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ABSTRACT

The goal ofthis project is to analyze the anodize line and make process improvements

which directly affect the product, the results being reduced defects, lower variability in the

process and product, faster cycle time, reduced costs, and higher profits. Possible defect

conditions were identified, tracked, and analyzed in order to determine the greatest problem.

After recognizing a prime improvement opportunity, a design ofexperiments was conducted with

the purpose of showing relationships between key process parameters and product characteristics.

Finally, recommendations were made to raise the quality level of the anodize line, with the

information that was gained throughout the entire project and design of experiments.



TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

I. INTRODUCTION 1

A. Anodizing 1

1. Definition 1

2. Applications 2

3. The Process 4

4. Types ofAnodic Coatings 5

a. Barrier 5

b. Porous 5

5. Coating Structure ofPorous-type 6

6. Mechanism 8

B. Theory ofDesign ofExperiments 9

1. Definition 9

2. Qualifications 9

3. General Procedure 10

4. JMP Analysis 14

a. Summary ofFit 14

b. Analysis ofVariance (ANOVA) 17

c. Parameter Estimates 20

d. Effect Test 22

e. Lack ofFit 23

f Leverage Plots 26

H. KEYPROCESS PARAMETERS 27

m. DEFECTS 31

IV. DESIGN OF EXPERIMENTS 42

A. Pre-experiment 42

1. Brainstorm 42

a. Project Objective 42

b. Response Variable (Output) 43

c. Factors (Inputs) 44

2. Revelations Since the Brainstorming 46

a. Material 46

b. Number ofParts 46

B. Experiment- First Design Proposals 47



C. Experiment- Final Design 52

D. The Experiment 53

E. Response Variables 54

F. Post-experiment 56

V ANALYSIS 57

A. Experimental Results 57

B. Scatter Plots 58

C. Residuals 66

D. t-Test 84

E. JMP DOE Analysis 86

1. Smut 87

a. Ordinal 87

b. Continuous 89

2. Blue 90

3. Degree of Seal 91

4. Darkness 92

F. Correlations 93

D. Summary ofResults 94

1. Significant Factors 94

2. Predition Profile 94

VI. RECOMMENDATIONS 98

VH. APPENDLX 105

A. Aluminum Alloy Compositions and Designations 106

1. Wrought Aluminum 106

2. Cast Aluminum 107

3. Special Treatment 107

B. Types ofDesigns 110

1. Full Factorial 110

2. Fractional Factorial 113

3. Screening 118

4. Response Surface 119

C. Values of to,v used for the t-Test 121

D. Smut JPM DOE Analysis 122

1. Ordinal Response 122

2. Analysis 1 126

3. Analysis II 130

E. Blue JPMDOE Analysis 133

1. Analysis 1 133

2. Analysis II 137

M



F. Degree of Seal JPM DOE Analysis 140

1. Analysis 1 140

2. Analysis U 144

G. Darkness JPMDOE Analysis 147

1. Analysis 1 147

2. Analysis U 151

H. Correlations 155

VUI. BIBLIOGRAPHY 157

vu



LIST OF TABLES

Table Page

#_

1. Industrial Applications ofAnodized Aluminum 3

2. Pore Diameter and CellWall Thickness ofSeveral Oxide Coatings 7

3. ANOVA Table 18

4. Summarization ofKey Process Parameters 30

5. Customer Complaints 38

6. Scrap/Rework 40

7. Possible Variables That Cause Smut (Brainstorm) 44

8. Experiment Variables and Constants (First Draft) 45

9. First Design Proposal 47

10. Revised Table 8 . Final Experiment Variables and Constants 51

11. Final Design 52

12. Experimental Results 57

13. Residual Values 67

14. Residual Values Excluding Run #9 76

15. t-Test Inputs 85

16. t-Test Results 85

17. Smut Results (As an Ordinal Response Variable);

% Opportunity ofProducing Is and 3s for Each Factor at 3 Levels 88

18. Smut Analysis Results (As a Continuous Variable) 89

19. Blue Analysis Results 90

20. Degree of Seal Analysis Results 91

21. Darkness Analysis Results 92

22. Significant Pairwise Correlations 93

23. SignificantMain Effects 94

Al. Wrought Al Alloy Groups First Digit Designation 106

A2. Cast Al Alloy Groups First Digit Designation 107

A3. Alloy SuffixDesignations 107

Bl. Full Factorial Design Ordering Pattern 112

B2. Fractionation Table 117

B3. Design Resolution 118

CI. Values of to,v Used for the t-Test 121

VUl



LIST OF FIGURES

Figure Page

#

1. Anodize Process Flow 4

2. A Cross-section ofa Barrier-type Coating 5

3. A Cross-section ofa Porous-type Coating 6

4. Causes for Lost Contact 33

5. Causes for Overanodizing 33

6. Causes for Smut 34

7. Causes for White Spots 34

8. Causes for Bleed Out 35

9. Causes for Bent Parts 35

10. Causes for Crashes 36

11. Causes forBurnt Parts 36

12. Causes for Staining 37

13. Customer Complaints (1994) 39

14. Scrap/Rework (10/24/94-12/3 1/94) 41

15. Smut vs. Free Sulfuric Acid 59

16. Smut vs. SealpH 59

17. Smut vs. Seal Temperature 59

18. Smut vs. DI Rinse Temperature 59

19. Blue vs. Free Sulfuric Acid 60

20. Blue vs. SealpH 60

21. Blue vs. Seal Temperature 60

22. Blue vs. DI Rinse Temperature 60

23. Weight Loss vs. Free Sulfuric Acid 61

24. Weight Loss vs. SealpH 61

25. Weight Loss vs. Seal Temperature 61

26. Weight Loss vs. DI Rinse Temperature 61

27. Darkness vs. Free Sulfuric Acid 62

28. Darkness vs. Seal pH 62

29. Darkness vs. Seal Temperature 62

30. Darkness vs. DI Rinse Temperature 62

31. Response Variables vs. Seal Temperature 64

32. Smut and Degree ofSeal vs. Seal Temperature 65

33. Residual Smut vs. Smut 69

34. Residual Blue vs. Blue 69

35. Residual Degree of Seal vs. Degree of Seal 69

36. ResidualDarkness vs. Darkness 69

37. Residual Smut vs. Run 70

38. Residual Blue vs. Run 70

39. Residual Degree of Seal vs. Run 70

40. ResidualDarkness vs. Run 70

IX



41. Residual Smut Normality Test 71

42. Residual Blue: Normality Test 72

43. Residual Degree of Seal: Normality Test 73

44. Residual Darkness: Normality Test 74

45. Residual Smut vs. Smut (Excluding Run 9) 77

46. Residual Blue vs. Blue (Excluding Run 9) 77

47. ResidualDegree of Seal vs. Degree of Seal (ExcludingRun 9) 77

48. Residual Darkness vs. Darkness (Excluding Run 9) 77

49. Residual Smut vs. Run (Excluding Run 9) 78

50. Residual Blue vs. Run (ExcludingRun 9) 78

51. Residual Degree of Seal vs. Run (Excluding Run 9) 78

52. Residual Darkness vs. Run (Excluding Run 9) 78

53. Residual Smut Normality Test (Excluding Run 9) 79

54. Residual Blue: Normality Test (Excluding Run 9) 80

55. ResidualDegree of Seal: Normality Test (ExcludingRun 9) 81

56. Residual Darkness: Normality Test (Excluding Run 9) 82

57. Prediction Profile; Minimized Smut 95

58. Prediction Profile; Most Desirable 97

59. ProcessWindow Example 100

60. Smut and Darkness vs. Free Sulfuric 102

61. Smut and Darkness vs. pH Seal 102

62. Smut and Darkness vs. Temp. Seal 103

63. Smut and Darkness vs. Temp. DI 103

Bl. Composition ofa Response Surface Design 120



INTRODUCTION

The introduction section is to introduce the reader to the anodizing process and

Design ofExperiments.

Anodizing

Definition

Anodizing or anodic oxidation is an electrolytic process for oxidizing aluminum to

produce an improved surface quality. "Aluminumwithout some surface treatment is like

good wood without varnish. Thewood is strong and may make a good structural

member, but it does not look as good as it could, and it is susceptible to wear and

weather."1

Anodizing is like varnishing in the example above. It adds to the quality of

the aluminum by making it more resistant to the environment.

Exposing aluminum to air produces a thin oxide film, that is 0. 1-0.4 x
10"6

inches

(0.25-1.0 x
10'2

u,m) thick. Anodizing will produce a thicker oxide coating than the film

formed naturally in air. With a thicker coating, aluminum has improved physical and

chemical propertieswhich allows for expanded applications. Some of the improved

properties include excellent resistance to marine and atmospheric corrosion, abrasion

resistance, electrical insulation, and the ability to be colored.
2



Anodizing occurs when an electrochemical conversion occurs from metallic

aluminum to aluminum oxide, A1203 .
This conversion requires a source ofdirect current

passing through a suitable acid electrolyte which will produce oxygen ions. The most

commonly used electrolyte is a dilute sulfuric acid solution, but chromic acid, oxalic acid,

phosphoric acid plus additives, and other specialized electrolytes with limited applications

are also possibilities.

Applications3

Anodic coatings are widely applied to aluminum because of its unique response to

anodizing. There are many advantages gained from anodizing aluminum. The following is

a list ofprincipal functions for anodizing.

Undercoat for organic coatings, electroplated metallic coatings, and solid lubricants

Corrosion resistant coating

Coloring (awide range ofcolors, for example, black, bronze, purple, orange)

Antimark applications

Heat reflection and radiant heat absorption

Wear resistance and lubrication

Electrical resistance

Abrasion resistance

Thermal resistance

Marine resistance



To get an even better idea of the applications for anodized aluminum, Table 1

below lists some ofthe more important applications in present-day industrial practice.

Table 1. Industrial Applications ofAnodized
Aluminum4

Industry Application

Building Decoration, protection ofexterior building components,

structural members, storefronts, entrance ways, window frames,

ceiling panels, handrails, hardware, telephone booths.

Transportation Auto: Headlight bezels, grills, window frames, garish moldings,

brake pistons.

Air: Aircraft instrument panels, landing gear, propellers, fuel

pumps, wing skins, structural components, rivets, instruction

plates, trim.

Consumer Durable

Goods

Refrigerator: trim, shelves, evaporators, appliance trim, cooking

utensil covers, baking pans, name plates, furniture, giftware,

costume jewelry, firearm/military components.

Lighting Reflectors for highway and stadium lights, indoor lighting

fixtures.

Electrical Capacitors, insulated wire and strip conductors.

Other Machine Components



The Process

Understanding the anodizing process is simplified by looking at the flow ofthe

process. A flow chart is shown below in figure 1.
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Figure 1. Anodize Process Flow



Types ofAnodic Coatings

Anodic coatings are classified as barrier or porous depending on the solvent action

of the electrolyte on the naturally occurring oxide layer. Deciding on the type ofcoating is

based on the application of the part being anodized.

Barrier-type

Electrolyteswith little or no capacity to dissolve the oxide form barrier-type

coatings. These type of coatings are thin (less than one ten thousandth ofan inch),

compact, nonporous, and electrically resistant. In addition, with suitable etching

conditions, high capacitance is obtainable. Sodium borate/boric acid electrolytes are

examples of this type of film producer. Electrical capacitors have barrier-type layer.

Aluminum

Figure 2. A cross-section of a barrier-type coating

Porous-type

Porous type ofcoatings are formed in an electrolyte with high solvent action on

the natural oxide. The formed film consists of a porous outer portion and a thin barrier

portion adjacent to the metal. Porous-type coatings have wide ranges of applications

ranging from decorative purposes to protective, wear resistant purposes.
5



Porous Layer

Barrier Layer

Aluminum

Figure 3. A cross-section of a porous type coating

Coating Structure of the Porous-type

The structure of the anodic coating is a group ofhexagonal-shaped oxide cells

each having a central pore that extends to a thin compact barrier layer ofoxide. The

barrier layer is continuously transformed into the porous form during the anodizing

process. The cell size equals twice the cell wall thickness plus the central pore diameter.

There are approximately amillion cells per square
inch.6

The cell structure of the oxide

layer formed from sulfuric, oxalic, chromic, and phosphoric acids are similar, but vary in

dimensions (see Table 2).



Table 2. Pore Diameter and CellWall Thickness of Several Oxide
Coatings7

Electrolyte Pore Diameter

(Angstrom)

Wall Thickness

(Angstrom/volt)

15% sulfuric acid, 50 F 120 8.0

2% oxalic acid, 75 F 170 9.7

3% chromic acid, 100 F 240 10.9

4% phosphoric acid, 75 F 330 10.0

The pore diameter is completely dependent on the type ofelectrolyte whereas the

wall thickness is highly dependent on the applied voltage and slightly dependent on the

electrolyte. Additionally, the coating thickness depends on the same two main factors:

applied voltage and the electrolyte. For example sodium borate/boric acid electrolytes and

300-500 volts are conditions that produce a thin film with a thickness that is less than

0.0001 inch. A sulfuric acid solution and 12-24 volts are conditions that produce thicker

films ofup to 0.001 inch. Other factors affecting the thickness are the current density and

time in the anodizing tank.
8



Mechanism

The anodizing process is dissimilar to electroplating in theway that the coating

forms. Porous-type anodic films start on the outside surface of the metal anode and

progress inward, so that the last-formed coating is near the metal-coating interface and the

first-formed layer is on the surface. By contrast, the metal being plated in the

electroplating process is a conducting substrate acting as the cathode in the electrolytic

cell. Ametallic coating is deposited on the surface of the substrate and grows outwards.

Furthermore, when anodizing, additional metallic materials are not being added to the

aluminum, instead a conversion of the surface is occurring.

The mechanism of forming the barrier coatings is ionic. Aluminum ions combine

with the oxygen ions of the electrolyte. The barrier thickness represents the distance

thoughwhich the ions can penetrate the layer ofoxide under the influence ofthe applied

potential. Therefore the voltage is the driving force behind the ions, and determines the

thickness ofthe barrier layer. For barrier-type coatings, a limiting thickness is reached and

current flow ceases. Porous-type coatings do not reach a limiting thickness due to the

solvent action ofthe electrolyte. However, a barrier layer with a thickness that is equal to

fourteen times the applied voltage times a factor less than unity determined by the

electrolyte will still exist between the metal and base of the pores for a porous film.
9

Barrier Layer Thickness = (14)(Voltage)(Electrolyte Factor)



Theory ofDesign ofExperiments

Definition

Design ofexperiments (DOE) is a systematic approach to experimentation that

allows an efficient and effective effort towards improving the quality and productivity of a

process. The goal ofDOE is to understand the relationship between process parameters

and product characteristics, save experimentation time, decrease scrap rates, decrease

production times, decrease inventory, and save costs associated with each of these.
10

Qualifications

DOE is a useful problem solving process in many different situations, for example:

1) there exists a part with high nonconformity or many defects, 2) there exists a process

with high nonconformity, 3) a new machine, process or part is being implemented, or 4) a

newmachine is being
purchased.11

A nonconformity is a departure from specification requirements. A defect is any variation

ofa required characteristic of the product or its parts, which is far enough removed from

its target value to prevent the product from fulfilling the physical and functional

requirements ofthe customer.
12

The quality ofa product or process increases as the

number ofdefects decrease. Ameasure of the quality of the process or product is a defect

per unit
(DPU).13

Dpu= # ofDefects found at AnyAcceptance Point

# ofUnits (parts) processed through that Acceptance Point



The most common application of a DOE in the manufacturing area is that which

deals with a part being produced at a high DPU (case 1). Other times a process is

producing too many defects, regardless of the part being produced (case 2). In this

situation a representative part of the process is chosen for the experiment, and the results

ofthe experiment are related to all parts produced by the process. Case three addresses

problems before they happen. Byway ofDOE, insight into a new process can be gained.

Experimentation will teach how the variables of the process will affect the critical

parameters ofthe parts being produced. Lastly, before purchasing a new machine aDOE

is a good idea in order to test to see if the machine does what it is desired. By running a

DOE, the machine can be tested for output, variability, ease ofuse, set-up time, and

overall machine performance.

Basic General
Procedure14

There are ten steps in a designed experiment. They are as follows:

1. Brainstorm

2. Design the experiment

3. Obtain materials and clean machine

4. Conduct experiment/collect data

5. Clean the data

6. Analyze the data

7. Interpret the results

8. Confirmation run

9. Write report

10. Present results

10



The first step ofany design ofexperiment project is brainstorming. A team of

experts should be gathered for a brainstorming session in order to discuss the problems

associated with the process at hand. The team should consist ofdifferent skill levels

including operators, maintenance, engineers, managers, and other experts. Several key

questions need to be answered during the brainstorming step. These include:

What is the project goal?

What is the project objective?

What are the outputs/responses of the process?

What are the inputs/factors ofthe process?

What are the levels of the inputs?

Which inputs are inter-related to each other?

What parts/material are going to be used for the experiment?

Howmany parts can be produced during the experiment?
15

The brainstorming has resulted in a list of responses (outputs), factors (inputs), and

levels for the factors ofthe process. Having completed this first step, the list offactors and

responses is used to design an efficient experiment, and create a Design ofExperiment

sheet, step 2.

There are several different experiments that may be chosen, but the goal is to select the

most economical design that will render the most information about the process. See

Appendix B for types ofdesigns.

11



The third step is to obtain materials and clean the machine, which is pretty
self-

explanatory. Obtaining materials simply means ordering and receiving the desired number

ofparts for the experiment. Cleaning the machine means doing any necessarymaintenance

or adjustments to the machine before experimentation.

After brainstorming, designing the experiment, obtaining the parts, and preparing

the machine, the experiment is run at the levels indicated on the Design ofExperiments

sheet (step 4). Parts need to be tagged, recorded, and measured for the response. Ifthe

response is quantitative data, then this is an easy task. On the contrary, ifthe response is

attribute or qualitative data and requires judgment, then measuring the response is difficult

and not a recommended practice. For example, it is simple to obtain a thickness value for

an anodic coating using a permascope. If there were no measuring tools, assigning a

thickness to each test sample by visual means would be impossible. To summarize,

attribute data is not recommended for analysis, and should be replaced by quantitative data

ifpossible.

Bad parts will be made during the DOE. The idea of a designed experiment is to

change process parameters in order to induce changes in the final part. Both good and

bad parts are expected to be made allowing one to see where the optimal settings are

located.

Step five ofthe whole design ofexperiments process is cleaning the data.

Checking the accuracy of the data is important to ensure that mistakes did not occur in the

transmission of the data. The result of this step is a list of the factor settings of each

experimental run and the resulting responses.

12



Now the data are ready to be analyzed and interpreted (steps 6 and 7) for two

items: 1) relationships between factors and responses and 2) significant verses insignificant

factors. An empirical equation, describing the relationship between the factors and the

responses, is also obtained from the data analysis. This equation will be used to predict

what the process will produce at various factor levels. The
"true"

functional relationship

between the response and the factors, the mechanistic model, is often too complicated to

allow parameter estimation, but it can be approximated by an empirical (polynomial)

model.

Step eight is to conduct a confirmation run. By doing this, the results, theories, and

suggested optimal settings attained from the design of experiment and are verified.

Finally, the purpose of the two remaining steps, nine and ten, is to inform the team of the

results so that the results in awritten report and an oral presentation. A plan to keep the

process under statistical control can be established at this point.
16

13



JMP Analysis

JMP (Statistical Software for theMacintosh from SAS Institute Inc.) is a software

package capable ofperforming the DOE analysis. The results to look at from the JMP

output are the Summary ofFit, the Analysis ofVariance (ANOVA), the Parameter

Estimates, the Effect Test, the Lack ofFit, and the Leverage Plots.

Summary ofFit
17

RSquare

RSquare Adj

RootMean Square Error

Mean ofResponse

Observations (or Sum ofWeights)

RSquare (R ) is the coefficient ofdetermination and measures the percent of the

corrected total sum of the squares that is explained by all of the terms in the model (except

for the intercept term). The equation that calculates
R2

is given by:

B2
=Model sum ofsquares/Corrected total sum ofsquares

B?= SSModel/SSC Total

The
R2

value is constrained between 0 and 1 . Multiplying
R2

by 100 yields the DOE

Equation Prediction Rating. AnRSquare value of 0.95- 1 . 0 is desired. The higher the

RSquare value the more
"adequate"

the model is.

14



RSquare Adj
(R2

Adjusted) adjusts RSquare to make it more comparable over

models with different numbers ofparameters by using degree offreedom in its

computation. It is a calculation ofmean squares instead of sums of squares and is

calculated by

B2

Adj
= 1 - ErrorMean Square

C TotalMean Square

where, Errormean square is found in the ANOVA table found on page 17-19.

C Total mean square = C Total SS/C Total DF

(C Total SS and C Total DF found in the ANOVA table)

RootMean Square Error (RootMSE) is an estimate of the standard deviation of

errors about the fitted regression model (random error). The calculation for this value is:

BootMean Square Error = ^ErrorMeanSquare

A predictionwith the least amount ofvariability is desired. Therefore a small RootMSE

value is desirable.

15



TheMean ofResponse is simply the mean ofthe responses, calculated by:

n

Yvi
Mean ofResponse

=

r^

n

where,

n
= The number ofexperimental runs

y,
= The

i*

response value

The number ofexperimental runs, n, equals the number ofObservations (or sum of

weights) used in the fit.

16



Analysis ofVariance (ANOVA)
18

Degrees ofFreedom (Model, Error, Total)

Sum ofSquares (Model, Error, Total)

Model Mean Square

Error Mean Square

F Ratio

Prob>F

"The analysis ofvariance is a means for partitioning the total variability of the

observed response variables into various components which can be attributed to known

sources."101
The total variability is broken down into the experimental error variability

and the model variability. The experimental error variability represents the variability

within the groups of response values. The model variability is the variability due to

changing the factor levels and it represents the variability across the three factor levels

(high, medium, and low).

Notation for the ANOVA table:

n
= The number ofexperimental runs

p
= The number of model parameters

yi
= The

i*

response value

y
= The average of the n response values

*yj = The
i*

response predicted from the model

17



= The summation from i=l to n (over all the responses)

Table 3. The ANOVA Table

Source ofVariability Degrees ofFreedom Sum ofSquares Mean Square

Model

Error

Total

p-1

n-p

2XV
y)2

Z(yi-yf

(p-l)+(n-p)
=

n-1

Kyi-
y)2

OR

KV y)2/(P-i)

Itory?/(M>)

Source ofVariability- indicates the specific component ofvariability.

Degrees ofFreedom- represents the number of independent pieces of information used

to estimate the particular component ofvariability.

Sum ofSquares (SS)- is the numerical estimate ofthe component ofvariability

(unadjusted for the degrees of freedom). It is the sum of squares of the difference

between the fitted response and the actual response.

Mean Square- is an estimate ofthe variability contribution from the corresponding

source ofvariability after adjusting for the degrees of freedom.

In addition the ANOVA table has the F Ratio and the Prob>F.

F Ratio- is theModel mean square divided by the Errormean Square.

18



FBatio =ModelMean Square

ErrorMean Square

It estimates the following quantity:

Experimental variability + Factor variability

Experimental variability

The larger the F Ratio (the further it deviates from one in the positive direction), the

more evidence there is of significant factor effects.

The F Ratio is the "F
Value"

for the test statistic and the Prob>F value (the p-value) is

the significance level which are used to test the following hypotheses:

Ho: No factors have an effect on the response or

Pi=P2 = 33 = Pi = 0

H,: At least one factor has an effect on the response or

0iort32orp3or... p\*0

where the 3s are the coefficients of the main effects in the equation that will result

from the DOE analysis. See Appendix B formore information.

A
"Prob>F'

value < 0.05 indicates sufficient experimental evidence to reject the null

hypothesis (H,).

19



Parameter
Estimates19

Term

Estimate

Std Error

t Ratio

Prob> 1 1 1

Term is the parameter in the model being estimated.

The Estimate values are estimations of the coefficients of the model found by least

squares. For example,

Smut = p0 (intercept) + Pi (free sulfuric) + p2 (pH) + p3 (t seal) + p4 (tDI) + e

where, Po, Pi, P2, P3, and P4 are the parameter estimates, where Pi estimates the

free sulfuric effect, P2 estimates the pH effect, etc.

The Std Error (the standard error ofthe estimate) is the square root of the estimated

variance ofthe parameter estimate and is used to quantify the uncertainty or variability

in the parameter estimates. In otherwords, it is an estimate of the standard deviation

ofthe distribution ofthe parameter estimate.

20



The t Ratio (t value) is computed as follows:

t = Estimate/StdError

The hypothesis that is being tested by the test statistic, t, is:

Ho: The parameter = 0 (model term insignificant)

Ha: The parameter * 0 (model term is significant)

If "Prob> 1 1
1"
< 0.05, then reject the null hypothesis and assume the model term is

significant.

21



Effect
Test

Source

Sum ofSquares

F Ratio

Prob>F

The "Effect
Test"

provides the same information as the 'Tarameter Estimates". It

is a type DI statistic meaning it presents a partial partitioning of the model sum of squares.

The individual sums of squares are said to be partial in that each sum of squares represents

the amount ofvariability the corresponding model termswould explain if it was the last

term entered into the model.
21

The F Ratio, "F Value", test statistic is:

F = Sum ofSquares (type IID/DF

ErrorMean Square

The following hypothesis test is constructed to determine model term significance.

Ho: The variability explained by the model term is insignificant

Ha: The variability explained by the model term is significant.

If "Prob>
F"

< 0.05, then reject the null hypothesis and assume the model term is

significant.
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Lack ofFit
22

Source

Sums ofSquares (Lack ofFit, Pure Error, Total)

Lack ofFitMean Square

Pure ErrorMean Square

F Ratio

Prob>F

MaxRSq

The lack of fit analysis provides a breakdown of the error sum of squares. The

error sums or squares is made up of two components ofvariability, lack of fit error and

pure error. To separate the total sum of squares into the lack of fit and pure error

components there are four steps.

1. For each distinct factor combination which is replicated, compute a standard deviation,

s, or variance, s2, from the response values. If there are k distinct factor settings with

replication, then there will be k variances computed. These k variances represent k

estimates ofthe experimental variability or pure error.

2. A
"total"

pure error sums of squares is computed as:

PureError Sum ofSquares
= (dfO(s2) + (df^)(s22) + (df3)(s32) + ... + (df^(sk2)

where,
dfk= degree offreedom for

k*

factor setting

Sk2

= estimated variance for
k*

factor setting

23



3 . The lack of fit sum of squares is obtained by subtracting the pure error sum of squares

from the total error sum of squares.

lack offit sum of squares
= (total error sum of squares)

- (pure error sum of squares)

4. The degree offreedom associated with pure error and lack of fit are obtained from the

degrees offreedom chart. (The pure error degrees of freedom can also be computed

by summing the degrees offreedom for each individual variance estimate).

The pure error and lack of fit sums of squares are divided by their respective

degrees offreedom to obtain the pure error mean square and a lack of fit mean square.

The pure errormean square is an estimate of the pure error variance. However, the lack

of fit mean square is an estimate of the sum ofthe "pure
error"

variance and a
"bias"

component. The bias component represents the bias or error associated with using an

inappropriate model to describe the true relationship.

Testing the bias significance, which reflects the lack of fit, is donewith the

following hypothesis test. The F ratio tests that the lack of fit error is zero, and is

calculated by:

FRatio = (Lack offitmean square)/(Pure error mean square)

The hypotheses for the test are as follows:

Ho: The model is adequate, no lack of fit

EL.: The model is inadequate, lack of fit
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A
"Prob>F'

value < 0.05 implies rejection of the null hypothesis or lack of fit.

A lack of fit indicates that additional parameters should be added to the model. The F

ratio estimates

Experimental variability +Model bias

Experimental variability

The larger the F statistic, the more evidence there is ofa bias due to an under-specified

model.

Max RSq is the maximum
R2

that can be achieved by a model using only the

variables in the model. It's calculation is:

MaxB2
= 1 - SS (Pure Error)

SS (Totalforwhole model)
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Leverage Plots
n

Leverage plots graphically illustrate the significant parameters and at which level

will produce the most favorable response. Essentially the leverage plot is a graphical

display of the Effect Test.

Dotted confidence curves on the plots indicate whether the test is significant at the

5% level by showing a confidence region for the line of fit. Ifthe confidence region

between the curves contains the horizontal line then the effect is not significant. Ifthe

curves cross the line, the effect is significant.
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KEY PROCESS PARAMETERS

The anodizing process has many parameters that are important to the production

ofgood parts. One ofthe hardest anodizing parameters to control is the aluminum quality

from suppliers. Because anodic oxidation involves a conversion of the aluminum surface

into an oxide coating, the alloy and its metallurgical structure have important effects on

the characteristics of the finished surface. Differences in coatings arise with the purity of

the aluminum, the type and quantity ofalloying elements, type ofmill product, different

production lots, interchanged manufacturer lots, type of fabrication, or different

temper/aging treatments. All of these factors have significant effects on the appearance

and functional properties of the finished parts.
24

Properties of anodic coatings that are affected by alloy composition include

appearance (color, reflectance, and transparency), continuity (protectiveness), abrasion

resistance, weight density, porosity, dielectric strength, and composition. As far as

appearance, pure aluminum will produce the most transparent anodic coating ofall its

alloys. Clear anodized coatings (not dyed) could look opaque, gray, gold, tan, or brown

depending on the major alloying element.
M

The aluminum alloy system assigns a four-digit numerical designation to each

grade. The numerical designations for the alloy and cast alloy and the suffix designations

are in Appendix A.

Racking is another important factor in the production ofgood anodic coatings.
26

Sufficient electrical contact between the rack and the parts is necessary to ensure that
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current flows to the part during anodizing. Rack design and part placement on the rack

are important. A good rack design will hold parts securely, conduct current adequately,

and carry a full load without shielding. For the most part, racks are made of titanium but

may also be made of aluminum. Aluminum racks require stripping after each use.

Titanium racks last longer but are more expensive and require larger contact area because

of their lower electrical conductivity. Part position must allow for good drainage and

avoidance ofair pockets.

Having racked the parts, processing commences and parts are moved from tank to

tank. There are many tanks involved in the anodizing process (Figure 1). Furthermore,

there are several factors of each tank like concentrations, times, temperatures, etc. that

have considerable contributions to the final products.

Adequate cleaning is the first required tank process operation. Because many

organic compounds will act to resist etching and anodizing steps, they need to be

removed. Control ofcleaner concentration, temperature, and oil accumulation are all

necessary.

Following the cleaning is rinsing. Actually, thorough rinsingmust follow each

chemical step in the sequence oftanks. The requirements for the rinse tanks are clean,

flowing water and an overflow lip. Rinsing may be single or multiple tank rinses and they

may be spray or immersion tanks.

Deoxidizing is the step to follow cleaning and rinsing. During this step an acid

solution at an elevated temperature removes nonuniform oxide films and contaminants

from the parts to be anodized, that could not be remove during the cleaning.
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Etching is a step that may or may not be used. Its purpose is to remove the natural

shine and provide a soft, matte, textured appearance. On average etching is a 3-5 minute

process in a nominally five percent sodium hydroxide solution at 90-120 F.

The anodizing tanks have many key process parameters, the first being the

chemical concentration. In the anodizing tank, the sulfuric acid solution is controlled in

industry at a nominal fifteen percent solution. It is important that the temperatures are

held within a couple ofdegrees in order to produce consistent coating properties. Current

flow is also recommended to be controlled in the range from 12-16 amperes/ft2. However

many plants operate at fixed voltages instead. Agitation is another factor essential to the

process in order to provide a uniform solution temperature throughout the tank. Cathode

location can have different effects on the
thickness'

ofthe oxide coatings. The closer the

surfaces are to the cathode, the thicker the anodic coating will be.

When desirable, dying is carried out next. The most important parameters in the

dye tank are the dye concentration, pH, and temperature. Agitation is needed to keep

concentrations and temperatures uniform. Also, time is a mentionable variable. Longer

immersion times will promote deeper dye penetration into the pores of the oxide coating.

Contamination is one last parameter. Impurities such as aluminum, sulfates, and iron

affect absorption characteristics and dye life.

The last important chemical tank is the seal tank. Without sealing parts, they

become subject to lower corrosion resistance, staining, and bleeding. The important

factors involved in the sealing process include time, pH, concentration ofnickel and

fluoride, temperature, agitation, and contaminants.
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Table 4. Summarization ofKey Process Parameters

Metal Quality
Impurities

Alloy Composition

Processing

Temper/aging treatment

Cleaning Tank

Cleaner Concentration

Temperature

Oil Accumulation

Time

Anodizing
Sulfuric Acid Concentration

Aluminum Concentration

Temperature

Current

Agitation

Cathode Location

Time

Sealing
pH

Nickel Concentration

Fluoride Concentration

Temperature

Agitation

Contaminants

Time

Backing
Electrical Contact

Rack Design

Part Placement

Rack Material

Binse Tanks

pH

Temperature (for some tanks)

Water Flow

Impurities

Time

Etching
NaOH Concentration

Temperature

Time

Deoxidizing
Acid Concentration

Temperature

Time

Dying
Dye Concentration

pH

Temperature

Agitation

Contamination

Time
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DEFECTS

Because ofthe complexity ofthe anodizing process, there are many possibilities

where defects can occur on the line. Different defects that occur include, lost contact,

smut, overanodizing, white spots, bleed out, bent parts, crashed parts, burnt parts, and

staining. Causes for these defects may be due to materials, manpower, methods,

machines, ormeasurements.

The key process parameters ofthe anodizing process were discussed in the

previous section. The possible defects that can occurwhen these parameters are not at

their optimum are discussed next.

Poor racking or poor contact due to insufficient rack-contact area or loose

contacts can cause iridescent appearance on clear parts, blue appearance on black dyed

parts, powdery coatings, burning, and other problems. Operator's technique and proper

rack design play an important role in producing good contact.

Cleaning was the next variable to the process that was considered. When the

cleaner concentration is too lowwhite spots or staining may result. A dried-on foam

pattern may result ifthe temperature of the solution in the tank is too high. Overly

vigorous agitation produces excessive foam which stays on the rack and parts.

In the deoxidizing tank, white spots, film, or
"smut"

result when all the

contaminates are not removed from the surface of the parts. The same thing can happen if

the etch does not remove all of the contaminating elements. Furthermore, if the etch
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solution temperature is too high, caustic burning results. Caustic burning is a non-uniform

etch pattern that is a rejectable product condition.

Many factors are involved in the anodizing tank. Too high of a sulfuric acid

concentration may cause smutty, overanodized parts or burnt parts, and too low of a

sulfuric acid concentration may cause white spotted parts. The concentration of the

aluminum in the tank is important for the conductivity that is necessary in the oxide film

formation. Too high or too low a concentration can cause overanodizing or

underanodizing respectfully. Extended time in the tankmay result in smut on the parts.

High anodizing temperatures will produce a softer coating, leading to dye bleeding. Low

current could cause white spots or dye bleeding as well. Air agitation is necessary to

prevent part burning.

Generally, the dye tank is a lowmaintenance tank, and therefore tank life can be

many years. As contaminants increase over many years, the dye
"spoils"

and this will

cause defective colored parts. Black parts, for example, would have a blue tint.

Concentrations and pH play a role in getting the right color too.

Sealing the parts is a place in the process where numerous things can and do go

wrong. Low nickel concentrations and low pH leads to dye bleeding. High pH, nickel

precipitation, and too much time yield smutty product. On the contrary, low

temperatures, pH, and sealing time produce an inadequate seal.

Figures 4-12 graphically illustrate possible anodizing defects and the explanation

for these defects.
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Racking

Rack

Design

Operator's

Technique

Rack

Welds

Flight bar

Contact

Figure 4. Causes for Lost Contact

Temperature of the anodize tank too high

Sulfuric acid concentration too high

Current density too high

Figure 5. Causes for Overanodizing
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the sealant

Not enoughNi in

the sealant
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In the tank too long
Temp, ofblack dye

too high

In the tank too long
Sulfuric acid

concentration too
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Figure 6. Causes for Smut
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Figure 7. Causes for White Spots
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Figure 8. Causes for Bleed Out
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Figure 9. Causes for Bent Parts
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Figure 10. Causes for Crashes
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Figure 1 1 . Causes for Burnt Parts
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Parts in the air

too long

Cleaner Low

Figure 12. Causes for Staining
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A pareto chart analysis was used to determine the top defects ofthe anodize

process. A pareto analysis is a technique for prioritizing types or sources ofproblems. It

"separates the 'vital
few'

from the 'trivial
many'

and provides help in selecting directions

for
improvement." 28

These datawere collected over a time span ofone year based on

customer complaints.

Table 5. Customer Complaints

Defect #of

occurrences

Percentage of

occurrences

Percentage of

defective parts

Over anodized (film) 2 12.5 % 31.4%

Scratches 3 18.8 % 21.6%

Smut 6 37.5 % 20.7 %

White Spots 2 12.5 % 15.2 %

Masking 1 6.25 % 4.5 %

Bleed Out 1 6.25 % 4%

RackMarks 1 6.25 % 2.6 %

See figure 13 for the graph showing the pareto analysis. Based on the number of

occurrences, smut is the biggest problem and accounted for six out ofthe sixteen reported

defects that reached the customer. In addition it was in the top three for the number of

defective parts.
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Another set ofdata was collected on the scrap/rework for ten weeks, and this data

is represented below in table 6 and figure 14.

Table 6. Scrap/Rework

Defect # ofoccurrences Percentage of

occurrences

Percentage of

defective parts

Lost Contact 25 73.5 % 43%

Color 1 2.9 % 20%

Crash 1 2.9 % 17%

White Spots 1 2.9 % 11%

Bent 3 8.8 % 5%

Dirty Parts 2 5.9 % 2%

Racking 1 2.9 % 1%

From this scrap/rework data for ten weeks it is apparent that lost contact parts are

the number one problemwith both the greatest number ofdefective parts and occurrences.

This datawas determined to be incomplete because everything was not being recorded,

especially the reworked parts. For example there were large lots of smutty parts many of

whichwere repaired and were not recorded, according to operators.
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DESIGN OF EXPERIMENTS

Pre-experiment

Reduction ofdefective parts is the goal ofthe project. The question ofwhich

defect to tackle needed to be resolved by brainstorming.

Brainstorm

The first step of theDOE process is brainstorming. For the brainstorming session

a group ofexperts consisting oftwo production supervisors, the most experienced line

operator, maintenance, the department's quality coordinator, a chemical engineer, and two

other anodizing experts attended.

Project Objective

Many objectives were to be accomplished during the team meeting. The primary

goal of the meeting was to agree on a project objective, and this goal was met. The

project objective is to test the hypothesis that smut is a function of six factors: anodize

temperature, seal temperature, hot DI rinse temperature, free sulfuric acid concentration in

the anodize tank, fluoride concentration in the seal tank, and the pH ofthe seal.
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Besponse Variable (Output)

A combination offactors was involved in deciding on the project objective, the

customer complaint data, scrap/rework data, operator interaction, and team members

consensus. Before the team meeting, lost contact appeared to be the obvious choice to

base the experiment on because of the scrap/rework data and pareto analysis that showed

25 occurrences during the tenweek interval ofdata collection. However, there were

several reasons why this was not selected by the team. First of all, lost contact is a

problem that is well understood. Basically it is a racking problem due to the racks

themselves, the operators, or the contacts as shown in previous section (Figure 4).

Secondly, there were no lost contact parts that slipped through to the customer in 1994.

The problem selected was smut, the second largest problem. Because smut

formation depends upon many factors such as, chemistries, times, and temperatures, the

learning potential was immense. With the complexity ofthe smut problem comes many

conflicting opinions, that need resolution. Furthermore, it was the problem with the most

occurrences ofdissatisfied customers. Six of sixteen (37.5%) complaints were received

due to smut in 1994, meaning therewere six occasions where customers received smutty

parts. Also, operators admitted that they were having a large smutting problem, that was

not recorded on the data log sheets. For these reasons, smut was chosen as the response

variable (though others were added later).
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Factors (inputs)

In the brainstorming session, the key parameters ofthe anodize process which may

be involved in producing smut were determined as follows:

Table 7. Possible Variables that Cause Smut (Brainstorm)

Seal Time

Temperature

Concentration of fluoride

Concentration ofnickel

Contamination

. pH

Age/activity

Anodize Time

Temperature

Sulfuric acid concentration

Aluminum concentration

Current density

BlackDye Time

Temperature

Material Alloy Composition

Temper/Aging Treatments
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Table 7 was then arranged into constants and variables for the experiment and is

shown below in table 8.

Table 8. Experiment Variables and Constants (First Draft)

Variables Constants

Seal temperature Material

Anodize temperature All times

HotDI rinse temperature Black dye tank conditions

Sulfuric acid concentration Current density

Fluoride concentration pH hot DI rinse

pH of the seal Contamination

Age/activity of the seal

Aluminum concentration in the anodize tank

Concluding the results ofthe meeting, a full project objective was developed. The

hypothesis to be tested is that smut is a function of six factors: anodize temperature, free

sulfuric acid concentration in the anodize tank, seal temperature, seal pH, fluoride

concentration in the seal tank, and the temperature in the distilled water rinse after the

seal. The material, the number ofparts, and the levels of input were going to be

determined outside the meeting with a few people rather than the whole team.
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Revelations Since the Brainstorming:

Material

Four questions pertaining to the material/parts selection needed to be addressed so

that material could be ordered in time to run the experiment. They were: 1) which

aluminum alloy, 2) what form: coupons or actual production parts, 3) howmany pieces,

and 4) how fast can the parts be obtained.

A 6000 series aluminum, 6061, was chosen as the material because it is the

"purest"

aluminum anodized at the company. An actual production part was chosen over

coupons because ofunknown tempers that are unrepresentative ofproduction parts. A

window part was selected because 1) it is made of6061 aluminum, 2) smut problems are

occurringwith these parts, 3) high production lots are run of these parts, 4) there exists

1000 parts available free ofcharge. Furthermore, the theory was that the chosen parts

were sensitive to the process indicating when the process was out ofcontrol. Therefore, if

the smut problem could be solved for these parts, then it could be resolved for any other

parts as well.

Number ofParts

Calculations showed that at least one rack of seventy two parts needed to be

produced per run to be successful. The calculation was based on the minimum amperage

and the total area ofmaterial to be anodized.
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Experiment-First Design Proposal

The first experiment designed was a six factor
2s"2

fractional factorial design with

two to four center points. This means that this experiment would have 18 to 20 runs.

With seventy two parts per run, at least an additional 440 parts needed to be ordered.

The levels ofthe experimental factors were determined by talking to experts from

the team meeting as well as outside experts. The first experiment is shown below with the

high level and low level indicated by pluses and minuses respectively.

Table 9. First Design Proposal

RUN Temp.

Anodize

Sulfuric

Cone.

pH

Seal

Temp.

Seal

Fluoride

Cone.

Temp.

DI

1 - - - + - +

2 - - - - - -

3 - - + + + -

4 - - + - + +

5 - + - - - +

6 - + - + - -

7 - + + - + -

8 - + + + + +

9 0 0 0 0 0 0

10 0 0 0 0 0 0

11 + - - - + -

12 + - - + + +

13 + - + - - +

14 + - + + - -

15 + + - + + -

16 + + - - + +

17 + + + + - +

18 + + + - - -
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2 design type summary:

Number offactors = 6

Number ofruns =16 (without centerpoints)

Resolution = IV

Fractionation = 1/4

Degree ofconfounding
=Moderate

Main effects confounded with 3-factor interactions and 2-factor interactions

confounded with other 2-factor interactions

Good for estimating main effects

Time to run experiment = approximately 40 hours

# ofparts possible (for 20 runs)
= 1440

A couple ofdesign constraints presented themselves. First, the time to run an

experiment is approximately two hours, not including the time for stabilizing the chemical

composition ofthe tanks when additions are made or the tank temperatures (especially the

seal tank) are changed. Time is important, because the machine's primary purpose is for

production, not experimentation. A second constraining factor is the number ofparts

needed for the experiment. Ordering more parts would be expensive and take too long.

In order to solve these constraint problems, several solutions were possible. One

solution would be to use a
26"3

design, thus decreasing the number of runs and parts in

half. This higher degree offractionation results in a severe degree of confounding because
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the main effects are confounded with 2-factor interactions. The
26"3

design is a screening

experiment.

Another possibility is to reduce the number of factors from six. If five factors are

chosen, with a
25"1

design there are the same number of runs as the
2s"2

design and with a

25"2

design there exist the same degree ofconfounding. Basically, there are no advantages

gained with a five factor design. The payback comes in reducing the experiment to a four

factor design.

A full factorial design is not viable because of the number ofruns involved, but a

24"1

fractional factorial is a feasible solution. A summary ofa
24"1

design type is below.

Number offactors = 4

Number of runs = 8 (without centerpoints)

Resolution = IV

Fractionation = 1/2

Degree of confounding
=Moderate

Main effects confounded with 3-factor interactions and 2-factor interactions

confounded with other 2-factor interactions.

Good for estimating main effects

Time to run experiment = approximately 18 hours

# ofparts (for 9 runs)
= 648
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With this design the time and resource constraints are satisfied. Moreover, the

leverage that the main effects have on the process will be concluded, which is the objective

of the experiment.

Two variables needed to be changed to constants to create the
24"1

design.

Changing the anodizing temperature from a variable to a constant was the first

modification. This change was made because the low level was at a temperature that was

not obtainable. The tank does not have a chiller and therefore the lowest temperature that

can be reached is room temperature. Also common industry practice does not cool this

tank. Since the low level is below room temperature, it can not be reached. The fluoride

concentration in the seal tank was removed from the variable list because testing fluoride

has long lead times and it is expensive. Table 10 is a revision ofTable 8 and depicts the

variables and constants for the final experiment.
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Table 10. Revised Table 8. Final Experiment Variables and Constants.

Variables Constants

Seal temperature Material

Hot DI rinse temperature All times

Sulfuric acid concentration Black dye tank conditions

pH of the seal Current density

pH hot DI rinse

Contamination

Age/activity of the seal

Anodize temperature

Fluoride concentration

Aluminum concentration in the anodize tank
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Experiment-Final Design

Several modificationswere made to the original design ofexperiments. As a result

the project objective changed. The new objective was to test the hypothesis that the

response variable, smut, is a function of free sulfuric acid in the anodize tank, seal pH, seal

temperature, and hotDIwater rinse temperature after the seal. The projected time of the

revised experiment was two nine hour shifts, which was acceptable, and 648 parts, leaving

352 extras available for confirmation experiments. The final design is shown below.

Table 11. Final Design

RUN Free Sulfuric

Acid

pH

Seal

Temperature

Seal

Temperature

DI Rinse

1 - + - +

2 - + + -

3 - - + +

4 - - - -

5 + - + -

6 + + + +

7 + + - -

8 + - - +

9 0 0 0 0

As before the minuses represent the low levels, the pluses represent the high levels, and

the zeros represent the center settings.
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The Experiment

As predicted the experiment took two nine hour shifts. These shifts were run

back-to-back on a C shift and the following A shift, a total of eighteen hours (from 1 1 PM

till 5 PM) onMarch
16th

and 17th. Two advantages were gained by running two
back-to-

back shifts. First, no production is run on the C shift so that only one day ofproduction

was lost. Second, all constants in the process could be kept under control, because

production would not be run in between experiments.
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Response Variables

Measuring the smut response was a visual test. The level of smut was measured on

a scale from zero to three with the following values:

0 - No Smut

1 - Little Smut

2 - Moderate Smut

3 - High Smut

Because quantitative data for the response variable is desired, alternatives for measuring

the smut were being researched.

More response variables were added after running the experiment. They included

the degree ofblue, degree ofdarkness, and degree of seal. The blue response was added

because it is an undesirable defect that showed up in a couple of runs. Darknesswas

added to tell how black the part was. The darkness datawas gathered at the same time as

the blue data and, therefore, took no extra time. The degree of seal was added because

there is an acceptable standard that parts must meet. Ifparts don't seal then they are more

susceptible to wear and paint fading.

A spectrophotometer is an instrument used to measure color intensity. Two

different scales, blue-green and light-dark, were ofparticular interest. Using this

instrument, the blue and darkness responses were measured yielding a continuous

quantitative comparison of each run. On the blue-green scale, the negative numbers mean

green and the positive numbers mean blue. Only the blue was visible, never the green. As
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the number increased, the more severe the blue becomes. The human eye can see tints of

blue around a value ofone.

The level ofdarkness was determined in the same way as the level ofblueness, the

lower the value the higher the darkness. A part that had zero smut, that was not run

during the experiment, was measured for darkness and was higher than any of the

experimental samples (meaning it was lighter than any of the experimental samples). Also

a black standard used for calibration has a high number on the darkness scale. Therefore it

is more desirable to have a higher value on the darkness scale.

Determining the degree of sealing was done by using a simple seal test, that

measures the amount ofmaterial that is removed after sitting in a chemical for a period of

time. To do the test, parts are weighed, immersed in acid for fifteen minutes, weighed

again, and the weight loss is calculated. Ifthe weight loss is greater than three mg/in2then

the part is rejected. Consequently the lower the weight loss during the seal test, the better

the part is sealed.
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Post-experiment

A confirmation experiment was run a couple ofweeks later to make sure that the

results ofthe experimentwere repeatable. Run number one was the repeated run. The

settings for the confirmation run were low for the sulfuric acid concentration, high for the

seal pH, low for the seal temperature, and high for the hotDI rinse temperature. The

results were favorable because they turned out the same as run one.

Cleaning the data and analyzing the data was done using JMP. These were two

easy steps in comparison to the one to follow, interpreting the results. The results ofthe

experiment, the analysis, and the interpretation ofthe results are in the analysis section.
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ANALYSIS

Experimental Results

To begin the data that were analyzed should be shown before anything else is

discussed.

Table 12. Experimental Results

:,Rg::;

,.
,..,:. ...,,,,,,,:.:.:.:.::.,:. .,.. :.,. .,..,,,,.

Temp Temp Smut Blue Wt

Loss

(me*!2)

DarknessdMkMtMIMM iiPi

::jl;Sulliir||||

AcidslM

Seal Seal DI

Rinse

1 -1 +1 -1 +1 1 -0.86 14.92 22.94

2 -1 +1 +1 -1 3 0.18 0.84 20.05

3 -1 -1 +1 +1 3 5.86 0.48 19.09

4 -1 -1 -1 -1 1 -0.13 8.37 19.0

5 +1 -1 +1 -1 3 8.49 0.29 19.49

6 +1 +1 +1 +1 3 0.9 0.06 19.05

7 +1 +1 -1 -1 2 -1.85 2.67 22.40

8 +1 -1 -1 +1 3 0.46 10.48 18.29

9 0 0 0 0 3 2.18 0.9 18.83

10*
-1 +1 -1 +1 1 -1.81 12.9 23.47

* Confirmation Run
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Scatter Plots

A scatter plot of the data is one method ofdetermining which factors might be

important and needed in the model. Specifically, scatter plots ofthe response values

verses the corresponding factor levels are called main effect plots. Main effect plots for

smut (figures 15-18), blue (figures 19-22), degree of seal or weight loss (figure 23-26),

and darkness (figures 27-30) are shown below.
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Blue vs. Free Sulfuric Blue vs. pH Seal
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Weight Loss
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Darkness Darkness vs. pH Seal
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Looking at the smut data graphs, it appears that there exist a trend that higher

sealing temperatures will produce more smut (Figure 17). The other variables indicate no

solid trends in one way or the other, either because, 1) there are not enough data points,

2) there is no trend, 3) the effects ofother factors on the response will produce what

appears to be variability in the response when plotted against the one factor of interest, 4)

interactions are present among the factor being plotted and the other factors and no

relationship is showing up because of it, or 5) as predicted, the qualitative data is difficult

to measure and assign a value to the samples. Quantitative data is needed.

The blue data shows a definite trend in the seal temperature again (Figure 21). It

appears that as the temperature increases, the blue condition gets worse. The pH may

have an effect in a way that higher pHs would appear to produce better parts that were not

blue (Figure 20).

Figure 25, the weight loss (degree of seal) vs. temperature seal plot shows seal

temperature significance once again. In this case, higher seal temperatures are producing

better sealed parts. The other factors are not appearing to have large effects.

Finally, the darkness output shows that the pH of the seal and the temperature of

the seal may be the most significant factors, where higher pHs and lower seal temperatures

producing the better parts (Figures 28 and 29 respectively).

Since the temperature of the seal seems to play a role in all four response variables

it was plotted against all the responses on one graph (Figure 31).
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When plotting a graph of smut and degree of seal verses the temperature

(Figure 32), it is seen that the two responses are producing good parts at different levels

ofthe sealing temperature range. A compromise will have to be made to satisfy both the

smut and sealing conditions.
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Figure 32. Smut and Degree ofSeal vs. Seal Temperature
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Residuals

With 3 or more factors scatter plots may be ineffective because of the effects of the

other variables. Another type ofplot, a residual plot, is generallymore informative for

evaluating a fitted model and is useful for any number of factors. A residual is the

difference between an observed response value and the corresponding response value

predicted from the polynomial model. Residual plots serve three purposes:

to determine if the specified model is correct

to determine if there are problems with the data

to determine ifthe assumptions of regression are met.

If a trend exists in the residual plot, then an important parameter or factor effect

has maybe been left out of the model. Problems with the data are indicated by outlier

points, which are due to a recording error, an experimental error, or another reason. In

general outliers should not be deleted from the data unless there is justification.

Experimental error (e) is included in every model. The residual values are

estimators of these true errors (e) and can be used to determine ifthe assumptions of

regression are met.
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These assumptions are as follows:

1 . If the model form is correct, then at any setting of the factors, the s should be

centered around zero [Meanofe = 0]. The model should be able to predict equally

well on average at any factor setting.

2. At any factor setting the variability of the e's should be equal [variance ofe
=

constant]. The experimental variability in the response must not change from factor

setting to factor setting.

3. No cyclical trends when plotted against the experimental run order exist
[e'

s

independent ofone another].

4. The s must follow a normal distribution.

Table 13 shows the residual values obtained from JMP.

Table 13. Residual Values

nil ttnnlHmni
Residual

1 -0.04631 0.420789 1.383379 -0.16947

2 -0.03087 -0.03614 0.248919 0.063688

3 -0.09262 -0.10842 0.746758 0.191063

4 -0.03087 -0.03614 0.248919 0.063688

5 -0.03087 -0.03614 0.248919 0.063688

6 -0.09262 -0.10842 0.746758 0.191063

7 -0.03087 -0.03614 0.248919 0.063688

8 -0.09262 -0.10842 0.746758 0.191063

9 0.493997 0.57825 -3.98271 -1.01901

10 -0.04631 -0.52921 -0 6366? 0.36053?
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Using the data in the table the assumptions for regression can be checked. The

first set ofgraphs is the residuals ofthe responses verses the corresponding response

(Figures 33-36), which is used to check for trends in the data, centering around zero, and

the variance ofthe residuals. Next, the residual values were plotted verses the run number

(Figure 37-40) to check that residuals are independent ofeach other. Normality plots of

the residuals were completed to verify the fourth and last assumption.
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Figure 33. Residual Smut vs. Smut Figure 34. Residual Blue vs. Blue
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Conclusions from the residual plots:

No trends exist implying that terms have not been left out of the model.

Run number nine appears to be an outlier. A probable cause for this outliers is that all

four variables (and three different tanks) were changed between run 8 and run 9. Time

constraints and large tank sizes prevented complete tank stabilization before run 9.

When drastic temperature or chemical changes are made to the tanks on the anodize

line, it takes a long time to bring the large tanks to equilibrium again. Because of this,

deleting run nine from the data set is justifiable.

The mean of the residuals is zero in all cases. Therefore the mean ofe = 0. However

the points are not evenly distributed around the mean.

The dispersion ofthe residuals about zero could be better. The variance ofe *

constant.

In figure 40, there appears a trend when the residuals are plotted verses the run

numbers. Therefore es are dependent ofone another.

The normal probability plots and the tests for normality show that all ofthe residuals

do not follow a normal distribution. JMP uses the Shapiro-WilkW test as the test for

normality. For this test, the null hypothesis (H,) is that the distribution is normal and

the alternative hypothesis (Ha) is that the distribution is not normal. Assume that if the

probability is less than or equal to .05 (prob <
.05)

then reject the null hypothesis. H. is

rejected for all four response cases implying normality is not satisfied.
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The residual data was re-evaluated removing run number nine since it was an

outlier. The following is the results.

Table 14. Residual Values Excluding Run #9

0.06667 0.92429 0.58 -0.09286

0.13333 -0.0325 0.32 0.0725

-0.1333 -0.8986 -0.32 -0.34429

-0.1333 0.0325 0.32 -0.0725

0.13333 0.89857 -0.32 0.34429

-0.1333 0.0325 0.32 -0.0725

-0.1333 -0.8986 -0.32 -0.34429

8 0.13333 -0.0325 0.32 0.0725

10 0.06667 -0.0257 -1.17 0.43714
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Residual Data Excluding Run # 9
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Residual Data Excluding Run # 9
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Conclusions from the residual plots excluding run #9:

No trends exist implying that terms have not been left out of the model.

No outliers.

The mean of the residuals is zero in all cases (mean ofe = 0).

The dispersion of the residuals about zero could be better. The variance of6 ^

constant.

No
"strong"

cyclical trends when the residuals are plotted verses the run numbers.

Therefore exs are independent ofone another.

The normal probability plots and the tests for normality show that all of the residuals

follow a normal distribution except smut (Figure 53).
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t-Test29

In addition to checking the residuals excluding run number nine, run one and run

ten, which were at the same factor settings, were checked to see that they were not

statistically different. This analysis was done with a two sample t test. For this test the

null hypothesis and alternative hypothesis were:

Ho: Ui - u2
= 5 (Samples 1 and 2 are statistically the same)

Ft,: Ui
- u2 * 5 (Samples 1 and 2 are statistically different)

t=

x^
- x? - 5

SpV(l/nO+(l/n2)

reject the null hypothesis if 1 1 1 > t a/2, v

where, xi
= the mean of sample 1

x2
= the mean of sample 2

8 = 0

ni
= the sample size of sample 1

n2
= the sample size of sample 2

sr
= (nL-\W + (n?-lW

ni + n2 -2

Si
= standard deviation of sample 1

s2
= standard deviation of sample 2

t a/2, v is looked up on a table containing values of t a, v found in Appendix C

a
= 0.05 v

=

ni + n2
- 2

The results ofthe t-test are shown in Table 15 and 16.
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Table 15. t-Test Calculation Values

1.2745 1.1961

Blue -0.86 -1.81 0.56 0.86 0.31 0.74 0.53 0.72

Seal 13.392 13.175 2.16 0.39 4.68 0.15 2.42 1.55

Darkness 22.94 23.47 0.64 1.23 0.41 1.52 0.97 0.98

Table 16. t-Test Final Results

.'.'.'..WWW.
Vfr.V.*.'

-.-.'.'.-V.".'.\'.'

!"1"V.1. ' ' " ' ".. M'..'.'.' >.>. .'.>.'. ''-'"' " ' ' W

mmam :
'

'-'-^^r-!-I*!\\-!\'!1f!\'.'!-!\'X'XvX-X'X'I'X'X-X-'v-X-X-X-,v> \->,
,.V^V.\\\VW.Vi<\MWiVp%%VACt,.%\Ml^%\\\W.\^%%\\\^^i.V.\Witf,V

Smut 0.92 0.92 1.96 Yes

Blue 2.072 2.072 2.306 Yes

Seal 0.14 0.14 4.303 Yes

Darkness -0.851 0.851 2.306 Yes

The results show that run one and ten are the same inferring that nothing

significant occurred in the process between the first run and the last confirmation run. As

a result the experiment should be able to analyzed to get the main effects significant to

smut formation, blue tinting, unacceptable seal, and dark parts.
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JMP DOE Analysis

The datawas run through the JMP design of experiments analysis. The results

gained from each of the response variables will now be discussed. As a reminder, the

objective for doing the design of experiments was to estimate the effects that free sulfuric

acid concentration, seal pH, seal temperature, and DI water rinse temperature have on

smut primarily and blue, seal, and darkness secondly. Design units (-1,0, 1) were used to

do the analysis because finding the exact equation (the parameter estimates) of the model

was not the purpose of the experiment.

Each response was analyzed twice. Analysis I includes all the data. Analysis II did

not include run number nine and some of the insignificant two-factor interactions

(determined from Analysis I). The important results are summarized in tabular form and

the theory behind the values are discussed in the introduction. The actual JMP output is in

Appendix D - Appendix H.
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Smut

Because the test for smut was a visual test it was the hardest response to evaluate.

For this reason it was evaluated as both a continuous response and an ordinal response.

Continuous values are treated as continuous measurement values, and ordinal values are

treated as discrete categorical values that have an order.
30

The same results are

concluded either way. The temperature of the seal is the parameter showing significance

in forming smut. Lower seal temperatures mean better parts.

Ordinal

As an ordinal response the probability ofgetting a one at the lowest seal

temperature is about 95 %. From the middle to the high seal temperatures there is a 100%

probability that parts with a rating of three will be produced.

The other factors are not as significant as the seal temperature. In fact the

temperature of the DI rinse is showing no change from the low to the high temperatures.

Table 17 shows the predicted chance that a 1 or a three will be produced (in percents) at

the low, medium, and high factor levels. See Appendix D for the JMP output.
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Table 17. Smut Results (As an Ordinal Response Variable);

% Opportunity ofProducing Is and 3s for Each Factor at Three Levels

Free Sulfuric Seal pH Seal Temp. DI Temp.

Is 3s Is 3s Is 3s Is 3s

Low 65% 20% 15% 78% 95% 1% 32% 57%

Med 25% 60% 27% 63% 0% 100% 32% 57%

High 10% 80% 50% 38% 0% 100% 32% 57%
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Continuous

When considering smut as a continuous variable, the seal temperature is the

significant factor, showing consistency with the ordinal results. Table 18 below shows the

results for the continuous response analysis.

Table 18. Smut Analysis Results (As a Continuous Variable)

Analysis I

Includes All Runs &

Interactions

Analysis U

Excludes Run 9 & Insignificant

Interactions

Summary ofFit

Rsquare

RootMean Sq. Error

Very Good PredictingModel

0.956833

0.418121

Very Good PredictingModel

0.982353

0.258199

Analysis ofVariance

F Ratio

Prob>F

6.3331

0.1431

18.5556

0.0520

Significant Factors Seal Temp. Seal Temp.

Lack ofFit

F Ratio

Prob>F
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Blue

Analysis I for the blue turned out more favorable than analysis U. Regardless, the

results were the same for both.

Table 19. Blue Analysis Results

Analysis I Analysis II

Includes All Runs & Excludes Run 9 & Insignificant

Interactions Interactions

Summary ofFit Very Good PredictingModel Very Good PredictingModel

Rsquare 0.991817 0.967475

Root Mean Sq. Error 0.644977 1.045862

Analysis ofVariance Significant terms exist Significant terms exist

F Ratio 34.6293 17.8474

Prob>F 0.0283 0.0193

Significant Factors Seal Temp. Seal Temp.

SealpH SealpH

Seal Temp
* Seal pH Seal Temp

* Seal pH

Lack ofFit NO NO

F Ratio 0.8437 3.1360

Prob>F 0.5270 0.3708
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Degree of Seal

Like the scatter plots indicated the seal temperature is significant for yielding good

sealed parts.

Table 20. Degree of Seal Analysis Results

Analysis I Analysis II

Includes All Runs & Excludes Run 9 & Insignificant

Interactions Interactions

Summary ofFit Very Good PredictingModel Very Good PredictingModel

Rsquare 0.952841 0.990247

RootMean Sq. Error 2.696649 1.184947

Analysis ofVariance Significant terms exist

F Ratio 5.7728 33.8455

Prob>F 0.1556 0.0290

Significant Factors Seal Temp. Seal Temp.

Lack ofFit NO NO

F Ratio 6.1286 0.3764

Prob>F 0.2444 0.6497
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Darkness

Analysis II gives better results than analysis I. It has a better prediction rating and

indicates the presence of significant terms.

Table 21 . Darkness Analysis Results

Analysis I Analysis U

Includes All Runs & Excludes Run 9 & Insignificant

Interactions Interactions

Summary ofFit Very Good PredictingModel Very Good PredictingModel

Rsquare 0.959975 0.981272

Root Mean Sq. Error 0.813269 0.438307

Analysis ofVariance No Significant terms Significant terms exist

F Ratio 6.8526 33.8455

Prob>F 0.1332 0.0086

Significant Factors SealpH

Seal Temp.

Seal pH * Seal Temp.

Lack ofFit NO NO

F Ratio 8.4184 1.5518

Prob>F 0.2113 0.4937
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Correlations

Another analysis that can be done is a correlation between all the inputs and

outputs. The JMP output for this analysis can be found in appendixH and the summary of

the results can be found below.

Table 22. Significant Pairwise Correlations (Including run 9)

SMUT SEAL TEMPERATURE

BLUE SEAL TEMPERATURE

DARKNESS SEALPH

DARKNESS SMUT

SEAL SEAL TEMPERATURE

SEAL SMUT
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Summary ofResults

Significant Factors

Significant main effectswere the desired results ofthe DOE. These results are

summarized in the table below.

Table 23. SignificantMain Effects

Smut Blue ||l|peal::::-::C:rl| Darkness

Significant Factors Temp. Seal Temp. Seal

pHSeal

Temp. Seal Temp. Seal pH

Seal

Best Level of the

Significant Factors

Low Low

Medium/High

High Low

High

Prediction Profile

Prediction profiles were created using the significant factors, seal pH and seal

temperature. Minimizing the smut problem occurs at high pHs and low temperatures of

the seal. In addition, part darkness is minimized (remembering that the higher the

darkness value, the better the part). This is not a viable solution though because the parts

will not seal at these conditions (3 is the maximum number acceptable for sealing) , and

partswith green tints may result (0 is desirable). Figure 61 illustrates the first prediction

profile described above.
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With the second prediction profile (figure 62) the desirability increases by 46%.

The smut and darkness gets worse while the seal and blue get better, but overall predict

more favorable results. The pH remains at the high level while the seal temperature

should be set to the mid-high level.
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RECOMMENDATIONS

There are many recommendations that can be made after having gone through the

design of experiments on the anodizing line. They are listed below and then expanded

upon.

1 . Create a process window for the process when the same parts for the experiment are

run.

2. Research and develop a method to measure the fluoride concentration in the seal tank.

3. Take a chemical analysis of the fluoride level on a regular basis.

4. Make control charts ofthe data that is collected from the fluoride analysis.

5. Purchase a rectifier for the lab.

6. Do another design ofexperiments to include the seal's fluoride level, the age/activity

ofthe seal, the anodizing temperature and disregard the free sulfuric acid

concentration and theDI rinse temperature after the seal.

7. Investigate the correlation between smut and darkness. Perhaps a test for smut has

now been discovered.

8. Buy a spectrophotometer.
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The first recommendation is to create a process window. A process window is

similar to a two factor design of experiment. Everything in the process is held stable and

under control. A process window depicts how two process parameters affect part

characteristics.31

The two recommended process parameters for the anodize line are seal

temperature and seal pH, because they are the two factors that had significant effects on

the process. For a process window, one variable is on the x-axis and the other variable is

on the y-axis. Different levels and combinations of the two factors are run and the

responses that are produced are recorded and plotted. As long as the process is under

control the process window is a powerful tool for process development, improvement, and

optimization. An example ofa process window is illustrated below (Figure 63). Note that

the data is not real. The white
"window"

is the location in the process where good parts

will be produced. The optimum settings for the processwould be in the middle of the

"window".

Advantages to a process window are as follows:

Data can be collected from production runs. Machine time does not have to be taken

up by experimentation alone.

Optimal settings can be determined for the two process parameters.

It can be determined if the process is capable ofproducing
"good"

parts within the

ranges of the process variables where the optimum is thought to be. The possibility

exists that there is no open "window", and all combinations of the two variables cause

defects.
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Thewhite area represents the area where good parts are produced.
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The next three recommendations all deal with the fluoride concentration in the seal

tank. Through research and talking to experts this is a key process parameter, and it is

important to monitor it. Not enough research has been done in the field to determine all

the effects of too high or too low a fluoride level. With a means to measure and monitor

the levels of fluoride, more knowledge will be gained of the process.

The next recommendation is to purchase a rectifier for the lab. Without it, reliable

experimentation is impossible thus forcing all experimentation to occur on the production

line and because of this, too much production time is lost. A rectifier would provide a

means to experiment more at lower cost.

Because the seal's fluoride level, the seal's age/activity, and the anodizing

temperature were not included in the DOE, another experiment may be run to include

these three factors. The time to do this experiment would be before dumping the seal

tank. This strategywould allow obtaining old seal from the dumping and new seal from

the making ofa new tank. Ofcourse this DOE would not be able to be run without

accomplishing the first three recommendations first.

There appears to be a correlation between smut and darkness. If so, the test for

darkness could be a test for smut, which would eliminated the visual test for smut. An

acceptable smut standard between the customer and the supplier could be established,

rather than relying on a visual measure. Graphs below support the hypothesis that smut

and darkness are the same. Since only ten data points are available from the experiment,

more testing should be done to prove the hypothesis.
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Smut andDarkness vs. Temp. Seal
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The seventh recommendation leads to the eighth recommendation to buy a

spectrophotometer provided the hypothesis is true. Not only is darkness data measured

using a spectrophotometer, but also blue data is measured. Once again an acceptable

standard could be established with the customer for both blue and smut. In addition,

product capability information could be supplied to the customer.
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Appendix A

Aluminum Alloy Compositions and Designations

Wrought Aluminum

The aluminum alloy system assigns a four-digit numerical designation to each

grade. The first digit ofthe four-digit number indicates the major alloying element. Table

below lists the alloy grougs. Whenever the aluminum is 99.0 % or greater then it falls into

the 1000 series group. The alloy group in the 2000 series through the 7000 series is

dependant on the alloying element with the highest mean precentage. Ifthe greatest mean

percentage is common to more than one element, then the group choice will be in order of

group sequence Cu, Mn, Si, Mg, MgjSi, Zn, or others. The following table is the alloy

designations ofthe Aluminum Association that is most commonly used in the United

States.

TableAl . Wrought Al Alloy Groups First Digit
Designation'.32

Major AlloyingElement Designation

99.0% or greater ofpure Aluminum 1XXX

Copper 2XXX

Manganese 3XXX

Silicon 4XXX

Magnesium 5XXX

Magnesium and Silicon 6XXX

Zinc 7XXX

OtherElement 8XXX

Unused Series 9XXX
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The second digit of the four-digit designation indicates impurity limits or

modifications to the original alloy. Finally, the last two digits identify the aluminum alloy

or indicate the aluminum purity. The last two digits ofthe 1XXX series indicates the

aluminum content above 99% in hundredths. For example, 1040 alloy contains 99.4%

aluminum.

Cast Aluminum

The cast aluminum alloy designations are different than the wrought aluminum

designations. They are designated by three digits a period and another digit. Sometimes a

letter prefix is used to signify alloy or impurity limits. Like wrought alloys the first digit

indicates the major alloying element. The second and third digits identify the alloy within

a group. Finally the last digit after the decimal point indicates the final form, either 0 for a

casting or 1 for an ingot. Designations are found in the table below.

Table A2. Cast Al Alloy Groups First Digit
Designation33

Major Alloying Element Designation |;

99.5% or greater ofpure Aluminum 1XX.X

Copper 2XX.X

Silicon + Copper orManganese 3XX.X

Silicon 4XX.X

Magnesium 5XX.X

Unused Series 6XX.X

Zinc 7XX.X

Tin 8XX.X

Other Element 9XX.X
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Special Treatment

When additional treatments are done on the aluminum, they must be specified by a

suffix.

Table A3. Alloy Suffix Designations
34

XXXX F As fabricated, no special controls

W Solution heat treated (used only on alloys that naturally age harden)
O Annealed (wrought alloys only)

H Strain hardened (cold worked to increase strength), wrought alloys

only

T Thermally treated to produce effects other than F, O, orH

TheH letter is followed by one, two, or three digits indicating the degree of cold working.

XXXX-H1 Strain hardened only

XXXX-H2 Strain hardened and partially annealed

XXXX-H3 Strain hardened and stabilized by low-temperature thermal

treatments

XXXX-H--2 Quarter-hard

XXXX-H--4 Half-hard

XXXX-H--6 Three quarters hard

XXXX-H--8 Full hard
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The T is followed by one, two, or three digits to indicate various thermal treatments.
35

XXXX- Tl Cooled from a hot working temperature and naturally aged

XXXX- T2 Annealed (cast products only)

XXXX- T3 Solution treated and cold worked

XXXX- T4 Solution treated and naturally aged

XXXX- T5 Cooled from a hot work temperature and furnace aged

XXXX- T6 Solution treated and furnace aged

XXXX- T7 Solution treated and stabilized

XXXX- T8 Solution treated, cold worked, and furnace aged

XXXX- T9 Solution treated, furnace aged, and cold worked

XXXX- T10 Cooled from an elevated temperature, furnace aged, and cold

worked

XXXX-T42 Solution treated from O or F temper and naturally aged

XXXX-T5 1 Stress relieved by stretching

XXXX-T5 10 Stress relieved by stretching with no further processing

XXXX-T5 1 1 Stress relieved by stretching and minor straightening

XXXX-T52 Stress relieved by compression

XXXX-T54 Stress relieved by stretching and compression

XXXX-T62 Solution treated from O or F temper and furnace aged
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Appendix B

Types ofDesigns

There are several different types ofDesigns ofExperiments. Full factorial,

fractional factorial, response surface, and screening are the most popular. Different

experiments will lead to different results. For this reason it is important to clearly define

and understand the objective ofthe experiment. It is desireable to get the maximum

informationwith the minimum amount ofexperimental runs.

Full Factorial Design

A factorial design is an experimental plan consisting ofall possible combinations of

the factors and levels. For the most part two level factor designs are the most popular.

The general form for these design types is 2k, where k is the number of factors at two

levels. Therefore, a three factor designwould consist of2x2x2
=
23
= 8 experiments.

There are many advantages of a factorial design over other experiments. First, this

design type requires relatively few runs per factor studied with the most efficient estimate

of factor effects over the experimental region of interest. The factorial design can be run

in an iterative and sequential manner. Because of this advantage, a fraction of the factorial

design can be run to look at a large number of factors superficially. Whenmore detailed

information is needed additional experiments can be added to the existing fraction of the

factorial. Another positive point is that the data collected from a factorial experiment is

simple and easy to manipulate and interpret with calculations and graphical analysis. In
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addition the designs provide an efficient means for collecting the data that is to be

analyzed. Lastly the factorial type designs can be easily blocked to eliminate the effects of

bias error.

In order to generate a factorial design a systematic ordering plan is needed to list

all of the possible factor setting combinations. However, when it comes time to run the

experiments, random order is desired. The computer is a helpful tool for outputing a

random experiment with all ofthe factor setting combinations once the variable names and

levels are inputed. Ifa computer and/or the necessary program is unavailable, then the

factorial type design must be done by hand. For the first factor, the low level and the high

level alternate for the total number ofexperiments. For the second factor, the lows and

highs are alternated in groups oftwo. For the third factor, the levels are alternated in

groups of four. The alternating group size increases by a power oftwo with each addition

ofa factor, and the last factorwill alternate its levels in group sizes equal to halfthe total

number ofexperiments. TableBl depicts the ordering patterns, where the plus is the high

level and the minus is the low level.
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TableBl . Full Factoral Design Ordering Patterns.

RUN Factor A Factor B Factor C Factor D

1 + * *
4-

2 -
4- + +

3 + - + +

4 - - + +

5 + + - *

6 - + - +

7 + - - +

8 - - - +

9 + * + -

10 -
4- + -

11 + - + -

12 - - + -

13 + + - -

14 - + - -

15 + - - -

16 - - - -

Groupings = 2
J J

, =
o3

Groupings = 2 Groupings = 2
J Groupings =

24 '
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Notice factorD, the last factor has a group size ofhalfof the total experiment size. This

tablewould be randomized when running the experiment.

A polynomial model can be estimated from the experimental data. The model

consists ofan intercept (po), the main effects and their coefficients (ExnPn), and all possible

interactions and their coefficients. For example for the 2-level, 4-factor design above the

model would be y
= P0+P1X1 + p2x2 + p3x3 + P4X4 + P5X1 x2 + Pexx x3 + P7X1 X4 + Pgx2 x3 +

P9x2 X4 + Pi0x3 X4 + P11X1 x2 x3 + Pl2Xi X2 X4 + P13X1 X3 X4 + Pl4X2 X3 X4 + P15X1 x2 X3 X4 .

The polynomial model is a Taylor series expansion which is a mathematical equation used

to approximate a complex function within a specified region. The higher order terms (P15

being the highest) generally contribute less to the predictive ability of the model.

Fractional Factorial Experiment

Like the name implies, a fractional factorial design has a fraction ofthe runs of a

full factorial design. Because there are less runs some information is lost like the effects of

interactions between factors. Fractionation may be considered to be a structured losing of

data, because it is determined ahead of time what information is being lost. A fractional

factorial design ofexperiment is created by fractionating the full factorial design in a

structured method. For a two level factorial design, it is fractionated by factors of
l/2n

(n=l,2,3,...). For example, a 2-level, 4-factor factorial design has
24

runs (16 runs).

Running eight ofthe total sixteen runs would represent halfof the full factorial [(1/2)
24
=

(1/21)( 24)
=

(2_1)( 24)
=

24"1
=
23
= 8 runs. The general notation for fractional 2-level
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designs is 2kp, where two indicates that all the factors are at two levels, the k represents

the total number of factors, and the p represents the degree of fractionation.

The greatest advantage ofusing a fractional factorial over a full factorial is the

resource savings. When time and/or costs are tight, then fractional factorial designs are

good choices provided that the information that is lost is not essential. Recall from above

the polynomial model for the 2-level, 4-factor designwas y
= P0+P1X1 + p2x2 + p3x3 +

P4X4 + p5xi x2
4- p6xl x3 + P7X1 X4 + pgx2 x3 + p9x2 X4 + Pi0X3 X4 + PnXi x2 x3 + Pi2Xi X2 X4

+ P13X1 x3 X4 + Pmx2 x3 X4 + P15X1 x2 x3 X4. With a
24"1

fractional factorial design only

eight of the parameters ofthe experiment will be determined. The higher order

interactions are the ones that will not be predicted ((PnXi x2 x3, Pi2xi x2 X4, P13X1 x3 X4,

Pi4X2 x3 X4, P15X1 x2 x3 X4, and three ofthe two way interactions). The problem may occur

in trying to determine which three of the six two-way interactions are being predicted.

because, they are confounded. With some knowledge of the process, this becomes an

easily determined problem.

There are two steps involved in generating a fractional factorial design. The first is

to determine the number of factors that would be involved in a full factorial design with

the number ofexperiments for the fractional factorial design. For example for a
24'1

fractional factorial design eight experiments are involved. A full factorial of the same size

would consist of three factors (23). Next this full design with three of the four factors

using plus ones and negative ones
is generated. Taking the example from above and

making it a fractional designwould yield the following for the first step:
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RUN FactorA Factor B Factor C

1 + WiiWIBWMUlMWU^^SWmM

2 - + |||||||||||;|lji:y:gi|||ll|||
3 + - ^^^^^^^B
4 - - l:llllllll:lllii:lllllllll;l

5 UMm^imiSM + -

6 - fUlillm^Silm -

7 + - -

8 - - -

The second step assigns appropriate plus and minus ones to the fourth factor (factor D).

This is accomplished by using a generator, which will generate the needed information.

Generator information is found in table B2. So for a
24"1

fractional factorial design the

generator is 4= 7. 123, meaning that the three factors are multiplied together resulting in

two halves of the full
24

factorial design as shown below.

FactorD = +(Fac1tor A)(Factor B)(Factor C)

RUN FactorA Factor B Factor C FactorD

1
!:l"':vi:;|^|;li!lllllll;;::;'"

+ llilllllilllllllll :||||||i|ll|||||||

2 - + ^^Biili^S -

3 lll||||||i;l;;||;K - ll^^^illlil"''-.:% -

4 - - 9iiW^Slmmmi 1111111111:111111
5 WU^K^MMXm. i'!!illf:::ltii:V:ii:l - -

6 - + - iiiiiiiiiiiiill
7 IlllilllllllWlllllllllll - - |;|||;|:l|||!|p|:I::||||l|;|j|

8 - - - -

115



Factor D = (FactorA)(Factor B)(Factor C)

RUN Factor A Factor B Factor C FactorD

1 + +
4-

-

2 . + + +

3 IlillllilliJsillllv _ + +

4 - - + -

5 i::l;!!l!!!ll;llE:iiill iglfll!!i|:i!!!iiii!i - +

6 _ + _ -

7 + - _ -

8 - - - +

What is learned from one design above should be the same that is learned from the other.

The problemwith a fractional factorial design is that confounding factor effects will exist

as mentioned earlier. When two or more factor effects are confused with one another, or

linked together due to fractionation, then they are confounded. The number ofruns an

experiment has determines the number offactor effects that can be estimated. For

example the
24

design estimates sixteen effects, whereas a
24"1

design can only estimate

eight ofthe sixteen effects. The table below is a good summary of factorial designs.
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Table B2. Fractionation Table
58

Number Number Design Fractional Design

ofFactors ofRuns Resolution Type Fractionation Generators

3 8
23

full None

4 m
23-l

1/2 3=12

4 16
24

full None

8 rv
24-l

1/2 4=123

32
25

fuU None

5 16 V
25"1

1/2 5=1234

8 m
25"2

1/4 4=12,5=13

64
26

foil None

6 32 VI
26-l

1/2 6=12345

16 rv
2"

1/4 5=123,6=234

8 m
26-3

1/8 4=12,5=13,6=23

64 vn
27"1

1/2 7=123456

7 32 rv
27'2

1/4 6=1234,7=1245

16 rv
27-3

1/8 5=123,6=234,7=134

8 m
2M

1/16 4=12,5=13,6=23,7=123

64 V
28-2

1/4 7=1234,8=1256

8 32 rv
28-3

1/8 6=123,7=124,8=2345

16 rv
2M

1/16 5=234,6=134,7=123,8=124

8 m
28-5

1/32 4=23,5=24,6=13,7=12,8=1234
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The third column ofthe fractionation table (Table B2) is the design resolution,

which is a quick indicator ofthe worst degree ofcounfounding for the fractional factorial

design. The meaning to each roman numeral is below.

Table B3. DesignResolution

;lR|||||||ii Degreeof

Confounding

^^||caio^ Confounding

m Severe Screening Main effects confounded with 2-factor

interactions

rv Moderate Estimate

effects

Main effectswith 3-factor interactions,

2-factorwith other 2-factor interactions

V Good Response

surface

Main effects with 4-factor interactions,

2-factorwith 3-factor interactions

V+ Excellent Response

surface

Main effects with 5-factor interactions or

higher

2-factorwith 4-factor interactions or higher

In general, the higher the degree of fractionation, the lower resolution number, and the

higher the degree ofconfounding. Furthermore as the degree ofconfounding increases,

the amount ofbias in the estimates of selected factor effects also increases. The

confounding variables are determined by the computer.

Screening

The screening is simply a highly fractionated, severely confounding fractional

factorial design of resolution HI. Screening experiments are useful for determining the

most important factors that affect a particular response when there are many factors (6-
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30), little knowledge is known about interactions, and resources are limited. With a

screening experiment, obtaining a model is not the objective, whereas determining the

main effects is. Knowing the significant main effects can lead to another experiment with

only the important factors.

Response SurfaceDesign

A response surface design or central composite design is a combination of two

different designs: a factorial design and a one factor at a time design. See Figure Bl .

The fac.orial portion provides information about the main effects and interactions

while the axial portion provides information of the curvature effects and some on the main

effects. When high quality prediction is required, a response surface design is useful

because it will predict quadratic terms. For example, the polynomial model,

y
= Po + P1X1 + p2x2 + p3xix2

becomes

y
= po + PlXj + p2x2 + p3xix2 +

P4X!2 4- p5x22

with a response resurface design.

Beside producing a better prediction model, another advantage to this design type

is that the factorial portion can be completed and then the axial portion can be added

later. All the advantages ofa factorial design also apply to a response surface design.
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Factorial Axial

I

Response Surface Design

Figure Bl. Composition of a Response SurfaceDesign

In summary, many types ofDesign ofExperiments exist. Depending on the

objectives of the experiment, different designs need to be selected. If resources are tight,

then a screening experiment may be appropriate, but ifa better prediction model is

desired, then a response surface design should be considered.
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Appendix C

Table C 1 . Values of t^v Used for the t-Test
37

v a = .10 a =.05 a = .025 a = .01 a = .005 v

1 3.078 6.314 12.706 31.821 63.657 1

2 1.886 2.920 4.303 6.965 9.925 2

3 1.638 2.353 3.182 4.451 5.841 3

4 1.533 2.132 2.776 3.747 4.604 4

5 1.476 2.015 2.571 3.365 4.032 5

6 1.440 1.943 2.447 3.143 3.707 6

7 1.415 1.895 2.365 2.998 3.499 7

8 1.397 1.860 2.306 2.896 3.355 8

9 1.383 1.833 2.262 2.821 3.250 9

10 1.372 1.812 2.228 2.764 3.169 10

11 1.363 1.796 2.201 2.718 3.106 11

12 1.356 1.782 2.179 2.681 3.055 12

13 1.35 1.771 2.160 2.650 3.012 13

14 1.345 1.761 2.145 2.624 2.977 14

15 1.341 1.753 2.131 2.602 2.947 15

16 1.337 1.746 2.120 2.583 2.921 16

17 1.333 1.740 2.110 2.567 2.898 17

18 1.330 1.734 2.101 2.552 2.878 18

19 1.328 1.729 2.093 2.539 2.861 19

20 1.325 1.725 2.086 2.528 2.845 20

21 1.323 1.721 2.080 2.518 2.831 21

22 1.321 1.717 2.074 2.508 2.819 22

23 1.319 1.714 2.069 2.500 2.807 23

24 1.318 1.711 2.064 2.492 2.797 24

25 1.316 1.708 2.060 2.485 2.787 25

26 1.315 1.706 2.056 2.479 2.779 26

27 1.314 1.703 2.052 2.473 2.771 27

28 1.313 1.701 2.048 2.467 2.763 28

29 1.311 1.699 2.045 2.462 2.756 29

inf. 1.282 1.645 1.960 2.326 2.576 inf.
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Appendix 15

Ordinal ftp<tpisn*<a.

SMUT13 By free sulf

~1 ! ! ! ! .

1.0 -0.5 0.0 0.5 1.0 1.5

free

Converged by Objective

hole-Model Test ]
Model

Differ.^nc*5

Full

Reduced

j RSquare ijjj

! Observations (or Sum Y.'gts)

-LoqLikelihood

1 .0966366

7.3353581

8.4319948

DY ChiSquare Prob>ChiSq
Z.}?6,'6 0.138614

0.1301

[PsramSIC! UO 1. 1 MIL tes j
.

Term Estimate Std Error Ch iSauare Preb>ChiSq
liufwftftnt
...

r
. -0.3501867 0.8150952 1 .09 0.2969

intercept -0.2565031 0.771655 j.\ i 0.7393

ffjjj* -cnlt -1.0273971 0.7534136 1 .86 0.1727

ra



Ordinal ftA*pftn*A-

[SMUT 1 5 By ph )

Whole-Model Test j
Model

Difference

Full

Reduced

-LogLikelihood

0.4026653

8.0293295

8.4319948

Di- ChiSquare Prob>ChiSq

RSquare (U)

Observations (or Sum Wats)

1

0.0478

0.805331 0.-569504

[Parameter Estimates

Term

Intercept

intercept

Ph

Estimate Std Error ChiSquare Prob>ChlSq
-0.8736300 0.7676324 1 .30 0.2551

-0.3645040 0 .71 98985

0 .6 1 905392 0 .7030748

0.26

0.78

u .t> i zt
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QrriiriAl Qespcsn**

SMUT 13 By t Seal

Converged by Obiective

[Whole-Model Test j
v

Model -LoqLikelihood DF ChiSquare Prob>ChiSq
Difference 3.6806197 1 7.361239 0.006664

Full 4.7513751

Reduced 8.4319948

RSquare (U'j 0.4365

Observations (or Sum Vqts) 9

Parameter Estimates j
Term Estimate Std Error ChiSquare Prob>ChiSq
intercept -6.3346320 105.70841 0.00 0.9522

intercept -5.3538028 105.70743 0.00 0.9596

tSeal -6.7400971 105 70743 0.00 0.9492

I2M



Ordinal Bp*p<^ca

(SMUT 15 By t D

Converged by Gradient

(Whole-Model Test ]
DF

1

0.0000

9

ChiSquare ProtChiSq
0 1 .000000

Model

Difference

Full

Reduced

RSquare (U)

Observations

-LogLikelihood

0.0000000

8.4319948

8.4319948

(or Sum Vgts)

Parameter Estimates J
Term

jnteroept

intercept

Estimate

-0.6931472

-0.2231436

0

Std Error

0.7108259

0.6747395

0.6535659

ChiSquare Prob>ChiSq
0.95 0.3295

0.1 1 0.7405

0.00 1 .0000

12S



Response: Smut ( Can+inuous^
Analyst X

[Summary of Fit ]
'

RSquare 0.956833

RSquare Adj 0.80575

Root Mean Square Error 0.418121

Mean of Response 2.3

Observations (or SumWgts) 10

G-ack of Fit )
-

Source DF Sum of Squares Mean Square F Ratio

Lack of Fit 1 0.34965035 0.349650 ?

Pure Error 1 0.00000000 0.000000 Prob>F

Total Error 2 0.34965035 ?

Max RSq

1.0000

[Parameter Estimates ]

Std Error t Ratio Prob>|t|Term Estimate

Intercept 2.4405594 0.135419 18.02 0.0031

fs 0.3793706 0.143101 2.65 0.1177

pH -0.129371 0.143101 -0.90 0.4614

tseal 0.6293706 0.143101 4.40 0.0480

t DI 0.1206294 0.143101 0.84 0.4880

fs*ts -0.379371 0.143101 -2.65 0.1177

pH*ts 0.1293706 0.143101 0.90 0.4614

ts*tDI -0.120629 0.143101 -0.84 0.4880

[Effect Test )
-

Source Nparm DF Sum of Squares F Ratio Prob>F

fs 1 1 1.2287079 7.0282 0.1177

PH 1 1 0.1428870 0.8173 0.4614

tseal 1 1 3.3816929 19.3433 0.0480

t DI 1 1 0.1242302 0.7106 0.4880

fs*ts 1 1 1.2287079 7.0282 0.1177

pH*ts 1 1 0.1428870 0.8173 0.4614

ts*tDI 1 1 0.1242302 0.7106 0.4880
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Whole-Model Test

3.5

3.0

2.5

| 2.0

(0

1.5

1.0

0.5

1.0

1

1.5

T

2.0 2.5

Smut Predicted

r

3.0

1
3.5

[Analysis ofVariance)

Source DF Sum of Squares Mean Square F Ratio

Model 7 7.7503497 1.10719 6.3331

Error 2 0.3496503 0.17483 Prob>F

C Total 9 8.1000000 0.1431

1 T

2.0 2.5

Smut Predicted

3.5
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E

2.5-

|
2.0-

(0

^j^^B

1.5-

1.0"

1 1 1 1

-1.5 -1.0 -0.5 .0 .5 1.0

fs Leverage

[Effect TestD
Sum of Squares F Ratio DF Prob>F

1.2287079 7.0282 1 0.1177

ED

1.0 1.5

(Effect Test )

Sum of Squares F Ratio DF Prob>F

0.14288696 0.8173 1 0.4614

(t seal )

3.0"

^ ^r

2.5"

|
2.0-

y<

j/^

1.5-

^

1.0 r i i 1

-1.5 -1.0 -0.5 .0 .5 1.0

t seal Leverage

[Effect Test

quares F Ratio DF Prob>FSum of S

3.3816929 19.3433 1 0.0480
[I J

*

i r

-0.5 .0 .5

t DI Leverage

[Effect Test )

Sum of Squares F Ratio DF

0.12423025 0.7106 1

Prob>F

0.4880

1 28



[fcts)

[Effect Test )

Sum of Squares

1.2287079

F Ratio DF

7.0282 1

Prob>F

0.1177

[ts*tDI )

i 1 r

-1.5 -1.0 -0.5 .0 .5

ts*tDI Leverage

[Effect Test )

Sum of Squares

0.12423025

F Ratio DF Prob>F

0.7106 1 0.4880

[pH*ts )
.

3.0

2.5-

JM

-r

|
2.0-

1.5-

1.0-

i i i 1

-1.5 -1.0 -0.5 .0 .5 1.0

pH*ts Leverage

[Effect Test

quares F Ratio DF Prob>FSum of S

0.14288696 0.8173 1 0.4614

*
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Response: Smut CCorrtiouous)
Analysis TL

[Summary of Fit )

0.982353RSquare

RSquare Adj 0.929412

Root Mean Square Error 0.258199

Mean of Response 2.222222

Observations (or SumWgts) 9

(Lack of Fit)

DF Sum of Squares Mean Square F RatioSource

Lack of Fit 1 0.13333333 0.133333 ?

Pure Error 1 0.00000000 0.000000 Prob>F

Total Error 2 0.13333333 ?

Max RSq

1.0000

(Parameter Estimates ]

Std Error t Ratio Prob>|t|Term Estimate

Intercept 2.3833333 0.088192 27.02 0.0014

fs 0.3666667 0.088192 4.16 0.0533

pH -0.116667 0.088192 -1.32 0.3169

tseal 0.6166667 0.088192 6.99 0.0198

t DI 0.1333333 0.088192 1.51 0.2697

fs*ts -0.366667 0.088192 -4.16 0.0533

pH*ts 0.1166667 0.088192 1.32 0.3169

(Effect Test )

rm DF Sum of Squares F Ratio Prob>FSource Npa

fs 1 1.1523810 17.2857 0.0533

PH 1 0.1166667 1.7500 0.3169

tseal 1 3.2595238 48.8929 0.0198

t DI 1 0.1523810 2.2857 0.2697

fs*ts 1 1.1523810 17.2857 0.0533

pHts 1 0.1166667 1.7500 0.3169
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Whole-Model Test

>

0.0

3.0

2.5

>*^

| 2.0

CO

1.5

1.0 a

0.5 | I
'

I I I 1

.5 1.0 1.5 2.0

Smut Predicted

2.5 3.0 3.5

[Analysis ofVariance )

Mean Square F RatioSource DF Sum of Squares

Model 6 7.4222222 1.23704 18.5556

Error 2 0.1333333 0.06667 Prob>F

C Total 8 7.5555556 0.0520

0.15
~

0.10-

0.05-

ai

2 -0.0C

CO

I"

-0.1C

~

-0.15

j

I

> 1.0

I l

1.5 2.0

Smut Predicted

1

2.5

1

3.0 3.5

Yb\



GT
3.0-

2.5-

1.5-

1.0 1 1 1 r

1.5 -1.0 -0.5 .0 .5

fs Leverage

(Effect Test f

1.0 1.5

w
3.0-

2.5"

|
2.0"

CO

1.5-

1.0 |

-1.5 -1.0

I 1 1

-0.5 .0 .5

pH Leverage

1

1.0 1.5

KEffect Test )|

[t seal )

3.0-

^

2.5-

|
2.0-

V)

y^

1.5-

1.0"

I I I I l

-1.5 -1.0 -0.5 .0 .5

t seal Leverage

1.0 1.5

KEffect Test )|

1.0 1 1 1 r

1.5 -1.0 -0.5 .0 .5

t DI Leverage

(Effect Test )f

[fsts]

3.0

2.5"

|
2.0-

CO

1.5"

""^^v^ "~~^~-~-~~.

5

^"^^^

1.0H
-1.5

I

-1.0

1 l I

-0.5 .0 .5

fs*ts Leverage

1

1.0 1.

(Effect Test )J

(pHts )

3.0"

2.5"

|
2.0"

CO

1.5-

1.0 i 1 1 r

1.5 -1.0 -0.5 .0 .5

pH*ts Leverage

((Effect Test
|~

1.0 1.5

1.0 1.5

132



Response: Blue Anatvsis I

(Summary of Fit )

0.992306RSquare

RSquare Adj 0.965376

Root Mean Square Error 0.62541

Mean of Response 1.342

Observations (or SumWgts) 10

Appendix E.

(Lack of Fit )

Source

Lack of Fit

Pure Error

Total Error

DF Sum of Squares

1 0.33102413

1 0.45125000

2 0.78227413

Mean Square F Ratio

0.331024 0.7336

0.451250 Prob>F

0.5491

Max RSq

0.9956

(Parameter Estimates )

Std Error t Ratio Prob>|t|Term Estimate

Intercept 1.6356643 0.202555 8.08 0.0150

fs 0.4323776 0.214044 2.02 0.1808

PH -2.102378 0.214044 -9.82 0.0102

ts 2.2898776 0.214044 10.70 0.0086

tDI -0.104878 0.214044 -0.49 0.6726

fsts 0.4051224 0.214044 1.89 0.1989

pH*ts -1.215122 0.214044 -5.68 0.0297

ts*tDI -0.372622 0.214044 -1.74 0.2238

(Effect Test )
*

Source Nparm DF Sum of Squares F Ratio Prob>F

fs 1 1 1.596054 4.0805 0.1808

pH 1 1 37.734854 96.4748 0.0102

ts 1 1 44.765740 114.4503 0.0086

tDI 1 1 0.093905 0.2401 0.6726

fs*ts 1 1 1.401179 3.5823 0.1989

pH*ts 1 1 12.605534 32.2279 0.0297

tstDI 1 1 1.185384 3.0306 0.2238
-
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Whole-Model Test

lU.U

7.5

5.0
/

3

CD

2.5
~

..-.-

""

0.0

-2.5 I I I 1

-2.5 .0 2.5

Blue Predicted

5.0 7.5 10.0

(Analysis of Variance )

Mean Square F RatioSource DF Sum of Squares

Model 7 100.88929 14.4128 36.8483

Error 2 0.78227 0.3911 Prob>F

C Total 9 101.67156 0.0267

0.75"

0.50"

0.25"

M

2 0.00
"

CO

I I 1 1

-2.5 .0
2.5 5.0 7.5 10.0

Blue Predicted

I3M



EJ

3

OD

10.0"

7.5-

5.0"

2.5-

o.o-

-1.5 -1.0

~~

i r

-0.5 .0

fs Leverage

T

.5

(Effect Test )

Sum of Squares

1.5960542

F Ratio DF Prob>F

4.0805 1 0.1808

1.0

(
10.0-

7.5-

5.0-

3

''*''*

CO

2.5-

"'""--... ^^H^HS<S^ """'"--,

"""**- ^^^^-^w """""".,,
o.o-

'""", " ^^"^tw^

1 1 1 1

-1.0 -0.5 .0 .5 1.0 1.5

pH Leverage

(Effect Test )

Sum of Squares F Ratio DF Prob>F

37.734854 96.4748 1 0.0102

l -

*

10.0"

7.5-

5.0-

3

m

2.5-

^^

-^-^

o.o-

I I I l

-1.5 -1.0 -0.5 .0

ts Leverage

.5 1.0

(Effect Test ]I

uares F Ratio DF Prob>FSum of Sq

44.765740
,

114.4503 1 0.0086

BSD
10.0"

7.5-

4)

m

5.0-

2.5-

o.o-

-2.5-1 1 1 1 r

-1.0 -0.5 .0 .5 1.0

tDI Leverage

1.5

(Effect Test )

Sum of Squares

0.09390461

F Ratio DF Prob>F

0.2401 1 0.6726
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fs*ts pH*ts

>
3

CO

10.0-

7.5-

5.0-

2.5-

o.o-

1 1 1 1

-1.0 -0.5 .0 .5 1.0 1.5

fs*ts Leverage

Effect Test

Sum of Squares F Ratio DF Prob>F

1.4011792 3.5823 1 0.1989

Effect Test

Sum of Squares F Ratio DF Prob>F

12.605534 32.2279 1 0.0297

ts*tDI

Effect Test

Sum of Squares F Ratio DF Prob>F

1.1853841 3.0306 1 0.2238
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Response: Blue
AnalystsTL

(Summary of Fit )

0.967475RSquare

RSquare Adj 0.913267

Root Mean Square Error 1.045862

Mean of Response 1.248889

Observations (or SumWgts) 9

(Lack of Fit )

DF Sum of Squares Mean Square F RatioSource

Lack of Fit 2 2.8302321 1.41512 3.1360

Pure Error 1 0.4512500 0.45125 Prob>F

Total Error 3 3.2814821 0.3708

Max RSq

0.9955

(Parameter Estimates )

Std Error t Ratio Prob>|t|Term Estimate

Intercept 1.6280357 0.356317 4.57 0.0197

fs 0.3719643 0.356317 1.04 0.3732

pH -2.041964 0.356317 -5.73 0.0105

ts 2.2294643 0.356317 6.26 0.0082

tDI -0.044464 0.356317 -0.12 0.9086

pH*ts -1.275536 0.356317 -3.58 0.0373

(Effect Test )

DF Sum of Squares F Ratio Prob>FSource Nparm

fs 1 1 1.192002 1.0898 0.3732

pH 1 1 35.922864 32.8414 0.0105

ts 1 1 42.822864 39.1496 0.0082

tDI 1 1 0.017033 0.0156 0.9086

pH*ts 1 1 14.017156 12.8148 0.0373
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Whole-Model Test

-

1U.U

7.5

/

5.0

m

a
3

CO

2.5
J^*

,.v.vwv>m;9cvA*Kh.>>.

0.0

-2.5

a

| I I 1

-2.5 .0 2.5 5.0 7.5 10.0

Blue Predicted

[Analysis ofVariance ]

Mean Square F RatioSource DF Sum of Squares

Model 5 97.60981 19.5220 17.8474

Error 3 3.28148 1.0938 Prob>F

C Total 8 100.89129 0.0193

1.0"

0.5"

ob

1 I I 1

-2.5 .0
2.5 5.0 7.5 10.0

Blue Predicted
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u
3

CO

10.0-

7.5-
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2.5-
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~i 1 r
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fs Leverage

((Effect Test j

1.0 1.5

i r

-1.5 -1.0 -0.5 .0 .5

pH Leverage

(Effect Test f
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Response: Degree of Seal

Appendix F

AnalysisX

[Summary of Fit )

0.952841RSquare

RSquare Adj 0.787786

Root Mean Square Error 2.696649

Mean of Response 5.191

Observations (or SumWgts) 10

(Lack of Fit )

DF Sum of Squares Mean Square F RatioSource

Lack of Fit 1 12.503636 12.5036 6.1286

Pure Error 1 2.040200 2.0402 Prob>F

Total Error 2 14.543836 0.2444

Max RSq

0.9934

(Parameter Estimates )

Std Error t Ratio Prob>|t|Term Estimate

Intercept 4.2454545 0.873378 4.86 0.0398

fs -1.288636 0.92292 -1.40 0.2974

PH -0.241364 0.92292 -0.26 0.8182

ts -4.246136 0.92292 -4.60 0.0441

tDI 1.6211364 0.92292 1.76 0.2211

fs*pH -1.768636 0.92292 -1.92 0.1954

fs*ts 1.0461364 0.92292 1.13 0.3746

fs*tDI 0.2738636 0.92292 0.30 0.7946

(Effect Test )

DF Sum of Squares F Ratio

*

Prob>FSource Nparm

fs 1 1 14.17692 1.9495 0.2974

pH 1 1 0.49735 0.0684 0.8182

ts 1 1 153.92498 21.1670 0.0441

tDI 1 1 22.43677 3.0854 0.221 1

fs*pH 1 1 26.70535 3.6724 0.1954

fs*ts 1 1 9.34325 1.2848 0.3746

fs*tDI 1 1 0.64031 0.0881 0.7946
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(Whole-Model Test )

IO.U

12.5-

-...._

^

m

10.0-
--....,_

(0

CO

S 7.5-

!
)

D 5.0-

2.5-

0.0"

1 I l

-5 0 5

Degree of Seal Predicted

10 15

(Analysis ofVariance )

Mean Square F RatioSource DF Sum of Squares

Model 7 293.85765 41.9797 5.7728

Error 2 14.54384 7.2719 Prob>F

C Total 9 308.40149 0.1556
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Analysis II

Response: Degree of Seal

(Summary of Fit )
-

0.990247RSquare

RSquare Adj 0.960989

Root Mean Square Error 1.184947

Mean of Response 5.667778

Observations (or Sum Wgts)
v

9

(Lack of Fit )

DF Sum of Squares Mean Square F RatioSource

Lack of Fit 1 0.7680000 0.76800 0.3764

Pure Error 1 2.0402000 2.04020 Prob>F

Total Error 2 2.8082000 0.6497

Max RSq

0.9929

(Parameter Estimates )

Std Error t Ratio Prob>|t|Term Estimate

Intercept 4.6175 0.404737 11.41 0.0076

fs -1.2425 0.404737 -3.07 0.0917

PH -0.2875 0.404737 -0.71 0.5512

ts -4.2 0.404737 -10.38 0.0092

tDI 1.575 0.404737 3.89 0.0601

fs*ts 1 0.404/37 2.47 0.1321

ts*tDI
v.

-1.7225 0.404737 -4.26 0.0510

(Effect Test )

DF Sum of Squares F Ratio Prob>FSource Nparm

fs 1 1 13.23263 9.4243 0.0917

pH 1 1 0.70848 0.5046 0.5512

ts 1 1 151.20000 107.6846 0.0092

tDI 1 1 21.26250 15.1432 0.0601

fs*ts 1 1 8.57143 6.1046 0.1321

ts*tDI 1 1 25.43148 18.1123 0.0510
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(Whole-Model Test )
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(Analysis ofVariance )

Source DF Sum of Squares Mean Square F Ratio

Model 6 285.13476 47.5225 33.8455

Error 2 2.80820 1.4041 Prob>F

C Total 8 287.94296 0.0290
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Response: Darkness

Appendix G

Analy&isl

[Summary of Fit }
1

N

0.95398RSquare

RSquare Adj 0.792911

Root Mean Square Error 0.872046

Mean of Response 20.261

Observations (or SumWgts) 10

(Lack of Fit )

DF Sum of Squares Mean Square F RatioSource

Lack of Fit 1 1.3804787 1.38048 9.8290

Pure Error 1 0.1404500 0.14045 Prob>F

Total Error 2 1.5209287 0.1966

Max RSq

0.9958

(Parameter Estimates )

Std Error t Ratio Prob>|t|Term Estimate

Intercept 19.941608 0.282434 70.61 0.0002

fs -0.273059 0.298455 -0.91 0.4568

pH 1.1130594 0.298455 3.73 0.0650

ts -0.660559 0.298455 -2.21 0.1573

tDI -0.154441 0.298455 -0.52 0.6564

fs*ts 0.1230594 0.298455 0.41 0.7201

pH*ts -0.983059 0.298455 -3.29 0.0811

tstDI -0.195559 0.298455 -0.66 0.5796

(Effect Test )

rm DF Sum of Squares F Ratio Prob>FSource Npa

fs 1 1 0.636555 0.8371 0.4568

PH 1 1 10.576889 13.9085 0.0650

ts 1 1 3.725161 4.8985 0.1573

tDI 1 1 0.203631 0.2678 0.6564

fsts 1 1 0.129286 0.1700 0.7201

pH*ts 1 1 8.250510 10.8493 0.0811

tstDI 1 1 0.326497 0.4293 0.5796
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Whole-Model Test
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[Analysis ofVariance )

Mean Square F RatioSource DF Sum of Squares

Model 7 31.528561 4.50408 5.9228

Error 2 1.520929 0.76046 Prob>F

C Total 9 33.049490 0.1520
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Analysis II

Response: Darkness

(Summary of Fit )

0.981272RSquare

RSquare Adj 0.950059

Root Mean Square Error 0.438307

Mean of Response 20.42

Observations (or SumWgts) 9

[Lack of Fit )

Source

Lack of Fit

Pure Error

Total Error

DF Sum of Squares

2 0.43588929

1 0.14045000

3 0.57633929

Mean Square

0.217945

0.140450

F Ratio

1.5518

Prob>F

0.4937

Max RSq

0.9954

(Parameter Estimates ]

Std Error t Ratio Prob>|t|Term Estimate

Intercept 20.093393 0.149328 134.56 0.0000

fs -0.285893 0.149328 -1.91 0.1514

PH 1.1258929 0.149328 7.54 0.0048

ts -0.673393 0.149328 -4.51 0.0204

tDI -0.141607 0.149328 -0.95 0.4129

pH*ts -0.995893 0.149328 -6.67 0.0069

(Effect Test )

DF Sum of Squares F Ratio Prob>FSource Nparm

fs 1 1 0.704176 3.6654 0.1514

pH 1 1 10.921161 56.8476 0.0048

ts 1 1 3.906715 20.3355 0.0204

tDI 1 1 0.172761 0.8993 0.4129

pH*ts 1 1 8.544761 44.4778 0.0069
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[Whole-Model Test )

OA

23-

22"

a

CO

to

to

o
1

,

L

S^

19- ^\m

i8~r i

18 19

1 1

20 21

I

22

I

23 24

Darkness Predicted

[Analysis ofVariance ]

Mean Square F RatioSource DF Sum of Squares

Model 5 30.197861 6.03957 31.4376

Error 3 0.576339 0.19211 Prob>F

C Total 8 30.774200 0.0086
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Response: Darkness

(Summary of Fit )

0.913343RSquare

RSquare Adj 0.870014

RootMean Square Error 0.69089

Mean of Response 20.261

Observations (or SumWgts) 10

(Lack of Fit )

DF Sum of Squares Mean Square

.

F RatioSource

Lack of Fit 1 1.4594581 1.45946 5.1956

Pure Error 5 1.4045167 0.28090 Prob>F

Total Error 6 2.8639748 0.0716

Max RSq

0.9575

(Parameter Estimates )

Std Error t Ratio Prob>|t|Term Estimate

Intercept 19.974299 0.22152 90.17 0.0000

pH 1.1498364 0.233768 4.92 0.0027

tseal -0.697336 0.233768 -2.98 0.0245

pH*ts -1.019836 0.233768 -4.36 0.0048

(Effect Test )

Source Nparm DF Sum of Squares

pH 1 1 11.548347

tseal 1 1 4.247491

pH*ts 1 1 9.084661

F Ratio

24.1937

8.8985

19.0323

Prob>F

0.0027

0.0245

0.0048

Whole-Model Test
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18
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18 19 20 21 22 23 24

Darkness Predicted

(Analysis ofVariance )

F RatioSource DF Sum of Squares Mean Square

Model 3 30.185515 10.0618 21.0795

Error 6 2.863975 0.4773 Prob>F

C Total 9 33.049490 0.0014

isr



HD
*

dA

23-

22-
"

co

0

I
21-

CB

Q

20-

-^ / ***

19-

18 1 1 1 1 1

-1.5 -1.0 -0.5 .0 .5 1.0 1.5

pH Leverage

[Effect Tesl-)
quares F Ratio DF Prob>FSum of S

11.548347 24.1937 1 0.0027

-

(t sealJ

24-

23"

22-\

<0

CO
'"-..

to

l

^^L ""'*-...

20-
'""""" ^~""^^->.

19-

18 1 1 1 1 1

-1.5 -1.0 -0.5 .0 .5 1.0 1.5

t seal Leverage

(Effect Test1
quares F Ratio DF Prob>FSum of S

4.2474905 8.8985 1 0.0245

-

(pHts )
*

24

23-

22-

a

">"""~.
<o
CO

i
21-

CD

Q

20-

19-

18-

"""""----..
a

I I I l 1

-1.5 -1.0 -0.5 .0

pH*ts Leverage

.5 1.0 1.5

(Effect Test )
quares F Ratio DF Prob>FSum of S

9.0846615 19.0323 1 0.0048

ISS



Appendix H

[Correlations )

fs PH ts tDI Smut Blue Degree of Seal DarknessVariable

fs 1.0000 -0.1011 0.1011 -0.1011 0.5064 0.2029 -0.3592 -0.2950

pH -0.1011 1.0000 -0.1011 0.1011 -0.2709 -0.6470 0.1256 0.6868

ts 0.1011 -0.1011 1.0000 -0.1011 0.7420 0.6968 -0.8108 -0.4757

tDI -0.1011 0.1011 -0.1011 1.0000 -0.0353 -0.1158 0.4100 0.0956

Smut 0.5064 -0.2709 0.7420 -0.0353 1.0000 0.5870 -0.7746 -0.6963

Blue 0.2029 -0.6470 0.6968 -0.1158 0.5870 1.0000 -0.5625 -0.5256

Degree of Seal -0.3592 0.1256 -0.8108 0.4100 -0.7746 -0.5625 1.0000 0.5304

Darkness -0.2950 0.6868 -0.4757 0.0956 -0.6963 -0.5256 0.5304 1.0000

[Pairwise Correlations )

Correlation

-0.1011
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-0.1011
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10

Variable by Variable

pH fs

ts fs

ts pH

tDI fs

tDI pH

tDI ts

Smut fs

Smut pH

Smut ts

Smut tDI

Blue fs

Blue pH

Blue ts

Blue tDI

Blue Smut

Degree of Seal fs

Degree of Seal pH

Degree of Seal ts

Degree of Seal tDI

Degree of Seal Smut

Degree of Seal Blue

Darkness fs

Darkness pH

Darkness ts

Darkness tDI

Darkness Smut

Darkness Blue

Darkness Degree of Seal

Signif Prob

0.7810

0.7810

0.7810

0.7810

0.7810

0.7810

0.1352

0.4490

0.0140

0.9228

0.5741

0.0432

0.0251

0.7502

0.0744

0.3080

0.7296

0.0044

0.2393

0.0085

0.0905

0.4080
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0.1646

0.7928
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