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Abstract
Electromechanical Actuator Bearing Fault Detection using Empirically

Extracted Features

Rahulram Sridhar

Supervising Professor: Dr. Jason R Kolodziej

Model parameter estimation when coupled with Principal Component Analysis

(PCA) and Bayesian classification techniques form a potentially effective fault de-

tection scheme for Electromechanical Actuators (EMAs). This work uses parameter

estimation algorithms based on linear system identification methods, derives a novel

feature extraction algorithm based on PCA and analyzes its performance through

simulations and experiments. A Bayesian classifer is used to create well defined EMA

health classes from the extracted features.

Research contributions on fault detection in EMAs are significant because EMA

faults and their detection are not yet well understood. Potential future applications

- such as in primary flight control actuation in aircraft - require that quality fault

detection systems be in place. Therefore, fault detection of EMAs is a vast area of on-

going research where highly capable solutions are gradually becoming available. Prior

work in parameter estimation methods for feature extraction in DC motor drives -

which includes EMAs - are amongst those available. While PCA is a popular feature

extraction solution in a number of frequency-based fault detection approaches, the

use of PCA for feature extraction from model parameters for detecting bearing faults

in EMAs has not been previously reported.

In this work, a linear difference model is applied to the EMA system data such

that fault information is distributed amongst the estimated model parameters. A di-

rect comparison of the parameter estimates from healthy and degraded systems offers

little insight into health conditions because of the weak effects of faults on the signal

data. However, the application of PCA to uncorrelate the linearly correlated model
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parameters while minimizing the loss of variance information from the data effectively

brings out fault information. The present algorithm is successfully applied to data

collected from a Moog MaxForce EMA. The results are consistent and display effec-

tive fault detection characteristics, making the developed approach a suitable starting

point for future work.
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Chapter 1

Introduction

Electromechanical actuation is used extensively in various applications and trying

to list all possibilities in this document alone is impractical. The most important

applications are in aircraft, defense and industry as these specific solutions are com-

monly advertised by companies like Moog Inc., East Aurora, NY which specialize in

offering them. For instance, the advantages of using EMAs in aircraft and launch

vehicles is adequately summarized in a technology review by S Botten et.al. [6] and

in a technical report by MA Davis of Moog Inc. [1]. In this chapter, all subsequent

information related to fault detection in EMAs pertains to its application in aircraft,

although a lot of it can be directly applied to defense and industrial applications as

well.

The concept of an all-electric aircraft emerged in the 1970s [6]. Since then, in-

creased research activity attempting to achieve this goal is noticeable based on the

breadth and depth of results from research articles published in the last decade. One

of the areas of on-going research is in flight actuation technologies. Such technologies

are typically classified into two main areas namely fly-by-wire (FBW) and power-

by-wire (PBW) [6]. FBW is a technology that replaces manual flight controls by an

electronic interface. In such systems, the control or actuation signals are provided

electrically but the power required for the actuation is typically hydraulic and requires

a central hydraulic system. By the late 90s, technological advancements in FBW were

developed to the extent that they were introduced in the primary flight control sys-

tems of in-service aircraft such as the Airbus A320 and Boeing 777 [6]. PBW is a more

recent technology that differs from FBW in that the power required for actuation is
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also electrical in nature, thus eliminating the need for a central hydraulic system.

Examples of PBW actuators as shown in [7] are reproduced in Fig. 1.1. Until the

late 90s, PBW technology was not as mature as FBW [6]. For instance, preliminary

testing of an EMA replacement for hydraulic actuation for primary flight control sur-

faces in an F-18 Systems Research Aircraft (SRA) was conducted as recently as the

year 2000 [7]. The results of the investigation showed some promise but there were

a number of serious thermal-related issues that needed attention, let alone the high

possibility of inherent defects in the EMA which were not investigated.

The last decade has seen some increase in research related to PBW actuation

primarily because of the advantages that electric actuation has to offer. Recent im-

plementation of PBW technology for secondary tasks such as spoiler and trim tabs

actuation is observed [1, 6, 7, 8]. However, the use of PBW actuation for primary

flight control surfaces is yet to be effectively implemented. For instance, even the rel-

atively new Airbus A380 unveiled in 2005 incorporates electrohydraulic actuation - an

FBW technology - for its primary flight control surfaces and uses Electrohydrostatic

Actuators (EHAs) - a PBW technology - only as a �back-up�. Detailed informa-

tion about the actuation systems of the A380 is provided in [8]. More information

about Electrohydrostatic Actuators (EHAs) is provided in [6, 1, 7]. EMAs are not

yet associated with primary actuation surfaces in aircraft mainly because they are

not sufficiently well understood - especially fault characteristics and their detection.

Consequently, they are currently the subject of a vast amount of research - this work

being one of them.

1.1 Electric Actuation in Aircraft: A Brief Comparative Study

between EHAs and EMAs

According to S Botten et.al. [6], some of the advantages that electric actuation

provide over current flight actuation systems are as follows:

1. Improved aircraft maintainability since fewer hydraulic components are required.
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Figure 1.1: Examples of Power-By-Wire actuators - Left: Electrohydrostatic Actuator;
Right: Electromechanical Actuator

2. More flexibility with respect to system reconfiguration.

3. Reduced system weight due to the reduction in the number of bulky hydraulic

components.

All of the above, in turn, reduce the aircraft operating costs. EMAs offer many

benefits that EHAs do not, such as improved reliability, and reduced complexity,

weight and maintenance requirements. Furthermore, hydraulic technology related

issues - windage losses, pump efficiency issues, hydraulic fluid leakages - are elim-

inated. Despite all these benefits, the EHA is still the currently preferred PBW

actuation technology for aircraft flight controls because of the following reasons [8]:

1. The jamming probability of an EMA used in primary flight control is difficult

to predict based on current experience and any knowledge from secondary flight

control applications cannot be directly used for primary flight control due to

very different operating cycles.

2. Wearing of mechanical components are not yet well understood and the gener-

ation of unacceptable limit cycles cannot be prevented.

Both the above points highlight a general lack of knowledge. In line with re-

quirements, this work attempts to contribute to the growth in knowledge of EMAs -

specifically of the detection of certain fault types.
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1.2 The Electromechanical Actuator

This work utilizes a Moog MaxForce Electromechanical Actuator. The system is

shown schematically in Figs. 1.2 and 1.3. The actuation power is provided by a

Figure 1.2: Moog MaxForce Electromechanical Actuator Block Diagram [1]

DC three-phase brushless permanent magnet synchronous motor (PMSM). There is

an outer position feedback loop and an inner velocity feedback loop. The inner loop

is used to provide higher performance servoactuation by providing a convenient way

of establishing a stable position loop having a high static gain for precise actuator

positioning. It also reduces the effects of motor cogging [1]. Information regarding

the operational characteristics of the EMA is provided in Chapter 5.

The cross-sectional view of the actuator is shown in Fig. 1.4. The screw is rigidly

coupled to the rotor and the nut is coupled to the screw by steel balls that circulate

along the single race of the screw. The rotational motion of the screw is converted

to translational motion by constraining the ball-nut’s motion along the screw. The

translation of the nut produces the linear motion of the piston rod. The angular

contact bearing connects the motor’s shaft to the ball-screw.

When these bearings develop defects, the actuation performance is compromised

and when EMAs are used on aircraft, they are considered safety-critical components
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Figure 1.3: Moog MaxForce Electromechanical Actuator simulation model [1]

Figure 1.4: Cross-section AA of the Moog MaxForce EMA (Courtesy of Moog Inc., East
Aurora, NY)
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making it imperative that faults be detected in their early stages of development.

The next two sections highlight the need for fault detection in EMAs and the work

that has already been done in this regard.

1.3 The Need for Fault Detection in EMAs

As mentioned earlier and according to a 2009 paper by P Bansal et.al. [9], EMAs

are relatively new to the aerospace industry and have not yet been used for a long

enough time or in large enough quantities to be able to understand their operating

characteristics and flaws specific to this application. In most of the current commeri-

cial and military applications, EMAs are restricted for use in secondary tasks such

as trim tabs actuation and spoiler or speed brake deployment [9]. The most recent

research developments allow a marginal increase in the application areas of EMAs.

For example, usage in state-of-the-art commericial aircraft such as the Airbus A380

and Boeing 787 increased and EMAs are now used to operate landing gear brakes

in addition to spoilers and trim tabs [9]. However, the benefits that EMAs offer are

not yet fully exploited, primarily because they are susceptible to a number of faults,

the identification and mitigation of which isn’t understood well enough for flight cer-

tification on primary surfaces. Currently available solutions are still too complex to

be incorporated without adding costs and increasing the weight of the system. With

respect to EMAs, mechanical and structural faults caused by excessive loads, lubrica-

tion issues or manufacturing defects are the main causes for concern [9]. Other fault

types include motor faults, electrical and electronic faults and sensor faults. More

information on these types of faults and critical failure modes of EMAs can be found

in [9, 10, 11]. In this work, the focus is on mechanical faults and lubrication issues

only.

The type of mechanical defect considered in this work is a spall in the inner-race

of the roller bearing that is in contact with the output shaft of the PMSM. Addition-

ally, the lubrication in the bearing is decreased by 25 percent of the nominal value.

The spall in the inner-race is generated using Electric Discharge Machining (EDM).
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According to the study of mechanical fault modes in EMAs by P Bansal et.al. [9],

a spalled bearing results in severe vibrations and separation of metal flakes. This

type of fault has - on a scale from one to ten with ten being the highest - a relative

probability of occurence of five and a relative criticality of three with respect to the

use of EMAs in secondary aircraft systems. These values increase when considering

the EMAs for primary flight surface actuation. Detecting spalled bearings are con-

sequently an important problem to solve. Also, according to the same paper, using

a grey-box model - one that is developed both empirically and by utilising physical

knowledge about the system - is the recommended approach for feature extraction

in this case. Furthermore, a lack of lubrication in the bearing causes seizure and

this type of defect has a relative criticality of four although the relative probability of

occurence is around two on the same scales as before. In this work, Moog seeded both

faults simultaneously and therefore addressing fault detection in EMAs with multiple

and simultaneously occuring fault types is vital.

After a thorough review of prior work (most of which are published within the last

decade - see Section 1.4), it is found that solutions exist for each of the fault types

treated in this work. However, it is pointed out that detecting the presence of both

fault types simultaneously using parameter estimation and the feature extraction ap-

proaches devised here is not reported.

It is thus concluded that the research problem addressed in this work is relevant

in relation to the state-of-the-art in fault detection of EMAs. It follows directly from

the last statement that the need for fault detection in EMAs is evident primarily

because of the various other fault types that can occur in EMAs (see [9, 10, 11]) that

are not addressed in this work.

1.4 Summary of Prior Work

There are a vast number of research publications regarding fault detection of tech-

nical processes. Those pertaining to EMAs in particular are however significantly

fewer in number and have only appeared within the last five years. A 1997 review
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paper by Isermann and Balle [12] present model-based fault detection approaches in

technical processes in general. The paper provides some useful definitions regarding

standard terminology used in this field. One of particular importance to this work

are the definitions of fault detection and isolation. While detection merely refers to

acknowledging the presence of a fault in a system, isolation includes determining the

kind and location of the fault in the system. As specified in the title, this thesis deals

with detection alone. For instance, the Moog MaxForce EMA from which data is col-

lected consists of two kinds of bearing faults present simultaneously. The developed

algorithms only detect the presence of the faults and is unable to tell which particular

fault amongst the two has been detected. Some of the model-based methods identified

include (i) use of state and output observers which include generation of residuals for

state variables or output variables with fixed parametric models, (ii) parity equations

which include fixed parametric or nonparametric models and (iii) identification and

parameter estimation which utilize adaptive nonparametric or parametric models.

Another commonly used approach is a signal-model-based approach based on a

spectral analysis of particular signals to extract features that are compared to nomi-

nal feature values in order to detect faults. The paper [12] states that, as of 1995 for

detecting actuator faults (which includes various types of actuators and not EMAs

alone), parameter estimation accounts for about ten percent of the techniques used.

An updated review paper by Isermann on model-based fault detection published

in 2005 [13] makes an important statement regarding the requirements of a good fault

detection scheme. These requirements include (i) early detection of small faults with

abrupt time behavior and (ii) ability to detect faults in closed loops. Both points are

important considerations for this thesis because the Moog EMA operates in closed

loop and the inner-race bearing fault present in the EMA is a low magnitude fault,

thus making its detection a challenging task. Also, a much sought after application

of EMAs is in aircraft where early detection of such faults is necessary. The pa-

per [13] presents the same model-based approaches discussed in the 1997 paper [12]

but additionally presents an example related to fault diagnosis of a cabin pressure
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outflow valve actuator of a passenger aircraft. In that example [13], a combined

parameter-estimation and parity equation approach is presented where the estimated

parameters are used to develop parity equations which are essentially residual equa-

tions used to indicate faulty systems. The approach offers good fault coverage as it

attempts to combine the benefits of two different fault detection techniques. How-

ever, the drawback lies in the requirement of a number of signals that are not always

readily available.

Obtaining a large number of signals from a system requires the use of additional

sensors. This is not always practical and is definitely more expensive. Therefore, it

is advantageous to make use of signal information that is readily available from the

system without having to use additional sensors. An example is the motor current

signal of an EMA which can be readily obtained from sensors already present in the

system (usually for electrical protection [14]). This is unlike vibration signals which

require the additional use of an accelerometer. There are a number of fault detection

approaches that make use of current signals to detect faults. In the case of bearing

faults in electrical motor drives, current signals are used because it is stated in [14]

that bearing fault frequencies in system vibrations can be reflected in stator current.

The relationship between the vibration frequencies and current frequencies for bearing

faults is described by Eq. (1.1).

fc = | fe ±mfv | (1.1)

where fc is the bearing fault frequency reflected in the stator current, fe is the supply

frequency or fundamental current frequency, fv is one of the characteristic vibration

frequencies and m = 1, 2, 3, . . . account for harmonic contributions.

Zhou et.al. [14] also explain that bearing faults account for over 40 percent of all

induction machine faults making them an important class of faults to study. Bearing

faults can be classifed into single-point defects and generalized roughness type faults.

Both these faults are addressed in this thesis with the single-point defect present in

the inner-race of the EMA angular contact bearings (see Fig. 1.4) and the generalized
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roughness type defect occuring due to a reduction in the amount of bearing lubrica-

tion. Zhou et.al. [14] go on to suggest that single-point defects are commonly detected

using frequency-based approaches that identify characteristic fault frequencies in the

stator current while such an approach is not possible for detecting generalized rough-

ness type faults because such faults cause broad changes in the frequency spectrum

of the stator current.

Some of the techniques presented in [14] that deal with single-point defects include

a neural-network clustering approach which samples the stator current, computes the

spectrum using a Fast Fourier Transform (FFT) and selects frequency components to

be used in a neural network for clustering. Once clusters are formed from a healthy

system, the formation of additional clusters when monitoring a system of unknown

health indicates the occurrence of a fault. The main drawback of this approach

is that rules based on knowledge of the spectral distribution of the stator current

need to be made and this is not easily accomplished. Other approaches dealing with

single-point bearing defects presented in [14] include an Adaptive Statistical Time

Frequency Method, Wavelet Packet Decomposition Method and an Extended Park’s

Vector Approach. All the methods presented are frequency-based and do not involve

the use of a model or parameter estimation of any kind as is done in this thesis.

In their 2007 paper [14], Zhou et.al. also mention the dearth in the amount of lit-

erature available that deals with generalized roughness faults and also stress the need

for further research in this area. One technique called the mean spectrum deviation

method proposed in 2004 is discussed. It is also a frequency-based approach that

uses a filtering mechanism and an averaging process to detect generalized roughness

faults. While successful fault detection is claimed, the authors of [14] point out two

main drawbacks with the approach that refer to the need for extensive knowledge of

the current spectrum distribution as well as near-perfect signal filtering to avoid loss

in fault information, thus making the solution a cumbersome one. Unlike the popular

approaches presented in [14], this thesis attempts to utilize a model-based parametric

estimation approach coupled with pattern recognition techniques to detect both types
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of faults without increasing the complexity of the approach.

Based on the content of the three review papers, the discussed approaches are

generally capable of detecting specific fault types accurately and are either unable to

address issues regarding alternative types of faults or require significant modifications

making them impractical and expensive. Therefore, the problems that still require

attention are:

1. Ability of a single approach to detect both single-point defects and generalized

roughness defects.

2. Ability of the proposed fault detection technique to utilize inherent signals with-

out using additional sensors.

3. Ability to detect low magitude faults occuring in systems operating in a closed

loop.

4. Addressing all the above issues simultaneously without compromising on com-

putational efficiency and cost.

Keeping these points in mind, an extensive review of literature is carried out to

identify which approaches have already been attempted along with their positive and

negative attributes. This allows the research problem to be effectively constructed.

S.M. Mahdi Alavi et.al. [15] present a fault detection and isolation technique for

an SISO closed loop control system exhibiting actuator and sensor faults. In the

proposed approach, a frequency-based method is employed that is based on system

frequency response shaping. The user is presented with a graphical environment to

design a fault detection filter by manually shaping the frequency response of the sys-

tem. The developed filter is then used to generate a residual signal that is sensitive

to actuator and sensor faults. The authors test the efficiency of the approach on a

single machine infinite bus power system and a satisfactory level of performance is

reported, although no classification scheme is employed. The fault detection results

are not intuitive and there is no discussion on fault isolation.

A 1995 paper by C. Aubrun et.al. [16] discusses an important problem related to



12

fault detection in a control loop. A model-based fault detection approach is applied to

a control loop containing a non-linear pneumatic actuator to detect mainly actuator

drift and sensor faults such as bias. Model parameters are calculated using a fuzzy

C-means algorithm which the authors claim is able to occasionally detect deviations

of the order of one percent of the nominal value. One of the limitations identified by

the authors is related to determination of initial conditions of the models used. Also,

the approach is application specific and the techniques employed cannot be directly

applied on an alternative system such as an EMA.

The need for fault detection methods that do not require additional sensors was

previously stressed upon. An important contribution in this regard comes from a

2011 paper by G Sreedhar Babu et.al. [17] that deals with condition monitoring of

brushless DC motor-based electromechanical linear actuators using motor current sig-

nature analysis. The information in this paper [17] is important to this thesis because

of the similarity in the area of application as well as in the nature of the EMA signals

used. Unlike the work in this thesis however, the work in [17] detects faults such

as gear tooth breakage and errors in gear mounting, the effects of which are gener-

ally more prominent compared to bearing defects that are dealt with in this thesis.

Furthermore, the proposed fault detection approach in [17] is frequency-based that

involves computing a fast fourier transform (FFT) of the motor current signal and

then determining the energy spectrum density which gives the modulus of the ampli-

tude of the signal at different frequencies. The amplitude differences in vibration and

current spectrums are compared amongst each other for systems of different health

conditions. No classification scheme is proposed in [17] and the paper appears to

focus on the application to different types of gear related faults as well as study the

effect of load on fault detection. The paper concludes by stating the successful use of

current signals to detect faults based on a simple frequency analysis. This confirms

that motor current carries information about faults in the system and the information

is generally picked up with relatively the same ease when compared to using vibration

signals. This is an important result in the context of this thesis because vibration
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signals are not used.

A large number of other publications highlight the benefits and potential of using

current signals for fault detection in electric motor drives. Fabio Immovilli et.al. [18]

in 2009 discussed the use of current signals to detect generalized-roughness bearing

faults in a DC motor drive by a frequency-based method that analyzes the kurtogram

to identify the frequency bandwidth where the effect of the fault is strongest. Chirico

et.al. [19] recently demonstrated a frequency-based approach that utilizes order anal-

ysis of motor current signals to extract features containing information about faults

through pattern recognition techniques. The approach is tested on the same EMA

used in the present thesis and shows generally favorable results when current sig-

nals are used and significantly improved results with vibration signals, a trend that

is observed amongst the large number of other frequency-based approaches avail-

able [20, 21, 22, 23, 24, 25, 26].

There are papers published within the last five years that deal with the specific

problem of fault detection for EMAs in aerospace systems [9, 10, 21]. One such pa-

per [9] published in 2009 analyzes some critical failure modes documented for EMAs

and also describes fault detection methods applied to a subset of them. Some of the

important points taken from this study are that spalled bearings - one of the defect

types investigated later in this thesis - have a moderate to high probability of occur-

ing and are generally more critical when compared to an extensive list of other fault

types that broadly include electrical and electronic faults, sensor faults, motor faults

and other mechanical faults. Also of relevance to the present thesis is the fact that

experiments in [9] are conducted using a Moog MaxForce actuator almost identical to

that used in this thesis. The fault detection approach employed however is based on

Artifical Neural Networks which is also employed in other fault detection applications

as indicated in [27, 28, 29], allowing for the investigation of model-based parameter

estimation methods.

Engineers at NASA and Impact Technologies published in 2009 an important pa-

per [2] dealing with data collection and modeling for nominal and fault conditions
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on EMAs. The paper primarily investigates techniques for modeling different fault

types into a Simulink model of an EMA as well as developing models to accurately

describe mechanical and thermal behavior of actuators. However, what is of most

importance to the research in this thesis is a section on the development of a flyable

data collection test stand. The flyable test stand, which was under development at

the NASA Ames Research Center at the time this paper [2] was written (a working

prototype and successful testing is reported in a later paper by the same authors [30]),

allows aircraft to fly a scaled-down EMA test stand (shown in Fig. 1.5 reproduced

from [2]) holding two actuators - one nominal and one injected with a fault. This is

Figure 1.5: Portable EMA test stand [2]

useful to obtain realistic load information, one of the signals required as an input in

the model-based approach proposed in this thesis. Also, the work described in this

thesis conducts an offline analysis of an EMA’s health condition. So, once an EMA

is mounted on an aircraft, offloading it for fault testing would be undesirable. The

flyable test stand offers at least two solutions: (i) either the test stand could be used

to run tests on the EMA while it is on an aircraft that is stationary on the ground, or

(ii) the proposed algorithm could be modified slightly to function in real-time in which

case the test stand would be used in a manner as described in [2]. This development

allows easy implementation of the fault detection approach proposed in this thesis.
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Prior to 2009, the lack of a flyable test stand would have been a major drawback

in implementing the fault detection approach proposed in this thesis. Other recent

publications related to research on flyable test stands include [31, 32], the latter of

the two being the most recent and providing results from preliminary investigations

into a second-generation test stand.

Since the research in this thesis deals with model-based approaches to fault detec-

tion in EMAs, it is pointed out that a number of model-based approaches exist that

are applied to electric drives in general and with a small subset applied to EMAs in

particular. Amongst the most notable is a 2002 paper by Dixon and Pike [33] that

presents a parameter estimation-based approach to EMA condition monitoring. In

this paper [33], a linear model of the system is assumed following which parameters

are estimated using a simplified refined Instrumental Variables (IV) method as it is

found to be more robust when compared to a least-squares or a standard IV approach

in the presence of noise of an unknown nature. Therefore, the approach adopted by

this method about ten years ago is, so far, almost identical to the approach used in

this thesis. However, the differences lie in the following: (i) the approach in [33] uses

a discrete-time transfer function model of the system that utilizes a single input. The

research in this thesis utilizes a discrete-time state space model to accommodate the

use of two inputs as the non-zero external load acting on the EMA cannot be neglected

to achieve accurate estimates of the model parameters; (ii) once the parameters are

estimated, the authors of this paper [33] transform the discrete model to continuous

time and map the model parameters to the physical parameters of the system. To do

this, two open-loop transfer function approximations of the single closed loop present

in the EMA is used. Additionally, errors are bound to exist due to approximations

while mapping the model parameters to physical parameters. In this thesis, the EMA

system itself is significantly more complicated as it consists of two loops (an outer

position feedback loop and an inner, nested velocity feedback loop). Therefore, the

selection of model structure and estimation technique needs to take into account the
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presence of both these loops making back calculating physical parameters imprac-

tical. Furthermore, due to the presence of two controllers, any fault signatures in

motor current are likely heavily compensated. Consequently, an appropriate feature

extraction technique is required to extract maximum fault information and a direct

analysis of model parameters is not possible, as is done in [33], and lastly (iii) the

authors present a fuzzy-logic based fault classification scheme which is different from

the Bayesian classification approach pursued in this thesis. Since this [33] is one of

the first publications employing parameter estimation for fault detection (coulomb

friction faults in particular) in EMAs, it indicates that this area of research is still in

its infancy and further research is warranted before effective solutions are developed

and validated. The following additional concluding points offered by the authors is

worth mentioning: (i) that the results obtained in this paper [33] indicate significant

potential in using parameter estimation approaches for fault detection in EMAs and

(ii) that the use of discrete-time models over continuous-time ones (as is done in this

thesis) is more robust in terms of numerical stability and convergence.

Although advancements in model-based (and amongst them, parameter estima-

tion approaches) since 2002 are reported (refer to [10, 11, 12, 13, 28, 34, 35]), not

all of them apply to complex systems such as the EMA dealt with in this thesis.

In the few instances that do [10, 35], the approach is too simple with unaddressed

issues [10] or accurate but not cost effective enough to be put into operation [35]. As

indicated earlier, confidence in the use of EMAs for safety critical applications such as

primary flight control on aircraft is yet to be achieved. The present work develops a

novel fault detection approach that makes use of techniques similar to certain estab-

lished ones such as the instrumental variables based parameter estimation scheme first

published in [33], principal component analysis or an equivalent pattern recognition

approach (similar to those found in [19, 36]) for feature extraction (sometimes used

with frequency-based fault detection approaches for dimension reduction [19]) and a

Bayesian classifier to generate definite health classes based on the features extracted.

The sequence of approaches used and their method of integration is not previously
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reported in any of the literature reviewed in this summary. Therefore, based on the

review of previous works, the scope for improvement in fault detection in EMAs and

the goals sought by Moog Inc. - the research sponsors and providers of the EMA

signal data - a formal research problem is constructed.

1.5 The Research Problem: A Formal Definition

Devise a fault detection algorithm for detecting a spalled inner-race bearing defect

and a reduction in lubrication in a Moog MaxForce Electromechanical Actuator by

utilizing an empirical model-based parameter estimation approach along with an effec-

tive feature extraction scheme to extract features that contain sufficient information

about the faults despite the closed-loop operation of the EMA, and which are subse-

quently used to effectively classify the EMA as defective or healthy by implementing

a classification algorithm.
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Chapter 2

Theory

The general fault detection architecture is shown in Fig. 2.1. After obtaining mea-

Figure 2.1: General fault detection architecture

surements from the system, feature extraction is performed. As indicated in Chapter

1, there are a number of feature extraction techniques available. Two commonly uti-

lized approaches are frequency-based and model-based. In this work, a model-based

approach is used.

Amongst model-based approaches, there are a number of solutions available as

presented in Chapter 1. This work utilises two different solution approaches. The

first is based directly on system identification techniques and is previously reported

in literature for detecting faults in DC motor systems although reports of its use in

EMAs in particular is not reported. In this approach, system identification is used to

derive a model of the system from available measurements. It is expected that healthy

and degraded systems produce different models. Model characteristics are directly

utilized as features which are then compared to make a judgement about the health

of the system. The approach is one of the simplest model-based approaches available

but is later found to be quite inaccurate when applied to complex systems such as

EMAs. This is possibly why there are no published results available. Consequently,

an alternative approach that couples a similar system identification-like approach
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with pattern recognition techniques is investigated. The latter approach is presented

later on in the chapter and such an approach is not previously reported to detect

inner-race bearing faults and reduced lubrication faults in DC motor electric drives

- let alone EMAs in particular. However, since the former approach is also partially

used in the latter one, its theory and application to simpler systems is presented. As

a start, the Section 2.1 reviews the basic concepts of system identification.

2.1 System Identification

System identification is an approach to modeling that utilizes input and output

data recorded from a system to infer a model [3]. For example, consider developing a

mathematical model of a DC motor without using any knowledge about the physics

of the system. To do this, first assume that a monitored voltage is supplied to the

armature and the motor’s shaft speed is recorded. The output speed versus time plot

shown in Fig. 2.2 shows that the motor displays characteristics of a first-order system.

Selecting a suitable model structure is the first step in the system identification

technique [37]. In this example, a first-order discrete-time model structure is chosen

which is mathematically represented as shown in Eq. (2.1) with t being a positive

integer.

y(t) + ay(t− 1) = bu(t− 1) (2.1)

Equation (2.1) is simply a first order difference equation. The equation is represented

in discrete-time because data sets are usually obtained by sampling a continuous-time

signal and characteristics such as sampling interval are important choices to make in

order to achieve the most effective and economical solution [3]. For instance, very

fast sampling can lead to numerical problems while slow sampling times may not pick

up potentially important high frequency information and even worse, result in signal

aliasing if an appropriate anti-aliasing filter is not utilized. In Eq. (2.1), the sampling

interval is assumed to be one second for convenience in notation. Advice on how to

choose the right sampling time is available in [3]. In general, for the purpose of fault

detection, the sampling time should ideally be small enough to capture information
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Figure 2.2: Sample response of a DC motor to step changes in input

about the defect.

Having identified the model structure, the next step is estimating the parameters

(in this case a and b). There are a number of parameter estimation techniques avail-

able. Here, a simple linear least squares estimation (LSE) approach is used. This

method is discussed in detail in the following sections. However, to put simply, LSE

uses the available data set to determine the values of a and b such that the expression

bu(t− 1)− ay(t− 1) is as close to y(t) as possible. In other words, some norm of the

difference between y(t) and (bu(t− 1)− ay(t− 1)) is minimized.

Model validation involves assessing how the model relates to the observed data,

any prior knowledge of the system and how it performs the tasks required. Deficient

models are rejected and a new model structure is selected. More on model validation

is discussed in subsequent sections. A convenient way of describing the steps involved

in system identification is by means of a block diagram. Ljung [3] provides a useful

representation which is reproduced in Fig. 2.3.
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Figure 2.3: System identification block diagram [3]
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2.1.1 Linear Time-Invariant Models

Figure 2.3 shows that after collecting data from a system, the first step in the

system identification procedure is to determine a class of models (or model set) from

which the most suitable model for the intended purpose is selected. This section

discusses a class meant for linear time-invariant systems.

Linear time-invariant systems form the most important class of dynamical systems

both in theory and practice despite the fact that they often represent idealizations of

real-life processes [3]. A system is time-invariant if its response to a particular input

signal does not vary with time. It is linear if the output to some linear combination

of inputs is the same as a linear combination of its outputs to each individual input.

Such a system is completely characterized by its impulse response when its output at

a particular instant of time depends only on the inputs up to that instant. They are

mathematically represented as shown in Eq. (2.2) or by parameterizing the coefficients

into rational functions as subsequently discussed.

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (2.2)

e(t) is white noise having a probability density function (pdf) fe(x, θ) that depends

on θ - the parameter vector (see Eq. (2.4)). It is common to assume the pdf as

Gaussian [3].

Equation Error Model

One form of black-box model - a parameterized model derived empirically without

using physical insight - has an equation error form and is a simple input-output re-

lationship obtained by describing a linear difference equation. This model form, also

known as an Auto-Regressive with Exogeneous Input (ARX) model (although it is

noted here that other models such as the Auto-Regressive Moving-Average with Ex-

ogeneous Input (ARMAX) model presented later also fall under the class of equation
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error models), was shown earlier in Eq. (2.1) and is shown here more generally.

y(t) + a1y(t− 1) + · · ·+ anay(t− na)

= b1u(t− 1) + · · ·+ bnb
u(t− nb) + e(t)

(2.3)

The parameters in this case are

θ = [ a1 a2 . . . ana b1 b2 . . . bnb
]T (2.4)

where (na + 1) and nb are the number of output and input terms respectively in

Eq. (2.3) and are often referred to as output and input delays respectively [3]. If

A(q) = 1 + a1q
−1 + · · ·+ anaq

−na

and

B(q) = b1q
−1 + · · ·+ bnb

q−nb

where q−1 denotes the backward shift operator and is used for notational convenience

where q−1u(t) = u(t− 1) and so on, then Eq. (2.3) is written in the form of Eq. (2.2)

with

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

1

A(q)
(2.5)

The ARX model is conveniently represented in block diagram form as shown in

Fig. 2.4. A(q)y(t) forms the autoregressive part and B(q)u(t) represents the exo-

geneous inputs.

The main advantages of using an ARX model are that it’s simple and the predic-

tor form defines a linear regression allowing for prediction of model parameters using

simple estimation techniques such as the least squares estimation (LSE) method. The

drawback with this model is that it generally does not represent the physics of the

system well. This is because the noise is fed through the denominator dynamics of

the system before being added to the process output (see Fig. 2.4) while in most real

systems, noise affects the system at the output (see Fig. 2.7) [3, 37, 4]. This also

means that if noise enters the system primarily at the input, then the ARX model
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Figure 2.4: ARX model block diagram

structure will perform well.

ARMAX Model

Another disadvantage with using the ARX model is that there isn’t any freedom

in describing the disturbance term. The ARMAX model attempts to rectify this by

allowing some flexibility by describing the equation error as a moving average of white

noise [3]. This indirectly allows better prediction of the physics of the system. The

model is described mathematically as shown in Eq. (2.6).

y(t) + a1y(t− 1) + · · ·+ anay(t− na) = b1u(t− 1) + . . .

+ bnb
u(t− nb) + e(t) + c1e(t− 1) + · · ·+ cnce(t− nc)

(2.6)

In comparison to the ARX model (Eq. (2.3)), there are added terms to the right

of the disturbance e(t). In the absence of these terms, the minimization of e(t) in the

ARX model means that only A(q) and B(q) are permitted to change. This means

that the characteristics of the white noise disturbance is minimized and these two

parameters are absorbing these characteristics. That is why the physics of the system

is often not well approximated due to corruption by the white noise characteristics.
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In the case of ARMAX however, the disturbance at each previous time interval is

also a part of the terms being minimized. Each such term e(t− nc) has a coefficient

cnc that can change. Consequently, additional characteristics of the error signal are

absorbed into these terms. However, this still doesn’t solve the issue that the noise

is fed through the denominator dynamics. The only improvement is that more in-

formation about the noise is used to develop the noise model and this may or may

not offer improved results. Again, in the unlikely scenario that the noise enters the

actual system at the input, the ARMAX model structure is more likely to develop

a more accurate noise model H(q) compared to the ARX model, indirectly causing

an improvement in the system model G(q). The moving average part of the model is

presented by the term C(q)e(t) with C(q) being

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc

Eq. (2.6) is then rewritten as

A(q)y(t) = B(q)u(t) + C(q)e(t) (2.7)

This corresponds to Eq. (2.2) with

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

C(q)

A(q)
(2.8)

and where

θ = [ a1 a2 . . . ana b1 b2 . . . bnb
c1 c2 . . . cnc ]

T (2.9)

The ARMAX model is represented in block diagram form as shown in Fig. 2.5. It

is perhaps the second most popular model after the ARX [4]. Like the ARX, it

belongs to the class of equation error models because the noise filter contains the

denominator dynamics of the model but provides added flexibility over the ARX in

dealing with the disturbance terms. Although this makes the model nonlinear in its

parameters, sufficiently efficient multi-stage least squares algorithms exist that help

in estimating the parameters. Other nonlinear optimization and recursive algorithms
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Figure 2.5: ARMAX model block diagram

also exist [3, 37, 4].

Output Error Model

The primary concern with the equation error model form is that both the transfer

functions G(q, θ) and H(q, θ) have A(q) as the common denominator. From a physical

aspect, this is not desirable as it tends to model the disturbance as part of the

physical system with ARMAX only offering some flexibility in forming H(q, θ). The

output error (OE) model attempts to rectify this by parameterizing the transfer

functions independently. The output error is best described mathematically as shown

in Eq. (2.10) [3].

w(t) + f1w(t− 1) + · · ·+ fnf
w(t− nf )

= b1u(t− 1) + · · ·+ bnb
u(t− nb)

y(t) = w(t) + e(t)

(2.10)

with

F (q) = 1 + f1q
−1 + · · ·+ fnf

q−nf
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The model is then written as

y(t) =
B(q)

F (q)
u(t) + e(t) (2.11)

and is represented in block diagram form as shown in Fig. 2.6. The parameter vector

Figure 2.6: OE model block diagram

is determined as

θ = [ b1 b2 . . . bnb
f1 f2 . . . fnf

]T (2.12)

w(t) is derived from u using Eq. (2.10).

2.1.2 Parameter Estimation Methods

A parameter estimation method is a way of estimating values for model parameters

(such as a, b, c and f from the previous section) using available experimental data.

It is desired that the best possible method be chosen so that the model of the system

is “good”.

A “good” dynamic model is one that satisfactorily predicts the dynamics of the

actual system. A “good” prediction occurs when the difference between the model’s

predicted output for a given input is as close as possible, if not exactly the same, as

the observed output. That is the same as desiring a “small” prediction error. “Small”

is perceived in many ways and various ways of acheiving a “small” prediction error

are described. One way is to define a scalar-valued norm that measures the size of

the prediction error. For example, if a least-squares approach is utilized for predic-

tion, the norm is quadratic (i.e. the square of the prediction error). An attempt to
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minimize this norm to zero is made, allowing the parameters to vary and therefore

be estimated in the process. Another approach is to require that the prediction er-

ror be uncorrelated with the given data set - a method introduced later under the

name of Instrumental Variables (IV). This method requires that some projection of

the prediction error (the “instrumental variable” is what causes the projection) be

minimized.

There are a number of other techniques for parameter estimation that are pre-

sented in [3, 37, 4]. The next section discusses the estimation of parameters for the

ARX model structure.

Estimating Parameters for the ARX Model

It was shown earlier that the parameter vector θ for the ARX model is given by

Eq. (2.4). Introduce the regression vector ϕ(t) as shown in Eq. (2.13).

ϕ(t) = [−y(t− 1) . . . − y(t− na) u(t− 1) . . . u(t− nb) ]
T (2.13)

Thus Eq. (2.3) is rewritten as

ŷ(t|θ) = ϕT (t)θ (2.14)

where ŷ(t|θ) = y(t) − e(t). Since ŷ(t|θ) is a function of θ, this is better written as

ŷ(t|θ) = y(t)− e(t, θ).

The Least Squares Criterion

Define a scalar-valued norm or criterion function as shown in Eq. (2.15).

V (θ) =
1

N

N∑
t=1

1

2

[
y(t)− ϕT (t)θ

]2
(2.15)

where N is the length of the data set available. This norm is minimized to zero and is

the square of the prediction error term. Consequently, this criterion or norm is known

as the Least Squares Criterion. Since it is quadratic in θ, the minimization is carried

out analytically by setting the first derivative of V (θ) with respect to θ equal to zero

and solving for the unknown parameter vector. Mathematically, this is represented
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as follows [3]:

θ̂ = argmin
θ

V (θ)

⇒ 0 = d
dθ
V (θ) = 2

N

N∑
t=1

ϕ(t)(y(t)− ϕT (t)θ)

which gives
N∑
t=1

ϕ(t)y(t) =
N∑
t=1

ϕ(t)ϕT (t)θ (2.16)

or

θ̂ =

[
N∑
t=1

ϕ(t)ϕT (t)

]−1 N∑
t=1

ϕ(t)y(t) (2.17)

The parameters θ̂ are now easily calculated using software packages such as MATLAB.

The covariance matrix of θ̂ is calculated as

Cθ =

[
N∑
t=1

ϕ(t)ϕT (t)

]−1

σ2
n

where σ2
n is the variance of the noise and is estimated as

σ̂n
2 =

1

N − na − nb

N∑
i=1

ê2i (2.18)

where êi are the residuals obtained by subtracting the simulated/model output from

the actual/measured output. The variance of each of the parameter estimates is the

corresponding value of the covariance term along the principal diagonal of

Ĉθ =

[
N∑
t=1

ϕ(t)ϕT (t)

]−1

σ̂2
n

A confidence interval for each θ̂ is then obtained by choosing a confidence level c used

to represent the intervals as follows

θ̂j ± c

√
v̂ar(θ̂j) ∀ j = 1, 2, . . . , (na + nb) (2.19)
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The solution presented in Eq. (2.17) is conveniently represented in matrix form

as shown in the following equations, provided the number of input and output data

terms used in the regression vector are the same (i.e. na = nb = p). The matrix form

is more readily adopted into MATLAB.

Define the matrix X as shown in Eq. (2.20).

X =



−y(p) −y(p+ 1) . . . −y(N − 1)
...

...
...

...

−y(1) −y(2) . . . −y(N − p)

u(p) u(p+ 1) . . . u(N − 1)
...

...
...

...

u(1) u(2) . . . u(N − p)



T

(2.20)

The parameter vector θ̂ is estimated as follows:

θ̂ =
[
XTX

]−1
XTY (2.21)

where Y is defined as

Y = [ y(p+ 1) y(p+ 2) . . . y(N) ]T

It is noted here that in order to successfully estimate θ̂, the matrix XTX has to be

invertible. This situation is more likely if the input data u(t) is sufficiently and per-

sistently exciting [4]. The MATLAB script file demonstrating this simple technique of

estimating the parameter vector is shown in Appendix B. The script file that utilizes

a direct application of Eq. (2.17) is also provided for completeness. A more conve-

nient way of extracting a solution is by utilizing the built-in System Identification

Toolbox [38] that offers the benefits of generality and ease-of-use at the same time.

The main drawbacks of utilizing this prediction approach for the ARX model

are bias and consistency. A bias occurs when the parameters systematically deviate
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from their optimal values (i.e. they are either over- or under-estimated) [4]. Non-

consistency occurs when the bias fails to approach zero even when the number of data

samples N approaches infinity [4]. These two characteristics occur in this case pri-

marily because of the nature of the ARX model structure as well as the least squares

estimate. As mentioned earlier, the ARX model does a poor job of dealing with noise

because it uses an unrealistic noise model of 1/A(q). Instead, a model with additive

output noise is more realistic. This difference between a real process and an ARX

model is best described in the form of the block diagram shown in Fig. 2.7 [4]. This

is the cause of bias.

The lack of consistency is due to the characteristics of the least squares esti-

Figure 2.7: ARX model versus a real process [4]

mation approach. To get around these problems, an output error model structure is

chosen or a different approach to parameter estimation is selected. The next section

deals with the consistency issue by introducing a new estimation approach known an

the Instrumental Variables (IV) method.
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Instrumental Variables Method

The Instrumental Variables method offers a simple remedy to the consistency

problem discussed earlier. Any given system (even one that is fully understood) is

such that the output data at any given time contains some disturbance information.

Typically, it is additive as shown in Fig. 2.7. In order for the LSE to be consistent

(i.e. for θ̂ to converge to some finite value (ideally θ0 which is considered a “true

value” of the parameter vector as N tends to infinity [3])), it is required that the

average of the expected values of ϕ(t)ϕT (t) over the entire data set be non-singular

(i.e. the bracketed term in Eq. (2.17) must be invertible). It is also required that the

time average of the expected values (since y(t) isn’t deterministic) of the term outside

the brackets in Eq. (2.17) over the entire data set be equal to zero. This is possible

only if the disturbance is a strong white noise process having zero mean and some

variance because then the disturbance is uncorrelated, making the required expected

value zero; or if ϕ(t) is not auto-regressive because previous output data contains

previous disturbance information which, if not strongly white, will be correlated to

the disturbance signal at the present time instant thus making the required expected

value possibly non-zero. More on consistency is available in [3, 4].

The easiest way to implement the IV method is to replace the regression matrix

X in Eq. (2.21) by a new matrix Z that has the same dimensions as X [4]. If ZTX

is non-singular (which again is controlled by choosing appropriate input data and

making appropriate changes in Z), the estimate θ̂ using the IV method is given by

θ̂ =
[
ZTX

]−1
ZTY (2.22)

Since Z is chosen to be uncorrelated with the noise, the estimate is consistent. The

choice of Z is also such that the parameter variance is as small as possible so that

θ̂ converges as close to θ0 as possible. The best choice to ensure zero variance is to

choose the regression matrix X itself to occupy Z. However, this reverts to the LSE

method and brings back the problem of consistency. Since the presence of the output
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terms in the regressor matrix is the cause of the consistency problem, the easiest

solution to choosing Z is to equate it to an undisturbed version of the regression

matrix X. The following algorithm is proposed in view of this [4] and is used in the

rest of this thesis.

1. Estimate an ARX model from the data using Eq. (2.21).

2. Simulate the undisturbed model with the estimated parameters to obtain the

undisturbed simulated outputs. That is, obtain yu(t) such that

yu(t) =
B(q)

A(q)
u(t)

where B(q) and A(q) are estimated.

3. Construct the instrumental variable matrix Z to resembleX in Eq. (2.20) except

replace all the output terms y(t) with each of the corresponding terms yu(t).

4. Estimate the new parameters A(q) and B(q) using Eq. (2.22) where Y consists

of the original output data and not the simulated data.

By adopting the above algorithm, it is assumed that the simulated outputs are

relatively close to the actual process outputs and the effect of the bias due to the

initial ARX estimate is small enough to be neglected. However, this may not always

be true. In such cases, the IV method is improved by repeating steps 2 to 4 by using

the previous IV estimate for every new iteration. Convergence is usually very fast

and there is not much additional gain by running the algorithm more than thrice [4].

A more advanced algorithm is presented in [3], however its benefits over the above

algorithm is not always assured. A sample MATLAB script file implementing this

method is available in Appendix B.

Estimating Parameters for the ARMAX Model

One of the differences cited earlier between the ARMAX model when compared

with the ARX model is that the former is nonlinear in its parameters. Consequently,
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the estimation of these parameters either needs to utilize nonlinear estimation tech-

niques or efficient multi-stage linear estimation ones. The latter of the two techniques

is presented because it is more conveniently implemented and offers comparable per-

formance compared to the nonlinear approach. In fact, according to [4], the nonlinear

approach demands far greater computational power and still takes longer to converge

on the optimal solution.Therefore, the following algorithm is presented for estimating

the parameters of the ARMAX model [4].

1. Estimate an ARX model from the data using Eq. (2.21).

2. Calculate the prediction errors of this ARX model using the following equation.

e(t) = A(q)y(t)−B(q)u(t)

where A(q) and B(q) are estimated in step 1.

3. Estimate the ARMAX model parameters ai, bi and ci using the LSE method on

the following difference equation

e(t) = a1y(t− 1) + · · ·+ amy(t−m)

− b1u(t− 1)− · · · − bmu(t−m)

− c1e(t− 1)− · · · − cme(t−m)

where the terms e(t− i) are initially obtained from the ARX estimate.

Steps 2 to 3 are then repeated using the most recent estimates of the ARMAX param-

eters with each subsequent calculation of the parameter error. While programming

this algorithm in a software such as MATLAB the initial values of the parameter er-

ror terms are assumed zero. This is a valid assumption according to [3]. A sample

MATLAB script file implementing this method is available in Appendix B.

Estimating Parameters for the OE Model

The Output Error (OE) model structure is such that the noise model does not

include the process denominator dynamics making the model more realistic at the
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expense of it becoming nonlinear and consequently making the parameters harder

to estimate. Like the ARMAX model, the OE model parameters are estimated us-

ing either a nonlinear optimization approach or by repeated application of a linear

estimation technique. The following steps present the linear approach [4].

1. Estimate an ARX model from the data using Eq. (2.21).

2. Filter the input data u(t) and the output data y(t) through a filter F (q) as

follows:

uF (t) =
1

F (q)
u(t) and yF (t) =

1

F (q)
y(t) (2.23)

where F (q) = A(q) for the first iteration only.

3. Estimate the OE model parameters fi and bi by an ARX model estimate using

the filtered versions of the input and output data obtained in step 2.

Steps 2 to 3 are repeated until convergence is reached while for all future iterations,

the filter consists of the estimated fi parameters of step 3. A sample MATLAB script

file implementing this method is available in Appendix B.

The next section presents an example showing the application of the above tech-

niques to detect faults seeded in a DC motor system through both simulations and

experiments. An ARX model structure is selected and the method of Instrumen-

tal Variables is used for parameter estimation. These choices are made because the

systems considered in the example are well explained using a first order model and

implementing an ARX model structure is more convenient compared to the other

model structures presented earlier. The IV method is used to offset the consistency

issues that occur when using a least squares estimation approach.

2.2 Example: Fault Detection in DC Motor Drives

This example shows the application of a fault detection approach based solely on

the system identification concepts presented in Section 2.1. Once the measurement

data is obtained, the features used for classification (refer to Fig. 2.1) are the estimated
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parameters of the selected model structure. As indicated in the preceding section, a

first order ARX model structure is selected and the method of Instrumental Variables

is used for parameter estimation. The final “classification” assumes that the estimated

parameters are normally distributed and a feature plot is generated and analyzed.

The example utilizes a simulation of a PM DC motor developed from a physics-based

model as well as experiments conducted with an LJ MS15 DC motor control module

manufactured by LJ Technical Systems Inc., Holtsville, NY and provided for use by

Dr. Mark Kempski of the Department of Mechanical Engineering at the Rochester

Institute of Technology, Rochester, NY. Basic information about the control module

is presented while detailed information can be found in the module’s user manual [5].

The simulated PM DC motor is used due to the relative simplicity in seeding the

system with single-point defects having specific characteristics. Furthermore, the

purpose of using both a simulation and a real system is to compare the proposed

algorithm’s performance using real experimental data as opposed to simulated data

which may not accurately represent real life situations.

2.2.1 DC Motor Control Module

The module consists of two DC motors - one of which behaves as a tachogenerator,

a continuous rotation potentiometer (this component is not used in the experiments

conducted), a gray-coded disc and a slotted disc both of which are used to generate

information about the shaft speed, a digital tachometer which gives a continuous

3-digit display of the output shaft speed and an eddy current brake. The digital

tachometer is used to calibrate the motor module. These components are marked in

the schematic of the motor module shown in Fig. 2.8.

The DC motor control module used is shown in Fig. 2.9. The setup is such

that the drive motor - a coreless DC motor - receives an input voltage signal from a

signal generator. In this work, the two types of input signals generated are a square

wave of amplitude 1 V (2 V peak-to-peak) and frequency 250 mHz, and a sine wave

having the same characteristics. The drive motor rotates a shaft that supports the
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Figure 2.8: Schematic of the DC Motor Control Module [5]

Figure 2.9: DC Motor Control Module
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slotted disc and tachogenerator amongst other devices. The tachogenerator generates

a voltage signal that corresponds with the speed of rotation of the shaft. This signal is

captured using a data acquisition system and serves as the output data signal for the

fault detection process. An eddy current brake is used to dampen the system response

by adjusting the amount by which it covers the slotted disc. The brake functions as

a viscous damper and its application results in a damped system response [39]. This

is verified by plotting the step response at the different brake positions as shown in

Fig. 2.10.

The application of the eddy current brake is taken to represent a generalized

Figure 2.10: Motor Module step response characteristics

roughness type defect (the same effect as the reduced lubrication defect in the EMA).

Seeding the control module with a single-point defect is also attempted. The seeding

is done by attaching a protrusion to the slotted disc. This protrusion periodically

comes in contact with a stopper that momentarily slows down the speed of rotation

of the disc. The fault is therefore periodic with respect to the angular position of the
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disc. The response of the defected system to a sine wave input is plotted in Fig. 2.11.

It is important to mention that despite the presence of a nonlinearity in the motor

response on account of the dead-zone about zero velocity (notice in Fig. 2.11 that the

peak amplitudes are not equal and that the 0 V amplitude does not occur at t = 2

seconds), the chosen model structure for system identification is assumed linear as it

is expected that this assumption does not affect comparisons between models derived

from healthy and unhealthy data.

2.2.2 Permanent Magnet DC Motor Model

The primary limitation of using the DC motor control module is the lack of flexi-

bility in seeding the system with single-point defects. Therefore, in order to show the

performance of the developed methods in detecting such faults, a data set is collected

by running a simulation of a linear model of a DC motor derived from physical laws

and seeded with a single-point defect. Details of the derivation of the DC motor

model and the seeding of the defect follows.

The DC motor system is modeled as shown in Fig. 2.12. The operation of a DC

motor is described mathematically as follows:

vm = Keωm + imR + L
dim
dt

(2.24)

Ktim − Tex = Bωm + J
dωm

dt
(2.25)

where vm is armature voltage, im is armature current, ωm is armature angular speed,

Tex is external torque load applied to the shaft, L is armature inductance, J =

Jm + JL is the net system inertia (with contributions from the motor and the load),

B = Bm + BL is the net viscous friction coefficient (again with contributions from

the motor and the load), Ke is the back-emf constant and Kt is the electromagnetic

torque constant. It is assumed that the shaft is massless, rigid and undamped so that

the load viscous damping coefficient and inertia can be algebraically added to the

corresponding motor values [40]. Assuming zero initial conditions for ωm and im and
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Figure 2.11: Response to a sine wave input with seeded single-point defect - (a) Response
over one time period; (b) Zoomed-in version showing single-point defects encircled
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Figure 2.12: Electromechanical system with DC motor

taking the Laplace transform of Eqs. (2.24) and (2.25) gives

Vm = KeWm + ImR + LIms

KtIm − Tex = BWm + JWms
(2.26)

Continuous-Time State-Space Representation

For the two-input (vm and Tex), two-output (ωm and im) system described, the

following choices are made: state variables im = x1 and ωm = x2; input variables

vm = u1 and Tex = u2; and output variables im = x1 = y1 and ωm = x2 = y2. Then,

Lẋ1 +Rx1 +Kex2 = u1

Jẋ2 −Ktx1 +Bx2 = −u2

(2.27)

Therefore in matrix notation, the state-space equations in continuous time are

ẋ =

 −R
L

−Ke

L

Kt

J
−B

J

x+

 1
L

0

0 − 1
J

u
y =

 1 0

0 1

x+

 0 0

0 0

u (2.28)



42

with the bold face letters denoting vectors. Eq. (2.28) is then written as follows:

ẋ = Ax+ Eu

y = Cx+Du
(2.29)

The next section involves deriving the equivalent discrete-time version of the state-

space representation. The matrices are referred to by the labels provided in Eq. (2.29).

It is necessary to obtain a discrete-time form of the model to allow convenient control

of sampling interval because the latter plays an important role in the parameter

estimation process [3, 4]. The importance of the sampling interval also becomes

evident during the next derivation.

Discrete-Time State-Space Representation

Taking the Laplace transform of Eq. (2.29) gives

X(s) = (sI − A)−1(EU(s) + x(t0)) (2.30)

The inverse Laplace transform of Eq. (2.30) gives back the system in the time-domain

where L−1((sI −A)−1) is the state transition matrix Φ. The state transition matrix,

when multiplied with the initial condition of the state variable (in this case x(t0))

gives the value of the state variable at a later time t. For a time-invariant system

Φ(t, t0) = eA(t−t0). Although this work deals only with such systems, the rest of the

presentation remains general.

x(t) = L−1(X(s)) = Φ(t− t0)x(t0) +

∫ t

t0

Φ(t− τ)Eu(τ) dτ (2.31)

Applying a zero-order hold on the input and setting t0 = kT gives,

u(t) = u(kT ), kT ≤ t ≤ (k + 1)T
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where a sample interval of T is assumed. So,

x(t) = Φ(t, kT )x(kT ) +

(∫ t

kT

Φ(t, τ)E dτ

)
u(kT ) (2.32)

Define a new function Γ as follows:

Γ(t, kT ) =

∫ t

kT

Φ(t, τ)E dτ (2.33)

Inserting Eq. (2.33) into Eq. (2.32) and setting t = (k + 1)T gives

x((k + 1)T ) = Φ((k + 1)T, kT )x(kT ) + Γ((k + 1)T, kT )u(kT ) (2.34)

Therefore, the required discrete-time state-space representation is

x((k + 1)T ) = Φ((k + 1)T, kT )x(kT ) + Γ((k + 1)T, kT )u(kT )

y(kT ) = Cx(kT ) +Du(kT )
(2.35)

where Φ is the state transition matrix and Γ is as defined in Eq. (2.33). For a time-

invariant system, Eq. (2.35) is significantly simplified as shown below.

Assume the final discrete-time state space equations for the time-invariant system

is

x((k + 1)T ) = G(T )x(kT ) +H(T )u(kT )

y(kT ) = Cx(kT ) +Du(kT )
(2.36)

the following transformations apply:

G(T ) = eAT (2.37)

H(T ) =

(∫ T

0

eAλdλ

)
E

≈ (eAT − I)A−1E (2.38)
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provided A is non-singular. Additionally,

eAT = I + AT +
A2T 2

2!
+ . . .

≈ I + AT ∀ T ≪ 1 (2.39)

leading to the first constraint on the sampling interval. Furthermore

H(T ) ≈ (eAT − I)A−1E iff. det(A) ̸= 0

where

det(A) =
RB +KeKt

LJ

∴ H(T ) exists when RB ̸= −KeKt and this is true in the present case.

The discrete-time state space representation is then simplified to the following:

x((k + 1)T ) =

 1− RT
L

−KeT
L

KtT
J

1− BT
J

x(kT ) +
 T

L
0

0 −T
J

u(kT )
y(kT ) =

 1 0

0 1

x(kT ) +
 0 0

0 0

u(kT ) (2.40)

Representing Eq. (2.40) completely in terms of the physical parameters and simpli-

fying algebraically results in

i((k+1)T ) = a0i(kT )+a1i((k−1)T )+b1v(kT )+c1ω((k−1)T )+d1Tex((k−1)T ) (2.41)

where

a0 =
RT

L
−1, a1 =

KeKtT
2

J2
, b1 =

T

L
, c1 = −KeT

J
+
KeBT 2

J2
and d1 =

KeT
2

J2

Upon simplifying further, Eq. (2.41) is notationally reduced to

ŷ((k + 1)T | θ(T )) = ϕT (kT )θ(T ) (2.42)
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where i(kT ) is replaced by y(kT ) and

ϕT (kT ) = [y(kT ) y((k − 1)T ) v(kT ) ω((k − 1)T ) Tex((k − 1)T )]

and

θT (T ) = [a0(T ) a1(T ) b1(T ) c1(T ) d1(T )]

As evidenced by the parameter vector θT (T ) recently presented, the choice of

sampling interval clearly affects the estimation of the parameters and is an important

consideration when performing system identification. The above formulation also

provides an example of a grey-box model where the model structure in Eq. (2.41) is

derived from a physical insight into the DC motor system. As a result, the estimated

parameters have physical meaning and back-calculation of the physical parameter

values from the vector of values in θT (T ) is possible.

Continuous-Time Transfer Function Representation

Revert to the governing differential equations shown in Eq. (2.26). Apply an initial

condition of zero to the state variable x in Eq. (2.30). This gives

X(s) = (sI − A)−1(EU(s)) = Φ(s)EU(s) (2.43)

Also in this case

Y (s) = CX(s) = CΦ(s)EU(s)

⇒ H(s) =
Y (s)

U(s)
= CΦ(s)E (2.44)

H(s) represents the required continuous-time transfer function. The individual trans-

fer functions for each combination of input and output signals are now derived as

follows. Φ(s) can be represented in matrix form as

Φ(s) =
LJ

(sJ +B)(sL+R) +KeKt

 s+ B
J

−Ke

L

Kt

J
s+ R

L

 (2.45)
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Therefore

H(s) = CΦ(s)E =
LJ

(sJ+)(sL+R) +KeKt


1
L

(
s+ B

J

)
Ke

LJ

Kt

LJ
− 1

J

(
s+ R

L

)


⇒ H(s) =
1

(sJ +B)(sL+R) +KeKt

 sJ +B Ke

Kt −(sL+R)

 (2.46)

The two transfer functions of interest in this example are those between armature

current im and armature voltage vm, and armature angular speed ωm and armature

voltage vm. These two transfer functions are individually represented as follows after

multiplying H(s) with U(s) and abandoning the matrix representation.

H1(s) =
Im(s)

Vm(s)
=

sJ +B

(sJ +B)(sL+R) +KeKt

+
Ke

(sJ +B)(sL+R) +KeKt

(
Tex(s)

Vm(s)

)
(2.47)

H2(s) =
Wm(s)

Vm(s)
=

Kt

(sJ +B)(sL+R) +KeKt

− sL+R

(sJ +B)(sL+R) +KeKt

(
Tex(s)

Vm(s)

)
(2.48)

H1(s) represents the continuous-time transfer function for armature current versus

armature voltage while H2(s) represents the continuous-time transfer function for

armature angular speed versus armature voltage.

Discrete-Time Transfer Function Representation

In order to obtain the discrete-time equivalents of the transfer functions repre-

sented in Eqs. (2.47) and (2.48), Tustin’s approximation (or the Bilinear Transform)

is applied to them. After the required substitution (viz. s = 2
T
( z−1
z+1

)) and the ensuing
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algebraic manipulations, the following discrete-time transfer functions are derived.

H1(z) =
Im(z)

Vm(z)
=

z(2J +BT ) + (T − 2J)

Ψ(z)
+

KeT (z + 1)

Ψ(z)

(
Tex(z)

Vm(z)

)
(2.49)

H2(z) =
Wm(z)

Vm(z)
=

KtT (z + 1)

Ψ(z)
− z(2L+RT ) + (RT − 2L)

Ψ(z)

(
Tex(z)

Vm(z)

)
(2.50)

where

Ψ(z) =
z2(4JL+ 2TM + T 2N) + z(2T 2N − 8JL) + (T 2N − 2TM + 4JL)

T (z + 1)

M = BL+ JR, N = BR +KeKt

H1(z) represents the discrete-time transfer function for armature current versus arma-

ture voltage while H2(z) represents the discrete-time transfer function for armature

angular speed versus armature voltage.

For the simulations in this example, Tex(z) = 0 in all cases and therefore the

transfer function is reduced to

H(z) =
Wm(z)

Vm(z)
=

KtT (z + 1)

Ψ(z)
(2.51)

2.2.3 DC Motor Model Validation

Both the continuous-time and discrete-time transfer functions are observed inde-

pendently to see how they simulate the DC Motor’s response to a pulse input. The

parameters for the DC motor are borrowed from the DC motor component of a val-

idated EMA model provided by Lockheed Martin Control Systems, Johnson City,

New York, (now BAE Systems Inc.), and available in the Master’s thesis of Mr. Kon-

stantin P. Louganski [41]. These parameters are also provided in Table 2.1. Note that

different parameter values are used for testing the fault detection algorithm in Section

2.2.5. Both forms of the DC motor model are developed in Simulink. A pulse input

(square wave) of 0.1 V amplitude is provided. The simulation is run for a duration

of 0.1 seconds. For the discrete-time transfer function model, a sample interval T
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Table 2.1: DC motor parameters
Parameter Value

Kt 1.141 in-lb/A
L 4.5× 10−4 H
R 0.5Ω
Ke 0.129 V/(rad/s)
J 2.43× 10−4 in-lb-s2

Bm 3.125× 10−4 in-lb-s

of 0.0001 seconds is chosen. The output response from the continuous-time model is

shown in Fig. 2.13 while that from the discrete-time model is shown in Fig. 2.14.

Since both forms of the model give similar outputs for the same input signal and
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Figure 2.13: DC motor continuous-time simulated response to a pulse input

the fact that the nature of the response resembles that of a DC motor leads to the

conclusion that the models derived in the previous section are valid.
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Figure 2.14: DC motor discrete-time simulated response to a pulse input

2.2.4 Modeling the Single-Point Defect

In order to simulate the single-point defect, it is required that the viscous friction

coefficient of the load BL be varied in a periodic manner. Additionally, the period

chosen is not random but based on the effect a spalled bearing has on an electric

motor drive system [10, 20]. According to [10], bearing seizure is approximated by

an increase in the friction damping coefficient. Therefore, to simulate a single-point

defect, bearing seizure is assumed to occur periodically with motor position. The

defect frequency is calculated based on the presence of a defect in the outer-race of a

bearing [20].

fOD =
n

2
frm

(
1−

(
BD

PD

)
cos δ

)
(2.52)

where PD represents the pitch diameter and is the outer diameter of the bearing’s

outer race, BD represents the ball bearing diameter, n is the number of balls, δ is the

contact angle and frm is the motor angular speed in Hz. According to [20], Eq. (2.52)

is satisfactorily approximated by fOD = 0.41nfrm for most bearings with between
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6 to 12 balls. This approximation is used. Both healthy and defected systems are

simulated with step inputs in voltage. The Simulink models are presented in Appendix

A while the MATLAB script file used for fault detection is published in Appendix B.

2.2.5 Fault Detection Results

To recap, for the LJ MS15 Control Module, data sets for five brake positions are

captured to form five cases of which one (no brake condition) depicts a healthy system

while the others depict various levels of degradation (refer Fig. 2.10). Furthermore,

the degradation is assumed to represent a generalized roughness defect. In order to

show the performance of the proposed fault detection procedure, the output-data

signal in each case is corrupted with Gaussian white noise to a point when the signal-

to-noise ratio (SNR) is 25 because the signals aquired from the module are mostly

noise-free - a situation seldom encountered in more complex systems such as EMAs.

The SNR value is chosen based on the inability to comment on the system’s health

merely by observing its step response. Results from the motor module with brake at

position 1 are shown in Fig. 2.15.

It is concluded that the approach barely distinguishes between the healthy and

Figure 2.15: Results of motor module with brake at position 1 - (a) Step response with
added noise; (b) Healthy step response; (c) Step response with brake; (d) Distribution of
predicted ‘a’ parameter; (e) Distribution of predicted ‘b’ parameter
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the degraded motor module and it is likely to have a fairly high misclassification rate

even though the algorithm appears to predict the system model accurately in each

case as indicated by the model fit percentage given in Table 2.2. When the normal

Table 2.2: DC Motor Module Generalized Fault Detection Results (Values correspond to
Fig. 2.16)

Characteristic No Brake Brake 1 Brake 2 Brake 3 Brake 4

a −0.9565 −0.9554 −0.9485 −0.9429 −0.94044
σ2
a 0.0002 0.0001 0.0004 0.0003 0.0003

b 0.05275 0.05382 0.05353 0.05467 0.05194
σ2
b 0.0003 0.0002 0.0003 0.0003 0.0002

Fit % 96.84 96.68 96.68 95.91 96.54

distribution of the predicted parameters from the healthy and the degraded cases are

plotted, the separation of the means is quite small and there exists some overlap of

the distributions, indicating a higher likelihood of misclassifcation. It is noted that

the distribution of the a parameter (Fig 2.15 (d)) is likely of greater significance than

the b parameter because it depicts the denominator dynamics of the system in each

case.

The parameter distribution plots for all the other brake positions are consolidated

into Fig. 2.16 while Table. 2.2 provides useful information related to these distribu-

tions. Notice the distributions of the healthy and brake position 1 systems in Fig. 2.16

(a) and compare them to those in Fig. 2.15 (d). This is a clear example of blatant

misclassification due to a marginal change in the noise added to the system.

In the case of the seeded single-point defect in the motor module, the proposed

approach does a poor job of detecting the presence of the defect. The approach is

unable to capture the periodic fluctuations in the output. Instead, the approach “as-

sumes” that the effect of these disturbances are distributed over the entire output.

Since the fluctations are small, the parameter estimates for the two health cases are

similar. Figure 2.17 shows the distributions of the parameter estimates in this case.

Therefore, the proposed fault detection scheme based on system identification
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Figure 2.16: Distributions of parameters for each of the brake positions - (a) Distributions
of ‘a’ parameters; (b) Distributions of ‘ b’ parameters
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techniques where the estimated parameters that represent the system are used as the

features for classification, is inadequate to effectively detect faults in the DC Motor

control module, especially in the case of single-point defects. Although some success-

ful detection is observed, these isolated cases of success are attributed to significant

changes in the system parameters. For instance, except for brake position 1, the other

cases show a significant change in the system output (see Fig. 2.10) and this approach

is expected to succeed in those cases.

As mentioned earlier, although the approach detects the application of the brake

at position 1, it is likely that misclassification will occur with minor changes in the

system that may not represent a fault. Although the model prediction is generally

very accurate and the use of an IV estimation method reduces the influence of noise

in the estimation of the parameters to some extent, it is likely that changes in noise

will contribute to misclassification.

Since the algorithm is not effectively tested in the case of a single-point defect as

the seeding of such a defect on the DC motor module is difficult, a simulated defect is

introduced in a Simulink model of a DC motor system. The Simulink block diagram

with the single-point defect modeled based on Eq. (2.52) is provided in Appendix

A. The simulated outputs generated in each case are corrupted with Gaussian white

noise with a signal-to-noise ratio of 20 instead of 25 to test how the algorithm per-

forms in the presence of more powerful noise. The motor model parameter values and

the defect characteristics are consolidated in Table 2.3.

Figure 2.18 shows the result for a simulated single-point defect. It is seen that

the proposed approach is still unable to offer effective fault detection for such fault

types even though the system is generally identified accurately. The problem with

this approach is the choice of the parameter estimates as the features for classification.

The deviations in the estimates between healthy and degraded systems are too small

to allow effective classification (assuming ‘effective’ classification is achieved with at

least a 5σ separation between peaks).
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Figure 2.17: Results of Motor Module with single-point defect - (a) Response with added
noise; (b) Healthy response; (c) Response with brake; (d) Distribution of predicted ‘a’
parameter; (e) Distribution of predicted ‘b’ parameter

Table 2.3: Motor model and defect parameter values

Parameter Value

Kt 0.05Nm/A
n 9
Ke 0.05Vs/rad
PD 1.7x10−2 m
L 4.5x10−7 H
BD 0.3x10−2 m
R 0.5Ω
δ 0.1745 rad
Jm 0.00025Nms2/rad
Bm 0.0001Nms/rad
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Figure 2.18: Results of a DC motor model with a simulated outer-race bearing defect -
(a) Healthy vs. Degraded response; (b) Healthy response with added noise; (c) Degraded
response with added noise; (d) Single-point defects in degraded response; (e) Distribution
of predicted ‘a’ parameter; (f) Distribution of predicted ‘b’ parameter

2.2.6 Limitations of the Fault Detection Approach

Based on the results shown in the previous sections, the limitations of the fault

detection approach are noted as follows:

1. The parameter estimates, when used as features, result in ineffective fault de-

tection in the case of both single-point defects as well as generalized roughness

defects. Any fault information that may be present in the b parameter is ne-

glected and all the models selected are first-order models that are sufficient to

identify the system accurately but may not be sufficient to obtain all the infor-

mation about the faults present.

2. Although the systems are accurately identified by the model structures, the

algorithm is not tested on more complex systems such as EMAs. The DC motor

model is a first-order system operating in open-loop and the control module is

also quite accurately estimated by a first-order open loop system. The Moog

MaxForce EMA however consists of two nested control loops making it more
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complex.

3. The parameter estimates are not sufficiently insensitive to noise.

4. Model validation is not performed nor is a definite model order selection method-

ology in place. All the cases are fitted with a standard first-order linear difference

equation and although the fit percentage might be good, the model may not be

robust and might depend on the nature of the input and noise. Both these

effects are undesirable.

5. The selected model structure is for a single-input, single-output system. In the

case of the EMA, an external torque load affects the output significantly and

hence must be used as a second input to accurately fit a model to the data.

Therefore, flexibility in choice of model structure is essential but is not available

in the present approach.

2.3 Proposed Revisions to the Fault Detection Approach

Having identified the limitations of the previous approach, the following modifica-

tions are proposed:

1. Test various model structures and make a choice based on model fit and a resid-

ual analysis to ensure that the model estimation is accurate and that the pa-

rameter estimates are not significantly affected by variations in noise or external

disturbances. Allow flexibility in selecting higher order models if necessary.

2. Allow the usage of multiple inputs to the system to better estimate the model

parameters.

3. Investigate the effects a closed loop system has on fault detection and test various

combinations of input and output data to be used for parameter estimation.

4. In case higher order models are chosen, the number of parameters to be esti-

mated increases and each of the parameters can contain fault information to
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different extents. Therefore, devise a pattern recognition or other feature ex-

traction technique that identifies those parameters that contain the most infor-

mation or perform a mathematical transformation on the parameters to bring

out the fault information better.

5. Develop a classifer that effectively groups features from systems having the same

health condition by minimizing the rate of misclassification.

Some of the revisions proposed above are incorporated in a revised fault detection

approach, details of which are presented in Chapter 3. The major changes include (i)

added flexibility in model structure selection and choice of inputs and outputs based

on a mathematical study of the effect of closed loop system controllers on faults,

(ii) a well defined model validation procedure, (iii) feature extraction from estimated

parameters using Principal Component Analysis (PCA) and (iv) application of a

Bayesian classifier to effectively group features belonging to the same health class with

each other. The theoretical concepts behind the above modifications are presented in

the next few sections.

2.4 Fault Detection in Closed-Loop Systems

Systems that require precise tracking of reference variables operate in closed loop

under the action of a controller. The EMA used in this work is one such system.

Small faults in the actuator and process are usually compensated by the feedback

controller and they are not detectable by considering the desired and actual outputs

alone, as is done for systems operating in open loop [42]. Furthermore according

to [42], faults generating (or equivalent to generating) a change in the amount of

friction in the system operating in closed loop - such as the spalled bearing and

generalized roughness defects dealt with in this research - can be detected using

parametric identification techniques similar to those already discussed for systems

operating in open loop. For fault detection of the closed-loop system in Fig. 2.19, the
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Figure 2.19: Model-based fault detection of closed-loop system with known controller output

output error is given by

r(s) = y(s)− ym(s) = y(s)−Gm(s)w(s) = (Gp −Gm)w + n+ f (2.53)

where n and f denote noise and fault information. This simplifies to

r(s) = (Gp −Gm)Gc

[
u− (n+ f)

1 +GcGp

]
+ n+ f

⇒ r(s) =
Gc(Gp −Gm)

1 +GcGp

u+
1 +GcGm

1 +GcGp

(n+ f) (2.54)

To identify the model Gm using the model parameters as arguments minimizing the

equation error r(s) where

r(s) = Am(s)y(s)−Bm(s)w(s)

⇒ r(s) =
Q(AmBp − ApBm)

PAp +QBp

u+
Ap(PAm +QBm)

PAp +QBp

(n+ f) (2.55)

and where

Gp(s) =
Bp(s)

Ap(s)
and Gc(s) =

Q(s)

P (s)
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it is desirable that the contributions from u vanish. That is, if r(s) is minimized such

that it only consists of contributions from n and f , then Am = Ap and Bm = Bp

in Eq. (2.55) and the plant is exactly identified. As the magnitude of n or f or

both increase, the arguments minimizing r(s) are affected by a filtered amount (the

filter being the coefficient of (n + f) in Eq. (2.55)) and the chances of identifying

the plant accurately are reduced. In the present work however, fault identification is

the primary objective and the parameter estimates (Am and Bm or their equivalents)

are used to extract features for classification. In this case, assuming the data used

for the parameter estimation are y(s) and w(s), it is desirable that Am and Bm are

affected, as far as possible, by f . In most practical situations, the magnitude of f is

the smallest amongst n and u and thus it has the smallest effect during the estimation

of the features. This is true even in the open-loop case but the filters for each of the

terms are mathematically less complex, offering better chances for weaker signals such

as f to influence the estimation of the features.

In this work however, the problems are more complicated. Due to the nature of

the experiments conducted by Moog Inc., the closed loop systems used are equivalent

to the ones shown in Figs. 2.20 and 2.21. Figure 2.20 is representative of the EMA

system setup at the Rochester Institute of Technology while Fig. 2.21 is similar to

the setup at Moog, Inc. For the system in Fig. 2.20,

r(s) = y(s)− ys(s)

and from the equation error consideration

r(s) = As(s)y(s)−Bs(s)u(s)

where As(s) and Bs(s) are parameter vectors. Proceeding in a similar manner,

w(s) = Gc(s)(u(s)− y(s)) =
QAp(u− (n+ f))

PAp +QBp

(2.56)
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Figure 2.20: Model-based fault detection of closed-loop system with unknown controller
output

Therefore,

r(s) = As

[(
BpQ(u− (n+ f))

PAp +QBp

)
+ n+ f

]
−Bsu

⇒ r(s) =

[
AsBpQ−BsPAp −BsQBp

PAp +QBp

]
u+

[
AsPAp

PAp +QBp

]
(n+ f) (2.57)

In this case, to estimate As and Bs to exactly identify the plant alone would require

setting these parameters as arguments that reduce the function r(s) to

r(s) =

[
ABQ

PA+QB
−B

]
u+

[
A− ABQ

PA+QB

]
(n+ f) (2.58)

where A = Ap = As and B = Bp = Bs for an exact agreement of the system model

and plant shown in Fig. 2.20. If u vanishes from Eq. (2.57), then the system being

identified is given by

AsBpQ−BsPAp −BsQBp = 0

⇒ Bs

As

=
QBp

QBp + PAp

⇒ Gs(s) =
GcGp

1 +GcGp

(2.59)
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For fault detection, the situation is similar to the previous one. In this case

however, the filters for u and (n + f) are different. With u being the dominating

signal, more accurate minimization routines are required that are robust enough to

minimize r(s) sufficiently while at the same time, allowing the parameters to absorb

as much information from f as possible. Reducing the magnitude of u by choosing

an appropriate input signal is a solution that is tested as part of the revised fault

detection approach presented in the next chapter.

For the system in Fig. 2.21, the scenario is even more complex. Once again

Figure 2.21: Model-based fault detection of nested closed-loop system with unknown con-
troller outputs

considering an equation error form for parameter estimation,

r(s) = As(s)yw(s)−Bs(s)u(s)

w(s) = e2(s)Gcs(s) = (Gcp(s)e1(s)− yw(s))Gcs(s)

where yw = wGp +n+ f . Also, y = Hyw and e1 = u− y = u−Hyw. Therefore, w(s)

simplifies to,

w(s) =
GcsGcpu−Gcs(HGcp + 1)(n+ f)

1 +HGcsGcpGp +GcsGp

(2.60)

and

yw(s) =
GpGcsGcpu−GpGcs(HGcp + 1)(n+ f)

1 +GcsGp(HGcp + 1)
+ n+ f (2.61)
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giving

r(s) =

[
AsGpGcsGcp −Bs [1 +GcsGp(HGcp + 1)]

1 +GcsGp(HGcp + 1)

]
u

+

[
As

1 +GcsGp(HGcp + 1)

]
(n+ f) (2.62)

The vanishing of the filter for u gives the system being identified. That is,

AsGpGcsGcp −Bs [1 +GcsGp(HGcp + 1)] = 0

⇒ Bs

As

= Gs(s) =
GpGcsGcp

1 +GcsGp(HGcp + 1)
(2.63)

The comments about fault detection remain similar to the previous cases. Based

on the preceding analysis, selecting e in the case of Fig. 2.20 and e1 in the case of

Fig. 2.21 as one of the inputs in the parameter estimation process is proposed. It is

expected that doing so will highlight the fault information in the output signal while

the IV method proposed for parameter estimation is expected to reduce the influence

of noise variations in the parameter estimates.

2.5 Principal Component Analysis (PCA)

Another modification to the previous fault detection approach is to use PCA to

extract features from estimated model parameters instead of using the parameters

as features themselves. In particular, this work focuses on utilizing PCA to uncorre-

late linearly correlated model parameters without discarding any significant variance

information from the data. This is unlike most other applications of PCA (such as

in [19]) where dimension reduction is more prominent. The idea behind this approach

is explained as follows.

Suppose a second order model is required to generate a “good” fit to the data

selected (more on model structure selection is provided in the next chapter). In

this case, a linear difference equation of the form y(t) + a1y(t − 1) + a2y(t − 2) =

b1u1(t− 1) + c1u2(t− 1) is used (a two input system is depicted because in the case
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of the Moog EMAs, the applied external torque significantly affects the output and

hence cannot be neglected). Assuming, as is done before, that a1 and a2 carry most

of the information about the fault, it is expected that the two parameters are cor-

related and that their individual variances are useful parameters to be analyzed for

fault information. If analyzed independently as is done in the previous approach, the

differences between estimated parameters from a healthy and an unhealthy system

are minimal. When PCA is applied on these parameter distributions, a transforma-

tion occurs that results in two “features” that are now uncorrelated with one another

and with the distribution of one of the features having greater variance than the

other. Thus when this feature of larger variance (or both features taken together)

is selected and compared across different health classes, it is expected that nearly

all the information about the fault that is picked up by the parameters is available

to make a comparison. In most cases in this work, a correlated two-dimensional or

three-dimensional data set is transformed into an uncorrelated two-dimensional one

(i.e. none or a minimal amount of the information from the data is discarded). The

following information on PCA is consequently related to its application in this work.

An example consisting of a randomly generated data set having a normal distribution

is used. The data set is split equally in two with each set signifying a given “health

condition”. A scatter plot of the entire dataset is shown in Fig. 2.22.

To perform the PCA, the first step is to center the data set about the origin by

subtracting the means from each corresponding dimension. This makes the expected

value of the dataset zero. The centered data is shown in Fig. 2.23.

The covariance matrix is then computed. Typically, the non-diagonal elements

will be non-zero indicating that the two dimensions are correlated. If they are zero, it

is likely that using the data in the current form as features would yield the best possi-

ble results. The eigenvalues and eigenvectors of the covariance matrix are computed

and the two eigenvectors corresponding to the two largest eigenvalues are selected

as the feature vectors. The two feature vectors form the feature matrix W which is

then used to transform the centered dataset y into a “feature set” z according to the
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Figure 2.22: PCA sample data set

Figure 2.23: PCA sample data centered about the origin
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relation

z = Wy

The “features” (i.e. transformed data) are now distributed along two reoriented axes

(shown in Fig. 2.24) in such a manner that they are no longer correlated and the

variance along one of the transformed axes is maximum. This axis becomes the first

Figure 2.24: Scatter plot of centered data showing the two principal components z1 and z2.
The data now has maximum variance along z1 and minimum variance along z2

principal component while its complement is the second. It is possible that the second

component be discarded without losing any significant information, however that is

generally not performed in this work. The “feature set” z comprising of z1 and z2 is

shown in Fig. 2.25 as the final outcome of PCA on the original dataset.

2.6 Bayesian Classification

Bayesian classification is an approach that uses Bayes’ theorem to select the class

of an object from a set of possible classes Ω = {w1, w2, . . . , wK} that are assumed
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Figure 2.25: Feature set derived by performing PCA on the data shown in Fig. 2.22

to be mutually exclusive. For example, in the case of the Moog MaxForce EMA,

two classes exist such that Ω = (‘Healthy’,‘Degraded’). The class with the minimum

amount of risk is the class selected by the Bayesian Classifier. According to Bayes’

theorem,

p(wk|z) =
p(z|wk)P (wk)

p(z)
(2.64)

The classifier decision function is shown in Eq. (2.65).

ŵ(z) = argmin
w ϵΩ

{ K∑
k=1

C(w|wk)p(z|wk)P (wk)

}
(2.65)

where the cost function C(w|wk) is the penalty of assigning the class w to an object

actually belonging to class wk. In this work, the cost function is assumed to be

uniform which implies that

C(ŵi|wk) = 1− δ(i, k) with δ(i, k) =

{
1 if i = k

0 elsewhere
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the unconditional prior probability of each class P (wk) is equal, and

K∑
k=1

P (wk) = 1 (2.66)

Lastly, it is assumed that the conditional density, p(z|wk), is normally distributed.

That is

p(z|wk) =
1√

(2π)N |Ck|
exp

(
−(z− µk)

TC−1
k (z− µk)

2

)
(2.67)

where µk andCk represent the expectation vector and covariance matrix of the feature

vector z of true class wk and N is the dimension of the vector z. For the sample data

set from the previous section, the Bayes’ classifier generates the classification bound

shown in Fig. 2.26.

Figure 2.26: Bayesian classification bound for sample dataset shown in Fig. 2.22
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Chapter 3

Methodology

This chapter provides a step-by-step account of the proposed fault detection ap-

proach. All subsequent sections discuss each step of the approach in detail. An ex-

ample involving a speed controlled PM DC motor system seeded with an outer-race

bearing defect is used, showing results along each step of the process. The Simulink

block diagram of the system (see Fig. 3.1) is evaluated to generate the required data

sets. The internal architecture and the model parameters are available in Appendix

A.

The approach is then used on more cases of the same DC motor system addition-

Figure 3.1: Simulink model of a permanent magnet DC motor with inbuilt fault generation
system

ally seeded with a reduced lubrication/generalized roughness type defect as shown in

Chapter 4. This system is selected because of the following reasons:

1. The EMA is driven by a PMSM and the data used for fault detection is based
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on a dq-model of it (i.e. quadrature current is used during the feature extraction

process).

2. Approximations to periodic and generalized roughness type faults are readily

simulated.

3. A single feedback loop with a PI controller is sufficient for accurate speed control

and this is easily implemented in Simulink.

After testing the algorithm through simulations and analyzing its performance, it

is applied on experimental data collected from a Moog MaxForce Electromechanical

Actuator. Two sets of experiments are conducted. The first set consists of experi-

ments conducted on an actively loaded test rig at Moog Inc., East Aurora, New York

while the second set is conducted at the Rochester Institute of Technology, Rochester,

New York on a passively loaded test rig.

The following sections present the development of the approach in a step-wise

manner, starting with data set generation. Figure 3.2 shows the fault detection ap-

proach employed in block diagram form.

3.1 Data Set Generation

As indicated in Fig. 3.2, the first step in the fault detection process is obtaining

measurement data from the system. The important factors to consider are: (i) de-

termining which signals are to be captured and (ii) choosing an appropriate sampling

interval that allows information about the fault to be captured while making sure that

an excessive number of samples are not recorded to prevent computational issues.

Example: DC Motor Seeded with a Single-Point Defect

Figure 3.3 shows healthy and unhealthy motor current signals and the effect of

the simulated bearing defect and lack of bearing lubrication on the current signal

for the closed loop system of Fig. 3.1. Modeling of the outer-race defect is based on
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Figure 3.2: Block diagram showing fault detection approach employed in this thesis
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Eqs. (1.1) and (2.52) where fe from Eq. (1.1) is given by,

fe =
p

2
frm (3.1)

and where fv from Eq. (1.1) equals fOD from Eq. (2.52), and an increase in the

friction-damping coefficient is used to simulate a reduction in the amount of lubrica-

tion. The latter approach is based off a similar simulation technique employed in [10]

and is therefore validated.

The effect of the bearing defect is easily noticeable while that of the lack of lubri-

cation causes a marginal shift in the phase and increase in the peak amplitude of the

current. During the simulations presented in Chapter 4, both defects are considered

although they are seeded one defect at a time. In this example, only the single-point

defect case is considered.

Such signals are either directly measured using current sensors or are calculated

Figure 3.3: Effect of inner-race bearing defect and reduced bearing lubrication on PM DC
motor current - Left: Healthy system output; Right: Degraded system output

based on signals captured using sensors. Therefore, such signals are typically cor-

rupted by noise. To simulate this effect, the realization of a Gaussian white noise

process having zero mean and a specific variance (see corresponding MATLAB pro-

gram in Appendix B) is added to the current signal at the output. To ensure that the

noise profiles vary with each case, the ‘seed’ value in the Simulink random number
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generator is set to a non-zero random number. This is shown in the internal architec-

ture of Fig. 3.1. According to the literature in [3, 4, 37], simulating noise encountered

in real life by a realization of a white noise process is generally a valid assumption. To

independently validate the assumption of a Gaussian nature for white noise, current

and position sensor noise is acquired from the Moog MaxForce EMA and Gaussian

distributions are fitted to it. The results of the fits are shown in Fig. 3.4.

The plots indicate that the EMA current and position sensor noise (these sen-

Figure 3.4: Analysis of actual Moog EMA test stand current (top) and position (bottom)
sensor noise profiles

sors provide the output signals for use in Chapter 5) assume normal distributions.

Therefore, adding the realization of a Gaussian white noise process is appropriate for

simulation. The noise corrupted PM DC motor current signals for the healthy and

unhealthy cases are shown in Fig. 3.5.
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Figure 3.5: Noise corrupted PM DC motor current signals for healthy (left) and unhealthy
(right) cases

3.2 Choosing Input and Output Data

Once the measurement data from the system is aquired, the next step is choosing

the appropriate input and output data for estimating the parameters of the chosen

model structure. The choice of inputs in the case of the MaxForce EMA is lim-

ited because the controller outputs are internal to the system and are not collected.

Therefore, the chosen input combinations are either the position reference signal or

the position error signal along with the motor torque load input although it is ex-

pected that the position error signal provides better results. Additionally, the velocity

command signal is available as an input in the case of the EMA data collected at RIT.

The reasoning behind these choices for inputs is related to the explanation in the sec-

tion on closed-loop fault detection in Chapter 2. The choice of outputs in the case of

the EMA is provided in Chapter 5.

For the simulations in Chapter 4, since the system is a PM DC motor in a closed-

loop velocity control configuration, the input combinations are either the velocity

reference signal or the velocity error signal along with the sinusoidal torque load in-

put to the motor while the output is the motor current (see Fig. 3.1). Again, it is

expected that use of the velocity error signal as input along with the torque load
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produces better results.

Example: DC Motor Seeded with a Single-Point Defect

In this example, the velocity error signal and torque load are used as inputs to

the system while the motor current is the output. The time plots of these signals are

shown in Fig. 3.6. The first two rows show the inputs to the system while the last

one shows the system output.

Figure 3.6: Time-plots of the signals generated from the PM DC motor simulation with the
first two rows showing the inputs and the third row showing the output for the two health
cases considered
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3.3 Model Structure Selection

Once the input/output data are chosen, model order selection is the next step.

An initial estimate of the model order is obtained by estimating all possible model

structures using a particular ‘training’ dataset and computing the value of the nor-

malized quadratic fit between the measured output and the modeled output as shown

in Eq. (3.2).

Fit% = 100×

(
1−

∣∣∣∣∣ ym − y

y − 1
N

N∑
k=1

yk

∣∣∣∣∣
)

(3.2)

This value is then used to pick the initial model structure that results in a best fit

for the dataset and simultaneously for a different ‘validation’ dataset.

In addition to obtaining a high fit percentage value, residual analysis and pole-zero

placement are both important factors that are considered. Therefore, the approach

initially places a constraint on the minimum fit percentage needed to proceed with

the next steps of feature extraction. Unless the fit exceeds this set threshold, an

alternative model structure is analyzed. Additionally, during the choice of the model

structure, a residual analysis plot as well as a pole-zero map are generated. The

user utilizes these plots and decides whether or not to modify the fit. Parameter

estimation is achieved using the method of Instrumental Variables on a linear differ-

ence model. For this approach, only the independence test (i.e. the cross-correlation

between the residuals and the inputs must be as close to zero as possible within

a set threshold) needs to be satisfied [38]. The residual analysis plot displays a

99% confidence region around zero in the form of a yellow box. This represents the

range of residual values that have a 99% probability of being statistically insignifi-

cant [38]. The pole-zero map shows the location of the model poles and zeros along

with confidence intervals corresponding to three standard deviations (a confidence

interval in excess of 99 percent). The number of poles and zeros is equal to the

number of sampling intervals between the most delayed and least delayed outputs

and inputs respectively. For example, in a linear difference model structure such as
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y(t) + a1y(t − 1) + a2y(t − 2) = b1u1(t − 1) + b2u1(t − 2) + c1u2(t − 1), there are

two poles and one zero from u1 to y and just the two poles from u2 to y assuming

the sampling interval is one second. Overlapping or close proximity of the confidence

intervals of a pole-zero pair indicates model order reduction is possible.

Example: DC Motor Seeded with a Single-Point Defect

In order to demonstrate the advantages of using this fault detection methodology,

two cases are considered - one that utilizes PCA for feature extraction and another

that doesn’t. The primary benefit of PCA is that it allows the user to choose a high

order model to obtain a good representation of the system and collect information

about any faults that are present while maintaining a small number of features to

make classification more convenient. Since PCA suppresses a loss of information when

reducing the dimension of a dataset, choosing a high order model, generating more

than two features and then applying PCA on them to obtain two new features in

the form of principal components is expected to yield an improvement during clas-

sification. To demonstrate this, two model structures are derived for the example

in this chapter. One of them consists of two ‘a’ parameters while the other consists

of three. Since PCA is employed when there are more than two parameters in or-

der to reduce the number of features for classification to two, a comparison across

the two cases reveals the benefits that PCA offers. Before proceeding, it is impor-

tant to understand the use of a particular notation. The order vector is always a

[1 × 5] matrix (i.e. a row vector). The first element is the order of the output

terms, the next two denote the orders of each of the inputs while the last two denote

the delays of each of the inputs. For example, for a model structure of the form

y(t)+a1y(t− 1)+a2y(t− 2) = b1u1(t− 1)+ b2u1(t− 2)+ c1u2(t− 3), the order vector

is published as [2 2 1 1 3]. This format is used in the rest of this thesis.

Based on the plots in Fig. 3.7, it is observed that choosing a lower order model

generates a less accurate fit although the residual analysis is very good. This is the

best second order model structure that fits the data. Additionally, when increasing



77

Figure 3.7: Order selection analysis plots - Top: Pole-zero maps; Middle: Cross-correlation
plots between u1 and residuals; Bottom: Cross-correlation plots between u2 and residuals

the order of the output terms to three, a marked improvement in the fit percentage is

noticed. The residual analysis showing cross correlation between u1 and the residuals

however is not perfect. Nevertheless, the two points outside the confidence interval

merely indicate that the output y(t) that originates from the inputs u1(t − 1) and

u1(t − 6) is not perfectly described by the model (once again assuming a sampling

interval of one second). However, since the deviations outside the 99% confidence in-

terval are marginal and is still offset by the 4% increase in the model fit, the selected

model structure is acceptable. Lastly, an analysis of the pole-zero map for both cases

indicates that all the poles and zeros are separated from one another by more than

3 standard deviations of each value, indicating that the step-up to three ‘a’ terms is

not redundant.

Although a similar approach is followed in Chapters 4 and 5, it is noted that when

comparing certain cases where the order is larger than two, a two-dimensional feature

plot is generated even when PCA is not used. This is done by assuming that the third
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‘a’ parameter is less significant compared to the other two when it comes to compar-

ing them for differences, as shown in a similar case in the text by Keesman [37]. This

is done to provide uniformity across the results sections of those chapters.

3.4 Parameter Estimation

Once the required model order is selected, the approach computes the parame-

ter estimates using the Instrumental Variables method according to the theory in

Chapter 2. Two features are then selected for classification. This is done because

it is observed that in most cases, the model-order lies in the neighborhood of two

output terms (i.e. there are usually only one to three output terms used to satisfy

the model structure selection criteria). Furthermore, if the order selection routine

chooses one output term and (nb, nc) input terms for each of the inputs, then the

approach selects one output term and the nb terms as these terms are expected to

carry most information about the fault. The nc terms are not selected because this

coefficient is associated with the external torque load which, in general, is not part

of the feedback system and is therefore unlikely to carry information about the fault.

If the order selection routine selects two or more output parameter terms, then the

algorithm selects both these terms for feature extraction because they are expected

to contain most information about the fault.

Example: DC Motor Seeded with a Single-Point Defect

The estimated parameters and the measured and modeled outputs for each of the

two cases are presented in Figs. 3.8 and 3.9.

3.5 Feature Extraction

Once the required parameters are selected, feature extraction is performed. The

program allows the user to choose whether or not to implement PCA to extract the

required features. It is once again pointed out that the PCA techniques are used,
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Figure 3.8: Modeled and measured motor current outputs of a healthy PM DC motor
model and the model parameter estimates for 25 data sets each of the healthy and degraded
conditions of the same system using a model order of [2 2 2 1 1]

Figure 3.9: Modeled and measured motor current outputs of a healthy PM DC motor
model and the model parameter estimates for 25 data sets each of the healthy and degraded
conditions of the same system using a model order of [3 6 3 1 2]
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both for dimension reduction and, when there is no reduction, to transform a pair

of linearly correlated parameter estimates to two linearly uncorrelated features such

that the variance of the parameter estimates is maximized along one of the feature

axes. Once the features are computed, a feature plot is generated in the form of

a scatter diagram showing points from the feature vectors that belong to classes of

different health conditions.

Example: DC Motor Seeded with a Single-Point Defect

In the case where PCA is applied, the following table shows the eigenvalues and

the contribution of the corresponding eigenvector to the total variance of the data

set. Additionally, Fig. 3.10 compares the original parameter estimates alongside the

Table 3.1: Computed Eigenvalues and Eigenvectors during PCA

Eigenvector Eigenvalue Contribution%

e1 0.0015 80.57

e2 3.6167× 10−4 19.43

e3 1.0872× 10−7 0.00584

calculated features. The features from both cases (the parameter estimates for the

case with model order [2 2 2 1 1] are the features themselves) are then plotted on the

2D scatter diagram shown in Fig. 3.11.

3.6 Classification and Validation

As indicated in Chapter 2, Bayesian classification is employed to segregate the fea-

tures into different classes. The features obtained from the training data are grouped

in the same order as the data and the corresponding health condition labels are paired

to them to create the dataset required for drawing the decision boundaries described

in Chapter 2. Once the features from the training data set are used to create the clas-

sification bounds, a ‘validation’ dataset is used to estimate model parameters, extract
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Figure 3.10: Comparison of features calculated using PCA (Left) to original parameter
estimates (Right) for case with model order [3 6 3 1 2]

Figure 3.11: Classification plots - Left: Model order - [2 2 2 1 1] without PCA for feature
extraction; Right: Model order - [3 6 3 1 2] with PCA for feature extraction
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features and correctly place them in the appropriate class. The transformation matrix

used to transform the parameter estimates from the training data into features using

PCA is stored and applied on parameter estimates from the validation data set. This

eliminates the need to recompute a transformation matrix using more than one set

of validation data. Once the features are extracted from the validation data set, they

are classified in accordance with the theory behind Bayesian classification provided

in Chapter 2. For the proposed approach, a uniform cost function is assumed, the

conditional probability density function that a feature vector belongs to a particular

health class is normally distributed and the prior probabilities of being assigned to a

particular health class is equal for each class.

Example: DC Motor Seeded with a Single-Point Defect

For this example, the feature plots with classification and validation are shown in

Fig. 3.11. Table 3.2 summarizes the results observed. The approach is programmed

in MATLAB and SIMULINK, the algorithms and block diagrams of which are available

in the appendices.

It is therefore concluded that using a higher order model with PCA for feature

Table 3.2: Classification and Validation Results

Model Order Features Misclassification%

[2 2 2 1 1] a1 and a2 30

[3 6 3 1 2] z1 and z2 6

extraction produces superior results as opposed to the previous approach of using the

parameter estimates themselves as features. The simulation and experimental results

shown in the following chapters reflect this conclusion.
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Chapter 4

Simulations

The results of the simulations used to build and validate the fault detection al-

gorithms based on the theory of Chapter 2 are presented here. The algorithms are

developed, adjusted and validated based on its performance on data from a simulated

permanent magnet DC motor with a seeded single-point defect and reduction in lu-

brication as described in the previous chapter.

For the simulations, a total of 120 data sets are used for both supervised training

of the classification algorithm and validation. Amongst each of the 120 data sets,

forty sets each from a healthy model, one with a simulated outer-race defect and an-

other with a simulated reduction in lubrication are generated. Twenty sets from each

class are then used for supervised training of the classifier while the balance from each

health condition are used for validation. The motor and single-point defect param-

eter values are partially published in Table 2.3 and completely in the corresponding

MATLAB program in Appendix B. Consistent with prior works, the output signal

used for feature extraction is the motor current signal as the defects are expected to

affect it more than they would affect the motor velocity signal [14, 17, 19, 20, 23].

The two input signals considered are the velocity command and the controller input

based on the discussion on fault detection in closed-loop systems in Chapter 2. The

results using each of these inputs are analyzed and a choice is made based on which

offers better performance. The controller input is expected to perform marginally

better in general.

Section 4.1 presents the results for the various cases tested. As mentioned earlier,
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the major modifications to the fault detection approach compared to the earlier ap-

proach used in the example of Chapter 2 are: (i) a thorough analysis of fault detection

in closed-loop systems (see Chapter 2) to hypothesize the best possible combination

of inputs and outputs for parameter estimation, (ii) use of an intuitive order selection

routine to select a model order that yields a fit above a certain minimum acceptable

limit while ensuring that results from a residual analysis are not compromised - an

effect that might lead to incorrect classification based on model differences other than

that due to the inherent faults, and (iii) application of principal component analysis

to either take the two available linearly correlated model parameter estimates (in the

case of a first-order or second-order linear difference equation as elucidated in the

previous chapter) and uncorrelate them by performing a transformation that results

in two new features, one of which possesses the largest variance in the data, or achiev-

ing the same result after choosing two features from more than two parameters (in

the case of higher order models). Therefore, the results in the following section are

arrived at by using the approach that incorporates the above modifications. Section

4.2 discusses the inferences drawn from the results. A similar approach is used for

the experiments of Chapter 5.

4.1 Results

Note: Amongst the statistics for each case is listed the misclassification percentage

as a measure of the classification performance. In all cases, the output signal ‘y1’ is

motor current and the external load torque is always used as an input ‘u2’ during

parameter estimation. This provides better parameter estimation performance. Two

types of ‘u1’ inputs are used. They are presented separately under Conditions 1 and

2 in Sections 4.1.1 and 4.1.2.
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4.1.1 Condition 1

In this section, input ‘u1’ is the Reference Velocity signal. The time plots of the

input and output signals are shown in Fig. 4.1. Two model structures are tested and

Figure 4.1: Time plots for Condition 1. Left - Case 1: Order Vector [2 1 2 1 1]; Right -
Case 2: Order Vector [3 1 2 1 1]

the results, after applying the developed algorithm in a manner indentical to that

shown in Chapter 3, are presented as Cases 1 and 2.
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Table 4.1: Case 1: Order Vector: [2 1 2 1 1]; Fit: 86.58%

Associated Plots: Figs. 4.2 to 4.4

Case Feature Extraction Misclassification %

Training Without PCA 13.33

Validation Without PCA 33.33

Training With PCA 13.33

Validation With PCA 28.33

Figure 4.2: Order selection analysis plots - Top: Pole-zero map; Middle: Cross-correlation
between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 4.3: Feature plots - Top: Training Cases; Bottom: Validation Cases

Figure 4.4: Feature plots - Top: Training Cases; Bottom: Validation Cases
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Table 4.2: Case 2: Order Vector: [3 1 2 1 1]; Fit: 86.48%

Associated Plots: Figs. 4.5 to 4.7

Case Feature Extraction Misclassification %

Training Without PCA 13.33

Validation Without PCA 21.67

Training With PCA 13.33

Validation With PCA 15

Figure 4.5: Order selection analysis plots - Top: Pole-zero map; Middle: Cross-correlation
between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 4.6: Feature plots - Top: Training Cases; Bottom: Validation Cases

Figure 4.7: Feature plots - Top: Training Cases; Bottom: Validation Cases
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4.1.2 Condition 2

In this section, input ‘u1’ is the Velocity Error signal. The time plots of the input

and output signals are shown in Fig. 4.8. Two model structures are tested and the

Figure 4.8: Time plots for Condition 2. Left - Case 1: Order Vector [2 2 2 1 1]; Right -
Case 2: Order Vector [3 3 3 1 1]

results, after applying the developed algorithm in a manner indentical to that shown

in Chapter 3, are once again presented as Cases 1 and 2.
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Table 4.3: Case 1: Order Vector: [2 2 2 1 1]; Fit: 92.05%

Associated Plots: Figs. 4.9 to 4.11

Case Feature Extraction Misclassification %

Training Without PCA 13.33

Validation Without PCA 21.67

Training With PCA 15

Validation With PCA 18.33

Figure 4.9: Order selection analysis plots - Top: Pole-zero map; Middle: Cross-correlation
between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 4.10: Feature plots - Top: Training Cases; Bottom: Validation Cases

Figure 4.11: Feature plots - Top: Training Cases; Bottom: Validation Cases
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Table 4.4: Case 2: Order Vector: [3 3 3 1 1]; Fit: 93.45%

Associated Plots: Figs. 4.12 to 4.14

Case Feature Extraction Misclassification %

Training Without PCA 13.33

Validation Without PCA 18.33

Training With PCA 16.67

Validation With PCA 15

Figure 4.12: Order selection analysis plots - Top: Pole-zero map; Middle: Cross-correlation
between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 4.13: Feature plots - Top: Training Cases; Bottom: Validation Cases

Figure 4.14: Feature plots - Top: Training Cases; Bottom: Validation Cases
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4.2 Inferences

When using reference velocity as the input, Defect A (the single-point defect) is

effectively classified while Defect B is not and when using velocity error as the input,

Defect B (the generalized roughness defect) is effectively classified while Defect A is

not. This is partially explained by observing the fit percentages. When reference

velocity is the input, the fit percentage is smaller than when the velocity error is

used as the input. This particular difference is likely attributed to the nature of the

model structure and estimation approach utilized. Since an ARX model structure is

used, the noise model is more accurately estimated when the majority of the noise

occurs at the input. When using the reference velocity as the input, all the noise

in the dataset appears at the output resulting in a lower fit as compared to using

the velocity error as the input. Since the velocity error is the difference between the

noise-free velocity reference signal and the noisy motor velocity feedback, the input

now carries a significant amount of the noise that actually originates at the output,

thereby resulting in a better model fit. Further evidence of this effect is noticed by

observing the residual analysis plots in each case - especially the cross-correlation plot

between the primary input and the residuals. The second input - the external load -

is not part of the closed loop system and is always noise-free.

As shown earlier in Fig. 3.3, the single-point defect and the generalized roughness

defect affect the output differently. While the single point defect generates minor

periodic fluctuations in the output, the overall signal amplitude, frequency and phase

are largely unaffected. However, in the case of the generalized roughness defect,

a difference in the signal amplitude is observed. This difference is likely captured

when calculating the velocity error and this is a plausible explanation as to why the

generalized roughness type defect is better approximated when using velocity error as

the input. Furthermore, it is proposed that the classification accuracy when using the

velocity error as input decreases in the case of Defect A because of the increased effect

of the noise in the parameter estimation process. Observing the residual plots in the

two cases, it is seen that when Defect A is successfully classified, the cross-correlation
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function between both inputs and the residuals are nearly always zero, indicating that

all information from the input to the output is properly captured by the parameters.

It is expected that this is a key requirement when detecting single-point defects that

have only a marginal and periodic effect on the output signal.

The application of PCA for feature extraction produces improved results. The

imperfections in classification suggest that an improvement in parameter estimation

approaches is required for more efficient functioning of the algorithm. It is also

noted that the nature of the defects created in the simulations are not completely

realistic and no general conclusions are made regarding the ability of the PCA based

method to detect specific types of faults. The results here show that PCA as a feature

extraction technique generates improved features to allow more effective classification,

thereby providing scope for future investigation. Furthermore, implementation of a

more accurate classification routine (perhaps by incorporating a more realistic cost

function) is likely to produce enhanced results in the case of features extracted using

PCA due to the generally larger spread within and across features originating from

systems of different health conditions. This is noticeable in the various feature plots

presented earlier.

The next section tests the algorithm’s ability to perform on data collected from a

real EMA system.
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Chapter 5

Experiments

This chapter presents the fault detection results from the experiments conducted

on the Moog MaxForce EMA. Since experiments were conducted both at Moog Inc.

and RIT on two different test rigs, the chapter is divided into two main sections.

Section 5.1 presents the results from the EMA tested on Moog’s rig while Section 5.2

presents the results from the EMA tested on RIT’s rig.

5.1 EMA at Moog

The Moog EMA test rig shown in Fig. 5.1 consists of the EMA, a hydraulic load

actuator, a test fixture, a Moog T200 motor controller, power and signal conditioning

equipment and a data acquisition system. The EMA is mounted vertically in the test

fixture and a controlled load is applied through the hydraulic actuators. Position,

velocity, load and vibration sensors are used to capture relevant information from the

system.

The EMA laboratory signal diagram is shown in Fig. 5.2. The dSpace console,

Table 5.1: Moog Maxforce EMA Technical Specifications
Parameter Value
Stroke 6 in.

Force Capability 3700 lbf. at 15.6 Arms

Peak Motor Velocity 4572 rpm at 220 V AC
Number of Motor Poles 12

along with MATLAB and SIMULINK , is used to implement the EMA position and

load actuator controller and is also used for data aquisition. The LVDT provides
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position feedback and the differential pressure transducer on the hydraulic load ac-

tuator provides load feedback. The accelerometers measure vibration. The position

controller (part of the dSpace console) outputs a velocity command signal to the mo-

tor controller. The controller uses the resolver and motor current feedback signals to

produce compensated voltage commands to the motor coil windings.

In the case of the Moog MaxForce EMA, two sets of data collected by Moog Inc.

Figure 5.1: Moog Maxforce EMA Test Rig (Courtesy Moog Inc., East Aurora, NY)

is provided for use, one each for training and validation. Amongst the signals col-

lected, those of importance to the present work include position command, position

feedback, motor quadrature current and external load. Since the dataset is provided

directly by Moog, specific details regarding the aquisition process is not available.

The data sets have a sampling interval of 8.33̇ × 10−4 seconds. Since Moog did not

generate these data sets specifically for the parameter estimation based application

(its original application was for an alternative frequency-based approach), a closer

investigation into the nature of the signal reveals that the sampling interval is nearly
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Figure 5.2: EMA Laboratory Signal Diagram

three times higher than what is required to capture the highest frequency fluctations

in the data. This is highly undesirable for parameter estimation based approaches as

the lack of change in the signal over three samples results in computational issues.

Figure 5.3 shows a zoomed in version of one of the signals captured by Moog. The

unnecessarily high sampling rate is evident. It is also seen from Fig. 5.3 that the

original sampling rate causes sections where there is no change in the signal across

three samples and then a sudden change across one sample. This may lead to poor

estimation results that subsequently affects fault detection. After resampling how-

ever, both theses issues are rectified. It is important to notice that the resampling

process does not just involve discarding two sample points periodically starting with

the second. Doing so could lead to signal aliasing should there be any fluctations of

higher frequencies. Therefore to prevent this, MATLAB ’s built-in function ‘resample’

is used which applies an anti-aliasing filter (in this case, a particular form of low pass

filter [38]) prior to resampling.

The number of input and output data options are limited for data collected from

the EMA. Amongst the two possible output signals, namely motor velocity and motor
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Figure 5.3: Left: Zoomed in version of the motor quadrature current signal captured from
the MaxForce EMA by Moog shows a sampling rate three times faster than the optimum
required for effecive parameter estimation; Right: The same section of the signal after
resampling

quadrature current, the current is used because it is based on validated and verified

results from previous works that motor current in the case of brushless motors such as

the PMSM in the MaxForce EMA carry information about bearing defects - the type

of defect addressed in this work. A short explanation as to why the fault signature

of single-point defects is reflected in the motor phase currents (and therefore in the

quadrature current as well) is that such a defect causes vibrations in the motor shaft

which result in minor deflections in the shaft’s axis. Since the shaft is coupled to the

rotor, these shifts cause minor variations in the rotors position relative to each of the

windings, thereby causing minor variations in the magentic flux in the rotor-stator

system resulting in certain characteristic fluctuations in the current drawn by each

of the stator windings within the motor. This is why there is a direct relationship

between the vibration frequency due to the fault and the frequency reflected in the

current signal as indicated by Eqs. (1.1), (2.52) and (3.1).

Sections 5.1.1 to 5.1.5 present for five different conditions. Each condition corre-

sponds to a different dataset. In all cases, the output signal ‘y1’ is motor quadrature

current and the external load torque is always used as input ‘u2’ during parameter es-

timation. This provides better parameter estimation performance. Additionally, each

condition presents two cases of results using reference position and position error as
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the two possible input signals for ‘u1’.

5.1.1 Condition 1

The time plots for this dataset are shown in Fig. 5.4.

Figure 5.4: Time plots for Condition 1. Left - Case 1: Reference position input; Right -
Case 2: Position error input

Table 5.2: Case 1: Input u1 - Reference Position; Order Vector: [1 2 1 1 1]; Fit: 93.24%

Associated Plots: Figs. 5.5 to 5.7

Case Feature Extraction Misclassification %

Training Without PCA 50

Validation Without PCA 40

Training With PCA 40

Validation With PCA 35
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Figure 5.5: Order selection analysis plots for Case 1 - Top: Pole-zero map; Middle: Cross-
correlation between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 5.6: Feature plots for Case 1 without PCA - Left: Training Cases; Right: Validation
Cases

Figure 5.7: Feature plots for Case 1 with PCA - Left: Training Cases; Right: Validation
Cases

Table 5.3: Case 2: Input u1 - Position Error; Order Vector: [3 4 4 3 3]; Fit: 89.21%

Associated Plots: Figs. 5.8 to 5.10

Case Feature Extraction Misclassification %

Training Without PCA 50

Validation Without PCA 60

Training With PCA 35

Validation With PCA 35
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Figure 5.8: Order selection analysis plots for Case 2 - Top: Pole-zero map; Middle: Cross-
correlation between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 5.9: Feature plots for Case 2 without PCA - Left: Training Cases; Right: Validation
Cases

Figure 5.10: Feature plots for Case 2 with PCA - Left: Training Cases; Right: Validation
Cases



106

5.1.2 Condition 2

The time plots for this dataset are shown in Fig. 5.11.

Figure 5.11: Time plots for Condition 2. Left - Case 1: Reference position input; Right -
Case 2: Position error input

Table 5.4: Case 1: Input u1 - Reference Position; Order Vector: [2 4 6 2 1]; Fit: 80.10%

Associated Plots: Figs. 5.12 to 5.14

Case Feature Extraction Misclassification %

Training Without PCA 60

Validation Without PCA 50

Training With PCA 35

Validation With PCA 40
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Figure 5.12: Order selection analysis plots for Case 1 - Top: Pole-zero map; Middle: Cross-
correlation between u1 and residuals; Bottom: Cross-correlation between u2 and residuals

Figure 5.13: Feature plots for Case 1 without PCA - Left: Training Cases; Right: Validation
Cases
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Figure 5.14: Feature plots for Case 1 with PCA - Left: Training Cases; Right: Validation
Cases

Table 5.5: Case 2: Input u1 - Position Error; Order Vector: [3 3 3 1 2]; Fit: 80.12%

Associated Plots: Figs. 5.15 to 5.17

Case Feature Extraction Misclassification %

Training Without PCA 45

Validation Without PCA 35

Training With PCA 10

Validation With PCA 10
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Figure 5.15: Order selection analysis plots for Case 2 - Top: Pole-zero map; Middle: Cross-
correlation between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 5.16: Feature plots for Case 2 without PCA - Left: Training Cases; Right: Validation
Cases

Figure 5.17: Feature plots for Case 2 with PCA - Left: Training Cases; Right: Validation
Cases
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5.1.3 Condition 3

The time plots for this dataset are shown in Fig. 5.18. It is noted that the dataset

does not yield an acceptable model fit when reference position is used as an input

(i.e. there are no Case 1 results).

Figure 5.18: Time plots for Condition 3, Case 2: Position error input
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Table 5.6: Case 1: Input u1 - Reference Position; Order Vector: [2 2 2 4 4]; Fit: 48.50%

Associated Plots: None

Case Feature Extraction Misclassification %

Training Without PCA N/A

Validation Without PCA N/A

Training With PCA N/A

Validation With PCA N/A

Table 5.7: Case 2: Input u1 - Position Error; Order Vector: [3 2 2 1 2]; Fit: 83.34%

Associated Plots: Figs. 5.19 to 5.21

Case Feature Extraction Misclassification %

Training Without PCA 40

Validation Without PCA 45

Training With PCA 40

Validation With PCA 15
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Figure 5.19: Order selection analysis plots for Case 2 - Top: Pole-zero map; Middle: Cross-
correlation between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 5.20: Feature plots for Case 2 without PCA - Left: Training Cases; Right: Validation
Cases

Figure 5.21: Feature plots for Case 2 with PCA - Left: Training Cases; Right: Validation
Cases
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5.1.4 Condition 4

The time plots for this dataset are shown in Fig. 5.22. It is noted that the dataset

does not yield an acceptable model fit when reference position is used as an input

(i.e. there are no Case 1 results).

Figure 5.22: Time plots for Condition 4, Case 2: Position error input
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Table 5.8: Case 1: Input u1 - Reference Position; Order Vector: [2 2 2 2 1]; Fit: 69.52%

Associated Plots: None

Case Feature Extraction Misclassification %

Training Without PCA N/A

Validation Without PCA N/A

Training With PCA N/A

Validation With PCA N/A

Table 5.9: Case 2: Input u1 - Position Error; Order Vector: [3 2 3 1 2]; Fit: 80.37%

Associated Plots: Figs. 5.23 to 5.25

Case Feature Extraction Misclassification %

Training Without PCA 45

Validation Without PCA 40

Training With PCA 30

Validation With PCA 10
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Figure 5.23: Order selection analysis plots for Case 2 - Top: Pole-zero map; Middle: Cross-
correlation between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 5.24: Feature plots for Case 2 without PCA - Left: Training Cases; Right: Validation
Cases

Figure 5.25: Feature plots for Case 2 with PCA - Left: Training Cases; Right: Validation
Cases
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5.1.5 Condition 5

The time plots for this dataset are shown in Fig. 5.26.

Figure 5.26: Time plots for Condition 5. Left - Case 1: Reference position input; Right -
Case 2: Position error input

Table 5.10: Case 1: Input u1 - Reference Position; Order Vector: [1 2 1 1 1]; Fit: 87.52%

Associated Plots: Figs. 5.27 to 5.29

Case Feature Extraction Misclassification %

Training Without PCA 15

Validation Without PCA 50

Training With PCA 10

Validation With PCA 50
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Figure 5.27: Order selection analysis plots for Case 1 - Top: Pole-zero map; Middle: Cross-
correlation between u1 and residuals; Bottom: Cross-correlation between u2 and residuals

Table 5.11: Case 2: Input u1 - Position Error; Order Vector: [3 2 1 1 1]; Fit: 89.08%

Associated Plots: Figs. 5.30 to 5.32

Case Feature Extraction Misclassification %

Training Without PCA 65

Validation Without PCA 70

Training With PCA 50

Validation With PCA 35
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Figure 5.28: Feature plots for Case 1 without PCA - Left: Training Cases; Right: Validation
Cases

Figure 5.29: Feature plots for Case 1 with PCA - Left: Training Cases; Right: Validation
Cases
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Figure 5.30: Order selection analysis plots for Case 2 - Top: Pole-zero map; Middle: Cross-
correlation between u1 and residuals; Bottom: Cross-correlation between u2 and residuals
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Figure 5.31: Feature plots for Case 2 without PCA - Left: Training Cases; Right: Validation
Cases

Figure 5.32: Feature plots for Case 2 with PCA - Left: Training Cases; Right: Validation
Cases
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5.1.6 Inferences for EMA at Moog

The nature of the input signal (i.e. sine wave/triangle wave/square wave) plays

an important role in the performance of the algorithm. This is likely because certain

types of signals are more or less exciting than others and since parameter estimation

is purely a numerical approach, the nature of excitation provided by different types

of signals affects the performance of the estimation approach. It is also observed

that using the position error as input provides marginally favorable results especially

in cases where reference position is unable to even obtain a reasonable fit to the

data. This appears to be in conjunction with the discussion on closed-loop fault

detection techniques, the theory of which is directly applicable to system identification

in closed-loop. It is also noted that in all cases, priority is given to residual analysis

since the primary defect type in the EMA from Moog is a single-point defect and

it is observed in simulations that the residual analysis plays an important role in

determining whether or not such defects are effectively identified.

It is evident that PCA is advantageous for feature extraction thereby resulting in

improved classification performance. It is once again concluded that an improvement

in the parameter estimation and classification algorithms will further enhance the

fault detection results when PCA is employed for feature extraction in the manner

discussed in Chapter 3. Although certain cases do not show very good results, they are

definitely an improvement over the corresponding results when PCA is not applied.

This is shown once again in Section 5.2.

5.2 Results from EMA at RIT

The RIT EMA test rig is shown in Fig. 5.33. The data aquisition is through

dSpace. The other components of the rig are similar to the Moog test rig except for

the absence of a hydraulic load actuator due to the nature of the applied load on the

horizontally mounted EMA. The load is applied via two springs mounted as shown in

Fig. 5.33. The springs get compressed and extended with the actuation of the EMA.
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Therefore, the load varies directly with position command according to Hooke’s law

F = −kex where ke is the combined spring constant - since the springs are in parallel,

ke = 2× k where k is the spring constant of each spring - and x is the displacement

of the the actuator at a given instant of time. Also, while the velocity command

Figure 5.33: RIT Test Rig for Moog MaxForce EMA

signal to the motor controller (see Fig. 5.2) is not available when using the Moog test

rig, the signal is available in the RIT test rig, allowing it to be used during the fault

detection process.

The lack of the motor quadrature current requires that an approximated value be

calculated for use. However, after doing so, it is found that a linear model structure

is unable to fit the calculated output due to the errors realised during the approxi-

mation process (see Fig. 5.35). Therefore, a few experiments are conducted using the

actuator position as the output while using velocity command and position error as

possible inputs. This is done because it is hypothesized that since the nature of the

defect in the EMA is only due to variations in lubrication, the characteristics of the
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unhealthy operation might be noticeable in the motor shaft velocity. Since this signal

is unavailable, it is further presumed that any changes in the shaft velocity will affect

the actuator linear position.

Amongst the 32 datasets, 16 each are from EMAs having different levels of lubri-

cation. Each of the 16 datasets are further subdivided into 8 each for training and

validation. The data aquisition is performed in a manner similar to that of the EMA

data collected at Moog with the exception of a few changes in the actual signals cap-

tured. More on this is presented in the next section. The only point of importance

here is that the sampling interval in this case is appropriate at a value of 0.0001 s.

For the data collected using the RIT test rig, the quadrature motor current is not

available and therefore an attempt is made to calculate the current value using the

individual phase current measurements and the motor angle obtained by integrating

the motor velocity. Should this not work, actuator position is used as the output as

it is expected that the reduced lubrication defect will affect the motor shaft speed to

some extent which in turn is expected to affect the linear displacement of the actu-

ator. The transformation of the individual phase currents to the motor quadrature

current is based on Park’s transformation as shown in Eq. (5.1).
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where ia, ib and ic are the individual phase currents, Id, Iq and Io are the direct,

quadrature and zero currents and θ is the motor angle. Park’s transformation is a

coordinate transformation that converts the three-phase stationary variables into a

rotating coordinate system. Applying this transformation is necessary to perform

parameter estimation. The nature of the signal in Fig. 5.34 makes this clear.

The drawbacks of calculating the quadrature current in the manner illustrated

above are: (i) the transformation is extremely sensitive to variations in the motor

angle θ. Typically, fairly accurate results are obtained if the motor angle is recorded
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Figure 5.34: Left - EMA Phase A current; Right - EMA quadrature current

instead of calculated by integrating the motor velocity signal. The EMA data collected

by Moog provides the quadrature current. Therefore, to prove the above statement,

see Fig. 5.35. A blatant difference is observed between the actual quadrature current

obtained from the motor controller’s accurate calculation based on a recorded value

of motor angle and the value calculated using Park’s transform and integrating motor

velocity to give θ; and (ii) the Park’s transformation itself is an approximation. More

information about the Park’s transformation is available in [43, 44, 45].

Once again, two scenarios are considered - one involving feature extraction without

PCA and the other with PCA. Within each scenario, cases for each of the input types

are investigated. It is noted that although a total of 80 data sets are available with 20

data sets each from EMAs with 4 different levels of lubrication, only 32 data sets from

EMAs with 2 different levels of lubrication are tested. This is done because validation

for the use of actuator linear position as an output signal for fault detection is not

provided. Therefore, while most of the research in this area constitutes future work,

some initial results are presented. The time plots for the datasets used are shown in

Figs. 5.36 and 5.37.
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Figure 5.35: Bottom - Comparison of Iq profiles; Top - Comparison of motor angles

Figure 5.36: Time history of input signals. Left: u1 - Reference velocity; Right: u1 - Position
error



129

Figure 5.37: Time history of output signals. Top: Position feedback output; Bottom:
Velocity feedback output

5.2.1 Scenario 1: Feature Extraction without PCA

Table 5.12: Condition 1: Input u1 - Reference Velocity; Order Vector: [3 1 1 2 2]; Fit:
99.124%

Associated Plot: Fig. 5.38

Case Misclassification %

Training 50

Validation 50
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Figure 5.38: Feature plots - Left: Training Cases; Right: Validation Cases

Table 5.13: Condition 2: Input u1 - Position Error; Order Vector: [3 1 1 2 2]; Fit: 99.125%

Associated Plot: Fig. 5.39

Case Misclassification %

Training 50

Validation 50

Figure 5.39: Feature plots - Left: Training Cases; Right: Validation Cases
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5.2.2 Scenario 2: Feature Extraction with PCA

Table 5.14: Condition 1: Input u1 - Reference Velocity; Order Vector: [3 1 1 2 2]; Fit:
99.124%

Associated Plot: Fig. 5.40

Case Misclassification %

Training 18.75

Validation 0

Figure 5.40: Feature plots - Left: Training Cases; Right: Validation Cases



132

Table 5.15: Condition 2: Input u1 - Position Error; Order Vector: [3 1 1 2 2]; Fit: 99.125%

Associated Plot: Fig. 5.41

Case Misclassification %

Training 18.75

Validation 0

Figure 5.41: Feature plots - Left: Training Cases; Right: Validation Cases
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5.2.3 Inferences for EMA at RIT

The following inferences are drawn from the results of Sections 5.2.1 and 5.2.2.

1. There is no difference when using the reference velocity or position error as

inputs. This might be because the two signals are similar or because the output

signal dominates both these signals significantly enough that differences in the

input signal are not reflected in the extracted features.

2. When PCA is not used for feature extraction, the classification bounds are not

noticeable and the classification results are extremely poor. On the other hand,

when PCA is used, the results are dramatically improved. The classification

bounds are drawn effectively and 100% accuracy in classification is observed.

This example further confirms the usefulness of PCA techniques for feature

extraction.

3. The model fit in each of the cases is extremely good. This is likely because

the signals are not severly corrupted by noise. Furthermore, although it is not

shown, the residual analysis plots are satisfactory in all cases with the vector

of cross-correlation values between the residuals and inputs generally remaining

within the 99% confidence intervals.

4. Since comprehensive testing is not accomplished since the actuator position as

an output is not analytically investigated, generalizations about the performance

of the algorithm are not made. Therefore, the main conclusion that is drawn

from the above results is that the established approach has scope for detect-

ing generalized roughness type defects and its improvement over the previous

approach of Chapter 2 is once again noticed.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Model-based approaches to bearing fault detection in an Electromechanical actu-

ator were investigated. A thorough review of previous related works revealed a large

number of capable solutions related to such approaches for fault detection in electric

drives. However, no published works regarding the use of basic system identification

techniques for fault detection in EMAs in particular was reported.

The first proposed approach therefore attempted to use system identification to

detect bearing faults in EMAs. In this approach, linear difference models were selected

and various parameter estimation approaches were investigated in order to estimate

the model parameters from EMA signal data. Then the estimated parameters were

used as features for classification, on the assumption that accurate representations of

systems having different health conditions would result in the parameter estimates

being different, thereby allowing their comparison to reveal information about the

health of the system. The proposed approaches were tested on a PM DC motor sys-

tem as well as a DC motor control module. While the approach was able to generate

fairly accurate models capable of simulating the systems accurately, the parameter

estimates from healthy and unhealthy systems differed by an extremely small amount

such that effective classification was not possible. Furthermore, it was observed that

the use of basic linear system identification and parameter estimation techniques failed

to efficiently and effectively isolate unmeasurable disturbances such as sensor noise.

Therefore, the noise influenced the parameter estimates and any apparent differences
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in the estimates were largely due to the differences in the noise profiles. Additionally,

these problems were encountered with simple first or second order systems operating

in open-loop. The EMA is a complex closed-loop system consisting of controllers that

tend to attenutate any information about system degradation that might be present

in the captured signals. Therefore, for effective fault detection, an accruate model

of the system coupled with a feature extraction technique that brings out maximum

information about the faults from the model parameters was required.

In view of these requirements, a novel fault detection algorithm was developed that

combined refined and improved versions of the model parameter estimation techniques

already investigated with principal component analysis for feature extraction followed

by a Bayesian approach to classification. This modified fault detection scheme for

bearing fault detection in EMAs - which has previously not been reported in research

publications - was found to provide considerably improved results over the previous

approach. Furthermore, its ability to detect both single-point defects and generalized

lubrication defects were investigated and shown to be effective. While improvements

in the approach are required for more robust fault detection, it is concluded that model

parameter estimation when coupled with PCA and Bayesian classification techniques

form a potentially effective bearing fault detection scheme for EMAs as well as elec-

tric drives in general, with the capability of detecting generalized roughness defects

as well as single-point defects.

6.2 Future Work

As indicated earlier, some aspects of the current approach that need improvement

include:

1. A more robust, effective and efficient parameter estimation approach - the ap-

proach used in this work is the instrumental variables approach along with a

linear difference equation model structure, and although this approach has its

benefits and is a reliable approach to use for this particular application (see [33]),
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improvements related to the ability of the approach to effectively filter unmea-

surable disturbances so that the parameter estimates do not differ on account of

them can be achieved by conducting more research in this area or using estab-

lished solutions. Furthermore, the current approach will only work if the same

input signals are provided to the system each time during data aquisition. That

is, if a sine wave having a specific characteristic is used as an input to aquire

the required output data to train the classifier, then the exact same signal must

be used to generate data from a system whose health is to be determined. This

makes the approach inflexible and therefore inconvenient.

2. A more realistic classification scheme that perhaps utilizes a non-uniform cost

function or a different approach (other than Bayesian) altogether.

In addition to improving the proposed approach, it is observed from the review

of previous works that a dearth of research in the detection of generalized roughness

type defects is often reported. This work shows promise in this regard as evidenced

by the results presented in the simulations as well as in the case of the EMA at RIT.

Therefore next steps also include refining the proposed algorithm to effectively detect

such types of faults.

6.2.1 Piece-wise Parameter Estimation

First steps in this direction are already made as evidenced by the MATLAB pro-

grams published in the last two sections of Appendix B. It is proposed that a novel,

piece-wise parameter estimation approach be employed to estimate parameters before

applying similar feature extraction and classification techniques. To understand the

idea behind the approach, assume a sine wave input is provided to a system to extract

output data. In the case of EMAs or other DC motor drives that are often accurately

represented by first or second order transfer functions, the output waveform will also

be sinusoidal. It is then proposed that splitting the output waveform (and the corre-

sponding sections of all the other signal data used during parameter estimation) into

linear segments that likely contain the most information about the fault will increase
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the magnitude of the fault signature in the output data. For example, if the output

signal in Fig. 3.3 is split such that the linear portions of the signal (where the defect

appears prominently) are stored and the rest discarded, then (i) more data sets are

generated allowing more accurate training of the classifier and (ii) it is expected that

the parameter estimates will be able to pick up more information about the fault,

thereby allowing the feature extraction process to reveal the differences better, allow-

ing better classification. Figure 6.1 shows a sample feature plot obtained using the

current version of the piece-wise approach.

In this approach, the power spectral density of the output signal is computed and

Figure 6.1: Feature plot for detecting generalised roughness type faults using piece-wise
parameter estimation

the frequency with the highest power is identified. This is most likely the fundamental

frequency of the signal. With this knowledge, a low pass filter is applied on a copy of

the output signal to smoothen it completely. Then a step-wise evaluation of the slope

of the signal is computed and the linear segments are separated. While all this is done

on a copy of the output signal, the same segregation process is mirrored on the actual
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data set. This results in multiple data sets consisting of an output that, in this case,

is essentially a straight line holding maximum information about the fault. A simple

first-order linear difference equation is selected and the fault detection approach de-

vised earlier in this work is applied to each segment. The result in Fig. 6.1 is to be

compared directly with Fig. 4.3. The improvement in the isolation of features from

the generalised roughness defect (Defect B) is evident. It is believed that refinements

to this approach will go a long way in developing an effective model-based approach

for efficiently and effectively detecting generalised roughness type faults not only in

EMAs but in electric drives in general.



139

Bibliography

[1] Mark A Davis. High Performance Electromechanical Servoactuation using Brush-

less DC Motors. In Motor-Con Conference, pages 1–12, Atlantic City, 1984.

[2] Edward Balaban, Abhinav Saxena, Kai Goebel, Carl S Byington, Matthew J

Watson, Sudarshan Bharadwaj, and Matthew Smith. Experimental Data Col-

lection and Modeling for Nominal and Fault Conditions on Electro-Mechanical

Actuators. In Annual Conference of the Prognostics and Health Management

Society, pages 1–15, 2009.

[3] Lennart Ljung. System Identification: Theory for the User. Prentice Hall PTR,

2nd edition, 1999.

[4] Oliver Nelles. Nonlinear System Identification. Springer-Verlag, 1st edition, 2001.

[5] LJ Technical Systems. DC Motor Control Module User Manual. LJ Group,

Holtsville, NY, USA, 1st edition.

[6] Stephen L Botten, Chris R Whitley, and Andrew D King. Flight Control Actu-

ation Technology for Next-Generation All-Electric Aircraft. Technology Review

Journal, (Millennium):55–68, 2000.

[7] Stephen C Jensen, Gavin D Jenney, Bruce Raymond, and David Dawson. Flight

Test Experience with an Electromechanical Actuator on the F-18 Systems Re-

search Aircraft. In 19th Digital Avionics Systems Conference, pages 1–11,

Philadelphia, PA, 2000.

[8] Dominique Van Den Bossche. The A380 Flight Control Electrohydrostatic Actu-

ators, Achievements and Lessons Learnt. In 25th International Congress of the

Aeronautical Sciences, pages 1–8, Hamburg, Germany, 2006.

[9] Edward Balaban, Prasun Bansal, Paul Stoelting, Abhinav Saxena, Kai F Goebel,

and S Curran. A Diagnostic Approach for Electro-Mechanical Actuators in

Aerospace Systems. In IEEE Aerospace Conference, pages 1–13, 2009.

[10] Carl S Byington and Paul Stoelting. A Model-Based Approach to Prognostics

and Health Management for Flight Control Actuators. In IEEE Aerospace Con-

ference, pages 1–12, 2004.



140

[11] Sriram Narasimhan, Indranil Roychoudhury, Edward Balaban, and Abhinav Sax-

ena. Combining Model-Based and Feature-Driven Diagnosis Approaches A Case

Study on Electromechanical Actuators. In 21st International Workshop on Prin-

ciples of Diagnosis, pages 1–8, 2010.

[12] Rolf Isermann and P Balle. Trends in the Application of Model-based Fault

Detection and Diagnosis of Technical Processes. Control Engineering Practice,

5(5):709–719, 1997.

[13] Rolf Isermann. Model-Based Fault-Detection and Diagnosis Status and Appli-

cations. Annual Reviews in Control, 29(1):71–85, January 2005.

[14] Wei Zhou, Thomas G. Habetler, and Ronald G. Harley. Stator Current-Based

Bearing Fault Detection Techniques: A General Review. In IEEE International

Symposium on Diagnostics for Electric Machines, Power Electronics and Drives,

pages 7–10. Ieee, September 2007.

[15] Mahdi S M Alavi, R Izadi Zamanabadi, and M J Hayes. Robust Fault Detec-

tion and Isolation Technique for Single-Input/Single-Output Closed-Loop Con-

trol Systems that Exhibit Actuator and Sensor Faults. IET Control Theory and

Applications, 2(11):951–965, 2008.

[16] C Aubrun, M Robert, and T Cecchin. Fault Detection in a Control Loop. Control

Engineering Practice, 3(10):1441–1446, 1995.

[17] Sreedhar G Babu, A Lingamurthy, and A S Sekhar. Condition Monitoring of

Brushless DC Motor-Based Electromechanical Linear Actuators using Motor

Current Signature Analysis. The International Journal of Condition Monitoring,

1(1):20–32, 2011.

[18] Fabio Immovilli, Marco Cocconcelli, Alberto Bellini, and Riccardo Rubini. De-

tection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy

of Vibration or Current Signals. IEEE Transactions on Industrial Electronics,

56(11):4710–4717, 2009.

[19] Anthony J Chirico III, Jason R Kolodziej, and Larry Hall. A Data Driven Fre-

quency Based Feature Extraction and Classification Method for EMA Fault De-

tection and Isolation. In 5th Annual Dynamic Systems and Control Conference,

2012.



141

[20] Levent Eren and Michael J Devaney. Motor Current Analysis via Wavelet Trans-

form with Spectral Post-Processing for Bearing Fault Detection. In Instrumenta-

tion and Measurement Technology Conference, number May, pages 20–22, Vail,

CO, USA, 2003.

[21] Aitor Isturiz, Javier Vinals, Santiago Fernandez, Rosa Basagoiti, Eduardo De La

Torre, and Justo Novo. Development of an Aeronautical Electromechanical Ac-

tuator with Real Time Health Monitoring Capability. In Recent Advances in

Aerospace Actuation Systems and Components, Toulouse, France, 2010.

[22] Satish Rajagopalan, Jose M. Aller, Jose A. Restrepo, Thomas G. Habetler, and

Ronald G. Harley. Detection of Rotor Faults in Brushless DC Motors Operating

Under Nonstationary Conditions. IEEE Transactions on Industry Applications,

42(6):1464–1477, November 2006.

[23] J Royo, R Segui, A Pardina, S Nevot, and F J Arcega. Machine Current Sig-

nature Analysis as a Way for Fault Detection in Permanent Magnet Motors in

Elevators. In Proceedings of the 2008 International Conference on Electrical

Machines, pages 1–6, 2008.

[24] Jason R Stack, Thomas G Habetler, and Ronald G Harley. Fault-Signature

Modeling and Detection of Inner-Race Bearing Faults. IEEE Transactions on

Industry, 42(1):61–68, 2006.

[25] J.R. Stack, T.G. Habetler, and R.G. Harley. Fault Classification and Fault Sig-

nature Production for Rolling Element Bearings in Electric Machines. IEEE

Transactions on Industry Applications, 40(3):735–739, May 2004.

[26] C.T. Yiakopoulos, K.C. Gryllias, and I.A. Antoniadis. Rolling Element Bear-

ing Fault Detection in Industrial Environments based on a K-means Clustering

Approach. Expert Systems with Applications, 38(3):2888–2911, March 2011.

[27] Zhen Dong and Xinjian Jiang. Failure Detection and Diagnosis System of

BLDCM with Dynamic Load. In Prognostics & System Health Management

Conference, Beijing, 2012.

[28] Xiang-Qun Liu, Hong-Yue Zhang, Jun Liu, and Jing Yang. Fault Detection and

Diagnosis of Permanent-Magnet DC Motor Based on Parameter Estimation and

Neural Network. IEEE Transactions on Industrial Electronics, 47(5):1021–1030,

2000.

[29] Kaiping Yu, Fang Yang, Hong Guo, and Jinquan Xu. Fault Diagnosis and Loca-

tion of Brushless DC Motor System Based on Wavelet Transform and Artificial



142

Neural Network. In International Conference on Electrical Machines and Sys-

tems, number 1, pages 2–6, 2010.

[30] Edward Balaban, Abhinav Saxena, Sriram Narasimhan, Indranil Roychoudhury,

Kai F Goebel, and Michael T Koopmans. Airborne Electro-Mechanical Actuator

Test Stand for Development of Prognostic Health Management Systems. In

Annual Conference of the Prognostics and Health Management Society, pages

1–13, 2010.

[31] Michael T Koopmans, Rudolph C Hooven, and Irem Y Tumer. Reliability Based

Design Recommendations for an Electromechanical Actuator Test Stand. In

Annual Conference of the Prognostics and Health Management Society, pages

1–15, 2010.

[32] Michael T Koopmans and Irem Y Tumer. Function-Based Analysis and Redesign

of a Flyable Electromechanical Actuator Test Stand. In Proceedings of the ASME

International Design Engineering Technical Conferences & Computers and In-

formation in Engineering Conference, pages 1–12, Montreal, Quebec, Canada,

2010.

[33] R Dixon and A W Pike. Application of Condition Monitoring to an Electrome-

chanical Actuator: A Parameter Estimation Based Approach. Computer & Con-

trol Engineering Journal, (April):71–81, 2002.

[34] Olaf Moseler and Rolf Isermann. Application of Model-Based Fault Detection to

a Brushless DC Motor. IEEE Transactions on Industrial Electronics, 47(5):1015–

1020, 2000.

[35] Ravindra Patankar and Liangtao Zhu. Brushless DC Motor Actuator Health

Monitoring and Degradation Compensation via Real-Time Multiple Parameter

Estimation. International Journal of Automation and Control, 1(1):48–63, 2007.

[36] Irina Trendafilova. An Automated Procedure for Detection and Identification

of Ball Bearing Damage using Multivariate Statistics and Pattern Recognition.

Mechanical Systems and Signal Processing, 24(6):1858–1869, August 2010.

[37] Karel J Keesman. System Identification: An Introduction. Springer-Verlag, 1st

edition, 2011.

[38] Lennart Ljung. System Identification Toolbox User’s Guide. Technical report,

The MathWorks Inc., Natick,MA, 2012.



143

[39] Henry a. Sodano, Jae-Sung Bae, Daniel J. Inman, andW. Keith Belvin. Improved

Concept and Model of Eddy Current Damper. ASME Journal of Vibration and

Acoustics, 128(3):294, 2006.

[40] Ramin S Esfandiari and Bei Lu. Modeling and Analysis of Dynamic Systems.

CRC Press, 1st edition, 2010.

[41] Konstantin P Louganski. Modeling and Analysis of a DC Power Distribution

System in 21st Century Airlifters. Ms thesis, Virginia Polytechnic Institute and

State University, 1999.

[42] Rolf Isermann. Fault-Diagnosis Systems: An Introduction from Fault Detection

to Fault Tolerance. Springer-Verlag, 1st edition, 2006.

[43] Agustin Vasquez Arvallo. Condition-Based Maintenance of Actuator Systems

using a Model-Based Approach. Phd dissertation, The University of Texas at

Austin, 2000.

[44] Paul Brian Hvass and Delbert Tesar. Condition Based Maintenance for Intelli-

gent Electromechanical Actuators. Technical report, The University of Texas at

Austin, Austin, TX, USA, 2004.

[45] Li Liu. Robust Fault Detection and Diagnosis for Permanent Magnet Syn-

chronous Motors. Phd dissertation, Florida State University, 2006.

[46] R P W Duin, P Juszczak, P Paclik, E Pekalska, D De Ridder, D M J Tax, and

S Verzakov. PRTools4: A Matlab Toolbox for Pattern Recognition. Technical

Report August, Delft University of Technology, 2007.

[47] Lindsay I Smith. A Tutorial on Principal Components Analysis. Technical report,

2002.

[48] Jafar Zarei. Induction Motors Bearing Fault Detection using Pattern Recognition

Techniques. Expert Systems with Applications, 39(1):68–73, January 2012.

[49] Marion Gilson and Paul Van Den Hof. IV Methods for Closed-Loop System

Identification. In 13th IFAC Symposium on System Identification, number 1996,

pages 537–542, 2003.

[50] Paul Van Den Hof. Closed-Loop Issues in System Identification. Annual Reviews

in Control, 22:173–186, 1998.

[51] A. Garinei and R. Marsili. A new Diagnostic Technique for Ball Screw Actuators.

Measurement, 45(5):819–828, June 2012.



144

[52] Wei Zhou, T.G. Habetler, and R.G. Harley. Bearing Fault Detection Via Sta-

tor Current Noise Cancellation and Statistical Control. IEEE Transactions on

Industrial Electronics, 55(12):4260–4269, December 2008.

[53] Rolf Isermann and Olaf Moseler. Model-Based Fault Detection for a Brushless

DC Motor using Parameter Estimation. In 24th Annual IEEE Conference of the

Industrial Electronics Society, volume 8, pages 1956–1960, 1998.

[54] J. H. Zhou, Z. W. Zhong, M. Luo, and C. Shao. Wavelet-Based Correlation

Modelling for Health Assessment of Fluid Dynamic Bearings in Brushless DC

Motors. The International Journal of Advanced Manufacturing Technology, 41(5-

6):421–429, May 2009.

[55] Carl S Byington, Rolf Orsagh, Pattada Kallappa, Jeremy Sheldon, Michael

DeChristopher, Sanket Amin, and Jason Hines. Recent Case Studies in Bearing

Fault Detection and Prognosis. In IEEE Aerospace Conference, pages 1–8, 2006.

[56] Wayne J Dunstan and Robert R Bitmead. Empirical Estimation of Parameter

Distributions in System Identification. In 13th IFAC Symposium on System

Identification, pages 1868–1873, Rotterdam, 2003.



145

Appendix A

Simulink Models

This appendix contains all the Simulink models utilised in this work and referenced

in the preceding chapters. The models are presented under sections that have the

same title as those under which the model was originally referenced.

A.1 Example: Fault Detection in DC Motor Drives

The first two block diagrams in this Appendix show the DC motor model with

a single-point defect seeding mechanism used to test the fault detection algorithm

presented in Chapter 2.

A.2 Simulations

The following block diagrams show a DC motor model based on a state-space rep-

resentation of the standard DC motor equations. It differs from the previous model

in the nature of the single point defect generated (it is more realistic in this model),

the option of adding a simulated generlised roughness type defect and the important

ability to provide two inputs (in this case, speed command and external load). Fur-

thermore, the system shown here operates in closed loop using a PI controller. It

is noted that the controller is merely used to obtain effective tracking and that its

appropriate design is not of interest.
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Figure A.1: Simulink block diagram of healthy DC motor
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Figure A.2: Simulink block diagram of DC motor seeded with single-point defect
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Figure A.3: Simulink block diagram of DC motor seeded with single-point defect and gen-
eralised roughess defect used for testing modified fault detection approach via simulation



149

Figure A.4: Internal architecture of PM DC motor shown in Fig. A.2
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Figure A.5: Internal architecture of defect seeding zone shown in Fig. A.2
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Figure A.6: Internal architecture of Subsystems 1 and 2 shown in Fig. A.2
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Appendix B

MATLAB Programs

This appendix contains some of the MATLAB programs utilized in this work and

referenced in the preceding chapters. The programs are presented under sections that

have the same title as those under which it was originally referenced.

B.1 Estimating Parameters for the ARX Model

The following code estimates the parameter vector for a sample data set using

either Eq. (2.17) or (2.21).

% ARX Parameter Estimation using LSE Technique %

% By Rahulram Sridhar, ME Department, RIT %

clear all; clc

% Create sample data set

sys cont = tf([2],[2 1]);

t s = 0.01; % Sample time

sys disc = c2d(sys cont,t s)

[y t 1]=step(sys disc,0:t s:2); [u t 2]=step(c2d(tf(1,1),t s),0:t s:2);

data = iddata(y,u,t s); compdata = data;

% Choose whether or no to add Gaussian white noise

noise choice = input('Include noise? (1 = yes; 2 = no): ');

if noise choice == 1

stnr = 25; % Select signal−to−noise ratio

y noisy = awgn(y,stnr,'measured');

dataset noisy = iddata(y noisy,u,t s); % Create noisy data set

data = dataset noisy;

end

lsemethod = input('Choose LSE approach − (1) Matrix or (2) Standard : ');

if lsemethod == 1

% Estimate ARX model parameters using the least squares technique with the

% matrix formulation

p = 1; % Choice of model order (needs to be same for output and input)

for i = 1:p



153

X(:,i) = −(data.y((p+1−i):length(data.y)−i));
X(:,p+i) = data.u((p+1−i):length(data.u)−i);

end

theta = (X'*X)\(X'*(data.y(p+1:length(data.y))));
% Extract estimated A and B polynomials from theta vector

B = theta(p+1:length(theta))'; A = [1 theta(1:p)'];

else

% Estimate ARX model parameters using the least squares technique with the

% standard formulation

N = length(data.y); sum1 = 0; sum2 = 0;

% Different model orders for input and output is possible

n = 1; % Select number of output terms

m = 1; % Select number of input terms

% The following step of adding zeros for prior time steps is suggested in

% Lennart Ljung's book System Identification: Theory for the User

idataappend = zeros(m,1); odataappend = zeros(n,1);

inputdata = [idataappend' (data.u)'];

outputdata = [odataappend' (data.y)'];

for k = 1:N

phi1 = outputdata(k:(k+n−1)); phi1 = phi1*−1;
phi2 = inputdata(k:(k+m−1));
phi = [phi1 phi2]; % Regression vector

sum1 = sum1 + (phi'*phi);

sum2 = sum2 + (phi'*outputdata(k+n));

end

theta = (inv(sum1))*sum2; theta(1:n) = theta(n:−1:1);
theta(n+1:n+m) = theta(n+m:−1:n+1);
% Extract estimated A and B polynomials from theta vector

A = [1 theta(1:n)']; B = theta(n+1:n+m);

end

% Final model structure presentation and brief analysis

fprintf('\nEvaluation by Least Squares\n');
fprintf('Model estimated from data. Ignore comment below.\n');
m ls = idpoly(A,B,[],[],[],t s)

fprintf('\n***********************************************\n');
fprintf('*************BRIEF MODEL ANALYSIS****************\n');
g = input('Make a choice (1 = Simulation; 2 = Prediction): ');

if g == 1

figure(1);

yhat ls = sim(m ls,compdata.u,'InitialState','z');

plot(t 1,compdata.y,t 1,data.y,t 1,yhat ls);

elseif g == 2

k = 1; % K−step predictor

figure(1);

yhat ls = predict(m ls,compdata,k); yhat ls = yhat ls.y;

plot(t 1,compdata.y,t 1,data.y,t 1,yhat ls);

else

error('Invalid input. Re−execute code.\n');
end
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xlabel('Time (s)'); ylabel('Signal Amplitude (V)');

title('LS Algorithm Performance with ARX Model');

legend('True Model Simulation','Measured Data','Simulation/Prediction',0);

grid;

fit = 100*(1−norm(compdata.y−yhat ls)/norm(compdata.y−mean(compdata.y)));
fprintf('\nThe fit is: %5.2f %%.\n', fit);

% End of program

The following code estimates the parameter vector for a sample data set using

either the advanced IV estimation approach, more information on which is available

in [3], or the basic IV approach as described in chapter 2.

% ARX Parameter Estimation using IV Technique %

% By Rahulram Sridhar, ME Department, RIT %

clear all; clc

% Create sample data set

sys cont = tf([2],[2 1]);

t s = 0.01; % Sample time

sys disc = c2d(sys cont,t s)

[y t 1]=step(sys disc,0:t s:2); [u t 2]=step(c2d(tf(1,1),t s),0:t s:2);

data = iddata(y,u,t s); compdata = data;

% Choose whether or no to add Gaussian white noise

noise choice = input('Include noise? (1 = yes; 2 = no): ');

if noise choice == 1

stnr = 25; % Select signal−to−noise ratio

y noisy = awgn(y,stnr,'measured');

dataset noisy = iddata(y noisy,u,t s); % Create noisy data set

data = dataset noisy;

end

% Estimate ARX model parameters using the IV technique

p = 1; % Choice of model order (needs to be same for output and input)

for i = 1:p

X(:,i) = −(data.y((p+1−i):length(data.y)−i));
X(:,p+i) = data.u((p+1−i):length(data.u)−i);

end

theta = (X'*X)\(X'*(data.y(p+1:length(data.y))));
% Extract estimated A and B polynomials from theta vector

B = theta(p+1:length(theta))'; A = [1 theta(1:p)'];

% Implement IV method

count = input('Enter the number of iterations for IV method: ');

choice2 = input('Choose algorithm type (1 = Advanced; 2 = Basic): ');

for l = 1:count

y new = sim(idpoly(A,B,1,1,1,0,t s),u);
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data2 = iddata(y new,u,t s);

for i = 1:p

Z(:,i) = −(data2.y((p+1−i):length(data2.y)−i));
Z(:,p+i) = data2.u((p+1−i):length(data2.u)−i);

end

theta = (Z'*X)\(Z'*(data.y(p+1:length(data2.y))));
B = theta(p+1:length(theta))'; A = [1 theta(1:p)'];

if choice2 == 1

e IV = resid(idpoly(A,B,1,1,1,0,t s),data); % Prediction errors

% Generate AR filter

for d = 1:(2*p)

M(:,i) = −(e IV.y(((2*p)+1−i):length(e IV.y)−i));
end

phi = (M'*M)\(M'*(e IV.y((2*p)+1:length(e IV.y))));

D = [1 theta(1:(2*p))'];

y L = sim(idpoly(D,1,1,1,1,0,t s),data.y); % Filter process output

% Filter regressor matrix

for w = 1:(2*p)

X L(:,w) = sim(idpoly(D,1,1,1,1,0,t s),X(:,w));

Z L(:,w) = sim(idpoly(D,1,1,1,1,0,t s),Z(:,w));

end

theta IV = ((Z L)'*(X L))\((Z L)'*(y L(p+1:length(data2.y))));

B = theta IV(p+1:length(theta IV))'; A = [1 theta IV(1:p)'];

elseif choice2 == 2

continue

else

fprintf('\nIncorrect choice. Please re−execute program\n');
break

end

end

% Final model structure presentation and brief analysis

fprintf('\nEvaluation by Instrumental Variables\n');
fprintf('Model estimated from data. Ignore comment below.\n');
m ls = idpoly(A,B,[],[],[],t s)

fprintf('\n***********************************************\n');
fprintf('*************BRIEF MODEL ANALYSIS****************\n');
g = input('Make a choice (1 = Simulation; 2 = Prediction): ');

if g == 1

figure(1);

yhat ls = sim(m ls,compdata.u,'InitialState','z');

plot(t 1,compdata.y,t 1,data.y,t 1,yhat ls);

elseif g == 2

k = 1; % K−step predictor

figure(1);

yhat ls = predict(m ls,compdata,k); yhat ls = yhat ls.y;

plot(t 1,compdata.y,t 1,data.y,t 1,yhat ls);

else

error('Invalid input. Re−execute code.\n');
end
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xlabel('Time (s)'); ylabel('Signal Amplitude (V)');

title('IV Algorithm Performance with ARX Model');

legend('True Model Simulation','Measured Data','Simulation/Prediction',0);

grid;

fit = 100*(1−norm(compdata.y−yhat ls)/norm(compdata.y−mean(compdata.y)));
fprintf('\nThe fit is: %5.2f %%.\n', fit);

% End of program

B.2 Estimating Parameters for the ARMAX Model

The following code estimates the parameter vector for a sample data set using a

multi-stage least squares estimation approach.

% ARMAX Parameter Estimation using Multi−Stage LSE Technique %

% By Rahulram Sridhar, ME Department, RIT %

clear all; clc

% Create sample data set

sys cont = tf([2],[2 1]);

t s = 0.01; % Sample time

sys disc = c2d(sys cont,t s)

[y t 1]=step(sys disc,0:t s:2); [u t 2]=step(c2d(tf(1,1),t s),0:t s:2);

data = iddata(y,u,t s); compdata = data;

% Choose whether or no to add Gaussian white noise

noise choice = input('Include noise? (1 = yes; 2 = no): ');

if noise choice == 1

stnr = 25; % Select signal−to−noise ratio

y noisy = awgn(y,stnr,'measured');

dataset noisy = iddata(y noisy,u,t s); % Create noisy data set

data = dataset noisy;

end

% Estimate ARMAX model parameters using the least squares technique

N = length(data.y); sum1 = 0; sum2 = 0;

% Different model orders for input and output is possible

n = 2; % Select number of output terms

m = 1; % Select number of input terms

% The following step of adding zeros for prior time steps is suggested in

% Lennart Ljung's book System Identification: Theory for the User

idataappend = zeros(m,1); odataappend = zeros(n,1);

inputdata = [idataappend' (data.u)'];

outputdata = [odataappend' (data.y)'];

for k = 1:N

phi1 = outputdata(k:(k+n−1)); phi1 = phi1*−1;
phi2 = inputdata(k:(k+m−1));
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phi = [phi1 phi2]; % Regression vector

sum1 = sum1 + (phi'*phi);

sum2 = sum2 + (phi'*outputdata(k+n));

end

theta = (inv(sum1))*sum2; param = max([n m]);

e = zeros(1,N+param); l e = length(e);

theta = [theta' zeros(1,param)]';

count = input('Enter number of iterations of multi−stage LS: ');

for iter = 1:count

% Calculation of prediction errors of the ARX Model

for x = (param+1):(N+param)

e(x) = (outputdata((x−1):−1:(x−n))*theta(1:n))−...
(inputdata((x−1):−1:(x−m))*theta(n+1:n+m))−...
(e((x−1):−1:(x−param))*theta(n+m+1:n+m+param));

end

% Use LS to estimate parameters

sum3 = 0; sum4 = 0;

for y = 1:N

phi3 = outputdata(y:(y+n−1)); phi3 = phi3*−1;
phi4 = inputdata(y:(y+m−1));
phi5 = e(y:(y+param−1));
phi = [phi3 phi4 phi5]; % Regression vector

sum3 = sum3 + (phi'*phi);

sum4 = sum4 + (phi'*outputdata(y+n));

end

theta = (inv(sum3))*sum4;

end

theta(1:n) = theta(n:−1:1);
theta(n+1:n+m) = theta(n+m:−1:n+1);
theta(n+m+1:n+m+param) = theta(n+m+param:−1:n+m+1);
A = [1 theta(1:n)']; B = theta(n+1:n+m);

C = [1 theta(n+m+1:n+m+param)'];

% Final model structure presentation and brief analysis

fprintf('\nEvaluation by Multi−Stage Least Squares\n');
fprintf('Model estimated from data. Ignore comment below.\n');
m ls = idpoly(A,B,C,[],[],t s)

fprintf('\n***********************************************\n');
fprintf('*************BRIEF MODEL ANALYSIS****************\n');
g = input('Make a choice (1 = Simulation; 2 = Prediction): ');

if g == 1

figure(1);

yhat ls = sim(m ls,compdata.u,'InitialState','z');

plot(t 1,compdata.y,t 1,data.y,t 1,yhat ls);

elseif g == 2

k = 1; % K−step predictor

figure(1);

yhat ls = predict(m ls,compdata,k); yhat ls = yhat ls.y;

plot(t 1,compdata.y,t 1,data.y,t 1,yhat ls);

else
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error('Invalid input. Re−execute code.\n');
end

xlabel('Time (s)'); ylabel('Signal Amplitude (V)');

title('Multi−Stage LS Algorithm Performance with ARMAX Model');

legend('True Model Simulation','Measured Data','Simulation/Prediction',0);

grid;

fit = 100*(1−norm(compdata.y−yhat ls)/norm(compdata.y−mean(compdata.y)));
fprintf('\nThe fit is: %5.2f %%.\n', fit);

% End of program

B.3 Estimating Parameters for the OE Model

The following code estimates the parameter vector for a sample data set using a

multi-stage least squares estimation approach.

% OE Parameter Estimation using Multi−Stage LSE Technique %

% By Rahulram Sridhar, ME Department, RIT %

clear all; clc

% Create sample data set

sys cont = tf([2],[2 1]);

t s = 0.01; % Sample time

sys disc = c2d(sys cont,t s)

[y t 1]=step(sys disc,0:t s:2); [u t 2]=step(c2d(tf(1,1),t s),0:t s:2);

data = iddata(y,u,t s); compdata = data;

% Choose whether or no to add Gaussian white noise

noise choice = input('Include noise? (1 = yes; 2 = no): ');

if noise choice == 1

stnr = 25; % Select signal−to−noise ratio

y noisy = awgn(y,stnr,'measured');

dataset noisy = iddata(y noisy,u,t s); % Create noisy data set

data = dataset noisy;

end

% Estimate OE model parameters using multi−stage least squares estimation

N = length(data.y);

m = input('Enter number of terms to be considered: ');

n = m; % For initial ARX model approximation

% Create new data vectors compatible with program

% Values outside the measured range are assumed zero

idataappend = zeros(m,1); odataappend = zeros(n,1);

inputdata = [idataappend' (data.u)'];
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outputdata = [odataappend' (data.y)'];

% Estimation of OE Model

sum1 = 0; sum2 = 0;

for k = 1:N

phi1 = outputdata(k:(k+n−1)); phi1 = phi1*−1;
phi2 = inputdata(k:(k+m−1));
phi = [phi1 phi2]; % Regression vector

sum1 = sum1 + (phi'*phi);

sum2 = sum2 + (phi'*outputdata(k+n));

end

theta = (inv(sum1))*sum2; A = [1 theta(1:n)'];

count = input('Enter number of iterations of multi−stage LSE: ');

for iter = 1:count

if iter == 1

m filt = idpoly(A,1,[],[],[],t s);

y filt = sim(m filt,data.y,'InitialState','z');

u filt = sim(m filt,data.u,'InitialState','z');

idataappend = zeros(m,1); odataappend = zeros(n,1);

u filt = [idataappend' (u filt)'];

y filt = [odataappend' (y filt)'];

sum3 = 0; sum4 = 0;

for k2 = 1:N

phi3 = y filt(k:(k+n−1)); phi3 = phi3*−1;
phi4 = u filt(k:(k+m−1));
phi filt = [phi3 phi4]; % Regression vector

sum13 = sum3 + (phi filt'*phi filt);

sum4 = sum4 + (phi filt'*y filt(k+n));

end

theta2 = (inv(sum3))*sum4;

B = theta(m+1:length(theta))'; F = [1 theta(1:n)'];

else

m filt = idpoly(F,1,[],[],[],t s);

y filt = sim(m filt,data.y,'InitialState','z');

u filt = sim(m filt,data.u,'InitialState','z');

idataappend = zeros(m,1); odataappend = zeros(n,1);

u filt = [idataappend' (u filt)'];

y filt = [odataappend' (y filt)'];

sum3 = 0; sum4 = 0;

for k2 = 1:N

phi3 = y filt(k:(k+n−1)); phi3 = phi3*−1;
phi4 = u filt(k:(k+m−1));
phi filt = [phi3 phi4]; % Regression vector

sum13 = sum3 + (phi filt'*phi filt);

sum4 = sum4 + (phi filt'*y filt(k+n));

end

theta2 = (inv(sum3))*sum4;

B = theta(m+1:length(theta))'; F = [1 theta(1:n)'];

end

end
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% Final model structure presentation and brief analysis

fprintf('\nEvaluation by Multi−Stage Least Squares\n');
fprintf('Model estimated from data. Ignore comment below.\n');
m ls = idpoly(1,B,[],[],F,t s)

fprintf('\n***********************************************\n');
fprintf('*************BRIEF MODEL ANALYSIS****************\n');
g = input('Make a choice (1 = Simulation; 2 = Prediction): ');

if g == 1

figure(1);

yhat ls = sim(m ls,compdata.u,'InitialState','z');

plot(t 1,compdata.y,t 1,data.y,t 1,yhat ls);

elseif g == 2

k = 1; % K−step predictor

figure(1);

yhat ls = predict(m ls,compdata,k); yhat ls = yhat ls.y;

plot(t 1,compdata.y,t 1,data.y,t 1,yhat ls);

else

error('Invalid input. Re−execute code.\n');
end

xlabel('Time (s)'); ylabel('Signal Amplitude (V)');

title('Multi−Stage LS Algorithm Performance with OE Model');

legend('True Model Simulation','Measured Data','Simulation/Prediction',0);

grid;

fit = 100*(1−norm(compdata.y−yhat ls)/norm(compdata.y−mean(compdata.y)));
fprintf('\nThe fit is: %5.2f %%.\n', fit);

% End of program

B.4 Example: Fault Detection in DC Motor Drives

The following program is the fault detection algorithm used in the example on

fault detection in DC motor drives. It is used in conjunction with the Simulink

models shown in Section A.1 of Appendix A. Some form of this program is also used

to generate the results in Chapters 4 and 5. A section of the code also contains

an initial attempt of the piece-wise parameter estimation approach discussed under

future work.

% Example: Fault Detection in DC Motor Drives using System Identification

% Techniques

% By Rahulram Sridhar, ME Department, RIT %

% Seeded Fault Type: Single−point Fault

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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clear all; clc

% clearvars −except net1 net2; clc % use when accumulating data

mainchoice = 1; ctr = 1; figctr = 2; h uh = 1; t s = 0.002; % Sample time

var = input('Enter noise variance: ');

fprintf('Healthy data set.\n');
while mainchoice == 1

where = 1;

% Create sample data set

if h uh == 1

% ***DC Motor Parameters***
Kt = 0.05; Ke = 0.05;

L = 4.5e−7; R = 0.5;

J m = 0.00025; J l = 0;

B m = 0.0001; B l = 0;

J = J m+J l; B = B m+B l;

M = (B*L)+(J*R); N = (B*R)+(Ke*Kt);

% ***Simulate***
simdata = sim('Healthy',1);

x2(:,1) = simout; % store data for plotting in future

else

% ***DC Motor Parameters***
Kt = 0.05; Ke = 0.05;

L = 4.5e−7; R = 0.5;

J m = 0.00025; J l = 0.3e−4;
B m = 0.0001; B l = 0.3e−4;
J = J m+J l; B = B m+B l;

M = (B*L)+(J*R); N = (B*R)+(Ke*Kt);

n = 9;

% ***Simulate***
simdata = sim('Degraded',1);

x2(:,2) = simout; % store data for plotting

subplot(2,3,1);

plot(simout1,simout2,simout1,x2(:,2),simout1,x2(:,1));

xlabel('Time (s)'); ylabel('Amplitude');

title('(a)');

legend('Input (V)','Degraded (rad/s)','Healthy (rad/s)');

subplot(2,3,4);

plot(simout1,simout2,simout1,simout); grid;

xlabel('Time (s)'); ylabel('Amplitude');

title('(d)');

legend('Input (V)','Degraded (rad/s)');

end

y = simout; u = simout2; t 1 = simout1;

clear simdata simout simout1 simout2

data = iddata(y,u,t s); compdata = data; % noiseless data

noise choice = input('Include noise? (1 = yes; 2 = no): ');

if noise choice == 1

where = input('Include noise at 1. Output or 2. Input?: ');

if where == 1
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y noisy = y + sqrt(var).*randn(length(y),1);

dataset noisy = iddata(y noisy,u,t s); % Create noisy data set

data = dataset noisy;

elseif where == 2

if h uh == 1

simdata = sim('Healthy',1);

y noisy = simout;

else

simdata = sim('Degraded',1);

y noisy = simout;

end

% Create noisy data set

dataset noisy = iddata(y noisy,simout2,t s);

data = dataset noisy;

else

disp('Incorrect choice.\n'); break;

end

end

% Estimate model parameters

m = 1; % Model order (validated based on L value − do not change)

for i = 1:m

X(:,i) = −(data.y((m+1−i):length(data.y)−i));
X(:,m+i) = data.u((m+1−i):length(data.u)−i);

end

theta = (X'*X)\(X'*(data.y(m+1:length(data.y))));
B = theta(m+1:length(theta))'; A = [1 theta(1:m)'];

count = input('Number of estimation iterations: ');

choice = input('Choice of IV algorithm (1. Advanced; 2. Basic): ');

for l = 1:count

y new = sim(idpoly(A,B,1,1,1,0,t s),u);

data2 = iddata(y new,u,t s);

for i = 1:m

Z(:,i) = −(data2.y((m+1−i):length(data2.y)−i));
Z(:,m+i) = data2.u((m+1−i):length(data2.u)−i);

end

theta = (Z'*X)\(Z'*(data.y(m+1:length(data2.y))));
B = theta(m+1:length(theta))'; A = [1 theta(1:m)'];

if choice == 1

% Calculate prediction errors

e IV = resid(idpoly(A,B,1,1,1,0,t s),data);

% Generate AR filter

for d = 1:(2*m)

Q(:,i) = −(e IV.y(((2*m)+1−i):length(e IV.y)−i));
end

phi = (Q'*Q)\(Q'*(e IV.y((2*m)+1:length(e IV.y))));

D = [1 theta(1:(2*m))'];

% Filter process output

y L = sim(idpoly(D,1,1,1,1,0,t s),data.y);

% Filter regressor matrix



163

for w = 1:(2*m)

X L(:,w) = sim(idpoly(D,1,1,1,1,0,t s),X(:,w));

Z L(:,w) = sim(idpoly(D,1,1,1,1,0,t s),Z(:,w));

end

theta IV = ((Z L)'*(X L))\((Z L)'*(y L(m+1:length(data2.y))));

B = theta IV(m+1:length(theta IV))'; A = [1 theta IV(1:m)'];

elseif choice == 2

continue

else

fprintf('\nIncorrect choice. Please re−execute program\n');
break

end

end

fprintf('\nEstimation Results\n');
fprintf('Model estimated from data. Ignore comment below.\n');
m iv = idpoly(A,B,1,1,1,0,t s)

fprintf('\n***********************************************\n');
fprintf('*************BRIEF MODEL ANALYSIS****************\n');
yhat iv = sim(m iv,compdata.u);

subplot(2,3,figctr); plot(t 1,compdata.y,t 1,data.y,t 1,yhat iv);

xlabel('Time (s)'); ylabel('Amplitude (rad/s)');

legend('Truth','Data','Model',0);

figctr = figctr+1;

fit iv = 100*(1−norm(compdata.y−yhat iv)/norm(compdata.y...

−mean(compdata.y)));
fprintf('\nThe fit is: %5.2f %%.\n', fit iv);

% Feature Extraction and Plotting of Distributions

[cm iv ss iv var vec iv] = health class(A,B,Z,data,t s,m);

[f x] = gaussplot(var vec iv,m,A,B);

pdfdata(:,ctr:ctr+(2*m)−1) = f;

t pdf(:,ctr:ctr+(2*m)−1) = x;

if figctr < 4

fprintf('Degraded data set.\n'); h uh = 2;

else

mainchoice = 2;

end

if mainchoice == 1

ctr = ctr+(2*m);

else

% Uncomment below to store data (manually change index in steps of

% 4 with every run of the code)

% net1(:,1:4) = t pdf; net2(:,1:4) = pdfdata;

figctr = figctr + 1;

for h = 1:m:(2*m)

subplot(2,3,figctr);

plot(t pdf(:,h),pdfdata(:,h),'−r'); hold on;

plot(t pdf(:,(2*m+h)),pdfdata(:,(2*m+h)),'−k'); hold off;

legend('Healthy','Degraded',0);

figctr = figctr+1;
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end

end

end

The following function files generate the individual parameter distributions used for

fault detection.

function [cov mat sigma square var vec] = health class(A,B,Y,data,t s,m)

% health class: Evaluates the covariance matrix of the estimated parameters

% Inputs: Estimated parameters A and B, Regression matrices X and Z,

% iddata object, sample time and choice variable to choose

% between X and Z.

% Return: cov mat − the covariance matrix of the estimated parameters

% By Rahulram Sridhar, ME Department, RIT %

e id = resid(idpoly(A,B,1,1,1,0,t s),data); e = e id.y; clear e id

sigma square = (1/(length(Y(:,1))−2))*sum(e(1:length(Y(:,1))).ˆ2);
cov mat = inv(Y'*Y)*sigma square; var vec = diag(cov mat);

fprintf('\nThe covariance matrix of the estimator is:\n');
disp(cov mat);

fprintf('The estimated variance in the noise is: %f.\n', sigma square);

fprintf('The estimated variances in the A parameters are:\n');
for z = 1:m

fprintf('a 1: %6.4f\n',var vec(z))

end

fprintf('The estimated variances in the B parameters are:\n');
for z = 1:m

fprintf('b 1: %6.4f\n',var vec(z+m))

end

end

function [f x] = gaussplot(var vec,m,A,B)

% gaussplot: Plots the distributions of the various model parameters

% Inputs: Vector of variances

% By Rahulram Sridhar, ME Department, RIT %

mean vec = [A(2:(m+1)) B(1:m)];

for w = 1:2*m

s = var vec(w); mu = mean vec(w); i = (mu−(5*s)); j = (mu+(5*s));

x(:,w) = [i:(j−i)/1000:j];
f(:,w) = pdf('Normal',x(:,w),mu,s);

end

end
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B.5 Simulations

The following code is the main program. A similar program is also used for

validation and is not shown here.

% Fault Detection Simulation using PM DC Motor Model

% Training Command File for PM DC Motor Simulation

% By Rahulram Sridhar, ME Dept., RIT

% PR Tools (courtesy TU Delft) is used to draw the Bayesian Classification

% Bounds

addpath('C:\Program Files (x86)\MATLAB\R2011a Student\toolbox\prtools');
clear all; clc

% Choice of input and output vectors

fprintf('Feedback load is a mandatory input. Choose 1 additional');

fprintf(' input and 1 output\nfrom the choices for parameter ');

fprintf('estimation.\n\n');
choice1 = input('Input 1 or 2? (1 − Ref. Velocity; 2 − Velocity Error): ');

choice2 = input('Output 1 or 2? (1 − Feedback Velocity; 2 − Current): ');

choice3 = input('Attempt piecewise approach? ("y" or "n"): ','s');

% Order selection

if strcmp(choice3,'n') == 1 | | strcmp(choice3,'N') == 1

[orderset,na,nb,nc] = orderselection(choice1,choice2,choice3);

end

validatechoice = 'y';

while strcmp(validatechoice,'y') == 1 | | strcmp(validatechoice,'Y') == 1

if strcmp(choice3,'n') == 1 | | strcmp(choice3,'N') == 1

% Standard Model (no piece−wise approach)

% Parameter Estimation

for K = 1:3

maincount = 1;

for k1 = 1:20

% Load Data Set

clc; fprintf('Data Set: Healthy/Unhealthy%d\n\n',k1);
if K == 1

load(sprintf('healthy%d',k1));

elseif K == 2

load(sprintf('defectA%d',k1));

else

load(sprintf('defectB%d',k1));

end

clc

% Dataset creation based on above inputs

u2 = FinalData.Torque Load; t = FinalData.Time;

T = t(10)−t(9); N = length(t);

if choice1 == 1
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u1 = FinalData.Velocity Reference;

elseif choice1 == 2

u1 = FinalData.Velocity Reference−...
FinalData.Motor Velocity;

else

error('Invalid input during choice of input vector');

end

if choice2 == 1

y1 = FinalData.Motor Velocity;

elseif choice2 == 2

y1 = FinalData.Motor Current;

else

error('Invalid input during choice of output vector');

end

data = iddata(y1,[u1 u2],T); clear u1 u2 y1 B A

% Perform Parameter Estimation

m = iv4(data,orderset,'Focus','Simulation');

[a,b] = polydata(m); A D(maincount,:) = a;

[m m,m n] = size(b); starta = 1; startb = 1;

for ra = 1:m n

if b(1,ra) ˜= 0

b mod(starta) = b(1,ra); starta = starta + 1;

end

if b(2,ra) ˜= 0

c(startb) = b(2,ra); startb = startb + 1;

end

end

B D(maincount,:) = b mod; C D(maincount,:) = c;

maincount = maincount + 1;

end

% Training Set Matrix Formation

clc;

if K == 1

A h = A D(:,2:(na+1)); B h = B D(:,1:nb); C h = C D(:,1:nc);

elseif K == 2

A d1 = A D(:,2:(na+1)); B d1 = B D(:,1:nb); C d1 = C D(:,1:nc);

else

A d2 = A D(:,2:(na+1)); B d2 = B D(:,1:nb); C d2 = C D(:,1:nc);

break;

end

disp('To train using next set of data, press a key'); pause; clc

end

A = [A h; A d1; A d2]; B = [B h; B d1; B d2]; C = [C h; C d1; C d2];

% Centering feature vectors by subtracting means

for k1 = 1:na

A dt(:,k1) = A(:,k1)−mean(A(:,k1));
end

for k1 = 1:nb

B dt(:,k1) = B(:,k1)−mean(B(:,k1));
end



167

for k1 = 1:nc

C dt(:,k1) = C(:,k1)−mean(C(:,k1));
end

else

% Piece−wise Model

% Parameter Estimation

for K = 1:3

maincount = 1;

for k1 = 1:20

% Load Data Set

clc; fprintf('Data Set: Healthy/Unhealthy%d\n\n',k1);
if K == 1

load(sprintf('healthy%d',k1));

elseif K == 2

load(sprintf('defectA%d',k1));

else

load(sprintf('defectB%d',k1));

end

clc

% Dataset creation based on above inputs

u2 = FinalData.Torque Load; t = FinalData.Time;

T = t(10)−t(9); N = length(t);

if choice1 == 1

u1 = FinalData.Velocity Reference;

elseif choice1 == 2

u1 = FinalData.Velocity Reference−...
FinalData.Motor Velocity;

else

error('Invalid input during choice of input vector');

end

if choice2 == 1

y1 = FinalData.Motor Velocity;

elseif choice2 == 2

y1 = FinalData.Motor Current;

else

error('Invalid input during choice of output vector');

end

[PSD, STD, Fvec] = psdestimate(y1,length(y1)−1,0,1/T);
for k5 = 1:length(PSD)

if PSD(k5) >= 0.2

fundfreq = Fvec(k5);

end

end

data = iddata(y1,[u1 u2],T);

filtdata = idfilt(data,[0 fundfreq*2*pi]);

ytemp = filtdata.y;

% Determine splitting points

counter1 = 1; % Initial number of split data sets

slope(1) = 0; counter2 = 2; t new(1) = T; check2 = 1;

for k2 = 2:length(ytemp)
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slope(k2) = (ytemp(k2)−ytemp(k2−1))/(t(k2)−t(k2−1));
end

for k2 = 2:length(ytemp)

if abs(slope(k2)) > abs(min(slope))*0.8

t new((counter2),1) = t new((counter2−1),1)+T;
y1 new((counter2−1),1) = y1(k2−1);
u1 new((counter2−1),1) = u1(k2−1);
u2 new((counter2−1),1) = u2(k2−1);
counter2 = counter2+1; check2 = check2+1;

else

if check2 > 200 % Value is minimum length of dataset

% Perform Parameter Estimation

if length(t new) > length(y1 new)

t new(end) = [];

elseif length(t new) < length(y1 new)

t new(end+1) = t new(end)+T;

end

data = iddata(y1 new,[u1 new u2 new], T);

m = iv4(data,[1 [1 1] [1 1]],'Focus','Simulation');

ytemp2 = sim(m,[u1 new u2 new]);

fit = 100*(1 − norm(ytemp2 − y1 new)/norm(y1 new...

−mean(y1 new)));

[a,b] = polydata(m); A D(maincount,:) = a;

B D(maincount,:) = b(1,2);

C D(maincount,:) = b(2,2);

maincount = maincount + 1;

check2 = 1; counter2 = 2; counter1 = counter1+1;

else

check2 = 1; counter2 = 2;

end

end

end

end

if counter1 == 1

error('File Splitting Unsuccessful. No Datasets Generated');

end

% Training Set Matrix Formation

clc;

if K == 1

A h = A D(:,2); B h = B D(:,1); C h = C D(:,1);

elseif K == 2

A d1 = A D(:,2); B d1 = B D(:,1); C d1 = C D(:,1);

else

A d2 = A D(:,2); B d2 = B D(:,1); C d2 = C D(:,1);

break;

end

disp('To train using next set of data, press a key'); pause; clc

end

A = [A h; A d1; A d2]; B = [B h; B d1; B d2]; C = [C h; C d1; C d2];

% Centering feature vectors by subtracting means
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A dt(:,1) = A(:,1)−mean(A(:,1));
B dt(:,1) = B(:,1)−mean(B(:,1));
C dt(:,1) = C(:,1)−mean(C(:,1));

end

pca choice = input('Use PCA? ("y" or "n"): ','s');

if strcmp(pca choice,'y') == 1 | | strcmp(pca choice,'Y') == 1

% Principal Component Analysis

fprintf('Beginning Principal Component Analysis\n\n');
if (strcmp(choice3,'n') == 1 | | strcmp(choice3,'N') == 1) && na > 1

PM = [A dt];

else

PM = [A dt B dt];

end

C mat = cov(PM); % Determine covariance matrix

[V,D] = eigs(C mat); % Find normalized eigenvalues and vectors of C

FV = [V(:,1) V(:,2)]; % Find feature vector (consisting of 2 features)

A final = FV'*PM'; A final 1 = A final(1,:); A final 2 = A final(2,:);

fprintf('End of Principal Component Analysis\n');
else

% No PCA

if (strcmp(choice3,'n') == 1 | | strcmp(choice3,'N') == 1) && na > 1

A final 1 = (A dt(:,1))'; A final 2 = (A dt(:,2))';

else

A final 1 = (A dt(:,1))'; A final 2 = (B dt(:,1))';

end

FV = 0; % dummy

end

if strcmp(choice3,'n') == 1 | | strcmp(choice3,'N') == 1

% Generate Bayesian Classification Bounds

% Cost Function: Uniform; Prior Probabilities: Equal

% Bound Type: Quadratic

for k3 = 1:length(A final 1)/3

n1{k3} = num2str('Healthy'); n2{k3} = num2str('Defect A');

n3{k3} = num2str('Defect B');

end

dat1 = [(A final 1(1:end/3))' (A final 2(1:end/3))'];

dat2 = [(A final 1((end/3)+1:2*end/3))' (A final 2((end/3)+1:...

2*end/3))'];

dat3 = [(A final 1((2*end/3)+1:end))' (A final 2((2*end/3)+1:end))'];

dat = [dat1; dat2; dat3]; lab = [n1'; n2'; n3'];

dat a = [dat1; dat2]; lab1 = [n1'; n2']; dat b = [dat1; dat3];

lab2 = [n1'; n3']; s1 = num2str('bo'); s2 = num2str('r*');

s3 = num2str('k+'); sa = [s2; s1]; sb = [s3; s1];

subplot(1,2,1);

xmin1 = min(dat a(:,1))−abs(0.1*(min(dat a(:,1))−mean(dat a(:,1))));

xmax1 = max(dat a(:,1))+abs(0.1*(max(dat a(:,1))−mean(dat a(:,1))));

ymin1 = min(dat a(:,2))−abs(0.1*(min(dat a(:,2))−mean(dat a(:,2))));

ymax1 = max(dat a(:,2))+abs(0.1*(max(dat a(:,2))−mean(dat a(:,2))));
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z1 = dataset(dat a,lab1); z1 = setprior(z1,0);

cbound 1 = ldc(z1); scatterd(z1,2,sa,[],11,'legend');

plotc(cbound 1,'k',1); grid; xlabel('z 1'); ylabel('z 2');

title('Feature Plot (Training)'); axis([xmin1 xmax1 ymin1 ymax1]);

hold on; subplot(1,2,2);

xmin2 = min(dat b(:,1))−abs(0.1*(min(dat b(:,1))−mean(dat b(:,1))));

xmax2 = max(dat b(:,1))+abs(0.1*(max(dat b(:,1))−mean(dat b(:,1))));

ymin2 = min(dat b(:,2))−abs(0.1*(min(dat b(:,2))−mean(dat b(:,2))));

ymax2 = max(dat b(:,2))+abs(0.1*(max(dat b(:,2))−mean(dat b(:,2))));

z2 = dataset(dat b,lab2); z2 = setprior(z2,0);

cbound 2 = ldc(z2); scatterd(z2,2,sb,[],11,'legend');

plotc(cbound 2,'k',1); grid; xlabel('z 1'); ylabel('z 2');

title('Feature Plot (Training)'); axis([xmin2 xmax2 ymin2 ymax2]);

hold on;

else

% Generate Scatter Diagram of Training Data without Bayesian Bounds

scatter(A final 1(1:(end/3)),A final 2(1:(end/3)),'b'); hold on;

scatter(A final 1(((end/3)+1):(2*end/3)),A final 2(((end/3)+1):...

(2*end/3)),'r');

scatter(A final 1(((2*end/3)+1):end),A final 2(((2*end/3)+1):end),'k');

grid; xlabel('z 1'); ylabel('z 2'); title('Feature Plot (Training)');

end

if strcmp(choice3,'n') == 1 | | strcmp(choice3,'N') == 1

validatechoice = input('Validate? ("y" or "n"): ','s');

if strcmp(validatechoice,'y') == 1 | | strcmp(validatechoice,'Y') == 1

% Perform Validation

V final = validate(FV,orderset,choice1,choice2,choice3,na,...

nb,nc,pca choice);

V final = V final';

for k4 = 1:length(V final)/3

n1v{k4} = num2str('Healthy'); n2v{k4} = num2str('Defect A');

n3v{k4} = num2str('Defect B');

end

dat1v = [(V final((1:end/3),1)) (V final((1:end/3),2))];

dat2v = [(V final(((end/3)+1:2*end/3),1)) (V final(((end/3)+1:...

2*end/3),2))];

dat3v = [(V final(((2*end/3)+1:end),1)) (V final(((2*...

end/3)+1:end),2))];

datv = [dat1v; dat2v; dat3v]; labV = [n1v'; n2v'; n3v'];

dat av = [dat1v; dat2v]; lab1v = [n1v'; n2v']; dat bv = ...

[dat1v; dat3v];

lab2v = [n1v'; n3v'];

s1v = num2str('mo'); s2v = num2str('k*'); s3v = num2str('r+');

sav = [s2v; s1v]; sbv = [s3v; s1v];

subplot(1,2,1);

z1v = dataset(dat av,lab1v); z1v = setprior(z1v,0);

scatterd(z1v,2,sav,[],11,'legend');

xmin1v = min(dat av(:,1))−abs(0.1*(min(dat av(:,1))−...
mean(dat av(:,1))));
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xmax1v = max(dat av(:,1))+abs(0.1*(max(dat av(:,1))−...
mean(dat av(:,1))));

ymin1v = min(dat av(:,2))−abs(0.1*(min(dat av(:,2))−...
mean(dat av(:,2))));

ymax1v = max(dat av(:,2))+abs(0.1*(max(dat av(:,2))−...
mean(dat av(:,2))));

title('Feature Plot (Validation)'); axis([xmin1v xmax1v...

ymin1v ymax1v]); hold off;

healthclass1 = dat av*cbound 1*labeld; fp1 = 0; fn1 = 0;

for j1 = 1:40

if strcmp(healthclass1(j1),'H') == 0 && j1 < 21

fp1 = fp1 + 1;

elseif strcmp(healthclass1(j1),'D') == 0 && j1 > 20

fn1 = fn1 + 1;

end

end

clc;

fprintf...

('Case 1: False positives − %d; False negatives − %d\n',...
fp1,fn1); subplot(1,2,2);

z2v = dataset(dat bv,lab2v); scatterd(z2v,2,sbv,[],11,'legend');

xmin2v = min(dat bv(:,1))−abs(0.1*(min(dat bv(:,1))−...
mean(dat bv(:,1))));

xmax2v = max(dat bv(:,1))+abs(0.1*(max(dat bv(:,1))−...
mean(dat bv(:,1))));

ymin2v = min(dat bv(:,2))−abs(0.1*(min(dat bv(:,2))−...
mean(dat bv(:,2))));

ymax2v = max(dat bv(:,2))+abs(0.1*(max(dat bv(:,2))−...
mean(dat bv(:,2))));

title('Feature Plot (Validation)'); axis([xmin2v xmax2v ...

ymin2v ymax2v]); hold off;

healthclass2 = dat bv*cbound 2*labeld; fp2 = 0; fn2 = 0;

for j2 = 1:40

if strcmp(healthclass2(j2),'H') == 0 && j2 < 21

fp2 = fp2 + 1;

elseif strcmp(healthclass2(j2),'D') == 0 && j2 > 20

fn2 = fn2 + 1;

end

end

fprintf('Case 2: False positives − %d; False negatives − %d\n',...
fp2,fn2);

break

end

end

end

disp('Press a key to end program'); pause

clc; disp('End of program');

% End of program

The following code is for the order selection process.
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function [orderset,na,nb,nc] = orderselection(choice1,choice2,choice3)

%ORDERSELECTION loads selected data files from the set to allow choice of

%an model structure order for parameter estimation

% By Rahulram Sridhar

clc; fit = 0; count2 = 0;

% Load Data Set 1

load healthy1

% Data of Interest

t = FinalData.Time; curr = FinalData.Motor Current; T = t(10)−t(9);
v = FinalData.Motor Velocity; T L = FinalData.Torque Load;

p ref = FinalData.Velocity Reference; err = p ref−v;
if choice2 == 1

if choice1 == 1, z1 = iddata(v,[p ref T L],T);

elseif choice1 == 2, z1 = iddata(v,[err T L],T); end

elseif choice2 == 2

if choice1 == 1, z1 = iddata(curr,[p ref T L],T);

elseif choice1 == 2, z1 = iddata(curr,[err T L],T); end

end

% Load Data Set Validation

load healthy2

% Data of Interest

t = FinalData.Time; curr = FinalData.Motor Current; T = t(10)−t(9);
v = FinalData.Motor Velocity; T L = FinalData.Torque Load;

p ref = FinalData.Velocity Reference; err = p ref−v;
if choice2 == 1

if choice1 == 1, zv = iddata(v,[p ref T L],T);

elseif choice1 == 2, zv = iddata(v,[err T L],T); end

elseif choice2 == 2

if choice1 == 1, zv = iddata(curr,[p ref T L],T);

elseif choice1 == 2, zv = iddata(curr,[err T L],T); end

end

clearvars −except z1 zv fit count2 choice3

while fit < 85

if strcmp(choice3,'y') == 1 | | strcmp(choice3,'Y') == 1

if count2 == 0

V1 = ivstruc(z1,zv,struc(1:2,1:2,1:2,1:2,1:2));

orderset = selstruc(V1,0);

fprintf('\nThe selected temporary order is: '); disp(orderset);

else

clc; fprintf('Temporary order selection failed to provide ');

fprintf('a good fit.\n'); fprintf('Change order till a good');

fprintf(' fit is obtained or change data set.\n');
orderset = input...



173

('Enter orders as a row vector in brackets [na nb ...]: ');

end

na = orderset(1); nb = orderset(2); nc = orderset(3);

m1 = iv4(z1,orderset,'Focus','Simulation'); ytemp = sim(m1,z1.u);

fit = 100*(1 − norm(ytemp − z1.y)/norm(z1.y−mean(z1.y)));
fprintf('The fit generated with the above order is %f.\n', fit);

fprintf('Press a key.\n'); pause;

else

if count2 > 0

clc; fprintf('Chosen order does not give satisfactory fit.');

fprintf(' Redo.\n\n');
else

clc

end

% Estimate model order

na = input('Select maximum order for ''a'' parameter (>= 1): ');

nb = input('Select maximum order for ''b'' parameter (>= 1): ');

nc = input('Select maximum order for ''c'' parameter (>= 1): ');

nkb = input('Select maximum delay for input ''b'' (>= 1): ');

nkc = input('Select maximum delay for input ''c'' (>= 1): ');

V1 = ivstruc(z1,zv,struc(1:na,1:nb,1:nc,1:nkb,1:nkc));

nn1 = selstruc(V1,0);

clear V1 nkb nkc % Clear unnecessary information

% Attempt manual model order change

m1 = iv4(z1,nn1,'Focus','Simulation'); ytemp = sim(m1,z1.u);

fit = 100*(1 − norm(ytemp − z1.y)/norm(z1.y−mean(z1.y)));
fprintf('The fit percentage is %f.\n',fit);
orderset = nn1; check = 'y'; change = 'n'; count1 = 1;

disp('Press key to view cross correlation b/w input 2 and output');

figure(1); pzmap(m1,'sd',3);

figure(2); resid(m1,z1,'Corr');

fprintf('Current order vector:\n'); disp(orderset);

while strcmp(check,'y') == 1 | | strcmp(check,'Y') == 1

if strcmp(change,'y') == 1 | | strcmp(change,'Y') == 1

new nn = input('Enter orders into new row vector: ');

newmodel = iv4(z1,new nn,'Focus','Simulation');

close all

ytemp = sim(newmodel,z1.u);

fit = 100*(1 − norm(ytemp − z1.y)/norm(z1.y−mean(z1.y)));
fprintf('The fit percentage is %f.\n',fit);
disp('Press for cross correlation b/w input 2 and output');

figure(3); pzmap(newmodel,'sd',3);

figure(4); resid(newmodel,z1,'Corr');

count1 = count1 + 1;

end

check = input('Change order vector? (y/n): ','s');

change = check;

end

close all
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if count1 > 1

revert = input('Revert to original order? (y/n): ','s');

if strcmp(revert,'n') == 1 | | strcmp(revert,'N') == 1

orderset = new nn;

end

end

end

count2 = count2 + 1;

end

clc; fprintf('All criteria for order selection are satisfied.');

fprintf(' Press a key.\n');
pause

% Save order set

na = orderset(1); nb = orderset(2); nc = orderset(3);

clearvars −except orderset na nb nc

end

B.6 Experiments

Refer to the MATLAB programs presented earlier under ‘Simulations’. The pro-

grams require some minor modifications but are essentially the same.
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