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Abstract 
 
 
 It was the primary goal (and result) of the presented work to empirically 
demonstrate CMOS operation (i.e., inverter transfer characteristics) using 
metallic/Schottky source/drain MOSFETs (SFETs – Schottky Field Effect Transistors) 
fabricated on silicon-on-insulator (SOI) substrates – a first-ever in the history of SFET 
research.  Due to its candidacy for present and future CMOS technology, many different 
research groups have explored different SFET architectures in an effort to maximize 
performance.  In the presented work, an architecture known as a “bulk switching” SFET 
was fabricated using an implant-to-silicide (ITS) technique, which facilitates a high 
degree of Schottky barrier lowering and therefore an increase in current injection with 
minimal process complexity.  The different switching mechanism realized with this 
technique also reduces the ambipolar leakage current that has so often plagued SFETs of 
more conventional design.  In addition, these devices have been utilized in a patent 
pending approach that may facilitate an increase in circuit density for devices of a given 
size.  In other words, for example, it may be possible to achieve circuit density equivalent 
to 65 nm technology using a 90 nm process, while at the same time preserving or 
reducing local interconnect density for enhanced overall system speed.  Fabrication 
details and electrical results will be discussed, as well as some initial modeling efforts 
toward gaining insight into the details of current injection at the metal-semiconductor (M-
S) interface.  The challenges faced using the ITS approach at aggressive scales will be 
discussed, as will the potential advantages and disadvantages of other approaches to 
SFET technology. 
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Chapter 1 
 

Introduction: Moore’s Self-Fulfilling Prophecy 

 

1.1. Introduction 

 In 1965, Intel co-founder Gordon Moore made the observation-based prediction 

that the transistor count on a microchip will double approximately every two years.  Over 

the course of time, his prediction proved accurate, and was since known as “Moore’s 

Law.”  One might argue, though, that the observation that led to this prediction was from 

a time when microchip technology was very young, and so the increase in microchip 

performance was largely for the purpose of advancing the technology in said arena.  The 

formal adoption of Moore’s Law by the semiconductor industry as a marketing tool, 

however, transformed this “prediction” of the rate of technology advancement into an 

obligation to the customer, who relied (and continues to rely) on the trend of Moore’s 

Law for his or her own business and business models.  It would not be unreasonable, 

then, to suggest that Moore’s Law, in modern times, would most appropriately be 

referred to as Moore’s Obligation, or even more fitting, Moore’s Self-Fulfilling 

Prophecy.   

 Regardless of the mechanisms or “reasons” behind the exponential increase in 

computing power as a function of time, it nevertheless remains that this trend exists, 

almost entirely as its own entity with little if any need for encouragement.  This trend has 

driven and continues to drive scientists and engineers from many disciplines to elevate 

microchip technology to unprecedented levels, only to end up doing it all over again the 

next year.  As a result of this, the microelectronics community continually expresses 

 1



concern about the threat of painting themselves into a corner, most usually with regard to 

image processing capability and the physical limitations of semiconductor devices (and 

interconnects) on what is approaching the infinitesimal scale.   

As a result, while it is the responsibility of the image processing engineer to 

effectively take ever smaller pictures, the device engineer carries the responsibility of 

developing an ever superior switch.  It is the latter that is the focus of the thesis presented 

to the reader, but it should be noted that neither of these two challenges is trivial by any 

stretch of the imagination.  It is the intent of the presented thesis, however, to show that 

complex challenges can be met with elegant solutions. 

 

1.2. Limitations of Conventional CMOS 

It should be noted that this section is not intended to discuss conventional CMOS 

technology in depth, but rather to provide fundamental insight into some of the more 

“visible” or prevalent challenges of CMOS scaling.  That said, on its most simplistic 

level, switching requires but one thing – energy barrier modulation.   

Conventional MOSFETs (or more appropriately, IGFETs – Insulated Gate Field 

Effect Transistors) achieve switching by modulating what is called a thermal barrier.  A 

simplistic example of this is a “brick wall” for electrons or holes, and modulating the 

thermal barrier modulates the height of this brick wall.  The lower the height, the easier it 

is for carriers of a given energy to jump over this figurative wall.  As this is a thermal 

barrier, if one increases the temperature of the system, more carriers end up existing at a 

higher energy, and so for a given barrier height, more current flows. 

 2



The source/drain regions and the body region of a conventional MOSFET are 

oppositely doped (i.e., n-type and p-type, respectively, or vice versa), and as a result, a 

built-in potential barrier occurs at the source-body and drain-body junctions.  This built-

in potential is the off state thermal barrier to inversion carriers.  Ideally, with a grounded 

gate, modulating the drain-to-source bias (VDS) results in a very low level of current that 

experiences little if any change.  Modulating the gate-to-source bias (VGS), however, 

modulates the built-in potential, thus modulating the thermal barrier height, thus 

modulating current flow for a given VDS.  This “ideal” behavior is called long channel 

behavior, and the primary challenge in device scaling is maintaining long channel 

behavior at very aggressive scales. 

 For a given device structure (i.e., gate oxide thickness, body doping level, 

source/drain doping level, source/drain junction depth, etc.), there exists some depletion 

region width that extends from the source/drain regions into the body region.  As the 

channel length is decreased for the same exact structure, said depletion regions constitute 

an increasing portion of the body region, and so the quasineutral region available for gate 

modulation is decreased.  This effect is known as “charge sharing” [1], and is illustrated 

in Fig. 1.1, where xdmax is the maximum gate-induced depletion width, xj is the 

source/drain junction depth, xdj is the source/drain depletion region, L is the channel 

length at the surface, and L1 is the channel length at xdmax.     As a result of charge sharing, 

gate control over the thermal barrier (and thus current flow through the transistor) 

becomes gradually replaced by drain control.  This is known as the short channel effect 

(SCE), which manifests itself in the form of drain-induced barrier lowering (DIBL), and 

 3



in the most extreme case, punchthrough.  DIBL is illustrated in Fig. 1.2, where Lshort and 

Llong are short and long channel lengths, respectively.   

 

 

 

 

 

 

 

Fig. 1.1.  Illustration of charge sharing in a conventional MOSFET, adapted from [1]. 

 

 

 

 

 

 

 

 

 

Fig. 1.2.  Conduction band of a long and short channel MOSFET, adapted from [1].  For 
short channel MOSFETs, DIBL reduces the off state thermal barrier at the source. 

 
 

There are a number of methods one can employ to reduce SCE in aggressively 

scaled MOSFETs, the most notable of which are to decrease the effective gate oxide 
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thickness (EOT), decrease the source/drain junction depth, and increase the dopant 

concentration in the body region.  Each approach has its own advantages and poses its 

own challenges. 

The effect of decreasing EOT is that the gate capacitance increases.  As such, for 

an incremental change in applied gate bias, the incremental change in charge at the 

semiconductor-oxide interface (and thus the incremental change in surface potential) 

increases.  This is most simply understood by the relationship between charge, 

capacitance, and voltage: Q = C*V.  For MOSFETs at sub-100 nm scales, EOT must be 

very small, on the order of 10 Å or lower, and the transistors are operated at about 1 V.  

For conventional SiO2, the consequent electric field across the gate dielectric becomes 

large enough such that direct tunneling leakage (through a rectangular barrier) turns into 

Fowler-Nordheim (F-N) tunneling (through a triangular barrier) through the dielectric, 

thus adding a gate leakage current component to the total device leakage current.  One 

possible solution here is to utilize gate dielectrics with a high dielectric constant (a.k.a. 

high-k), for which thicker films can be used to achieve the same gate capacitance.  

However, high-k gate dielectrics pose two challenges – interface charge (they are 

deposited rather than grown) and process temperature compatibility.   

Another solution for decreasing EOT is to employ metallic gates rather than 

polysilicon gates.  As a bias is applied to a polysilicon gate, depletion occurs at the oxide-

polysilicon interface (known as poly depletion).  This depleted polysilicon effectively 

places a capacitor in series with the capacitance offered by the gate dielectric, thus 

decreasing the total gate capacitance, which increases EOT.  By utilizing a metallic gate, 
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poly depletion is eliminated (depletion regions do not exist in metals), and so the only 

component of EOT is that offered by the gate dielectric. 

Decreasing the source/drain junction depth effectively reduces charge sharing.  

While Fig. 1.1 illustrates charge sharing as an overlap of depletion regions, another way 

to look at it is to envision some distribution of ionized dopant atoms about the perimeter 

of the source/drain junctions and some charge distribution of the same polarity at the 

gate, as Fig. 1.3 shows.  Each charged particle “controls” one particle of 

depletion/inversion charge, and so as the source/drain junction depth increases, the 

charge controlled by the source/drain regions increases.  This results in a more 

trapezoidal-like region in the body where gate control exists, which increases sub-surface 

leakage.   

 

 

 

 

 

 

 

Fig. 1.3.  Illustration of charge sharing from the perspective of charge distribution, 
adapted from [2].  Dotted lines represent the edges of the depletion regions. 

 

In order to decrease the source/drain junction depths, lower energy ion 

implantation, other implantation techniques (such as plasma implant, pre-amorphization 

implants, or angled implants to minimize channeling), and rapid thermal annealing (a.k.a. 
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spike annealing) are usually employed.  For aggressively scaled MOSFETs, however, 

achieving shallow junctions with high junction abruptness and low defect-induced 

leakage is very challenging. 

 Increasing the dopant concentration in the body region serves to reduce 

source/drain depletion region propagation into the body, thus reducing charge sharing and 

therefore leakage.  This comes at a cost, however, as higher dopant concentrations 

increase coulombic scattering, consequently decreasing channel mobility and hence drive 

current.  Also, higher dopant concentrations in the body region results in a larger 

threshold voltage, thus decreasing drive current at a given gate and drain bias.  This can 

be engineered around, to some extent, by utilizing a combination of halo/pocket implants 

and LDD/SDE (lightly doped drain / source/drain extension) regions.   

The halo/pocket implants are of the same dopant type as the body region, but of a 

higher concentration, the goal of which being to confine the source/drain depletion region 

within the halo/pocket regions.  In doing so, the lighter doped portion of the body region 

remains quasineutral, and thus under greater gate control, with the added effect of 

increased channel mobility (better drive current); however the drawback here is a larger 

threshold voltage due to the higher doped halo/pocket regions.  This is where the SDE 

comes in.  The use of a SDE ultimately results in a “two stage” source/drain region.  The 

first “stage” is of a relatively low doping (i.e., lower doped than the second stage) with a 

shallow junction depth, which allows for a somewhat lower halo/pocket dopant 

concentration.  This is the SDE, and it usually interfaces directly with the halo/pocket 

region.  The lower SDE doping decreases the source/drain depletion region propagation 

into the body region near the surface, thus increasing gate control over inversion charge.  
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An additional virtue of the SDE region is a reduction in the lateral electric field near the 

drain, which reduces impact ionization and hot carrier injection into the gate dielectric, as 

well as gate-induced drain leakage (GIDL – band-to-band tunneling from the drain to the 

body region induced by gate-to-drain coupling). 

The second “stage” of the source/drain region has a high dopant concentration to 

minimize contact resistance to the metal or metal silicide it comes into contact with, and 

is recessed behind the SDE region.  The degree of recess is controlled by the width of the 

sidewall spacers surrounding the gate.  This recess of the second “stage” increases the 

effective sub-surface channel length, thus reducing sub-surface leakage.  The device 

structure of this modern conventional MOSFET is illustrated in Fig. 1.4.   

 

 

 

 

 

 

 

 

Fig. 1.4.  Illustration of a modern MOSFET.  The placement of the halo region is non-
specific – it can overlap the SDE or lie below it, depending on the preference of the 

device engineer. 
 

A particular challenge imposed with the introduction of the SDE region is that of 

series resistance.  With a lower dopant concentration than the recessed source/drain 

region, the series resistance through the SDE region is larger, thus reducing drive current.  
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In addition, due to the higher source/drain series resistance, VGC (gate-to-channel voltage, 

which is different from the gate-to-source voltage, VGS) decreases, thus decreasing the 

level of inversion charge at a given gate bias, thus decreasing drive current.  This can be 

mitigated by reducing the length of the SDE region, which is done by reducing the size of 

the sidewall spacers.  However, this requires caution, as lateral diffusion of the metal 

silicide used as a source/drain contact can short through the SDE region to the body 

region, thus increasing leakage. 

In considering design criteria of the modern conventional MOSFET, it becomes 

clear that the engineer is left with many variables to tweak in order to achieve optimal 

performance.  One might argue that the complication involved in engineering sub-100 nm 

conventional MOSFETs is unnecessary, and that perhaps there exists a more elegant 

solution.  One possible solution is the Schottky Field Effect Transistor, or SFET. 

 

1.3. SFETs as a Solution 

Whereas the conventional MOSFET uses source/drain regions made of silicon, 

the SFET uses source/drain regions made of metal or metal silicide (preferably the latter, 

as will be shown in subsequent chapters).  Instead of forming a conventional thermal 

barrier at the source-body and drain-body junctions, then, a Schottky barrier is formed, 

which is a combination of a thermal barrier and a quantum mechanical tunneling barrier.  

The SFET was first proposed and demonstrated by Lepselter and Sze in 1968 [3] as a p-

channel device with PtSi source/drain regions to an n-type body region.  The inversion 

carrier (hole) Schottky barrier height was measured to be ~ 0.25 eV (determined from a 

current-voltage measurement of a Schottky diode using PtSi to p-type silicon), which 
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implies an electron barrier height of ~ 0.85 eV.  The drive current at low temperatures 

(77 K) was thought to be due to hole tunneling through the source-body junction, and 

throughout the history of the SFET, it has been thought that tunneling current is a 

dominant current mechanism under strong inversion; however, it will be shown in 

Chapter 4 that the inclusion of Schottky barrier lowering into the device model suggests 

that thermal current is the dominant current mechanism for low Schottky barrier heights. 

Regardless, the first order advantage of the SFET is the simpler fabrication 

required to achieve the device structure.  For SFETs of the simplest, most conventional 

design, the only implant performed is that which determines the dopant concentration of 

the body region – recall that the source/drain regions are metallic.  Potentially, there 

exists no need for halo/pocket and SDE implants.  Thus, thermal processing is much 

simplified, and on the surface at least, it is perceived to be much simpler to engineer this 

device to an optimal level of performance than a conventional MOSFET. 

Since the source/drain regions in an SFET are metallic, as opposed to doped 

silicon, the series resistance of SFET source/drain regions is very low, which should 

increase drive current and gate control over inversion charge if the Schottky barrier is 

small enough – the Schottky barrier results in a contact resistance to the body region 

which effectively replaces the SDE series resistance.  In addition to this potential 

advantage, the metallic source/drain regions form a highly abrupt junction to the body 

region.  This reduces depletion of the net dopant concentration in the body region near 

the source/drain regions (which is normally a gradient in conventional MOSFETs), which 

reduces source/drain depletion region propagation through the body, which improves 

SCE immunity.  The basic structure of an SFET is shown in Fig. 1.5.   
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Fig. 1.5.  Illustration of a basic SFET structure, with silicide source/drain regions. 

 
 Chapter 2 discusses the basic theory behind metal-semiconductor junctions.  In 

Chapter 3, this metal-semiconductor junction theory is expanded in the application to 

SFETs, whose theory of operation is explored in more detail.  Preliminary work at 

mathematical modeling for SFETs is discussed in Chapter 4, where the focus of the 

model is to gain insight into the device behavior (with a focus on current transport 

mechanisms) and to try and quantify design spaces for various design parameters.  In 

Chapter 5, additional attention is given to studying a form of SFET called a bulk-

switching SFET.  Numerical modeling using SRIM, TRIM, and Silvaco Athena are used 

to study the structure of the bulk switching SFET and some of the design tricks that can 

be employed with such a device.  Chapter 6 discusses the main points of the device and 

circuit design implemented for this thesis, as well as the principal advantages that this 

particular implementation of SFET technology provides for integrated circuit designers 

and manufacturers (e.g., Fig. 1.6).   
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Fig. 1.6.  Projected circuit density potential of single metal Schottky CMOS 
technology, compared to Intel’s conventional bulk CMOS with respect to SRAM cell 

area. 
 

Chapter 7 explores the experimental results of bulk switching SFETs on silicon-

on-insulator (SOI) substrates, which includes, to the best of the author’s knowledge, the 

first-ever CMOS demonstration with these devices on SOI (Fig. 1.7).  Chapter 8 

discusses some anomalous behavior that has been observed in SFETs of conventional 

design, namely the emergence of a negative differential resistance (NDR) in the IDS vs. 

VDS characteristic.  Chapter 9 explores some initial work performed on bulk-switching 

SFETs on polysilicon-on-insulator (POI) substrates with, again, an empirical 

demonstration of CMOS.  Chapter 10 concludes this study with a wrap-up of the work 

performed, the implications of this study for the future potential of SFET technology, and 

a brief description of some of the more important remaining questions that must be 
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diligently investigated before this technology can be shown to be a truly viable 

alternative to conventional CMOS. 

 

 

 

 

 

 

 

 

 

 
Fig. 1.7.  Demonstration of single metal Schottky CMOS on SOI substrates.  VDD = 3 V. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 13



Chapter 1 References 
 
[1] R.S. Muller, T.I. Kamins, M. Chan, “Device Electronics for Integrated Circuits, 
 Third Edition,” John Wiley & Sons, Inc., 2003, pp. 448, 452.    
 
[2] Y. Taur, T.H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge 
 University Press, 1998, p. 142. 
 
[3] M.P. Lepselter, S.M. Sze, “SB-IGFET: An Insulated-Gate Field Effect Transistor 
 Using Schottky Barrier Contacts for Source and Drain,” IEEE Proceedings 
 Letters, 1968, pp. 1400-1402. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 14



Chapter 2 
 

Metal-Semiconductor Junctions and Schottky Diodes 

 

2.1. Metal-Semiconductor (M-S) Junctions 

Unlike a semiconductor, which has a valence energy band edge (Ev), conduction 

band edge (Ec), and a Fermi level (EF) between Ec and Ev, metals are treated as only 

having a Fermi level.  The “workfunction” of a given metal is expressed as the difference 

between EF and the vacuum level (E0), and varies from metal to metal (likewise for metal 

silicides, metal germanides, etc.).  Different metals exhibit different workfunctions, and 

so when placed in direct contact with a semiconductor (which exhibits its own 

workfunction that is dependent upon the doping level), a built-in potential results (similar 

to that of a p-n junction, albeit for a different reason).  This built-in potential is expressed 

as the difference between the metal and semiconductor workfunctions, and is ideally 

greater than zero for electrons when the metal workfunction is larger than the 

semiconductor workfunction, and for holes when the metal workfunction is smaller than 

the semiconductor workfunction.  While a Schottky diode to electrons or holes is, ideally, 

only formed under the first or second of the aforementioned conditions, respectively [1], 

it is important to note that, in all cases, a Schottky barrier to both carriers is formed in 

both cases. 

The barrier height of a Schottky diode is determined by the energy difference 

between the conduction [valence] band and the Fermi level at the M-S interface for a n-

type [p-type] semiconductor.  For n-type silicon, for example, if the metal workfunction 

is larger than the silicon workfunction (i.e., a Schottky diode to electrons), and if the 
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difference between the metal workfunction and the silicon electron affinity is 0.5 eV, 

then a Schottky diode is formed with an electron barrier height of 0.5 eV.  If for n-type 

silicon the metal workfunction is lower than the silicon workfunction, then the M-S 

junction is an ohmic junction for electrons under a forward bias condition (as a Schottky 

barrier still exists, though, electrons do not experience an ohmic contact under reverse 

bias in this example).  An example Schottky diode to electrons is illustrated in Fig. 2.1, 

and an example Schottky ohmic contact to electrons is illustrated in Fig. 2.2.  In both 

figures, ΦM is the metal workfunction, φB is the Schottky barrier height, φi is the built-in 

voltage of the Schottky diode, ΦS is the semiconductor workfunction, Χ  is the electron 

affinity of the semiconductor, φn is the difference between the conduction band edge and 

the Fermi level, xd is the extent of the non-bulk region (where the electric field exists), 

and LD is the Debye length (a characteristic measure of the extent of electric field 

penetration into the semiconductor). 

 

. 

 

 

 

 

 

 

 

Fig. 2.1.  Illustration of a Schottky diode to electrons, adapted from [2]. 
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Fig. 2.2.  Illustration of a Schottky ohmic contact to electrons, adapted from [2]. 

 

Schottky diodes are considered to be majority carrier devices.  When the diode is 

forward biased, majority carriers are injected from the semiconductor to the metal, while 

minority carriers are injected from the metal to the semiconductor, and the opposite 

occurs under reverse bias.  In either biasing condition, the majority carrier current is 

always significantly greater than the minority carrier current.  In the case of Fig. 2.1, 

under forward bias, the energy barrier presented to electrons is merely the built-in voltage 

of the diode (φi) minus Va, the applied forward bias.  These electrons can “jump over” the 

barrier (thermionic or thermal current) or quantum mechanically tunnel through it (field 

emission or tunneling current).  Forward bias current is classically expressed as [1]: 

)1( −= kT
qV

s

a

eII          (1) 
 

where q is the charge of an electron, k is Boltzmann’s constant, T is the temperature, and 

 17



Is is the reverse bias thermal current, expressed as [1]: 

kT
s

B

eTAAI
φ−

= 2*          (2)  
 
where A is the area, A* is the effective Richardson’s constant (112 A/cm2⋅K2 for electrons 

in silicon, 32 A/cm2⋅K2 for holes), and φB is the barrier height. 

 Continuing with the example in Fig. 2.1, while the electron barrier is the built-in 

voltage minus Va under forward bias, the effective hole barrier is the sum of the built-in 

voltage and the hole Schottky barrier height, φBp (i.e., the semiconductor bandgap minus 

the electron Schottky barrier height, φBn).  As this total barrier height is typically larger 

than the electron barrier, hole thermal current is comparatively small, and since the 

barrier width is very large, essentially zero hole tunneling takes place. 

If the diode in Fig. 2.1 is reverse biased, then the energy barrier presented to 

electrons is φBn.  Again, electrons must either jump over the barrier or tunnel through it 

(tunneling increases as the doping in the semiconductor increases, as the barrier width is 

consequently smaller due to the increase in band bending).  As holes are now injected 

from the silicon to the metal, they essentially “see” an ohmic junction, as no energy 

barrier exists to impede current flow; however, as holes are being injected from an n-type 

semiconductor (in which the hole concentration is necessarily very small), the hole 

injection is very small, and again electron thermal and tunneling currents dominate.  

Under both forward and reverse biases, therefore, majority carrier current is the dominant 

current mechanism in a conventional Schottky diode.  It will be shown in subsequent 

sections regarding SFET inversion carrier leakage currents, however, that such is not 

always the case. 
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2.2. Interface Characteristics 

As it turns out, simply depositing a metal onto a semiconductor, in all likelihood, 

will not form an ideal Schottky diode.  Surface states at the semiconductor surface of the 

M-S junction alter the surface potential, thus altering the extent of band bending as well 

as the dimensions of the Schottky barrier.  Reference [3] is perhaps the most inclusive 

theory of Schottky barrier formation, which discusses metal-induced gap states (MIGS) 

and their effect on the surface potential at the M-S interface.  Before discussing MIGS in 

detail, though, on a superficial level, the Schottky barrier height depends primarily on the 

surface potential, and the built-in voltage of a given Schottky diode depends on how this 

potential differs from the potential in the bulk of the semiconductor (i.e., beyond the 

depletion region).   

For example, consider an n-type block of silicon doped at a level of 1015 cm-3.  

This results in a bulk Fermi energy of about 0.3 eV above the intrinsic Fermi level at 

room temperature, or a potential (relative to the valence band) of about 0.86 eV.  Now 

suppose that the difference between the Fermi level and the valence band edge, due to 

some mechanism or combination of mechanisms, ends up being 1 eV in equilibrium.  

This means that the Fermi level is closer to the conduction band at the M-S interface than 

it is in the bulk, which results in the energy bands bending downward from the substrate 

to the metal.  The most immediate effect is a lowering of the electron Schottky barrier 

height (and a consequent raising of the hole barrier height).  This interface potential 

changes the “crossover” point between electron and hole rectifying contacts.  In this 

particular example, a rectifying contact to holes results for metals having a workfunction 

of 0.14 eV greater than what would be required in the ideal case for a given dopant 
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concentration. 

To some extent, interfacial oxides or other interfacial layers at non-silicided M-S 

junctions (i.e., pure metal, no silicide) are treated as a source of surface states that can 

alter the surface potential [2], as Fig. 2.3 shows for an n-type semiconductor (the states 

below the Fermi level are filled with electrons, while those above are empty).  This 

interfacial layer is on the order of a few atomic layers, and so the tunneling resistance is 

quite low.  The density of these surface states, Ds, and their distribution about the 

semiconductor bandgap end up determining what energy the Fermi band at the interface 

gets “pinned” to (i.e., the Schottky barrier height’s dependence on metal workfunction is 

substantially reduced). 

 

 

 

 

 

 

 

 

 

Fig. 2.3.  Illustration of M-S junction with an interfacial layer, adapted from [2].  The 
interfacial layer is treated as the source of surface states, and thus Fermi pinning. 

 
 

For metal silicides, however, the interfacial layer theory is invalid, as this layer is 

consumed (and incorporated into the silicide) during the silicidation process, and so the 
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interface is arguably a “pure” M-S interface.  A Schottky barrier still forms, however, 

which means that interfacial films are not the sole contributor to energy states at the M-S 

interface (it turns out that interfacial insulators of appropriate quality can actually “de-

pin” the Fermi level at the interface [4], but more on this in Chapter 3).  Tersoff 

speculated that the Schottky barrier height has two contributions – a short range 

contribution, due to surface dipoles, surface bonding details, or M-S electronegativity 

differences, and metallic screening by MIGS resulting in an additional dipole [3].  It is 

the metallic screening by MIGS that is considered to result in Fermi pinning.  From a 

wave function perspective, MIGS are Bloch states of the bulk semiconductor with a 

complex wave vector, or in other words, the decaying tails (known as Heine tails) of the 

metallic wave functions at varying energies as they propagate into the semiconductor, as 

Fig. 2.4 illustrates for a single wave function at a single energy level. 

 

 

 

 

 

 

 

Fig. 2.4.  Illustration of Heine tail propagation into a semiconductor, adapted from [5].  
λw represents the propagation depth, or decay length, of the Heine tail – the probability of 

an electron existing at some energy within and depth into the barrier. 
 

What results from these Heine tails are a number of gap states close to the 

interface that “spill over” into the bandgap from the valence and conduction bands, acting 
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as acceptor-like and donor-like states, respectively.  These states have a characteristic 

distribution within the semiconductor bandgap, which is to say that the bandgap now has 

a density of states, N(E), at and near the interface.  Naturally, these states fill up with 

electrons and holes, resulting in a carrier distribution throughout the semiconductor 

bandgap (what was formerly the “forbidden region” of occupation), as Fig. 2.5 illustrates.  

Within the bandgap, there may exist a minimum value of N(E) which corresponds to the 

energy at which λw is the smallest and the gap states cross over from donor-like to 

acceptor-like behavior.  This energy level is called the branch point, EB, and the Fermi 

level is pinned precisely at this energy. 

 

 

 

 

 

 

 

 
Fig. 2.5.  Illustration of carrier concentration vs. energy in the semiconductor only case 
and a particular M-S junction case, where energy states “spill over” symmetrically from 

the conduction and valence bands. 
 

Although Fig. 2.5 is a symmetric example that places EB in the middle of the 

bandgap, the exact location of EB may vary between different M-S junctions (which 

would explain different observed barrier heights with different metals and silicides).  For 

covalent semiconductors such as silicon, germanium, etc., EB is dependent on surface 
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state and vacancy levels [3], which accounts for the similar results of different theoretical 

approaches, such as the interfacial layer approach mentioned previously.  As the decay 

length becomes shorter for larger barrier heights, one might propose that the short range 

contributions to Fermi pinning mentioned previously end up playing a more significant 

role for larger M-S electronegativity differences, although the extent towards which this 

contribution increases is dependent upon the change in decay length with barrier height. 

 

2.3 Schottky Barrier Lowering 

At an M-S junction, ionized dopants, defects, and empty or filled gap states 

provide a charge within the semiconductor.  These charges generate electric field lines 

that terminate at the metal (known as metallic screening) due to an “image” charge that is 

generated for each charge in the semiconductor that lies within the depletion region or the 

Heine tail decay length (whichever is larger).  This image charge generates an image field 

whose sign is opposite to the field of the energy bands in the semiconductor near the 

interface in the ideal case (i.e., a triangular or close-to-triangular energy barrier).  The 

actual potential profile of the Schottky barrier is therefore a function of the superposition 

of these electric fields, which results in a rounding off of the potential at the top of the 

barrier.  This is known as Schottky barrier lowering or dipole lowering, and is illustrated 

in Fig. 2.6, where xm is the position of the peak of the potential profile, ∆φ is the change 

in barrier height due to Schottky barrier lowering, ΦB0 is the ideal Schottky barrier height, 

E1(x) is the electron energy extending from the metal surface (due to the image force), 

and E2(x) is the electron energy extending from the ideal Schottky barrier height into the 

bulk region, where the electric field is negative. 
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Fig. 2.6.  Illustration of Schottky barrier lowering, adapted from [2]. 

 

 As the electric field at the M-S junction becomes increasingly negative (e.g., 

increasing reverse bias on a Schottky diode), the extent of barrier lowering increases.  

Apart from ionized dopants, defects, and gap states, this field can also arise from gate-

induced changes in the energy band structure (such as in an SFET or a gated Schottky 

diode, and it will be shown in Chapter 4 that this barrier lowering effect has implications 

for SFET design).  The expression for Schottky barrier lowering is as follows [1]: 

si
B

q
επε
ξ

φ
04

=∆          (3) 

where ε0 and εsi are the vacuum permittivity and relative permittivity of silicon, 

respectively, q is the electron charge, and ξ is the electric field at the junction (which 

must be negative to induce barrier lowering for electrons and positive for holes). 
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2.4 Quantum Mechanical Tunneling 

One of the more interesting properties of the Schottky barrier is that it not only 

presents a thermal barrier to carriers, like a p-n junction, but it also presents a quantum 

mechanical tunneling barrier to carriers of insufficient energy to surmount the thermal 

barrier.  What is perhaps the simplest method of visualizing tunneling is to view it from 

the perspective of wave propagation, illustrated in Fig. 2.7.  As the electron wave 

function approaches an energy barrier of a finite height φB, one can consider it to have a 

normalized amplitude of 1.  Once the wave function reaches the barrier, its amplitude 

decays exponentially until reaching the end of the barrier (x = L in Fig. 2.7), at which 

point the wave function is sinusoidal again, but with reduced amplitude.  If the amplitude 

(normalized with respect to the incoming wave function) of the transmitted wave function 

is, for example, 0.2, then the tunneling probability for that electron through this particular 

barrier at this particular energy level is 20%, while the reflection probability is 80%.   

One might suppose that “tunneling” has something of a magical or philosophical 

connotation, but a more appropriate characterization of this phenomenon would be 

damped transmission – the wave function is a probability wave and only collapses into a 

particular state (i.e., transmitted or reflected) under observation, and the probability of 

collapsing into that state depends on the amplitude of the wave function in that region.  

As such, one might consider the electron to be on both ends of the energy barrier until the 

wave function collapses into one state or the other under observation.  This is the reality, 

as well as the oddity, of quantum mechanics, and so one must not make the mistake of 

concluding that a quantum mechanical phenomenon such as tunneling necessitates a 

“particle physics-like” explanation.  In the application to a large body of electrons, 
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however, and in this particular example, it can be interpreted that 20% of a given body of 

electrons traveling toward the energy barrier at that particular energy level will “tunnel” 

through the barrier, which would give the same observed result as the sum of the reduced 

amplitudes of all of the electron wave functions as they exit the barrier (where they are at 

20% of their initial value).  There would be zero difference in measurement between 

these two interpretations. 

The degree or sharpness of exponential decay of the wave function is dependent 

upon φB (larger values of φB result in sharper decay, and for φB = ∞, the decay is infinite – 

no tunneling occurs), and the total transmission is dependent upon φB and the barrier 

width, WB (or L in the case of Fig. 2.7).  In the application to Schottky barriers, WB varies 

with energy, and carriers closer to the top of the Schottky barrier have a larger probability 

of tunneling through it. 

 

 

 

 

 

 

Fig. 2.7.  Wave function representation of quantum mechanical tunneling, adapted from 
[5].  Ψ(x) is the electron wave function, and L is the energy barrier width. 

 

Tunneling current has its most significant contribution to the total current through 

a Schottky diode when said diode is under reverse bias (when majority carriers are 

injected from the metal into the semiconductor).  Under such conditions, WB becomes 
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ever smaller with an increasing electric field, and so the wave function decay takes place 

over a shorter distance.  As such, the normalized amplitude of the transmitted wave 

function approaches 1 (but never actually reaches 1 due to the physical existence of the 

barrier, no matter how small WB is), consequently increasing tunneling current.  While it 

will be shown in Chapter 3 that tunneling current is indeed a component of SFET current, 

in Chapter 4 it will be shown mathematically that it does not play a dominant role in the 

on state current of high performance SFETs – thermal current is always larger. 
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Chapter 3 
 

Schottky Field Effect Transistors – Theory of Operation 

 

3.1. The Schottky Field Effect Transistor (SFET) and Ambipolarity 

With metallic source/drain regions in an SFET (also known as an SB MOSFET 

[Schottky Barrier MOSFET], SBTT [Schottky Barrier Tunnel Transistor], or SSD 

MOSFET [Schottky Source/Drain MOSFET]), Schottky diodes, as opposed to p-n diodes 

in conventional MOSFETs, exist which inhibit current flow.  By applying a gate bias, 

band bending of the substrate takes place at the semiconductor-gate dielectric interface, 

consequently modifying the geometry of the source/drain Schottky barriers.  In doing so, 

the source-to-drain current is modulated by the gate terminal.  Unlike conventional 

MOSFETs, however, SFETs are ambipolar, meaning that two I-V characteristics (NFET-

like and PFET-like) are attainable with a single device.  Fig. 3.1 loosely illustrates this 

ambipolarity in the example of an n-body SFET.  By applying a positive gate bias, 

electrons (majority carriers in this case) accumulate at the semiconductor-gate dielectric 

interface.  This increases the degree of band bending at the source/body and drain/body 

junctions, consequently decreasing the barrier width at each junction.  As the barrier 

width is made smaller, the tunneling probability for the accumulated carriers increases.  

In accumulation mode, then, and for relatively large Schottky barrier heights to electrons 

(φBn), tunneling current is the dominant current component that is gate-modulated.  By 

applying a negative gate bias to this n-body SFET, the body region depletes and 

eventually inverts to form a p-type channel.  If the electron barrier height is large, then 

the inversion mode (hole) barrier height (φBp = Eg - φBn) is relatively small, and so 
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thermionic emission of holes over the Schottky barrier is the dominant current 

mechanism.  Thus, by simply reversing the polarity of the applied gate bias, the SFET 

can switch from accumulation mode to inversion mode and back. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.1.  Basic illustration of ambipolar operation in an n-body SFET.  (a) n-body 
SFET in equilibrium; (b) n-body SFET in accumulation mode; (c) n-body SFET 

in inversion mode. 
 

 
 As it turns out, the SFET is not the only semiconductor device that exhibits such a 

characteristic.  Carbon nanotube transistors, or CNTFETs, have been shown to perform in 

the same fashion [1], [2].  In fact, not only do CNTFETs exhibit ambipolar behavior, but 
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the mechanisms of that behavior are exactly the same as for SFETs – Schottky barrier 

source/drain regions.  It then follows that, at least on a superficial level, SFETs and 

CNTFETs are one and the same, with the only difference being the type of 

semiconductor used.  It is no coincidence, then, that the performance limitation factors of 

both devices, as well as the optimal design approaches for both devices, are essentially 

the same [2], [3], [4].  These will be discussed later in further detail. 

 

3.2. Leakage and Drain-Induced Barrier Lowering (DIBL) 

With the considerations of gate leakage and defect/trap-induced leakage aside, the 

leakage mechanisms in an SFET are considerably different from those in a conventional 

MOSFET, as again the diodes in use are Schottky diodes as opposed to p-n diodes.  In a 

conventional MOSFET, some of the leakage results from generation current in the 

reverse biased diode (drain-body diode).  Another leakage mechanism, particularly in 

short channel devices, results from drain-induced barrier lowering (DIBL), whereby the 

electric field from the drain effectively decreases the thermal barrier height at the 

source/body junction (this can also be viewed as applying a forward bias of some 

magnitude to the source-body junction).  Further leakage can be induced via gate-to-drain 

coupling at large drain biases and a relatively low or zero gate bias, whereby the 

magnitude of the surface potential in the body region near the drain is large enough to 

induce band-to-band tunneling between the drain and the body.  Such leakage is called 

gate-induced drain leakage, or GIDL. 

In an SFET, tunneling through and thermal current over the Schottky barriers are 

the primary leakage mechanisms; however, since SFETs are ambipolar, what is referred 
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to as “leakage” is typically the device attempting to “turn on” in the other direction.  For 

example, consider the n-body SFET in Fig. 3.1.  Inversion mode operation requires a 

negative gate bias; however, if the gate is grounded and the drain is at some negative bias 

(VGD is positive), gate-to-drain coupling accumulates electrons at the drain-body junction, 

thus decreasing the Schottky barrier width.  This “leakage” is electron tunneling current 

through the reverse biased drain-body diode, which is effectively the device turning on or 

trying to turn on in accumulation mode.  Likewise, for the same device operating in 

accumulation mode, a positive gate bias is required; however, with a grounded gate and a 

high enough positive drain bias (VGD is negative), the semiconductor near the drain 

undergoes inversion.  Thus, “leakage” for accumulation mode operation has an inversion 

mode component (hole thermal current in this example).  There is also some drain-

induced tunneling leakage at the source/body junction (electron tunneling in this 

example) under the same biasing conditions, whereby the field from the drain, if large 

enough, will shrink the source/body barrier width, facilitating carrier tunneling injection 

from the source.  One might call this drain-induced source tunneling (DIST).  All of these 

effects can be viewed as DIBL in either a non-conventional sense (i.e., a tunneling barrier 

width is being modulated as opposed to a thermal barrier height) or in a conventional 

sense (i.e., thermal barrier modulation), as an increase in drain bias is reducing some sort 

of energy barrier that would normally impede current flow. 

For the biases involved in inversion mode operation and low inversion mode 

barrier heights, thermal leakage of inversion carriers over the source/body Schottky 

barrier is of particular importance.  To reduce this leakage, the body dopant concentration 

can be increased.  This results in band bending that creates a thermal barrier to inversion 
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carriers that extends beyond the respective Schottky barrier height.  The extent of this 

band bending is called the contact potential, φc [5], and is illustrated in Fig. 3.2.  The 

actual barrier height to inversion carriers, then, becomes the sum of the contact potential 

and the Schottky barrier height. 

 

 

 

 

 

 

Fig. 3.2.  Simplified band structure for an n-body SFET (Schottky “PFET”), adapted 
from [5] and modified.  Φpeff is the total inversion carrier (hole) barrier height. 

 
 
 In increasing the body doping level, however, one must take caution, as there is a 

consequent decrease in the tunneling barrier width to accumulation carriers at the drain, 

as Fig. 3.2 also illustrates.  While a high body doping (or an appropriate shift in the gate 

workfunction for a device which primarily exhibits surface channel behavior) can 

dramatically reduce inversion carrier leakage, accumulation carrier leakage will increase.  

A mathematical and empirical quantification of this tradeoff will be supplied in 

subsequent chapters.  Another effect of increasing the body doping is that the channel 

mobility is reduced, which, coupled with the consequent increase in threshold voltage, 

can decrease drive current.  For aggressively scaled devices that exhibit ballistic or near-

ballistic transport, however, this may not be an issue.  It should also be noted that, unlike 

the Schottky barriers, φc will change with channel length (this is a generic assumption, 
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though, as at very aggressive scales, Fermi pinning at the M-S junction may not be so 

definite due to the dominance of microstructural effects over macrostructural effects). 

 

3.3. Subthreshold Swing 

For an SFET consisting of a body region that is doped to a level so as to result in 

a contact potential (φc) to inversion carriers, as the gate bias is modulated in the direction 

that depletes and eventually inverts the body region, at first only φc is modulated.  The 

subthreshold behavior in this region of operation is the same as that of a conventional 

MOSFET, as there is not yet any Schottky barrier modulation.  Thus, in this region of 

operation, the subthreshold swing is purely a function of effective oxide thickness (EOT), 

body dopant concentration (which affects the maximum gate-induced depletion width, 

WDmax), and channel length (for short channel devices) [6]. 

At some gate bias, called the source-body flatband voltage (Vsbfb) [7], φc reaches 

zero and the valence and conduction bands are flat.  Increasing the magnitude of the gate 

bias beyond this point modulates the Schottky barrier.  It has been suggested that only the 

Schottky barrier width is modulated here, and that any increase in current for VGS beyond 

Vsbfb is due strictly to an increase in tunneling current at the source-body junction [7]-

[10].  However, as the electric field at the source-body junction is of the appropriate 

polarity to induce Schottky barrier lowering (∆φB), there is reason to suggest that the 

Schottky barrier height is also modulated for VGS beyond Vsbfb [11].  This has important 

design implications regarding what actually is and is not an acceptable inversion mode 

Schottky barrier height (and therefore what are and are not acceptable material choices) 

[11], but the point here is that a different energy barrier is being modulated.  As this 
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different type of energy barrier is being modulated, which exhibits a different sensitivity 

to changes in VGS, a shift in the subthreshold swing can occur at Vsbfb if the inversion 

mode Schottky barrier height is large enough to effect a change in current flow.  Figs. 3.3 

and 3.4 illustrate, respectively, conduction band modulation with VGS in a p-body SFET 

without and with Schottky barrier lowering. 

 

 

 

 

 

 
Fig. 3.3.  Illustration of conduction band modulation with gate bias in a p-body SFET, 

according to “conventional” SFET theory, adapted from [7]. 
 
 
 

 

 

 

 

 

 

 

 

Fig. 3.4.  Illustration of conduction band modulation with gate bias in a p-body SFET, 
accounting for Schottky barrier lowering.  In this case, the Schottky barrier becomes 

narrower and shorter for VGS greater than Vsbfb. 
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 For a given device structure (i.e., gate oxide thickness, body dopant concentration, 

etc.), it would follow that the subthreshold slope at VGS beyond Vsbfb is independent of 

Schottky barrier height if thermal current dominates in this region of operation, as ∆φB is 

largely independent of φB.  If tunneling current is the dominant fraction of current 

injection, such as in accumulation mode operation, one might suggest a shift in the 

subthreshold slope as φB is modulated; however, ∆φB also occurs in this mode of 

operation, and the results in [11] and Chapter 4 suggest that, regardless of whether 

thermal or tunneling current dominates, the subthreshold slope in the respective region of 

operation remains relatively constant for different values of φB as the Schottky barrier is 

modulated by the gate for a given device structure. 

 Also, for a given device structure, it is possible to alter Vsbfb.  To a first order at 

least, Vsbfb is dependent on two factors – the inversion mode Schottky barrier height and 

short channel effects (i.e., DIBL).  A larger barrier height will decrease Vsbfb, as would a 

larger degree of DIBL.  Distinguishing between the two in a test environment would 

simply require testing the same device structure at different channel lengths – DIBL is 

dependent on channel length, while φB is not. 

 

3.4. Optimizing SFET Performance 

The implications of Schottky barrier modulation versus conventional thermal 

barrier modulation in an optimized SFET design may, at least in some cases, seem rather 

obvious – use a small Schottky barrier height and a moderate to high body doping of the 

appropriate species (or some other means of band bending, such as gate workfunction).  

In such a case, only φc modulation exists for most or all of the bias values within the 
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power supply voltage (VDD).  However, quantifying exactly what barrier height is “small 

enough” and determining what material/s or technique/s would provide for the best 

approach is not a trivial matter, particularly in the sub-100 nm regime where process 

variation is greater and silicide linewidth dependence limits material choices. 

From a materials perspective, it has been suggested that rare earth metals such as 

Pt and Er, when used as a silicide, provide for the best to-date inversion mode Schottky 

barrier heights (~ 0.25 eV) [5], [7], [12]-[15].  Rare earth metals, however, are 

necessarily rare and expensive, and so while they are useful from a research perspective, 

they beg the question of long-term sustainability in a high-volume manufacturing 

environment.  It has been shown that silicides formed with less exotic refractory metals 

(namely NiSi) can be “tuned” to result in very low barrier heights.  In particular, S+ 

implantation at doses between 1x1013 and 2x1014 cm-2 before Ni deposition (and 

subsequent silicidation) was shown in [16] to dramatically alter the electron Schottky 

barrier height, φBn, from its zero-point value of 0.65 eV to values as low as 0.07 eV.  This 

is considerably lower than the ~ 0.25 eV provided by ErSi2, and so should prove superior 

for an n-channel SFET in terms of both performance and practicality.  The mechanism 

behind this effect of barrier height tuning was mentioned in [16] to be due to passivation 

of the silicon surface with valence-mending adsorbates (i.e., the broken bonds at the 

silicon surface are “filled,” which is best done with a Group VI element such as S or Se).  

It would seem, then, that the branch point (EB from Chapter 2) shifts toward the 

conduction band with higher S+ doses, due a change in degeneracy within the bandgap, or 

more appropriately, a shift in the dependence of barrier height toward workfunction 

differences and away from EB.  Likewise, it would not be unreasonable to suggest a 
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similar possibility for attaining very low hole Schottky barrier heights with NiSi or some 

other refractory metal silicide (preferably a high workfunction material) to replace PtSi as 

a candidate for p-channel SFETS (in which case, EB would have to shift toward the 

valence band).  To date, however, no known work has been performed on this. 

Different analyses give different suggestions as to what the maximum barrier 

height is in order to be competitive with conventional MOSFETs.  Some propose barrier 

heights on the order of 0.1 eV to 0.15 eV [15], while others have gone so far as to 

propose negative barrier heights [8].  Rather than tuning a given material to achieve high 

performance, it may also be possible to eliminate the Schottky barrier altogether, by 

“depinning” the Fermi level at the M-S interface.   This effectively frees up the surface 

potential at the M-S interface so that it can be controlled by a gate bias rather than by the 

metal.  This is almost the same exact thing as using valence-mending adsorbates, except 

that here it is done with an interfacial material. 

Such a depinning approach is what was proposed in [15], where a very thin 

interfacial film is intentionally placed between a metal and a semiconductor (i.e., no 

silicidation is performed).  This film is of sufficient thickness to block MIGS penetration 

into the semiconductor, but also thin enough to provide minimal tunneling resistance.  

Fig. 3.5 qualitatively describes this approach.  The end result is a M-S junction with 

minimal contact resistance, and thus optimal drive current.  Due to the depinning of the 

Fermi level, no tunneling barrier is modulated with VGS – only a thermal barrier is 

modulated, the height of which is the difference between the Fermi level in the metal and 

the conduction or valence band in the semiconductor (depending on the channel type).  In 

[15], only M-S junctions were fabricated to test and ultimately prove this depinning 
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concept (Fig. 3.6).  Thermal SiNx was used as the interfacial layer, with an estimated 

thickness of 1-2 monolayers providing the best contact resistance.  As Fig. 3.6 shows, 

there is more process latitude with interfacial films that are “too thick,” as the contact 

resistance is less sensitive to large growth times versus very small growth times.  

However, as these junctions use pure metal and not metal silicide, fabricating 

aggressively scaled SFETs would require a new process or device structure that would 

facilitate self-aligned gate technology. 

 

 

 

 

 

 

Fig. 3.5.  MIGS blocking and the dependence of contact resistance on interfacial layer 
thickness, adapted from [15].  (a) MIGS penetration blocked by an interfacial layer; (b) a 

balance between MIGS blocking and tunneling resistance must be reached to achieve 
optimal performance. 

 

 

 

 

 

 

Fig. 3.6.  Contact resistance vs. interfacial layer growth time, adapted from [15].  
Aluminum was the metal of choice, with heavily-doped n-type silicon as the 

semiconductor material, and thermal SiNx as the interfacial layer. 
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From a techniques perspective, there are a number of methods one can employ to 

optimize SFET performance.  Connelly et al. explored the optimization of gate-to-

source/drain offset for 25 nm dual-gate metallic and doped source/drain devices, and 

found that in both cases, some degree of gate underlap provides the optimal balance 

between drive current and leakage current [17].  This optimal underlap was found to vary 

between 0.5 nm and 2 nm for silicon-on-insulator (SOI) devices with body thicknesses 

between 6 nm and 10 nm, and for inversion mode Schottky barrier heights between 0 eV 

and 0.2 eV.  At such dimensions, source-to-drain coupling becomes significant when 

gate-to-source/drain overlap exists, which results in an increase in VT rolloff (SCE).  

Pulling the source/drain regions farther apart (effectively increasing the channel length, 

Lch) such that an underlap to the gate exists decreases this coupling while also eliminating 

overlap capacitance.  In addition, VT rolloff decreases, as does the subthreshold swing.  

However, this change in subthreshold swing is due to a decrease in conventional SCE.  

For SFETs, as the inversion mode Schottky barrier height increases, the optimal gate 

underlap decreases, as the fringing fields from the sides of the gate are not as effective at 

modulating the Schottky barrier than if there were some degree of gate overlap.  Too 

large a gate underlap, then, while decreasing leakage and reducing SCE, will also reduce 

drive current due to an increase in series resistance.  Not surprisingly, then, one is 

brought back to the fundamental challenge in designing transistors – the ubiquitous 

tradeoff between drive current and leakage current. 

Knoch and Appenzeller mathematically explored the performance effect on 

SFETs of using ultrathin body, fully depleted SOI substrates [10].  Their analysis showed 

that for a small enough body thickness and/or a small enough EOT, the electrostatic 
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effect of the gate causes a significant reduction in the Schottky barrier, thus increasing 

drive current and improving the subthreshold swing.  Although their analysis suggested 

that tunneling current dominates in the on state, it will be shown in Chapter 4 that the role 

of tunneling current in the on state has a dependence on the Schottky barrier height.  

Although the effect of a small EOT is intuitive – better gate coupling to the body 

region – the effect of thinner body regions with a small EOT on current injection is 

interesting.  While thinner body regions can reduce SCE in conventional MOSFETs and 

SFETs, the channel resistance increases due to a reduced cross-sectional surface area, 

thus potentially decreasing drive current (though for aggressively scaled devices, ballistic 

or near-ballistic transport can be assumed).  However, unlike conventional MOSFETs, 

current injection at high drain biases in SFETs is strongly dependent on the entire shape 

of the energy barrier at the source, and the shape of this barrier has little if any 

dependence on channel length.  This explains why it is possible to observe relatively 

large subthreshold swings (i.e., poor characteristics) for SFETs with large channel lengths 

if the Schottky barrier is high enough [7].  So, while decreasing the body thickness may 

well increase the channel resistance for devices exhibiting non-ballistic transport, it also 

facilitates an increase in current injection through and over the Schottky barrier at the 

source.  For devices exhibiting ballistic or near-ballistic transport, then, ultrathin SOI (on 

the order of 4 nm [10]) with fully depleted body regions would seem to optimize drive 

current, as well as subthreshold swing (and, consequently, transconductance).  One must 

take caution in thinning the body region, however, as eventually quantum confinement 

within the body will increase the effective Schottky barrier height [7], [8]. 
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Rather than, or perhaps in addition to utilizing ultrathin body regions, valence-

mending adsorbates, different silicide materials, and optimizing gate overlap/underlap, 

one can also engineer the semiconductor bandgap itself to modulate the Schottky barrier 

height.  Si1-xGex is a promising semiconductor, as it is compatible with conventional 

silicon processes and the bandgap can be reduced by ~ 42 meV per 10% Ge content [18].  

While this is not a very large drop in the bandgap, channel mobility (for electrons at 

least) is dramatically enhanced [19] and the barrier height to a given silicide (or more 

appropriately, germanide) may change depending on where the MIGS-induced branch 

point lies.  This also applies to pure germanium, which has a bandgap of ~ 0.66 eV [20].  

In the case of pure germanium, though, the largest (i.e., worst case) non-modified 

Schottky barrier for the better channel type (i.e., the one with the lowest inversion mode 

barrier height) is half the bandgap, or ~ 0.33 eV, which is much smaller than what is 

available with silicon (~ 0.56 eV), and potentially better for drive current.   

However, with a smaller bandgap, and hence a smaller barrier height to both 

carriers for a given germanide, accumulation carrier injection at the drain is increased.  

For a given device designed for a given off state current, the required sacrifice in drive 

current is necessarily larger for SFETs using pure germanium.  It has thus been suggested 

that pure germanium is actually inferior to silicon regarding SFETs, due to this enhanced 

tunneling injection at the drain [20].  Such a conclusion is naturally valid for other 

semiconductors with relatively small bandgaps. 

 
3.5. Controlling Ambipolarity 

Due to the ambipolarity exhibited by SFETs of conventional design, it follows 

that tunneling injection at the drain places a lower limit on leakage current.  Extending 
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this lower limit to provide a better off state requires a reduction in this tunneling 

injection, and therefore a reduction or elimination of ambipolarity for optimal CMOS 

functionality.  As it turns out, in controlling this ambipolarity, the mechanisms of current 

modulation change. 

One approach to controlling ambipolarity was taken by Lin et al., whereby an 

asymmetric SFET, which was referred to as a field-induced drain (FID) device, was 

fabricated (Fig. 3.7) [21].  In their device, two gates were used to control current flow – a 

main-gate and a sub-gate.  The main-gate acts as the gate in a conventional SFET, 

modulating the Schottky barrier at the source-body junction (although here it has no 

control over the drain-body junction).  The sub-gate modulates the semiconductor region 

not covered by the main-gate (XD in Fig. 3.7).  In doing so, the sub-gate can create a 

thermal barrier within the body region to shut the device off, thus making the device 

unipolar in one direction or another, depending on the polarity of the applied biases. 

Considering the case where the device in Fig. 3.7 is an n-body SFET, operating 

the device as a PFET would require negative gate and drain biases.  Applying said biases 

to the main-gate, sub-gate, and drain would thus allow for p-channel operation.  To 

switch the device off, the sub-gate bias is set to zero or some positive value.  With the 

main-gate still at a negative bias, a thermal barrier within the body region arises, and the 

off state current is dramatically reduced (Fig. 3.8).  This is because the off state current is 

now largely independent of the Schottky barriers at the source/drain regions.  Achieving 

NFET-like operation simply requires reversing the bias polarities for the on and off 

states.   
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Fig. 3.7.  Comparison of fabrication of conventional SFET (a) and field-induced drain 

(FID) SFET (b), adapted from [21].  The FID structure allows one to modulate the SFET 
behavior as explicitly NFET-like or PFET-like. 

 

While the FID approach clearly shows strong control of ambipolar behavior with 

high Ion:Ioff (~ 7 dec.), several disadvantages exist.  First, the addition of a sub-gate results 

in a 4-terminal device for SOI substrates (bulk substrates would result in a 5-terminal 

device), which introduces additional interconnect routing challenges upon 

implementation into microelectronic circuitry.  Second, the sub-gate is relatively far away 

from the portion of the body region under its control, and so high operating voltages are 

required (±50 V in the case of [21]).  Certainly, the sub-gate could be placed closer to the 

device to reduce the voltage requirements, but it would not reduce the complexity of the 

device structure.  Third, the asymmetry of the device demands that either the main-gate 

be made very small and/or the source-to-drain spacing be made larger to allow the sub-

gate to “fit” within the device structure.  Device/circuit density and scaling potential are 

thus compromised.   
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Fig. 3.8.  Transfer curve comparison of a conventional ambipolar SFET (a) to the FID 

SFET (b), adapted from [21]. 
 

 
What is arguably the approach with the highest potential for integration into 

microelectronic circuitry is something called “bulk switching.”  With this approach, the 

semiconductor near the source/drain regions is held at a different potential than the rest of 

the body region.  This can be done electrostatically with separate gates [3] (not very 

practical) or chemically by utilizing halo regions [3], [4], [22].  Fig. 3.9 illustrates the 

band structure of a p-channel SFET using bulk switching.  Much like what was done in 

[21], a thermal barrier created in the body region dominates current modulation, as the 

electric field at the Schottky barriers is large enough such that they can be considered 

ohmic.  In the case of chemically formed halo regions, the higher dopant concentration 

prevents inversion within some voltage range, effectively making the device unipolar 

within this range.  As the halo region and [lighter doped] body region are of the same 
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dopant type (i.e., n-type or p-type, although the actual species need not be the same), the 

device can be considered an accumulation mode device. 

 

 

 

 

 

 

Fig. 3.9.  Band structure of a bulk switching p-channel SFET or CNTFET, adapted from 
[3].  Regions A and B represent the halo and bulk regions, respectively.  Region A can be 

formed with alternate gates (i.e., electrostatically) or chemically.  The dotted lines 
represent the thermal barrier modulation that switches the device on and off. 
 

To a first order, the bulk switching approach begs the question of whether such a 

device is truly an SFET, as Schottky barrier modulation is being replaced by thermal 

barrier modulation within the body region.  However, the function of this halo region is 

to reduce the effect of the Schottky barrier on current injection.  Since the source/drain 

regions are metallic, such a device is most certainly not a conventional MOSFET.  The 

device is also not exactly an SFET in the conventional sense, as again the Schottky 

barrier is not modulated or being modulated very little by the gate; however, as the 

source/drain regions are silicided (or fully silicided in the case of SOI substrates), the 

actual characterization of such a device falls somewhere in the middle between an SFET 

and a conventional MOSFET – a metallic source/drain (MSD) MOSFET (the term “bulk 

switching SFET” is equally applicable).  Regardless, it would seem that the MSD 

MOSFET is ultimately an evolution of the conventional MOSFET structure. 
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It comes with something of a sense of irony that the bulk switching approach 

seems the most promising, as the device engineer comes back full circle to the very 

challenge that they thought they would avoid by utilizing metallic source/drain regions 

with atomically abrupt junctions – dopant concentration gradients.  As it turns out, 

however, the manner in which these halo regions are formed is quite different from the 

conventional approach, and this approach allows for extremely abrupt dopant 

concentration gradients compared to conventional MOSFETs.  The process utilized is 

called implant to silicide, also known as implant through silicide (ITS).  With ITS, the 

source/drain silicide regions are formed before the halo implantation.  The higher atomic 

density of the metal silicide over silicon results in greater stopping power for a given 

implant energy, and that the dopants are implanted into the silicide eliminates any 

amorphization that would otherwise occur without ITS.   

After ITS is performed, a relatively low temperature anneal, around 600°C [4], is 

performed to drive the dopants out of the silicide and into the adjacent silicon.  Dopant 

diffusion in silicides is much greater than in silicon, and is attributed to grain boundary 

diffusion within the silicide [23].  Once the dopants reach the silicide-silicon interface, 

the diffusion slows down dramatically due to the lower dopant mobility in silicon.  In [4], 

Monte Carlo simulation suggested that the dopant straggle distribution is 8 nm for their 

particular process.  As their starting substrate had a background doping of 1x1015 cm-3, 

and assuming a peak halo dopant concentration of 5x1019 cm-3, the resulting junction 

abruptness between the body region and the halo region would be approximately 

1.7 nm/dec.  This value far exceeds the 2003 ITRS junction abruptness expectations at 
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the 65 nm node, and is about twice as abrupt as what is expected of circa 2005 front end 

process technology [24].  The resulting device structure is illustrated in Fig. 3.10. 

 

 

 

 

 
 

Fig. 3.10.  Device structure of a bulk switching SFET, adapted from [4].  The 
source/drain extension (SDE) would be more appropriately referred to as a halo region, as 
it is of the same dopant type as the body region.  Regardless, the relative simplicity of the 

structure relative to a modern conventional MOSFET is self-evident. 
 

An additional advantage of utilizing bulk switching in SFETs is that the halo 

regions result in Schottky barrier lowering at the M-S junctions, thus reducing contact 

resistance.  The extent of this barrier lowering is largely dependent on the dopant 

concentration in the halo regions, and is covered in more detail in Chapter 4.  The 

utilization of bulk switching in SFETs does not come without its challenges, however.  

One such challenge is controlling the off state current.  For the device in [4] (shown in 

Fig. 3.10), the halo and body regions are p-type, and the gate is a p+ poly gate.  This 

results in the device being not entirely on or off when zero gate bias is applied, due to the 

relatively low to moderate channel resistance at the accumulated p-type surface (caused 

by the p+ poly gate).  Switching to an n+ poly gate, or more preferably a low 

workfunction metal gate, should mitigate this problem considerably if not entirely, albeit 

at the expense of drive current. 
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However, in the essence of process simplicity, one might desire a single metal 

silicide for both the p-channel and n-channel devices, thus allowing for source/drain 

formation and fully-silicided (FUSI) gate formation at the same time for both devices.  

This places a preference toward midgap or near-midgap materials (such as NiSi).  Such a 

midgap gate would indeed result in a better off state than, for example, the p+ poly gate 

for the device in [4]; however, whether the device is completely “off” (the flat region at 

positive VG for Vd = -1 V in Fig. 3.11) depends at least in part on junction abruptness 

and/or channel length (modulating the channel length for a given junction abruptness 

modulates the percentage of the channel region occupied by the halo region).  This is not 

to say that controlling off state current is difficult in bulk switching SFETs – it is simply 

to say that, for the simplest fabrication process, due attention must be paid to gate 

workfunctions and junction abruptness.   

It is also noted that decreasing EOT will help the off state.  For the 25 nm device 

in [4] (Fig. 3.11), the gate oxide thickness was 40 Å – very large for such a small device, 

where EOT ~ 10 Å would be more appropriate – and so the true potential of the bulk 

switching SFET in terms of both on state and off state current (as well as DIBL and 

subthreshold swing) was not realized.  The results from [4] are therefore all the more 

impressive.  Additionally, bulk switching SFETs are best utilized on SOI (or polysilicon-

on-insulator – POI) substrates, as the relatively thin and isolated body regions 

substantially reduce sub-surface leakage, and gate workfunction engineering has a greater 

effect on the total off state current, due to the largely surface channel nature of such 

devices.  It is noted that, for ultrathin body (UTB) SOI substrates (~ 10 nm and lower), 

the inversion channel consumes the entire body thickness and so the device is no longer a 
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“surface channel” device, although the point about gate workfunction engineering 

remains. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11.  Transfer characteristics of a modified Schottky barrier (MSB) FinFET (bulk 
switching SFET), adapted from [22]. 

 

Another challenge with bulk switching SFETs is band-to-band tunneling, as 

Fig. 3.12 illustrates.  This is not so much an issue with silicon as it is with relatively low 

bandgap materials such as germanium or carbon [nanotubes].  In the example of an n-

channel device, if the thermal barrier between the halo region and the body region is 

“large” (e.g., use of a high workfunction gate and low body doping or an undoped body), 

then energy states in the valence band in the body region can line up with energy states in 

the conduction band in the halo region, thus facilitating band-to-band tunneling.  While 

this can happen in silicon-based devices, they have a larger bandgap than germanium 
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based or carbon nanotube based devices, which results in a wider tunneling barrier, and 

hence less tunneling.   

 

 

 

 

 

 

 

 

Fig. 3.12.  Illustration of band-to-band tunneling leakage in an n-channel bulk switching 
SFET or CNTFET, adapted from [3]. 

 

In a test environment, for bulk switching devices with chemically doped halo 

regions, one can determine whether the leakage in the region of gate biases appropriate to 

induce band-to-band tunneling is actually said tunneling or if it is simply inversion of the 

halo regions (which would also result in ambipolar behavior) by plotting IDS vs. VDS in 

this region of gate biases.  If band-to-band tunneling is the dominant leakage mechanism, 

then a negative differential resistance (NDR) region should be observed, because as VDS 

increases, the valence-to-conduction band overlap at the drain decreases, thus increasing 

the tunnel barrier width, thus reducing band-to-band tunneling.  The increase in tunnel 

barrier width is replaced by a decrease in thermal barrier height between the halo region 

at the drain and the lightly doped or undoped body region, and so IDS increases again (this 

is not unlike the I-V characteristic of a tunnel diode).  If inversion of the halo regions is 
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the dominant leakage mechanism in said range of gate biases, then the IDS vs. VDS curve 

would saturate with no NDR region, no matter how high VDS is driven to. 

For a given device using a given semiconductor, one can decrease the possibility 

of band-to-band tunneling leakage by creating another thermal barrier within the lightly 

doped/undoped body region.  This is illustrated in Fig. 3.13, where there is an undoped 

portion of the body region directly at the center, surrounded by a lightly doped body 

region, surrounded by halo regions.  The undoped portion at the center (region B’) 

provides the same off state thermal barrier as before, but the lightly doped regions 

surrounding the undoped region result in a wider tunnel barrier.  While this has been 

demonstrated using back-gated CNTFETs [3], a practical CMOS implementation would 

be more challenging, as patterning the undoped region requires a critical dimension that 

is considerably smaller than the gate length.  With the appropriate device design, 

however, the “conventional” bulk switching SFET/CNTFET should prove sufficient for 

high performance CMOS at aggressive scales. 

 

 

 

 

 

  

 

Fig. 3.13.  Band diagram illustration of a bulk switching n-channel SFET or CNTFET 
with two thermal barriers within the body region, adapted from [3]. 
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Chapter 4 
 

Development of a Mathematical Model for SFETs 
 
 

 
4.1 Model Approach 
 

A relatively simple approach was taken to developing the mathematical model 

described in the following pages.  First, an energy band model was developed to allow 

one to determine the valence band or conduction band behavior for a given device 

structure at varying gate and drain biases.  These energy bands were then used to 

compute the total thermal barrier height to a given carrier in question, as well as the 

tunneling barrier width.  Schottky barrier lowering (SBL) was incorporated into the 

model, although the “rounding off” at the top of the barrier was not accounted for – the 

abrupt characteristic of the ideal Schottky barrier was maintained, while simply 

decreasing its barrier height in accordance to the barrier lowering conditions.  It is 

assumed in this model that the rounding off of the potential profile at the top of the 

Schottky barrier does not appreciably change the end result.   

For the tunneling model, an Airy function transfer matrix approach was utilized, 

which is considered to be more accurate than the Wentzel-Kramers-Brillouin (WKB) 

approximation for very narrow barriers (i.e., high gate biases).  The WKB model was also 

utilized in the essence of comparison.  Total current injection was performed by taking a 

Riemann sum over a fine energy grid within a particular energy range, instead of 

performing an integral within this range (there is no mathematical justification for this – 

it was simply done to make the code writing easier).  Model calculations were performed 

in MATLAB 7.  It is noted that this model is a one-dimensional model, and only treats 

 55



current flowing at the surface of the device as a uniform sheet of charge.  Subsurface 

current is either assumed or determined from empirical data, but in both cases is treated 

as independent of gate bias.   

In addition, the use of fitting parameters, combined with the relative simplicity of 

the model, suggest that the model is not meant to predict specific behavior with high 

accuracy.  Instead, it is best utilized in characterizing existing data to allow one to gain 

fundamental insight into the operation of a particular device structure, and to determine 

how specific changes to this structure may change the device performance.  As it 

currently stands, this model does not include a universal mobility model for the channel 

region, and so ballistic transport is assumed.  Furthermore, this model, in its current 

iteration, is specific to single gate devices, and assumes some arbitrary degree of gate 

overlap to the source/drain regions (which cannot be varied).  Therefore, the effect of 

ultrathin body double gate devices, as well as the effects of overlap/underlap capacitance 

on high frequency operation, cannot be studied with this model.  Again, this is a 

relatively simple model, developed for the sole purpose of gaining fundamental insight. 

 

4.2 Energy Band Model 

The energy band model used was adapted from the threshold voltage model of 

Liu et al. [1] and modified to result in a conduction or valence band profile.  The 

expression for the modified energy band model is as follows: 
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where E is the carrier energy, VDS is the drain-source voltage, Lch is the channel length, x 

is the position across the channel, Vbi is the built-in voltage of the Schottky diode in 

equilibrium, φB is the Schottky barrier height (SBH), l is the characteristic length, defined 

in (2) [1], Ψslc is the long channel surface potential, defined in (3), εsi and εox are the 

relative dielectric constants of silicon and oxide, respectively, ε0 is the vacuum 

permittivity, tox is the gate oxide thickness, WDmax is the maximum gate-induced depletion 

width into the body region, Nsub is the substrate doping level, q is the electron charge, VGS 

is the gate-source voltage, φms is the metal-semiconductor workfunction, Qox
’ is the oxide 

interface charge per unit area (set to zero for this work), Cox
’ is the oxide capacitance per 

unit area, and η is a fitting parameter which has a dependence on Lch and VDS.  Where 

there are varying ± signs, the top is for an n-type body region, while the bottom is for a p-

type region (equations beyond this point assume an n-type body region).  While this 

model was only noted in [1] to perform satisfactorily down to Lch = 100 nm, it 

nevertheless provides a reasonable and relatively simple starting point for future work in 

modeling sub-100 nm SFETs. 

 With an energy band profile, it is now possible to find the electric field, ξ, at the 

source-body or drain-body junction at a given energy.  This electric field is used in 

calculating the tunneling probability for a given carrier at a given energy, and is simply 

the derivative of (1).  For electrons, the negative derivative is taken, while for holes, since 
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the energy bands must bend in the opposite direction to induce tunneling, the positive 

derivative is taken: 
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where WB is the tunnel barrier width at a given energy level.  This is found by replacing x 

with WB in (1) and solving for WB.  A quadratic in exp(WB/l) results, ultimately giving the 

expression shown in (5), where Bb, Cc, and Dd are defined in (6), (7), and (8), 

respectively. 
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 The use of the positive or negative square root term in (5) depends on the 

curvature of the energy band in question.  Positive (convex – contact potential 

modulation) curvature requires the use of the positive square root, while negative 

(concave – Schottky barrier modulation) curvature requires the use of the negative square 

root.  This is important to note; otherwise, the calculated barrier width becomes negative. 

 It was noted in [1] that l is proportional to WDmax
2/3, which implies that the fitting 

parameter η is also dependent on WDmax.  Once η is found for a given technology, 
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however, it need not be changed if one intends to model the effect of modulating Nsub.  

Using the relationship between l and WDmax, a change in the characteristic length can be 

found with (9), where ni is the intrinsic carrier concentration, Nsub2 is the new substrate 

doping, l2 is the new characteristic length, and Nsub1 and l1 are, respectively, the substrate 

doping and characteristic length of the original device from which η was found.  This 

dependence between l and WDmax, however, was found in [1] empirically with devices 

having source/drain junction depths on the order of 0.2 µm to 0.35 µm, and so for the 

model presented here, the relationship is assumed to hold true for sub-100 nm devices. 

3/1

1
2

2
1

12

ln*

ln*
*

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

i

sub
sub

i

sub
sub

n
N

N

n
N

N
ll        (9) 

 It is important to note that the principal limitation of this energy band model is 

that it does not account for screening of the gate field by inversion or accumulation 

carrier charge.  In other words, the sensitivity of the change in band bending on VGS is 

only dependent upon l (which depends on η) and not the charge in the channel.  For small 

values of l (large values of η), the change in surface potential is overestimated and may 

give misleading results.  For non-negligible values of l, such as for the particular device 

structure discussed later where l is at least 1/3 of Lch for the chosen values of η, this 

model seems to approximate the surface potential well enough to gain appropriate insight 

into the device behavior.  A more accurate model would replace (3), which is directly 

proportional to VGS, with a self-consistent solution, as well as account for carrier 

confinement at high gate fields.  However, the complexity of the modeling code would 

increase due to the lack of a closed form solution to Ψslc for a given VGS. 
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4.3 Tunneling Models 

There are three approaches in particular that are used to model tunneling current 

in SFETs – Airy functions in a transfer matrix [2], [3], the Wentzel-Kramers-Brillouin 

(WKB) approximation [4], [5], and a self-consistent solution of the Poisson and 

Schrödinger equations, usually in one dimension [6] or two dimensions [7], [8].  The 

WKB approximation is computationally simpler than the Airy function approach, but it is 

only accurate for slowly varying potentials (small electric fields) [9].  The self-consistent 

solutions performed in [6]-[8] are very interesting, but it was not made clear whether 

and/or how SBL was included.  Also, the mathematical complexity, and hence 

computational cost, can be relatively high.  The Airy function approach reaches a 

“middle ground,” whereby high accuracy can be achieved with a moderate mathematical 

complexity and computational cost.  The Airy function approach and the WKB 

approximation will be explored in this discussion. 

The tunneling probability from the WKB approximation, modified to include SBL 

and assuming a triangular potential profile, can be expressed as: 
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where m* is the effective carrier mass (0.26m0 for electrons and 0.36m0 for holes, where 

m0 is the electron rest mass), ħ is Planck’s constant (in units of J⋅s), ∆φB is the SBL term, 

and ξ is the electric field from (4), but in units of V/m (likewise, the WB term would be in 

meters, whereas in (5) it is in units of cm). 

Normally, the barrier height term used in the WKB approximation is (φB – ∆φB – 

E)3/2; however, this approach does not account for the barrier width – there is only a 
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barrier height and lateral field dependence.  At gate biases below the source-body 

flatband voltage, Vsbfb, a conventional thermal barrier produced by the dopant-induced 

and/or gate workfunction-induced band bending within the body region is modulated 

[10].  Beyond Vsbfb, the Schottky barrier is modulated; however, even for |VGS| < |Vsbfb| 

there exists a tunneling barrier to inversion carriers at some energies, an example of 

which is shown in Fig. 4.1.  This barrier is much wider than the Schottky barrier under 

inversion, and so for the WKB model, the mathematical effect is a change in the barrier 

height.  This is accounted for in the ξ⋅WB term in (10), in which the E and φB 

dependencies are embedded.  Without the inclusion of WB dependence in the WKB 

model, the calculated tunneling probabilities for both cases in Fig. 4.1, where the electric 

fields are roughly equal, would be roughly the same. 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1.  Example valence band profiles of a p-channel SFET.  Energies are taken 

relative to the hole SBH. 
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 The Airy function tunneling model used was adapted from the work of Brennan 

and Summers [9], which used Airy functions and transfer matrices in a multiquantum 

well structure.  This model, although more complicated, is considered to be much more 

accurate than the Wentzel-Kramers-Brillouin (WKB) approximation commonly used 

when modeling tunneling current.  As a Schottky barrier presents only one quantum 

mechanical tunnel barrier, only one transfer matrix is used.  Throughout this chapter, 

unless otherwise noted, tunneling current modeling will be performed with this Airy 

function model.  The expression for tunneling probability is as follows [9]: 
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where TTL is the tunneling probability, A, B, C, and D are elements of the S(0,WB) transfer 

matrix, shown in (13)-(16), and k is expressed as: 
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h

Emm
qk =          (12) 

where m* is the effective carrier mass (0.26 for electrons and 0.36 for holes in silicon), m0 

is the electron rest mass, and ħ is Planck’s constant (in units of J⋅s)  In the application to 

SFETs, k and k’ are equal (or rather, using k’ with E = E’ + qVDS, where E’ is the Fermi 

energy at the source terminal, made no noticeable difference).  The elements of the 

S(0,WB) matrix are: 

( )( ) ( )( ) ( )( ) ( )( )BiiBii WxAxBWxBxAA ==−===Γ ρρρρ '' 00*    (13) 

( )( ) ( )( ) ( )( ) ( )( )BiiBii WxBxAWxAxBB ==−===Γ ρρρρ 00*    (14) 

( )( ) ( )( ) ( )( ) ( )( )BiiBii WxAxBWxBxAC ==−===Γ ρρρρ '''' 00*    (15) 

( )( ) ( )( ) ( )( ) ( )( )BiiBii WxBxAWxAxBD ==−===Γ ρρρρ 00* ''    (16) 

 62



( )( ) ( )( ) ( )( ) ( )( )0000 '' ==−===Γ xAxBxBxA iiii ρρρρ     (17) 

where Ai(ρ), Ai’(ρ), Bi(ρ), and Bi’(ρ) are Airy functions of the first and second kind and 

their derivatives.  Γ is a common term to (13) – (16) that results from the matrix algebra 

to find the S(0,WB) matrix.  The expression for the spatial parameter ρ(x) is given as: 
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where x and ξ are in units of m and V/m, respectively, E is taken from (1), and ∆φB is the 

SBL induced by the lateral field, expressed as: 
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where α is a fitting parameter.  Classical theory sets α to 1 [12]; however, fitting this 

model to empirical data (shown later) suggests that this value varies and depends on VDS 

and Lch.  In terms of physical meaning, α may be related to a dependence of SBL on 

Heine tail decay, as suggested in [13], and so hints at barrier lowering mechanisms 

beyond those induced by the lateral field alone [13], [14].  It may also account for, to 

some extent, the exclusion of gate field screening at large surface potentials.  Although in 

this discussion the determination of α is somewhat arbitrary, the resulting extent of 

barrier lowering to inversion carriers of ~0.1 – 0.15 eV (shown later) to achieve a data fit 

is similar to that in [15].  Also, as mentioned previously, this model assumes an abrupt 

Schottky barrier under all electric field conditions, and so the fitting parameter may also 

account for the difference between the modeled potential profile and an actual potential 

profile, for which the top of the Schottky barrier is rounded off.  It should be noted that 
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(13)-(16) are set up to model tunneling at the source of an SFET.  For tunneling at the 

drain (i.e., accumulation carrier leakage), the x = WB term is replaced with x = Lch  - WB.   

 

4.4 Contact Potential 

As discussed in Chapter 3, part of the subthreshold region of operation in SFETs 

involves modulation of the contact potential, φc, which is a thermal barrier presented to 

carriers beyond the SBH.  For inversion carriers, this thermal barrier is induced by body 

dopants and/or the gate workfunction, either of which will result in band bending (and 

therefore a contact potential) in the body region.  The contact potential is greater than 

zero for carriers at the source when ξ in (4) is negative.  When this condition is met, 

finding the contact potential requires finding the position xmax where ξ is zero and then 

solving for the energy, E, in that position.  To do this, WB in (4) is replaced with xmax, 

which is then solved by setting ξ to zero.  This position is plugged into (1), in which φB is 

set to zero.  The solution for xmax is shown in (20).  For long channel behavior (Lch >> l 

and/or small VDS), (20) reduces to Lch/2.  Once VGS reaches the source-body flatband 

voltage, Vsbfb, φc becomes zero and now the Schottky barrier is modulated.  For SFETs 

fabricated on bulk substrates, φc is of particular importance, as it allows for an 

exponential control of subsurface leakage.   
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 It is also noted that, for long channel behavior, φc = Vbi.  As the channel length is 

reduced and the source/drain depletion regions begin to overlap, φc starts to decrease and 
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eventually reaches zero.  The same effect occurs as VDS is increased (DIBL).  The extent 

of short channel behavior, then, can also be monitored by observing the change in Vsbfb 

with Lch for VDS = VDD (the power supply voltage).  One can thus determine when 

punchthrough occurs by finding where Vsbfb = 0 V. 

 

4.5 Obtaining the Total Current 

By understanding the carrier transmission (tunneling or thermal) at a given 

energy, the total transmission can be found by integrating over an energy range.  For a 1-

dimensional system, and under the assumption of ballistic transport, the tunneling current 

density and thermal current density at the surface are found as shown in (21) and (22), 

where AR is the effective Richardson’s constant (112 A/cm2⋅K2 for electrons, 32 for holes 

in silicon), T is the temperature, kB is Boltzmann’s constant, φBinv and φBacc are the 

inversion mode and accumulation mode SBHs (integration takes place over the energy 

gap of the semiconductor), respectively, and fs and fd are the Fermi-Dirac (F-D) 

distributions at the source and drain, respectively.  As the F-D distribution shows the 

probability of a carrier existing at a given energy, and TTL shows the probability of a 

carrier tunneling through the Schottky barrier in question at a given energy (in the case of 

(22), TTL is 1), the integrands in (21) and (22) effectively model the probability of a 

carrier existing in the channel at a given energy.  Multiplying this probability by AR*T/kB 

results in the density of injected current through and over the Schottky barrier in 

question. 
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 Model calculations were performed in MATLAB 7, although instead of 

performing the integrals in (21) and (22), Riemann sums over a fine energy grid (∆E = 

0.01 to 0.001 eV) were performed.  In the case of the thermal current calculation, the 

upper limit of the “integral” is not taken to infinity – a value between 1 and 3 (depending 

on VDS and whether one is modeling current at the source or at the drain) is equally 

useful, as the F-D distribution at increasing energies becomes very small very quickly at 

room temperature. 

 Since ∆φB causes a shift in both the electron and hole barrier heights, for the 

thermal current only, this is equivalent to an energy shift of the entire bandgap relative to 

the Fermi level in the metallic source/drain regions.  This can be expressed 

mathematically by shifting the F-D distributions in the source/drain regions by ∆φB 

(positive for electrons, negative for holes).  In [3], the integration limits for (21) were not 

shifted by ∆φB in order to maintain relative computational simplicity and to achieve 

smoother curves with a larger energy grid (less computational time).  However, this 

resulted in the inclusion of part of the F-D distribution above φB - ∆φB, thus resulting in 

an overestimation of the tunneling current, which is quantified in Fig. 4.5 in Section 4.7 

for both the WKB model and the Airy function model.   

 In some approaches [4], [5], the F-D distribution is replaced with a Maxwell-

Boltzmann (M-B) distribution when modeling thermal current, as the distribution tends to 

be small above the Schottky barrier, in which case the F-D and M-B distributions can be 

used interchangeably.  This also simplifies the integral in (22).  Such an approach is not 
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taken here, however, as ∆φB shifts the position of φB relative to the Fermi level, 

effectively changing the distribution above the Schottky barrier.  Using an M-B 

distribution in such a case can result in a drastic overestimation of the thermal current for 

small barrier heights and high lateral fields.  That is, as SBL increases, the difference 

between the solutions to the M-B and F-D distributions grows considerably. 

 The integrals in (21) and (22) give current density in units of A/cm2.  To acquire 

units of µA/µm, the channel is assumed to exist at the surface uniformly with a depth of 

5.56 nm, and so (21) and (22) are multiplied by a constant of 5.56x10-5 µA⋅cm/A.  This 

channel depth is a linear extrapolation from the observation that, in SFETs, 90% of the 

current is injected within the first 5 nm below the surface [2]. 

 

4.6 Comparison to Data 

Model calculations were compared with data (extracted by hand) from the sub-

30 nm and sub-80 nm p-channel SFETs from [16], shown in Figs. 4.2 and 4.3, 

respectively.  These particular devices were chosen because of the information available 

regarding the design details.  For both devices, the source/drain regions are PtSi (φB ~ 

0.87 eV to electrons, ~ 0.25 eV to holes), Nsub = 1x1018 cm-3, tox = 18 Å, n+ poly gate.  Lch 

was set to 25 nm and 75 nm for the sub-30 nm and sub-80 nm devices, respectively.  VGS 

was driven out to 3 V because of the relatively thick tox, for which 3 V puts the oxide 

field at about 7 MV/cm [16], which is typical for current devices.  For each plot, α and η 

were adjusted separately for electrons and holes.  The “model” for sub-surface leakage 

was simply a chosen current density to result in the appropriate minimum for the total 

current density.  A more rigorous prediction of sub-surface leakage would require a 2-
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dimensional model.   

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2.  Transfer characteristics for 25 nm p-channel SFET.  In (a), VDS = -1.1V, α and 
η are 1.1 and 2.6, respectively, for holes, and 0.1 and 1.1, respectively, for electrons.  In 

(b), VDS = -0.1 V, α and η are 0.9 and 1.2, respectively, for holes, while electron injection 
was not included.  As both figures show, the tunneling contribution in the on state is 

considerably lower than the thermal contribution. 
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Fig. 4.3.  Transfer characteristics for 75 nm p-channel SFET.  In (a), VDS = -1.1 V, α and 
η are 1.1 and 1.8, respectively, for holes, and 0.1 and 0.9, respectively, for electrons.  In 

(b), VDS = -0.1 V, α and η are 1.1 and 1.2, respectively, for holes, while electron injection 
was not included.  Much like Fig. 4.2, the tunneling contribution in the on state is 

considerably lower than the thermal contribution. 
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While a very good fit to data can be achieved with this model for the saturation 

mode of operation (Figs. 4.2a and 4.3a), it is clear that the linear mode of operation 

(Figs. 4.2b and 4.3b) does not allow for the same type of fit.  Most likely, this has to do 

with the aforementioned exclusion of a universal mobility model, as well as screening of 

the gate field by charge in the channel.  For low VDS and moderate to high VGS, the 

vertical field is large enough to result in mobility degradation due to surface scattering at 

the semiconductor-gate dielectric interface.  At high VDS, surface scattering is very small 

if not negligible, and for small enough devices (sub-100 nm), carrier transport can be 

ballistic or near ballistic (depending on temperature, body dopant concentration, etc.).  

Thus, the channel mobility has a stronger dependence on gate bias for small VDS than for 

high VDS, which is an effect that the fitting parameters α and η do not seem to be able to 

account for in terms of achieving a fit to data. 

Including a more accurate solution to the Poisson equation (i.e., gate field 

screening) and a universal mobility model would naturally change the required α and η 

values to achieve a data fit.  More specifically, η may have to be increased, while α 

would be changed to account for any discrepancy that the channel mobility does not 

cover for VGS > Vsbfb.  This lends weight to the idea that the ballistic transport assumption 

is not entirely valid, even in the saturation mode transfer curves, although the extent of 

this discrepancy has been left to future modeling studies.  The important point that this 

uncovers is that modeling SBL in SFETs with appropriate rigor may not be as simple as 

using (19) with α set to 1, and that in this device structure, the Schottky barrier might not 

be the limiting factor.  While the Schottky barrier is a limiting factor to drive current in 

some device structures, all device details must be considered (i.e., channel mobility 
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reduction due to increased body doping or ultrathin body regions, EOT, etc.).  

As this model suggests, regardless of the values chosen for α and η, tunneling 

current does not dominate current flow for these particular devices when the Airy 

function method is used, as it was in [3].  In the case of Figs. 4.2 and 4.3, the hole 

tunneling contribution to the total on state current is, at best, on the order of a few percent 

(Fig. 4.4), and hole thermal current dominates regardless of whether φc or φB is being 

modulated.  Increases in the total current for VGS beyond Vsbfb are therefore due primarily 

to the increase in thermal current from SBL and not the increase in tunneling current 

from Schottky barrier narrowing.  While the tunneling transfer curve follows a similar 

slope to the total current density for VGS > Vsbfb, this can be misleading or mistaken to 

dominate the total current in this region. 

Looking further at Fig. 4.4, the hole tunneling percent of the total current does not 

even break 10 % for the particular device structure modeled.  Recalling that the tunneling 

current modeled in [3] was an overestimation, the actual maximum contribution for this 

device is closer to 5 %, as will be shown in Section 4.7.  As expected, the 25 nm device, 

which is of the same structure (i.e., body doping, gate dielectric thickness, etc.), has a 

lower |Vsbfb| than the 75 nm device by about 200 mV.  This suggests a greater SCE for the 

25 nm device, which is also reflected in the results for hole thermal barrier height versus 

VGS in Fig. 4.4.  For the 25 nm device, this barrier height is always smaller, especially 

below Vsbfb.  The somewhat parabolic behavior for the hole tunneling percent of total 

current for VGS beyond Vsbfb has to do with carrier action at “low” and “high” lateral fields 

at the source-body junction.  As VGS increases beyond Vsbfb, tunneling current at the top of 

the barrier is replaced by thermal current at that energy as ∆φB drops φB below its 
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previous value.  At high VGS, the lateral field is very strong (WB is very small), and so the 

hole tunneling contribution increases, but never surpasses the thermal current, as the 

lateral field also causes barrier lowering. 

 

 

 

 

 

 

 

 

 

 
Fig. 4.4.  Hole thermal barrier height and tunneling percent of total current versus gate 
bias for the 25 nm and 75 nm p-channel SFETs in this discussion.  Although the SBL 
term drops φB to ~ 0.1 eV, the modeled tunneling current contribution in both devices 

does not exceed 10 % of the total current. 
 

This effect of dominating thermal current only occurs within a range of barrier 

heights, though, as for a large barrier height (such as PtSi to electrons), the thermal 

current is very small.  In such a case, and under very high lateral fields, tunneling current 

dominates over thermal current.  This is shown in Figs. 4.2a and 4.3a at low |VGS|, where 

electron tunneling injection at the drain due to the high body doping is the dominant 

leakage mechanism.  Although data for electron thermal current is not included in 

Figs. 4.2 and 4.3, it was calculated to be less than 1x10-10 µA/µm, and so was treated as 

negligible. 
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4.7 Comparison of Tunneling Models 

Regarding the case of “shifted” and “non-shifted” integration limits for (21) 

mentioned earlier, Fig. 4.5 shows the disparity between these two approaches for both the 

Airy function and the WKB model.  In the particular case of the device modeled, Vsbfb is 

around –1 V, and so data from –1 V to –3 V is the data of interest here.  As Fig. 4.5 

shows, when the integration limits are not shifted, the overestimation in tunneling current 

is on the order of 160-220 %, regardless of whether the Airy function model or the WKB 

model is used.  Technically speaking, in this analysis, the integration limits were not 

exactly shifted, but instead the part of the F-D distribution above φB - ∆φB as a function of 

VGS was removed.  This results in some underestimation of the tunneling current, as 

tunneling at the other end of the energy gap deep below the SBH becomes excluded.  The 

actual tunneling current prediction from either model, therefore, would be somewhere in 

between the overestimated and underestimated cases, but much closer to the 

underestimated case, as tunneling deep below the SBH (where WB is larger) provides a 

smaller contribution to the total tunneling current.  The differing behavior between the 

WKB and Airy function models in Fig. 4.5 can be traced back to the exclusion of 

tunneling deep below the SBH.  As both models provide a different tunneling probability 

as a function of energy, the contribution of tunneling deep below the SBH is naturally 

different between the two models, thus resulting in at least part of the observed difference 

in Fig. 4.5.  For the rest of this section, the “underestimated” case (i.e., shifted integration 

limits) is used unless otherwise noted. 
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Fig. 4.5.  Percent overestimation of tunneling current versus gate bias for the Airy 

function and WKB tunneling models when SBL is included.  This overestimation is not 
an overestimation of the actual tunneling current, but of the modeling discrepancy 

between the cases of shifted and non-shifted integration limits.  Smoother curves can be 
achieved with a finer grid structure, but this imposes a tradeoff between curve 

smoothness and computational time. 
 

There is an issue of computational requirements when one considers the inclusion 

or exclusion of shifted integration limits for the tunneling current calculations.  The code 

required to “shift” the integration limits (or rather, to remove the F-D distribution above 

φB - ∆φB, as mentioned earlier) is not terribly complicated; however, the effect is a change 

in the smoothness of the tunneling transfer curve, as some portions of the energy grid are 

not used throughout the entire VGS range.  Much like the thermal current calculation, very 

fine energy grid spacings of 0.001 eV or lower are required to achieve a smooth curve, 

and so the computational time is increased.  In the case of non-shifted integration limits, 

the curve smoothness is largely independent of the size of the grid spacing – only the 

accuracy is dependent on the grid spacing, and so ∆E ~ 0.01 eV gives very nice results.  
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However, as not shifting the integration limits is not as accurate a representation of the 

device behavior, the resultant tunneling current calculations do not exactly represent the 

“actual” tunneling current one should expect, as Fig. 4.5 illustrates.  A “cheap” approach 

out of this predicament would be to simply divide the results of the non-shifted 

integration limits by 2, since Fig. 4.5 shows that the aforementioned overestimation 

averages out to somewhere around 200 %.  None of the figures in this chapter use such an 

approach, though, as it does not have a rigorous physical foundation. 

 

 

 

 

 

 

 

 

 

 
Fig. 4.6.  Hole tunneling vs. VGS for the 25 nm p-channel SFET using the Airy function 

and WKB models, with and without SBL.  In both cases, the WKB model predicts greater 
tunneling current than the Airy function model. 

 
 

Fig. 4.6 contains the model results for hole tunneling current density in the 25 nm 

p-channel SFET for both the Airy function model and the WKB model, with and without 

SBL.  For VGS < Vsbfb, all four cases give almost the same result.  This is not surprising, as 

in this region, the contact potential is still being modulated, and so the tunneling barrier is 
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still very wide (Fig. 4.1).  Beyond Vsbfb, the WKB model estimates a higher tunneling 

current than the Airy function model, with and without SBL.  Although the WKB model 

without barrier lowering gives a similar result to the Airy function model with barrier 

lowering, the exclusion of barrier lowering is a misrepresentation of what is physically 

happening in the device.  With the inclusion of barrier lowering, the WKB model predicts 

much higher tunneling current.  This is where the WKB model breaks down, and may 

also explain why tunneling current was thought to dominate in these devices.  While 

there are indeed some instances where tunneling current can dominate the total current 

flow in SFETs (Fig. 4.8), in the design cases of interest (small φB), such is not the case. 

 

 

 

 

 

 

 

 

 

 
Fig. 4.7.  Hole tunneling percent of total hole on state current versus gate bias for the 
Airy function and WKB models in the 25 nm p-channel SFET, with and without SBL.  

Although the non-SBL case for the WKB model is close to the Airy function model with 
SBL, including SBL in the WKB model gives drastically different results. 
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Fig. 4.7 illustrates the percent contribution of the modeled tunneling current to the 

total current in the 25 nm p-channel SFET.  In all four cases, the thermal current is the 

same and modeled with the effect of SBL.  As Fig. 4.7 shows, the WKB model with SBL 

predicts an almost equal contribution (35-40 %) to the total current as the thermal current, 

while the Airy function model with and without SBL predicts a much lower contribution 

of 2-5 %.  This analysis is extended further with Fig. 4.8, which illustrates the tunneling 

percent of total current versus φB (equilibrium value) at |VGS| = 3 V when SBL is 

included.  Fig. 4.8 shows data for both p-channel and n-channel SFETs, whereby the n-

channel SFET is of the same device structure, but uses a p+ poly gate and a p-type body 

region instead of an n+ poly gate and an n-type body region.   

 

 

 

 

 

 

 

 

 

 

Fig. 4.8.  Tunneling percent of total on-state current vs. electron SBH for 25 nm p-
channel and n-channel SFETs.  In the low SBH regime (~ 0.3 eV and below for electrons 
and ~ 0.8 eV and above for holes), the WKB model without SBL and the Airy function 
model with SBL predict similar contributions of tunneling current.  The disparity grows 

considerably outside of these regions, however. 
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The mechanisms behind the particular form of the curves in Fig. 4.8 are not 

complicated.  For high SBH values, the thermal current is very small, and even though 

SBL will decrease the SBH, the remaining Schottky barrier is still relatively large.  Thus, 

in such an instance, Schottky barrier narrowing (which increases tunneling current) has a 

greater effect on increasing current than SBL.  As the SBH decreases, thermal current 

begins to dominate, and so the tunneling contribution decreases.  At low SBH values, 

though, the tunneling contribution becomes significant again.  This is because at such low 

values, even though the tunneling probability is the same at a given energy from the top 

of the Schottky barrier, the tunneling injection increases due to the fact that the top of the 

Schottky barrier exists at an energy which corresponds to a larger part of the F-D 

distribution.  In other words, while the probability of tunneling through the barrier at a 

given energy from the top of the barrier is the same, the probability of a carrier existing at 

said energy increases as the SBH decreases.  Thus, more carriers are available to “try” 

and tunnel through the barrier, which, for a given percentage of transmission, results in 

more actual current. 

It is interesting to note that, in Fig. 4.8 and for the particular device structure 

modeled, the WKB model without SBL predicts similar tunneling current to the Airy 

function model for low SBH values.  Also, the disparity between the two models is 

smaller for p-channel operation than for n-channel operation.  This is possibly due to the 

lower effective mass for electrons, for which the WKB model may be more sensitive than 

the Airy function model.  As the SBH increases, the disparity grows tremendously, 

regardless of the channel type and whether or not SBL is utilized in the WKB model.  For 

either model, however, in the low barrier height regime, it is clear that tunneling current 
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is not the dominant current mechanism.  As the WKB model normally predicts a larger 

tunneling current injection than the Airy function model, particularly when SBL is 

included, one might be misled into concluding that tunneling current is the limiting factor 

to optimal SFET performance due to the much stronger dependence of the WKB model 

on SBH.  While tunneling current is a limiting factor, though, it is not the limiting factor 

– thermal current over the Schottky barrier is the primary contributor to SFET drive 

current for low SBH values (Fig. 4.8), particularly in the case of the Airy function model.   

 

 

 

 

 

 

 

 

 

 
Fig. 4.9.  Drive current density vs. electron SBH for the p-channel and n-channel SFETs 

in question, using the Airy function and WKB models.  SBH was varied between 0.05 eV 
and 1.1 eV in 0.05 eV increments. 

 
 

In observing the total modeled drive current vs. SBH for the n-channel and p-

channel devices in question (Fig. 4.9), the inaccuracy of the WKB model becomes even 

more apparent, particularly for the n-channel device.  As the SBH approaches midgap 

values, the WKB model with SBL predicts a much higher level of tunneling current, 
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which actually starts to dominate over thermal current as Fig. 4.8 also shows.  For SBH 

values around 0.4 eV and below for electrons and around midgap and below for holes 

(which is midgap and above for the electron SBH), the Airy function model with SBL 

and the WKB model without SBL result in a surprisingly good agreement.  However, 

while one might argue that the good agreement between the WKB model without SBL 

and the Airy function model with SBL warrants the use of the WKB model due to its 

relative mathematical simplicity over the Airy function approach, again, the exclusion of 

SBL is a misrepresentation of what is physically happening in the device.   

 

 

 

 

 

 

 

 

 

 
Fig. 4.10.  Comparison of Airy function model with the inclusion of thermal current and a 
particular utilization of the WKB model without thermal current to empirical data for the 

25 nm p-channel SFET modeled throughout this section. 
 

If the WKB model is utilized with SBL, without “shifting” the previously 

discussed integration limits (the overestimated case discussed previously), and without 

accounting for thermal current over the Schottky barrier, a surprisingly close fit to 

empirical data, as well as to the Airy function model with the inclusion of thermal 
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current, can be achieved at and near the on state.  This is shown in Fig. 4.10, in which the 

p-channel SFET is modeled, and the empirical data extracted from [16].  The increase in 

current at low gate biases in the empirical data is due to electron tunneling injection at the 

drain.  As only inversion carrier current is of interest in this section, neither model used 

here fully fits the data.  However, a very good fit with the Airy function model has been 

achieved over the entire VGS range, and is covered in Section 4.6.  In any case, it is 

important to note that caution must be taken in choosing a particular tunneling model, as 

the fundamental implications of the results can be misleading.  While the WKB model is 

useful for relatively large tunnel barriers such as the source-to-drain barrier during 

contact potential modulation (low VGS range in Figs. 4.1 and 4.6), its utility is diminished 

in the application to Schottky barrier modulation, where the lateral electric field induced 

by the gate is relatively large and the consequent tunnel barrier is very narrow. 

 
 
4.8 Device Optimization: Conventional SFETs 

 
 Optimizing thermal current over the Schottky barrier, interestingly enough, also 

happens to optimize tunneling current through the barrier, so again one must take caution 

in interpreting their observations of increased or decreased current in a particular device 

structure.  Ultimately, what is required for optimal SFET performance is a small Schottky 

barrier, and not just in terms of height – the barrier width must also be small.  A smaller 

barrier width implies greater SBL due to the higher lateral field, which decreases the 

barrier height and increases thermal current.  This also has the added benefit of increasing 

tunneling injection.  In terms of integrating this requirement into an actual device, it has 

been suggested that the electrostatic effects in ultrathin body SOI substrates increase the 

 81



electric field at the Schottky source/drain regions, as the gate assumes greater control 

over the potential within the entire body region [6].   

Another approach to increasing SFET performance is also possible, whereby 

ultrashallow halo regions of very high dopant concentration and lateral abruptness can be 

formed to induce a large field at the M-S junctions [17].  While these two approaches 

modify the barrier width, it has also been shown that the actual height of the Schottky 

barrier can be “tuned” to very low values for electrons by implanting valence-mending 

adsorbates before metal deposition and subsequent silicide formation [18].  Whether such 

an approach can or will be demonstrated for holes, however, remains to be seen.  For the 

remainder of this section, unless otherwise noted, model results utilize the Airy function 

tunneling model in the overestimated case discussed previously. 

For a given device structure, modulating the SBH modulates the accumulation 

carrier injection at the drain as well as the inversion channel drive current, as Fig. 4.11 

shows for the 25 nm p-channel structure modeled throughout this chapter.  Also, as the 

electron barrier height (φBn) decreases, the trough of the transfer curve is shifted in the 

negative VGS direction.  In the case of the results of Fig. 4.11, switching gate from an n+ 

poly gate to a p+ poly gate would place this trough at VGS = 0 V for φBn values around 

0.65 eV.  Conveniently, NiSi exhibits this value [18].  Likewise for the PtSi source/drain 

device, using a fully-silicided (FUSI) gate would shift the trough of the transfer 

characteristic to about 0 V.  Both of these curves are shown in Fig. 4.12, where electron 

tunneling injection at the drain is significantly reduced at VGS = 0 V (poly depletion is not 

included in this model – only the effect of the gate workfunction shift is accounted for).  

The NiSi implementation exhibits a drive current of 31 µA/µm, which, while respectable, 

 82



is insufficient for such small devices.  The FUSI PtSi implementation not only responds 

better to VGS, but also exhibits a drive current of 1.09 mA/µm – a considerable gain over 

the original implementation (498 µA/µm).  This clearly places a performance preference 

toward PtSi over the much less expensive NiSi for PFET operation.   

 

 

 

 

 

 

 

 

 
 
 

Fig. 4.11.  Modeled transfer characteristics for modified versions of the 25 nm p-channel 
SFET from Fig. 4.2.  Subsurface leakage was excluded, and barrier heights in the legend 
are to electrons.  The 0.87 eV curve is the model result from Fig. 4.2. 

 
 

It is also interesting to note that, for the same device design in Fig. 4.11, changing 

the SBH has little if any effect on the shape of the transfer characteristic, for it is mostly 

just shifted in one direction or another.  The subthresold swing also changes very little if 

at all, and intuitively this would make sense since SBL is largely independent of SBH 

(there is actually a small dependence, as the field at the M-S interface is partly a function 

of SBH, but this dependence is not very large).  Considering how a change in thermal 

current is only dependent on SBL for a change in VGS (assuming ballistic transport), if a 
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device structure does demonstrate a significant change in subthreshold swing with SBH, 

then this change can be attributed to tunneling current; again, as (10) and (13)-(18) show, 

tunneling current has a dependence on SBH and the barrier width at a given energy. 

 
 
 
 
 
 
 

 

 

  

 

 

 

Fig. 4.12.  Modeled transfer characteristics for modified versions of the 25 nm p-channel 
SFET from [16].  Subsurface leakage was set to 1 nA/µm.  Electron injection at the drain 

can be reduced to values less than or equal to the subsurface leakage when the 
appropriate gate workfunctions are utilized. 

 

It turns out that NiSi still has potential in SFETs for both “conventional” and bulk 

switching designs, despite the modeling result in Fig. 4.12.  From a purely SBH 

perspective, it was shown in [18] that the SBH from NiSi to electrons can be reduced to 

values as low as 0.07 eV via implantation of moderate doses of S+ before the Ni is 

deposited and the silicide is formed.  Properly tuned NiSi can therefore serve as an 

excellent material for n-channel SFETs, thus replacing ErSi2 [13], [15] (φBn ~ 0.25 eV) as 

the most promising material of choice.  As Ni is a more common material than Er, a shift 

to NiSi over ErSi2 can also reduce fabrication costs.  Transfer curves for a 25 nm ErSi2 
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device and a tuned NiSi device (same basic structure as the device from Fig. 4.2) are 

shown in Fig. 4.13.  For the n-channel device structure, α and η are 1.1 and 2.6 for 

electrons (inversion carriers in this case), respectively, and 0.1 and 1.1 for holes 

(accumulation carriers in this case), respectively – the exact opposite of the values used 

for the p-channel device modeled throughout this chapter (these values were also used 

previously in this chapter for n-channel investigations).  Drive currents for the ErSi2 

devices with the p+ poly gate and FUSI gate, as well as the tuned NiSi device, are 

modeled as 1.46 mA/µm, 3.31 mA/µm, and 8.91 mA/µm, respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.13.  Modeled transfer characteristics for 25 nm n-channel SFETs using ErSi2 and 
tuned NiSi source/drain regions.  Subsurface leakage was set to 1 nA/µm.  The tuned 
NiSi device with the midgap gate exhibits superior performance to the ErSi2 device. 

 

For the tuned NiSi device with the midgap gate in Fig. 4.13, a lower leakage and 

higher drive current are achieved over the ErSi2 device with the FUSI gate.  Also, the 

tuned NiSi device exhibits a low subthreshold swing over a larger VGS range, resulting in 
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a larger Vsbfb (Fig. 4.14), lower operating voltage capability, and higher SCE immunity.  

It is also interesting to note that SBL results in a negative SBH as the gate-induced 

electric field increases, which meets the recommendation of [7] for high performance 

SFETs.  Even though tuned NiSi exhibits a lower SBH than ErSi2 (0.07 eV vs. 0.25 eV), 

lower leakage is possible via gate workfunction engineering; however, one would expect 

the subsurface leakage to be higher in the tuned NiSi device, and so its advantage over 

ErSi2 may only be realized with ultrathin body devices (i.e., FinFETs, UTBSOI, etc.).   

 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
Fig. 4.14.  Model results for electron barrier height and electron tunneling percent of total 

current vs. VGS for 25 nm p-channel SFETs with ErSi2 and tuned NiSi source/drain 
regions.  Subsurface leakage was set to 1 nA/µm. 

 
 
 

4.9 Device Optimization: Bulk Switching SFETs 

From the perspective of bulk switching SFETs, NiSi is a promising material of 

choice because the bulk switching design allows it to be used for both p-channel and n-

channel devices.  As the primary feature of the bulk switching device is the halo region 
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next to the source/drain silicide, the lateral electric field at the M-S junctions determines 

the maximum current injection that a particular silicide can support.  Under equilibrium, 

this lateral field is defined by the halo dopant concentration, and so for a given VDS, one 

can determine the combinations of SBH and halo dopant concentration that result in the 

desired maximum level of current injection that the source/drain silicide can support.  To 

solve for this requires solving for Poisson’s Equation in the semiconductor.  First, some 

assumptions are made in accordance to the conditions of a bulk switching SFET that 

allow for a simpler solution.  It is assumed that the halo regions are degenerately doped 

and by virtue of this: 1.) the surface potential, Ψs, at the M-S interface is approximately 

equal to the SBH (EF ~ Ec far from the M-S interface); 2.) the minority carrier 

concentration is negligible.  With this in mind, the charge density in an n-type 

semiconductor as a function of distance from the M-S junction, ρ(x), can be expressed as: 

( ) ( )( xnNqx d −= )ρ          (23) 

where n(x) is the electron concentration as a function of distance from the M-S junction, 

which can be expressed as: 

( )
⎟
⎠
⎞

⎜
⎝
⎛ Ψ

=
kT

xqnxn exp)( 0         (24) 

 
where n0 is the equilibrium electron concentration (which can be treated as Nd at 300 K) 

and Ψ(x) is the potential with respect to the “bulk” as a function of distance from the M-S 

junction.  In this analysis, Ψ(x) is treated as increasing when it approaches the conduction 

band and decreasing when it approaches the valence band.  Plugging (24) into (23) gives 

(25). 
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 Poisson’s Equation is expressed in (26), and when combined with (25), gives the 

expression in (27), where εs is the relative permittivity of the semiconductor.   
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At this point, some mathematical savvy is utilized to provide a relatively simple 

solution to the electric field at the M-S junction.  If both sides of (27) are multiplied by 

2*dΨ(x)/dx, the left side of (27) becomes (28), which, when expanded, gives (29).  

Working backwards from the Product Rule of differentiation, (29) simplifies to (30).  

Now, (27) can be expressed as (31). 
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 By converting Ψ(x) to Ψ and integrating both sides of (31) with respect to x over 

the range where Ψ = Ψs (x = 0) to where Ψ = 0 far from the M-S junction gives the 

expression in (32).  Since dΨ/dx = 0 when Ψ = 0, the integral in (32) results in the 
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expression in (33).  The square root of the expression in (33) gives the electric field at the 

surface, ξs.  Recalling one of the initial assumptions, whereby degenerate doping results 

in qΨs ~ φB, the solution to (33) can be expressed as (34).  An equivalent p-type 

semiconductor approach gives the same result when the Ψ(x) convention is reversed. 

Ψ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Ψ

−=⎟
⎠
⎞

⎜
⎝
⎛ Ψ

∫
Ψ

d
kT
qqN

dx
d

ss

d
0

0

2

exp1
2
εε

      (32) 

0

0

2

|exp1
2

s
q

kT
q

q
kTqN

dx
d

si

d
Ψ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ψ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Ψ

−=⎟
⎠
⎞

⎜
⎝
⎛ Ψ

εε
     (33) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛= B

B

si

d
ns kT

q
q

kTqN
φ

φ
εε

ξ 1exp
2

0
,       (34) 

   

 

 

 

 

 

 

Fig. 4.15.  Maximum current density through a Schottky barrier to electrons versus halo 
dopant concentration for various SBH values at VDS = 1.1 V. 
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Figs. 4.15 and 4.16 show the maximum predicted current density through 

Schottky barriers to electrons and holes, respectively, as a function of halo dopant 

concentration for |VDS| = 1.1 V.  In the case of NiSi, which presents an SBH to electrons 

of 0.65 eV (and therefore a hole SBH of ~ 0.47 eV), halo dopant concentrations in the 

high 1x1020 cm-3 range can support current densities of over 2 mA/µm for both n-channel 

and p-channel devices at 1.1 V.   

 

 

 

 

 

 

 

Fig. 4.16.  Maximum current density through a Schottky barrier to holes versus halo 
dopant concentration for various SBH values at VDS = -1.1 V. 

 

 The 2005 ITRS Process Integration, Devices & Structures Roadmap projects VDD 

to be 1.1V for 25 nm physical gate lengths (as was modeled throughout this chapter) and 

1.51 mA/µm NMOS drive current density for high performance logic [19].  At a first 

glance, then, it would seem that even though NiSi provides a relatively large SBH to both 

electrons and holes in its non-tuned form, drive current would not be limited by the SBH 

under the condition of high concentration halo regions (on the order of the source/drain 
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dopant level for conventional MOSFETs).  As mentioned in Chapter 3, these halo regions 

can be formed by an implant through silicide (ITS) process, which may indeed facilitate 

such current levels.  This is currently speculative, however, and for two reasons.  First, 

the assumptions made to result in Figs. 4.15 and 4.16 are approximations (especially the 

first assumption, which is effectively a constant Vbi, as well as the fact that bandgap 

narrowing was excluded and the definition of α is somewhat arbitrary), and so the results 

shown are likely an underestimation of the expected current levels in degenerately doped 

semiconductors.  Second, the post-ITS anneal for NiSi is performed at around 600 °C 

[17], for which the solid solubility of boron and phosphorus in silicon are not in the high-

1x1020 range if one extrapolates from existing data [20].  However, this is a trickier 

notion, as low temperature dopant activation of boron and phosphorus is not well 

understood, especially the role that a silicide diffusion source may play in such 

activation.  Any potential insufficiency in current injection due to solid solubility limits 

or some other limitation can be mitigated by adjusting the gate influence on the M-S 

junctions (i.e., the gate overlap), although this imposes the ubiquitous tradeoff between 

drive current and off state leakage, as well as overlap capacitance. 

Beyond the Schottky barrier, current may be degraded or limited by the reduced 

mobility within a very thin SOI body region or by velocity saturation near the drain.  

Mobility degradation via the halo regions should not noticeably affect drive current, as 

these devices effectively operate in accumulation mode.  Thus, the mathematical 

contribution of the halo dopant concentration to decreasing the resistivity (and hence 

resistance) of the halo region far outweighs the induced mobility reduction in this region.  

Certainly, such a reduction in channel resistance would be compounded with high 
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mobility substrates such as strained silicon or Si1-xGex.   

 Optimizing the use of halo regions in bulk switching SFETs requires, in addition 

to high dopant concentrations, highly abrupt junctions and an optimal size of the halo 

region as a percentage of the channel region.  If the halo region is too large, although 

drive current is increased, the device is more susceptible to DIBL at the source due to the 

smaller lightly doped/undoped body region for a given gate overlap/underlap to the M-S 

junction (i.e., the halo constitutes a higher percentage of the body region).  If the halo 

region formed by ITS is too small, drive current is reduced, and this reduction depends on 

the abruptness of the halo region which, for small halo regions, determines the dopant 

concentration at the M-S interface. 

Determining an appropriate size for the halo regions (and thus the post-ITS anneal 

thermal cycle) requires, at the very least, some insight into the depletion region extending 

from the M-S junction into the halo region at the maximum operating voltage.    Starting 

with Pierret’s derivation of the depletion width at an M-S junction [12], and again using 

the assumption that for degenerately doped semiconductors, Vbi ~ φB, one reaches the 

expression in (35), where Nhalo is the halo dopant concentration (assuming a halo region 

of uniform doping). 

( )DDB
halo

s
D V

qN
W += φ

εε 02
        (35) 

 Fig. 4.17 shows WD versus Nhalo at various VDD and SBH values.  The SBH was 

varied from 0.25 eV (smallest WD) to 0.65 eV (largest WD) in 0.1 eV increments for each 

VDD value.  As one might expect, WD has a small dependence on SBH and VDD if Nhalo is 
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large enough (high 1x1020 cm-3 range).  Going back to Figs. 4.15 and 4.16, for maximum 

current densities on the order of 2 mA/µm for both the n-channel and p-channel devices, 

Nhalo ~ 6-8x1020 cm-3, which corresponds to WD between ~ 0.85 nm and 1 nm at VDD = 

1.1V.  This implies that, for a 25 nm device, the halo region must be at least 1 nm wide 

with the aforementioned concentration range to prevent punchthrough within the halo 

region.  Assuming that the halo region is 2.5 nm wide at each end of the device, and that 

the M-S junctions are very close to the gate edge (i.e., the gate overlap/underlap is 

approximately zero), the source and drain halo regions combined constitute 20 % of the 

channel region, which means that 80 % of the channel region can be lightly doped (or 

undoped), which considerably improves channel mobility in comparison to modern 

conventional MOSFETs.   

Such a condition, however, also assumes that quantum carrier confinement within 

the halo region does not take place.  With a very narrow halo region (on the order of a 

few nm), a quantum well is formed between the Schottky barrier and the halo-body 

thermal barrier.  Even for high halo dopant concentrations, the entire halo region 

becomes depleted under these conditions due to the reduction in the majority carrier 

concentration.  This should not affect majority carrier thermal leakage over the halo-body 

thermal barrier; however, minority carrier thermal leakage over and tunneling leakage 

through said barrier should increase, thus implying that halo depletion occurs at a halo 

width larger than what conventional theory, such as (35), would predict.  This in turn 

implies an optimal halo width that is large enough to minimize minority carrier leakage 

but also small enough to optimize SCE immunity for a given source-to-drain spacing. 
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Fig. 4.17.  Depletion width at an M-S junction versus Nhalo, SBH, and VDD.  The SBH was 
varied from 0.25 eV (smallest WD) to 0.65 eV (largest WD) in 0.1 eV increments for each 

VDD value. 

 

 

 

 

 

 

 

Fig. 4.18.  SBH versus Nhalo for various equilibrium SBH values when SBL is included.  
In this case, α is set to 1.1 so as to be consistent with the device structure modeled 

throughout this chapter. 
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As was mentioned in Chapter 3, the lateral field induced by the high Nhalo results 

in SBL, which accounts for a considerable portion of the increase in maximum current 

injection through and over the Schottky barrier as Nhalo is increased.  The resultant SBH 

values for given equilibrium SBH values are shown in Fig. 4.18 for Nhalo between 1x1020 

and 1x1021 cm-3.  For NiSi to n-type silicon, for example, the equilibrium value of 

0.65 eV is actually lowered to about 0.25 eV in the presumed Nhalo range of interest for 

25 nm bulk switching SFETs (~ 6-8x1020 cm-3).  If the equilibrium SBH is low enough, 

the resultant SBH can actually turn negative, as Fig. 4.18 also shows.   

It is noted that, in Fig. 4.18, α was set to 1.1 rather than the “classical” value of 1, 

so as to be consistent with the 25 nm devices modeled earlier in this chapter.  

Interestingly, it turns out that the higher than expected SBL is not an unreasonable 

proposition.  Shenai and Dutton have shown that SBL has a contribution from Heine tail 

decay (dipole lowering) as well as from the image force [13], and that SBL is thus 

considerably larger than what is predicted classically.  While the model approach for SBL 

in [13] was more physically rigorous than the approach taken here, Andrews and 

Lepselter achieved similar results to [13] by adding an empirical fitting parameter (also 

called α, but used differently) to the conventional SBL equation [14], shown in (36), the 

form of which is fairly similar to that of (19).  These results are shown in Fig. 4.19.  

Therefore, while the physical meaning of α in (19) is somewhat ambiguous in nature, it 

can be considered at least in part to account for the effect of Heine tail decay on a very 

superficial level. 
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Fig. 4.19.  Comparison of Andrews-Lepselter model [14], Shenai-Dutton model [13], 
classical model, and thermionic field emission model for SBL for an Al-nGaAs Schottky 

diode in reverse bias, adapted from [13].  “This model” refers to the Shenai-Dutton 
model.  A considerable difference exists between conventional theory and the models 

from [13] and [14]. 

 

Reverting back to bulk switching SFET design, optimizing the off state 

characteristics in bulk switching SFETs is perhaps equally challenging as optimizing the 

on state characteristics.  The off state thermal barrier is that which exists between the halo 

region and the lightly doped/undoped body region.  One might suggest using an opposite 

dopant type of moderate to high concentration for the body region than the halo region to 

increase the off state barrier.  However, while the off state thermal barrier is larger, so are 

the source-body and drain-body junction capacitances.  This reduces the high frequency 

performance of the device due to increased coupling at the source-body and drain-body 

junctions.  Using an undoped or lightly doped body, in comparison, would decrease the 
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junction capacitances by several orders of magnitude.  Also as a result of using an 

opposite dopant for the body region, the built-in field at the drain becomes larger, which 

results in GIDL at a lower VDS.  Ultimately, the device becomes a conventional partially 

depleted SOI (PD SOI) MOSFET with fully silicided source/drain regions, which results 

in additional design considerations such as the history effect and the kink effect. 

A more effective method of increasing the off state thermal barrier would be to 

use a lightly doped or undoped body region and to modify the gate workfunction.  The 

immediate advantage here, particularly for the undoped body, is a reduction in discrete 

dopant effects due to statistical variations in dopant concentration, thus decreasing the 

overall statistical variation in device performance across a given chip.  While this 

requires thin body regions such that a change in the gate workfunction affects the total 

leakage within the device (i.e., there is little or no subsurface leakage), the effect of 

greater gate control over current through the device is achieved.  Such an implementation 

might best be referred to as “pseudo-FD SOI,” as while the lightly-doped/undoped body 

region is fully depleted, the halo regions should remain largely intact.  For very small 

devices (i.e., 25 nm and below), metallic gates are attractive due to the reduction in EOT 

as poly depletion is eliminated.  For the simplest process, one might consider using the 

same NiSi for the n-channel and p-channel devices as the gate material for both devices 

(FUSI gates), as it is roughly a midgap material (but with a slight bias toward the p-type 

region of the semiconductor bandgap).  In such a case, the full off state of both devices 

might not be reached, although it would be possible to individually tune the gate 

workfunctions to achieve the desired result using methods such as silicidation-induced 

impurity segregation (SIIS) [21], [22].   
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Chapter 5 
 

Process Modeling Analysis of Bulk Switching SFETs 
 
 

 
5.1 SRIM and TRIM Analysis for Implant-to-Silicide (ITS) 
 

As suggested in the analysis in Chapter 4, Section 4.9, the halo dopant 

concentration, Nhalo, must be high to generate a lateral field that facilitates sufficient 

current injection through and over the Schottky barriers at the source/drain M-S 

junctions.  Although said analysis was only performed for VDD = 1.1 V, what becomes 

clear is that as VDD decreases with each technology node, maintaining the same current 

density requires a higher Nhalo and/or a lower SBH to the current carriers in question 

(assuming the same gate overlap/underlap, EOT, and lateral field induced by VDS).  To 

gain more insight into the implant conditions necessary to achieve high Nhalo values 

(ignoring the aforementioned solid solubility limitations for post-ITS anneals at 

~600 °C), it is useful to perform numerical implant simulations to gain insight into the 

projected range, ion distribution, and peak ion concentration within a given silicide 

(namely NiSi, as it is the focus of this study). 

A program known as SRIM (Stopping and Range of Ions in Matter) [1] calculates 

the projected range, longitudinal and lateral straggle, etc. by using a quantum mechanical 

treatment of collisions between the implanted atoms and the target material.  Within 

SRIM is a program called TRIM (the Transport of Ions in Matter), which can give data 

on projected range and straggle, but can also give data on ion concentration vs. depth, 

backscattered ions, etc. for a given implant energy into any type of target, provided the 

density of the target is known.  SRIM and TRIM were used to gain some insight into the 
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specifics of the ITS process, while Silvaco Athena (SUPREM-IV) was used to try to 

investigate the details of the post-ITS anneal (shown later in this chapter). 

In “making” a NiSi target in SRIM, density is calculated by adding the atomic 

densities of each element and dividing by the total number of atoms per molecule, which 

is defined by the stoichiometry (user input).  For a NiSi target (with 1:1 stoichiometry), 

the calculated density is 5.6083 g/cm3.  However, [2] quotes the molecular density of 

NiSi to be 4.552x1022 “molecules”/cm3.  Dividing this by Avogadro’s Number 

(6.022x1023 mol-1) and multiplying by the sum of the molar densities of Si and Ni 

(28.086 g/mol and 58.69 g/mol, respectively) [1], one finds a different density for NiSi of 

6.559 g/cm3.  Both of these densities have been explored in SRIM and TRIM; the density 

of 5.6083 g/cm3 will be referred to as the “low density” case, while the density of 

6.559 g/cm3 will be referred to as the “high density” case. 

Figs. 5.1 and 5.2 show, for the low density and high density cases, respectively, 

the projected range, lateral straggle, and longitudinal straggle of boron and phosphorus 

into the defined NiSi targets as a function of implant energy from 10-100 keV.  While 

some noticeable difference does indeed exist between the two cases, the results are 

largely similar, as the densities differ by only about 0.9 g/cm3.  For a near-midgap silicide 

and without direct gate control (i.e., large EOT for a given VDD), or in other words at the 

body-BOX interface for the SOI and POI devices (where the BOX is 200 nm and 

100 nm, respectively), one would expect subsurface leakage to be larger if a halo exists in 

said region as opposed to a Schottky barrier adjacent to a lightly doped/undoped 

semiconductor.  This would be due to the lower series resistance provided by the halo 
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region.  Thus, unless the body region is very thin, it would seem desirable to confine the 

halo region near the top of the body region. 

 

 

 

 

 

 

 

 

 

 
Fig. 5.1.  Boron and phosphorus stopping ranges in NiSi vs. energy (low density). 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 5.2.  Boron and phosphorus stopping ranges in NiSi vs. implant energy (high 
density). 
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 Regardless of whether the low density or high density case is considered, either 

density is considerably larger than the atomic density of silicon (2.3212 g/cm3) by a 

factor of about 2.5, which means that the stopping power of NiSi is considerably larger 

than [crystalline] Si alone (nevermind the added benefit of eliminating crystal damage in 

the silicon, which now takes place in the silicide), as shown in Fig. 5.3.  This not only 

allows for shallower implants, but also for greater control over the projected range as a 

function of implant energy – very useful for sub-100 nm processing.  This is particularly 

useful in RIT’s SMFL, in which its Varian 350D ion implanter can implant at energies 

down to 33 keV (lower energies are possible, but this requires some modification and is 

hence not quite as simple/user-friendly).  As such, from Figs. 5.1 and 5.2, for an implant 

energy of 33 keV, the projected range of phosphorus is about 200-250 Å, while the 

projected range of boron is about 500-600 Å.  Implanting BF2, however, at 33 keV 

(which can be treated as a boron implant at 7.4 keV), gives a projected range of less than 

200 Å.  For body regions of 1000 Å and 2000 Å thicknesses (as is the case for the SOI 

and POI devices and circuits, respectively), a projected range that is 10-20% of the body 

thickness would seem reasonable at first glance (more on this later).   

Beyond confining dopant atoms near the top of the body region, another 

implication of Figs. 5.1 and 5.2 is that of the lateral straggle vs. implant energy.  Since 

the device design used in this study uses an oxidation of the polysilicon gate (pre-

silicidation) for the sidewall spacer, during the halo implantation, ions may traverse 

through the spacer and into the body region if the gate is not thick enough (oxide 

stopping power is similar to silicon).  This is of particular concern for ligher dopant 

atoms such as boron, which can result in a wider halo region than intended if caution is 
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not taken.  However, if the source/drain silicide traverses laterally enough such that it 

completely underlaps the sidewall spacer (i.e., some gate overlap exists), then the post-

implant dopant distribution into the body region is defined primarily by the lateral 

straggle within the silicide.  For a 33 keV boron implant into NiSi in the low density (i.e., 

worse) case, this lateral straggle is about 300 Å – a convenient match to the target 

sidewall spacer thickness in this study. 

 

 

 

 

 

 

 

 

 

 
Fig. 5.3.  Projected range vs. implant energy, in comparison between silicon and NiSi 

(both low and high density cases) targets. 
 

 Figs. 5.4 and 5.5 show the simulated ion distribution vs. depth into NiSi for both 

the low density and high density cases, respectively, as predicted from TRIM with a run 

of 10,000 ions.  In both cases, the implant dose was 4x1015 cm-2.  All implants were 

performed at 33 keV, and it is interesting to note that the predicted peak ion densities in 

the NiSi target are considerably larger than the solid solubility limit of each dopant 

species in crystalline silicon for the subsequent post-ITS anneal that would be performed. 
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Fig. 5.4.  Ion concentration vs. depth into NiSi, compared to As into Si, @ 33 keV, 
4x1015 cm-2 dose, low density case, as predicted from TRIM. 

 

 

 

 

 

 

 

 

 
 
 
 
 

Fig. 5.5.  Ion concentration vs. depth into NiSi, compared to As into Si, @ 33 keV, 
4x1015 cm-2 dose, high density case, as predicted from TRIM. 
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 For both the low and high density cases, the peak ion concentration in the silicide 

for phosphorus and BF2 is greater than 1x1021 cm-3.  Recalling the discussion in Chapter 

4, Section 4.9, a simple application of Poisson’s Equation to a Schottky diode coupled 

with the mathematical model developed earlier in Chapter 4 suggests that Nhalo must be 

around 7x1020 cm-3 for a maximum current injection of about 2 mA/µm for VDD = 1.1V 

with NiSi source/drain regions.  Figs. 5.4 and 5.5 show that the peak ion concentration in 

the silicide is considerably higher than the suggested Nhalo concentration, and so at the 

very least, the supply of the number of ions suggested would indeed exist in the silicide 

after the appropriate ITS process.  While said analysis made certain assumptions that 

likely result in an underestimation of the actual current density predicted as a function of 

Nhalo and SBH, what was made clear is that, for an “ideal” M-S junction, Nhalo must be 

highly degenerate.  Whether or not this actually happens for the appropriate ITS process 

remains to be seen, particularly if one considers the solid solubility limitations in silicon 

at low temperatures.   

However, if the supported current injection through and over the Schottky barrier 

is larger than what the aforementioned theory would predict, then there is indication that 

the Schottky barrier becomes modified beyond the changes induced by the active dopant-

enhanced electric field.  There may be an electric field contribution from interstitial 

(electrically inactive) dopants that lowers the barrier, or the high dopant concentration at 

both sides of the M-S junction may alter the NiSi and Si properties enough to change the 

branch point, EB, thus changing the energy that the Fermi level is pinned to (therefore 

changing the intrinsic barrier height).  This would also imply a change in the extent of 

Heine tail decay, which changes SBL as a function of electric field [3].  In such a case, 
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the SBH for majority carriers might be lowered to an extent beyond what one would 

suggest from conventional field-induced lowering, thus facilitating a further increase in 

the supported current density.  This is purely speculative, however, and a complete 

understanding of such mechanisms extends beyond the scope of the presented work – of 

primary interest is an experimental understanding of what is gained in Schottky CMOS 

performance when ITS processes are utilized. 

 

5.2 ITS Modeling with Silvaco Athena 
 

It was mentioned previously that there may be some benefit to confining the 

implanted dopants near the top of the body region when utilizing an ITS process, as this 

may potentially support smaller junction depths for the resulting halo region.  That is, the 

halo region may not consume the entire thickness of the body region.  However, the 

diffusivities of dopants in silicides such as CoSi2 and NiSi are orders of magnitude 

greater than they are in silicon [4], [5].  This suggests that the implanted dopants in the 

silicide spread out throughout the entire body thickness after a very short period, even at 

relatively low temperatures.  This hypothesis was substantiated after simulation in 

Silvaco Athena; a 700 °C, 15 sec. post-ITS anneal for a user-defined 1000 Å NiSi film 

resulted in a uniform dopant spread throughout the entire silicide thickness.  Although 

some discrepancies are surely expected to exist between Athena results for ITS 

processing and actual results, there seems little reason to think that the enhanced stopping 

power of NiSi over silicon, in itself, will improve SCE immunity; such is therefore left to 

the actual structure of the device.  Additionally, such a result strongly suggests that the 

majority of the dopant diffusion during the post-ITS anneal is spent in the silicon region. 
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In an attempt to gain some insight into the halo profile at the M-S junction, further 

simulations in Silvaco Athena were performed.  The device structure (Fig. 5.6) was 

defined manually in Silvaco Athena to minimize the occurrence of grid anomalies during 

a fabrication sequence that would otherwise be simulated.  The gate oxide thickness was 

set to 100 Å, the BOX thickness was set to 1000 Å, and the source/drain silicide was 

defined such that the interface to the body region exists with a gate overlap of 20 nm (i.e., 

with a 30 nm sidewall spacer and a 100 nm body thickness, the silicide diffused 50 nm 

laterally).  Such overlap requires the implanted dopants to diffuse 50 nm before reaching 

the M-S interface.  The body region was defined as n-type with a concentration of 

1x1015 cm-3, and the gate was treated as a FUSI NiSi gate.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6.  Defined SFET half-structure used in Silvaco Athena, after a 750 °C post-ITS 
anneal for 30 min.  Varying shades of gray represent varying dopant concentrations. 
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Although NiSi was the chosen silicide for the actual device fabrication, this 

material is not available in the current version of Silvaco Athena.  However, TiSi2 is an 

available option, and its material properties were redefined to mimic NiSi (6.415 g/cm3 

was used as the density – a mathematical error – although differences from the value of 

6.559 g/cm3 reported earlier in this chapter are negligible).  These properties are shown in 

Table 5.1, although it is noted that the properties related to diffusion within the silicide 

were kept at the default values for CoSi2 in Athena (Table 5.1) – TiSi2 acts as a poor 

diffusion source for boron and arsenic due to TiB and TiAs formation, and CoSi2 seems 

to behave similarly to NiSi for ITS processing [4], [6].  No known data exist regarding 

the pre-exponential and exponential terms for diffusion of phosphorus and boron within 

NiSi, although both silicides are known to exhibit high diffusivities for said species.   

 
For the material statement redefining the “tisix” material in Athena 
Parameter Value Units 

Density 6.415 g/cm3

Abund.1 1 - 
Abund.2 1 - 
At.num.1 28 - 
At.num.2 14 - 
At.mass.1 58.69 amu 
At.mass.2 28.086 amu 
Diffusion parameters in impurity statements for “tisix” material to mimic NiSi (same 
values used for both boron and phosphorus) 
Seg.0 1 - 
Trn.0 1.66x10-5 - 
Trn.E 0 eV 
Dix.0 4.2 cm2/sec. 
Dix.E 2.14 eV 
Table 5.1.  Parameters for material and impurity statements in Silvaco Athena for initial 

attempts at simulating ITS processing for NiSi. 
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The ITS process itself was simulated in Athena by performing a Monte Carlo 

implant.  The post-ITS profile into the “NiSi” material looks similar to those shown in 

Figs. 5.4 and 5.5, which suggests that the state of the device structure before the diffusion 

step is in the correct range.  Post-ITS anneals were performed at 700 °C and 750 °C 

(Athena does not seem to be able to effectively simulate diffusion at 600 °C) for both 

boron and phosphorus after a 4x1015 cm-3 ITS at 33 keV.  Although NiSi tends to 

agglomerate at and above 600 °C, the incorporation of fluorine into the silicide has been 

shown to increase the thermal stability of NiSi to 750 °C [6].  This higher temperature 

should allow for higher active dopant concentrations at the M-S interface, thus increasing 

drive current for a given halo width (particularly relevant for the p-channel device, as 

boron solid solubility at low temperature is considerably lower than that of phosphorus).  

The simulated dopant profiles are shown in Figs. 5.7 and 5.8 for 700 °C and 750 °C post-

ITS anneals, respectively. 

 

 

 

 

 

 

 

 

 

Fig. 5.7.  Post-ITS anneal dopant profiles for boron (gray lines) and phosphorus (black 
lines) at 700 °C for varying anneal times. 
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Fig. 5.8.  Post-ITS anneal dopant profiles for boron (gray lines) and phosphorus (black 
lines) at 750 °C for varying anneal times. 

 

 It is interesting to observe that the boron dopant profiles in Figs. 5.7 and 5.8 show 

a smaller halo width than the phosphorus profiles for a given anneal temperature and 

time.  It also seems as if the boron propagation is dramatically underestimated when 

comparing to experimental data.  From [4] and [6], which study ITS for NiSi and CoSi2, 

respectively, using BF2
+, the halo width for 600 °C/30 min. and 600 °C/90 min. were 

found to be 23 nm and 60 nm, respectively, when the implanted dose was kept entirely 

within the silicide (i.e., no implant propagation past the M-S junction).  Fig. 5.8, which is 

150 °C higher at 750 °C, does not even come close to those values.  At 700 °C for 

30 min. and 90 min., the experimental halo widths were 28 nm and 100 nm, respectively, 

under the same conditions; again, very far off from what is shown in Fig. 5.7 for the 

boron profile.  There are two primary explanations for this.  First, both NiSi and CoSi2 
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are known to enhance boron diffusivity in the adjacent silicon by virtue of vacancy 

injection [4], [6].  Second, Silvaco Athena does not have a very good diffusion model for 

boron at relatively low temperatures.  One can use the “pls” method statement in the 

Athena simulation code to more accurately model boron diffusion at low temperatures; 

however, for some reason this method statement did not allow a diffusion simulation to 

be performed. 

 

 

 

 

 

 

 

 

 

 
Fig. 5.9.  Whalo vs. post-ITS anneal time for n- and p-type halos at 700 °C and 750 °C, 

from Silvaco Athena simulations.  Whalo is defined where Nhalo = 1x1015 cm-3. 
 

Another important point to note regarding the Athena simulations is that, once the 

implanted dopants redistribute within the silicide to a uniform concentration, Athena 

seems to treat the silicide as an infinite source of dopants.  In other words, the dopant 

concentration at any region within the silicide remains constant regardless of how long 

the simulated diffusion takes place for.  As such, the accuracy of the predicted dopant 

profile is reduced as the post-ITS anneal time is increased to very high values.  In spite of 
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the limitations of this simulation, Fig. 5.9 summarizes Figs. 5.7 and 5.8 in the form of 

halo width, Whalo, vs. post-ITS anneal time. 

Although some preliminary numerical modeling was performed in Silvaco Atlas 

for this device structure, the results will not be shown here due to the primitive and 

unconvincing nature of the results.  To perform “proper” numerical modeling would not 

only require a self-consistent Poisson-Schrödinger solution for the Schottky barrier, but 

also an accurate solution to SBL vs. Ψs (which Atlas does not currently seem to contain).  

Without such an SBL solution, the actual current injection through and over the Schottky 

barrier as a function of Nhalo and/or VGS is not accurately modeled.  Furthermore, the 

requirement of more accurate solutions to the dopant redistribution within the silicide 

(i.e., not treating the silicide as an infinite source of dopants) and segregation at the M-S 

interface confound with the aforementioned requirements to add to the uncertainty of the 

modeling results.  It would seem, then, that a more developed version (i.e., self-consistent 

Poisson solution, universal mobility, etc.) of the model in Chapter 4 would provide more 

insight; however, such remains a work in progress which may well extend beyond the 

scope of this thesis. 

 

5.3 Thermal Budget Implications for NFET and PFET Performance 

Although the work presented in [4] noted a post-ITS anneal at 600 °C for 30 min., 

it has been shown that the thermal stability of NiSi is limited to about 600 °C [6].  This is 

due to silicide agglomeration and eventual formation of discontinuous islands, whereby 

the silicide effectively “falls apart.”  One might therefore contend that the active dopant 

concentration in the halo region is limited to the solid solubility of the species in question 
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at 600 °C.  However, in [6] it was shown that the introduction of fluorine into NiSi 

extends its thermal stability up to temperatures of 750 °C.  This can help both PFET and 

NFET drive current; PFETs due to the lower solid solubility limit at a given temperature 

for boron than phosphorus (i.e., more boron is activated at the M-S interface at 750 °C vs. 

600 °C), and NFETs due to the lower amount of diffusion of phosphorus than boron for 

the same thermal process (i.e., more phosphorus diffusing toward the M-S interface at 

750 °C vs. 600 °C). 

For boron implants, such an implementation is as simple as implanting BF2 

instead of B11, which, as was shown in Figs. 5.4 and 5.5, has the added benefit of 

reducing the projected range and straggle.  N-type dopants, however, are not coupled 

with fluorine, and so the thermal budget of a Schottky CMOS process using NiSi ends up 

being limited by the NFETs.  In light of the findings in [6], however, it would seem that 

this thermal budget limitation can be mitigated by performing dual implants for the 

NFETs – one fluorine implant and one phosphorus (and/or arsenic) implant.   

Fig. 5.10 illustrates the phosphorus and fluorine profiles (Fig. 5.11 shows BF2 and 

fluorine profiles) into NiSi predicted by TRIM in the aforementioned low density and 

high density cases for an implant energy of 33 keV and a dose of 4x1015 cm-2.  As 

fluorine is a lighter species than phosphorus, its distribution throughout the source/drain 

depth is wider and the peak concentration is lower.  For a structure where the implanted 

dopants are confined toward the top of the silicide (i.e, a relatively thick body), such as 

the work presented here, the fluorine spread throughout the entire silicide thickness 

should prevent/minimize agglomeration of the entire silicide, particularly in the 

subsurface region where the gate has less control over leakage. 
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Fig. 5.10.  Ion concentration vs. depth into NiSi for phosphorus and fluorine implants 
(both 4x1015 cm-3 @ 33 keV), as predicted from TRIM. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11.  Ion concentration vs. depth into NiSi for BF2 and fluorine implants (both 
4x1015 cm-3 @ 33 keV), as predicted from TRIM. 
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A final point to note regarding fluorine implantation is that it can be used to 

“preamorphize” the NiSi before subsequent implantation with phosphorus/arsenic and 

BF2.  The induced damage within the silicide (considered to have a higher dependence on 

dose than energy [4]) decreases the grain size.  Since dopant diffusion within the silicide 

has been attributed to grain boundary diffusion [2], it would not be unreasonable to 

suspect enhanced dopant diffusivity within the silicide (and perhaps segregation at the M-

S junction), thus potentially increasing the dopant concentration at the interface.  This 

would be more beneficial for the NFETs, as the larger phosphorus/arsenic atoms tend to 

diffuse slower than boron.  Although the increased damage from the fluorine implant will 

increase the sheet resistance of the silicide, this cost must be weighed against the 

potential benefit of achieving higher current injection at the M-S junction.  This in itself 

is a subject worthy of diligent study. 
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Chapter 6 
 

Device and Circuit Design 
 
 

 
6.1 Limitations for Schottky CMOS on Bulk Substrates 

 
It was the initial intent of this work to demonstrate Schottky CMOS using bulk 

substrates as opposed to SOI substrates due to the lower starting cost of bulk substrates; 

however, it was later realized that doing such with a single metal silicide and the 

approach discussed would result in a longer development time, lower circuit density, 

potentially lower yield, poorer performance, and ultimately a higher total cost.  The 

cross-section for this initial design for an inverter is shown in Fig. 6.1, where the pull-up 

and pull-down networks have body regions of the same dopant type (n-type in the case of 

Fig. 6.1).  The pull-up network would be a conventional SFET, while the pull-down 

network would be a bulk switching SFET, both separated by some form of trench 

isolation, and a negative VDD  (-VSS) would be utilized in the case of n-type body regions.  

The purpose of the oppositely doped well was to prevent current flow between the VSS 

and ground terminals of the inverter, as well as substrate leakage.   

The idea behind the design in Fig. 6.1 was that the pull-up network would 

modulate tunneling current through the Schottky source/drain regions, while the pull-

down network would modulate thermal current over the halo-body thermal barrier.  

However, such a design was proposed before the modeling efforts from Chapter 4 were 

performed, and so the ineffectiveness of the proposed design was not yet fully realized, as 

the dominance or lack thereof of tunneling current in SFET operation, and hence the 

performance of the proposed pull-up network in Fig. 6.1, was not yet apparent.  An 
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understanding of the dominant current mechanisms in SFETs of various designs does 

indeed have substantial implications for device and circuit design, as was ultimately 

realized in the aforementioned mathematical endeavor.   

 

 

 

 

 

 

 

 

Fig. 6.1.  Cross-section of initial Schottky CMOS inverter design proposed for bulk 
substrates. 

 

Certainly, bulk switching pull-up and pull-down networks could be demonstrated 

on bulk substrates, but this raises process complexity issues beyond those in Fig. 6.1, as 

an additional two implant steps would be required (well and halo implants for the pull-up 

network).  Also, the circuit density potential of this technology would not be achieved 

due to the requirement of trench or LOCOS isolation between the NFETs and PFETs.  An 

additional, but beneficial, detail of such an approach is that the VDD and ground terminals 

in Fig. 6.1 would be reversed, as dual bulk switching networks (of opposite doping) 

enable the use of positive VDD values. 

In considering non-bulk switching (i.e., conventional) SFETs on bulk silicon for 

both the pull-up and pull-down networks, for the moment the key limitation is a material 
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constraint, as the currently known materials that would provide the best performance for 

such an implementation are fairly expensive.  As mentioned in Chapter 3, platinum is 

currently the most promising material for conventional p-channel SFETs; however, in a 

high-volume manufacturing environment where several thousands of wafers are started 

every week, the material cost of platinum deposition targets alone may be large, 

potentially driving up the cost of the end product.  Also, while in Chapter 4 it was shown 

that PtSi, when used properly, can result in acceptable performance for 25 nm p-channel 

SFETs, the requirement for moderate to high body doping levels in a bulk silicon 

implementation is not optimal in a device size regime where discrete dopant effects play 

a considerable role in performance variation.  Regardless, a conventional Schottky 

CMOS implementation on bulk silicon has been proposed by Tucker [1], and is 

illustrated in Fig. 6.2.  In said implementation, PtSi and ErSi2 are used as the PFET and 

NFET source/drain regions, respectively, while CoSi2 is used as inter-device isolation 

and as a local interconnect.  As will be shown in Section 6.2, a similar approach can be 

pursued on SOI substrates, but with much enhanced simplicity and circuit density. 

 

 

 

 

 

 

 

Fig. 6.2.  Illustration of Schottky CMOS inverter using conventional SFETs on bulk 
silicon, adapted from [1]. 
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Regardless of the approach taken to demonstrate Schottky CMOS on bulk 

substrates, the most inherent disadvantage over SOI substrates is circuit density, as even 

for an inverter, the pull-up and pull-down networks must be isolated from each other by 

some sort of trench or material.  As such, the only gain in switching from conventional 

CMOS to Schottky CMOS on bulk substrates, besides simpler fabrication, would be 

whatever intrinsic gain in device performance that can be achieved.  By virtue of SFETs 

using metallic source/drain regions, however, there is potential for these regions to serve 

multiple purposes when the appropriate substrate is utilized, thus effecting some level of 

change in design methodology. 

 

6.2 Device and Circuit Architecture for SOI Substrates 

For any type of SOI device, the body region has a finite thickness, whereby the 

lower boundary is defined by the interface to the buried oxide (BOX).  For conventional 

CMOS on SOI substrates, the pull-up and pull-down networks are isolated from each 

other by this BOX and by shallow trench isolation (STI), which is filled with oxide.  

Thus, the devices are entirely isolated from each other by some layer of oxide, as Fig. 6.3 

illustrates.  As a result of this, the gate pitch must be increased due to the tighter via 

pitch, as the Vout terminal must run over the inter-device isolation to connect the 

source/drain region of the NFET to the source/drain region of the PFET.  While for 

conventional CMOS there is a potential layout advantage with SOI over bulk substrates, 

due to the elimination of the body contacts, the continued existence of the inter-device 

isolation, although smaller, leaves room for improvement. 
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Fig. 6.3.  Illustration of a conventional CMOS inverter on SOI substrates.  The BOX is 
not shown, but would be placed under the active region. 

 
 
If the source/drain material for both the NFET and PFET are metallic, however, 

and if this material is the same material for both devices, then the Vout terminal can be 

shared between both devices (roughly doubling as a first level interconnect), as would be 

the case for single metal Schottky CMOS on SOI substrates.  The key advantage here is 

that the body region is fully silicided, which, on top of device performance advantages, 

allows for the source/drain regions to also act as inter-device isolation, as well as some 

inter-circuit isolation (some STI would still be required).  In doing so, the silicide serves 

four functions – source/drain region for the NFET, source/drain region for the PFET, 

inter-device and some inter-circuit isolation, and the first level interconnect.  

Additionally, the gate pitch is not limited by the via pitch in such a structure.  Such an 

implementation is illustrated in Fig. 6.4, where the NFET and PFET are n-channel and p-

channel bulk switching SFETs, respectively.   

By using the source/drain region as inter-device isolation, the pull-up and pull-

down networks (PFETs and NFETs, respectively) can be placed closer together without 

having to decrease the device size, since the Vout terminal is shared between the NFET 

and PFET (it only needs to be wide enough for one via to contact said region).  For 

present and future technology nodes, there should not be a lithographic process constraint 
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to doing this, as current devices have gate lengths that are already smaller than the half 

pitch of the lithography processes in use.  While placing the devices closer together like 

this may ultimately increase the gate length by some increment due to the reduced image 

quality resulting from the reduced pitch (though the extent of this can be mitigated by 

resist trimming or other pattern formation “tricks”), the circuit is smaller, and so the 

overall performance should increase.  In addition, since the pull-up and pull-down 

networks can share a source/drain region (which, again, implies only one via contact to 

the Vout terminal of an inverter instead of two separate contacts), the local interconnect 

density can be maintained or even reduced as the circuit density is increased with this 

approach.  In other words, the “first level interconnect” function that the metallic 

source/drain regions serve can be utilized to displace a considerable amount of local via 

contacts and interconnects.  This effect is perhaps more substantial than the intrinsic 

increase in circuit density and device performance, as interconnect density tends to limit 

circuit size, while interconnect delay tends to limit circuit performance at very aggressive 

scales. 

 

 

 

 

 
 

Fig. 6.4.  Illustration of single metal Schottky CMOS inverter on SOI using bulk 
switching SFETs.  The Vout contact to the first metal level would be located in the third 
dimension, into or out of the page.  The BOX is not shown, but would be placed under 

the active region. 
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From another perspective, such an implementation can allow for larger devices at 

smaller technology nodes.  For example, if the circuit density gain is on the order of 50 % 

(roughly the gain achieved from moving to the next technology node, such as 90 nm to 

65 nm), then devices of the same size can be used for the next node as a “low power” 

solution, due to the reduced leakage offered by the larger channel length, without 

sacrificing circuit density.  Effectively, then, such an implementation has the potential to 

create a new technology node where one did not exist previously, thus extending the 

“life” of silicon-based CMOS scaling by another 2-3 years. 

The Schottky CMOS approach taken in the work presented is very similar to the 

illustration in Fig. 6.4, with the only significant difference being the exclusion of via 

contacts to the gates and source/drain regions.  STI between circuits was excluded, thus 

resulting in MESA isolation, and the BOX was treated as a “pseudo-ILD,” upon which 

the Metal 1 and gate material would lie.  Thus, the Metal 1 lines simply overlapped/ran 

over the silicide source/drain regions and the gate regions.  This was done to keep the 

process as simple as possible, as further complications tend to run the risk of reducing 

yield.  The source/drain regions were fabricated using NiSi, and an ITS process was used 

to define the NFET and PFET halo regions.  An example of this circuit layout is 

illustrated in Fig. 6.5. 

Since no via contacts were used to connect to the active region, the Vout portion of 

the active region between the NFET and PFET gates was extended, as Fig. 6.5 shows, to 

allow for a Metal 1 contact region of sufficient size without seriously affecting the total 

area consumption of the “main body” of the inverter (the 1 µm x 5 µm active area 

rectangle between the Ground and VDD contacts).  Naturally, the use of via contacts 
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would facilitate a reduction in the surface area consumption of this inverter – an 

optimized inverter design for 0.5 µm devices and a 1:1 NFET:PFET width ratio with Wch 

= 1 µm would be on the order of 3 µm vertical by 4 µm horizontal, or 12 µm2.   

 

 

 

 

 

 

 

 

 

Fig. 6.5.  Schottky CMOS inverter layout example.  Mask-defined  Lch = 0.5 µm, PFET-
to-NFET width ratio = 1:1, channel width (Wch) = 1 µm. 

  
 
In the layout for an SRAM cell, it would be possible to achieve sub-20 µm2 area 

consumption for 0.5 µm devices using single metal Schottky CMOS on SOI substrates 

(assuming via contacts and one or two metal levels), as Fig. 6.6 shows.  Assuming a 50 % 

surface area reduction per node, this size would be on the order of what is expected on 

bulk substrates using 0.35 µm devices [2], if not significantly below what has been 

achieved with 0.5 µm devices [3] – [6].  Although the design rules used in Fig. 6.6 are 

somewhat aggressive, SRAM design usually employs aggressive layout rules compared 

to the rest of a given microchip so as to maximize density – process latitude is not the top 

priority.  At least for the SRAM cell, then, a circuit density gain on the order of an entire 
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process generation is indeed possible by simply switching from conventional CMOS to 

single metal Schottky CMOS using SOI substrates with devices of the same exact size.  It 

should be noted that SRAM cells were not fabricated in this study, due to the use of only 

one metal level and no via contacts, and so the illustration in Fig. 6.6 is purely 

conceptual. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6.  SRAM cell illustration using single metal Schottky CMOS on SOI substrates.  
The metal lines were not drawn to their full width to give more visibility to underlying 

layers. 
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Fig. 6.7.  Comparison of single metal Schottky CMOS technology with aggressive and 
relaxed design rules to Intel’s bulk CMOS technology with regard to SRAM circuit 

density per technology node. 
 

To further quantify the potential circuit density advantage, in extrapolating to the 

expected circuit density from Fig. 6.6 for more modern process technologies by assuming 

a 50% density increase per technology node, one obtains the curves in Fig. 6.7.  Both 

aggressive (Fig. 6.6) and relaxed design rules (poly-to-active and cc-to-poly from Fig. 6.6 

are 0.25 µm rather than 0.1 µm) are compared to Intel’s bulk CMOS SRAM density [7] 

down to the 90 nm node.  Even for the relaxed design rules, a significant increase in 

density is achievable – on the order of one technology node, as expected.  The aggressive 

design rules achieve an increase in density equivalent to almost two entire nodes for a 

given device size.  It is noted that such is perhaps not a “fair” comparison, though, as 

bulk technology is compared to SOI technology, but it does give some insight into what 

is possible compared to mainstream technology.  For example, at the 180 nm node, 
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Intel’s bulk CMOS SRAM technology fits one cell within a 5.6 µm2 area.  The 

extrapolated surface area consumptions for single metal Schottky CMOS at this node for 

the relaxed and aggressive design rules are 2.56 µm2 and 1.74 µm2, respectively, 

assuming no change in circuit layout/design compared to that in Fig. 6.6.   

Although it has been suggested here that the potential of single metal Schottky 

CMOS is quite promising, at least with regard to circuit density, a primary challenge 

from an integration perspective is ensuring full silicidation of the source/drain regions 

without any excess silicidation.  In the case of nickel, the ratio of nickel thickness to 

consumed silicon thickness to NiSi thickness is 1:1.84:2.22 [8].  In other words, a given 

thickness of nickel consumes 1.84 times its thickness in silicon to form 2.22 times its 

thickness in the form of NiSi [8].  For an SOI wafer with a 100 nm body thickness, such 

as the substrates used in this study, the silicon in the source/drain regions will be on the 

order of 85 nm after growing a 10 nm gate oxide and a 30 nm oxide sidewall spacer 

(discussed later).  This requires the deposited nickel thickness to be about 46.2 nm for 

full silicidation.  If the nickel is thicker than this, excessive lateral diffusion will take 

place, as will the onset of void formation within the body region, thus reducing device 

performance [8], [9].  If the nickel is not thick enough for full silicidation, then the Vout 

terminal cannot act effectively as intra-device isolation due to the existing leakage path 

between the BOX and the silicide source/drain regions, thus reducing circuit 

performance.  Extreme precision with the nickel deposition is therefore necessary to 

achieve optimal device and circuit performance for this particular implementation of 

single metal Schottky CMOS.  As such, at highly aggressive scales, it is perhaps the 
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quality of this metal deposition step (and subsequent silicidation [10]) that must receive 

the highest priority. 

Reverting back to the device architecture used in this study, for both the SOI and 

POI substrates, the body doping for both the NFETs and PFETs were kept as low as 

possible.  This was simple for the POI substrates, because the as-deposited polysilicon is 

undoped.  For the SOI substrates, the starting material was lightly doped p-type (around 

1x1014 – 1x1015 cm-3), with a body thickness of 100 nm.  For the NFETs, therefore, the 

body was counterdoped to achieve an n-type dopant concentration within the same range.  

While this counterdoping decreases the channel mobility for the SOI NFETs, the total 

dopant concentration is still fairly low, and so the room temperature electron mobility 

remains at around 1300 cm2/V⋅sec [11].  Likewise, due to the low PFET body doping, the 

room temperature hole mobility is about 460 cm2/V⋅sec for the SOI PFETs.  The POI 

wafers experienced a high temperature anneal after deposition (1 hour at 1100°C), and so 

the electron and hole mobilities for the POI SFETs are unknown due to the unknown 

dependence of mobility on grain size.  It is presumed, though, that the grain size is on the 

order of 0.2 µm (the thickness of the POI body regions), as conventional thermal 

annealing of polysilicon and amorphous silicon films tends to be columnar.   

Another important feature of the devices fabricated in this study is the attempt to 

form a fully-silicided (FUSI) gate simultaneously with FUSI source/drain regions.  The 

purpose for this was two-fold.  First, a FUSI gate would eliminate polysilicon depletion, 

thus reducing EOT whereby its only component is the gate oxide thickness (100 Å target 

for the devices in this study), which is independent of gate and drain bias.  Second, as 

NiSi was used as the silicide for these devices, NiSi FUSI gates give a roughly midgap 
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characteristic (although slightly on the p-type side, by about 0.1 V).  As bulk-switching 

SFETs are not entirely “off” when zero gate bias is applied due to the nature of the body 

region, it was the intent to utilize the near-midgap nature of NiSi to pull the NFET and 

PFET transfer characteristics as close to the off state as possible with minimal process 

complexity (i.e., to form a gate-induced thermal barrier rather than a dopant-induced 

thermal barrier).  In other words, while conventional CMOS uses a p+ poly gate for the 

PFETs (which would have an n-type body region) and vice versa, for the approach taken 

in this study, the PFET body region is of a different type (intrinsic or p-type) and so 

would instead need an n+ poly gate (vice versa for the NFET) to achieve an acceptable 

off state.  Rather than perform separate poly and halo implants, however, the gate was 

kept to a single type for both the NFETs and PFETs, which, as an almost-midgap gate, 

should provide a good compromise for optimal NFET and PFET gate workfunctions.  

Also, as the lateral halo dopant propagation during the post-ITS anneal was expected to 

be very small (less than 10 nm) [12], it was presumed that, on the scale of ~0.5 µm+ 

device sizes, the percentage-wise reduction in the channel region that constitutes the halo 

region would compensate for the increased leakage that results from a single gate 

workfunction for both devices. 

It should be noted, however, that since the NFET and PFET halo implants are 

performed after silicidation, these implanted species also end up in the FUSI gates.  In the 

case of the process flow used for this study, phosphorus ends up in the FUSI gate for the 

NFET, while boron ends up in the FUSI gate for the PFET.  At the time of device design 

and fabrication, it was not known if and to what extent these dopants might shift the gate 

workfunctions for each device, consequently increasing leakage (e.g., for the NFET, the 
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gate workfunction would decrease due to the introduction of phosphorus).  As both the 

NFET and PFET gates are fully silicided, though, it was hypothesized that the dopants 

would distribute evenly throughout the gate material, as ideally there would be no 

unreacted regions of polysilicon for said dopants to segregate into, and so the gate 

workfunctions would be largely unaffected.  This hypothesis is given more weight when 

one considers Figs. 5.4 and 5.5 in Chapter 5, whereby the peak ion concentration, relative 

to the combined atomic concentrations of Ni and Si in NiSi, is on the order of 0.2 %.  If 

the NiSi structure is maintained after the ITS process, then the implanted species would 

exist at the NiSi grains as “interstitials” and, as they constitute such a small percentage of 

the gate material, they should not appreciably effect the gate workfunction.  One would 

thus contend that their only contribution to the device on and off states would be the 

electric field contribution from the implanted ions that diffused toward the NiSi-gate-

dielectric interface during the post-ITS thermal step.  As these ions are positively 

charged, such an effect may serve to offset the threshold voltage shift due to interface 

charge at the body-to-gate-dielectric interface, depending on how many ions diffuse to 

the bottom of the FUSI gate. 

Performing dopant implantation before silicidation, however, has been shown to 

shift the gate workfunction, and the extent of this shift depends on the implanted species 

and dose [13], [14].  This is because the subsequent silicidation step acts as a 

“snowplow,” pushing the implanted dopants to the poly-oxide interface (where in this 

case at least some of the dopants become activated).  As no snowplow effect takes place 

during a post ITS anneal, though (only dopant segregation occurs), there was little reason 

to suspect a gate workfunction shift for implantation into FUSI gates.  Thus, it would 
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seem that gate workfunction engineering for bulk switching SFETs would require dopant 

implantation into the polysilicon gate before gate patterning and subsequent metal 

deposition/silicidation.  This can become challenging for ultrathin body regions, 

however, as for FUSI gates the polysilicon thickness must be scaled with the body 

thickness, which means that the implantation energy must also be scaled down. 

One final point of interest for the bulk switching SFETs fabricated for this study 

is the Vout terminal of the designed inverters and ring oscillators.  Although the use of a 

single metal silicide for full CMOS operation allows the silicide to serve four functions, 

as mentioned earlier (Fig. 6.4), if careful attention is not paid to the post ITS anneal step, 

counterdoping of the halo regions adjacent to the Vout terminal will increase the series 

resistance of both the pull-up and pull-down networks, thus reducing drive current and 

consequently circuit speed (Fig. 6.8).  This is due to the fact that the Vout terminal is 

shared by both networks, which means that during the ITS processes, both p-type and n-

type dopants are introduced into opposite ends of the terminal.  During the anneal step, 

the n-type dopant species forms a halo region where it should, and likewise for the p-type 

dopant species; however, the dopant distribution of both species also spreads out within 

the metal silicide.  Therefore, if the anneal process is long enough and/or if the gate pitch 

is short enough, each species can propagate to the other end of the silicide and into the 

opposing halo region.  While the dopant concentration at this opposite end of the Vout 

terminal (e.g., boron concentration at the NFET halo region) may be characterized as the 

tail end of that dopant distribution, and so the extent of counterdoping may be negligible 

compared to the halo dopant concentration of interest in said region, with enough time 

the size of that tail may grow and effect a significant change. 
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Fig. 6.8.  Illustration of counterdoping of the NFET and PFET halo regions at the Vout 
terminal of a single metal Schottky CMOS inverter on SOI substrates after the post-ITS 

anneal/activation step. 
 

It should be noted that unipolarity is not compromised in the aforementioned 

instance, though.  Of particular concern in the case of the inverter in Fig. 6.4 are the halo 

regions adjacent to the ground and VDD terminals, and the silicides in said regions are 

only populated with the dopant species of interest.  Thus, a counterdoping of the halo 

regions adjacent to the Vout terminal would not affect the “unipolarity” of the devices 

within some VGS range – the only change is an increase in series resistance.  

Consequently, the frequency response is reduced.  One may potentially work around this 

by utilizing SIIS rather than ITS [15], although other challenges such as high-k 

compatibility remain an open question. 
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6.3 Test Chip Features 

As the primary goal of this study was to empirically demonstrate single metal 

Schottky CMOS, the test chip design is not particularly complicated.  After 

demonstrating discrete devices, the next step toward a viable CMOS or CMOS 

replacement technology is to demonstrate the voltage transfer characteristic (VTC) of a 

simple logic gate, such as an inverter.  As such, the majority of the test chip constitutes 

discrete n-channel and p-channel SFET designs, as well as inverter designs using varying 

channel widths (1, 5, and 10 µm), NFET:PFET width ratios (1:1, 1:2, and 1:3), and gate 

lengths (0.5 – 3 µm).  Inverters of moderate circuit density (Fig. 6.5) and with somewhat 

relaxed design rules (Fig. 6.9) were both included in the test chip. 

 

 

 

 

 

  

 

 

 

 

Fig. 6.9.  Schottky CMOS inverter layout using relaxed design rules.  The p+ and n+ 
implant windows were enlarged, as was the poly-to-active overlap and the poly-to-M1 

spacing. 
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Beyond inverters, a number of ring oscillators were also designed.  These are the 

most complicated circuits on the test chip, all of which consist of 17 stages.  The device 

length and width ratios were varied much like what was done with the single inverters, 

but the primary goal here was to demonstrate the achievable circuit density when the 

silicide source/drain region serves all of the four purposes mentioned previously.  An 

example of this is shown in Fig. 6.10 for inverters with a 1:2 NFET:PFET width ratio.  In 

the case of this type of ring oscillator, the ground and VDD regions are mostly connected 

at the [silicided] active level (a serpentine pattern ring oscillator would require a metal 

level to connect every other VDD and ground region, as shown in Fig. 6.10 for the VDD 

regions), and each inverter stage is isolated from the next by said active level.  No 

specific design rules were defined for the size of the active regions that constitute the 

ground and VDD regions, so the design in Fig. 6.10 may indeed have increased density if 

said regions are narrower. 

 

 

 

 

 

Fig. 6.10.  High density 17-stage ring oscillator design using single metal Schottky 
CMOS.  Inter-circuit isolation between each row of inverter stages is achieved with the 

same silicide that acts as the source/drain regions. 
 
 

Amongst the usual test structures (i.e., Van der Pauw, Cross-Bridge Kelvin 

Resistors, SEM structures, alignment verniers, etc.) designed for a test chip, a series of 

diodes were also included.  These diodes are of a fairly simple design – a 100 µm x 
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100 µm contact probe test pad placed over a slightly larger [silicided] active region – but 

the purpose for this was to have a “sanity check” for the NiSi-to-Si interface.  In other 

words, it was the intent to have a measurable individual Schottky diode to extract barrier 

height and diode leakage information from.  Diode leakage information is particularly 

useful in determining whether or not the diode is an actual diode, or whether it is merely 

an ohmic contact.  This is important when analyzing data from the bulk switching SFETs, 

as a higher than expected drive current (or leakage current) may be attributable to a less 

than ideal M-S junction (e.g., high diode leakage induced by defects) rather than a larger 

than expected discrepancy between model results and experimental data. 
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Chapter 7 
 

Silicon-on-Insulator (SOI) SFETs and CMOS Implementation 
 

 
 
7.1 Method of Fabrication 
 

The process flow started with p-type (boron-doped, 14-22 Ω-cm, 4-8x1014 cm -3) 

UNIBOND™ Smart Cut™ SOI wafers with a body thickness, tbody, of 100 nm and a 

buried oxide (BOX) thickness of 200 nm.  After defining the active regions, phosphorus 

was implanted into selected regions for n-well formation at 50 keV with a 5x1011 cm-2 

dose and a subsequent 4 h furnace anneal at 1000 °C in N2.  Simulation in Silvaco Athena 

showed the resultant n-well profile to be uniform throughout the entire body region with 

a concentration of 1x1015 cm-3 after all thermal processing.  A 9 nm gate oxide was 

thermally grown, after which 130 nm of undoped polysilicon with a 100 nm nitride cap 

were deposited via LPCVD.  After gate patterning, a 30 nm thick oxide sidewall spacer 

was grown.  The oxide over the source/drain regions was then removed in a dry etch with 

CHF3 and O2 and the nitride cap was stripped in phosphoric acid at 175 °C. 

A 30 s, 50:1 HF dip, followed by a 1 min rinse in DI water and then a spin 

rinse/dry, was performed.  The wafers were immediately loaded into a sputter chamber 

and placed under vacuum.  Nickel was then sputter deposited to ~ 45 nm after reaching a 

base pressure of 1-2 µTorr.  The silicidation step was performed at 500 °C for 1 min in 

N2 via RTA, and unreacted nickel was removed in a 2:1 H2O2:H2SO4 mixture at 90 °C.  

Although the two-step silicidation process in [1]-[5] is more suitable for aggressive 

scales, in this study, the devices are large enough to warrant a one-step silicidation 

without the risk of shorting across the body region.  Another purpose of the one-step 
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silicidation was to achieve a direct gate overlap to the M-S junctions, as such a one-step 

process has been shown to result in greater lateral silicidation than a two-step process [2].  

This increases current injection at the M-S junctions, as the gate field is superimposed 

with the halo-induced field. 

 
Split Fluorine co-

implant 
(y/n) 

Post-ITS 
anneal 
(°C/min) 

N/PFET 
well type 

N/PFET 
Whalo (nm) 

N/PFET 
EOT (nm) 

1 N 600/30 P/N 21.6/19 18.4/19.2 
2 Y 600/30 N/P 19.4/16.4 17.6/18.6 
3 Y 700/30 P/N 31/17.5 15/19.8 

Table 7.1.  ITS splits, well type, EOT, and Whalo results. 

 
An ITS process was performed for both the NFETs (phosphorus implant) and the 

PFETs (BF2 implant).  For all implants, the dose and energy were 4x1015 cm-2 and 

34 keV, respectively.  To form the halo regions, a subsequent thermal anneal was 

performed via RTA at 600 °C or 700 °C for 30 min in 10 min pulses (Table 7.1).  For 

some splits, fluorine was blanket implanted (4x1015 cm-3 @ 34 keV) before the n- and p-

type halo implant windows were defined.  The primary purpose of the fluorine implant 

was to increase the thermal stability of the NiSi (from 600 °C to 750 °C) [6], thus 

reducing defects at the M-S junction and potentially facilitating higher active dopant 

concentrations in the halo regions (i.e., higher drive current).  While fluorine is already 

present in the BF2 implant to serve this purpose, it is not present during the phosphorus 

implant, and so the upper thermal limit is restricted by the NFETs to 600 °C due to 

silicide agglomeration [6].  The size of the halo regions was approximated electrically 

using capacitance-voltage (C-V) analysis and some simple assumptions (shown in the 

next section). 
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After the halo formation, aluminum metallization was performed with an 

evaporation/liftoff process using Clariant nLOF 2020 resist and AZ-300T resist stripper.  

A top-down picture of the final circuit structure (inverter) is shown in Fig. 7.1, which 

shows the NFET and PFET sharing a metallic source/drain (MSD) region at the Vout 

terminal, as discussed in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7.1.  Top-down picture of MSD CMOS inverter after all fabrication was completed.  

The mask-defined gate length and width are 0.5 µm and 1 µm, respectively. 
 

 

7.2 Extracting the Halo Width (Whalo) 

In the modeling study in Chapter 5, it was suggested that dopants implanted into 

the silicide redistribute throughout the entire silicide and segregate to the M-S interface 

very quickly during the post-ITS anneal.  This information may prove useful for a device 
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structure where the extent of lateral and vertical diffusion for the as-implanted dopants to 

redistribute throughout the silicide is about the same, as it allows one to use a test 

structure reliant on purely vertical diffusion to estimate the width of the lateral halo 

region extending from the source/drain silicide.  Such a measurement might be performed 

through SIMS (secondary ion mass spectroscopy) or SRP (spreading resistance profiling) 

analysis, as they give information on the size of the halo region, the exact halo profile, 

and the dopant concentration at the M-S interface.  Without access to such measurement 

tools, however, one is forced to be more creative in their characterization techniques.  

This is where capacitance-voltage (C-V) measurements become very useful. 

For the process flow discussed in Section 7.1, FUSI gates were not formed, due to 

the gate polysilicon being too thick for the deposited nickel thickness to fully consume.  

This is reflected in the EOT results in Table 7.1, which are ~ 2x larger than the physical 

gate oxide thickness of 9 nm.  Although this reduces device performance compared to an 

ideal situation (i.e., FUSI gates), it does allow one to electrically extract Whalo using C-V 

analysis.  Knowing the as-deposited nickel and polysilicon thicknesses, and considering 

the 1:1.84 Ni:Si consumption ratio to form NiSi [7], one can calculate the thickness of the 

unconsumed polysilicon which acts as a capacitor in series with the gate oxide 

capacitance.  After finding the capacitance in the accumulation region of the C-V curve, 

one can electrically extract Whalo using: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

dacc
siuhalo CC

AdW 11*0εε        (1) 

where du is the thickness of the unconsumed polysilicon, Cacc is the accumulation mode 

capacitance, Cd is the gate dielectric capacitance, ε0 is the vacuum permittivity, εsi is the 

relative silicon permittivity, and A is the capacitor area.   
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 Whalo results for all three splits are shown in Table 7.1.  It is noted that one or two 

of the cleanest samples were used for each data point, although realistically there should 

exist some variability associated with this measurement.  The key assumptions of this C-

V method are: 1.) diffusion within silicon and polysilicon are the same in the temperature 

range of interest; 2.) uniform silicide diffusion front (i.e., silicide spiking is very small 

compared to the unconsumed polysilicon thickness); 3.) the purely vertical diffusion 

within the gate silicide is representative of both the vertical and lateral diffusion within 

the source/drain silicide; 4.) the silicide in the polysilicon gate is the same phase as that 

of the source/drain region; 5.) uniform and degenerately doped halo region (i.e., no halo 

depletion).  Assumptions 3-5 have the most significance, as this method measures the 

width of the undepleted portion of the halo region formed by purely vertical diffusion in 

NiSi formed on a polysilicon gate.  It is not unreasonable to suggest that the tail of the 

halo profile depletes during this measurement, resulting in an underestimation of the 

actual Whalo.  Assuming a 1 nm/dec junction abruptness, for a degenerately doped halo 

region, the tail should extend ~ 4-5 nm before the halo concentration reduces to the 

1015 cm-3 level.  In the case of the p-type halo region for the 600 °C/30 min split without 

the fluorine co-implant (split 1), the actual Whalo is therefore ~ 23-24 nm, which is in very 

good agreement with SRP results [6].   

 It is interesting that, from Table 7.1, the fluorine co-implant seems to retard both 

boron and phosphorus diffusion during the post-ITS anneal at 600 °C (split 2 vs. split 1).  

As discussed in Chapters 3 and 5, dopant diffusion within silicides has been attributed to 

grain boundary diffusion, and this may explain the observed result for two reasons.  First, 

the fluorine co-implant was performed before the halo implants, and so the damage from 
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the fluorine implant reduces the effective grain size of the silicide.  Although this 

increases the grain boundary density (presumably increasing diffusion), it also makes the 

path of the implanted dopants to the M-S interface less direct due to increased scattering 

as the dopants diffuse from one [smaller] grain boundary to the next.  Additionally, the 

implanted fluorine ions fill up some of these interstitial sites, which the implanted 

dopants must now compete for.  While this feature size reduction may seem beneficial for 

fabrication at aggressive scales, the co-implanted fluorine itself also seems to reduce 

PFET performance (shown later).  Even for the 700 °C/30 min split with fluorine 

(split 3), the p-type halo is still smaller than the 600 °C/30min split without fluorine (split 

1), while the n-type halo grows considerably in size (in [6], a 700 °C/30 min anneal to 

BF2 ITS without a fluorine co-implant resulted in a 28 nm Whalo).  There are a number of 

possible mechanisms for this, although to a first order, it would seem to indicate a higher 

interstitial/grain boundary dependence on diffusion for boron than for phosphorus, both 

within the silicide and at the M-S junction.  Another possibility is that the fluorine may 

be counterdoping some of the p-type halo region, and that this counterdoping has a 

greater temperature dependence than the growth of the p-type Whalo. 

 

7.3 Demonstration of Metallic Source/Drain (MSD) CMOS 

 Fig. 7.2 shows voltage transfer characteristics (VTCs) for what is, to the best of 

the author’s knowledge, the first-ever full empirical CMOS demonstration with metallic 

source/drain devices on SOI substrates.  These results are from split 1 in Table 7.1, for 

mask-defined gate lengths, Lg,m,, from 2 µm down to 0.6 µm, a mask-defined width, Wm, 
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of 1 µm, and a power supply voltage (VDD) of 3 V.  The JDS vs. VDS plots for each device 

in the 0.6 µm inverter are shown in Fig. 7.3. 

 

 

 

 

 

 

 

 

 

Fig. 7.2.  Inverter VTCs for Lg,m = 2 µm down to 0.6 µm.  The PFET:NFET width ratio is 
1:1, and Wm is 1 µm. 

 
 

 

 

 

 

 

 

 

 

 
Fig. 7.3.  NFET and PFET JDS vs. VDS from Lg,m = 0.6 µm inverter in Fig. 7.2.   

 |VGS – Vtlin| = 0-5 V in 1V increments. 

 145



The poorer pull-up performance relative to the pull-down performance in Fig. 7.2 

is due to excessive NFET leakage (Fig. 7.3), which shows punchthrough-like 

characteristics.  For Vg – Vtlin = 0 V and 1 V, there are two “kinks” in the curve – one at 

VDS ~ 1.5 V and another at VDS ~ 4.5 V (punchthrough-like).  It is the former kink that 

seems to be the cause of such anomalous levels of NFET leakage, and this will be 

explored in more detail in Section 7.4.  Suffice it to say that this NFET leakage causes a 

substantial reduction in inverter gain as Lg,m is scaled down (Fig. 7.4).  Considering the 

pull down performance in Fig. 7.2 for all four cases shown, though, it is not unreasonable 

to suspect much higher inverter gain with an NFET that does not exhibit so much 

leakage, and that the reduction in this gain with Lg,m would not be as severe as what is 

shown in Fig. 7.4.  This is also reflected in Figs. 7.5 and 7.6, where the noise margin low 

(NML, Fig. 7.5) changes very little if at all with Lg,m and the noise margin high (NMH, 

Fig. 7.6) shows a very noticeable shift at higher VDD values as Lg,m drops below 1 µm. 

 

 

 

 

 

 

 

 
 
 

 
 

Fig. 7.4.  Inverter gain vs. VDD for the inverters from Fig. 7.2. 

 146



 
 
 
 

 

 

 

 

 

 

 

 
Fig. 7.5.  Noise margin low (NML) vs. VDD for the inverters from Fig. 7.2.  At moderate 

to high VDD values, NML has little if any dependence on Lg,m. 
 

 

 

 

 

 

 

 

 

 
 
 

Fig. 7.6.  Noise margin high (NMH) vs. VDD for the inverters from Fig. 7.2.  As Lg,m is 
scaled below 1 µm, the increasing NFET leakage reduces the range over which a given 

input is read as a logic high (NMH). 
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It is noted that Figs. 7.2 – 7.6 are only data from split 1 in Table 7.1.  VTCs could 

not be demonstrated with split 3, because the NFET leakage was actually similar to or 

greater than the PFET drive current (shown later).  As for split 2, most of the samples 

tested did not perform nearly as well as split 1.  An example of this is shown in Fig. 7.7, 

which compares Lg,m = 1 µm inverters from splits 1 and 2 with VDD = 3 V.  As can be 

seen, the gain is substantially lower for the split 2 inverter, and both the pull-up and pull-

down operations are farther from VDD and ground, respectively, over a 3 V range of Vin.  

This is attributable to inferior subthreshold swing due somehow to the fluorine co-

implant (shown later).  Interestingly, one [anomalous] sample from split 2 did indeed 

yield reasonable NFET performance, whereby the NFET off state current density almost 

exactly matches that achieved in [4].  This is also shown in Fig. 7.7 in the curve 

representing the Lg,m = 2 µm inverter.  The transfer characteristics from this sample are 

shown in Fig. 7.8, while the JDS vs. VDS is shown in Fig. 7.9.  It would seem that the 

contribution of the subsurface leakage is reduced in this particular NFET.  However, that 

the NFET off state remains flat at ~ 60 pA/µm (for VDS = 0.1 V) while the PFET off state 

drops below 1 pA/µm suggests that the parasitic leakage mechanism in the NFET has not 

been completely removed, and that the gate field that would normally effect this current 

is screened by the surface source/drain silicide due to a recessed silicidation front in the 

subsurface region.  Another interesting point from Fig. 7.8 is the emergence of a dual 

subthreshold swing for the PFET.  This is further evidence of the co-implanted fluorine 

affecting the p-type halo region by counterdoping and/or reducing diffusion, 

consequently increasing the influence of the Schottky barrier on current injection.  The 

GIDL-like leakage in the saturation mode curves is due to band-to-band tunneling (BBT) 
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at the source and drain halo-body barriers, as well as tunneling through the halo regions, 

and may be a limiting factor to inverter performance at aggressive scales. 

 

 

 

 

 

 

 

 

 

 
Fig. 7.7.  Inverter VTCs comparing splits 1 and 2.  The Lg,m = 1 µm inverter VTC from 

split 2 is representative of most of the tested samples in split 2. 
 

 

 

 

 

 

 

 

 

 
Fig. 7.8.  NFET and PFET transfer characteristics from anomalous sample in split 2. 
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Fig. 7.9.  NFET and PFET JDS vs. VDS from anomalous sample in split 2. 
|VGS  - Vtlin| = 0-5 V in 1 V increments. 

 
 

7.4 Analysis of NFET Leakage 

The observed NFET leakage in most of the samples tested is by no means a 

limitation of the basic device structure, as acceptable NFET performance was achieved in 

[4] using a similar process flow and with much smaller devices.  However, said study 

used a thinner body region (40 nm) and a similar ITS energy (30 keV), which suggests 

that the NFET performance may be a function of the as-implanted phosphorus profile and 

whether this profile extends the full depth of the silicide.  TRIM simulation (Fig. 7.10) 

shows that, at both 30 and 34 keV, most of the implanted phosphorus ions are contained 

within the first 60 nm of the silicide film, which leaves ~ 40 nm of unoccupied NiSi in 

the subsurface region of the NFETs before the post-ITS anneal.  For the ITS process in 

[4], the as-implanted dopants were spread throughout the entire silicide (Fig. 7.10), and 
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while the NFET performance is subsequently improved compared to what is presented 

here, it still did not match up to the PFET performance in that study.   

 

 

 

 

 

 

 

 

 

 
Fig. 7.10.  TRIM results for phosphorus, BF2, and fluorine implants into NiSi at 30 and 

34 keV with a 4x1015 cm-2 dose and a 10,000 ion count. 
 

 Some more insight into the physical mechanisms of the NFET leakage is gained 

through C-V analysis.  The C-V structure used has a 500 µm x 500 µm gate, surrounded 

by the source/drain silicide.  The halo region between this silicide and the body region 

acts as the body contact.  Fig. 7.11 shows normalized C-V curves for structures with the 

n-type halo contacting the n-type body region and the p-type halo contacting the p-type 

body region after a post-ITS anneal at 600 °C for 30 min (no fluorine co-implant).  The 

kinks in the C-V curves at V-Vmid ~ 1-2 V at 100 kHz for the p-type and n-type structures 

are attributable to donor-like and acceptor-like states at the oxide-silicon interface, 

respectively.  More importantly, though, is the behavior of the C-V curves in depletion 

mode.  While the p-type structure depletes fully, the n-type structure does not.  The 
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TRIM results in Fig. 7.10 rule out the possibility of the phosphorus implant punching 

through the gate stack (thus increasing the n-type body doping and therefore NFET 

leakage), which is further substantiated by a measured EOT that is ~ 2x larger than the 

physical oxide thickness.  This singles out the source/drain capacitance as the culprit.  

The frequency dependence of these curves suggests that the NFET source/drain 

capacitance is artificially high due to defect-induced leakage at the M-S junction toward 

the source/drain-BOX interface, perhaps due to silicide agglomeration in this region.  

This is also supported by Fig. 7.3, where the NFET saturation region exhibits some 

curvature.  If such leakage were due to SCE, this saturation region would be sloped, but 

without curvature (i.e., constant slope).  That the slope is changing in Fig. 7.3 indicates a 

parasitic diode shunting the halo region formed at the surface.  Indeed, before the first 

kink at VDS ~ 1.5 V in Fig. 7.3, the NFET actually behaves rather normally. 

 

 

 

 

 

 

 

 

 

 
Fig. 7.11.  Normalized C-V curves for n-type and p-type structures at 100 kHz and 
1MHz.  Cacc is the accumulation mode capacitance and Vmid is where C/Cacc = 0.5. 
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Fig. 7.12 shows C-V curves at 100 kHz for four process splits with n-type halo 

regions contacting the body region.  The higher depletion mode capacitance for both p-

body splits, compared to the n-body splits, may be attributed to higher hole leakage 

through and over the lower hole SBH than for electrons at a NiSi-Si Schottky junction, 

whereby the unmodified electron SBH is 0.65 eV [8] and is ~ 0.47 eV for holes.  This 

suggests that an n-body accumulation mode NFET may actually outperform a p-body 

inversion mode NFET for this device structure, due to the higher subsurface barrier 

height to majority carriers in the body region. 

It is very interesting that the PFET exhibits better performance than the NFET 

(Fig. 7.3), even with a smaller projected range into the NiSi for BF2 compared to 

phosphorus (Fig. 7.10).  This is at least partly attributable to the fluorine from the BF2 

implant, as suggested in Section 7.2.  This is also reflected in Fig. 7.12, where both the n-

body and p-body structures (both with n-type halo regions) with the fluorine co-implant 

do not exhibit the deep depletion-like characteristic that the splits without the fluorine co-

implant show.  This indicates that the fluorine reduces the defect concentration at and 

near the M-S junction, although the depletion mode capacitance is still not reduced.  That 

the fluorine has a stronger effect on the n-well split than the p-well split may be due to a 

difference in the concentration of donor-like and acceptor-like states at the M-S interface.  

As these states fill up with electrons or holes, the effective barrier height to the respective 

carrier is increased, thus decreasing the effective capacitance, as Fig. 7.12 shows for the 

splits without the fluorine co-implant.  This all suggests that the n-type halo is not 

uniformly distributed throughout the body thickness.  This would cause the subsurface 

source/drain capacitance to be dominated by a higher Schottky capacitance that shunts 
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the lower source/drain capacitance at the surface, which is dominated by the halo-body 

capacitance.  Assuming this is the case and using the equation for Schottky diode 

capacitance at zero bias [9], the effective dopant concentration in the subsurface region is 

~ 2.5x1016 cm-3 (n-type) for the n-body structure and ~ 1.4x1016 cm-3 (p-type) for the p-

body structure.  These are actually overestimates, as the halo region lowers the SBH, 

which increases the capacitance achieved for a given dopant concentration.  Therefore, it 

is highly likely that the n-type halo implant does not even propagate toward the M-S 

interface at the bottom of the silicide during the post-ITS anneal.  NiSi phase has been 

shown to be a function of depth, whereby the silicon-rich phase exists toward the bottom 

of the silicide [10], as well as whether the silicidation takes place in silicon or polysilicon 

due to stress effects [2].  Thus, it is not unreasonable to suggest lower phosphorus 

diffusion than boron in the subsurface source/drain silicide.  This is where the assumption 

of silicide phase similarity between silicon and polysilicon may fall apart. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.12.  Normalized C-V curves for various n-type halo structures at 100 kHz. 
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This analysis of NFET leakage lends further weight to the notion in [4] that 

phosphorus diffusion (or lack thereof) within NiSi is a limiting factor to NFET 

performance in this structure.  That the linear regions for the NFET and PFET in Figs. 7.3 

and 7.9, where the n-type and p-type ITS doses were equal, are similar further support the 

claim in [4] that the phosphorus dose plays a role in current injection through and over 

the Schottky barrier.  This role is equally important as the role that the FUSI source/drain 

thickness (i.e., body thickness) plays in NFET leakage.  At this point, it is reasonable to 

suspect that the formation of the n-type halo region has a significant contribution from 

the lateral projected range and straggle from the ITS process, as this results in some 

portion of the lateral implant tail being injected into the silicon at the M-S interface.   

It would seem that improving NFET performance in future efforts with the 

presented device and circuit structure would require a thinner FUSI source/drain region 

and/or a higher implant energy for the n-type halo region.  It is noted, though, that a 

higher implant energy will spread out the as-implanted profile, potentially reducing the 

halo concentration at the M-S interface for a given dose.  This is avoided with a thinner 

body region, as lower implant energies can be utilized to increase the halo concentration 

throughout the entire halo depth by effectively “squeezing” the as-implanted profile.  

Another approach would be to utilize SIIS (silicidation-induced impurity segregation) 

rather than ITS, presumably avoiding the subsurface leakage issue altogether if dopant 

segregation at the silicidation front is high enough.  SIIS would also permit the use of 

heavier n-type dopants, such as arsenic and antimony, that would not perform as well for 

an ITS process due to their bigger size, but have been shown to result in superior 

workfunction modification during SIIS processing [11]. 
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7.5 Effect of Fluorine Co-Implant on Device Performance 

Figs. 7.13 and 7.14 show the NFET JDS vs. VDS and transfer characteristics, 

respectively, for the three process splits in Table 7.1, while Figs. 7.15 and 7.16 show the 

same for the PFET.  For both devices, Lg,m = 2 µm and Wm = 1 µm.  Split 3 is not shown 

in Fig. 7.14, as it is little more than a log-linear curve, which Fig. 7.13 already suggests.  

As is shown in Fig. 7.12, the fluorine co-implant is not expected to reduce the NFET off 

state current by much if at all in this structure, which is substantiated by Fig. 7.14.  

Figs. 7.13 – 7.16 suggest that both the NFET and PFET achieve higher drive current 

without a fluorine co-implant for a given post-ITS anneal.  Again, this is attributable to 

the reduced dopant diffusion within the silicide caused by the implanted fluorine.  For the 

NFET, the fluorine co-implant actually increases DIBL and SS, while only SS is 

increased for the PFET.  This is explained by fluorine acting as an n-type dopant in 

addition to a diffusion inhibitor, spreading out the tail of the n-type halo region (while 

also lowering the interface concentration) and counterdoping and/or reducing diffusion of 

the p-type halo region.  As a result, for the PFET, the influence of the Schottky barrier at 

the M-S junction is increased, consequently increasing SS (Fig. 7.16).  For the NFET, the 

influence of the Schottky barrier is also increased, as shown in Fig. 7.13, where the 

curves for split 2 exhibit some sub-linear behavior. 

The original purpose of the fluorine co-implant, however, was to facilitate higher 

temperature post-ITS anneals, and the higher temperature may outweigh any adverse 

effect of the fluorine on device performance.  At least in terms of drive current, this 

seems to be the case for the NFET (Fig. 7.13).  Split 3 restores the performance in the 

linear region compared to split 2, even improving on what is achieved with split 1 with 
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much higher drive current.  However, the device does not reach saturation, again due to 

subsurface leakage through and over the subsurface Schottky barrier.   

The exact opposite effect of fluorine happens for the PFET at 700 °C, however 

(Figs. 7.15 and 7.16).  While the DIBL and SS performance of split 3 is comparable to 

split 2, the drive current is considerably lower than both splits 1 and 2.  That the drive 

current changes inversely with temperature suggests a stronger thermal activation 

dependence for fluorine than boron in the temperature range of interest and that, again, 

the fluorine is counterdoping the p-type halo region.  As a result, inverter VTCs could not 

be demonstrated with split 3, as the PFET drive capability cannot outweigh the NFET 

leakage.  A well-engineered metallic source/drain (MSD) CMOS circuit, then, would 

mask the fluorine co-implant from the PFETs. 

 

 

 

 

 

 

 

 

 

 

Fig. 7.13.  NFET JDS vs. VDS for splits 1-3.  Lg,m = 2 µm, Wm = 1 µm, and VGS – Vtlin = 0-
5 V in 1 V increments. 
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Fig. 7.14.  NFET transfer curves for splits 1 and 2.  Lg,m = 2 µm and Wm = 1 µm. 
 
 

 

 

 

 

 

 

 

 

 
Fig. 7.15.  PFET JDS vs. VDS for splits 1-3.  Lg,m = 2 µm, Wm = 1 µm, and |VGS – Vtlin| = 0-

5 V in 1 V increments. 
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Fig. 7.16.  PFET transfer curves for splits 1-3.  Lg,m = 2 µm and Wm = 1 µm. 
 

 Another method of analyzing the effect of the fluorine co-implant is to observe 

how current scales with Lg,m.  In the ideal case, current scales directly with 1/Lg,m.  Thus, 

for a given Lg,m, plotting the drive current normalized to the drive current at Lg,m = 1 µm 

should yield a straight line with a slope of 1.  Fig. 7.17 shows such a characteristic, where 

the first and third quadrants are divided into two regions – A and B – and the drive 

current is taken at |VDS| = |VGS – Vtlin| = 5 V.  If the experimental curve extends into region 

A, then the slope exceeds 1 and the current scales as 1/(Lg,m – ∆L), where ∆L is the 

effective change in the channel length.  This indicates some sort of channel length 

modulation, and therefore poor SCE immunity.  If the experimental curve extends into 

region B, then the slope is less than 1 and the drive current is limited either by the 

source/drain series resistance (RSD, the sum of both the source and drain resistances), 

velocity saturation, and/or the source/drain Schottky barrier.  This is not to state that, in 
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region B, the devices exhibit long channel behavior, but rather that other effects are more 

dominant than a potential emergence of SCE.  In the case of the PFET in split 1, current 

scaling is fairly ideal until Lg,m drops below 1 µm, where RSD and/or velocity saturation 

and/or the Schottky barrier limit current scaling.  RSD is removed as a possible factor by 

Terada-Muta (T-M) measurements, where the PFET RSD was extrapolated to ~ 6.5 kΩ 

and the NFET RSD is ~ 1.55 kΩ (both from split 1).  That the NFET from split 1 exhibits 

a lower slope in Fig. 7.17, even with a smaller RSD, suggests that RSD is not dominant in 

this case and that instead the effect of the Schottky barrier and the halo concentration at 

the M-S interface are the primary components.  This notion is further supported by the 

effect of fluorine on PFET performance being consistent between Fig. 7.17 and Figs. 7.15 

and 7.16.  It is noted, though, that velocity saturation may also be a significant 

component in the PFET, due to the linear dependence of JDS on VGS – Vtlin in Fig. 7.3. 

 

 

 

 

 

 

 

 

 
 
 

Fig. 7.17.  Normalized drive current vs. 1/Lg,m.  Region A represents poor SCE immunity 
and region B represents current scaling limitations due to some effective resistance. 
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7.6 Band-to-Band Tunneling (BBT) and CMOS Implications 

As discussed earlier, and as shown in Fig. 7.8, BBT may limit inverter 

performance if the body potential sufficiently differs from the source and drain potentials.  

This can be induced by a gate bias or by an appropriate gate workfunction.  Fig. 7.18 

shows the inverter VTC for the devices in Fig. 7.8 (anomalous devices from split 2) when 

the input terminal is driven to voltages sufficient to induce a significant amount of BBT.  

In such a case, the pull-down and pull-up operations start to reverse.  Although, in the 

case of Fig. 7.18, the Vin - Vt swing necessary to show this effect extends beyond the 

swing expected for VDD = 3 V (±1.5 V), smaller devices, smaller EOT, and a sharper halo 

profile may cause this effect to show up over a smaller range of Vin. 

 

 

 

 

 

 

 

 

 
 
 

Fig. 7.18.  Inverter VTC for devices in Fig. 7.8.  VDD = 3 V. 
 

Fig. 7.19 shows the JDS vs. VDS curves in BBT mode for the NFET and PFET 

from Fig. 7.8, and a number of effects are noticed.  First is the diode-like behavior at low 
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|VDS|, which indicates that the drain plays a role in inducing BBT at the source-body 

junction and/or that tunneling through the halo region itself is a significant current 

component in this regime of operation.  Second is the slope of the “linear” regions for the 

NFET and PFET.  For the PFET, this region is steeper, which suggests that the BBT 

barrier at the PFET source-body junction is narrower than it is for the NFET for the same 

|VGS – Vtlin| and/or that the tunnel barrier width presented by the halo region is smaller for 

the PFET.  This is supported by Table 7.1 for the Whalo results, and can be attributed to 

the fluorine increasing the halo abruptness for the PFET by counterdoping the tail of the 

halo profile, while at the same time spreading out the NFET halo region, thus increasing 

the BBT barrier width for the NFET.  This also explains the higher peak current for the 

PFET.  Third is the steepness of the negative differential resistance (NDR) region, which 

is higher for the NFET than for the PFET.  Again, this is attributable to the fluorine 

counterdoping the p-type halo, but also to the higher solid solubility limit of phosphorus 

in silicon.  In other words, conduction at the drain before the NDR region shows up has a 

higher BBT component (as opposed to tunneling through the halo region) for the NFET 

than the PFET.  This also explains the higher VDS required in the NFET to induce NDR (~ 

4 V in the NFET vs. ~ 2.5-3 V in the PFET), as a higher valence-to-conduction band 

offset requires a higher VDS to reduce VGD such that BBT at the drain starts to cut off. 

It is noted that BBT is not observed in all of the NFETs tested; however, this is 

because most of the NFETs tested exhibited very high subsurface leakage.  Looking back 

at Fig. 7.8, the NFET BBT approaches ~ 0.1 µA/µm at high VGS – Vtlin, but the subsurface 

leakage in most NFETs tested (e.g., Fig. 7.14) is approximately 5x larger.  It is therefore 

very reasonable to suggest that BBT does indeed occur in most if not all of the NFET 
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structures tested, but the higher subsurface leakage prevents one from actually observing 

said phenomenon in a test environment. 

 

 

 

 

 

 

 

 

 
 
 

Fig. 7.19.  BBT curves for the NFET and PFET from Fig. 7.8.  |VGS – Vtlin| = 6-11 V in 
1 V increments. 

 
 

7.7 Diode Structures 

In Chapter 4, some modeling effort was used to quantify the extent of Schottky 

barrier lowering (SBL) as a function of Nhalo, and it was stated that the modeling results 

were likely an underestimate of the actual extent of SBL for a given Nhalo.  At least in 

part, this was due to a somewhat arbitrary quantification of the fitting parameter α in the 

SBL equation, as well as a lack of knowledge on how α may or may not change with 

Nhalo.  With that model, if the effective SBH is known, one cannot provide an estimate of 

α without knowing Nhalo, which cannot be achieved without SIMS analysis.  In any case, 

the test chip for the presented work includes a structure for measuring the effective SBH 
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for the ITS process utilized in this study.  On one end of the structure is a conventional 

M-S junction (Diode 1 in Fig. 7.20).  On the other end is the M-S junction with the ITS-

formed halo region, which forms two diodes – one at the M-S junction (Diode 3 in Fig. 

7.20) and one between the halo region and the body region (Diode 2 in Fig. 7.20).  Since 

the halo implant only takes place for Diode 3, and therefore Diode 1 is left “bare” during 

the post-ITS anneal, it is reasonable to assume that Diode 1 will act more as a resistor due 

to leakage induced by silicide agglomeration during the post-ITS anneal.  As such, 

Diodes 2 and 3 are assumed to dominate the I-V characteristics over a given voltage 

sweep. 

Diode 1  Diode 2 Diode 3

 

 

 

 

 

 

 

 

 
Fig. 7.20.  Energy band illustrations for the diode structures used to extract the effective 
SBH.  The top diagram is for the n-type halo region, while the bottom is for the p-type 

halo region.  For both structures, the body region is p-type (4-8x1014 cm-3). 
 

For both the n-type and p-type halo structures, the contact to Diode 1 is grounded, 

while the contact to Diode 3 is swept between ±2 V.  Fig. 7.21 shows I-V sweeps for the 

three process splits performed.  For each split, only one diode I-V is attainable (i.e., for 
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the p-type halo or the n-type halo), but the information in Fig. 7.21 is useful nonetheless.  

For the n-type halo structures, the halo-body diode turns on with a negative applied bias, 

while the opposite occurs for the p-type halo structure.  Fig. 7.21 shows that the n-type 

halo from split 1 exhibits the highest threshold voltage (-0.7 V) and the highest 

subthreshold leakage.  This is attributable to the defective M-S junction at Diode 3 

(positive Va), as well as a defective subsurface region in Diode 1, much like how the 

NFET leakage mentioned previously is higher than the PFET leakage.  This is also 

reflected in the p-type halo diode, which does not exhibit such subthreshold leakage in 

forward bias (i.e., the p-type halo traverses the entire body depth). 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 7.21.  Diode I-V curves for the available n-type and p-type halo structures.  For all 
structures, the body region is p-type (4-8x1014 cm-3). 

 

Adding fluorine (split 2) helps the diode leakage considerably by passivating the 

subsurface region in Diode 3 and by passivating all of Diode 1 (recall, the fluorine 
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implant was a blanket implant).  This also reduces the threshold voltage for the n-type 

halo-body diode to -0.5 V, which lends further weight to the idea that fluorine reduces 

phosphorus diffusion within the silicide for a given post-ITS anneal, thus reducing Nhalo.  

Also, the reverse leakage characteristics for the n-type halo structure are more diode-like.  

This suggests that, again, the fluorine is acting as an n-type dopant, resulting in a p-n 

diode in series with a reverse-biased Schottky diode at Diode 1 as opposed to a leaky M-

S junction.  This may also explain the higher forward current (negative Va) for the split 2 

vs. split 1 n-type halo regions, where the fluorine creates an n-type region in the 

subsurface region of Diode 3.  Although the dopant concentration at the M-S junction of 

Diode 3 is presumably lower, the depth traverses the entire body thickness, suggesting 

that the halo depth in the NFETs from split 1 (e.g., Fig. 7.3) is what limits the NFET 

drive current.  If the n-type halo depth were the same as the p-type halo depth for the 

devices in Fig. 7.3 (i.e., it traverses the entire body thickness), the NFET leakage would 

not only be lowered considerably, as mentioned previously, but also the NFET drive 

current would be improved, perhaps on the order of ~ 200 % (assuming the phosphorus 

diffusion in the source/drain silicide is largely confined to where implant damage exists, 

per Fig. 7.10).  More to this end, if the gate were fully-silicided in the presented structure 

(i.e., EOT = 9 nm), the PFET drive current at |VDS| = |VGS – Vtlin| = 5 V should be on the 

order of 650 µA/µm, while the NFET drive current under the same conditions may well 

exceed 1 mA/µm for Lg,m = 0.6 µm. 

Using (2) in Chapter 2, one can use the diode I-V characteristics to estimate the 

effective SBH.  That equation, however, assumes zero voltage dependence on the reverse 

bias current, which is why the results in Fig. 7.22 are from a relatively low reverse bias of 
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6.5 mV (other work [12] used higher reverse biases, but with a more complicated model).  

Even with this in mind, it is doubtful that Fig. 7.22 represents an accurate measurement 

of the effective SBH at the halo-silicide junction.  In fact, Arrhenius measurements (JR/T2
 

vs. 1000/T) revealed, in several cases, a positive slope as opposed to a negative slope, and 

in many other cases a very jagged plot that is more or less devoid of useful information 

for extracting the SBH.  This indicates that the effective SBH is so small that one would 

need a temperature range well below 30 °C (on the order of –100 °C [12]) for a 

reasonably accurate measurement.  Even without an “accurate” SBH measurement, what 

this suggests is that barrier lowering from ITS is substantial.  ITS therefore holds 

considerable promise as a competitor to SIIS [10], [13] for reducing the effective SBH at 

the M-S junction, even with relatively low temperature post-ITS anneals. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7.22.  Effective SBH vs. temperature for the available n-type and p-type halo 
structures.  Extracted values are below 0.1 eV at 30 °C, although very low temperature 

testing would be required to support such a claim. 
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7.8 Analysis of Potential Counterdoping Effect at the Output Terminal 
 

It was mentioned in Chapter 6 that, since the Vout terminal of an inverter is shared 

by the NFET and PFET in the presented structure, the halo regions at each end of the 

terminal may be counterdoped by the opposite dopant type diffusing from the other end 

of the terminal, thus increasing series resistance.  For the inverter structures tested, the 

mask-defined gate spacing (i.e., the width of the Vout terminal) is 5 µm.  As the n-type 

and p-type halo implant windows were designed to consume half of that spacing each, the 

implanted dopants would have to diffuse 2.5 µm to begin counterdoping the opposing 

halo region.  For a 600 °C, 30 min. post-ITS anneal, this is highly unlikely, and is 

reflected in the fact that performance asymmetry was not observed for most of the 

samples tested.  As fluorine seems to limit boron diffusion within NiSi due to interstitial 

blocking/competition, it is reasonable to suggest that phosphorus blocks boron diffusion 

within NiSi in a similar fashion.  However, this claim can only be substantiated or refuted 

at very aggressive scales, where the gate spacing is on the order of the sidewall spacer 

width used in this study (10’s of nm). 

Fig. 7.23 shows one of the few cases where performance asymmetry was 

measured.  In the “forward” convention, the Vout terminal was treated as the drain for both 

transistors, while the “reverse” convention used the ground and VDD terminals as the 

drain for the NFET and PFET, respectively.  The observed asymmetry is more 

pronounced for the NFET, where there exists a sub-linear region for the reverse 

convention and much lower drive current.  This may suggest that boron diffuses much 

faster in NiSi than phosphorus, and in this case to the point where the n-type halo is 

counterdoped enough to make the role of the Schottky barrier on current injection 
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significant again.  It is quite possible that the asymmetry observed for the PFET (which 

only shows up at high VGS) is merely a testing artifact, as it was found that running the 

same I-V sweep multiple times results in some slight variation between iterations.  This 

may be attributable to non-ideal contact between the aluminum and the NiSi (i.e., the 

aluminum liftoff process was not very clean, leaving residue on the wafer, and so did not 

permit a sinter to be performed afterwards).  The boron counterdoping theory, again, 

though, is questionable, due to the size of the gate spacing and the limited number of 

samples that exhibited this behavior.  It is perhaps more likely that the n-type halo 

implant window was not wide enough (i.e., underexposed during lithography) to open up 

enough of the Vout terminal, thus limiting how much phosphorus was actually implanted 

into this region.   

 

 

 

 

 

 

 

 

 
 
 

Fig. 7.23.  Demonstration of performance asymmetry from one sample in split 1.  Lg,m = 2 
µm, Wm = 1 µm, and |VGS – Vtlin| = 0-5 V in 1 V increments.  Solid lines represent the 

forward convention, while the open squares represent the reverse convention. 
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Chapter 8 
 

Negative Differential Resistance (NDR) in Conventional SFETs  
 
 
8.1 Observance of NDR in This and Other Work 
 

The author’s first observance of the NDR characteristic in conventional SFETs 

was in the prototype devices fabricated for the undergraduate senior design project during 

Winter/Spring 2004.  For said devices, the source/drain regions (and the gate region) 

were pure aluminum, the gate dielectric was 500 Å of Tetraethyl Orthosilicate (TEOS), 

and the body region was lightly doped n-type (bulk substrate, 5-15 Ω-cm).  Although far 

from ideal from a performance standpoint, it was sufficient to demonstrate the concept of 

Schottky source/drain regions.  However, the n-channel JDS vs. VDS curves consistently 

exhibited NDR characteristics, some examples of which are shown in Fig. 8.1.   

 

 

 

 

 

 

 

 

 

 
Fig. 8.1.  NDR characteristic observed in prototype SFETs from the senior design project 
in 2004.  VGS = 4-10 V in 1 V increments and the gate length LG ~ 4.1 µm after etching.  

The solid lines and the open box lines represent two different transistors. 
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 As the results in Fig. 8.1 are from devices with unmodified Schottky barriers (i.e., 

no halo regions), it is interesting that NDR is observed if one assumes an ideal M-S 

junction and ideal SFET operation (Chapter 3).  Clearly, however, this is not the case.  

Such a characteristic has also been observed in at least one other body of work [1], shown 

in Fig. 8.2 for Vg – Vth = 5 V and VDS ~ 2.8 V.  In this device, the source/drain regions 

were CoSi2 with a p-type body region (bulk silicon) at 1x1017 cm-3, and LG = 0.4 µm. 

 

 

 

 

 

 

 

 

 

Fig. 8.2.  NDR characteristic observed in other work [1] at high Vg – Vth and high VDS. 
 

In the presented work, on one wafer, the yielding NFETs were ambipolar, 

indicating that the implanted phosphorus did not diffuse to the interface (perhaps due to 

temperature variation in the RTA system).  Interestingly, these NFETs also exhibited 

NDR characteristics during n-channel operation, an example of which is shown in 

Fig. 8.3.  That NDR has been observed with NiSi, CoSi2, and Al source/drain regions in 

different device structures suggests that NDR does not have a structural or material 

dependence so much as it is a function of the nature of the M-S interface. 
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Fig. 8.3.  NDR characteristic observed in this work for an NFET yielding ambipolar 

behavior.  Lg,m = 3 µm, Wm = 1 µm, and VGS = 0-9 V in 1 V increments. 
 
 
8.2 Proposed Physical Mechanism 
 
 It is proposed that the primary physical mechanism behind the observed NDR 

characteristic is band-to-band tunneling (BBT) due to a distribution of acceptor-like 

states as a function of energy, as well as distance from the M-S junction.  In some cases, 

it also seems that BBT is trap-assisted.  As the gate is driven to higher positive values, 

more of these acceptor-like states fill up with electrons, effectively “pinning” the energy 

bands at and near the M-S junction to some potential profile.  This results in the gate 

losing control of the channel potential in these occupied regions, in some sense forming 

an artificial halo region similar to what was formed chemically in Chapter 7.  As the 

potential of the remainder of the channel is still under gate control, eventually a valence-

to-conduction band overlap between this region and the “halo” region sufficient to induce 

BBT at the source and drain occurs.  As VDS is increased, current increases at first, but 
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eventually BBT is “cut off” as the gate-to-drain bias, VGD, decreases.  At this point, the 

NDR region is visible, and eventually the current flattens out at high VDS due to the 

relative independence of BBT at the source on VDS.  This is illustrated in Fig. 8.4. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4.  Band diagrams illustrating NDR characteristic in conventional SFETs.  In (a), 
interface states fill up (bold dashes) at progressively higher VGS, facilitating BBT at the 
source and drain.  In (b), as VDS increases, BBT at the drain cuts off and some interface 

states empty out (narrow dashes); conduction at the drain is reduced to the Schottky 
barrier transmission and “halo” tunneling components. 
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Depending on the nature of the interface states, the existence of said states can 

either increase or decrease current.  Fig. 8.5 outlines a “burn-in” process for one of the 

SFETs from the senior design project.  In this device, VGS was held at 10 V while VDS was 

repeatedly swept from 0-10 V.  For each iteration, the IDS vs. VDS characteristics changed.  

At moderate VDS, where the NDR region is initially very sharp, the peak current drops off 

with each iteration.  This indicates that BBT in this particular device is assisted by traps 

within the energy band that exhibit a relatively high occupation time, and as these traps 

fill up, coulombic repulsion reduces the BBT component of the total current.  In the high 

VDS regime, the current increases for the first few iterations and then decreases slightly.  It 

is possible that, as the traps that assist in BBT fill up, secondary traps with a relatively 

low occupation time are formed which assist in tunneling through the “halo” regions. 

 

 

 

 

 

 

 

 

 

 
Fig. 8.5.  Example burn-in characteristics for an aluminum source/drain SFET from the 

senior design project.  LG ~ 4.1 µm. 
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For the NiSi source/drain SFETs fabricated in this study which exhibited 

ambipolar behavior and NDR characteristics, performing a burn-in like that in Fig. 8.5 

yielded very little if any change in the I-V curve.  That is, the peak current at moderate 

VDS did not reduce and the saturation current at high VDS did not change either.  That 

NDR was still observed (Fig. 8.3) suggests that the traps assisting in BBT in these 

particular devices have an occupation time that is too low to cause sufficient charge 

buildup to reduce BBT.  This may suggest a relationship between trap occupation time 

and whether the M-S junction was formed by silicidation or simply by metal deposition. 

  

 

 

 

 

 

 

 

 
 

 
Fig. 8.6.  N-channel and p-channel JDS vs. VDS for the device in Fig. 8.3.  |VGS| = 4-9 V in 

1 V increments. 
 

It is interesting that NDR has not been observed in p-channel operation for both 

the aluminum and NiSi source/drain SFETs, which would have indicated a high 

concentration of donor-like states at and near the M-S interface.  Instead, in the NiSi 

device, p-channel operation looks like what is expected of a conventional SFET 
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(Fig. 8.6), whose distinguishing characteristic is a “sublinear” region, otherwise known as 

rectifying behavior in the linear region.  As the Schottky barrier is not reduced by a 

chemically formed halo region (Chapter 7), but instead must be modulated by the gate, 

the drive current is considerably lower, as expected.  For the aluminum source/drain 

device, however, p-channel operation looks like a bulk switching device, whereby no 

sublinear region is observable (Fig. 8.7).  As the curve in Fig. 8.7 was obtained after a 

burn-in process, and as the p-channel curve in Fig. 8.6 exhibits rectifying behavior (for 

which no burn-in was possible), it is likely that the trap-induced halo region for the 

aluminum source/drain devices temporarily turned said devices into p-channel bulk 

switching SFETs due to the higher trap occupation time. 

 

 

 

 

 

 

 

 

 

 
Fig. 8.7.  P-channel JDS vs. VDS for an aluminum source/drain SFET from the senior 

design project.  |VGS| = 5-10 V in 1 V increments and LG ~ 4.1 µm. 
 
 
 To investigate the claim of high lifetime trap states enhancing current injection in 

p-channel mode for the aluminum source/drain SFETs, more testing was necessary – no 
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pre-burn p-channel data were collected in 2004 when the devices were initially tested 

(Figs. 8.1, 8.5, and 8.7 are data from 2004).  Going back to test the devices again two 

years later (for pre- and post-burn data), however, revealed something very interesting – 

performing a burn-in consistently yielded little if any change in the burn-in I-V curve.  

That is, instead of something like Fig. 8.5, each successive curve had the same shape as 

the first iteration in Fig. 8.5, but at much lower current and with little if any increase in 

current per iteration.  This suggests that, over the course of time (be it a few months or 

the ~2 year gap between the 2004 testing and the 2006 testing), the high occupation time 

traps were somehow neutralized or reduced in concentration.  Also, the measured n-

channel current was considerably lower than what had normally been achieved during 

testing in 2004 (e.g., Fig. 8.1), and so the original ambipolarity of the device was 

substantially reduced over time.  An example of this is shown in Fig. 8.8. 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 8.8.  JDS vs. VDS for an aluminum source/drain SFET from the senior design project, 
tested in March 2006.  P-channel |VGS| = 1-10 V in 1 V increments, n-channel VGS = 7-

17 V in 1 V increments, and LG ~ 4.1 µm. 
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 That the NDR characteristics observed for n-channel operation in Fig. 8.8 require 

considerably higher VGS than what is observed in Fig. 8.1 supports the idea of a reduced 

acceptor-like state concentration, and suggests that the remaining states are distributed 

very close to the conduction band.  The p-channel current exhibits little if any sublinear 

response (quite the opposite for n-channel behavior), indicating a very low hole SBH and 

a very high electron SBH.  This is also supported by Fig. 8.9, which shows very little 

ambipolar leakage, and the observed increase in leakage with |VDS| is attributable to 

subsurface DIBL.  Although the “new” and “old” test results are not from the same exact 

device, the characteristics of the “new” and “old” results were found to be consistent 

between multiple samples. 

 

 

 

 

 

 

 

 

 

 
Fig. 8.9.  JDS vs. VGS for the aluminum source/drain SFET in Fig. 8.8, tested in March 

2006. 
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Chapter 9 
 

Polysilicon-on-Insulator (POI) SFETs and CMOS 
Implementation 

 
 
 
9.1 Method of Fabrication 
 

The process flow started with p-type (boron-doped, 25-45 Ω-cm, 3-6x1014 cm -3) 

bulk silicon wafers.  A 100 nm wet oxide was grown to define the buried oxide (BOX), 

after which 220 nm of polysilicon was deposited via LPCVD.  The wafers were then 

furnace annealed at 1100 °C for 1 h in N2, the purpose of which was to reduce the 

interface charge between the BOX and the body.  After defining the active regions, a 

35 nm gate oxide was thermally grown, after which 220 nm of polysilicon with a 110 nm 

nitride cap were deposited via LPCVD.  After gate patterning, a 30 nm thick oxide 

sidewall spacer was grown.  The oxide over the source/drain regions was then removed in 

a dry etch with CHF3 and O2 and the nitride cap was stripped in phosphoric acid at 

175 °C. 

A 30 s, 50:1 HF dip, followed by a 1 min rinse in DI water and then a spin 

rinse/dry, was performed.  The wafers were immediately loaded into a sputter chamber 

and placed under vacuum.  Nickel was then sputter deposited to a target thickness of 

120 nm after reaching a base pressure of 1-2 µtorr.  The silicidation step was performed 

at 500 °C for 1 min in N2 via RTA, and unreacted nickel was removed in a 2:1 

H2O2:H2SO4 mixture at 90 °C.   

An ITS process was performed for both the NFETs (phosphorus implant) and the 

PFETs (BF2 implant).  For both implants, the dose and energy were 4x1015 cm-2 and 
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80 keV, respectively.  To form the halo regions, a subsequent thermal anneal was 

performed via RTA at 600 °C for 5 min.  After the halo formation, aluminum 

metallization was performed with an evaporation/liftoff process.  A top-down picture of 

the circuit structure (inverter) before metallization is shown in Fig. 9.1, which shows the 

NFET and PFET sharing a metallic source/drain (MSD) region at the Vout terminal, as 

discussed in Chapter 6.  Like in Chapter 7, the u-shaped structure is the Vin terminal, and 

the terminals to the far right and left are the ground and VDD terminals, respectively.  The 

terminal in the center is the Vout terminal. 

 

 

 

 

 

 

 

 
Fig. 9.1.  Top-down picture of MSD CMOS inverter before metallization, using a POI 

substrate.  The mask-defined gate length and width are both 1 µm. 
 

Although both the gate and active regions in this structure are polysilicon of the 

same thickness, and although they should both be fully silicided (according to the as-

deposited nickel thickness), it is very interesting to note the different color/tone between 

the gate and active regions.  The gate region looks light, smooth, and uniform (very 

similar to the silicon active and gate regions shown in Chapter 7), while the active region 

looks rough and non-uniform.  This is also shown in Fig. 9.2, which shows a portion of 
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the gate-to-active alignment verniers.  On the left of Fig. 9.2 is the gate level, while the 

active level is on the right side.  The lighter regions in the active level in Fig. 9.2 are 

actually green-ish in color, while the darker regions are simply a darker shade of the gate 

level.  As the only difference between the two levels is the furnace anneal performed on 

the active region but not the gate region, it would seem that this furnace anneal is the 

cause.  What constitutes these green-ish regions is currently unkown (possibly thermal 

nitride formed during the anneal or an artifact of the oxide etch performed before 

silicidation), but it seems that the gate and active polysilicon layers have different 

morphologies.   

 

 

 

 

 

 

 

Fig. 9.2.  Top-down picture of a portion of the gate-to-active alignment vernier after 
silicidation.  The active level is on the right, while the gate level is on the left. 

 

It is noted that the results that follow by no means represent a diligent study of 

MSD CMOS on POI substrates.  What is presented is purely a proof of concept and a 

demonstration of the idea that thin film transistors (TFTs) for display applications can be 

fabricated with the MSD architecture and a low thermal budget (excluding the gate stack 

in this study, which was formed at relatively high temperatures compared to conventional 
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TFT fabrication).  It is very reasonable to suspect that the electrical results that follow 

may be considerably improved by, amongst other things, not performing said furnace 

anneal in future studies or by using a different anneal process, such as solid phase 

crystallization (SPC) at 600 °C for 24 h in N2 [1], [2]. 

 

9.2 Electrical Results for MSD CMOS on POI Substrates 

Fig. 9.3 shows the voltage transfer characteristics (VTCs) of a Lg,m = 2 µm 

inverter (NFET:PFET width = 1:1) for VDD = 5, 7.5, and 10 V.  As with the SOI results, it 

is thought that this is the first-ever empirical demonstration of MSD CMOS on POI 

substrates.  Although gain is relatively low compared to the SOI results from Chapter 7 

(~ 5.4 V/V at VDD = 10 V for POI vs. ~ 25.7 V/V at VDD = 5 V for SOI), it is to be 

expected for a thicker (35 nm vs. 18 nm) EOT and the lower mobility (which translates to 

lower transconductance) inherent in polycrystalline body regions. 

 

 

 

 

 

 

 

 

 

 
Fig. 9.3.  VTCs for MSD CMOS on POI substrates.  Lg,m = 2 µm, Wm = 1 µm. 

 185



It is interesting that the inverter threshold shift is positive, on the order of ~ 2-3 V.  

Although gate oxide charge is usually a cause of threshold shifts, the occurrence of a 

positive shift (i.e., negative oxide charge) is very rare.  In the case of Fig. 9.3, then, the 

shift is not likely attributable to oxide charge.  This is supported by Fig. 9.4, which shows 

the JDS vs. VDS characteristics for both the NFET and PFET in Fig. 9.3.  The PFET 

exhibits relatively good behavior, where the trough of the transfer characteristic is placed 

at VGS ~ 0 V.  For the NFET, said trough is at VGS ~ 3.5 V, and the transfer characteristic 

itself exhibits a dual slope behavior for VDS = 5 V, where the transition between these 

slopes is at VGS ~ 12.5 V.  This indicates that the role of the Schottky barrier in the NFET 

is more significant than in the PFET, again supporting the notion that phosphorus 

diffusion in NiSi is slower than boron.  It would seem that the inverter threshold shift is 

therefore attributable to inferior NFET switching, which can be improved with a longer 

post-ITS anneal and/or a higher phosphorus implant energy. 

 

 

 

 

 

 

 

 

 

 
Fig. 9.4.  JDS vs. VGS for the NFET and PFET from Fig. 9.3. 
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Fig. 9.5.  Ouput current vs. Vin for the inverter in Fig. 9.3. 

 

Fig. 9.5 shows the output current for the inverter in Fig. 9.3 as a function of Vin.  

Interestingly, this current does not modulate by much, and there exists no peak current 

corresponding to the inverter threshold (e.g., Fig. 7.18 in Chapter 7).  As the current 

seems to increase for low and high Vin, it is quite possible that the ambipolar components 

observed in Fig. 9.4 at high VDS play a significant role, although it is odd that the VTCs in 

Fig. 9.3 exhibit a near full swing with no indication of BBT (e.g., Fig. 7.18 in Chapter 7). 

Fig. 9.6 shows the JDS vs. VDS for the NFET and PFET from Fig. 9.3.  A very 

clear sub-linear region exists for both devices (although, predictably, more pronounced 

for the NFET), suggesting that a 5 min post-ITS anneal at 600 °C is not quite enough 

time to achieve “true” bulk switching characteristics, even for a boron-doped halo region.  

However, this is most likely attributable to the sub-optimal active region (Figs. 9.1 and 

9.2), where the NiSi is very rough and may well be in a silicon-rich phase and/or is 
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highly discontinuous (i.e., mixed with pockets of silicon).  This is supported by the 60-90 

sec post-ITS anneals at 600 °C performed for discrete NFETs and PFETs in other work 

[1], [2], which achieved far greater performance than what is shown here.   

 

 

 

 

 

 

 

 

 

 
Fig. 9.6.  JDS vs. VDS for the NFET and PFET from Fig. 9.3.  |VGS| = 10-20 V in 2 V 

increments. 
 

9.3 Suggestions for Future Studies 

As alluded to previously, perhaps the most effective improvement that can be 

made to the process flow discussed in Section 9.1 is to change the active area anneal to 

something more likely to result in solid phase crystallization.  This should greatly 

enhance the crystallinity, and hence performance, of these devices.  Also, tailoring the 

phosphorus ITS to spread out within the entire silicide thickness by using either a higher 

implant energy and/or a lower body thickness, much like what was concluded for the SOI 

NFETs in Chapter 7, should greatly improve NFET performance.  Beyond this, it would 

be very interesting to study the effect of time on device performance for a given post-ITS 
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anneal temperature, particularly for smaller times on the order of 1-2 min, to determine if 

any loss in drive current or increase in leakage current occurs compared to larger anneal 

times due to changes in Whalo and Nhalo. 
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Chapter 10 
 

Conclusions 
 
 
 
10.1 Summary of Demonstrations and Findings 
 

What has been presented in this work is, to the best of the author’s knowledge, the 

first-ever full empirical demonstration of metallic source/drain (MSD) CMOS on both 

SOI and POI substrates, and a very clear demonstration of the relative ease with which 

CMOS is possible using the MSD approach.  Particularly unique to this work is the 

utilization of FUSI source/drain regions also as inter-device isolation to facilitate circuit 

scaling without device scaling (and quite possibly without interconnect scaling) for at 

least one technology node.  This alone is a valuable finding that may well ease some 

process constraints at very aggressive scales, as in the sub-100 nm regime, devices are 

scaled primarily to increase circuit density (and hence functionality) and not so much 

circuit speed.  In addition, it has been shown that ITS processing has substantial potential 

for forming high quality source drain regions at low temperatures (~ 600 °C).  This is 

very useful for both high performance CMOS with high-k gate dielectrics as well as TFT 

applications, where process temperatures may be limited by the thermal stability of the 

gate dielectric or underlying glass substrate, respectively. 

By far, the most important finding of the presented work is that good Schottky 

CMOS is not Schottky CMOS, as gate modulation of a Schottky barrier is not nearly as 

efficient at modulating current flow as that of a conventional thermal barrier.  Instead, 

this Schottky barrier must be minimized either by using rare earth metals, Group VI 

surface passivation, halo regions, or some combination thereof.  Although the advantage 
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of using rare earth metals is the low intrinsic SBH to a particular carrier and the potential 

for completely implantless CMOS, the source/drain contact potential to the body region 

is the primary challenge to achieving an acceptable off state.  This challenge is 

considerably reduced by utilizing halo regions, which can achieve low leakage with 

lightly doped or undoped body regions, while also reducing performance variability by 

essentially eliminating discrete dopant effects at small scales.   

With regard to demonstrating CMOS in this study, the most important 

performance-affecting factor has been the limited diffusion of phosphorus within NiSi 

and the subsequent implications for NFET leakage and drive current.  Empirically, this is 

in direct contradiction with the modeling results from Chapter 5, further demonstrating 

the limited insight achievable with said modeling.  In any case, it seems quite clear that 

spreading out the as-implanted phosphorus profile throughout the entire silicide thickness 

should improve NFET performance in all aspects; this can be done by thinning the body 

region and/or increasing the implant energy.  For the 100 nm body thickness used in this 

study, TRIM simulation suggests that increasing the implant energy from 34 keV to 

80 keV will meet said requirement, albeit at the cost of a reduced peak halo 

concentration.  Any effect of the reduced peak halo concentration on drive current, 

however, should be more than outweighed by the increased halo depth. 

The smallest yielding MSD CMOS inverter in this study has a mask-defined gate 

length of 0.6 µm.  Although the device performance is limited by the lack of a FUSI gate 

(thus increasing EOT) and the aforementioned NFET limitations, if the optimal process 

were used for the NFET and if a FUSI gate were achieved, it is very reasonable to suspect 

that, at |VDS| = |VGS – Vtlin| = 5 V, the PFET and NFET drive currents would be on the 
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order of 650 µA/µm and over 1 mA/µm, respectively.  Although a minimal at best 

improvement over conventional CMOS at the same scale and voltage, the relative ease 

with which it can be achieved is quite startling. 

 

10.2 Future Work 

As with many endeavors with new technologies, the work presented here is hardly 

complete, and much remains to be done before one can claim a complete understanding 

and development of this device technology.  There are three main areas of study within 

the presented body of work that deserve additional focus. 

The first area is, quite naturally, modeling.  Although it seems as if the developed 

Airy function model gives a more accurate solution to tunneling current than the WKB 

model, it is hardly done any justice by the simplistic energy band model used in 

Chapter 4.  A self-consistent Poisson solution is the first step toward developing a more 

accurate SFET model, particularly if one wishes to model non-uniform body doping 

profiles (i.e., halo regions).  In addition to this, for modeling that is relevant to nanoscale 

devices, quantum carrier confinement due both to thin body regions (UTBSOI or 

FinFETs) and high surface potentials must be accounted for, as well as channel mobility.  

Also, a better understanding of the nature of the halo regions (i.e., SIMS, SRP, etc. 

analysis) is necessary to appropriately model the effect of said regions on current 

injection through and over the Schottky barrier.  This includes a consideration of bandgap 

narrowing for degenerately doped semiconductors, as well as a more accurate definition 

of the built-in voltage of the Schottky diode at such doping levels.  As is becoming clear, 

most if not all of these model requirements do not permit closed form solutions, and so 
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the complexity of the modeling code will be considerably enhanced.  Regardless, every 

single one of these ideas to explore has a significant dependence on the Schottky barrier 

height, and so it is critical to develop a more accurate model for Schottky barrier 

lowering as a function of the lateral field. 

The second area of study is testing the theories developed about optimizing SOI 

and POI performance for the device structure presented.  Most notably is determining 

if/how NFET performance is improved with a higher phosphorus implant energy into the 

NiSi, and whether post-ITS anneals of shorter time are actually feasible for POI 

substrates when the active region has been properly recrystallized.   

The third, and possibly most important, area of study is comparing ITS vs. SIIS 

processing to form the halo regions (i.e., performing the halo implant after or before 

silicidation, respectively).  Although the advantage of ITS is that the implant damage can 

be confined within the silicide, SIIS is possibly a better process to form smaller halo 

regions of higher concentration (while also reducing or eliminating the counterdoping 

effect at the Vout terminal mentioned in Chapters 6 and 7).  The “expense” of SIIS is that 

post-implant anneals may need to be performed to mitigate defect-induced leakage, and 

this may compromise process compatibility with high-k gate dielectrics.  Therefore, 

process splits with and without said anneal must be performed to compare diode ideality, 

reverse bias leakage, and ultimately FET performance.  

Also, as the halo region becomes narrower, the tunnel barrier to minority carriers 

is reduced, thus resulting in almost the very same ambipolar leakage that the halo 

approach is meant to avoid in the first place.  Higher halo concentrations increase the 

effective barrier height of this halo region to minority carriers, thus reducing tunneling 
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leakage, although there exists a limit as to the maximum achievable halo concentration 

(and this limit may well differ between ITS and SIIS due to the differing mechanisms of 

halo formation).  Also, if the halo concentration is too high and the halo profile too 

abrupt, then band-to-band tunneling leakage will dominate over tunneling leakage 

through the halo region.  Both modeling and experimental efforts must therefore be 

performed to determine the smallest halo width that results in acceptable leakage for a 

given halo concentration and how well this halo region can be controlled.  Likewise, 

similar efforts must be performed to determine how device performance varies with halo 

width for a given halo concentration and profile of the tail region, as well as silicide 

material (e.g., how drive current may change in this architecture by using PtSi and ErSi2).  

Ultimately, then, one must determine what “window” exists for these halo regions in both 

n-channel and p-channel nanoscale devices for different substrates and dopant species. 

 

10.3 Closing Remarks 

If one considers the challenges facing present and future CMOS scaling, it would 

seem that the MSD approach is inevitable at some point and in one form or another (i.e., 

ITS, SIIS, dual silicide, etc.).  If anything, such a notion emphasizes the importance of 

studying MSD technology from all angles, and as soon as possible, considering the 

relatively small time between technology nodes.  The advantages of the MSD 

architecture have been demonstrated or inferred to some capacity in the presented work, 

from both a device performance and a circuit density perspective.  Although much 

remains to be done, this is not meant to undermine the value of the presented work, but 

rather to state that the best is yet to come. 
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