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ABSTRACT

SIGNATURE ANALYSIS OF FETAL BLOOD VELOCITYWAVEFORMS

By
Ronald Soule

Thesis Advisor: Professor Mark H. Kempski

Doppler blood velocity waveform analysis is conducted to affect clinical

diagnosis. Current analysis codes developed at RIT posses the capability to assess gross

hemodynamic parameters such as heart rate, mean pulse velocity, peak systolic velocity

and also the beat to beat variability of these parameters. These computer algorithms

have, however, lacked the ability to determine hemodynamic indices such as the

pulsatility and resistance index as well as the AB ratio. This latter deficiency stems from

an algorithmic need to accurately determine end diastolic velocity in every cardiac cycle.

The current thesis specifically augments current algorithms to accurately compute end

diastolic velocity. The end diastolic velocity, peak systolic velocity and mean pulse

velocity determined in each cardiac cycle are then used to compute the various
pulse-

velocity waveform indices noted above. In addition, the use of end diastolic velocity in

conjunction with peak systolic velocity allows the velocity waveform to be dissected into

diastolic subsections, which resemble decaying exponential curves. These exponential

decay curves will be characterized via curve fitting. The goal of this thesis is to assess

whether traditional pulsatility indices and/or the decay curve parameters are adequate to

assess fetal developmental age between 10-13 weeks gestation. Discrimination

assessment is conducted using neural network analysis techniques. Whether entire pulse-



velocity waveforms extracted between successive end-diastolic velocities provides a more

robust data set for gestational age discrimination is also explored. The results suggest

that hemodynamic indices computed for fetuses between 10 to 13 weeks gestation

provide insufficient data for effective neural network classification. Use of the entire

pulse-velocity waveform data in neural network analysis showed better fetal gestational

age classification than use ofwaveform indices. However, similarity ofwaveforms

between 10-13 weeks gestation prevented robust classification using either

hemodynamic indices or entire pulse-velocity waveforms based on the fetal data records

used for this study.
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Chapter 1 Introduction

1.1 Cardiovascular Malformations

In the United States, eight in every 1000 infants are born with congenital

circulatory problems (Clark and Takao, 1990). Throughout development there are

numerous occasions for problems to arise, ranging from genetic disorders to

environmentally induced malformations. As the fetus develops the heart begins to beat at

approximately three weeks ofgestation. As the heart continues to pump blood

throughout the developing fetus, changes in the organ occur which begin a transition

from a single heart tube to a four chambered organ several weeks later (Sissman, 1970).

The 10-13 week of gestation is a critical time of transition when morphometric problems

have a greater chance to develop (Clark and Takao, 1990), with ensuing functional

consequences later in gestation or postpartum.

A majority ofmalformations and, perhaps, adult cardiovascular disease occur

during morphogenesis (Clark and Takao, 1990). The malformations lead to many

atypical cardiovascular problems, which in the extreme cause cardiovascular system

failure and fetal death (Clark and Takao, 1990). Hence, early detection of cardiac

malformations and or cardiovascular system compromise is essential for proper obstetric

care and treatment.



1.2 VelocityWaveform Index Correlation to Disease

The presence of development related cardiovascular malformations in the late-

gestational fetus can be revealed throughDoppler blood velocity waveform analysis

(Evans et al, 1989). Specific waveform characteristics may therefore facilitate fetal

cardiovascular health assessment. Typical waveform characteristics documented in the

literature include peak-systolic velocity, end-diastolic velocity and mean pulse-velocity

as well as derived indices such as the pulsatility index (PI), the AB ratio, and Pourcelot's

resistance index (RI) which are associated with vascular impedance to flow (Thompson et

al, 1986). One of the most common uses for the PI is the evaluation ofproximal stenosis

in peripheral arteries (Thompson et al, 1986), while both the PI and AB ratio have been

used to assess peripheral vascular impedance levels (Thompson and Trudinger, 1986).

Additionally the PI shows specificity to health analyses of intrauterine growth retardation

(Laurin et al, 1987), during mid to late gestation.

Routine obstetric fetal monitoring throughout gestation has demonstrated that

umbilical artery blood flow velocity is very informative when assessing the presence of

increased placental resistance indicative of intrauterine growth retardation and pre

eclampsia (Surat and Adamson, 1996). In the third trimester of gestation the Doppler

velocity waveform shows signs ofdecreased velocity between the peak-systolic velocity

(S) and the end-diastolic velocity (D) (Thompson and Trudinger, 1989). Analysis has

depicted that the cardiovascular system of the fetus can adapt to an increased placental

resistance through an increase in cardiac contractility (Thompson and Trudinger, 1989).

Clinical obstetric Doppler blood velocity measurements often scrutinize the

umbilical artery blood flow velocity because of the robust structure and health condition



of this blood vessel. Structurally the umbilical artery is long and un-branched which

precludes the velocitywaveform from becoming overly complex due to branching

induced pressure wave reflections (Thompson and Stevens, 1989). Another positive

aspect of the umbilical artery is that it is free of degenerative diseases, which could bias

measurements intended to assess fetal and/or placental function (Thompson and Stevens,

1989). Likewise, invasive procedures are not required on the maternal-fetal pair since the

cord is free floating and outside the body of the fetus in utero and readily monitored

using clinical Doppler sonography techniques.

Routine fetal health evaluations are conducted between 15 to 20 weeks gestation,

from 20 weeks to full term, as well as post partum for neonates, using Doppler blood

velocity waveform data. In particular, during the third trimester, pregnancy induced

hypertension reduces diastolic flow velocity (Thompson and Trudinger, 1989), and thus

changes the shape of the Doppler velocity waveform. The analysis ofvelocity waveform

characteristic indices (PI, RI, and AB ratio) have provided quantifiable evidence that

these indices correspond to health and disease (Thompson et al, 1989). Herein values of

the PI have been recorded in the range of 0.5 to 1 .5 for normal pregnancies and can be

upwards of 3 and higher for abnormal pregnancies (Thompson and Trudinger, 1989).

Furthermore, late gestational Doppler velocity waveform characteristic indices

clearly show the presence ofvarious cardiac malformations, whichmay be detected

through altered PI, RI, and AB ratio values from nominal. However not all Doppler

velocity waveform characteristic indices are sensitive to the presence of chronic and

acute placental insufficiencies (Joern et al, 1997).



1.3 Thesis Objective

The current study seeks to determine the viability of the PI, RI, and AB ratio

indices to assess fetal age and (ultimately) health during early gestation. The study will

specifically address weeks 10 through 13 ofpregnancy. The majority ofwork available

in the literature has been consumed with the correlation ofdisease to Doppler velocity

waveform indices in the mid to late gestational period (Joern et al, 1997). However it is

necessary to develop evaluation criteria for early gestational fetuses since early detection

is crucial for effective treatment of certain pathologies, including pre-eclampsia and

intrauterine growth retardation (Thompson and Trudinger, 1989).

The aim of this thesis is to document whether various Doppler velocitywaveform

indices applied to fetal umbilical artery waveforms obtained early in gestation can be

used to discriminate fetal age during the critical development period between 10 to 13

weeks gestation. Placental network functioning undergoes drastic changes following this

time frame which will, in a large part, determine whether intrauterine growth retardation

and or pre-eclampsia is likely later in gestation (Clark and Takao, 1990). Since

waveform indices represent a condensation ofvelocity waveform time series data, and

hence information loss, we will also scrutinize the pulse-velocitywaveform. This latter

scrutiny will be used to assess whether waveform indices for early gestational fetuses

lack specificity for fetal age discrimination versus pulse-velocitywaveform analysis.

The long-term aim of our investigation is the formulation of fetal velocity

waveform discrimination criteria, which will aid clinical diagnosis of intrauterine growth

retardation and pre-eclampsia prone
maternal-fetal pairs and subsequent treatment. Our

approach will start from scrutiny of a fetal pulse-velocity wave train obtained through



Doppler sonography records (Kempski et al, in review and Ursem et al, 1998). Each

pulse velocitywill be further distilled using descriptive pulse-velocity waveform indices

such as the pulsatility index, the resistance index, the AB ratio, and a diastolic decay

constant (x) defined herein. Lastly neural network analysis will be used to assess the age

and health discrimination potential of these indices as well as fetal-representative pulse-

velocity waveforms between 10 to 13 weeks gestation.



Chapter 2Methodology

2.1 VelocityWaveform Definition and Evaluation

2.1.1 Pulse-VelocityWaveform Definition

To calculate the PI, RI, the AB ratio and the diastolic decay constant (x), the end-

diastolic velocity (D), the peak-systolic velocity (S) and the mean pulse-velocity (M)

need to be ascertained for each velocity pulse (Figure 2.1). The "peak-valley
detection"

algorithm (PVD) written in LabVIEW (National Instruments, Corporation, Austin Texas)

performs these operations to increase speed and accuracy of the calculations, while

removing human error in determining the values of the PI, RI, the AB ratio, and the

diastolic decay constant (x).

In order to select the end-diastolic velocity (D) in each pulse-velocitywaveform

and disregard all the other points, the velocity waveform is examined from pulse to pulse,

sequentially using common
"landmarks"

for PVD data extraction. The first landmark

used by the PVD algorithm is the global mean velocity (M ) computed across the entire

velocity time series (Figure 2.1). Here M represents the average velocity such that

individual pulse-velocitywaveforms possess peak-systolic values (S) greater than M and

end-diastolic value (D) less than M . The mean pulse-velocity (M) for any individual

pulse-

velocity waveform may be either greater than or less than the global mean velocity

M . Next the peak systolic velocity (S) in each pulse-velocitywaveform is found by

using the "mean-crossing
points"

where the pulse-velocity
"crosses"

the value defined by

the global mean M (Figure 2.1). Such crossings occur on the upward slope and the

downward slope of a given pulse-velocity trace as seen in Figure 2.1. Pulse-velocity data



between the "mean-crossing
points"

are then searched for the maximum pulse-velocity

value, thus defining the peak systolic pulse-velocity (S) and its temporal location within

the velocity record (Figure 2.1). Once each peak pulse-velocity value is determined, the

velocity wave train is re-segmented between every two consecutive systolic
peak-

velocities in order to determine respective end-diastolic velocity values (D) and their

temporal location within the velocity record. However, before the end-diastolic velocity

(D) can be found for each pulse-velocity, its definition needs to be established.

Time (sec)

Figure 2. 1 Plot of two consecutive cycles, describing the extraction of the peak-systolic point.

In each cardiac cycle the heart contracts thereby accelerating the blood flow

velocity at the beginning of each cycle.

Time (see)

Figure 2.2 Depicts a
"phasic"

scrutiny of a representative pulse-velocity waveform.



Phase 1 depicted in Figure 2.2 is the distal vascularmanifestation of cardiac contraction

and initial ejection ofblood from the left ventricle. Phase 2, depicted in Figure 2.2 starts

at peak-systolic velocity and continues to include the distal vascular manifestations of

ventricular relaxation and aortic valve closure. During phase 2 active ventricular ejection

ceases, but flow continues due to capacitive discharge in the large arteries distal to the

heart. Phase 3 in Figure 2.2 is the distal vascularmanifestation ofventricular refilling

prior to ventricular contraction during the succeeding cardiac cycle (Marieb, 1991).

Therefore according to Figure 2.2 the end diastolic velocity (D) occurs at the juncture

between phase 1 and phase 3. Thus D is the point where one cardiac cycle ends and the

next begins.

The calculation of the end diastolic velocity (D) is attained in four steps. The first

is the acquisition of pulse-velocity waveform data between successive peak-systolic

velocities as shown in Figure 2.3. Step 2 invokes algorithm sub-routines to determine

which points of the pulse-velocity waveform have a slope of 1 < m < 1, which are

calculated from the first derivative of the pulse-velocity waveform. Next the second
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Figure 2.3 Plot describing the search criteria for the end-diastolic velocity (D). The points

represented by () indicate where in the fetal record the data has point-wise slopes (m) in the

range of-1 < m < 1 or-1 >m> 1.



derivative is calculated and only the concave-up data region preserves its velocity value.

And all other data that does not meet both the slope and curvature criteria are reset to

zero as indicated by () in Figure 2.3. The final step in the end-diastolic pulse-velocity

determination is to perform a backward search from Sj+i to Sj locating the first non-zero

value, which is taken as the end-diastolic velocity (Dj) between these respective pulse-

velocities (see Figure 2.3).

The mean pulse-velocity (M) can then be calculated by averaging all the values

between two consecutive end-diastolic points. Once the three essential pulse-velocity

landmark values S, D, M, and their respective temporal location within the data record

are found, the pulse velocity waveform indices can be calculated as described in Section

2.2.

2.1.2 Average Pulse-VelocityWaveform Definition

As noted above, the PVD algorithm has the ability to decompose a pulse-velocity

time series into a pulse-velocity train. Here each pulse-velocity can be scrutinized in

order to determine pulse parameters S, D, andM and the pulse indicies noted in Section

2.2. Since a given fetal velocity record may be composed of several dozen consecutive

pulse-velocities (Figure 2.4), statistical analysis of the pulse-derived indices would be

necessary to yield a
"fetal-average"

value for the respective indices such that fetal-to-fetal

comparisons may be subsequently performed.

A different approach to analysis is to extract each individual cardiac cycle and

average pulse-velocity points in the extracted data to compile an average cardiac cycle

that is characteristic of the entire fetal pulse-velocitywavetrain (Figure 2.4).



For example the first point in each pulse is averaged with the first point in the second

pulse and so on until all the points are averaged for each cycle. Hence the entire family

of pulses (Figure 2.4) for a given fetus would be condensed to a single representative

''average
pulse-velocity"

of the entire fetal velocity record (Figure 2.5).

Time (sec)

Figure 2.4 Plot ofmultiple consecutive velocity pulses.

AverageTime (sec)

Figure 2.5 Plot of an averaged pulse-velocity calculated from multiple velocity pulses.

This allows all the information contained in a pulse-velocity wave train to be represented

by one average pulse-velocity. The PVD algorithm may then determine the average

pulse-velocity parameters S, D, andM for use in comparing fetal representative velocity

waveform indices. Likewise the average pulse-velocity may be used in toto for

comparison between fetuses (to be discussed below). Note that individual
pulse-

velocities may not be of equal temporal duration
(i.e. unequal number ofpulse-velocity

data points) due to the variable nature of fetal
heart rate. Hence, when computing the

average pulse-velocity, individual pulse velocity waveforms were truncated in duration to

10



equal the shortest duration pulse-velocity. The truncation occurred at the tail-end of

phase 3 (Figure 2.2) in all cases so as to affect an individual velocity pulse only within

the (relatively) non-varying region just prior to end-diastole.

2.1.3 Evaluation

Part of the PVD algorithm is to determine (section 2.2) and write the values of the

PI, RI, the AB ratio, and the diastolic decay constant (x) to a text file, so as to allow other

programs such as MATLAB and Excel to read these data files for subsequent analysis.

Excel (Microsoft Corp., RedmondWA) was used to produce multiple plots for data

comparison. While theMATLAB (The Mathworks, Inc., NatickMA) neural network

algorithms were employed to investigate whether fetal gestational age discrimination

could be conducted using
pulse-

velocity waveforms indices.

11



2.2 VelocityWaveform Characteristics

2.2.1 Index Definition

For the purpose of this study it was necessary to determine velocity waveform

indices, such as the pulsitility index (PI), the resistance index (RI), the AB ratio, and the

diastolic decay constant (x). As a first step in the calculation of the pulsatile waveform

indices, the end-diastolic velocity (D), peak-systolic velocity (S), and mean pulse-

velocity (M) were determined within each velocity pulse (see Figure 2.6). This

determination scheme was detailed previously in Section 2.1.

/

/

"""--
_^

M

/ s
\
\

\

"

"^-~
"~

- -

- 1
Time (sec)

Figure 2.6 Plot of a single cardiac cycle pulse-velocity waveform.

Historically the pulsitility index was first calculated using the Fourier transform

of the Doppler blood velocity pulse waveform (Evans et al, 1989), where:

a
= Amplitude of the

n'h

harmonic
" = Z

n = l

a

,
M =Mean height of an individule cycle

Eqn. 2.1

But this method was deemed by early researchers to be too tedious and time consuming

due to the slow speed of early computers. Hence a simplified method for computing PI

was introduced such that

12



S = Systolic amplitude
S - D Eqn. 2.2

PI = D = Diastolic amplitude

M =Mean height of individule cycle

Likewise, Porcelot's resistance index is defined as (Evans et al, 1989):

S - D S = Systolic amplitude qn. 2.3
RI =

S D = Diastolic amplitude

Scrutiny ofEquation 2.2 and Figure 2.6 reveals that an individual Doppler

velocity waveform may possess various values for S, D, and, M which render no

theoretical upper limit to the pulsitility index (PI); although, clinical usage ofEquation

2.2 has shown non-infinite upper limits in practice, which are typically between .5 and

1.5. Likewise, Equation 2.3 would suggest a theoretical range for the RI between 0 and

1 . The normal range for the resistance index is 0.72 < RI < 0.85, for late gestation fetuses

(Thompson et al, 1986). Values of the RI which exceed 0.85, which signify low blood

flow, are indicative of a vascular obstruction, while RI values below 0.72 typically

represent higher than normal blood flows (Thompson et al, 1985).

The fourth most common Doppler velocity waveform characteristic index is the

AB ratio (Equation 2.4).

S S = Systolic amplitude

D D = Diastolic amplitude

The diastolic decay constant (x) is used in the current study to represent the best

exponential fit of the data between peak-systole (S) and end-diastole (D).

r = Decay Constant

In Fla F = Output of the Best Exponential Fit Eqn 2 5

X X = Input Array of Velocities Between S and D

a = Amplitude

13



The diastolic decay constant can be postulated based on an assumed relationship between

blood flow and an R-C-R circuit model of the placental circulation in cardiovascular

physiology, also known as a "Windkessel Model". The Windkessel model is an electrical

circuit that represents the distal and proximal vascular resistance, and the capacitance of

the blood vessels (Figure 2.7).

WW

Sffk R, C ztz

Rp
= LumpedResistance ofProximal arteries

Rd = LumpedResistance ofDistal arteries

C = Lumped Elastance ofthe Blood Vessels

Sf
= Source ofFlow

Figure 2.7 The Three Element Windkessel Model.

Using Kirchhoffs current and voltage laws, the decay constant (x) as used in Equation

2.5 can be related to the Windkessel model parameters (Kalegaonkar, 1998).

d , n Rp
= LumpedResistance ofProximal arteries

^
_

p d
Rd

= LumpedResistance ofDistal arteries p 2a

CR Rd C = Lumped Elastance ofthe Blood Vessels

The Doppler velocity waveform indices used herein are directly dependent on

impedance of the placental vascular network, heart rate, and gestational age (Ursem et al,

1998). Because the waveform indices are susceptible to changes in gestational age and

impedance they are likely candidates for ascertaining the age and health of a fetus

(Thompson et al, 1985).

14



2.3 Neural NetworkDiscrimination

2.3.1 Neural Network Background

Artificial neural networks (ANN) are architecturally and functionally based on the

interconnections found in biological central nervous systems (CNS). The massive

connections (10 ) in the human CNS allow for the ability to store and synthesize massive

amounts of information that can be recalled instantly for any number of purposes. For

example, during reading the brain recognizes and associates each letter and combinations

of letters to sounds (phonics) or combinations of sounds (words). In sound recognition

the brain can, with appropriate training, determine whether a sound is emanating from a

known source and determines likely sound generation sources without visualization. The

principles of recognition can also be applied to judgmentmaking abilities. For example,

appropriately trained (or experienced) health care professionals may diagnose certain

heart pathologies utilizing only the sound of the beating heart, monitored through a

stethoscope.

An artificial neural network attempts to simulate the functionality of the brain,

wherein it is possible to store data within the network for use later in decision-making

processes. A neural network algorithm structurally consists of parallel neurons similar to

biological nerve cells in the CNS (Figures 2.9 and 2.10).

Figure 2.9 Image ofbiological

neurons. (Adapted from Hagen et

al.)

Lavcr ofNeurons
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h

\bj

Figure 2.10 Image of an

artificial neural network.

(Adaptedfi omHageri et al.) 15



Figures 2.9 and 2.10 indicate that the neural network structure shares and stores

information with other paralleled neurons from an input of data (or stimulus as in the case

of the biological neuron). In addition to the architectural similarity between the

biological neural networks (Figure 2.9) and artificial neural networks (Figure 2.10), there

is a functional similarity as well. One of the functions of the nerve cells is determining

the significance of inputs via stored sensitivities associated with specific stimuli. So,

when the neuron encounters a stimulus that is important, or critical to remember, it

weighs the stimulus more than other stimuli that are being received at the same time.

Hence the neuron puts more emphasis (weight) on the more important input, relative to

the less significant input. Similarly an artificial neural network also applies weighting to

the various neuron inputs that contain important information.

Artificial neural networks (ANN) utilize training ofneurons in order to instill

decision-making (classification) abilities. Training a network involves use of the "feature

vector"

with a set of corresponding "target vectors". Here a feature vectorwill contain

all the information a neural network needs to perform the appropriate training (for

example a typical feature vectormay contain the PI, RI, AB ratio, and x). Target vectors

are typically integer values, which correspond to a classification, that are used to evaluate

the output of the neural network. When the input data and target vectors are entered into

the ANN, training must be performed to adjust the weights and biases in a systematic

manner such that the network output values are close to the target vector values using a

summed squared error criterion. At the end of training an unclassified set of data (feature

vector) can then be entered into the
trained neural network for classification analysis.

16



2.3.2 Network Training and Evaluation

A neural networkmay be used to discriminate between data categories provided

that an appropriate set ofnetwork weights and biases are calculated apriori. Hence,

weights and biases are the quantities determined during network training. Weights (W)

are placed on the inputs to the neurons, which are adjusted according to the numerical

significance or importance of the input. For example, a single neuron withmultiple

inputs is depicted in Figure 2.1 1, which shows the process from the input of the feature

vector (R) to the output {af). Where {bf) is the neuron bias input.

"^^Ni^
^*

W^ > f

v j

R

^_

a, =f(W,P + b,)

Figure 2.11 Model of a single layer neuron with an input array of values. (Adapted from Hagen et al.)

As this network trains the weighting (W) will increase if the network puts more emphasis

on a specific input (P). If the network output (a) is less sensitive to the input (P), its

corresponding weight (W) will decrease accordingly. Selection of the bias value (b) is

similar to that of the weights except the bias input is always 1 . The bias value is also

subject to modification during network training.

"Learning"

is the process by which the weights and biases are adjusted to attain a

desired network behavior. With non-linear data, the learning rule most often used to train

is backpropagation (Hagen et al, 1996). An important part ofbackpropagation is the

performance index, which focuses on the calculation of the sum of the mean square error

(SSE), where:

17



T = Target Vectorfor a Given Input (Training) Vector
Eqn. 2.7

SSE =V (T
a)2

a= Network Output Vectorfor a Given Input (Training) Vector

As the training begins, the input training data are entered with the corresponding target

vectors. The training data provides the network with an array of specimen data that

exemplify the characteristics of desired network classification.

Each evaluation of the network is termed an "epoch", where the output of the

network is compared to the target vector. The neural network is then
"fine-tuned"

by

adjusting the weights and biases in order to minimize the SSE to a user defined error

goal. Training is complete when the error goal has been reached. Automated adjustment

the weights and biases maybe calculated using Equations 2.8 and 2.9.

a = Learning rate

-

*

Wfj
=Weight of the

m'h

layer,

W"(k + V) =
W,m,(k)-a-2^- Eqn. 2.8

'^ ' '-jK '
QWm

i element of the row,
>,j

j element of the column

b

(* + 1) =K
(k)-a- Eqn. 2.9 h = Bias

F = SSE

Here, the learning rate (a) can be adjusted during the training of the network. The

modification of a is dependent on the SSE and will be discussed in detail below. To

calculate network weights and biases (Equations 2.8 and 2.9, respectively) the partial

derivative of F needs to be computed. With networks ofmultiple layers (see Figure

2.12) the SSE is an indirect function of the hidden layers, thus the partial derivative is not

an explicit function of the weights and biases in the hidden layers. So, the easiestway to

calculate the derivative is to use the chain rule expansion as described in detail by Hagen

et al (1996).

18



Hidden Lavcrs Output Layer

a, =f(W,P + b.) a, =f(W:a + b.) a, =f(W>a: + b>)

Figure 2.12 Model of a multiple layer network with an input array of values. (Adapted from Hagen et al.)

To improve the performance of the network, heuristic modifications are added in

the backpropagation training method. The convergence of the SSE goal can be improved

by smoothing oscillations in a trajectory utilizing the so-called "momentum function",

which is in essence a low pass filter. Basically the momentum modification allows

neural network training the ability to track the average value of the data entered but with

much less oscillation. The filtering performed by the momentum helps network training

avoid getting caught in a shallow minimum (Figures 2.13 and 2.14).

^^^^
St art

a

'X.

a

C3

5*

End

\ Globsi Mia /

s

'Ji

\ 1 /

Without Momentum

Figure 2.13 Illustration of a neural

network without momentum.

WilhMomentum

Figure 2.14 Illustration of a neural

network with momentum.

Another modification involved with a speedier convergence is the adjustment of

the learning rate (a). The learning rate is allowed to increase when SSE gradients are

"flat", while the learning rate is decreased when SSE gradients are substantially non-zero.
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Adjustments to the learning rate are made according to three rules ofperformance on a

backpropagation network (Hagan et al 1996):

1) If the squared error (over the entire training set) increases bymore than

some set percentage C, (typically one to five percent) after a weight update,
then the weight update is discarded, the learning rate is multiplied by some

factor 0 < p < 1, and the momentum coefficient y (if it is used) is set to

zero.

2) If the squared error decreases after a weight update, then the weight

update is accepted and the learning rate is multiplied by some factor r\ > 1 .

If y has been previously set to zero, it is reset to its original value.

3) If the squared error increases by less than C then the weight update is

accepted but the learning rate and momentum coefficient are unchanged.

Where:

y
=Momentum Coefficient

C,
= Percent Increase in the Summed Square Error Over the Entire Training Set

p
=

Learning Increment

r\
=

Learning Decrement

and (Demuth and Beale, 1994):

Learning Rate
- A training parameter that controls the size of the weights and

bias, changes during learning.

Learning Decrement
- The multiplier used to decrease an adaptive learning rate.

Learning Increment
- The multiplier used to increase an adaptive learning rate.

Momentum - A technique often used to make it less likely for backpropagation

network to caught in a shallow minima.

By utilizing these rules the adjustment of the learning rate at the appropriate epoch, can

be automated to
"optimize"

the speed of convergence ofnetwork training. Optimization

of these parameters is a trial and error procedure. This is because various sets ofdata

give different convergence rates, relating to the nature of the data. So any results from

modifications of these parameters are only applicable to the data collected for this

research.
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2.3.3 Experimental Data Segregation

The current investigation consists of two experimental groups: the training set and

the testing set. Both data groups are collected from several dozen patient observations at

10, 11, 12, and 13 weeks of gestation. All observations were made with maternal

informed consent, and conducted with ethics committee approval from all institutions

participating in this study. Each patient file is analyzed using the PVD program and

using the maximum frequency reconstruction method (Gallagher, 1995; Kempski et al, in

review, and Ursem et al, 1998) resulting in a list ofvalues consisting of various Doppler

velocity waveform indices (the PI, RI, the AB ratio, and x) from each cardiac cycle in the

velocity waveform. Respective pulse-velocity indices were averaged across the fetal data

record so that fetal average indices were obtained.

Depending on the number ofpatient files in each gestational week, a maximum of

five randomly selected fetal data records were used as testing files for the neural network,

with the remaining fetal records at a given gestational week were used to create network

training vectors. Ideally after neural network training, robust discrimination should be

possible between fetal index (feature vector) data obtained at weeks 10, 1 1, 12, or 13

weeks of gestation.

To determine if the diastolic decay constant (x) was an accurate measure of the

cardiac cycle timing, the mean square error (MSE) is calculated for the averaged pulse

velocity waveform data (see Figure 2.15) between S and D compared to the best fit

curve defined by Equation 2.5.

Eqn. 2.10

n = Number ofElements in the Input Sequence

f(I) = Best Exponential Fit to Velocity Segment Between S and D

y(I)
= Actual Velocity Segment Between S and D
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MSE =

-IfeCAO-tfO)2)

Average Time (see)

Figure 2.15 Visual comparison between the exponential best fit curve and an averaged pulse-velocity.

Likewise, fetal velocity waveform indicies may be plotted versus each other to

observe whether data
"clustering"

was evident (Figure 2.16). Such clustering may be

indicative of self-segragation between fetal gestational age groups and is known to be

desirable from a classification perspective (Duda and Hart, 1973).
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2.3.4 Network Construction

Nominally the network was configured as a two-layer system, usingMATLAB

v4.2c (The Mathworks Inc., NatickMA) with the neural network TOOLBOX v2.0b.l

(see appendix A for the MATLAB scripts). The hidden layer (layer 1) contained six

neurons with three inputs, while the output layer (layer 2) contained two neurons (Figure

2.16).
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Figure 2.16 Model of a multiple layer, multiple input, multiple neuron

backpropagation network.

All the layers utilized non-liner transfer functions, specifically the log-sigmoid transfer

function (Equation 2.1 1).

1 n = Input
a =

\ +
e~"

a = Output Eqn. 2. 11

L
Represents a

log sigmoid

transfer

function.

The input feature vector was first created to contain the respective fetal averaged velocity

waveform indices. The gestational week categories are identified by the two output
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neurons with assigned target vectors such that
"ideal"

neuron outputs are given by [a2A,

a
2 2 ], where the assigned target vectors for week 10 are [0,0], week 1 1 are [0,1], week 12

are [1,0], and week 13 for [1,1].

Alternatively, the network input "feature
vector"

could be the average pulse-

velocity data values. Hence, the network training and testing could occur by use of an

entire average pulse-velocity data series as opposed to the
"reduced"

set of fetal averaged

velocitywaveform indices noted above.

In the analysis results which follow, both feature vector approaches were

evaluated to assess whether fetal age discrimination between 10 to 13 weeks gestation is

possible.
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Chapter 3 Results

3.1 Diastolic Decay Constant

Figure 3.1 depicts a
"typical"

superposition of fetal average pulse-velocity

waveform and the
"best-fit"

exponential decay curve defined by Equation 2.5.

Computation of the MSE between the "best-
fit"

curve and the diastolic portion of this

average pulse velocity waveform was 268.2.

s j^^^7?!:^^\

>.,

"5
^"^-^v >Diastolic Decav Constant

2 ^^/
"

D

|-f
Average Time (sec)

Figure 3.1 Visual comparison between the exponential best fit and an averaged cardiac

cycle.

As depicted in Figure 3.1, this
"best-fit"

approximates the shape of the average

pulse-

velocity trace after peak systole. However the rate of diastolic decay of the average

pulse-

velocity waveform is more severe than that defined by an exponential decay. This

poor fit was consistently observed for all data files processed during the current study.

As such, the diastolic decay index, x, was not used as an element in the waveform index

feature vectors employed for neural network training or classification.
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3.2 VelocityWaveform Index Training and Classification

Neural network training was first attempted using feature vectors defined using

the PI, RI, and AB ratio fetal velocity waveform indices. This process was guided, in

part, by the work ofMorrow (1998) which indicated that a two-layer back propagation

network was sufficient to classify changes in gestational age measured over trimesters.

However, network training for fetuses with gestational age of 10, 11, 12, or 13 weeks

proved problematic, plagued by slow convergence.

Initially the slow convergence ofnetwork training was thought to be a

consequence of the initial conditions of the heuristic modifications (the learning rate,

learning increment, learning decrement, and momentum). Aftermany attempts (to no

avail) using, heuristic parameters of various bounds, adjustments of the size of the neural

network were conducted. Network configurations ranged from two layer networks with

six neurons in layer one and two neurons on the output layer as described in Section

2.3.4, to a three layer network with 12 neurons in layer one, 32 neurons in layer two, and

two neurons in the output layer. Using several combinations of the heuristic

modifications in conjunctionwith different network configurations, it became evident

that the network could not train with the given velocity waveform index data. For each

configuration the network was unable to converge to the proper error goal (SSE <
.02)

after more than
4e5

epochs. According to Morrow (1998) the network should be able to

converge to the error goal within 7000 epochs. After further scrutiny this lack of

convergence of the SSE was attributed to an overlap in hemodynamic indices for fetuses

in the study group.
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Figure 3.2 through 3.4 indicate that, for the data used in this study, there was not a

consistent clustering ofhemodynamic index values associated with gestational age. Such

cross-pollination between age groups is shown explicitly in Figures 3.2, 3.3, and 3.4

using the average waveform indices for each fetus (See Appendix B). Since these pulse-

velocity waveform indices are not "clustered", the neural network cannot be effectively

trained so that the weights and biases can discriminate the target age groups. Without

effective network training, use of the neural network and pulse-velocity waveform

indices for gestational age discriminationwas not possible.
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Figures 3. 1, 3.2, 3.3 Graphical depiction of fetal blood pulse-velocity indicial "signatures". Plots show

a lack of segregation by age when individual fetal PI, RI, and AB ratio indices are employed to classify

gestational weeks 10, 1 1, 12, and 13.
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Instead ofusing the average
pulse-

velocity waveform indices extracted from each

fetal record for training, the data was
"compressed"

by further averaging across a given

gestational week. Hence gestational
"weekly-average"

PI, RI, and AB ratio values were

computed and provided four feature vectors (see Appendix B), each representing the

respective gestational week 10, 11, 12, and 13 index data. Figure 3.8 is the analysis

result of testing feature vectors that spanned 10-13 weeks of gestation. The results

indicated in Figure 3.5 show that the artificial neural network testing, following training

with weekly-average feature vectors containing waveform index information, indicates

that the classification capabilities of the testing vectors is not robust.
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Figure 3.5 The test feature vectors are from known gestational age classifications as indicated in the

figure legend. The highest sample number in any group represents the weekly-average training vector

for that group, which was fed-back into the network as a self-consistencv check.
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Patient Number Sample Number Fetus Age Day PI
,
Rf AB |

A02 0019UA1 1 Week 10 0 2.6054 0.9391 16.4267 37.8985

A10 0129UA1 2 3 2.4698 0.9035 10.3942 34.9247

A18_0256UA1 3 3 2.2375 0.8937 9.5739 32.3336

A22_0311UA1 4 3 2.3577 0.9019 10.2075 32.1922

A03_0025UA2 5 4 2.1319 0.8467 6.5778 25.5024

Avg Training Vector 6 Test 2.4319 0.9020 11.5572 33.3533

A05_0059UA1 4 7 Week 11 4
,2.8132ft0.95; 20.0129 39.5927

| A08JJ107UA1 8 M | ^2.47422; 0.8818 8.4733 32.2863

A09 0119UA2 9 , w ,
2.4997 0.9072 107903 35.6923

A18 0254UA1B 10 2 ;2.4806 0.9229, :13.5081 , 35.6319

A18_0254UA1NB -11
'~

'

V 2.4383 0.9098 : 11.1538 33.9196

Avg Training Vector 12
.
Test 2.4532 0.9095 13.0386 33.9183

A03 0031 UA3 13 Week 12 0 2.7639 0.9375 16.0565 40.3843

A04 0040UA1 14 0 2.7129 0.9619 26.4187 43.5124

A04 0052UA1 15 6 2.3399 0.9076 11.2024 34.1108

A17 0241 UA1 16 2 2.431 0.9048 10.5465 28.2708

A08_0103UA1 17 2 2.0326 0.8594 7.1359 31.2273

Avg Training Vector 18 Test 2.4012 0.9159 12.9994 32.4944

I A18 0258UA1 19
c 1*2.32681' ft0.9299 .14.3757

MW86B'-

A16_0230UA1 20
-

: 5 11.8988 > I 0.8626 7:325 S26J&326-:

A14_0195UA1 21 0 : 2.3337 ,0,9138 11.9449 23112882:

A11JI40UA1 22
-

4 --2.1261ft f 0I8945 9.5643 33.2097

A05 GQ69UAT 23 ? |g2.0867J S 0.8923 9.3779 28.8966

Avg TrainingVector 24 Test |^;35l8f 0.9152/ 13.5062 29.8955.

Table 3.1 Chart of the fetal records used to test the neural network.

3.3 Average Pulse Velocity Training and Classification

Another approach to network training employed the average
pulse-

velocity

waveform data as the input feature vector, instead of the waveform indices. Figure 3.6

depicts all 73 fetal average pulse velocity waveforms plotted for comparison purposes.
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Weeks 10, 11, 12, 13 Healthy Averaged Cycles

Figure 3.6 Plot of 73 averaged cardiac cycles. Ranging from 10 to 13 weeks ofgestation

Visual assessment ofFigure 3.6 suggests that clustering by gestational age maybe

problematic (see Appendix C for a separate comparison by gestational week). These

average pulse-velocity data were further condensed to single (mean) average pulse-

velocity waveforms per gestational week via averaging all fetal waveforms within a given

gestational week. These weekly average
pulse-

velocity data are shown in Figure 3.7.

Modest segregation between gestational age groups is evident in Figure 3.7, suggesting

that neural network trainingmay be possible if the weekly average pulse-velocity data are

used for training purposes. By assigning a target vector to each week of gestation (week

10 [0,0], week 1 1 [0,1], week 12 [1,0] and, week 13 [1,1]) the neural network was able to

distinguish between the
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Figure 3.7 Graphical depiction of fetal pulse-velocitywaveform
"signatures"

following weekly-

averaging. Ordinate is velocity inmm/sec, abscissa (X) represents time. Plots show that

segregation by gestational weekmay be possible due to differences inwaveform shape and/or

magnitude

data shown in Figure 3.7. Thus, a set ofweights and biases were foundwhich were

applied to assess the classification of the testing vectors using average
pulse-

velocity

records from the same fetuses noted in Table 3.1. The weights and biases calculated by

the neural network using the weekly average pulse-velocity datawere then used to

evaluate the fetal average pulse-velocitywaveform data set-aside for testing purposes

(see Table 3.1). Of the five individual (fetus) feature vectors per gestational age group,

Figure 3.8 shows that successful classification occurred in four of five (4/5) trials for

week 10, three of five (3/5) trials for week 1 1, two of five (2/5) trials for week 12, but

only one of five (1/5) trials at week 13. Note that unsuccessful classifications shown in

Figure 3.8 may be the result of the
individual embryo waveform overlaps between age
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groups. Examining Figure 3.8 it can be seen that the neural network was not able to

classify all the individual fetal average pulse-velocity waveform
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Figure 3.8 Artificial neural network testing following training with weekly-average feature vectors containing

pulse-velocity waveform data. The test feature vectors are from known gestational age classifications as

indicated in the figure legend. The highest sample number in any group represents the weekly -average

training vector for that group, which was fed-back into the network as a self-consistency check. Perfect

classification would result in a sequence of "steps". The network passes the self-consistency check and

classification, while not perfect, is more robust than that previously conducted using index-based feature

vectors.

data into the correct gestational age groups. These results stem from the fetal average

pulse-
velocity overlap shown in Figure 3.6. Calculating the confidence interval at a 95%

confidence level (see Figure 3.9) provides a graphical interpretation of the error found in

Figure 3.8. The comparison plot indicates that there is significant overlap in confidence

intervals between consecutive weeks 1 1 and 12 of gestation to the point where proper

discriminatory ability failed (additional confidence interval plots are shown in Appendix

D).
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Weeks 11 & 12 Confidence Intervale

Figure 3.9 Graphical comparison of averaged fetal pulse-velocity waveforms of gestational weeks 11

and 12 with corresponding confidence intervals (calculatedwith a 95% confidence level).

While the weekly average
pulse-

velocity training vectors depicted in Figure 3.7 show

modest segregation, the average pulse-velocity testing vectors used (other than the
fed-

back weekly average pulse-velocity vectors) for evaluation appear to posses
a substantive

variance based on the results depicted in Figure 3.8. This is likely due to overlap

between individual average fetal pulse-velocity data series across gestational age groups

(see Appendix C). Hence, misclassification ensues. Figures 3.5 and 3.8, show that

Doppler waveform indices afford a decreased ability to differentiate between gestational

weeks when compared to classification attempts using average pulse-velocity waveform

data.
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Chapter 4Discussion

4.1 Diastolic Decay Constant

The diastolic decay constantwas determined to not have an efficient correlation to

the average pulse-velocity. Significant error was observed due to the steep run off after

peak-systole (S ,
Figure 3.1). The error was largely due to the steep decline in velocity

time series value after peak systole ( S ), which the simple exponential functionwas

unable to mimic. As such, a more elaborate functional definition is required to

appropriately model the average pulse-velocity waveform over the period from peak-

systole (S ) to end-diastolic velocity (D ) values. Furthermore, the diastolic decay

constant x was not employed during subsequent neural network analysis of fetal

hemodynamic index data.

4.2 Waveform Indices and Classification

As development of the fetal circulatory system progresses, blood flow velocity

also changes. Throughout the last 20 weeks ofdevelopment, characteristic pulse-velocity

waveform indices become differentiable at various gestational ages and health condition

(Thompson and Trudinger, 1989). However, between the gestational ages of 10 to 13

weeks, the current study has discovered that pulse-velocity waveform characteristic

indices are not the best approach for fetal health assessment, since variations in fetal data

cannot be consistently classified into their appropriate gestational week (see Figure 3.6).

This lack of classification ability stems from the overlap observed in the fetal waveform
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velocity indices for the gestational ages used for this study. Such overlap is explicitly

seen in Figures 3.2 to 3.4.

According to Wright et al, (1997), neural network testing is possible for fetal

pulse-velocity waveforms between 17 to 20 weeks ofgestation. Using late second

trimester Doppler waveforms a success rate of 100% classificationwith the carotid

artery, and 94% classification with the femoral and popliteal artery has been achieved

(Wright et al., 1997). Thus the fetal gestational week 10, 11, 12, and 13 pulse-velocity

waveforms used in the current study may not be distinct enough to be successfully

differentiatedwhen using the PI, RI, and, AB ratio indices. Indeed, even use of the

average pulse-velocitywaveform index data did not afford a robust fetal age

discrimination based on the results of the current study.

Figures 3.2, 3.3, and 3.4 show that there was no evident clustering of the average

fetal indices according to gestational age between 10 to13 weeks. Therefore since

grouping according to gestational age was not apparent, the neural network was unable to

separate the indices for classification purposes.

Section 4.3 Average Pulse Velocity and Classification

The current study suggests that use of
pulse-

velocity waveform data as the

"feature
vector"

used in classification has modest discrimination capability, although

misclassifications occur as seen in Figure 3.8. Hence, more patient observations (i.e.

more data records) may be required if robust classification is to be achieved. Data

depicted in Appendix C show large amounts ofoverlap in fetal average pulse-velocity

waveforms from 10 to 13 weeks gestation. This waveform overlap suggests that
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individual patient waveform data possess considerable variance which renders

discrimination difficult unless many patients are averaged together to lessen the variance.
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Chapter 5 Conclusion

Examination of the Doppler velocitywaveform indices has shown that during

early gestation (weeks 10 to 13) the PI, RI, and AB ratio are not powerful classification

indices based on the data used for this study. Analysis using the average
pulse-

velocity

waveform resulted in better classification outcomes, however robust discrimination was

not achieved.

That the Doppler velocitywaveform indices appear to be a much less reliable

assessment method than the average pulse-velocitywaveform suggests that the

calculation of the PI, RI, and AB ratio omit valuable classification information. The lack

of consistent classification utilizing
pulse-

velocity waveform time series information

suggests that, at these early gestational ages, large numbers ofpatient observations (n >

20) may be required to train robust neural network classification algorithms. Based on

the limited data used for this study, neither characteristic indices nor
pulse-

velocity

waveform time series data provide reliable fetal age discrimination amongst healthy

maternal-fetal pairs.
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Appendix A

MATLAB Script Files

A.l Trainer.m

%Modified by: Ron Soule July 22 1998

%

% Neural Network toolbox code to initialize, train, and sort results for a

% 5-N-2 logsig backpropagation network.

%

% Begin by loading training pairs (P,T) and proceed

clear

clc

AvgChar

[Wl,bl,W2,b2]-initff(P,5,,logsig,,2,'logsig');

disp_freq
=

200;

max_epoch
= 50000;

err_goal
= 0.02;

lr = 0.2;
lr_incr=

1.04;

lr_decr = 0.7;

momentum
= 0.9;

max_error_ratio
= 1.04;

tp=[disp_freq max_epoch err_goal lr lrincr lr_decr momentum max_error_ratio];

[Wl,bl,W2,b2,te,tr]=trainbpx(Wl,bl,,logsig',W2,b2,'logsig',P,T,tp);

save wabl Wl bl W2 b2
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A.2 EvalNet.m

%Modified by: Ron Soule July 22 1998

%

% NN toolbox code for evaluation of a trained network.

% Begin by loading input (P,T) vectors to be evaluated

% Then, the evaluator will run it throughmost recently used trained

% network (which may need to be loaded).

[a2]
=

simuff(P,Wl,bl,,logsig,,W2,b2,,logsig');

% Now, sort through a2 to alter to nearest matching vector

% and compare to T

n
=
size (a2);

m
=

n(l)*n(2);

for ind = 1 :m

tmp
=

a2(ind);

iftmp>0.5

a2(ind)
= 1.0000;

else

a2(ind)
= 0.0000;

end

end
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A.3 ComWIOH

%Waveform index data (PI, AB ratio, RI, respectively), with target vectors used to train the Neural

%Networks

= [2.6054 16.42674 0.9391

2.1319 6.5778 0.8467

2.7197 18.17318 0.9449

2.7373 17.5876 0.9428

2.5511 18.48639 0.9458

2.6788 15.49272 0.9352

2.29 9.801049 0.8973

2.3241 7.4597 0.8657

2.3859 10.43858 0.9037

2.4698 10.3942 0.9035

2.5379 10.78524 0.907

2.1683 7.430455 0.8652

2.1616 7.23753 0.8615

2.3893 10.50542 0.9047

2.2375 9.57392 0.8937

2.3225 8.2475 0.8783

2.527 9.560941 0.8953

2.3577 10.20766 0.9019

2.706 21.46317 0.9529

2.7128 15.07592 0.9336

2.8132 20.01293 0.95

2.7736 19.46906 0.9486

2.8407 17.87028 0.9439

2.4742 8.473273 0.8818

2.3108 7.554143 0.8673

2.4997 10.79034 0.9072

2.3929 12.03739 0.9168

2.0388 9.333141 0.8922

2.2311 10.2768 0.8995

2.2157 7.339067 0.8634

2.4806 13.50805 0.9229

2.4383 11.15381 0.9098

2.0517 7.214324 0.8507

2.7639 16.0565 0.9375

2.3089 14.4801 0.9214

2.7129 26.4187 0.9619

2.487 13.9441 0.9281

2.3399 11.20235 0.9076

2.3885 14.9254 0.9306

2.69394 21.0837 0.95103

2.72319 20.7001 0.95153
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2.56123 15.7836 0.93654

2.46575 13.6511 0.92605

2.03258 7.1359 0.85941

2.26306 10.6947 0.906210

2.30542 10.91991 0.90832

2.3281 8.386290 0.88045

2.431 10.54654 0.90483

2.0996 7.79472 0.87147];

P = P':

T = [ 000000000

000000000

0000000000000000000011111111111111111111

0000011111111111111100000000001111111111];
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A.4 Average.m

%A data set that contains the APV data for the four gestational weeks under investigation (the

%colums represent the weeks of gestation). This set was used as training vectors.

P = [13.15204348 13.95490476 14.26247619 19.615

13.61065217

14.90595652

17.72308696

22.81043478

30.75617391

41.76886957

55.53443478

71.20004348

87.50526087

103.0307391

116.4854783

126.9516957

134.0163913

137.767913

138.6758696

137.4127391

134.6723043

131.0331304

126.8829565

122.4059565

117.6207391

112.4503043

106.7907826

100.5652609

93.7516087

86.38869565

78.56769565

70.41726087

62.0903913

53.76408696

45.64830435

37.99347826

31.07565217

25.15656522

20.43217391

16.98486957

14.755

13.56604348

13.16356522

13.23908696

14.41309524

15.74957143

18.66180952

23.93247619

32.21428571

43.80847619

58.50109524

75.51561905

93.61152381

111.3094286

127.1802857

140.1105714

149.472619

155.1642381

157.5300952

157.2019524

154.9127619

151.3309048

146.9505238

142.0582857

136.7638095

131.0600952

124.8862857

118.1751429

110.881

102.9902857

94.52628571

85.55742857

76.21347619

66.70619048

57.33442857

48.4642381

40.47861905

33.70652381

28.35390476

24.45880952

21.8857619

20.36290476

19.54957143

19.0877619

14.71661905

16.22814286

19.67571429

25.97804762

35.783

49.2132381

65.75409524

84.3172381

103.4556667

121.6567619

137.6268095

150.4909524

159.8765238

165.8811905

168.9494286

169.6990476

168.7472381

166.5870476

163.5322381

159.7269048

155.1916667

149.8864762

143.7715238

136.8467143

129.1581905

120.7787619

111.7840476

102.2544762

92.31042857

82.15980952

72.1222381

62.60404762

54.0212381

46.70347619

40.81790476

36.34266667

33.08947619

30.76419048

29.03857143

27.61657143

20.01744444

21.74666667

25.83644444

33.33733333

44.93288889

60.64044444

79.71488889

100.7842222

122.1651111

142.2411111

159.7823333

174.1144444

185.1148889

193.076

198.4986667

201.8927778

203.6426667

203.9598889

202.9226667

200.5598889

196.9243333

192.1206667

186.2868889

179.5622222

172.061

163.8648889

155.0224444

145.5612222

135.524

125.0326667

114.3368889

103.8075556

93.86677778

84.88577778

77.094

70.53933333

65.10311111

60.56011111

56.654

53.16133333
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13.51913043

13.79673913

13.95 17.

13.93978261

13.78878261

13.55591304

13.30491304

13.0983913

12.96447826

12.90247826

12.90391304

12.93821739

12.95882609

18.7547619

18.36061905

8412381

17.21428571

16.5342381

15.86352381

15.26342857

14.81580952

14.51671429

14.30209524

14.09342857

13.95990476

13.81366667

26.28261905

24.92214286

23.51514286

22.10947619

20.78080952

19.60009524

18.61104762

17.82633333

17.20761905

16.76080952

16.41919048

16.12742857

15.80652381

49.928

46.87722222

43.99911111

41.32955556

38.91711111

36.795

34.96288889

33.38733333

32.01755556

30.80088889

29.69

28.64888889

27.65566667];

= [0011

0101];
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A.5 EVA.m

%TheM-file to load the data files under investigation and run the various

%evaluationM-files

clear

clc

load wabl

j
= 0;

WeeklOch

EvalNet

figure(l)

HfigJ
= figure(l);

set(Hfig_l, ...

'NumberTitle', 'Off, ...

'Name', ['Unknown']);

Ploti

Hold;

fori =1:1

j=j + i;
end

Weekllch

EvalNet

Ploti

fori =1:1

j=j + i;

end

Weekl2ch

EvalNet

Ploti

fori =1:1

end

Weekl3ch

EvalNet

Ploti

Hold;
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A.6 Ploti.m

%Modified by: Ron Soule July 22 1998

%file to graphically represent how data is assigned

dim =

size(a2);

xsize = dim(2);
x = [l:l:xsize];
for i = 1 :xsize

ifa2(:,i)= [0
0]'

step_loc(i)= 10;

elseifa2(:,i)
= [0

1]'

step_loc(i)
= 11;

elseifa2(:,i)
=

[l,0]'

step_loc(i) =12;

else

step_loc(i)
= 13;

end

end

ifj=0

plot(x,step_loc,'kx')

end

ifj
= l

plot(x+6,step_loc,'ok')

end

ifj 2

plot(x+12,step_loc,'+k')

end

ifj 3

plot(x+l 8,step_loc,'sk)

end

xlabel(Tnput Sample Number');

ylabel('Gestational Age (Weeks)');

legend('Week 10', 'Week 11', 'Week 12', 'Week 13');

axis([0 24 9.5 13.5]);
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Appendix B

Complete Table ofFetal Pulse-VelocityWaveform Indices Used in Neural Network Training

Patient Number Fetus%g$ Day
A03 0029UA2

A04 0041 UA2

A05 0058UA1

A05 0062UA2

A06 0076UA1

A06 0077UA1

A07 0089UA1

A09 0118UA1

A09 0120UA1

A10 0128UA1

A11 0142UA1

A13 0174UA1

A13 0177UA1

A14 0193UA1

A16 0214UA1

A20 0277UA1

A21 0296UA1

A22 0304UA1

Averaged Data

A02 0010UA1

A02 0022UA1

A04 0042UA3

AIM 0043UA1

A05 0059UA1

A05 0061UA1

A06 0080UA1

A09 0116UA1

A11 0134UA1

Week 10

Week 11

A13 0168UA1

A15 0197UA2

A16 0223UA1

A18 0245UA1

A18 0247UA1

A18 0259UA1B

Averaged Data

A03 0036UA1

A04 0044UA1

A05 0057UA2

A05 0063UA1

A05 0065UA1

A07 0090UA2

A08 0101UA2

A09 0117UA2

A13 0170UA1

A13 0172UA1

A17 0234UA1

A17 0244UA1

A19 0264UA1B

A19 0269UA1B

A21 0285UA2

A21 0298UA1

Averaged Data

A03 0028UA1

A11 0137UA1

A13 0167UA1

A16 0221UA1

A18 0258UA1

Averaged Data

Week 12

Week 13

Test

Test

119.1332

180.0872

204.7626

176.7782

185.8611

152.9187

97.3331

111.6529

154.8480

123.2956

159.0871

111.1227

142.5648

206.0539

133.7193

123.2990

103.3412

142.0437

145.9946

119.8515

208.3984

148.0298

164.4324

198.6052

190;4777

176.945?

149.3983

130.3496

12Q.5461

183.3546

167.4884

189.3356

108.6797

123.2029

158.6064

9.8893

9.9012

10.0582

10.0464

10.0770

9.8913

9.9434

14.9538

14.8147

14.9439

14.7715

14.9621

19.7031

19.6320

14.8135

14.9490

15.0238

14.8422

13.5120

9.8655

9.7279

9.8199

9.8013

9.9278

9.7857

9.3044

'19.7651

19.8774

110.0082

19.7307

,16.8123

14.8688

.14.8183

18.3128

13.5351

149.4401

140.2265

174.5048

221.5802

202.7163

232.2179

214.4168

209.6693

161.3410

165.3572

Test

Test

154.1973

209.5962

177.1596

176.0852

175.4742

158.7255

182.6693

181.5783

300.4831

164.2372

261.0049

302.7910

242.0189

11.7901

M

44.2533

62.5098

69.3908

60.8619

69.0643

53.5088

38.1155

41.5626

58.6028

47.8645

56.9553

44.3700

56.8555

78.1006

51.1128

46.6323

41.8145

50.2779

53.9918

44.0912

73.3789

50.9454

58.7335

67.0910

65.1546

58.8117

56.0596

53.5067

46.1582

80.2253

67.6785

68.7034

42.3931

51.0935

58.9350

10.0623

12.0465

10.7807

9.7997

14.7106

15.8478

19.5965

14.7774

19.6939

19.7857

19.7175

14.8125

14.7592

17.6686

14.8109

15.0412

10.1753

1&7306

25.6657

19.7057

21.2370

19.3029

59.5937

52.2822

67.8727

78.0812

70.8905

84.9006

80.5198

83.9360

63.5703

Pt

2.4716
..

RI

2.7197

2.8067

2.7373

2.5510

2.6788

2.2900

2.3241

2.3859

2.2630

2.5379

2.1684

2.1615

2.3893

2.3238

2.3225

2.1159

2.5271

2.4319

2.4950

2.7060

2.7128

2.6313

2.7982

Z7736

2.8407.

.2.3108

.2.0632

2.3929

2.0388

2.2311

2.5365

2.2157

2.0517

2.4532

2.3089

2.4870

2.3885

2.6939

2.7232

2.5612

2.4658

2.2631

62.4840

64.0219

85.1449

69.4482

64.0728

72.1653

57.1361

69.7575

68.3912

111.8883

75.4129

93.3860

121.1946

94.0546

2.3054

2.3282

2.0996

0.9169

0.9449

0.9509

0.9428

0.9459

0.9352

0.8973

0.8657

0.9037

0.8786

0.9070

0.8652

0.8615

0.9047

0.8887

0.8782

0.8542

0.8953

0.9020

0.9175

0.9529

0.9336

0.9391

0.9492

0.9486

0.9439

0.8673

0.8470

0.9167

0.8922

0.8995

0.9212

0.8634

0.8506

0.9095

0.9214

0.9281

0.9307

0.9510

AB

12.0619

18.1732

20.5600

17.5876

18.4864

15.4927

9.8010

7.4597

10.4386

8.2480

10.7852

7.4305

7.2375

10.5054

9.0185

8.2475

6.9350

9.5609

1 1 .5572

12.1513

21.4632

15.0759

16.7970

19.7225

1194691

17.8703

.7.5541

6.5539

.12.0374

9.3331

10.2768

1Z7212

7.3391

7.2143

13.0386

33.1574

39.9665

40.7755

39.1426

36.9351

40.8573

28.2097

28.8534

32.4167

30.3388

36.2698

29.0509

29.5799

30.6246

33.6077

29.5374

28.4271

32.6097

33.3533

38,3387

40.5871

39,6604

36.3422

39.5060

40.8506

38.1303

30.0773

28.104?

30.2677

32.3730

30.6636

33.5884

30.2468

22.0383

33.9183

14.4801

13.9441

14.9255

21.0838

0.9515

0.9365

0.9261

0.9062

0.9083

0.8805

2.2288

2.3360

2.5216

2.1905

2.5183

2.4012

2.5038

2.5041

1.8383

2.5862

2.3268

2.3518

0.8715

0.9058

0.9162

0.9158

0.8984

0.9064

0.9159

0.9437

0.9341

0.8436

0.9245

0.9299

0.9152

20.7002

15.7836

13.6512

10.6948

10.9199

8.3863

7.7947

10.6288

11.9536

11.9463

10.3823

10.7149

12.9994

18.0391

15.2070

6.6528

13^2563

14.3757

13.5062

29.9827

36.0155

27.8215

35.5375

41.2687

36.2348

34.9033

28.2998

33.3245

31.4504

27.9108

32.7262

29.8149

31.9022

30.0144

32.7026

32.4944

35.1295

29.3820

25.5811

31.5688

27.8160

29.8955

N=18

23 Total

N = 15

20Total

N = 16

21 TotaJ-

N = 5

9 Total

48



Appendix C

Complete Set of Fetal Representative Pulse-VelocityWaveforms

Week 10 Pulse Waveform velocity

Average Time (sec)

Week 11 Pulse Average Velocity

250

10 20 30 40

Average Time (sec)

60
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Week 12 PulseWaveform Velocity

250

Average Time (sec)

Week 13 Pulse Average Velocity

300

- 200

30

Average Time (sec)
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Appendix D

Fetal Week-Averaged Pulse-VelocityWaveforms with Confidence Intervals

Week 10 Confidence Interval

g 150

< 100

Week 11 Confidence interval
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Week 12 Confidence Interval

Week 13 Confidence Interval
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Weeks 11 & 12 Confidence Intervals
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Weeks 10 & 11 Confidence Intervals
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Wsta 12& 13Corfttare larval
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