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Abstract. Photoplasticity is a phenomenon wherein the shape of crosslinked polymers, under 

stress, can be induced to change by irradiation with light.1 Photoplasticity in crosslinked polymer 

systems via stress relaxation has been reported in polyether-acrylate thiol-ene polymer systems 

by incorporating allyl thioether functionality by ring-opening copolymerization with 6-methyl-3-

methylene-1,5-dithiacyclooctane (MDTO). The object of the present work is to adapt the 

photoplastic stress relaxation approach to demonstrate shape change in silicone elastomers. The 

apparent way to achieve this is end is to replace the polyether-acrylate thiol-ene monomers, 

employed in the published literature, with multi-functional silicone-thiols and alkenyl end-

functional siloxanes chain extended with MDTO. While homogeneous amorphous elastomeric 

siloxane-based thiol-enes are well known, it was found that copolymerization of MDTO with the 

thiol-ene siloxane monomers leads to formation of stable heterogeneous polymer emulsions. 

Such behavior of thiol-ene siloxanes in the presence of MDTO was found to be a result of the 

tendency of MDTO to homopolymerize and incipient immiscibility in solutions of MDTO and 

functionalized siloxane oligomers. The nature of the emulsion formed and extent of crosslinking 

can depend on factors such as the reactivity of the alkene, the nature of the thiol component and 

the type of initiation process used. Given that the ring-opening of MDTO was initiated from the 

multifunctional siloxane thiol, the degree to which chemically different dialkenyl siloxanes were 

incorporated in the reaction was investigated.  Irrespective of the reactivity of the alkene, 

homopolymerization of MDTO and formation of heterogeneous emulsions and gels always 

resulted when either the thiol, the ene or both were derived from siloxane oligomers. 
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Introduction 

 

Stimuli responsive polymers are materials that can undergo changes in one or more of 

their macroscopic properties in response to any of a variety of forces or energy sources. 

Polymers that respond to stimuli by moving actively and changing their shape have been termed 

as “actively moving polymers”.2  Photoplasticity is an active moving behavior in which actuation 

is achieved using light as stimulus1 for stress relaxation in crosslinked networks.  This relatively 

new phenomenon has, thus far, been demonstrated in carbon chain polymer systems. A unique 

objective of the present research is to synthesize silicone-based polymer gels in which 

photoplasticity can be observed. 

Actively Moving Polymers2 

 ‘Shape memory polymers’ are a classic actively moving polymer system in which a 

semicrystalline thermoplastic or thermoset elastomer is deformed and fixed to a new shape. The 

material can be converted back to its original thermodynamically stable shape by application of a 

triggering stimulus. A second category of actively moving polymers is ‘shape changing 

polymers’; these are polymers that are in “an actuated state” as long as a stimulus is applied. 

When the stimulus is turned off the object returns back to its original state. Liquid crystalline 

polymers are one instantiation of this category. 

 Shape memory polymers [SMP] have been an area of extensive research for more 

than two decades.3-5 SMP’s are networks containing tie points and suitable switching elements, 

that are sensitive to the external stimulus applied. A set of network points define the initial state 

of the material and its permanent shape. These network points may exist in the form of chemical 

(covalent bonds) or physical (intermolecular interactions) links. Application of the required 
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stimulus activates the molecular switches and allows for the formation of a new temporal shape. 

The switches can be re-activated by a trigger of the same or a different stimulus. Figure 1 

depicts the process in a thermal shape memory polymer having permanent crosslinked points and 

thermally labile tie points.6 The permanent network points define the thermodynamically stable 

state and the thermally labile segments (Ttrans) act as switching elements. 

 

 

Figure 1: Mechanism in a thermal shape memory polymer with thermal switching temperature Ttrans 

Light energy has also been used as a trigger to induce shape memory effects in 

polymers.7-9 Figure 2 depicts a crosslinked amorphous polymer network in which the covalent 

links define the permanent shape of the polymer.9  
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Figure 2: Molecular mechanism in light induced shape memory polymer 

In state (a) the network is crosslinked at the permanent network points defining the 

original shape of the polymer.  Stretching and photofixing forms covalent bonds that defined a 

new shape (b) upon removal of stress.  Irradiation of the object in state (b) convert the object to 

state (c), a state which approximates state (a). 

Cinnamic acid (CA) ester groups are present and act as reversible photo switches.  The 

CA-ester functional groups cyclodimerize (2 + 2 cylcoaddtion) with each other upon irradiation 

with a suitable wavelength fixing the polymer to a new temporary shape. Irradiation with a 

different wavelength breaks the bonds and the original shape is realized again. Figure 3, below 

shows the scheme for the reversible reaction.9 
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Figure 3: Reversible cyclodimerization in CA type molecules 

Other than direct actuation by applying heat or light, indirect actuation of thermal shape 

memory effect has been realized through application of infrared light10, 11, electric field12 and 

magnetic field.13 

 Shape changing polymers operate on a principle that is different from shape memory 

polymers. While the permanent shape remains constant in shape changing polymers, the 

geometry of the temporary shape attained cannot be varied cyclically. This is unlike SMP where 

the temporary shape required can be programmed to a desired configuration. Thermal shape 

changing effects in polymers are often based on phase transitions occurring in semicrystalline 

and liquid crystalline elastomers (LCE).14-24 It was first predicted by DeGennes 25 that phase 

transitions in liquid crystals (LC) could lead to mechanical stress or strain. In pure LCs, this 

strain presents itself in the form of flow anisotropy. Tethering the oriented LC moieties to a 

crosslinked elastomeric polymer prevents flow and manifests the phase transitions in the form of 

polymer actuation behavior. 

 Light-induced shape change behavior has been demonstrated by using photoactive 

functional groups as molecular switches. Prominent among such groups are azobenzenes and 
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triphenylmethane leuco derivatives.26-30 Incorporation of triphenylmethane leuco dyes and 

subsequent irradiation leads to photo-generation of charged dye molecules. Electrostatic 

repulsion between such photo-generated charged species causes the polymer to expand or 

contract resulting in actuation behavior. Upon irradiation with UV light, azobenzene moieties 

undergo cis-trans isomerization resulting in changes in molecular lengths and dipole moment. 

This transition is reversible from trans-cis upon irradiation with light of a different wavelength. 

Linking the azobenzene groups in an elastomeric polymer causes actuation on exposure to UV 

light.  

 Thus ‘shape memory’ behavior and ‘shape changing’ behavior are the two well known 

categories of actively moving polymers. Photoinduced plasticity is a novel concept which bears 

some points of distinctions from the traditionally known actively moving polymers. 

Photoinduced Plasticity 

In crosslinked elastomers, the equilibrium shape is defined by the shape at gelation. 

Photoinduced plasticity is a phenomenon wherein the shape of a crosslinked elastomer can be 

changed plastically by mechanism of stress relaxation. Stress relief enables a sample to be de-

stressed from a deformed (stressed) state, thus, creating new equilibrium post-stress-relief shape.   

The first published report on photoinduced plasticity in crosslinked polymers describes a 

covalently crosslinked polymer network capable of undergoing photo-mediated reversible 

cleavage of its backbone, thereby enabling stress relaxation.1 The basis of this reversible 

cleavage is a chemical reaction called the addition-fragmentation chain transfer reaction. This 

addition-fragmentation chain transfer process occurs in networks of polymers containing allyl 

thio-ether groups that can be activated by a free-radical initiator. Allyl thioether groups are 

known to be very good as chain transfer agents.31-33 In a crosslinked polymer network, a 
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diffusing radical adds to the carbon-carbon double bond of the allyl thioether group, generating 

an intermediate that fragments creating a thiol radical and a new allyl thioether group. The 

process is thus a self-regenerative process which continues as long as free radicals are generated 

from initiator molecules. Figure 4, below, shows the mechanism of the addition-fragmentation 

chain transfer process occurring within the polymer backbone.1 

R1 S R2 S

CH2

S R3

R2 S C S R3

S

CH3

R2 S

S

CH3

CH2

R3S

+

+

 

Figure 4: Reaction mechanism of chain-transfer within the polymer backbone 

The number of addition events is accompanied by equal number fragmentation events; 

accordingly, the occurrence of addition-fragmentation chain events is characterized by the fact 

that the effective bond order in the polymer matrix remains unchanged.  

The base network employed in the work published by Bowman et.al.1 is a crosslinked 

thiol-ene polymer in which the monomeric components were triethyleneglycol divinylether 
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[TEGDVE] and pentaerythritol tetra (3-mercaptopropionate) [PETMP]. An alternate crosslinked 

network with a lower modulus and glass transition temperature was produced by replacing a part 

of PETMP with a stoichiometric quantity of 1,6-hexanedithiol [HDT]. The network formed was 

an elastomer which was swollen in common organic solvents. The base polymer, by itself, is 

incapable of exhibiting the photoplasticity effect. In order to affect photoplasticity, the base 

monomer mixture was copolymerized with a ring-opening monomer MDTO. Figure 5 shows the 

structures of all the monomers used. 

CH2 O
O

O CH2

O

O

O

O
CH2

CH2
SH

SH
CH2

SH

SH

CH2

PETMP

TEGDVE

S

S
CH2

CH3

MDTO

SH
SH

HDT
 

Figure 5: Monomer structures used to produce the photoplastic networks 

The thiol-ene reaction proceeds by a radical step-growth mechanism.34 The radical ring 

opening reaction of MDTO does not alter the stoichiometry of the thiol-ene process because the 

carbon centered vinyl radical formed in the thiol-ene process predominantely abstracts a 

hydrogen atom from thiol groups, creating an intermediate thiol radical.35-37 Consequently, the 

ring-opened MDTO monomer units should distribute themselves randomly throughout the 

crosslinked polymer network. Figure 6 depicts the radical ring opening mechanism of MDTO. 
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Figure 6: Radical ring-opening mechanism in MDTO 

Stress relaxation at allyl thioether groups in thiol-ene polymers was demonstrated by 

Bowman et.al. by generating stress/strain plots.1 Figure 7 shows published strain profiles of a 

PETMP-TEGDVE polymer containing varying concentrations of MDTO. The solid line 

represents 0 wt% MDTO; the dashed line represents 25 wt% MDTO; dotted line represents 50 

wt% MDTO; the dashed-dotted line represents 75 wt% MDTO. The specimens were held under 

a constant tensile stress throughout the experiment and the corresponding changes in strain were 

measured. Irradiation was carried out in the presence of a free-radical photo-initiator to induce 

stress relief. 

 

Figure 7: Strain profiles in PETMP-TEGDVE polymer with varying concentrations of MDTO  

Irradiation of the stressed samples, doped with bis-(2,4,6-trimethylbenzoyl)-

phenylphosphineoxide [Irgacure 819], results in generation of free radicals which diffuse through 

the elastomer affecting addition-fragmentation chain transfer among the randomly distributed 
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allyl thioether groups. Scission of the crosslinked network and reformation of links in an 

alternate low-stress state induces relaxation of the stress and change of shape of the elastomer, 

measured in terms of the change in % strain. As seen in the Figure 71, a neat PETMP-TEGDVE 

sample exhibits only a small increase in the strain, which is primarily a thermal effect caused by 

exposure to UV light. An increase in the MDTO concentration results in an increased density of 

allyl thioether groups in the network. Thus, the rate of bond breaking and reformation is greater 

at higher MDTO concentrations, yielding a substantive increase in the % strain. 

 Bowman et.al. also performed stress relaxation experiments wherein the samples were 

deformed and held constant at a known value of  strain, followed by irradiation to relieve the 

stress which is measured as a function of time. Figure 8A shows a stress relaxation plot where 

the all samples are stretched to a constant initial strain before irradiation. Figure 8B depicts a 

stress relaxation plot where all samples are stretched to a constant initial stress before 

irradiation.1 The solid line represents 0 wt% MDTO; the dashed line represents 25 wt% MDTO; 

the dotted line represents 50 wt% MDTO; and the dashed-dotted line represents 75 wt% MDTO. 

 

Figure 8: Stress versus time plots for PETMP-TEGDVE polymer containing varying amounts of MDTO 

An increase in the concentration of MDTO in the polymer, thus, results in an increasing 

degree of stress-relaxation in the sample. The fact that this effect is not a result of 
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photodegradation was proven by measuring the elastic modulus of the samples before and after 

irradiation. Table 1 shows the recorded tensile modulus values of samples plotted in figure 7A.1 

A slight increase in the modulus, post irradiation, indicates that the effect is not a result of 

photodegradation. 

 

Table 1: Tensile moduli of samples before and after irradiations  

Irradiation of an optically dense polymer film under stress causes relief of stress, on the 

side at which irradiation is carried out. The stress gradient created causes the film to change its 

shape to a new equilibrium conformation. Subsequent irradiation from the opposite side causes 

the unbalanced stresses to be relieved and actuates the film back to a shape approximating the 

original shape.1, 38 Figure 9 depicts the actuation behavior induced by stress relaxation 

mechanism.38 
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Figure 9: Actuation behavior induced by stress relaxation mechanism 

Incorporation of allyl thioether groups in a crosslinked thiol-ene polymer backbone has 

also been reported by using an end functional di-alkene bearing an allyl thioether group.38  

2-methylene-propane-1,3-di(thioethyl vinyl ether) [MDTVE] was reacted with a multifunctional 

thiol to create a thiol-ene network bearing allyl thioether groups. Figure 10 shows the structure 

of MDTVE.38 

CH2 O
S S

O CH2

CH2

 

Figure 10: Structure of MDTVE 

Crosslinked polymers capable of affecting photoplasticity can be used to pattern desirable 

shapes by creating arbitrary actuation patterns. Masking and selective photolysis of certain 

regions of the sample has been reported to create objects of distinct geometries.38 A unique 

feature of photoplasticity via stress relaxation, compared to other photolytic techniques of 

polymer actuation, is the number of groups activated per photon of light absorbed. Since stress 

relaxation is a free-radical chain process at the molecular level, each photon absorbed leads to 



12 
   

multiple addition-fragmentation events. In all the other photolytic actuation techniques a single 

absorbed photon leads to a single event in the process leading to actuation behavior. 

Photoinduced plasticity, thus, may be advantaged over the other processes known in the 

literature. 

Thiol-ene Chemistry 

 The earliest reports on thiol-enes date back to the 1930s and 1950s.39-41 The first 

definitive work on photo-initiated polymerization of thiol-ene monomers was published in the 

1970s at W. R. Grace. These publications led to a revival of the use of thiol-ene chemistry.42-46 

Since then, extensive and comprehensive reviews were published on this topic by Patai47 in 

1974, Jacobine48 in 1993 and the Hoyle34 in 2004. 

 As shown in Figure 11, thiol-enes polymerize by a free radical sequence involving two 

steps.48 Step 1 consists in the addition of a thiyl radical to the alkene double bond, creating a 

carbon centered radical. The radical in step 2 abstracts a hydrogen atom from a thiol group, 

generating another free thiyl radical thus perpetuating the chain process. Termination occurs via 

radical-radical coupling. 
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Figure 11: Thiol-ene radical chain mechanism 

 The rate of the thiol-ene reaction depends strongly on the structure of the alkene 

component used. The general trend relative to the alkene reactivity follows the principle that 

reactivity is higher for alkenes having higher electron density.34 A few exceptions to this general 

thumb rule do exist; for example, in reactivity of norbornenes is higher than expected owing 

added instability from the ring strain. Similarly, the reactivity of methacrylate, styrene and 

conjugated dienes is diminished due to resonance stabilization and lower hydrogen abstraction 

coefficients of their corresponding radicals. 

 Cramer et al. carried out systematic studies to determine the rate-determining step in the 

thiol-ene radical mechanism.49 Their results indicated that for more reactive double bonds in 

norbornene and divinylether, neither the propagation step nor the chain transfer step is rate 
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determining. For less reactive double bonds in acrylate, allyl ether and alkenes, the chain transfer 

hydrogen abstraction step is the rate determining step. The extent of substitution on the ene is 

also an important parameter in understanding the thiol-ene reaction.50-52 As a general rule, highly 

substituted enes are less reactive than singly substituted enes. It has been reported that for a 1:1 

thiol-ene mixture, 1-hexene is 8 times more reactive than trans-2-hexene and 18 times more 

reactive than trans-3-hexene. This is an indicator of the fact that steric hindrance plays a crucial 

role in the two step propagation sequence. Johansson et al.53, 54 have reported that due to the 

reversible equilibrium involved in the propagation step, addition of a thiyl radical to a cis-ene 

causes reversible isomerization to form a trans-ene. The trans-ene then undergoes efficient 

addition from the thiyl radical.  

 The multifunctional thiols used in thiol-ene polymerizations are typically of one of the 

following three types – alkyl thiols, thiol glycolate esters and thiol propionate esters. Figure 12 

shows the structures of these thiols.34 Thiols based on glycolate and propionate esters show 

higher reactivity due to weakening of the S-H bond by intramolecular hydrogen bonding with the 

ester carbonyl. The thiols used for crosslinking purposes are generally tri-functional or tetra-

functional. Hoyle34 in his review, provides a complete list of the commonly used commercial 

thiols. Higher functional thiols have been reported to be synthesized by Woods et al. by the 

reaction of thiol groups with a dinorbornene compound.55 Hyperbranched thiols with 

functionality as high as sixteen have been also reported in the literature.56-58 



15 
   

R
O SH

O

R
O

SH

O

CH3
SH

n

Alkyl-3-(mercaptopropionate)

Alkylthioglycolate

Alkyl thiol  

Figure 12: Three basic types of thiols used in thiol-ene polymerizations 

An interesting feature of thiol-ene polymerizations is their delayed onset of gelation, 

compared to traditional acrylate systems. Gel point is the point below which there is 

predominance of low molar mass and linear macromolecular species. At the gel point, a 

crosslinked network is formed.  This network may be swollen with low molar mass and linear 

macromolecular materials.  Jacobine et al. have reported that the gel point in a thiol-ene 

polymerization process can be engineered by controlling the functionality of the monomers 

used.59 It has also been reported that the gelation tendency in a thiol-ene process is much 

different than traditional acrylate polymerizations. In thiol-enes, gel networks are formed at 

much higher conversions compared to acrylates. A direct result of this is that there is much less 

stress build-up in the thiol-ene networks subsequent to network formation. 

Unlike vinyl and acrylic free-radical polymerizations, where the presence of small 

amounts of oxygen strongly inhibits the polymerization process, thiol-ene systems are relatively 
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insensitive to the presence of oxygen. Figure 13 shows exotherms generated in an acrylic 

polymerization process (A) and a thiol-ene process (B) in both nitrogen and air.34 

 

Figure 13: (A) DSC exotherm of a pure acrylate polymerization process. (B) DSC exotherm of a thiol-
ene process 

An explanation to the theory behind a thiol-ene process being relatively insensitive to 

oxygen inhibition was provided by Gush et al.60 It is reported that the peroxy radicals formed by 

the reaction of the carbon centered propagating radicals with molecular oxygen maintain their 

ability to abstract hydrogens from the thiol groups, thus, avoiding radical termination. Figure 14 

shows a depiction of the molecular process.34 
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Figure 14: Oxygen scavenging mechanism in thiol-enes 

 

Thiol-ene Siloxanes 

 Due to their unique properties (insensitivity to oxygen and delayed gelation) and potential 

applications, crosslinked siloxane polymers are a topic of significant interest. The majority of the 

developmental efforts in the area of photocrosslinkable siloxanes have been focused on the 

extension of vinyl siloxanes to traditional platinum addition cure systems and acrylic silicones.61 

The photocrosslinking of vinylsiloxane fluids with mercapto functional silicones has been 

studied for the past 20 years.62  

 In a paper published in 1992, Jacobine 63 reviewed the silicone monomers, 

oligomers and resins used in photopolymerizable compositions.  A review of thiol-ene 
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photopolymers was published by Jacobine.48 Müller and Kunze64 published an article relating 

specifically to the photoinduced thiol-ene crosslinking of modified silicones. Jacobine et al.65 

have also described the photocrosslinking of norbornene resins with multifunctional thiols.  

The Current Research 

 Research described in this thesis provides an extension to the work published by 

Bowman et al.1, 38 Previously published reports on photoinduced plasticity in crosslinked 

polymers report on organic polymer systems having carbon-chain backbones embedded in the 

well-studied thiol-ene chemistry. The point of departure for the current research is the 

exploration of the phenomenon of photoplasticity in thiol-ene polymers which possess 

predominantly siloxane backbones.  

 The initial objcctive was to synthesize and characterize photoplastic thiol-ene siloxane 

polymers by mimicking Bowman type systems with functional siloxanes. The organic thiol 

(PETMP) and ene (TEGDVE) monomers used by Bowman are replaced by a multifunctional 

siloxane thiol and a difunctional siloxane ene. The active component of the monomer mixture 

that imparts photoplasticity, MDTO, is kept constant.  

Although the copolymerization of MDTO with the thiol-ene monomers was expected to 

proceed to yield a homogeneous, crosslinked network, irrespective of the nature of the thiol and 

ene monomer backbones, it was found that with functional siloxane monomers formation of a 

homogeneous crosslinked polymer network was frustrated. In our initial experiments, control 

reactions, outlined in the Figure 15 below, between PETMP and TEGDVE; PETMP, TEGDVE 

and MDTO; and siloxane thiol and siloxane alkene were carried out to yield, in all cases, clear 

gels.  The PETMP, TEGDVE, MDTO systems was determine to be photoplastic, duplicating 
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results report by Bowman, et al.  When MDTO was incorporated in the siloxane thiol/siloxane 

alkene system a sterically stabilized emulsion was obtained. 

PETMP TEGDVE+
Δ / hν

CLEAR GEL

PETMP TEGDVE+
Δ / hν

+ MDTO CLEAR (PHOTOPLASTIC) GEL

SILOXANE 
THIOL

SILOXANE 
ALKENE+

Δ / hν
CLEAR GEL 

SILOXANE 
THIOL

SILOXANE 
ALKENE+

Δ / hν+ MDTO
NO GEL

STABLE EMULSION 
FORMED

 

Figure 15: Reaction schemes for various thiol-ene copolymerizations with and without MDTO 

Based on these findings, the primary objectives of the present research are to: 

 explore the effect of the reactivity of the ene component on the 
incorporation of MDTO 

 elucidate details of the copolymerization/homopolymerization 
behavior of MDTO in thiol-ene siloxane systems. 

 compare the copolymerization in thermally initiated systems with that 
in photoinitiated systems. 

 explore alternative routes to the formation of photoplastic siloxane 
elastomers 

 

Experimental 

Materials 

 3-chloro-2-(chloromethyl)-1-propene (99%) [C31104], sodium borohydride (98%) 

[452874], sodium metal [483745], pentaerythritol tetrakis(3-mercaptopropionate) [381462] 

{PETMP}, triethyleneglycol divinylether (98%) [329800] {TEGDVE}, dicumyl peroxide (98%) 

[329541], 2,2’-azobisisobutyronitrile (98%) [441090] {AIBN} (recrystallized from methanol) 
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and tetrahydrofuran (99+%) [360589] {THF} were obtained from Sigma-Aldrich.  2,2-

dimethoxy-2-phenylacetophenone (99%) [18784] {DMPA}, Phosphotungstic acid hydrate 

{PTA} and 4-methoxyphenol (99%) [12600] {MEHQ} were obtained from Acros Organics. 1,3-

butanedithiol [W352918] and 1,6-hexanedithiol (97%) [W349518] {HDT} were obtained from 

SAFC. (4-6% mercaptopropylmethylsiloxane)-dimethylsiloxane copolymer (SMS-042) 

[THIOL.SIL], vinyl terminated polydimethylsiloxane (DMS-V21) [VINYL.SIL] and 

(bicycloheptenyl)ethyl terminated polydimethylsiloxane (DMS-NB25) [NORB-SIL] were 

obtained from Gelest Inc. Methacrylate terminated polydimethyl siloxane [METHAC.SIL] was 

obtained from Silar Laboratories. Methanol and calcium chloride pellets were obtained from J. T. 

Baker. Toluene [TX0735] was obtained from EMD. 

Unless otherwise noted, all reagents were used as received without further purification. 

Instrumentation 

Proton NMR spectra were obtained using a Brucker 300MHz. spectrometer. Solvents 

used were Chloroform-d (99.8% D) or Benzene-d6 (99.6% D), both obtained from Acros 

Organics. 

Glass transition data was gathered using a TA Instruments DSC 2010 with samples 

prepared in non-hermetic aluminum pans. All Tg values are reported as the Tg midpoint 

temperatures. 

UV Visible spectrometric data was collected on a Hewlett Packard 8453 diode array 

instrument. 

Infrared spectroscopic data was collected on a Shimadzu IR Prestige-21. All data was 

gathered in absorption mode. 
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Stress-strain measurements were performed on an Instron 5567 universal mechanical 

tester operated by Bluehill 2 software. 

UV irradiation of samples was performed using UVP model UVGL-25 Mineralight® 

lamp with a multiband UV light source of 366 nm wavelengths. 

Dynamic light scattering [DLS] were carried out by Mr. Gary DiFrancesco (Scientist, 

Rochester Institute of Technology, Center for Imaging Science) and were performed on a 

Brookhaven Instruments Corp. 90 Plus particle size analyzer. All measurements were made at an 

angle of 90º. 

Transmission electron microscopy was carried out by Mr. Richard Hailstone (Associate 

Professor, Rochester Institute of Technology, Center for Imaging Science). 

Synthesis of Polymers 

2-methyl-7-methylene-1,5-dithiacyclooctane [MDTO]. MDTO was prepared by 

adaptation of the procedure reported by Rizzardo et al.66 Thus, 3-chloro-2-(chloromethyl)-1-

propene (12.88 g, 103.04 mMoles) and 1,3-butanedithiol (12.57 g, 103.04 mMoles) were 

dissolved separately in 60 ml methanol each. The two solutions were added simultaneously via 

two separate feed lines to a refluxing solution of sodium metal (4.97 g, 216.38 mMoles) in 150 

ml methanol. The rate of addition was maintained at 5 ml/hr by adding aliquots of 1 ml for every 

12 minutes. Post addition, the reaction mixture was refluxed for 5 more hours. A white salt 

precipitate was formed during the reaction. Methanol was then evaporated after which water was 

added to dissolve the salt and the solution was extracted with ether. The ether extracts were dried 

overnight using calcium chloride pellets. Following this the ether was evaporated to give 17.78 g 

of crude product. The crude was bulb to bulb distilled at 95-100 ºC and 0.5 mm pressure to yield 

12.98 g clear, pale yellow colored oil. This pale oil was further dissolved in a mixture of 
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methanol-water-THF and treated with sodium borohydride (0.2843 g, 7.459 mMoles) overnight. 

Following this the solvents were evaporated, product dissolved in ether and washed with strong 

aqueous sodium hydroxide. The ether extracts were dried overnight using calcium chloride. 

Next, ether was evaporated and the oil redistilled bulb-to-bulb at 95-100 ºC and 0.5 mm pressure 

to yield 9.53 g (53.18%) clear, water white product. 1H-NMR (benzene-d6): δ 1.16 (d, 3H), 1.2-

1.6 (mult., 2H), 2.5-3.1 (mult., 7H), 4.89 (s, 2H) 

PETMP-TEGDVE-MDTO copolymers. Stoichiometric mixtures of PETMP and TEGDVE 

were polymerized in a 1:2 mole ratio. MDTO was incorporated as a co-monomer on weight 

percent basis with respect to the PETMP-TEGDVE mixtures. Four samples were prepared 

containing – 0% MDTO, 25% MDTO, 50% MDTO and 75% MDTO. AIBN (1% by weight of 

the PETMP-TEGDVE-MDTO mixture) was added as a free radical initiator. MEHQ (1% by 

weight of the PETMP-TEGDVE-MDTO mixture) was added as an inhibitor to prevent the 

monomers from polymerizing when mixed at room temperature. DMPA (0.1% by weight of the 

PETMP-TEGDVE-MDTO mixture) was incorporated as a photoinitiator for photo-induced 

stress relaxation experiments, post-crosslinking. The monomer mixtures were injected between 

two silanized glass plates spaced by a ~0.5 mm Teflon tape gasket and held together using binder 

clips. The sandwiched films were then polymerized thermally, heating overnight in a 

conventional oven at 70 ºC. Table 2 shows the Tg values of the synthesized polymers. 

 

 

 

 

 



23 
   

Sample Tg (ºC) 

0% MDTO -31.50 

25 % MDTO -33.45 

50% MDTO -35.26 

75% MDTO -36.02 

Table 2: Tg values for PETMP-TEGDVE-MDTO copolymers 

 

Demonstration of Photoinduced Plasticity 

 Quantitative demonstration. PETMP-TEGDVE-MDTO copolymers with varying 

concentrations of MDTO were used – 0% MDTO, 25% MDTO, 50% MDTO and 75% MDTO. 

Samples were 1 mm thick and cut into dimensions of 7-9 mm in width and over 20 mm in length. 

A custom experiment was set up wherein the samples were stretched to a constant strain of 6% 

by applying a strain rate of 0.4% per min for 15 min. After reaching strain levels of 6% the 

samples were held constant for 2 min and irradiated thereafter for a period of 15 min. Tensile 

stresses in the films were measured throughout the experiments as a function of time. Before 

running each sample, the sample dimensions were fed to the software for accurate stress 

calculations. Irradiation was performed at a wavelength of 366 nm. 

 Qualitative demonstration. PETMP-TEGDVE-MDTO copolymers with varying 

concentrations of MDTO were used – 0% MDTO, 25% MDTO, 50% MDTO and 75% MDTO. 

Samples were 1 mm thick and cut into dimensions of 7 mm in width and 35 mm in length. In 

order to induce stress the samples were folded into an inverted U-shaped configuration and held 

between the two jaws of a vice. All the samples were stressed and irradiated simultaneously. 

Irradiation was carried out such that the samples were exposed for 3 min from the top face and 3 
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min each from the side faces. Thus the total irradiation time was 9 min. Wavelength of the light 

source used was 366 nm. 

Thiol-ene siloxane copolymerization of THIOL.SIL-VINYL.SIL. DMPA (1 mg, 3.9 

μMoles / 0.1% by weight of the monomer mixture) was dissolved in a mixture of THIOL.SIL 

(0.3556 g, 46.78 μMoles), VINYL.SIL (0.6443 g, 107.38 μMoles) and MDTO (0.1 g, 574.71 

μMoles / 25% by weight of THIOL.SIL-VINYL.SIL mixture). The mixture was placed on a 

silanized glass plate within an area bounded by a perimeter of Teflon tape.  A quartz window 

was placed on top to sandwich the monomer mixture and the sample was irradiated using a 366 

nm source for 3 minutes. After irradiation a clear crosslinked polymer film was obtained. 

Bulk polymerization of THIOL.SIL-VINYL.SIL-MDTO copolymer. Dicumyl 

peroxide (5 mg, 18.51 μMoles / 1% by weight of the monomer mixture) was dissolved in a 

mixture of THIOL.SIL (0.0.1422 g, 18.71 μMoles) and VINYL.SIL (0.2577 g, 42.95 μMoles). 

DMPA (1.25 mg, 4.88 μMoles / 0.25% by weight of the monomer mixture) was incorporated for 

possible stress relaxation. The monomer was immiscible at room temperature but turned clear 

above a temperature of 65-70 ºC. The mixtures was then injected between two silanized glass 

plates spaced by a ~0.5 mm Teflon tape gasket and held together using binder clips. The 

sandwiched films were then polymerized thermally in a conventional oven at 130 ºC overnight. 

Post-polymerization an emulsion was obtained between the glass plates. 

Thermally initiated THIOL.SIL-VINYL.SIL-MDTO copolymer. AIBN (5 mg, 30.48 

μMoles / 1% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a screw 

cap test-tube. THIOL.SIL (0.1422 g, 18.71 μMoles), VINYL.SIL (0.2577 g, 42.95 μMoles) and 

MDTO (0.1 g, 574.71 μMoles / 25% by weight of THIOL.SIL-VINYL.SIL mixture) was then 

added to the test tube and mixed thoroughly. The test tube was attached to a water condenser, 



25 
   

maintained under argon pressure and heated in an oil-bath at a temperature of 70 ºC for 3 hours. 

After 3 hours a stable polymer emulsion was obtained having a bluish tinge. 

Thermally initiated THIOL.SIL-NORB.SIL-MDTO copolymer. AIBN (5 mg, 30.48 

μMoles / 1% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a screw 

cap test-tube. THIOL.SIL (0.0735 g, 9.675 μMoles), NORB.SIL (0.3264 g, 23.31 μMoles) and 

MDTO (0.1 g, 574.71 μMoles / 25% by weight of THIOL.SIL-NORB.SIL mixture) was then 

added to the test tube and mixed thoroughly. The test tube was attached to a water condenser, 

maintained under argon pressure and heated in an oil-bath at a temperature of 70 ºC for 3 hours. 

After 3 hours a stable polymer emulsion was obtained having a bluish tinge. 

Thermally initiated THIOL.SIL-METHAC.SIL-MDTO copolymer. AIBN (5 mg, 

30.48 μMoles / 1% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a 

screw cap test-tube. THIOL.SIL (0.2530 g, 33.29 μMoles), METHAC.SIL (0.1469 g, 80.24 

μMoles) and MDTO (0.1 g, 574.71 μMoles / 25% by weight of THIOL.SIL-METHAC.SIL 

mixture) was then added to the test tube and mixed thoroughly. The test tube was attached to a 

water condenser, maintained under argon pressure and heated in an oil-bath at a temperature of 

70 ΊC for 3 hours. After 3 hours a stable polymer emulsion was obtained having a bluish tinge. 

Thermally initiated THIOL.SIL-TEGDVE-MDTO copolymer. AIBN (5 mg, 30.48 

μMoles / 1% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a screw 

cap test-tube. THIOL.SIL (0.3758 g, 49.45 μMoles), TEGDVE (0.0241 g, 119.19 μMoles) and 

MDTO (0.1 g, 574.71 μMoles / 25% by weight of THIOL.SIL-TEGDVE mixture) was then 

added to the test tube and mixed thoroughly. The test tube was attached to a water condenser, 

maintained under argon pressure and heated in an oil-bath at a temperature of 70 ºC for 3 hours. 

After 3 hours a stable polymer emulsion was obtained having a bluish tinge. 
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Thermally initiated HDT-VINYL.SIL-MDTO copolymer. AIBN (5 mg, 30.48 μMoles 

/ 1% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a screw cap test-

tube. HDT (10.25 mg, 68.20 μMoles), VINYL.SIL (0.0.3897 g, 64.95 μMoles) and MDTO (0.1 

g, 574.71 μMoles / 25% by weight of HDT-VINYL.SIL mixture) was then added to the test tube 

and mixed thoroughly. The test tube was attached to a water condenser, maintained under argon 

pressure and heated in an oil-bath at a temperature of 70 ºC for 3 hours. After 3 hours a milky 

white stable polymer emulsion was obtained. 

Thermally initiated HDT-NORB.SIL-MDTO copolymer. AIBN (5 mg, 30.48 μMoles 

/ 1% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a screw cap test-

tube. HDT (4.24 mg, 28.26 μMoles), NORB.SIL (0.3957 g, 28.26 μMoles) and MDTO (0.1 g, 

574.71 μMoles / 25% by weight of HDT-NORB.SIL mixture) was then added to the test tube 

and mixed thoroughly. The test tube was attached to a water condenser, maintained under argon 

pressure and heated in an oil-bath at a temperature of 70 ºC for 3 hours. After 3 hours a milky 

white stable polymer emulsion was obtained. 

Thermally initiated HDT-METHAC.SIL-MDTO copolymer. AIBN (5 mg, 30.48 

μMoles / 1% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a screw 

cap test-tube. HDT (30.34 mg, 201.88 μMoles), METHAC.SIL (369.6 mg, 201.88 μMoles) and 

MDTO (0.1 g, 574.71 μMoles / 25% by weight of HDT-METHAC.SIL mixture) was then added 

to the test tube and mixed thoroughly. The test tube was attached to a water condenser, 

maintained under argon pressure and heated in an oil-bath at a temperature of 70 ºC for 3 hours. 

After 3 hours a milky white stable polymer emulsion was obtained. 

Thermally initiated HDT-TEGDVE-MDTO copolymer. AIBN (5 mg, 30.48 μMoles / 

1% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a screw cap test-
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tube. HDT (170.53 mg, 1.135 mMoles), TEGDVE (229.46 mg, 1.135 mMoles) and MDTO (0.1 

g, 574.71 μMoles / 25% by weight of HDT-TEGDVE mixture) was then added to the test tube 

and mixed thoroughly. The test tube was attached to a water condenser, maintained under argon 

pressure and heated in an oil-bath at a temperature of 70 ºC for 3 hours. After 3 hours a clear 

transparent linear polymer was obtained. 

Photo initiated THIOL.SIL-VINYL.SIL-MDTO copolymer. DMPA (1.25 mg, 4.88 

μMoles / 0.25% by weight of the monomer mixture) was dissolved in 0.125 ml toluene. 

THIOL.SIL (0.1422 g, 18.71 μMoles), VINYL.SIL (0.2577 g, 42.95 μMoles) and MDTO (0.1 g, 

574.71 μMoles / 25% by weight of THIOL.SIL-VINYL.SIL mixture) were then added and 

mixed thoroughly. The monomer mixture was placed on a silanized glass plate, held within 

Teflon tape boundaries and irradiated at a wavelength of 366 nm for 3 minutes.  

Photo initiated THIOL.SIL-NORB.SIL-MDTO copolymer. DMPA (1.25 mg, 4.88 

μMoles / 0.25% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a 

screw cap test-tube. THIOL.SIL (0.0735 g, 9.675 μMoles), NORB.SIL (0.3264 g, 23.31 μMoles) 

and MDTO (0.1 g, 574.71 μMoles / 25% by weight of THIOL.SIL-NORB.SIL mixture) were 

then added and mixed thoroughly. The monomer mixture was placed on a silanized glass plate, 

held within Teflon tape boundaries and irradiated at a wavelength of 366 nm for 3 minutes.  

Photo initiated THIOL.SIL-METHAC.SIL-MDTO copolymer. DMPA (1.25 mg, 

4.88 μMoles / 0.25% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a 

screw cap test-tube. THIOL.SIL (0.2530 g, 33.29 μMoles), METHAC.SIL (0.1469 g, 80.24 

μMoles) and MDTO (0.1 g, 574.71 μMoles / 25% by weight of THIOL.SIL-METHAC.SIL 

mixture) were then added and mixed thoroughly. The monomer mixture was placed on a 
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silanized glass plate, held within Teflon tape boundaries and irradiated at a wavelength of 366 

nm for 3 minutes.  

Photo initiated THIOL.SIL-TEGDVE-MDTO copolymer DMPA (1.25 mg, 4.88 

μMoles / 0.25% by weight of the monomer mixture) was dissolved in 0.125 ml toluene in a 

screw cap test-tube. THIOL.SIL (0.3758 g, 49.45 μMoles), TEGDVE (0.0241 g, 119.19 μMoles) 

and MDTO (0.1 g, 574.71 μMoles / 25% by weight of THIOL.SIL-TEGDVE mixture) were then 

added and mixed thoroughly. The monomer mixture was placed on a silanized glass plate, held 

within Teflon tape boundaries and irradiated at a wavelength of 366 nm for 3 minutes. 

Sample preparation for TEM. 3-4 drops of the emulsion were placed in a test-tube and 

3 ml methanol was added. Methanol does not dissolve the emulsion particles and an oily layer is 

formed at the bottom of the test tube. THF is then added until the layer dissolves and a 

homogenous but hazy solution is obtained. A copper coated carbon grid is dipped multiple 

number of times in this solution and dried in air. The grid is then imaged under the TEM.  

Sample preparation for DLS. Samples prepared by in the TEM sample preparation 

were used to obtain DLS data by further dilution with THF. 



29 
   

Results and Discussion 

Characterization of MDTO 

 MDTO was synthesized by a procedure analogous to that published by Rizzardo et al.66 

and outlined in the experimental section. Characterization was performed by 1H-NMR using 

benzene-d6 as solvent. Figure 16 shows the NMR spectrum obtained for the synthesized 

molecule. 
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Figure 16: 1H-NMR for MDTO 

MDTO is a clear colorless liquid at room temperature, but solidifies at on refridgeration. 

On reheating it turns into liquid and remains in that state until and unless cooled again. Figure 
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17 shows the UV-Visible spectrum obtained for MDTO in Hexane as solvent. The spectrum 

shows that the UV absorption maximum appears at 234 nm and there is no absorption above 367 

nm. Thus in order to irradiate films containing MDTO across the entire thickness, light of 

wavelength greater that 366-367 nm will have to be used. Therefore in our experiments we use a 

light of wavelength 366 nm. 

 

Figure 17: UV-Visible spectrum of MDTO in Hexane 
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Demonstration of Photoinduced Plasticity 

 Quantitative demonstration. The stress relief experiments performed with the 

synthesized PETMP-TEGDVE MDTO copolymers was aimed at reproducing the demonstration 

carried out by Bowman et al.1 Figure 18 shows the plot of tensile stress measured as a function 

of time when the samples are stretched and irradiated at 366 nm wavelength.  

 

Figure 18: Stress relaxation plot at constant strain of 6%. 

The first 900 seconds on the plot, where tensile stress increases with time, occurred when 

the samples were gradually stretched to the required level of strain (6%). Once the samples 

reached 6% strain, they were held at constant strain for 120 seconds, at which time irradiation 

was initiated. Upon irradiation, relaxation of stress was recorded as a gradual decrease in the 

tensile stress value with time. For the sample containing 0% MDTO, stress was relaxed upon 

irradiation. This was expected, given the fact that the requisite functionality for addition-

fragmentation processes to occur is not present at 0% MDTO.  As the concentration of MDTO 

increases, the concentration of photoactive allyl thioether groups in the network is greater and, 

thus, increased stress relief is observed. 
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Qualitative demonstration. The shape change occurring as a result of stress relief was 

demonstrated in this experiment. Figure 19 shows the pictures of (a) stressed samples before 

irradiation and stress relief and (b) change of shape achieved post-irradiation.  

(a)  (b)

0% MDTO

25% MDTO

50% MDTO

75% MDTO

 

Figure 19: (a) stressed samples before irradiation (b) change of shape achieved after irradiation. 

The initial shape of the samples in their non-stressed state was similar to that of the 0% 

MDTO sample in figure (b). The thicknesses of the samples were 1 mm and the concentration of 

the free radical initiator DMPA was 0.1%. At a wavelength of 366 nm, this DMPA level leads to 

optical opacity and a gradient in the absorption of light through the film thickness. The samples 

containing MDTO changed shape to a new state because of the photochemically induced 

gradient in stress relaxation across the film thickness. The magnitude of the change of shape that 

persists after irradiation on one side and release from torsion increased in proportion to the 

MDTO concentration. The film with no MDTO reverted back to its original shape after torsional 

stress was released. 

Photoplasticity in Siloxanes 

 Photoinduced plasticity in crosslinked siloxane polymers is an extension of the chemistry 

demonstrated by Bowman et al. in traditional carbon chain polymers.1, 38  Reproducing the 

results of Bowman et al. in our laboratory serves as a control in our observation of alternative 

thiol-ene polymer systems. In order to transition from the polymer systems used in the proof of 
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concept experiments to a new set of systems in the siloxane regime, it was necessary to start by 

creating a mimic of the traditional PETMP-TEGDVE-MDTO system. 

 The PETMP-TEGDVE-MDTO copolymer system was mimicked in siloxanes by 

applying the existing knowledge of thiol-ene siloxanes.  PETMP, a tetra functional thiol was 

replaced by a commercially available multifunctional polydimethylsiloxane thiol, Gelest SMS-

042, (THIOL.SIL) with a molar mass of 7600 g/mol and an average functionality of 4.82.  

TEGDVE was replaced by an end-functional vinyl siloxane, Gelest DMS-V21, with a molar 

mass of 6000 g/mol (VINYL.SIL). The photo-active co-monomer, MDTO, was kept constant. 

Prior to copolymerizing the siloxane thiol-ene mixture with MDTO, a neat thiol-ene mixture was 

copolymerized using DMPA as a photoinitiator. The result was a clear crosslinked siloxane 

polymer film. 

 THIOL.SIL-VINYL.SIL-MDTO copolymer. On attempting to copolymerize 

THIOL.SIL-VINYL.SIL with MDTO in bulk, it was observed that the monomer mixture was 

incompatible at room temperature and phase separated instantaneously. The mixture, however, 

became substantially clear when heated to a temperature of 65-70 ºC or greater. Dicumyl 

peroxide, a high temperature free radical initiator was incorporated in the system in order to 

ensure that the half-life of the initiator at temperatures in excess of 70 ºC was sufficient. On 

polymerization, the monomer mixture was observed to form a stable emulsion. In an effort to 

enhance compatibililty, 25% by weight of toluene was incorporated in the same monomer 

system. Although the toluene-diluted monomer system was clear, when polymerization was 

initiated with AIBN at 70 ºC, an emulsion was again obtained. 

A noticeable characteristic of the emulsions formed is that they exhibit a bluish tinge 

associated with the Tyndall-effect of light scattered from submicron size particles in the 
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emulsion. The emulsion was dissolved in chloroform-d and NMR spectra were acquired. The 

instantaneous dissolution of the emulsion particles showed that the particles were not crosslinked 

gels. Figure 20 shows the spectrum obtained for THIOL.SIL-VINYL.SIL-MDTO copolymer. 

 It can be clearly seen from the NMR data that the vinyl end groups in the emulsion 

remained largely unreacted. More importantly a pattern of peaks, a signature, characteristic of 

the homopolymer of MDTO can be seen. Figure 20 shows 1H-NMR for the MDTO 

homopolymer obtained from literature66 and Figure 21 shows 1H-NMR for the THIOL.SIL-

VINYL.SIL-MDTO copolymer, with peaks a-g being reflected in the 1H-NMR spectrum of the 

copolymer. 

 

Figure 20: 1H-NMR of MDTO homopolymer (ref. 66) 
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Figure 21: 1H-NMR for THIOL.SIL-VINYL.SIL-MDTO copolymer 

 THIOL.SIL-NORB.SIL-MDTO copolymer. In order to achieve a higher ene reactivity 

the vinyl end functional, VINYL.SIL was replaced with an end-functional norbornene siloxane, 

Gelest DMS-NB25, [NORB.SIL] having a molar mass of 14000 g/mol. The ring strain present in 

a norbornene makes the alkene double bond highly reactive and more susceptible to attack by a 

thiyl radical followed by ring opening. On solution polymerization of a THIOL.SIL-NORB.SIL-

MDTO mixture in toluene using AIBN initiator at 70 ºC, an emulsion similar in physical 

appearance to the one obtained using VINYL.SIL was obtained. The emulsion possessed a blue 

tinge characteristic of the presence of submicron sized particles. 1H-NMR of the emulsion was 

obtained in chloroform-d solvent and Figure 22 shows the spectrum obtained.   

It is clear from the 1H-NMR spectrum that the norbornene double bonds have 

substantially reacted to covalently incorporate NORB.SIL into a triblock polymer. The 

persistence of the MDTO homopolymer signature again confirms the presence of long, ring-

opened MDTO homopolymer chain segments. 
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Figure 22: 1H-NMR of THIOL.SIL-NORB.SIL-MDTO copolymer 

 THIOL.SIL-METHAC.SIL-MDTO copolymer. In addition to reacting with thiyl 

radicals, α,β-unsaturated acrylics can add thiols by a Michael reaction using an end-functional 

methacrylate siloxane having a molar mass of 1830 g/mol [METHAC.SIL]. Solution 

polymerization of a composition comprising of a mixture of THIOL.SIL-METHAC.SIL-MDTO 

in toluene initiating with AIBN initiator at 70 ºC, however, yielded an emulsion similar in 

appearance to the one obtained using VINYL.SIL. The emulsion exhibited a blue tinge 

characteristic of Tyndall scattering from submicron sized particles and the 1H-NMR obtained 

when the emulsion was dissolved in chloroform-d shows the MDTO homopolymer signature 

along with peaks indicative of the presence of a significant fraction of unreacted METHAC.SIL. 

Figure 23 shows the spectrum obtained. 

 

Figure 23: 1H-NMR of THIOL.SIL-METHAC.SIL-MDTO copolymer 
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 THIOL.SIL-TEGDVE-MDTO copolymer. Vinyl ethers are perhaps the most reactive 

of all alkenes in the thiol-ene reaction and TEGDVE reacts with PETMP and MDTO to yield 

clear, homogeneous, gels.  Accordingly, in an attempt to copolymerize THIOL.SIL with MDTO 

the polyether alkene, TEGDVE, was used as the ene component. Thus, a THIOL.SIL-TEGDVE-

MDTO mixture, diluted with 25% by weight of toluene was copolymerized using AIBN initiator 

at 70 ºC. The reaction again yielded an emulsion similar in appearance to the ones obtained using 

VINYL.SIL, NORB.SIL and METHAC.SIL. The 1H-NMR spectrum clearly shows that that the 

vinyl ether bonds have react completely, however, the MDTO homopolymer signature persists 

indicating the presence of significant chain sequences containing ring-opened MDTO moieties.  

Figure 24 shows the spectrum obtained. 

 

Figure 24: 1H-NMR spectrum for THIOL.SIL-TEGDVE-MDTO copolymer 

 The 1H-NMR data obtained from the copolymerizations carried out using THIOL.SIL 

with a variety of enes display two common features. First, all the emulsions exhibited a bluish 

tinge characteristic of Tyndall scattering from submicron sized particles. Second, the MDTO 

homopolymer signature was apparent in all the NMR spectra. The siloxane-based vinyl ene, 

VINYL.SIL, was substantially unreacted. The siloxane-based norbornene and methacrylate enes, 

NORB.SIL and METHAC.SIL, were more reactive, but peaks for unreacted alkene could still be 

seen in their 1H-NMR spectra.  The alkenyl groups in the polyether-vinyl ether, TEGDVE, 

reacted completely. These data lead to the hypothesis that the copolymerization is initiated by 
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hydrogen abstraction from THIOL.SIL followed by the addition of a thiyl radical to MDTO and 

its ring-opening, chain-growth polymerization to generate long MDTO homopolymer chain 

segments.  In the presence of TEGDVE and NORB.SIL, thiyl radicals on THIOL.SIL and ring-

opened MDTO chains add.  In the presence of VINYL.SIL and METHAC.SIL, alkenyl 

functionality remains substantially unreacted.  The MDTO homopolymer chains apparently 

collapse and precipitate forming submicron-sized particles. The tethered siloxane chains form a 

corona that stabilize the particles against continued accretion, yielding a sterically stablilized 

emulsion of diblock or triblock copolymer particles.  Figure 25 shows a cartoon of the predicted 

particle structure. 
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Figure 25: Predicted particle structure for emulsions formed with THIOL.SIL 

 The dynamics of the process at the molecular level is depicted in Figure 26.  In a reaction 

mixture containing THIOL.SIL, MDTO and ene, the first stage in the process is the generation of 

free radicals followed by hydrogen abstraction to create a thiyl radical of Type 1. Addition of the 

Type 1 thiyl raical to MDTO and ring-opening yields a new thiyl radical of Type 2. The behavior 

of Type 2 radical is the critical step because its ability to add to either the double bond of MDTO 

or the ene governs the homopolymerization tendency of MDTO. Following route [A] the Type 2 

radical may attack the ene double bond and proceed like a traditional thiol-ene reaction. On the 

other hand following route [B], the radical attacks another MDTO molecule and generates a 
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chain-extended Type 2 radical. When homopolymerization of MDTO is the dominant process in 

the reaction, the Type 2 radical shows a higher tendency towards route [B] compared to route 

[A]. 

 The highlighted loop in the picture shows the initial formation of Type 1 radical followed 

by its attack on MDTO to create a Type 2 radical. The attack of this radical of MDTO following 

route [B] creates a diblock copolymer like structure. When all the MDTO monomers units in the 

reaction mixture are consumed in the process, the free radicals present at the chain ends then add 

to the ene at a rate dependent on the relative reactivity of the ene. In case the vinyl enes, the 

reaction to form triblock is limited. Vinyl ether bonds, on the other hand, being highly reactive 

readily forms the triblock and are consumed to the extent that no NMR signals for vinylic 

hydrogens can be observed post polymerization.  

A similar process may be occurring in the Bowman type polymers used for the stress 

relaxation exercise. The only difference being that, irrespective of whether the Type 1 radical 

first attacks MDTO or the ene, the Type 2 radical always shows equal or nearly equal tendency 

to adopt either routes [A] and [B]. Thus, the allyl thioether groups present in the Bowman type 

system may be isolated monomeric units, or oligomeric block units which are distributed 

randomly in the crosslinked network. Higher concentration of MDTO would certainly tend to 

give slightly longer oligomeric blocks.  



40 
   

R

CH2

SS

CH2

CH3

R2

S

CH2

S

SH R1 S R1

ABSTRACTION
A

B

R2

S

CH2

S

R
CH

S

R
CH

R1

Type 1

Type 2

 

Figure 26: Free radical events occurring in a thiol-ene-MDTO copolymer system 
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Characterization of Emulsions 

DLS data. The emulsions obtained with THIOL.SIL were analyzed using DLS. The data 

shows a range of particle sizes for all emulsions synthesized. The number average size is about 

3-4 times smaller than the intensity average size. This confirms the fact that the particle sizes are 

polydisperse.   

Ene Component Size by # Wt. (nm) Size by Intensity Wt. (nm) 

VINYL.SIL 29.2 108.4 

NORB.SIL 48.4 187.6 

METHAC.SIL 72.3 209 

TEGDVE 20.1 90.2 

VINYL.SIL (Photopolymerized) 89.8 249.8 

 

Table 3: DLS data for emulsions obtained using THIOL.SIL 

 

 TEM data. The data obtained from DLS was corroborated with the TEM data and shows 

good correlation. Figure 27 shows the images obtained for a THIOL.SIL-NORB.SIL-MDTO 

copolymer emulsion. 
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Figure 27: TEM images of THIOL.SIL-NORB-SIL-MDTO copolymer emulsion 

 The TEM images shown above are captured on a 50 nm scale. As seen, each large 

particle appears to be an aggregation of a number of smaller sub-particles. The sub-particle 

forms the primary structure and has a size of ~50 nm. The size of the larger aggregated particle 

may vary depending on the number of sub-particles aggregating together. The size of the 

aggregated particle shown in the picture above falls in the range of ~ 200 nm. These values are a 

good fit to the values obtained by DLS analyses. As seen in Table 3, the number average size for 

the NORB.SIL emulsion is 48.4 nm which correlates to the primary sub-particle size. The 

intensity average size obtained is 187.6 nm which is close to the aggregated particle size. TEM 

imaging of the emulsions obtained with VINYL.SIL, METHAC.SIL and TEGDVE was 

attempted, but clear images could not be obtained due to lack of good contrast. 

 Thus, the range of particle sizes observed [~ 50–200 nm] is supportive of the Tyndall 

blue effect observed in all the emulsions. The small particle sizes lead to scattering such that the 

emulsions appear to have a bluish tinge. 

Photoinitiated Polymerizations 

 Photolytic radical generation process differs from thermal radical generation such that in 

a photolytic process a large number of radicals can be generated at the same instant. In a thermal 

process the rate of radical generation is distributed over a period of time, thus resulting in longer 

polymerization time periods. This ability to create a large number of radicals photochemically at 

any given instant is seen to have a significant effect on the crosslinking kinetics of the systems 

under investigation. Photoinitiated copolymerizations were carried out for systems containing 

THIOL.SIL copolymerized with MDTO and the full range of ene monomers at a wavelength of 

366 nm. The observations and results noted are reported as follows. 
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Photo initiated THIOL.SIL-VINYL.SIL-MDTO copolymer. Polymerization on a 

silanized glass plate yields an emulsion which possesses a bluish tinge associated with the 

Tyndall-effect of light scattered from submicron size particles. The emulsion obtained is much 

more viscous than its thermally polymerized counterpart and clearly has higher gel content. 

Although complete crosslinking did not take place since a swollen gel film could not be 

recovered from the glass place. Figure 28(A) shows a picture of the polymer after being 

transferred to a glass vial. 

Photo initiated THIOL.SIL-NORB.SIL-MDTO copolymer. Polymerization with 

NORB.SIL on a silanized glass plate yields a partially crosslinked polymer which possesses a 

bluish tinge associated with the Tyndall-effect of light scattered from submicron size particles. 

Due to incomplete crosslinking the swollen gel could not be recovered from the glass plate 

without disintegration of the film. Figure 28(B) shows a picture of the polymer after being 

transferred to a glass vial. 

Photo initiated THIOL.SIL-METHAC.SIL-MDTO copolymer. Like NORB.SIL, 

polymerization with METHAC.SIL on a silanized glass plate yields a partially crosslinked 

polymer which possesses a bluish tinge associated with the Tyndall-effect of light scattered from 

submicron size particles. Due to incomplete crosslinking, the swollen gel could not be recovered 

from the glass plate without disintegration of the film. Figure 28(C) shows a picture of the 

polymer after being transferred to a glass vial. 

Photo initiated THIOL.SIL-TEGDVE-MDTO copolymer. Copolymerization with 

TEGDVE on a silanized glass plate yields a solvent swollen gel which possesses a bluish tinge 

associated with the Tyndall-effect of light scattered from submicron size particles. The mass may 

be completely crosslinked, since the solvent swollen film could be recovered from the glass plate 
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without disintegration. On drying the film to evaporate the solvent, a crosslinked siloxane film 

was obtained in which the blue tinge persisted. Figure 28(D) shows a picture of the gel polymer 

film after drying in the oven. 

 

 

   

 

Figure 28: Photoinitiated copolymers of THIOL.SIL-MDTO with (A) VINYL.SIL. (B) NORB.SIL and 
(C) METHAC.SIL (D) TEGDVE 
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  Photo initiation shows higher crosslinking tendencies compared to thermal initiation. The 

speculated cause for such behavior with photo initiators is related to the kinetic processes 

occurring during radical generation, and can be explained using the free radical events depicted 

in Figure 26. During photo initiation, at any given instant, there are a very large number of 

primary free radicals generated, as a result of which there is an excess of Type 1 radicals. The 

highlighted loop in the picture shows the initial formation of Type 1 radical followed by its 

attack on MDTO to create a Type 2 radical. Thus there is in turn an excess of Type 2 radicals 

present in the reaction mixture. Though the tendency of Type 2 radicals to adopt route [B] over 

route [A] persists, the number of those radicals present is large enough for a significant fraction 

to attack the ene following route [A]. The fact that route [B] is still favored over route [A] causes 

the formation of long MDTO homopolymer chains which eventually lead to submicron sized 

particles, rendering the Tyndall blue effect. Attack of the excess Type 2 radicals on the ene and 

the degree of crosslinking achieved depends on the activity of the ene. In case of VINYL.SIL, 

attack through route [A] is not as significant as it is in case of TEGDVE due to which the higher 

crosslinking is achieved with TEGDVE. 

Copolymers with HDT 

 The tendency of MDTO to homopolymerize in a siloxane thiol-ene copolymer mixture 

was studied using 1H-NMR. We know that in Bowman type polymer systems, solution 1H-NMR 

cannot be obtained, because the polymers are solid gels. Thus, in order to investigate the 

polymerization characteristics of MDTO using solution NMR, a linear copolymer system 

analogous to Bowman type gels was created by replacing PETMP by HDT in the polymerization 

mixture. 
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HDT-TEGDVE-MDTO copolymer. Copolymerization of HDT with METHAC.SIL and 

MDTO in toluene using AIBN at a temperature of 70 ºC yielded clear white viscous polymer. 

Formation of the emulsion did not occur. Figure 29 shows 1H-NMR data obtained for the 

emulsion in chloroform-d solvent. 

 

Figure 29: 1H-NMR for HDT-TEGDVE-MDTO copolymer 

It is clear from the NMR spectrum that the vinyl ether double bonds react completely in 

the mixture. One can also see that the MDTO homopolymer signature does not exist. This means 

that the long homopolymer chains of MDTO are absent and allyl thioether functionality is 

incorporated randomly in the copolymer. This surrogate system to the Bowman type gels 

suggests that formation of emulsion occurs only when MDTO shows a tendency to 

homopolymerize. In other words, a clear transparent polymer can be formed only when the ring-

opened MDTO units are incorporated randomly throughout the network.  

The ene component in the linear, surrogate Bowman system polymerized was later 

replaced with the range of siloxane enes and the mixtures polymerized thermally. The 

observations recorded are given below. 

 HDT-VINYL.SIL-MDTO copolymer. Copolymerization of HDT with VINYL.SIL and 

MDTO in toluene using AIBN at a temperature of 70 ºC yielded an emulsion which was milky 

white in appearance. The blue tinge obtained using THIOL.SIL was missing due to the absence 
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of small sub-micron sized particles. Figure 30 shows 1H-NMR data obtained for the emulsion in 

chloroform-d solvent. 

 

Figure 30: 1H-NMR for HDT-VINYL.SIL-MDTO copolymer 

 NMR data shows that the vinyl double bonds remain unreacted in the reaction mixture. 

The MDTO homopolymer signature exists which means that the long MDTO homopolymer 

segments for a block copolymeric structure by reacting with the dithiol. This is unlike 

THIOL.SIL where the homopolymer chains are tethered at multiple locations to the siloxane 

chain leading to formation of extremely small micron sized particles as shown in Figure 25. 

HDT-NORB.SIL-MDTO copolymer. Copolymerization of HDT with NORB.SIL and 

MDTO in toluene using AIBN at a temperature of 70 ºC yielded an emulsion which was milky 

white in appearance. The blue tinge obtained using THIOL.SIL was missing when HDT was 

used since the small micron size particle formation did not take place. Figure 31 shows 1H-NMR 

data obtained for the emulsion in chloroform-d solvent. 

 

Figure 31: 1H-NMR for HDT-NORB.SIL-MDTO copolymer 
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NMR data shows that though the norbornene double bonds react in the mixture, some 

residual unsaturation still remains. The MDTO homopolymer signature exists which means that 

the long MDTO homopolymer segments for a block copolymeric structure by reacting with the 

dithiol. This is unlike THIOL.SIL where the homopolymer chains are tethered at multiple 

locations to the siloxane chain leading to formation of extremely small sub-micron sized 

particles. 

HDT-METHAC.SIL-MDTO copolymer. Copolymerization of HDT with 

METHAC.SIL and MDTO in toluene using AIBN at a temperature of 70 ºC yielded an emulsion 

which was milky white in appearance. The blue tinge obtained using THIOL.SIL was missing 

when HDT was used since the small micron size particle formation did not take place. Figure 32 

shows 1H-NMR data obtained for the emulsion in chloroform-d solvent. 

 

 

Figure 32: 1H-NMR for HDT-METHAC.SIL-MDTO copolymer 

NMR data shows that though the methacrylate double bonds react in the mixture, some 

residual unsaturation still remains. The MDTO homopolymer signature exists which means that 

the long MDTO homopolymer segments for a block copolymeric structure by reacting with the 

dithiol. This is unlike THIOL.SIL where the homopolymer chains are tethered at multiple 

locations to the siloxane chain leading to formation of extremely small sub-micron sized 

particles. 
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The use of HDT as the thiol component yields linear polymers. As described in Figure 

26, the first step occurring in the reaction mixture if the formation of Type 1 radical by hydrogen 

abstraction from a thiol group. Addition of this Type 1 radical to MDTO yields a Type 2 sulfide 

radical which prefers to follow route [B] over [A] to form long MDTO homopolymer chains. 

With HDT the homopolymer chains are present as linear bock segments as compared to 

THIOL.SIL where there is multiple number of MDTO homopolymer chains tethered to a single 

THIOL.SIL chain. Thus, particles are formed in the HDT emulsions, which are not stabilized at a 

small enough size to render the Tyndall blue effect. Particles formed in the THIOL.SIL 

emulsions are capable of reaching extremely small sub-micron particle sizes owing to the outer 

siloxane corona which provide steric stabilization, as shown in Figure 25. 

Copolymers with PETMP  

The use of THIOL.SIL with various functionalized siloxane enes for thiol-ene reations 

with MDTO was described earlier in this thesis (pg. 31). Replacing THIOL.SIL with HDT yields 

analogous linear polymer emulsions, just described. In an attempt to obtain a crosslinked system 

with an organic thiol, PETMP was substituted for HDT in combination with MDTO and various 

siloxane enes, specifically, VINYL.SIL, NORB.SIL and METHAC.SIL. While PETMP and the 

enes were miscible with each other in toluene, on mixing with PETMP the three-component 

mixture phase separated, instantaneously. As a result, polymerization could not be carried out. 

This marked incompatibility may be due to the fact that PETMP and HDT have substantially 

different .solubility characteristics and solubility parameters; in PETMP, the thiol presents as a 

thiol-ester, where as in HDT, the thiol presents as an alkyl thiol.  

In the experimental work carried out so far with systems containing siloxane components, 

it appears that the propensity of the Type 2 thiyl radical to adopt route [B] over [A] is responsible 
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for MDTO homopolymerization. In thiol-ene systems containing MDTO and no siloxane 

monomers it appears that the propensity for Type 2 thiyl radical to adopt route [A] is comparable 

to its propensity to adopt route [B]. The HDT-TEGDVE-MDTO system yielding a clear linear 

polymer is an example of such a system. Accordingly, it can be stated that the presence of any 

siloxane, either the thiol, or the ene, or both, in copolymer systems containing MDTO results in 

the formation of grafted polymer emulsions have substantial MDTO homopolymer segements. 

It might be argued that incipient immiscibility between siloxane oligomers and MDTO 

and/or MDTO chain segments during the polymerization induces the system to phase separate.  

Before polymerization begins, the co-solvent, toluene, keeps the system together and the 

solvated monomer mixture is clear. When the polymerization process begins and the first few 

units of MDTO are attached to the thiol, the mixture rapidly phase separates such that the radical 

chain end is confined in a micro or nano phase that is rich in MDTO. Such phase separation does 

not occur in the all-organic system and the any MDTO residues grafted to PETMP have equal 

access to ene molecules or MDTO.  The radical chain in the all organic system will, thus, attack 

MDTO or the ene with nearly equal probability.  

Conclusions and Future Directions 

 Through the series of experiments reported in this thesis, an understanding of the 

copolymerization behavior of MDTO with thiol-enes was obtained. A hypothesis is offered to 

the effect that micro/nano phase separation occurs when MDTO is copolymerized with siloxane-

based thiols and/or siloxane base –enes, and that this micro/nano phase separation results in 

homopolymerization and grafting of MDTO segments to initiating thiyl radicals.  The essential 

incompatibility of the siloxane and MDTO graft-chain segments produces a sterically stabilized 

graft copolymer emulsion.  The particle size and composition of these emulsions depends on the 
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type of ene used, nature of the thiol and type of initiation. Use of multi-functional thiol siloxanes 

yields emulsions with extremely small polydispersed particles ranging in size from 50 nm to 200 

nm. The degree to which the ene component is covalently incorporated in the final composition 

depends on the reactivity of the ene component. Simple vinyl substituents bonded to Si are least 

reactive and are essentially not covalently incorporated into the graft copolymer. Methacrylate 

and norbornene double substituents are more reactive, however, their NMR spectra clearly show 

residual unsaturation.. Vinyl ether bonds are completely reacted.  

Photoinitiation results in better incorporation of the ene component and the formation of 

crosslinked gel films. These gels films, however, are still heterogeneous and contain micro/nano 

domains of homopolymeric MDTO chain segments.  

 In order to obtain a clear crosslinked siloxane polymer containing allyl thioether 

functionality needed for photoplasticity, the allyl thioether moieties need to be randomly 

incorporated in the crosslinked network. Given the inherent incompatibility and phase separation 

issues associated with the use of MDTO as a comonomer with functional siloxanes, it is apparent 

that the allyl thioether groups need to be incorporated by a methodology other than the ring-

opening of MDTO.  A possible way to approach this problem might be to embed allyl thioether 

groups in a siloxane oligomer. MDTVE (shown in Figure 10) is a linear molecule bearing vinyl 

ether groups at the chain ends and an allyl sulfide group at the center. MDTVE has been reported 

to be synthesized by a process similar to that use to synthesize MDTO.38 

Hydrosilylation one of the vinyl ether bonds in MDTVE by reacting with an oligomeric 

dimethylsiloxane-methylhydrosilane copolymer will allow allyl thioether groups to be 

incorporated pendant to the oligomeric siloxane backbone. Thus, by reacting the vinyl ether 

groups with a siloxane based thiol like THIOL.SIL, the issues relating to phase separation and 
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incompatibility might be circumvented. Figure 33 shows a scheme for the proposed 

hydrosilylation reaction. 
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Figure 33: Proposed hydrosilylation of vinyl ether in MDTVE 

 Synthesis of clear crosslinked siloxane-based thiol-ene polymers would subsequently 

allow the demonstration of photoinduced plasticity in a manner similar to that demonstrated for 

the PETMP-TEGDVE-MDTO systems. 
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