. Additionally, during the simulate step option,

or at a breakpoint, a yellow bar highlights the current row. Once the user has finished

simulating their design they can return the IDE to design mode by selecting the DM button

on the right hand side tool bar. Further details about the simulator internals are provided in

Section 5.1.

38

3.5 Creating a Function Definition

Now that a basic understanding of the IDE exists, it is possible to create simple function

definitions. A function definition consists of an appropriate number of input tokens to pass

data into the function instance and tokens on the layout grid to process data. The user

may set the number of inputs for the function definition and define name and description

fields for the function from within the project properties dialog. In addition the user can

select the bit size representation for the project; options of 16, 32, or 64 bit operands are

available. The function definition ends in an AP token with the “RETURN” opcode as its

operation. Once a function definition is completed and saved, it can be instantiated from

other functions created in the IDE.

Furthermore, after the number of inputs for the function has been defined, default values

for each of the inputs should be defined for testing and debug purposes. It should be

noted that the default values are only used when debugging a function definition. They are

ignored during a function instantiation, regardless of whether the user defined a source in

the function call token. While the user is defining default values for the inputs, they can

also enter labels and descriptions for the inputs. When a function is instantiated from a

different project these labels and descriptions will be shown to the user in the help box to

keep track of what each input is for.

39

Chapter 4

Experimental Results

The following chapter discusses several sample applications that have been implemented

within the IDE and the various challenges associated with each of these algorithms. Screen

captures, with additional call out boxes added, have been included for further clarity of

each example. Details regarding the simulation results of each algorithm are explained,

along with a discussion on any special cases.

4.1 Sequential Code Example - Fibonacci Series

An example of an algorithm that exhibits a low amount of parallelism is calculating the

Fibonacci series, which is an entirely sequential process. To calculate the first twelve num-

bers of the Fibonacci series and return the last one, eleven steps are required. The first

processor is initialized with 0 and 1 as its operands to add together. The processors that

follow the first add the outputs of the previous processors as defined by the algorithm to

calculate the Fibonacci series. The final and eleventh processor in the function returns the

twelfth element in the Fibonacci series. A detailed screen capture of the program used to

calculate the Fibonacci series is shown in Figure 4.2. The algorithm implemented in the

IDE is modeled after the C code provided in Figure 4.1.

40

i n t f i b o n a c c i ()
{

i n t i ;
i n t a , b ;
i n t c [1 0] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
a = 0 ;
b = 1 ;
f o r (i =0 ; i <10; i ++) {

c [i] = a + b ;
a = b ;
b = c [i] ;

}
re turn 0 ;

}

Figure 4.1: C code that calculates the first twelve elements of the Fibonacci series.

4.2 Concurrent Code Example - Vector Addition

A simple vector addition example shows how the architecture operates when a given algo-

rithm exhibits a high level of parallelism. This example uses two eight-element arrays of

data elements for the vectors and eight concurrent atomic processors. The function executes

in three cycles, one cycle is used for the initial broadcast of data to the atomic processors

and another cycle is used to add each element of the first vector to its respective element

in the second vector. The final cycle would be used to return an array of data elements

to the calling function. Currently, the simulator supports passing data element arrays into

a function, but can only return a single value. Because of this, the return instruction has

been omitted from the example. A screen capture of the example is shown in Figure 4.4.

C code for simple vector addition is provided in Figure 4.3 to show the model the IDE

implementation is based on.

41

PriOp: 0

SecOp: 1

OpCode: ADDPS

Output: 1

PriOp: 1

SecOp: AP 1

OpCode: ADDPS

Output: 2

PriOp: AP 1

SecOp: AP 2

OpCode: ADDPS

Output: 3

PriOp: AP 2

SecOp: AP 3

OpCode: ADDPS

Output: 5

PriOp: AP 3

SecOp: AP 4

OpCode: ADDPS

Output: 8

PriOp: AP 4

SecOp: AP 5

OpCode: ADDPS

Output: 13

PriOp: AP 5

SecOp: AP 6

OpCode: ADDPS

Output: 21

PriOp: AP 6

SecOp: AP 7

OpCode: ADDPS

Output: 34

PriOp: AP 7

SecOp: AP 8

OpCode: ADDPS

Output: 55

PriOp: AP 8

SecOp: AP 9

OpCode: ADDPS

Output: 89

PriOp: AP 10

SecOp: None

OpCode: RETURN

Output: 89

Figure 4.2: Screen Capture of the Fibonacci Program showing the calculation of the first
twelve elements of the Fibonacci series. AP 10 returns the twelfth element to the calling
function. Call out boxes have been added to show the values within each processor.

42

i n t v e c t o r a d d ()
{

i n t v e c t o r 1 [8] = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;
i n t v e c t o r 2 [8] = {5 , 9 , 1 , 45 , 13 , 52 , 9 , 23} ;
i n t i ;
f o r (i =0 ; i <8; i ++) {

v e c t o r 1 [i] = v e c t o r 1 [i] + v e c t o r 2 [i] ;
}
re turn 0 ;

}

Figure 4.3: C Code that performs vector addition for two eight element vectors.

4.3 Integer Multiplication using the Left-Shift Algorithm

Integer multiplication has been implemented in the IDE by using an unrolled version of

the left-shift multiplication algorithm. In this algorithm the multiplicand is added to the

product if the multiplier has a binary value of 1 in its least significant bit (LSB). For each

iteration of the algorithm, the multiplier is shifted right one bit, and the multiplicand is

shifted left one bit. The example shown in Figure 4.6 is a 32-bit left shift multiplier. Input

0 is the multiplicand and Input 1 is the multiplier passed into the function instance. After

32 iterations of the left shift algorithm complete, the function instance returns. Figure 4.7

shows a simulation of the unsigned integers 5 and 10 being left-shift multiplied to yield a

result of 50. A single iteration of the left shift integer multiply algorithm is detailed by the

following steps; References to AP IDs are the numbers shown on the faces of the tokens in

Figure 4.7. A C code implementation of the algorithm is provided in Figure 4.5 to show

the model the IDE implementation is based on.

1. Bitwise AND the value of the appropriately shifted multiplicand, a, with the binary

mask 1 as shown in AP5. The Z flag is set if the least significant bit of the result is

zero.

43

V
a
l:
 1

V
a
l:
 2

V
a
l:
 3

V
a
l:
 4

V
a
l:
 5

V
a
l:
 6

V
a
l:
 7

V
a
l:
 8

V
a
l:
 2
3

V
a
l:
 9

V
a
l:
 5
2

V
a
l:
 1
3

V
a
l:
 4
5

V
a
l:
 1

V
a
l:
 9

V
a
l:
 5

P
ri
O
p
:

D
E
 1

S
e
c
O
p
:
D
E
 9

O
p
C
o
d
e
:A
D
D
P
S

O
u
tp
u
t:
6

P
ri
O
p
:

D
E
 2

S
e
c
O
p
:
D
E
 1
0

O
p
C
o
d
e
:A
D
D
P
S

O
u
tp
u
t:
1
1

P
ri
O
p
:

D
E
 3

S
e
c
O
p
:
D
E
 1
1

O
p
C
o
d
e
:A
D
D
P
S

O
u
tp
u
t:
4

P
ri
O
p
:

D
E
 4

S
e
c
O
p
:
D
E
 1
2

O
p
C
o
d
e
:A
D
D
P
S

O
u
tp
u
t:
4
9

P
ri
O
p
:

D
E
 8

S
e
c
O
p
:
D
E
 1
6

O
p
C
o
d
e
:A
D
D
P
S

O
u
tp
u
t:
3
1

P
ri
O
p
:

D
E
 7

S
e
c
O
p
:
D
E
 1
5

O
p
C
o
d
e
:A
D
D
P
S

O
u
tp
u
t:
1
6

P
ri
O
p
:

D
E
 6

S
e
c
O
p
:
D
E
 1
4

O
p
C
o
d
e
:A
D
D
P
S

O
u
tp
u
t:
5
8

P
ri
O
p
:

D
E
 5

S
e
c
O
p
:
D
E
 1
3

O
p
C
o
d
e
:A
D
D
P
S

O
u
tp
u
t:
1
8

Fi
gu

re
4.

4:
Sc

re
en

C
ap

tu
re

of
th

e
V

ec
to

rA
dd

Pr
og

ra
m

sh
ow

in
g

tw
o

ei
gh

te
le

m
en

ta
rr

ay
s

of
da

ta
el

em
en

ts
,D

E
s

1
th

ro
ug

h
7

an
d

8
th

ro
ug

h
16

,b
ei

ng
ad

de
d

by
A

Ps
17

th
ro

ug
h

24
.C

al
lo

ut
bo

xe
s

ha
ve

be
en

ad
de

d
in

di
ca

tin
g

th
e

op
er

an
ds

,o
pe

ra
tio

n
an

d
ou

tp
ut

of
ea

ch
of

th
e

to
ke

ns
.

44

2. If the Z flag is 0, then the appropriately shifted multiplier, x, is added to the partial

product, as shown in AP6. During this step, a is shifted right and x is shifted left

unconditionally in preparation for the next iteration, as shown in AP3 and AP4 re-

spectively. In the looped version of this algorithm, a counter would be decremented

here to track the number of iterations.

3. After the appropriate number of iterations, tracked by the counter or explicitly de-

fined in the unrolled version of the algorithm shown here, the multiplier function

instance returns the product accumulated from each adder AP, as shown in AP127.

/ / a i s t h e m u l t i p l i c a n d
/ / x i s t h e m u l t i p l i e r
i n t l e f t m u l t i p l y (i n t a , i n t x)
{

i n t i ;
i n t p r o d u c t ; / / p a r t i a l p r o d u c t
p r o d u c t = 0 ;
f o r (i =0 ; i <32; i ++) {

i f (a & 1) {
p r o d u c t = p r o d u c t + x ;

}
a = a >> 1 ;
x = x << 1 ;

}
re turn p r o d u c t ;

}

Figure 4.5: C Code that performs integer multiplication using a left shift multiplication
algorithm.

4.4 Floating Point Packing and Unpacking

The IDE uses four custom-defined function definitions for the following floating point op-

erations: Unpacking the sign bit, unpacking the exponent, unpacking the mantissa, and

45

Figure 4.6: Screen Capture of 32-bit Left Shift Integer Multiply Function Definition

46

Screen Capture Break

Val: 5

Val: 10

PriOp: AP2

SecOp: AP4

Status: AP5

CondOp:Z = 0

OpCode:ADDPS

Output: 10

PriOp: AP6

SecOp: AP8

Status: AP9

CondOp:Z = 0

OpCode:ADDPS

Output: 50

PriOp: i0

OpCode:SHR

Output: 2

PriOp: i1

OpCode:SHL

Output: 20

PriOp: AP3

OpCode:SHR

Output: 1

PriOp: AP4

OpCode:SHL

Output: 40

PriOp: AP7

SecOp: 1

OpCode: AND

StatusOut: Z=0

PriOp: AP7

OpCode:SHR

Output: 0

PriOp: AP8

OpCode:SHL

Output: 80

PriOp: AP122

SecOp: AP124

Status: AP125

CondOp:Z = 0

OpCode:ADDPS

Output: 50

PriOp: AP126

OpCode:RETURN

Output: 50

PriOp: AP11

SecOp: 1

OpCode: AND

StatusOut: Z=1

PriOp: i0

SecOp: 1

OpCode: AND

StatusOut: Z=0

PriOp: AP3

SecOp: 1

OpCode: AND

StatusOut: Z=1

One Multiplication

Iteration

PriOp: 0

SecOp: i1

Status: AP1

CondOp:Z = 0

OpCode:ADDPS

Output: 10

Figure 4.7: Screen Capture of 32-bit Left Shift Multiply Simulation, multiplying unsigned
integers 5 and 10 to yield a result of 50. Call out boxes have been added to show the values
within each processor.

47

packing sign bit, exponent and mantissa into a floating point number. Because each of

these operations is defined as a function definition it can be instantiated from other func-

tion instances as shown in Section 4.5. Each of the unpacking and packing operations is

discussed in detail in the sections that follow.

4.4.1 IEEE Floating Point Standard

The IEEE 754 standard [82] for floating point numbers defines both 32-bit and 64-bit rep-

resentations; details of the bit usage in the standard have been given in Table 4.1 [83].

Table 4.1: Definition of bits for the IEEE 754 standard for floating point numbers.

Sign Biased Exponent Significand s = 1.f (the 1 is omitted)
± e + bias f

32-bit: 1 bit 8 bits + 127 23 + 1 bits, single-precision
64-bit: 1 bit 11 bits + 1023 52 + 1 bits, double-precision

4.4.2 Unpacking the Sign

The sign bit for a floating point number is stored in the most significant bit (MSB). To

unpack the sign bit, the binary representation of the floating point number is simply masked

with a 1 in the MSB position using an AND operation. Once the result is in this form, the

operation is complete. It is not necessary to shift the sign bit to an alternate location, as

it can be manipulated in this position with simple bitwise logic. C code that unpacks a

floating point number’s sign is shown in Figure 4.8. Figure 4.9 shows details of how a

floating point number’s sign is unpacked in the IDE.

48

i n t F P u n p a c k s i g n (f l o a t f)
{

i n t s ;
/ / c r e a t e a p o i n t e r t o memory l o c a t i o n o f f
unsigned i n t ∗ pI = (unsigned i n t ∗)& f ;
s = ∗ pI & 0 x80000000 ; / / mask o f f s i g n b i t
re turn s ;

}

Figure 4.8: C Code that unpacks the sign bit from the floating point number representation.

4.4.3 Unpacking the Exponent

The exponent for a floating point number is stored as an unsigned integer with a bias added

to it, allowing representation of both positive and negative exponents without the use of

a sign bit. To unpack the exponent for a 32-bit floating point number, bits 23 through 30

(assuming the LSB is bit 0) are masked with ones in an AND operation. Next, the bits can

be shifted right 23 places to allow them to reside in the eight least significant bit locations.

Finally, the bias of 127 is subtracted from the exponent. Depending on the math operations

to be performed on the exponent, not all of these operations are always required, but in

this case, the most generic approach has been taken. C code that unpacks a floating point

number’s exponent is shown in Figure 4.10. Figure 4.11 shows details of how a floating

point number’s exponent is unpacked in the IDE.

4.4.4 Unpacking the Significand or Mantissa

The significand, also often referred to as the mantissa, is the fractional portion of the float-

ing point number representation. In the single-precision representation it resides in the least

significant 23 bits. In order to unpack this portion of the number, the lowest 23 bits are first

masked off using an AND operation with the hexadecimal number 0x7FFFFF. These 23

bits represent the numbers to the right of the decimal place in the fractional portion of the

49

PriOp: i0

SecOp: 0x80000000

OpCode:AND

Floating Point Number

PriOp: AP1

OpCode:RETURN

Figure 4.9: The sign bit of a floating point number is unpacked by simply masking the
MSB. Call out boxes have been added to show the operation performed by each processor.

50

i n t FPunpack exponen t (f l o a t f)
{

i n t s ;
/ / c r e a t e a p o i n t e r t o memory l o c a t i o n o f f
unsigned i n t ∗ pI = (unsigned i n t ∗)& f ;
s = ∗ pI & 0 x7F800000 ; / / mask o f f e x p o n e n t b i t s
s = s >> 2 3 ; / / s h i f t r i g h t 23 p l a c e s
s = s − 127 ; / / s u b t r a c t b i a s o f 127
re turn s ;

}

Figure 4.10: C Code that unpacks the exponent portion of the floating point number repre-
sentation.

floating point number. In order to complete the unpack operation for the mantissa, a 1 must

be added to the left of the decimal place. This single whole bit is always removed from the

mantissa when the floating point number is packed in the IEEE representation. To add in

this 1, an OR operation is used with a 1 set as the 23rd bit, where bit 0 is the LSB, also

represented as the hexadecimal number 0x800000. C code that unpacks a floating point

number’s mantissa is shown in Figure 4.12. Figure 4.13 shows the details of this operation

performed in the IDE.

4.4.5 Packing Floating Point Numbers

The process of packing a floating point number from its sign, exponent, and mantissa re-

verses all the processes performed when the number was unpacked. The sign bit is allowed

to remain in its native representation throughout floating point operations, so it requires no

logic operations to format it. The exponent bit requires that the bias be added back in, thus

the value of 127 is added to the exponent. The mantissa is checked for a second digit to

the left of the decimal place, if this has occurred the number is shifted one place to the

right and a 1 is added to the exponent. Next, before the exponent is shifted left 23 places,

it is checked for overflow. If bit 8 of the exponent is set to 1, where bit 0 is the LSB, then

51

Screen Capture Break

PriOp: i0

SecOp: 0x7F800000

OpCode:AND

Floating Point Number

Shift Masked Exponent

Right 23 places.

[Tokens 7 – 18 removed

in screen break]

PriOp: AP24

SecOp: 127

OpCode:SUBPS

PriOp: AP25

OpCode:RETURN

Figure 4.11: The exponent of a 32-bit floating point number is unpacked by masking off
the exponent bits, right shifting 23 places, and subtracting the bias of 127. Call out boxes
have been added to show the operation performed by each processor.

52

i n t F P u n p a c k m a n t i s s a (f l o a t f)
{

i n t s ;
/ / c r e a t e a p o i n t e r t o memory l o c a t i o n o f f
unsigned i n t ∗ pI = (unsigned i n t ∗)& f ;
s = ∗ pI & 0x7FFFFF ; / / mask o f f m a n t i s s a b i t s
s = s | 0 x800000 ; / / add one t o l e f t o f d e c i m a l
re turn s ;

}

Figure 4.12: C Code that unpacks the mantissa or significand portion of the floating point
number representation.

the exponent has overflowed, and the packing operation returns the floating point represen-

tation of positive infinity. Other special cases are defined in the IEEE standard, but they

have been omitted from this simple example. If the exponent has not overflowed, then it

is shifted 23 places to the left and a logic OR with the sign bit performed. Finally, the

extra 1 to the left of the decimal in the mantissa is masked off and a logic OR is performed

between the combined sign/exponent result and the mantissa before returning. C code that

the algorithm is modeled after is provided in Figure 4.14. This operation in the IDE is

detailed in Figure 4.15.

4.5 Floating Point Multiplication

4.5.1 24-bit Fixed-Point Multiplier

The floating point multiplication algorithm discussed in the next section requires a fixed-

point multiplier to multiply the two mantissas together. As discussed in Section 4.4.4, the

mantissa of a single-precision floating point number has 23 bits to the right of the deci-

mal place and a single one to the left of the decimal place for a total of 24 bits. Because

these fractional representations will be truncated to 24 bits in length to fit within the packed

53

PriOp: i0

SecOp: 0x7FFFFF

OpCode:AND

Floating Point Number

PriOp: AP2

OpCode:RETURN

PriOp: AP1

SecOp: 0x800000

OpCode:OR

Figure 4.13: The significand of a 32-bit floating point number is unpacked by masking off
the least significant 23 bits and adding a 1 in the 23rd bit position, where bit 0 is the LSB.
Call out boxes have been added to show the operation performed by each processor.

54

f l o a t FPpack (i n t s ign , i n t exponent , i n t m a n t i s s a)
{

i n t F P b i t s ;
/ / c r e a t e a p o i n t e r t o memory l o c a t i o n o f F P b i t s
f l o a t ∗ F = (f l o a t ∗)& F P b i t s ;
e x p o n e n t = e x p o n e n t + 127 ;
i f (m a n t i s s a & 0 x1000000) {

e x p o n e n t += e x p o n e n t ;
m a n t i s s a = m a n t i s s a >> 1 ;

}
/ / check f o r o v e r f l o w o f e x p o n e n t
i f (e x p o n e n t & 0 x100) {

/ / r e t u r n i n f i n i t y
F P b i t s = 0 x7F800000 ;

} e l s e {
e x p o n e n t = e x p o n e n t << 2 3 ;
m a n t i s s a = m a n t i s s a & 0x7FFFFF ;
F P b i t s = s i g n | e x p o n e n t | m a n t i s s a ;

}
re turn ∗F ;

}

Figure 4.14: C Code that packs a sign, exponent, and mantissa into the IEEE Floating Point
representation.

55

Sign

Exponent

Mantissa

PriOp: i1

SecOp: 127

OpCode:ADDPS

PriOp: i2

SecOp: 0x1000000

OpCode:AND
PriOp: AP1

Status: AP2

CondOp:Z = 0

OpCode: INC PriOp: i2

Status: AP2

CondOp:Z = 0

OpCode:SHR
PriOp: AP3

SecOp: 0x100

OpCode:AND

PriOp: 0x7F800000 (+∞)

Status: AP5

CondEx: Z = 0

OpCode:NoOp (Copy)
PriOp: AP7

OpCode:RETURN

PriOp: AP3

Status: AP5

CondEx: Z = 1

OpCode:SHL

Shift Exponent Left 23

places.

[Tokens 9 – 28 removed

in screen break]

Screen Capture Break

PriOp: i0

SecOp: AP29

OpCode:OR

PriOp: AP4

SecOp: 0x7FFFFF

OpCode:AND

PriOp: AP30 (FP)

SecOp: AP33

OpCode:OR

PriOp: AP32

OpCode:RETURN

Figure 4.15: Packing operation for a 32-bit floating point number. The function definition
takes a sign, exponent and mantissa as inputs and outputs a floating point number. Call out
boxes have been added to show the operation performed by each processor.

56

floating point number, it is advantageous to discard the extra bits produced during multi-

plication to avoid overflowing the 32-bit word length. This is easily done with a right shift

integer multiplication algorithm, purposefully shortened to 24 iterations instead of the nor-

mal 32. It is noted that the final iteration of this algorithm does not right shift the resulting

product as normally done in a right shift multiplier. This is because 23 bits are required

to the right of the decimal place. A final right shift would cause there to be only 22. The

algorithm as shown in Figure 4.17 is executed with the following steps, C code is provided

in Figure 4.16 for easier understanding:

1. Bitwise AND the value of the appropriately shifted multiplier, x, with the binary

mask 0x1 as shown in AP1. The Z flag is set if the least significant bit of the result is

zero.

2. If the Z flag is 0 then the multiplicand, a, is added to the partial product, as shown in

AP2. During this step, x is shifted right unconditionally in preparation for the next

iteration, as shown in AP3. In the looped version of this algorithm, a counter would

be decremented here to track the number of iterations.

3. The partial product is shifted right as shown in AP4. Step one for the next iteration

begins concurrently, as shown in AP5.

4. After the appropriate number of iterations, tracked by the counter or explicitly de-

fined in the unrolled version of the algorithm shown here, the multiplier function

instance returns the product accumulated from each adder AP, as shown in AP95.

4.5.2 Function Calls to Perform Floating Point Multiplication

Multiplication of two floating point numbers requires a few simple logic and arithmetic

operations once the parts of the floating point number have been unpacked. Equation 4.1

57

/ / a i s t h e m u l t i p l i c a n d
/ / x i s t h e m u l t i p l i e r
i n t F i x e d r i g h t m u l t i p l y (i n t a , i n t x)
{

i n t i ;
i n t p r o d u c t ; / / p a r t i a l p r o d u c t
p r o d u c t = 0 ;
f o r (i =0 ; i <23; i ++) {

i f (x & 1) {
p r o d u c t = p r o d u c t + a ;

}
x = x >> 1 ;
p r o d u c t = p r o d u c t >> 1 ;

}
i f (x & 1) {

p r o d u c t = p r o d u c t + a ;
}
re turn p r o d u c t ;

}

Figure 4.16: C Code that performs a 24-bit fixed point multiplication using a right shift
multiplication algorithm.

58

Screen Capture Break

Multiplicand

Multiplier

PriOp: i1

OpCode:SHR

PriOp: i1

SecOp: 0x1

OpCode: AND
PriOp: 0

SecOp: i0

Status: AP1

CondOp:Z = 0

OpCode:ADDPS

PriOp: AP2

OpCode:SHR
PriOp: AP3

SecOp: 0x1

OpCode: AND

PriOp: AP3

OpCode:SHR

PriOp: AP4

SecOp: i0

Status: AP5

CondOp:Z = 0

OpCode:ADDPS

PriOp: AP7

SecOp: 0x1

OpCode: ANDPriOp: AP6

OpCode:SHR

One Multiplication

Iteration

Iteration 3 thru 22 removed

in screen break.

PriOp: AP87

OpCode:SHR

PriOp: AP88

SecOp: i0

Status: AP89

CondOp:Z = 0

OpCode:ADDPS

PriOp: AP91

SecOp: 0x1

OpCode: AND

PriOp: AP90

OpCode:SHR

PriOp: AP92

SecOp: i0

Status: AP93

CondOp:Z = 0

OpCode:ADDPS

PriOp: AP94

OpCode:RETURN

It
e
ra
ti
o
n
 2
3

It
e
ra
ti
o
n
 2
4

(w
/o
 S
H
R
)

Figure 4.17: Right Shift Integer multiplier for 24 bit fixed point multiplication used in float-
ing point multiplication algorithm. Call out boxes have been added to show the operation
performed by each processor.

59

shows the process for floating point multiplication where the two exponents are added and

the significands are multiplied [83].

(±s1 × be1)× (±s2 × be2) = ± (s1 × s2)× be1+e2 (4.1)

An example of floating point multiplication in the IDE is shown in Figure 4.19. Un-

packing operations occur in function calls 1 through 6. Next, the sign bit of the result is

calculated using a simple XOR function between the two input sign bits, as shown in AP7.

Concurrently, the exponent bit for the result is calculated by adding together the two input

exponents, shown in AP8. Additionally, the resultant mantissa is also calculated concur-

rently through a function call to the 24-bit fixed point multiplier discussed in the previous

section, as shown in function call 9. Finally, the resulting parts can be packed into a 32-bit

floating point number through the packing operation discussed in Section 4.4.5, as shown

in function call 10. AP11 returns the resulting product of the floating point multiplication.

The C code in Figure 4.18 shows how each of the previously mentioned C code implemen-

tations would be called to perform the floating point multiplication algorithm. It should

be noted that the C code is sequential while the IDE performs several of these operations

concurrently.

4.6 Integer Division

A complete example of integer division with the currently configured IDE is not possible

due to the unimplemented loop functionality, as discussed in Section 5.2.1. The provided

example shows how a division function would be implemented once loop functionality is

added to the IDE, as discussed in Section 5.2.1. The division algorithm that is shown in

the example is analogous to the one shown in Figure 4.21 taken from [1]. The ID numbers

60

f l o a t F P m u l t i p l y (f l o a t a , f l o a t b)
{

i n t s i g n a , s i g n b , exp a , exp b , m a n t i s s a a , m a n t i s s a b ;

/ / unpack f l o a t i n g p o i n t numbers w i t h unpack commands
s i g n a = F P u n p a c k s i g n (a) ;
s i g n b = F P u n p a c k s i g n (b) ;
ex p a = FPunpack exponen t (a) ;
exp b = FPunpack exponen t (b) ;
m a n t i s s a a = F P u n p a c k m a n t i s s a (a) ;
m a n t i s s a b = F P u n p a c k m a n t i s s a (b) ;

/ / pe r fo rm f l o a t i n g p o i n t m u l t i p l i c a t i o n on unpacked p a r t s
s i g n a = s i g n a ˆ s i g n b ; / / XOR s i g n s
ex p a = exp a + exp b ; / / Add e x p o n e n t s
m a n t i s s a a = F i x e d r i g h t m u l t i p l y (m a n t i s s a a , m a n t i s s a b) ;

/ / r e p ac k r e s u l t as a f l o a t i n g p o i n t number and r e t u r n
re turn FPpack (s i g n a , exp a , m a n t i s s a a) ;

}

Figure 4.18: C code that implements the top level floating point multiplication algorithm
by making calls to the previously mentioned C code.

61

3
4
.8
5

1
.0
8
7
5

C
a
ll:
 F
P
 S
ig
n
 U
n
p
a
c
k

In
p
u
t_
0
:
i0

O
u
tp
u
t:

0

C
a
ll:
 F
P
 S
ig
n
 U
n
p
a
c
k

In
p
u
t_
0
:
i1

O
u
tp
u
t:

0

C
a
ll:
 F
P
 E
x
p
o
n
e
n
t
U
n
p
a
c
k

In
p
u
t_
0
:
i0

O
u
tp
u
t:

5

C
a
ll:
 F
P
 E
x
p
o
n
e
n
t
U
n
p
a
c
k

In
p
u
t_
0
:
i1

O
u
tp
u
t:

0

C
a
ll:
 F
P
 M

a
n
ti
s
s
a
 U
n
p
a
c
k

In
p
u
t_
0
:
i0

O
u
tp
u
t:

0
x
8
B
6
6
6
6

C
a
ll:
 F
P
 M

a
n
ti
s
s
a
 U
n
p
a
c
k

In
p
u
t_
0
:
i1

O
u
tp
u
t:

0
x
8
B
3
3
3
3

P
ri
O
p
:

F
N
1

S
e
c
O
p
:

F
N
2

O
p
C
o
d
e
:

X
O
R

O
u
tp
u
t:

0

P
ri
O
p
:

F
N
3

S
e
c
O
p
:

F
N
4

O
p
C
o
d
e
:

A
D
D
P
S

O
u
tp
u
t:

5
C
a
ll:
 R
ig
h
t
S
h
if
t
2
4
b
it
 M
u
lt
ip
ly

In
p
u
t_
0
:
F
N
5

In
p
u
t_
1
:
F
N
6

O
u
tp
u
t:

0
x
9
7
9
8
F
5

C
a
ll:
 F
P
 P
a
c
k

In
p
u
t_
0
:
A
P
7

In
p
u
t_
1
:
A
P
8

In
p
u
t_
2
:
F
N
9

O
u
tp
u
t:

3
7
.8
9
9
3
7

P
ri
O
p
:

F
N
1
0

O
p
C
o
d
e
:R

E
T
U
R
N

O
u
tp
u
t:

3
7
.8
9
9
3
7

Fi
gu

re
4.

19
:

Fl
oa

tin
g

po
in

tm
ul

tip
ly

pr
og

ra
m

w
ith

fu
nc

tio
n

ca
lls

to
flo

at
in

g
po

in
tu

np
ac

ki
ng

an
d

pa
ck

in
g

op
er

at
io

ns
an

d
ri

gh
t

sh
if

tfi
xe

d
po

in
t(

24
bi

ti
nt

eg
er

)m
ul

tip
lie

r.
C

al
lo

ut
bo

xe
s

ha
ve

be
en

ad
de

d
to

sh
ow

th
e

op
er

at
io

n
pe

rf
or

m
ed

by
ea

ch
pr

oc
es

so
r.

62

used in Figure 4.21 coincide with the ID numbers shown in parenthesis in Figure 4.22. The

steps of the algorithm are shown below with references to AP ID numbers shown on the

token faces in Figure 4.22. Figure 4.20 shows a C code implementation of the algorithm.

1. Assign the dividend or numerator, n, to the remainder, r, as shown in AP1.

2. Subtract the divisor, d from r as shown in AP2.

3. If r ≥ 0, then increment the quotient, q, as shown in AP4 and repeat steps 2 and 3.

Otherwise the division is complete, add d to r and return, as shown in AP3 and AP6

respectively.

It is recognized that this algorithm lacks efficiency because of the undetermined and of-

ten excessively large number of iterations required. In this division algorithm, the number

of iterations relates directly to the numerical size of the numerator in regards to the denom-

inator; For example, if you divide one million by one, it would take one million iterations.

This simple and inefficient algorithm was chosen to show how a loop of an undetermined

number of iterations would be implemented in the IDE. More efficient algorithms, such as

a shift and subtract division, significantly reduce the number of operations required. The

number of iterations in these algorithms are related to the bit size width in the binary rep-

resentation. Because of this, the number of iterations are significantly less and predictable.

63

i n t i t e r a t i v e D i v i s i o n (i n t n , i n t d)
{

i n t r = n ;
i n t q = 0 ;
whi le (1) {

r = r − d ;
i f (r >= 0) {

q = ++q ;
} e l s e {

r = r + d ;
re turn q ;

}
}

}

Figure 4.20: C Code to perform division through iterative subtraction.

AP (0, 0) AP (0, 1) AP (0, 2) AP (0, 3) AP (0, 4)

ADD SUB ADD RETURN [DS Element]

ID: 1 ID: 1 ID: 1 ID: 3 ID: 5
POp: n (ID: 5) POp: r (ID: 1) POp: r (ID: 1) POp: q (ID: 3) Word: n

SOp: 0 (ID: 4) SOp: d (ID: 2) SOp: d (ID: 2) SOp: [Calling FI HID]

EO: 1 EO: 2 EO: 3 EO: 4

PEO: 0 PEO: 1 PEO: 2 PEO: 3

Cond: N

SBID: 1

AP (1, 0) AP (1, 1) AP (1, 2) AP (1, 3) AP (1, 4)

INC [DS Element] [DS Element] [DS Element] [DS Element]

ID: 3 ID: 4 ID: 2 ID: 1 ID: 3
POp: q (ID=3) Word: 0 Word: d Word: r Word: q

SOp: -

EO: 1

PEO: 2

Cond: !N

SBID: 1

Figure 4.21: Example integer division algorithm [1].

64

Dividend (ID5)

Divisor (ID2)

ID: 1

PriOp: i0 (ID5)

SecOp: 0

OpCode:ADDPS

NRtE*: 3

0

1

2

3

4

5

6

7

8

9 *NRtE: NextRowToExecute

ID: 1

PriOp: AP1 (ID1)

SecOp: i1 (ID2)

OpCode:SUBPS

NRtE: 5

ID: 3

PriOp: 0 (ID3)

Status: AP2 (ID1)

CondOp:N = 0

OpCode:INC

NRtE: 4

ID: 3

PriOp: AP4 (ID3)

OpCode:RETURN

NRtE: 9

ID: 1

PriOp: AP2 (ID1)

SecOp: i1 (ID2)

Status: AP2 (ID1)

CondOp:N = 1

OpCode:ADDPS

NRtE: 7

Populated by

Parser

Looped

Processors

Figure 4.22: Screen Capture of sample division algorithm with Next Row to Execute field
and non-unique ID numbers indicated in call out boxes (Simulation non-functional).

65

Chapter 5

IDE Development and Programming

This chapter discusses relevant details about development of the IDE. The IDE was devel-

oped in Visual Basic using Microsoft Visual Studio 2008. This development environment

was chosen because of its ability to provide quick GUI development within an object ori-

ented programming environment.

5.1 Program Structure

The IDE is composed of thirty Visual Basic classes which will be described briefly in this

section. The thirty classes can be classified into three different types: Classes related to the

GUI, classes that hold and interface with the data for each atomic processor, and classes

related to the simulator. The main class related to all other classes is the “Form1.vb” class.

This class contains all functions and variables related to the main GUI, and interfaces with

all other classes in the program, directly or indirectly.

66

5.1.1 GUI Related Classes

Form1.vb

As mentioned above, the Form1 class is the main class for the project. The Form1 class

includes Windows Form Designer code which contains the structure of the GUI including

details such as color, size and control locations. Additionally the Form1 class includes code

that allows tokens to be placed and snapped to the layout grid, keeps track of the current

tab and provides a layer of abstraction between the user and all other functions of the IDE

program.

PG data.vb

The PG data class, short for property grid data, is a base class from which the following

classes inherit:

• PGD AP.vb: Defines property grid for Atomic Processors.

• PGD CA.vb: Defines property grid for Concurrent Arrays.

• PGD DS.vb: Defines property grid for Data Elements.

• PGD FN.vb: Defines property grid for Function Calls.

• PGD ID.vb: Defines property grid for Inputs.

• PGD SA.vb: Defines property grid for Sequential Arrays.

Each of these classes define the properties displayed in the right hand side property grid

which appears when a token is selected. A different child class is defined for each of the

token types, as indicated by the abbreviation following the underscore in the name of each

child class. When a token is created the appropriate child class is instantiated and stored

with its respective token to hold all data defined for that token.

67

Line.vb

Handles how lines are drawn between tokens and defines all the properties associated with

a line including the output token to start the line at, the input token to end the line at,

the number of the input for the line being drawn (primary, secondary or status bits) and

information about the status of the line.

ErrorList.vb

Includes Windows Form Designer code defining the form displayed with errors and warn-

ings after a design is parsed.

Properties.vb

Includes Windows Form Designer code defining the form displayed when the user selects

Project Properties under the view menu. Additionally, the class contains code to define

the number of inputs, the project bit size representation and a name and description for the

project/function definition, as described in Section 3.5.

About.vb

Includes Windows Form Designer code defining the form displayed when the user selects

About under the help menu.

5.1.2 Data Related Classes

Operation.vb

Handles the undo and redo functionality in the IDE. Currently, the class handles undo / redo

functionality for placement of new tokens and deletion of existing tokens. Future versions

of the IDE should further develop the functionality of this class.

68

Frame.vb

Acts as a container that provides access to all the information in a given project. While

nothing from the frame class is saved with a project, it provides all the access functions to

search for tokens within their specified data class. It tracks the currently selected token,

zoom level, undo and redo stacks, and the simulator.

Data.vb

Contains the data for a given project. Included within the data class is an array list of all the

tokens for a project, an array of booleans indicating if a breakpoint is set for a given row,

the width and height of the layout grid for the project, the project bit size representation,

number of inputs, function name and description, and background color for the project,

among other important items. When a project is saved the data class for that project is

serialized into a binary file using the Visual Basic serialize command. When a project is

opened, the file is deserialized and placed into a frame to provide access to the data.

Token.vb

Stores all data associated with each specific token. Each time a token is placed on the grid a

token class is instantiated and added to the array list of tokens in the respective data class.

Tokens store their type, size, absolute position, grid location, ID, properties, inputs, and

color. The appropriate picture for the token is retrieved based on type, size, and color each

time the tokens on the layout grid are redrawn.

69

5.1.3 Simulator Related Classes

Parser.vb

Allows a given frame to be parsed for simulation. When a frame is parsed, each token is

checked to make sure it has at least one input, its operands are valid, and that each token has

the appropriate number of inputs. Additionally warnings are provided to the user for tokens

that do not output to other tokens or tokens that are not connected to any other tokens. A

return token will not be marked as lacking an output as this is intentional. Once a frame is

successfully parsed without errors, the parser class will instantiate the appropriate SimOps,

SimSteps, and Simulator classes. Further details about these classes are provided below. A

sub-parser may be instantiated during simulator runtime to handle a function call token.

Simulator.vb

The simulator contains a step for each row of the frame and each step is broken into one

operation per token in the given row. The simulator handles execution of each step and

stops if a breakpoint or the end of the file is reached. An option is also provided to the user

to simulate the frame one step at a time.

SimStep.vb

The parser creates SimSteps when a row is successfully parsed. A SimStep consists of all

the token Sim operations on a given row and the breakpoint status of the given row. The

SimStep is assigned an ID based on the row the step is for. When the ExecuteOp function

in a SimStep is called each SimOp in that step will be called and executed.

SimOp.vb

The Simulator Operations Class is a base class from which the following classes inherit:

70

• MathOp.vb: Responsible for: ADDPS, ADDPC, ADDPSC, SUBPS, SUBPC, SUB-

PSC, INC, DEC.

• LogicOp.vb: Responsible for: INV, AND, OR, XOR, SHL, SHR, SHLC, SHRC

• StatusOp.vb: Responsible for: SETC, SETN, SETV, SETZ, RSTC, RSTN, RSTV,

RSTZ

• NoOp.vb: Responsible for: NOP

• CallOp.vb: Used to perform Function Calls in function call tokens.

• FunctionOp.vb: Responsible for: RETURN

• DataOp.vb: Used to pass data out of data elements.

• InputOp.vb: Used to pass data out of inputs.

A SimOp contains the operands for a single token’s operation and the opcode to be per-

formed by the operation. Each type of opcode has a child class that contains specialized

operations for that type of operation. For example the MathOp class contains operations

for addition and subtraction, the LogicOp class contains operations that require bitwise

manipulation such as logic AND, OR, XOR, NOT and shifts.

Operand.vb

Operands represent any value used by the simulator. Types of operands used in the simula-

tor are:

• Primary Input Operands

• Secondary Input Operands

71

• Status Bit Input Operands

• Output Operands

• Status Bit Output Operands

Each operand consists of a value and type. The value is converted to and stored as a byte

array, the type is stored as a string defined by the public constants in the operand class.

When a value is required in its specified form it is converted from a byte array to the

appropriate type using its defined type.

OperandException.vb

Can be used to throw a program exception related to an operand, such as in the case that

operand types are mismatched.

5.2 Future Development of the IDE

While every effort has been made to create a fully functional IDE and simulator, several

future developments and additions can be made to the current IDE. These additions will be

detailed in this section.

5.2.1 Loops

The addition of loop capability to the simulator is an important feature defined in the origi-

nal design. Because the organization and operation of the architecture was developed con-

currently with this work, the loop capability will be implemented in the next version. Cur-

rently, the IDE only supports loops in their completely unrolled form; in order to include

loop functionality in the IDE it will be necessary to modify the functionality of the parser

72

significantly. A summary of the required changes includes: Implementing non-unique IDs

as discussed in the next section, and modifying the way simulator steps are created. The

current version of the parser creates all steps for a simulation before the simulation runs,

which would be analogous to static or compile time step creation. Iterative loops without

a predefined number of iterations will require dynamic or runtime step creation during a

simulation.

Additionally, it should be noted that while loops are an important feature in the archi-

tecture, they are not always desired. An example of a situation where loops would not be

desired is in a real time data intense operation where pipelining of operations is required.

Performing real time signal processing in an embedded application, such as live audio or

video filtering, would likely require this type of pipelined data processing.

Furthermore, it is proposed that instead of using the Execute Order ID, Execute Order

Count and Execute After fields to create loops, which would be time consuming for a user

to populate, the Next Row to Execute field could be used; it is speculated that this will

increase the IDE’s usability. In actual hardware or a timing accurate simulator the other

fields would still need to be populated. When an export feature for a timing accurate sim-

ulator is implemented, as discussed in Section 5.2.6, the compiler (parser) could populate

these fields based off of the Next Row to Execute field and the implied program flow of

the current IDE, discussed in Section 3.4. It is important to emphasize that these fields

are not being removed or replaced in the architecture, but simply automatically populated

based off of the Next Row to Execute field. Upon implementation of this functionality the

Execute Order ID, Execute Order Count and Execute After fields will become read-only to

minimize confusion in the user interface. By default the Next Row to Execute field will be

populated for the user with the next row in the layout grid following the current token. The

only time the user will need to modify this field is in the event they would like to step back

to a previous row for a loop.

73

5.2.2 Re-annotate IDs and Non-unique IDs

The ability to re-annotate the ID number on tokens, either on a case by case basis or for the

entire design is not presently implemented. The IDE currently assigns a unique ID to each

token at the time it is placed on the grid. Once an ID has been used it can never be used

again, even if the original token with that ID number has been deleted from the design.

This was done to allow undo functionality without creating duplicate ID numbers. It was

later decided during development of the IDE that it is desired to allow tokens to share ID

numbers and keep only their (X, Y) location as a unique identifier, unfortunately due to

time constraints this feature was not implemented. An ElementID field was added to the

property grid for AP tokens to show the concept, but no further development action was

taken. The current access functions for tokens rely on unique ID numbers, if non-unique ID

numbers were implemented, a major restructuring of both these functions and the way the

parser works would be necessary. Non-unique IDs is one way that would allow data to be

treated as a variable that can be manipulated cumulatively with an iterative loop by using

one value to initialize the loop and another during loop iterations. Currently, the IDE does

not support this style of data manipulation, but instead requires a piece of data be explicitly

passed from token to token with no option to take input data from multiple locations.

5.2.3 Token Quick View and Print

A token quick-view feature would allow the user to view data and simulation results for a

token without selecting the token and viewing the information from the property grid on

the right hand side of the IDE. This feature would allow the user to take screen captures

similar to the ones shown earlier in this document with call out boxes placed next to each

token. Additionally this feature would allow for faster debugging of a given design. Fur-

thermore, the addition of a Print option to the File menu allowing a design to be printed,

74

would eliminate the need for taking screen captures of the IDE and capture an entire de-

sign regardless of size. Options should be provided to the user about what to include with

the printed design such as call out boxes and simulation data similar to how layers can be

enabled and disabled in other computer aided drafting tools.

5.2.4 Data Structures (Data Element Arrays)

Data Elements exist in the current IDE as stand alone entities. The original design indicates

the intent to allow data elements to be grouped as arrays into a data structure which can

be passed at will back and forth from function instances. At the time of development

no detailed description was provided as to how this happens in the underlying hardware.

Future research should clearly define how a grouping of data elements into a data structure

is performed and how such an entity is referenced in the hardware as well as the IDE.

5.2.5 Additional Opcodes

Implementation of a floating point packing and unpacking opcode would be useful for per-

forming math operations on floating point numbers. Currently, to unpack or pack a floating

point number the IDE needs to perform several simple logic operations. These operations

result in an operand mismatch, requiring the user to type cast the floating point number

to a signed integer in order to properly view the pack or unpack operations. A more elo-

quent solution would be the addition of pack and unpack opcodes to the architecture. The

unpack opcode would need to account for the project bit size representation, and whether

the exponent, significand, or sign is desired to be returned as the result. The pack opcode

would require the exponent and significand, which could be provided as a signed integer

to account for the sign, to pack the floating point number. Furthermore the opcodes should

75

automatically convert the operand type from a floating point number to an integer and vice-

versa.

Implementation of a rotate by N places opcode would be useful for simple math opera-

tions where more than a single shift is required. Considering that the current shift opcodes

only require a single operand, the number to be shifted, the second operand could be used

to indicate the number of places to rotate or left blank for the standard single place bitwise

shift.

5.2.6 Partially implemented IDE Features

Export Features

In addition to the currently supported option to export to human readable code, other export

features will need to be supported by the IDE: namely the ability for a design to be exported

to a future timing accurate simulator and for a given data structure to be exported as a

delimited list of numbers. With these features, a user could program other simulators or

hardware and plot simulations results in a program such as Microsoft Excel or Matlab.

Figure 5.1 shows an example of the current human readable export for a portion of the

32-bit multiplier shown in Figure 4.7.

Copy, Cut, Paste, Select and Find

The current edit menu shows the standard copy, cut, paste, select and find features as dis-

abled. Currently, the user can only select one token at a time and only has the option to

view, move or delete a token. Future versions of the IDE should include the ability to cut

or copy and paste tokens, in addition to being able to select multiple tokens at a time when

using this functionality. A find feature that searches for a specific token in a large design

could also prove to be a useful feature.

76

����������	
����

���������������
����������

���������������������� ����
���������������������� ����
���������������������� ����
�� ��!
��!������������ ���
�� ��!
��!" ���!������ ����# �!��$�# �!��"�# �!��%�# �!��
��������� ������������ ��&���������� ��
'��� �(���� ���������� ���
'��� �(���� ��)(������ ��&�!��������������
'��� �(���� ��" ������ ��*	*�+
�
������ �(���� �������� ���
������ �(���� ��)(���� ���
������ �(���� ��" ���� ���
���� ����������������� ��$�'�&���������� ��
� !������������������� �������(���������� ����$��,�����������������$��,���

�� ��!
��!�'��� �(���� ���
-
��������*�

���������������������� ����
���������������������� ����
���������������������� ����
�� ��!
��!������������ ���
�� ��!
��!" ���!������ ����# �!��$�# �!��"�# �!��%�# �!��
��������� ������������ ��&���������� ��
'��� �(���� ���������� ���
'��� �(���� ��)(������ ��&�!��������������
'��� �(���� ��" ������ ��*�����
������ �(���� �������� ���
������ �(���� ��)(���� ���
������ �(���� ��" ���� ���
���� ����������������� ��$�'�&���������� ��
� !������������������� �������(���������� ����$��,�����������������$��,���

�� ��!
��!�'��� �(���� ���
-
��������������
��������'����!!���*�

���������������������� ����
���������������������� ����
���������������������� ����
�� ��!
��!������������ ���
�� ��!
��!" ���!������ ����# �!��$�# �!��"�# �!��%�# �!��
��������� ������������ ��&���������� ��
'��� �(���� ���������� �����
'��� �(���� ��)(������ ���
'��� �(���� ��" ������ ���
������ �(���� �������� ���
������ �(���� ��)(���� ��&�!��������������
������ �(���� ��" ���� ��*�
���� ����������������� ���$.�&���������� ��
� !������������������� �������(���������� ����$��,�����������������$��,���

�� ��!
��!�'��� �(���� ���
-

���������������
��������'����!!���
�

���������������������� ����
���������������������� ����
���������������������� ����
�� ��!
��!������������ ��*�
�� ��!
��!" ���!������ ����# �!��$�# �!��"�# �!��%�# �!��
��������� ������������ ��&���������� ��
'��� �(���� ���������� ���
'��� �(���� ��)(������ ��&�!��������������
'��� �(���� ��" ������ ����
������ �(���� �������� ���*�
������ �(���� ��)(���� ���
������ �(���� ��" ���� ���
���� ����������������� ���..'��%���
� !������������������� �������(���������� ����$��,�����������������$��,���

�� ��!
��!�'��� �(���� ���

' ���*

Figure 5.1: Export to Human Readable Code for the first four tokens of the 32-bit multiplier
shown in Figure 4.7.

77

Undo/Redo

The IDE supports the ability to undo or redo the deletion of a token, or the placement of a

new token. Future versions of the IDE should expand on this functionality so that actions

such as moving a token and manipulating the data within a token are also tracked and fully

reversible with the undo and redo menu options.

Concurrent/Sequential Arrays

Graphical support exists within the IDE for Sequential and Concurrent Arrays, but no

means is provided to the user to parse and simulate these types of tokens. Future ver-

sions of the IDE should allow for a user to create a concurrent or sequential array of tokens

intended for performing repetitive tasks without the need to place multiple tokens. Fur-

ther information about the planned functionality of concurrent and sequential arrays was

provided in Section 3.3.

Save on Close

Prompt the user if they would like to save the currently open projects before the IDE pro-

gram closes.

Line Numbers

The IDE tracks rows internally for simulation and token placement purposes. The display

of these row numbers in the GUI on or next to the breakpoint margin could assist the user

once loop functionality is added to the IDE using the Next Row To Execute field.

78

Fixed Point Numbers

Visual Basic does not natively support fixed-point numbers. In order to convert fixed-point

numbers between byte arrays and their native format, custom functions would need to be

written. While options for fixed-point numbers are presently included in the GUI portion

of the IDE, the underlying functionality is not implemented.

Hexadecimal Numbers

The IDE supports displaying an output value as a hexadecimal number, in addition to this

feature the IDE needs to support hexadecimal numbers as an input type to simplify creation

of bitwise masks for logic operations.

79

Chapter 6

Conclusion

This work has focused on the development of an IDE and zero-latency timing simulator for

the proposed architecture. The IDE has allowed for implementation of sample algorithms

on the fine-grained, massively parallel Pond architecture. It has been shown that floating

point operations, such as multiplication, can be performed on the architecture without the

use of dedicated floating point hardware. The concept of each processor performing a

single operation before passing a message to its neighbors has been shown to be feasible.

With this proof of concept, it can be speculated that further development of the combined

IDE and simulator will allow for exploration of more complex algorithms, an example

being the Fast Fourier Transform. Future research paths will need not only to focus on

algorithm development and use of real world timing delays, but also simulation of defective

processing cores, scalability of the architecture, and ultimately a hardware implementation

of the design.

80

Bibliography

[1] Adam Spirer. Pond: A robust, scalable, massively parallel computer architecture.
Master’s thesis, Rochester Institute of Technology, May 2010.

[2] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Amsterdam: Elsevier, 4 edition, 2007.

[3] D. Geer. Chip makers turn to multicore processors. Computer, 38(5):11–13, May
2005.

[4] David Yeh, Li-Shiuan Peh, Shekhar Borkar, John Darringer, Anant Agarwal, and
Wen-mei Hwu. Thousand-core chips [roundtable]. Design Test of Computers, IEEE,
25(3):272–278, May / June 2008.

[5] Markus Levy and Thomas M. Conte. Embedded multicore processors and systems.
Micro, IEEE, 29(3):7–9, May / June 2009.

[6] G. Blake, R.G. Dreslinski, and T. Mudge. A survey of multicore processors. Signal
Processing Magazine, IEEE, 26(6):26–37, November 2009.

[7] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza,
S. Meyers, E. Fang, and R. Kumar. An integrated quad-core opteron processor. In
Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE
International, pages 102–103, 2007.

[8] U.M. Nawathe, M. Hassan, L. Warriner, K. Yen, B. Upputuri, D. Greenhill, A. KuMar,
and H. Park. An 8-core 64-thread 64b power-efficient SPARC SoC. In Solid-State
Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE Interna-
tional, pages 108–590, 2007.

[9] M. Mehrara, T. Jablin, D. Upton, D. August, K. Hazelwood, and S. Mahlke. Multicore
compilation strategies and challenges. Signal Processing Magazine, IEEE, 26(6):55–
63, November 2009.

81

[10] M.D. McCool. Scalable programming models for massively multicore processors.
Proceedings of the IEEE, 96(5):816–831, May 2008.

[11] S. Gal-On and M. Levy. Measuring multicore performance. Computer, 41(11):99–
102, November 2008.

[12] James Donald and Margaret Martonosi. An efficient, practical parallelization method-
ology for multicore architecture simulation. Computer Architecture Letters, 5(2):14,
July / December 2006.

[13] S. KuMar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,
and A. Hemani. A network on chip architecture and design methodology. In VLSI,
2002. Proceedings. IEEE Computer Society Annual Symposium on, pages 105–112,
2002.

[14] Jiang Xu, W. Wolf, J. Henkel, and S. Chakradhar. A methodology for design, mod-
eling, and analysis of networks-on-chip. In Circuits and Systems, 2005. ISCAS 2005.
IEEE International Symposium on, pages 1778–1781 Vol. 2, 2005.

[15] L. Benini and D. Bertozzi. Network-on-chip architectures and design methods. Com-
puters and Digital Techniques, IEEE Proceedings on, 152(2):261–272, March 2005.

[16] M. Amde, T. FeliciJan, A. Efthymiou, D. Edwards, and L. Lavagno. Asyn-
chronous on-chip networks. Computers and Digital Techniques, IEEE Proceedings
on, 152(2):273–283, March 2005.

[17] K. Goossens, J. Dielissen, and A. Radulescu. AEthereal network on chip: concepts,
architectures, and implementations. Design Test of Computers, IEEE, 22(5):414–421,
September / October 2005.

[18] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture for gigascale
systems-on-chip. Circuits and Systems Magazine, IEEE, 4(2):18–31, 2004.

[19] G. Leary, K. Srinivasan, K. Mehta, and K.S. Chatha. Design of network-on-chip
architectures with a genetic algorithm-based technique. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 17(5):674–687, May 2009.

[20] M. Forsell. A scalable high-performance computing solution for networks on chips.
Micro, IEEE, 22(5):46–55, September / October 2002.

82

[21] D.A. llitzky, J.D. Hoffman, A. Chun, and B.P. Esparza. Architecture of the scalable
communications core’s network on chip. Micro, IEEE, 27(5):62–74, September /
October 2007.

[22] P.P. Pande, C. Grecu, A. IvaNov, R. Saleh, and G. De Micheli. Design, synthesis,
and test of networks on chips. Design Test of Computers, IEEE, 22(5):404–413,
September / October 2005.

[23] R. Saleh. An approach that will NoC your SoCs off! Design Test of Computers,
IEEE, 22(5):488, September / October 2005.

[24] H.C. Freitas, F.L. Madruga, M. Alves, and P. Navaux. Design of interleaved multi-
threading for network processors on chip. In Circuits and Systems, 2009. ISCAS 2009.
IEEE International Symposium on, pages 2213–2216, 2009.

[25] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of
network-on-chip. ACM Comput. Surv., 38(1):1, 2006.

[26] K. Nagami, K. Oguri, T. Shiozawa, H. Ito, and R. Konishi. Plastic Cell Architecture:
Towards Reconfigurable Computing for General-Purpose. In IEEE Symposium on
FPGAs for Custom Computing Machines, 1998. Proceedings, pages 68–77, 1998.

[27] R. Marculescu, U.Y. Ogras, Li-Shiuan Peh, N.E. Jerger, and Y. Hoskote. Outstanding
research problems in NoC design: System, microarchitecture, and circuit perspec-
tives. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 28(1):3–21, January 2009.

[28] Kuei-Chung Chang, Jih-Sheng Shen, and Tien-Fu Chen. Evaluation and design trade-
offs between circuit-switched and packet-switched NOCs for application-specific
SOCs. In Design Automation Conference, 2006 43rd ACM/IEEE, pages 143–148,
2006.

[29] Gaoming Du, Duoli Zhang, Yukun Song, Minglun Gao, Luofeng Geng, and Ning
Hou. Scalability study on mesh based network on chip. In Computational Intelligence
and Industrial Application, 2008. PACIIA ’08. Pacific-Asia Workshop on, volume 2,
pages 681–685, 2008.

[30] Huy-Nam Nguyen, Vu-Duc Ngo, and Hae-Wook Choi. Assessing routing behavior
on on-chip-network. In Computer Engineering and Systems, The 2006 International
Conference on, pages 62–65, 2006.

83

[31] Xinming Duan, Dakun Zhang, and Xuemei Sun. Routing schemes of an irregular
mesh-based NoC. In Networks Security, Wireless Communications and Trusted Com-
puting, 2009. NSWCTC ’09. International Conference on, volume 2, pages 572–575,
2009.

[32] ShiJun Lin, Li Su, Haibo Su, Depeng Jin, and Lieguang Zeng. Design trade-offs
in packetizing mechanism for network-on-chip. In Digital Society, 2009. ICDS ’09.
Third International Conference on, pages 316–321, 2009.

[33] J. Hu and R. Marculescu. Communication and task scheduling of application-
specific networks-on-chip. Computers and Digital Techniques, IEEE Proceedings
on, 152(5):643–651, 2005.

[34] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor. Concepts and imple-
mentation of spatial division multiplexing for guaranteed throughput in networks-on-
chip. Computers, IEEE Transactions on, 57(9):1182–1195, September 2008.

[35] A. Shacham, K. Bergman, and L.P. Carloni. Photonic networks-on-chip for future
generations of chip multiprocessors. Computers, IEEE Transactions on, 57(9):1246–
1260, September 2008.

[36] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta. Low-power,
high-speed transceivers for network-on-chip communication. Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, 17(1):12–21, January 2009.

[37] G. Schelle, J. Fifield, and D. Griinwald. A software defined radio application utilizing
modern FPGAs and NoC interconnects. In Field Programmable Logic and Applica-
tions, 2007. FPL 2007. International Conference on, pages 177–182, 2007.

[38] J. Chan and S. Parameswaran. NoCOUT: NoC topology generation with mixed
packet-switched and point-to-point networks. In Design Automation Conference,
2008. ASPDAC 2008. Asia and South Pacific, pages 265–270, 2008.

[39] V.F. Pavlidis and E.G. Friedman. Interconnect-based design methodologies for three-
dimensional integrated circuits. Proceedings of the IEEE, 97(1):123–140, January
2009.

[40] A. Mejia, M. Palesi, J. Flich, S. KuMar, P. Lopez, R. HolsMark, and J. Duato.
Region-based routing: A mechanism to support efficient routing algorithms in NoCs.

84

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 17(3):356–369,
March 2009.

[41] J.H. Bahn and N. Bagherzadeh. Design of simulation and analytical models for a 2d-
meshed asymmetric adaptive router. Computers Digital Techniques, IET, 2(1):63–73,
January 2008.

[42] M. Palesi, R. HolsMark, S. KuMar, and V. Catania. Application specific routing
algorithms for networks on chip. Parallel and Distributed Systems, IEEE Transactions
on, 20(3):316–330, March 2009.

[43] A. Ganguly, P.P. Pande, and B. Belzer. Crosstalk-aware channel coding schemes for
energy efficient and reliable NOC interconnects. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 17(11):1626–1639, November 2009.

[44] Xin Wang, Tapani Ahonen, and Jari Nurmi. Applying CDMA technique to network-
on-chip. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
15(10):1091–1100, October 2007.

[45] S. Murali, D. Atienza, P. Meloni, S. Carta, L. Benini, G. De Micheli, and L. Raffo.
Synthesis of predictable networks-on-chip-based interconnect architectures for chip
multiprocessors. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
15(8):869–880, August 2007.

[46] H.C. Freitas, T.G.S. Santos, and P.O.A. Navaux. Design of programmable NoC router
architecture on FPGA for multi-cluster NoCs. Electronics Letters, 44(16):969–971,
July 2008.

[47] N. Bagherzadeh and M. Matsuura. Performance impact of task-to-task communi-
cation protocol in network-on-chip. In Information Technology: New Generations,
2008. ITNG 2008. Fifth International Conference on, pages 1101–1106, 2008.

[48] F. Karim, A. Nguyen, and S. Dey. An interconnect architecture for networking sys-
tems on chips. Micro, IEEE, 22(5):36–45, September / October 2002.

[49] S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato. Efficient implementa-
tion of distributed routing algorithms for NoCs. Computers Digital Techniques, IET,
3(5):460–475, September 2009.

85

[50] S. Yan and B. Lin. Joint multicast routing and network design optimisation for
networks-on-chip. Computers Digital Techniques, IET, 3(5):443–459, September
2009.

[51] M. Daneshtalab, M. Ebrahimi, S. Mohammadi, and A. Afzali-Kusha. Low-distance
path-based multicast routing algorithm for network-on-chips. Computers Digital
Techniques, IET, 3(5):430–442, September 2009.

[52] M. Palesi, S. KuMar, and V. Catania. Bandwidth-aware routing algorithms for
networks-on-chip platforms. Computers Digital Techniques, IET, 3(5):413–429,
September 2009.

[53] Se-Joong Lee, Kangmin Lee, Seong-Jun Song, and Hoi-Jun Yoo. Packet-switched on-
chip interconnection network for system-on-chip applications. Circuits and Systems
II: Express Briefs, IEEE Transactions on, 52(6):308–312, June 2005.

[54] F. Jafari, M.S. Talebi, A. Khonsari, and M.H. Yaghmaee. A novel congestion control
scheme in network-on-chip based on best effort delay-sum optimization. In Parallel
Architectures, Algorithms, and Networks, 2008. I-SPAN 2008. International Sympo-
sium on, pages 191–196, 2008.

[55] J. Dongarra, T. Sterling, H. Simon, and E. Strohmaier. High-performance computing:
clusters, constellations, MPPs, and future directions. Computing in Science Engineer-
ing, 7(2):51–59, March / April 2005.

[56] J.M. Rabaey and S. Malik. Challenges and solutions for late- and post-silicon design.
Design Test of Computers, IEEE, 25(4):296–302, July / August 2008.

[57] Wen-mei Hwu, K. Keutzer, and T.G. Mattson. The concurrency challenge. Design
Test of Computers, IEEE, 25(4):312–320, July / August 2008.

[58] T. Austin, V. Bertacco, S. Mahlke, and Yu Cao. Reliable systems on unreliable fabrics.
Design Test of Computers, IEEE, 25(4):322–332, July / August 2008.

[59] Lei Zhang, Yinhe Han, Qiang Xu, Xiao wei Li, and Huawei Li. On topology reconfig-
uration for defect-tolerant NoC-based homogeneous manycore systems. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 17(9):1173–1186, Septem-
ber 2009.

86

[60] M. Lammie, P. Brenner, and D. Thain. Scheduling grid workloads on multicore clus-
ters to minimize energy and maximize performance. In Grid Computing, 2009 10th
IEEE/ACM International Conference on, pages 145–152, 2009.

[61] P. Chaparro, J. Gonzalez, G. Magklis, Cai Qiong, and A. Gonzalez. Understanding
the thermal implications of multi-core architectures. Parallel and Distributed Systems,
IEEE Transactions on, 18(8):1055–1065, August 2007.

[62] Jingcao Hu and R. Marculescu. Energy- and performance-aware mapping for regular
NoC architectures. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 24(4):551–562, April 2005.

[63] N. Banerjee, P. Vellanki, and K.S. Chatha. A power and performance model for
network-on-chip architectures. In Design, Automation and Test in Europe Conference
and Exhibition, 2004. Proceedings, volume 2, pages 1250–1255, 2004.

[64] A. Sarathy, A. Louri, and A.K. Kodi. Low-power low-area network-on-chip architec-
ture using adaptive electronic link buffers. Electronics Letters, 44(8):512–513, April
2008.

[65] Kangmin Lee, Se-Joong Lee, and Hoi-Jun Yoo. Low-power network-on-chip for
high-performance SoC design. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 14(2):148–160, February 2006.

[66] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Enabling
application-level performance guarantees in network-based systems on chip by apply-
ing dataflow analysis. Computers Digital Techniques, IET, 3(5):398–412, September
2009.

[67] T. Simunic, S.P. Boyd, and P. Glynn. Managing power consumption in networks on
chips. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 12(1):96–
107, January 2004.

[68] R. Iris Bahar, Dan Hammerstrom, Justin Harlow, William H. Joyner Jr., Clifford Lau,
Diana Marculescu, Alex Orailoglu, and Massoud Pedram. Architectures for silicon
nanoelectronics and beyond. Computer, 40(1):25–33, January 2007.

[69] Shuo Wang, Lei Wang, and F. Jain. Dynamic redundancy allocation for reliable and
high-performance nanocomputing. In Nanoscale Architectures, 2007. NANOSARCH
2007. IEEE International Symposium on, pages 1–6, 2007.

87

[70] F. Martorell and A. Rubio. Defect and fault tolerant cell architecture for feasible nano-
electronic designs. In Design and Test of Integrated Systems in Nanoscale Technology,
2006. DTIS 2006. International Conference on, pages 244–249, 2006.

[71] N.Z. Haron and S. Hamdioui. Emerging crossbar-based hybrid nanoarchitectures for
future computing systems. In Signals, Circuits and Systems, 2008. SCS 2008. 2nd
International Conference on, pages 1–6, 2008.

[72] Shuo Wang and Lei Wang. A defect-tolerant memory nanoarchitecture exploiting
hybrid redundancy. In Nanotechnology, 2008. NANO ’08. 8th IEEE Conference on,
pages 707–710, 2008.

[73] Shanrui Zhang, Minsu Choi, and Nohpill Park. Defect characterization and yield anal-
ysis of array-based nanoarchitecture. In Nanotechnology, 2004. 4th IEEE Conference
on, pages 50–52, 2004.

[74] Trong Tu Bui and T. Shibata. A scalable architecture of associative processors em-
ploying nano functional devices. In Ultimate Integration of Silicon, 2009. ULIS 2009.
10th International Conference on, pages 213–216, 2009.

[75] Shanrui Zhang, Minsu Choi, and N. Park. Modeling yield of carbon-nanotube/silicon-
nanowire FET-based nanoarray architecture with h-hot addressing scheme. In Defect
and Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings. 19th IEEE In-
ternational Symposium on, pages 356–364, 2004.

[76] J.A. Casas, J.M. Moreno, J. Madrenas, and J. Cabestany. A novel hardware architec-
ture for self-adaptive systems. In Adaptive Hardware and Systems, 2007. AHS 2007.
Second NASA/ESA Conference on, pages 592–599, 2007.

[77] Ian Foster. Designing and Building Parallel Programs. Addison Wesley, 1995. Avail-
able Online: http://www.mcs.anl.gov/˜itf/dbpp/.

[78] Open MP: The OpenMP API Specification for Parallel Programming, June 2010.
http://openmp.org/wp/.

[79] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Con-
cepts. Wiley, 7 edition, 2005.

[80] John Paul Shen and Mikko H. Lipasti. Modern Processor Design: Fundamentals of
Superscalar Processors. McGraw-Hill Professional, 2005.

88

[81] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architecture: A Hard-
ware / Software Approach. Morgan Kaufmann, San Francisco, 1999.

[82] IEEE Task P754. IEEE 754-2008, Standard for Binary Floating-Point Arithmetic.
IEEE, New York, NY, USA, August 2008.

[83] Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford,
New York, 2000.

89

Appendix A

IDE User Guide

A.1 Menus

A.1.1 File Menu

New

Opens a new tab and creates a new blank project within the tab.

Open

Opens a file chooser window for the user to select a previously saved *.pnd file. Once a

valid file is selected, it is opened in a new tab for the user to edit or simulate. Files saved

with the export to human readable format (*.prd) cannot be opened in the IDE.

Save, Save As, Save All

Opens a file browser window for the user to select a filename for a previously unsaved file

or when the Save As option is selected. Saves the file in a *.pnd binary file, with the new or

existing file name. Save All is not implemented in this version of the IDE.

90

Export

Exports a project to another format. Currently, only Human Readable format is available,

Comm Sim is to be implemented in a later version of the IDE.

Close, Close All

Closes the selected tab or in the case of Close All, closes all open tabs. The user is prompted

if they would like to save the project before each tab is closed.

Exit

Exits the program. At this time, the user is not prompted about saving the currently open

projects; any unsaved work will be lost.

A.1.2 Edit Menu

Undo, Redo

Allows the user to undo or redo a previous operation. Currently, placement of new tokens

and deletion of existing tokens are undo / redo compatible operations. Other operations

such as moving a token and editing the information within a token’s property grid will be

implemented in future versions of the IDE.

Cut, Copy, Paste

Cut, Copy or Paste the selected tokens. Currently, this functionality is not implemented in

the IDE.

91

Select All, Find

Select all tokens or Find a specific token based on location or ID. Currently, this function-

ality is not implemented in the IDE.

Delete

Delete the currently selected token. Any lines previously attached to the deleted token will

become red stubs, indicating a disruption in data flow. The ID’s of deleted tokens are not

reused within the project. The delete operation is tracked and can be undone.

Design Width and Design Height

Opens a prompt for the user to enter a new width or height for the project, the new value

must be an integer number representing the desired number of grid spaces. The layout grid

can be made larger or smaller with these options, but it is not possible to make the design

smaller then the currently placed tokens, thus preventing tokens from falling off of the grid.

A.1.3 View Menu

Zoom In, Zoom Out

The IDE supports two zoom levels, a close up view with numbered tokens and a zoomed

out view with small unnumbered tokens. The two modes can be toggled with the Zoom In

and Zoom Out menu options, which automatically enable or disable based on which view

is currently provided.

Background Color

The IDE provides the option of a black background with a white grid or a white background

with a black grid. The black background is intended for use when laying out a design and

92

the white background is useful for screen captures.

Project Properties

The project properties dialog is opened when this menu item is selected. Once within

the project properties dialog, options are provided to change the number of input tokens

displayed for the project, edit the function name, which can be different then the file name,

and to edit the function description. Additionally the bit size representation of the project

can be changed from the project properties dialog; options are provided for 16, 32 or 64 bit

wide operands. An example project properties dialog is shown in Figure A.1.

Figure A.1: Example Project Properties Dialog from the 32-bit floating point number pack-
ing function.

93

A.1.4 Tools Menu

Simulate

Parses the project on the currently selected tab and displays an error and warning list to the

user, as shown in Figure A.2. If no errors were found in the project then a simulation is

started and run until a breakpoint or the end of the project is encountered. By selecting this

option the project is put into simulation mode, which allows simulation data to be displayed

for each token when selected.

Simulate Step

If the project is not yet in simulation mode then the project is parsed and the standard

error/warning list is provided to the user. If no errors are found the project is simulated as

normal until a breakpoint or the end of the project is encountered. If a simulator is already

active, but paused at a breakpoint, the project is stepped forward one step (row) at a time

each time this option is selected. A yellow highlight bar indicates the current row that the

simulator is paused on. An example of this is shown in Figure A.8

A.1.5 Help

Pond Help

The current version of the IDE does not open a help file when this option is selected. This

Appendix is the usage and help manual for the user.

About...

Displays an About this Program box to the user.

94

Figure A.2: Sample Error and Warning list from 32-bit floating point packing operation.

95

A.2 Left Hand Tool Bar

The left hand side tool bar is composed of seven buttons, five of which allow the user to

place tokens on the layout grid and two to indicate the IDE’s mode. These buttons are

shown in Figure A.3. The AP button allows the user to place a single atomic processor on

to the layout grid; each atomic processor is capable of a single operation. Tokens placed

horizontally adjacent to each other, more simply referred to as in the same row, execute

concurrently during simulation. The CA and SA buttons allow for the placement of con-

current and sequential arrays; neither of these tokens have simulation functionality in the

current IDE. The DE token allows for placement of data elements and the Fn button allows

for placement of function call tokens.

The additional two buttons on the left hand side tool bar allow for toggling between

design mode, indicated by the DM button, and simulation mode, indicated by the SM

button. While in design mode, the user is free to place tokens on the layout grid, move

tokens around, delete tokens and manipulate the properties defined for each token. Once in

simulation mode, the project is placed into a read-only state which allows the user to see

the properties and result values for each token, but not edit the layout grid. The left hand

side tool bar also provides the grid location of the selected token, as well as the project bit

size representation, as displayed by the two labels on the mid and lower left respectively.

A) B) C) D) E) F) G)

Figure A.3: Toolbar Buttons: A) Atomic Processor, B) Concurrent Array, C) Sequential
Array, D) Data Element, E) Function Call, F) Design Mode, G) Simulation Mode.

96

A.3 Project Files

When a project is created with the IDE it is saved to as *.pnd file. It is recommended

for easy use of the function call ability of the simulator, to place all project files in the

folder “PondEnv” on your C drive. This is important due to the way the file paths are

stored when a function call token is used. Failure to follow this suggestion may result in

an inability to open project files on another workstation. Relative paths within the IDE are

properly supported in Windows 7, but are incorrect in Windows XP SP3. Use of the above

suggestion will circumvent any of these issues within the IDE.

A.4 The Property Grid

The property grid allows for manipulation of all properties associated with a token other

than: location on the layout grid and the unique ID number assigned to a token upon its

creation. To open the property grid, left click on any token on the layout grid. An example

of the property grid is shown in Figure A.4. In the lower portion of the property grid a

description is provided for the currently selected field. During the use of a function call

token the function description and input descriptions are displayed in this location when

the appropriate fields are selected.

Within the property grid, drop down fields may be populated by selecting the appropri-

ate value with the mouse cursor or typing the first letter of the desired value; if multiple

values exist with the same first letter, repeatedly pressing the first letter of the desired value

will toggle through all possible choices. Clicking the hide button in the upper right hand

corner of the window will minimize the property grid. When viewing the property grid

for a newly created token, several of the properties are populated with default values to

minimize the number of fields the user is required to fill out.

97

The standard properties defined for a token are broken down based on type within the

property grid. Five categories exist: Broadcast, Execute Order, Execution, Operands and

Status Bits. Currently, the fields defined within the Broadcast and Execute Order cate-

gories have no implementation with the simulator portion of the IDE; their purposes have

been discussed in Chapter 2 and some of them are used for the export to Human Readable

feature.

The Execution category contains three fields. Settings for Conditional Execution and

Conditional Operation are described in Section A.6. The Operation Code field sets the

operation that the processor is to perform. A description of each of the possible instructions

is available in Table 2.2.

Moreover, the Operands category contains seven fields. The first field, Element ID, has

been added for demonstration purposes only and does not have any function in the IDE. The

other fields allow the user to define inputs for the given token. The words First and Second

have been omitted in the following labels, as their purpose only serves to differentiate

between the two inputs. If it is desired to have an input take the value of another processor’s

output, the *OpSource field can be used by entering the unique ID number shown on the

face of the source processor. If using an input token as the source the number must be

preceded by an “i”. If the source value type is as desired the *OpType field may be left

blank, otherwise it may be set to the desired type; this does not affect the actual data in

any way, but simply changes the format it is displayed in within the results table during

simulation. Furthermore, if the user would like to use a predefined value for an input to the

token, the *OpType and *OpValue fields must be populated with the desired type and value

for the input. The *OpSource field should be left blank in this case, otherwise it will take

precedence.

Finally, the Status Bits category shows the predefined values for each of the status bits

98

and the StatusBitsSource to override them with if desired. The StatusBitsSource field be-

haves in a similar manner to the FirstOpSource and SecondOpSource fields, where the

unique ID shown on the face of the desired source processor is used as the value. The Sta-

tusBitsSource field should always be used to indicate the status bits used for a conditional

execution or operation, otherwise the condition will always execute the same way based off

of the predefined values.

A.5 Tokens on the Layout Grid

Tokens are placed on the layout grid by selecting the appropriate button from the left hand

side tool bar. Once tokens have been placed on the layout grid, they are assigned a unique

ID number, which can not be changed or reused during the life of the project. If the user

desires to move a token to a different location, they can right click the token and it will

unsnap from the layout grid and on to the mouse cursor. Once the token is dragged to the

desired new location, a single right or left click will snap the token back down to the grid.

To delete a token, select it by left clicking on it and then select the Delete option from the

Edit menu.

Resizing the layout grid can be done with the Design Height and Design Width options

provided under the Edit menu. By default a design is twenty grid spaces wide and twenty

grid spaces high. These sizes can be altered at anytime while in design mode, but the design

may not be made smaller than the extents of the already placed tokens.

Lines are drawn on the layout grid to connect two tokens that pass information between

each other. Lines are automatically generated when the operand source or status bits source

fields are populated in the property grid for a token. When a token is moved on the layout

grid, the lines will automatically update their positions based on the new token location.

Furthermore, the lines for the currently selected token become highlighted and slightly

99

Figure A.4: IDE Property Grid

100

shifted to the left or right, this is for easier viewing when several lines are drawn on the grid.

When deleting a token, if a receiving token is deleted the respective lines are deleted with

the token. If a source token is deleted, then the lines on the receiving tokens become red

stubs to indicate the interrupted data flow. Figure A.5 provides examples of highlighting

and the red stub remaining when a source token is deleted.

A) B)

Figure A.5: A) The lines coming into AP1 are highlighted for easier reading, the line
exiting AP1 is in its normal unhighlighted state. B) The source token for AP2 has been
deleted, a red stub remains.

A.6 Conditional Tokens

Conditional tokens are created in the IDE by setting either the ConditionalExecution or

ConditionalOperation fields in the property grid for a token. The difference between each

is the way a token passes messages during simulation. A conditional execution that fails to

101

meet its condition will not pass a message, which blocks all tokens connected to it further

down the layout grid from executing. A conditional operation that fails to meet its condition

will pass its primary operand, unaltered, to the tokens connected to it further down the grid;

this allows for the proceeding tokens to still execute.

When a token is set to be conditional its color on the layout grid changes to yellow

and in the zoomed in mode a conditional symbol appears on the face of the token. During

simulation a conditional token will change color based on if its condition is met. When a

token’s condition is met the color changes to green, conversely the token changes to red

when the condition is not met. Figure A.6 shows an example of two atomic processors

which have conditions associated with them.

Conditional execution or operation tokens base their condition on the value of one of the

four status bits defined for the processor. Status bits are provided for: Carry (C), Negative

(N), Overflow (V) and Zero (Z). Conditions can check for a value of 0 or 1 for each of these.

When a status bit source is provided to the processor, the received status bits are checked

for the condition, otherwise the status bits predefined within the processor are used.

A) B)

Figure A.6: Conditional Tokens A)Before Simulation tokens are yellow, B)During Simu-
lation tokens change green or red based on if the condition is met.

102

A.7 Breakpoints

Breakpoints are indicated in the IDE by a red dot shown in the left hand margin. A break-

point is set or unset by the user by simply clicking in the gray margin for the row they

would like to toggle the breakpoint on. Figure A.7 shows an example of a project stopped

at a breakpoint during simulation. A yellow bar highlights the row that the simulator has

stopped on. It can be seen that conditional token AP2 has not yet changed color based on

its execution. Additionally, simulation results are not available for the row highlighted in

yellow or any of the rows bellow the highlighted row. Figure A.8 shows the same simu-

lation after it has been stepped forward by one step using the Simulate Step option under

the Tools menu. It can now be seen that AP2 has turned red, indicating its condition for

execution has not been met.

A.8 Function Calls

Function call tokens have special fields defined within the property grid which are dynam-

ically updated based on the function being called. When a user creates a function call

token, the first property that needs to be defined is the FuncFileName. Once the user has

browsed to the appropriate file in the “C:/PondEnv” folder, the property grid will update to

reflect the requirements of the specified function. Figure A.9 shows an example function

call property grid. In this case the called function has three inputs, which were displayed

after the file name field was populated. Each of the inputs shows a unique description in

the help bar based on what was defined within the input tokens of the function definition.

Function calls may have a maximum of ten inputs in the current IDE.

103

Figure A.7: Example of the 32-bit Left Shift Multiplier stopped at a breakpoint.

104

Figure A.8: Example of the 32-bit Left Shift Multiplier stepped one step forward after a
breakpoint.

105

Figure A.9: Example function call property grid for the Floating Point pack operation
called in the floating point multiplication program.

106

Appendix B

IDE Development Guide

The IDE was developed using Microsoft Visual Basic 2008, Version 9.0.21022.8 RTM,

with Microsoft .NET Framework Version 3.5 SP1. Development was performed under

Microsoft Windows XP SP3 and Microsoft Windows 7.

Each of the Visual Basic classes are described in detail in Chapter 5. Additionally,

recommended improvements to the IDE are covered in Section 5.2. Further information

regarding development and inner workings of the IDE can be found in the comments pro-

vided within each visual basic class for the project. These comments include a function

header for each sub or function defined within the classes. Each function header comment

provides a short description of what the function does, along with descriptions of each input

argument and return.

	Pond IDE: Machine level program development environment and register transfer level simulator for a massively parallel computer architecture
	Recommended Citation

	Dedication
	Acknowledgments
	Abstract
	Background and Motivation
	Architecture Organization
	Architecture Overview
	Instruction Set
	Communications
	Entity Movement
	Input/Output
	Entity Abutment
	Instruction Execution
	Function Calls
	Loops

	Programming Environment and Simulation Model
	Integrated Development Environment GUI
	Model of a Processor
	Specialty Tokens
	Simulator Basics
	Creating a Function Definition

	Experimental Results
	Sequential Code Example - Fibonacci Series
	Concurrent Code Example - Vector Addition
	Integer Multiplication using the Left-Shift Algorithm
	Floating Point Packing and Unpacking
	IEEE Floating Point Standard
	Unpacking the Sign
	Unpacking the Exponent
	Unpacking the Significand or Mantissa
	Packing Floating Point Numbers

	Floating Point Multiplication
	24-bit Fixed-Point Multiplier
	Function Calls to Perform Floating Point Multiplication

	Integer Division

	IDE Development and Programming
	Program Structure
	GUI Related Classes
	Data Related Classes
	Simulator Related Classes

	Future Development of the IDE
	Loops
	Re-annotate IDs and Non-unique IDs
	Token Quick View and Print
	Data Structures (Data Element Arrays)
	Additional Opcodes
	Partially implemented IDE Features

	Conclusion
	Bibliography
	IDE User Guide
	Menus
	File Menu
	Edit Menu
	View Menu
	Tools Menu
	Help

	Left Hand Tool Bar
	Project Files
	The Property Grid
	Tokens on the Layout Grid
	Conditional Tokens
	Breakpoints
	Function Calls

	IDE Development Guide

