Rochester Institute of Technology RIT Digital Institutional Repository

Theses

12-1-1973

Size distribution analysis of polydisperse, monodisperse, and chemically mixed polymer latex systems via a combination of light scattering and ultracentrifugation techniques

Robert Cembrola

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation

Cembrola, Robert, "Size distribution analysis of polydisperse, monodisperse, and chemically mixed polymer latex systems via a combination of light scattering and ultracentrifugation techniques" (1973). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact repository@rit.edu.

SIZE DISTRIBUTION ANALYSIS OF POLYDISPERSE, MONODISPERSE, AND CHEMICALLY MIXED POLYMER LATEX SYSTEMS VIA A COMBINATION OF LIGHT SCATTERING AND ULTRACENTRIFUGATION TECHNIQUES

ROBERT J. CEMBROLA

DECEMBER, 1973

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

APPROVED:

Thomas P. Wallace Project Advisor Robert E. Gilman Department Head Names Illegible Library

Rochester Institute of Technology Rochester, New York Department of Chemistry

TABLE OF CONTENTS

LIST	OF T	ABLES	ii
LIST	OF F	IGURES	iii
DEDI	CATIO	N	iv
ACKN	OWLED	GMENT	v
ABST	RACT	•••••••••••••••••••••••••••••••••••••••	vi
I.	BACK	GROUND	1
II.	EXPE	RTMENTAT,	7
•	Α.	Instrumentation	7
	_		
	В.	Continuous Distribution System ••••••••••••••••	7
	С.	Single Monodisperse System	9
	D.	Chemically Mixed Latex System	10
III.	RESU	LT AND DISCUSSION	13
	Α.	Continuous Distribution System	13
	в.	Single Latex System	25
	C.	Chemically Mixed Latex System	35
IV.	REFE	RENCES	42

TABLES

I.	Size Distribution Parameters of Dow Polystyrene Samples	13
II.	Results of Run CFC 11-13.2-1	16
III.	Results of Run CFC 11.3-13.2-1	19
IV.	Cumulative Results of Runs on Continuous Distribution	21
۷.	Least Squares Data of Diameter vs. Fraction Number Plot	26
VI.	Comparison of Experimental and Theoretical Diameters \bullet	26
VII.	Cumulative Results of Runs on Single Latex	30
VIII.	Results of Refractionation Runs	32
IX.	Diameter vs. Radial Distance Data Obtained from Run CFC 3-10-2	34
Χ.	Results of 1st Mixed Latex Separation	35
XI.	Results of 2nd Mixed Latex Separation	36

FIGURES

I.	Frequency vs. Diameter Plot of Dow Samples	14
II.	Percent Sucrose vs. Fraction Number Plot of Run CFC 11-13.2-1	17
III.	Diameter vs. Fraction Number Plot of Run CFC 11-13.2-1	18
IV.	Frequency vs. Diameter Plot of Fractions from Run SFC 8-10-2	27
V.	Spectrophotometer Output of Runs SFC $8-10-2$ and SFE $8-10-2$	29
VI.	Spectrophotometer Output of Mixed Latex System	38
VII.	Scattering Pattern of PVC Latex and Corresponding Fraction	39
VIII.	Scattering Pattern of PVA Latex and Corresponding Fraction	40
IX.	Scattering Pattern of PS Latex and Corresponding Fraction	41

DEDICATION

To my parents

ACKNOWLEDGMENT

I would like to thank Dr. Thomas P. Wallace for his guidance and understanding, it was deeply appreciated.

Also to Mrs. Sharon Valyear who typed the manuscript.

ABSTRACT

The use of angular light scattering techniques has proved to be of the highest precision for the size distribution analysis of colloidal size spheres, but is inherently limited to quite narrow, monomodal size distributions of particles of a single chemical component. These limitations can be overcome to a limited degree by a technique that utilizes light scattering and a preparative ultracentrifuge. The latter fractionates the colloidal particles according to density (i.e., chemical composition) and/or size. Applying the zonal ultracentrifugation technique, both types of separation take place in the presence of a density gradient and ultimately fractionated samples are obtained which are then characterized by light scattering to provide size distribution parameters. The size parameters assigned to each fraction can then be used to reconstruct the original size distribution.

A further use of the technique will be demonstrated using a %T vs. fraction number curve obtained from a recording spectrophotometer which is on line between the rotor and the fraction collector. By calibration of the rotor using the ultracentrifuge-light scattering technique above, the %T vs. fraction number curve can be converted to a plot of relative frequency vs. diameter.

The above techniques will be applied to broad continuous distributions, monomodal distributions and to a mixture of polystyrene, polyvinylchloride, and polyvinylacetate latexes of different sizes.

-vi-

BACKGROUND

A method for determining the density of small quantities of solutions using a density gradient was introduced in 1937 by Linderstrom-Lang.¹ In 1938, Behrens utilized density gradient centrifugation to separate particles according to density in systems with little solventsolute interaction, such as biological cells suspended in a gradient of organic solvents.² Density gradient centrifugation as presently used was conceived and developed by M.K. Brakke.³ Brakke realized the inherent advantages of zonal separation procedures and conceived the idea of using a density gradient in which the particles form an isopycnic band at equilibrium.

The availability of the Spinco preparative ultracentrifuge and the introduction of suitable scanning systems led to a rapid spread in use of the technique during the 1960's. Numerous variations of the method have been developed. For example, it has been used for purification, assay, measuring sedimentation rates, densities, molecular weights, and correlating biological and chemical activity with sedimentation rate or density.⁴

Anderson and associates developed the zonal rotor centrifuge during the 1960's and demonstrated some of its applications in biochemical systems.⁴

The rotor in a zonal centrifuge is a hollow compartment of varying shape and capacity divided by vertical septa into sector shaped compartments. Two fluid handling lines run through an upper shaft and connect the edge of the rotor with the central core by a flat rotating seal which presses against an external static seal. All operations, including introduction of the density gradient and the sample layer, and recovery of the gradient with its separated zones of particles, are carried out with the rotor spinning.

Particles in a medium less dense than themselves will sediment through that medium when a centrifugal force is applied. The velocity v at which spherical particles sediment is described by Stokes Law,

$$V = \frac{2}{9} gr^2 \left(\frac{p_p - p_m}{\gamma} \right)$$

where $\int e$ and $\int e$ are the density of the particle and the medium respectively, r the radius of the particle, q the applied centrifugal force, and γ the viscosity of the medium.

The many variations of density gradient centrifugation fall into two classes. First, a separation is based on a density difference. The upper boundary of the gradient should be of a greater density than that of any of the particles. The particles will sediment until they reach their own density and form an isopycnic band in the rotor. This technique is termed zonal equilibrium centrifugation. Second, a separation is based on different sedimentation rates due to different size and shape. Larger particles will sediment at a faster rate and will spread out through the gradient. In this case, the upper density must be below that of the particles otherwise they will accumulate at the point where $\rho_{\rm p} = \rho_{\rm M}$. During pump-out the force

is not strong enough to cause further sedimentation and the gradient maintains the separation. This technique is termed rate zonal centrifugation. The following is a brief outline of a typical zonal centrifugation:

Preparation of Rotor

While the empty rotor is spinning at 2000-3000 rpm, the seal assembly is placed on the spinning rotor head. A continuous flow pump establishes a density gradient which is pumped into the rotor with the lowest density at the center and the highest density at the outer edge. A programmed cam is used to provide the desired gradient.

Introduction of Sample

The sample is slowly introduced into the center of the rotor with a syringe to maintain a narrow sample band that will not disturb the gradient. This process displaces an equal volume from the outer edge, and care must be taken to avoid getting air into the rotor. Once the sample is in the rotor it is capped, the chamber is closed, and a vacuum is established. The rotor speed is then increased, and at the higher speed the particles begin to move away from the center of rotor with the larger and more dense particles moving at a faster rate than the smaller and less dense ones. As this process continues the particles separate in the rotor according to size and density. Once a particle reaches its own density its outward movement ceases. In a velocity run, when the rotor speed is reduced to 2000-3000 rpm, the particles become suspended in the gradient as the force is insufficient to cause further appreciable motion (sedimentation or diffusion).

Pump-Out

With the rotor set at 2000-3000 rpm the chamber is opened, the cap removed, and the seal assembly is again placed on the rotor. The pump-out can proceed in either of two ways. A concentrated solution of the same species as that of the gradient can be pumped into the outer edge and displace the gradient at the center. In the other method, water is pumped into the center and forces the gradient out the edge. These processes continue until the entire gradient is displaced. The displaced gradient is usually channeled into a flow through cell of a spectrophotometer and then into a fraction collector. The spectrophotometer can be used to determine the position of the particles in the rotor, the nature of the size distribution, and which fractions are to be analyzed. These fractions are then analyzed by a light scattering technique developed for spherical particles.

Light Scattering

The form of the angular scattering pattern from an isotropic spherical particle is dependent on the relative refractive index m (i.e., the ratio of the refractive index of the sphere to the medium in which it is immersed), the optical size $\alpha = \frac{\pi D}{\lambda}$, where D is the particle diameter and λ the wavelength of light in the medium.⁵ The Mie angular intensity function $(i_i)_{\theta}$ for the vertically polarized component of scattered light from a scattering system of finite polydispersity is given by⁶

where $(\dot{\iota}'_{1})_{\theta}$ is the Mie intensity function at angle θ for a single sphere of optical size α , and $\rho(\alpha)$ is the frequency function for the zeroth-order logarithmic distribution.⁷ Therefore $\rho(\alpha)d\alpha$ gives the fraction of particles with sizes between α and $\alpha + d\alpha$. A similar expression exists for the horizontally polarized component of scattered light $(\dot{\iota}_{2})_{\theta}$. This distribution function has a slight positive skew and is expressed as

$$p(\alpha) = Kexp \{ -(\ln \alpha - \ln \alpha_m)^2 / 2 \sigma_0^2 \}$$

where **K** is a normalization constant, α_{M} is the modal optical size, and σ_{o} is a distribution width parameter (i.e., polydispersity) which is related to the standard deviation by

5

5

$$\sigma = \alpha_{\rm M} \sigma_{\rm o} \left\{ 1 + \frac{7 \sigma_{\rm o}^2}{2!} + \frac{37 \sigma_{\rm o}^4}{3!} + \cdots \right\}$$

The polarization ratio P_{Θ} is defined as $\frac{(i_2)_{\Theta}}{(i_1)_{\Theta}} = \frac{H_{h,\Theta}}{V_{v,\Theta}}$

where $H_{h,\theta}$ is the Rayleigh ratio for the horizontally polarized component of the radiant scattered intensity per unit solid angle from an incident horizontally (subscript h) polarized beam of unit irradiance; the definition of $V_{v,\theta}$ follows that of $H_{h,\theta}$.⁵

Mie angular intensity functions $\dot{\iota}_{,\dot{\iota}_{2}}$, as well as the polarization ratio \int_{Θ}^{Θ} have been calculated for various sets of size distribution parameters ((α, σ_{o}, m)). A computer program was obtained from Clarkson College of Technology which compares the theoretical and experimental scattering patterns to give a best fit in the form of an error contour map.⁸ The fit from the contour map provides size distribution parameters $lpha_{M}$ and σ_{0} .

The spectrophotometer records absorbance at a specific wavelength for each fraction collected. This absorbance can be converted through a series of relationships to give the number of particles per cm³ being observed. First, absorbance is converted to turbidity Υ by

$$\gamma = \frac{2.303 \text{ A}}{l}$$
 where **A** is absorbance and

 ℓ is the path length of the cell. A scattering cross-sectional coefficient Q, which is dependent on optical size α_{m} and the $_{6}^{6}$ wavelength of light used, is next obtained from a table. This coefficient is then used to obtain a term

$$R = \pi r^2 Q$$

where \mathbf{r} is the radius of the particle. The number of particles is then obtained through the relationship $N = \frac{\tau}{R}$

The output from the spectrophotometer can then be converted to a number of particles versus fraction number which is the ultimate objective of the technique.

EXPERIMENTAL

Instrumentation

Beckman L2-65B Ultracentrifuge, Beckman DB-G Grating Spectrophotometer, Beckman Fraction Collector Model 132, Bausch and Lomb Refractometer, Beckman Model 141 Gradient Pump, B-15 Aluminum Rotor, Beckman w²t Integrator, Sofica Light Scattering Photometer.

Continuous Distribution System

A continuous distribution of polystyrene latex particles was prepared from ten "monodisperse" Dow samples 1053-14-1 through 1053-14-10. These were characterized by light scattering and had a size range from 400 to 670 nm. The mixture was diluted with distilled water to a percent solids concentration of 0.1-1.0%.

The object of the experiment was to fractionate the system according to size and obtain fractions of narrow size distribution. A series of experiments were run to determine the optimum conditions to achieve those objectives.

In all of the separation runs, the following conditions were always maintained. The gradients were prepared using sucrose solutions and were introduced into the rotor at a rate of 29 ml/min by a programmed cam attached to the pump, which produced a linear output gradient. The sample size was 40 ml with no overlay solution. An overlay solution, usually water, is sometimes added after the sample to push it into the gradient to insure sedimentation. The rotor was **accele**rated to 15,000 rpm for varying lengths of time. During pump-

out the rate was 17 ml/min for both techniques. The volume of the fractions collected was 8.0 ml. Since the total volume of the B-15 rotor is 1665 ml, the number of fractions obtained from a displaced gradient is 208.

The two variables to be determined were the range of the gradient, and the total force on the particles required to "string out" the particles according to size. (When too large a force is applied the string will begin to collapse upon itself. This has been termed an accordian effect and must be avoided.) Optimum separation will be obtained when the string is stretched to its maximum before contracting.

Initially a gradient was selected, and the optimum force found by trial and error. The width of the gradient determines the resolution of the separation. For the continuous distribution the wider the gradient the better the resolution. The upper end of the gradient must not exceed the density of the particles. Polystyrene has a density of 1.054 gm/cc, which corresponds to 13.3% sucrose. During a separation the sample should be contained within the inner 75% volume capacity of the rotor. Proceeding from the center, the change in concentration per unit length, dc/dr, becomes very small, thereby reducing the stabilizing effect of the gradient.

The first successful gradient was 11.0-13.2% sucrose, however, the σ (i.e., polydispersity) values were higher than those of the original samples. Since the upper end of the gradient was close to the density of the particles it was decided to lower the high end to a 10% sucrose solution, with a corresponding decrease of the lower end. A series of experiments were then run using 10% sucrose as the upper limit and varying the lower limit.

For a given set of conditions the rotor was calibrated to give a particle size for a specific fraction number. Individual samples were then run under those same conditions to determine the reproducibility of the experiment.

In all the above experiments the center pump-out technique was employed, therefore, a separation was next attempted using the edgeunloading method. The separation may be improved by this technique because there is no reversal of flow which could cause remixing. The gradient used was 3.0-10.0% and the force was approximately the same as that for the center unloading technique. This force, however, was too great as the particles had traversed the entire rotor and were being observed in the first fractions. This piling up at the rotor wall produced σ values which were larger than from the center pump-out results. In our next run the length was reduced to keep the latex particles from reaching the rotor wall, most of the particles, however, did not obtain a sufficient applied force to move into the gradient and were not pumped-out. Meanwhile a small fraction of large particles did sediment to the rotor wall.

There appears to be a critical force that must be applied on the particles in order to initiate sedimentation and this force is dependent on particle size and density. The size distribution combined with a limited rotor volume prevents a full extension of the sample for fractionation.

Single Monodisperse Sample

Having demonstrated the ability to fractionate latex particles according to size, a single Dow sample was fractionated to determine the extent that a size distribution can be narrowed. Dow polystyrene

latex 1053-14-6, characterized by light scattering to have a $D_m = 564$ nm. and $\mathbf{C} = 40$ nm., was used as the sample. The same experimental procedures applied to the continuous distribution apply here.

The initial run used a 5.0-10.0% sucrose gradient with the center unloading technique. An applied force similar to that used for the continuous distribution was employed. The gradient was then narrowed to 8.0-10.0% sucrose to see its effect on $\mathbf{0}$. For both of these gradients, runs were made in duplicate.

It was felt that the edge-unloading method could be applied to this system because of the narrow size distribution and was tested next. An 8.0-10.0% sucrose gradient was used, and run in duplicate.

The next step in all the above experiments was to use fractions that had lower **T** values and refractionate them. A number of adjacent fractions were combined and diluted to a concentration just below the lower end of the sucrose gradient. For the separation an 8.0-10.0% gradient was used with the edge-unloading method.

Chemically Mixed Latex System

A mixed latex system was prepared using Dow polystyrene 1053-14-1 ($D_m = 409 \text{ nm.}, \mathbf{G} = 20 \text{ nm.}$), Monsanto polyvinyl chloride 540876 ($D_m = 419 \text{ nm.}, \mathbf{G} = 25 \text{ nm.}$), and Kodak polyvinyl acetate ($D_m = 228 \text{ nm.}$, $\mathbf{G} = 30 \text{ nm.}$) The above three polymer latexes will be symbolyzed as PS, PVC, and PVA respectively.

The first attempt at preparing the mixture resulted in a coagulation of the particles. In the literature this phenomena was discussed and methods were suggested to both cause and prevent precipatation.⁹ It appears that there is a concentration dependence for

coagulation, and below a critical level no coagulation occurs. This concentration restriction limited the analysis of the fractions and will be discussed in more detail below.

The original experiment planned an equilibrium run to separate the chemical species by density, followed by a velocity run to separate the individual components by size. The first attempt was an equilibrium separation on just a PS-PVC mixture with an 8.0-50.0% sucrose gradient using the center unloading technique. The polystyrene came out as a narrow band at 13.3% sucrose, while no peak was observed for the PVC despite additional pump-out. The conclusion was that the density of the PVC latex exceeds the sucrose solution and continues sedimenting at a rate faster than that of pump-out. A velocity zonal separation, changing only the applied force to obtain the particles before they reached the edge, was successful. However, the entire PVC sample could not be recovered due to continued sedimentation. The high density of PVC and also of PVA latex necessitated the use of the edge-unloading method. The continuity of flow along with different sedimentation rates should produce a separation, where the particle with the larger sedimentation rate will leave the rotor first.

A short velocity run using a 10.0-50.0% sucrose gradient was used on the mixture of PS, PVC, and PVA. Light scattering analysis was used to determine chemical composition and purity.

Another mixture of the three latexes was also prepared for separation. This consisted of Dow PS 1053-14-7 ($D_m = 585$ nm., $\mathbf{T} = 40$ nm.), Monsanto PVC 540876, (D_m 419 nm., $\mathbf{T} = 25$ nm.), and

Kodak PVA (D 228 nm., σ = 30 nm.). The reason this new mixture was run was the similarity of size between the PVC and PS latex samples in the former mixture.

Sample Code Used in Tables

It is a three letter, three number code referring to the run.

- First letter refers to the sample (C continuous, S single and M - mixed).
- Second letter refers to frequency of fractionation (F first fractionation, R second fractionation).
- Third letter refers to unloading technique (C center unloading,
 E edge-unloading).
- 4. First number is lower end of gradient.
- 5. Second number is upper end of gradient.
- 6. Third number refers to frequency of the run.

RESULTS AND DISCUSSION

Continuous Distribution System

The ten Dow polystyrene latex samples were characterized separately by the light scattering technique discussed below. Frequency versus diameter plots were generated for each sample to insure that there was a continuous distribution.

TABLE 1

Average Size and Size Distribution of Dow Polystyrene Latex Samples Determined from Light Scattering Analysis

Dow Sample	\underline{D}_{m} (nm.) ± 5 nm.	σ (nm.) ± 5 nm.
1053-14-1	409	20
1053-14-2	435	30
1053-14-3	460	40
1053-14-4	502	35
1053-14-5	538	25
1053-14-6	564	40
1053-14-7	585	40
1053-14-8	626	35
1053-14-9	657	45
1053-14-10	678	45

An initial gradient of 11.0-13.2% sucrose was decided upon, with the upper limit just below the density of the latex particle. The center pump-out technique was used with a 30% sucrose displacing solution. Latex began to emerge from the rotor at fraction 40 and was spread out over 70 tubes. The $\omega^2 t$ integrator read 940 x 10⁷ rad²/sec. Figure 1. Frequency vs. Diameter Plot of the 10 Dow Polystyrene Latex Samples

when half the latex was recovered. In reporting all $\omega^2 t$ readings the preceeding criteria was observed. A total of 11 fractions were analyzed for particle size and size distribution by light scattering. The fractions were also analyzed for % sucrose with a differential refractometer. Plots of particle size versus fraction number and % sucrose verus fraction number were compared to note any correlation. The plot of particle size versus fraction number is linear, corresponding with the linear portion of the % sucrose versus fraction number graph. The σ values were slightly higher than those of the initial components.

A separation was next performed using an 11.3-13.2% sucrose gradient under similar conditions. The applied force was 980×10^7 rad²/sec., and the latex initially appeared at fraction 30 and spread out over 60 fractions. A total of 9 fractions were analyzed and the **c** values had a wider range than the previous run.

Anderson noted⁴ that the distribution of sizes (sedimentation coefficients) dictated the optimum gradient. For a large distribution a wide gradient should be used. To observe the effect of the gradient width on the resolution, a series of experiments were run on the continuous distribution. The upper end of the gradient was lowered to 10.0% sucrose to increase the effective volume of the rotor. The upper end of the 13.2% sucrose maximum gradient was close to the density of the particles so that their velocities approached zero as they neared the rotor wall. The resultant slowdown could cause remixing and was the reason the upper limit of the gradient was lowered to 10% sucrose.

A summary of results is listed in Table 4. The standard deviation (**c**) appears to be dependent on the applied force to a greater extent

TABLE 2

Light Scattering Results of Fractions from Run CFC 11.0-13.2-1

$$\omega^2 t = 940 \times 10^7 \text{ rad.}^2/\text{sec.}$$

Sample Range: Fraction 40-110

Fraction Number	<u>D_m (nm.) ± 10 nm.</u>	<u>G(nm.)</u> <u>± 5 nm.</u>
45	388	40
50	398	50
55	435	45
60	450	50
65	481	55
70	512	45
75	528	55
80	548	55
85	574	55
90	595	55
95	621	55

Figure 2. Percent Sucrose vs. Fraction Number Plot

of Run CFC 11.0-13.2-1

Fig. 2

Figure 3. Particle Size vs. Fraction Number Plot

of Run CFC 11.0-13.2-1

18

TABLE 3

Light Scattering Results of Fractions from Run CFC 11.3-13.2-1

$$\omega^2 t = 980 \times 10^7 \text{ rad.}^2/\text{sec.}$$

Sample Range: Fraction 30-90

Fraction Number	<u>D_m (nm.) ± 10 nm.</u>	𝔽 (nm.) ± 10 nm.
35	կլկ	25
40	429	35
45	445	50
50	476	70
55	507	70
60	559	70
65	595	65
70	611	70
75	626	65

than the width of the gradient. In each case when a particular gradient was run at a lower $\omega^2 t$ the σ values were significantly lower, while a comparison of each gradient showed a slight downward trend in

C as the gradient width increased. These two factors can be combined into a single variable by a modification of Stokes Law;

$$\omega^2 t \times (P_P - P_o)$$

where ρ_{\bullet} is the density of the particle and ρ_{\bullet} is the density of the medium at the lower end of the sucrose gradient. This variable provides a gauge for further studies on polydisperse systems by establishing a narrow range of values for a successful separation. A successful separation is obtaining a unique fit of theoretical and experimental light scattering data. The smaller the standard deviation of the fraction the better the separation. The best fits were obtained when the product of $\omega^2 t \times (\rho_{\bullet} - \rho_{\bullet})$ was 6.0 \pm 0.25. The system was not tested below an $\omega^2 t \times (\rho_{\bullet} - \rho_{\bullet})$ value of 5.75 since the force necessary to cause sedimentation required a threshold $\omega^2 t$ value.

The next objective was to calibrate the rotor for particle size analysis using run CFC 3-10-2 as the model. A plot of particle size versus fraction number was fitted by a least squares program to obtain the calibration curve. The equation for the line is

Diameter (nm.) = 3.17 (Fraction Number) + 351. The above equation obtained from the data resulted in a standard deviation for the slope and intercept of 0.37 and 9.5 respectively, with a correlation coefficient of .991. With the calibration curve established, various single latex samples were run under similar

TABLE 4

Results of Light Scattering Analysis for a Series of Runs on the Continuous Distribution System

Run: CFC 8-10-1	$\omega^2 t$ = 258 x 10 ⁷ rad. ² /sec.
Sample Range: Fraction 7-140	$\omega^2 t = x \left(\rho - \rho_0 \right) = 5.75$

Fraction Number	D _m (nm.) ± 10 nm.	σ (nm.) ± 10 nm.
20	414	30
30	424	40
40	445	55
50	492	60
60	533	60
70	574	60
80	611	50

Run: CFC 7-10-1

Sample Range: Fraction 10-170

 $\omega^{2}t = 274 \times 10^{7} \text{ rad.}^{2}/\text{sec.}$ $\omega^{2}t \propto (f_{P}-f_{o}) = 7.21$

Fraction Number	<u>D_m (nm.) ± 10 nm.</u>	σ (nm.) ± 10 nm.
30	419	30
40	440	45
50	471	50
60	502	55
70	523	55
80	543	60
90	564	60
120	621	55
155	621	70

Run :	CFC	7-10-	-2
-------	-----	-------	----

 $\omega^{2} t = 230 \times 10^{7} \text{ rad.}^{2}/\text{sec.}$ $\omega^{2} t \times (\beta_{P} - \beta_{0}) = 6.05$

Sample Range: Fraction 10-150

Fraction Number	D _m (nm.) ± 5 nm.	G (nm.) 1 5 nm.
20	414	25
30	419	35
40	471	50
50	507	45
60	533	50
70	564	55
80	600	55
90	616	55
100	631	50

Run: CFC 6-10-1

Sample Range: Fraction 10-140

 $\omega^2 t = 191 \times 10^7 \text{ rad.}^2/\text{sec.}$ ω² t x (βρ-β)= 5.75

Fraction Number	D _m (nm.) ± 10 nm.	C (nm.) ± 5 nm.
20	409	25
30	414	30
40	430	45
50	450	65
60	486	70
70	548	55
90	590	55

Run: CFC 5-10-1

Sample Range: Fraction 5-145

 $\omega^{2} t = 210 \times 10^{7} \text{ rad.}^{2}/\text{sec.}$ $\omega^{2} t \times (\beta - \beta_{0}) = 7.22$

Fraction Number	D_ (nm.) 🔹 10 nm.	G (nm.) ± 10 nm.
30	414	30
40	419	35
50	429	50
70	476	55
80	512	55
90	523	60
100	548	60
110	564	65
120	600	60

Run: CFC 5-10-2

Sample Range: Fraction 10-130

 $\omega^2 t = 178 \times 10^7 \text{ rad.}^2/\text{sec.}$ $\omega^2 t \times (\rho - \rho) = 6.12$

Fraction Number	<u>D (nm.) 🛓 5 nm.</u>	C (nm.) 1 5 nm.
20	414	20
30	435	35
40	492	40
50	523	40
60	543	50
70	580	50
80	611	50
90	626	45
100	647	50

Run: CFC 3-10-1

 $\omega^{2}t = 152 \times 10^{7} \text{ rad.}^{2}/\text{sec.}$ $\omega^{2}t \times (\rho - \rho) = 6.43$

Sample Range: Fraction 5-125

Fraction Number	<u>D</u> _(nm.) 1 0 nm.	G (nm.) ± 10 nm.
20	414	30
30	414	35
40	435	50
50	486	50
60	517	50
70	543	50
80	574	55
90	605	55

Run: CFC 3-10-2

Sample Range: Fraction 5-115

 $\omega^{2}t = 135 \times 10^{7} \text{ rad.}^{2}/\text{sec.}$ $\omega^{2}t \times (\rho - \rho) = 5.71$

Fraction Number	D _m (nm.) ± 5 nm.	(nm.) ± 5 nm.
20	409	25
30	435	40
40	486	45
50	523	40
60	543	45
70	580	50
80	611	45
90	621	55

conditions to test the reproducibility of the experiment. The fraction analyzed from the separation was taken from the peak of the absorbance versus fraction number output from the spectrophotometer. The results are listed in Table 6.

The results in Table 6 indicate that the rotor can be effectively calibrated to yield an average particle size. By modifying experimental conditions the range of particle size can be adjusted to fit the sample. This is of particular importance in the size range below 200 nm., where there are at present no accurate techniques of analysis. The scattering pattern for particles in this size range has no character (i.e., maxima and minima), therefore, is very insensitive to changes in D_m and \mathbf{C} .

Single Latex System

The single sample experiment was performed to test the limitations of the separation technique. Dow PS latex 1053-14-6 (D_m 564 nm., \mathbf{G} = 40 nm.) was used as the sample. A 5.0-10.0% sucrose gradient using the center unloading method was tested first. The output from the spectrophotometer showed a bimodal character, the first peak of a greater intensity than the second. The particle size increased logically until an analysis from the second peak was made. The fractions from the second peak were of a slightly smaller size with a wider distribution. A frequency versus diameter plot was generated from fractions of a run with an 8.0-10.0% sucrose gradient, run SFC 8-10-2, to better visualize the data. The fraction from the second peak has a greater proportion of smaller and larger particles than the first peak fraction. Since the fraction from the

TABLE .	5
---------	---

(X) Fraction Number	(Y) D _m (nm.) Observed	<u>D_m (nm.) Theoretical</u>
20	409	415
30	435	447
40	486	478
50	523	510
60	543	541
70	580	573
80	611	605
90	621	637

Experimental and Theoretical Diameters Obtained from Least Squares Fit of Particle Size vs. Fraction Number Plot of Run CFC 3-10-2

TABLE 6

Sample_	D _m (nm.) Initial 🛔 5 nm.	D _m (nm.) Theoretical 1 0 nm.
1053-14-2	435	447
1053-14-4	502	510
1053-14-7	585	605

Comparison of Experimental and Theoretical Diameters to Test the Reproducibility of the Separation Experiment Figure 4. Plot of Frequency vs. Diameter of Fractions Under Peaks from Run SFC 8-10-2

-

Fig. 4

second peak was in the rotor for a longer period of time, the smaller particles had begun to catch up with the larger ones resulting in the wider size distribution and smaller size. The separation of the two peaks indicates that a continuous monomodal system was not present. A second run was made with the 5.0-10.0% gradient, this time with a lower $\omega^{2} t$ value. The same bimodal character was exhibited from the spectrophotometer and light scattering analysis gave similar results. Still employing the center pump-out method, an 8.0-10.0% gradient was run. The standard deviation values were lower and the bimodal character again appeared. This run was repeated with a slightly greater $\omega^{2} t$ value and the same results obtained.

The next series of experiments involved the edge-unloading method with an 8.0-10.0% sucrose gradient. This method gave, for the first run, lower **T** values and a mirror image of the bimodal distribution obtained from the center-unloading method. (i.e., the first peak had a lower intensity than the second). This indicates that the two peaks are the result of the sample and not the separation technique, and further strengthens the existence of a bimodal distribution. The diagram on the following page illustrates the difference between the two techniques. The runs are SFC 8-10-2 and SFE 8-10-2 which have approximately the same $\omega^2 t$ value. A second run was made with the 8.0-10.0% gradient this time with a lower $\omega^2 t$ value. The resulting **T** values were the lowest and most consistent of all the runs.

Figure 5. Spectrophotometer Output of Runs SFC 8-10-2 and SFE 8-10-2

TABLE 7

Light Scattering Results of Fractions from Separation Runs On Polystyrene Latex 1053-14-6.

Run: SFC 5-10-1	$\omega^2 t = 182 \times 10^7 \text{ rad.}^2/\text{sec.}$	
Fraction Number	<u>D</u> (nm.) ± 5 nm.	♂ (nm.) ± 5 nm.
40	548	40
50	559	30
60	559	30
70	559	40
80	559	30
100	564	25
140	559	40

Run: SFC 5-10-2		$\omega^2 \pi = 163 \times 10^7 \text{ rad.}^2/\text{sec.}$	
Fraction Number	<u>D</u> (nm.) ± 5 nm.	♂ (nm.) ± 5 nm.	
20	559	30	
30	559	35	
80	564	50	
120	559	40	

Run: SFC 8-10-1

 $w^2 = 244 \times 10^7 \text{ rad.}^2/\text{sec.}$

Fraction Number	<u>D</u> (nm.) ± 5 nm.	or (nm.) ± 5 nm.
15	554	30
20	559	30
30	559	30
40	559	30

$$\omega^2 t = 259 \times 10^7 \text{ rad.}^2/\text{sec.}$$

Fraction Number	D _m (nm.) 5 nm.	G (nm.) ± 5 nm.
40	554	35
50	559	30
60	564	30
70	559	35
110	554	45

Run: SFE 8-10-1

Run: SFC 8-10-2

 $\omega^2 t$ = 288 x 10⁷ rad.²/sec.

Fraction Number	D _m (nm.) ‡ 5 nm.	G (nm.) ± 5 nm.
20	564	40
90	564	30
120	559	30
140	559	35

Run: SFE 8-10-2

 $\omega^2 t = 250 \times 10^7 \text{ rad.}^2/\text{sec.}$

Fraction Number	D _m (nm.) ± 5 nm.	G (nm.) ± 5 nm.
130	564	30
135	569	25
140	569	25
150	564	30

The next step in the investigation would be to take fractions with lower \mathbf{C} values and attempt a further fractionation. Adjacent fractions were mixed so that the resulting fractions would be of a sufficient concentration to be analyzed. An 8.0-10.0% gradient was used with the center-unloading method. The output from the spectrophotometer showed just one peak, again further support of a bimodal distribution of the original sample. The standard deviation values were lowered from 30 to 25. Another run was performed on fractions which had \mathbf{C} values of 25, this time with the edge unloading method. The resulting fractions had higher \mathbf{C} values.

TABLE 8

Light Scattering Results from Refractionation of Polystyrene Latex 1053-14-6

Run: SRC 8-10-1		$\omega^2 t = 244 \times 10^7 \text{ rad.}^2/\text{sec.}$
Fraction Number	<u>D_(nm.) ±5 nm</u>	. <u> </u>
20	554	35
30	559	25
40	564	25
50	564	25

Run: SRE 8-10-1

 $\omega^2 t$ = 271 x 10⁷ rad.²/sec.

Fraction Number	<u>D_m (nm.) ± 5 nm.</u>	<u>o</u> (nm.) <u>±</u> 5 nm.
140	559	40
145	554	40
150	554	45
160	554	40

It appears that a standard deviation value of 25 nm. is the lower limit of this sample. This means that 95% of the size distribution lies within a range of \pm 25 nm.

The ultimate efficiency of separation can be calculated and compared to the experimental result. A particle size of 500 nm., a distance of 5.0 cm. from the center of the rotor, and a volume element of 10 cubic centimeters is assumed in the calculation below:

$$v = \pi r^{2}h$$

$$\frac{dV}{dr} = 2\pi rh$$

$$dr = \frac{dV}{2\pi rh}$$

The height of the rotor is 7.5 cm. and substituting into the equation yields

$$dr = \frac{10 \text{ cm}^3}{2 \times 11 \times 5.0 \text{ cm} \times 7.5 \text{ cm}} = 4.2 \times 10^{-2} \text{ cm}$$

From the results of the rotor calibration a plot of particle size (D) versus rotor radius can be generated.

TABLE 9

Diameter (cm. x 10 ⁶)	Radial Distance (cm.)
415	3.586
447	4.096
478	4.539
510	4.936
541	5.300
573	5.637
605	5.935
637	6.251

Calibration Data - Diameter vs. Rotor Distance

A least squares analysis was performed on the data and a $slope\left(\frac{dD}{dv}\right)^{-5}$ obtained. The value from above is 11.8 x 10⁻⁵ cm/cm and when multiplied by dv gives a dD value for a fraction at that location in the rotor. That is the range of diameters in the element .

$$\frac{dD}{dr} \times dr = 11.8 \times 10^{-5} \frac{cm}{cm} \times 4.2 \times 10^{-2} cm = 5.0 \times 10^{-6} cm$$

This is equivalent to 5.0 nm. per fraction if all the particles were perfectly ordered in the rotor with no mixing. The difference can be attributed largely to the manner in which the particles leave the rotor. In either pump-out method the particles exit through four channels. This disturbs whatever order the particles have achieved in the rotor and consequently broadens the size distribution of the fractions.

Chemically Mixed Latex System

The first chemically mixed system consisted of Dow PS 1053-14-1, Monsanto PVC 540876, and Kodak PVA latex. In order to prevent coagulation no sucrose was added to the sample and the latex concentration was lowered from that of the previous systems. The output from the spectrophotometer showed three distinct peaks. A scattering pattern was obtained for a fraction from each area, and then compared to the original patterns of the latexes for peak assignments.

TABLE 10

Size Distribution Parameters of Latexes Before and After Separation Run

Latex System	Analysis Before Mixing		Analysis of Fractions	
	D _m (nm.) ± 5nm.	G (nm.) ± 5nm.	D _m (nm.) ± 5nm.	G (nm.) ± 10nm
PS	409	20	404	25
PVC	419	20	424	30
PVA	228	30	238	25

Studies¹⁰ have been performed on latex systems with added "impurities" to observe the effect on the scattering pattern. As an example latex of size $D_m = 240$ nm. was combined with a 0.1% by number latex of $D_m = 1100$ nm. The scattering pattern resulting from the mixture was very different from that of the separate samples. From the almost superimposable agreement of the scattering patterns it appears that a clean separation was achieved. However, the scattering pattern (\checkmark vs Θ) for PVC and PS are similar due to the fact that both samples have similar D_m , G values. Therefore, another system was used to

illustrate a clean separation. This second mix consisted of Dow PS 1053-14-7, Monsanto PVC 540876, and Kodak PVA latex. The same experimental conditions were applied to this run as the last. The output from the spectrophotometer again recorded three distinct peaks and fractions from each area were analyzed.

TABLE 11

Size Distribu	tion Parameters of	Latexes Before	and After Separat	ion Run
Latex System	Analysis Before Mixing		<u>Analysis of</u>	Fractions
	<u>D_m(nm.) ‡ 5 nm.</u>	J (nm.) ± 5 nm.	D _m (nm.) ± 5 nm.	G (<u>nm.</u>) \$ 10nm.
PS	585	40	580	45
PVC	419	25	424	30
PVA	228	30	235	30

Again the scattering patterns were "superimposable" indicating a clean separation.

Other attempts were made to analyze the fractions for chemical composition. An extraction into an organic layer followed by an infra-red analysis was inconclusive. The fractions were freeze dried to coagulate the latex then washed to remove the sucrose, however, this also was not successful. The prohibitively low concentration of latex in the fractions coupled with the sucrose media made these attempts of identification impractical.

Our development of a combined light scattering-ultracentrifugation technique to determine the size distribution parameters of polymer latex systems, can now be applied to broad continuous distributions, where a particle size calibration of the rotor can be achieved. To a monomodal distribution to obtain a more "monodisperse" sample that can be characterized more easily. Lastly, to mixtures of chemically different latex systems which can be cleanly separated by the centrifugation technique. Figure 6. Spectrophotometer Output of First Separation Run on PS, PVC, PVA Mixture.

Figure 7. Scattering Pattern of PVC Latex and Fraction 30 From First Separation Run

Fig. 7

Figure 8. Scattering Pattern of PVA Latex and Fraction 150 from First Separation Run

••

Figure 9. Scattering Pattern of PS Latex and Fraction 190 from First Separation Run

Fig. 9

REFERENCES

- 1. K. Linderstrom-Lang, Nature, 139, 713 (1937).
- M. Behrens, Abt. 5, Teil 10, pt. 2, p. 1363, Urban und Scharzenberg, Berlin (1938).
- 3. M.K. Brakke, J. Am. Chem. Soc., 73, 1847 (1951).
- 4. N.G. Anderson, Nat. Cancer Inst. Mono. 21, 1 (1966).
- 5. T.P. Wallace, J. Poly. Sci., Part A, 9, 595 (1971).
- 6. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.
- W.F. Espenschied, M. Kerker, and E. Matijevic, J. Phy. Chem. <u>68</u>, 3093 (1964).
- 8. J. Kratohvil, Clarkson College of Technology.
- 9. J. Gregory, J. of Colloid and Interface Sci., <u>42</u>, 448 (1973).
- T.P. Wallace, Ph.D. Thesis, Clarkson College of Technology, Potsdam, N.Y., 1967.