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ABSTRACT

The purpose of this work is to discuss thermal stresses in closed spherical shells.

This effort is further limited to linear thermoelastic stresses in
"thin"

shells. The basic

concepts associated with three-dimensional continuum mechanics are presented in both

direct and general tensor notation. The three-dimensional equations are reduced to

the two-dimensional equations of shells under going finite displacements. These are

subsequently reduced to those pertaining to spherical shells. A review of the recent

literature associated with thermal stresses in spherical shells is included. An appendix is

provided which reviews some of the basic elements of general tensors.
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1 INTRODUCTION

The subject of thermal stresses in shells is a small part of the much more general

subject ofmathematical physics. The subject ofmathematical physics involves describing

physical laws and their various interactions in mathematical terms. Physical laws are

assumed to be independent of the frame of reference in which an event takes place,

given some a priori assumptions concerning the nature of the actual physical space.

The effort of describing physical laws and their various interactions, in mathematical

terms, often results in systems of differential equations and sets of equations representing

boundary and initial conditions. The equations usually provide insight into the nature of

a particular event or set of events. In most cases, assumptions are made regarding the

physical laws and their interactions in order to obtain the systems of equations. If the

intent is to attempt to solve for various unknown quantities in terms of known quantities,

further assumptions are usually required to make the problem more tractable.

The equations and assumptions are often referred to as a theory which is associated

with some particular physical phenomena. The assumptions implicit in a particular theory

obviously restrict the applicability. The limitations of the theory are usually not obvious

from the equations. It is therefore important, from a practical viewpoint, to understand

the assumptions used and their consequences. This is best accomplished by following

the derivation of the equations, as the simplifying assumptions are being made.

The subjects of differential geometry, tensor analysis, and variational calculus provide

the mathematical tools for handling the physical concepts provided by the subjects of

thermoelasticity and mechanics of continua. These subjects are used either implicitly or

explicitly in most treatments of thermal stresses in shells.

Differential geometry, according to Dubrovin et al. [1], is concerned with the study

of the metrical properties of general
"smooth"

spaces, using the techniques of differential

calculus and linear algebra.



Tensors are defined by Sokolnikoff [2] as abstract objects whose properties are

independent of the coordinate system used to describe the objects. Tensors are represented

by a set of functions, which are called tensor components. Whether a set of functions

represents a tensor, depends on how the functions transform from one coordinate system

to another. If the components of a tensor vanish in one coordinate system, they vanish in

all coordinate systems. Tensor analysis is the study of these abstract objects called tensors.

Due to the invariant nature of tensors and physical laws, tensor analysis provides an ideal

way of studying physical laws and their interactions. If a mathematical description of

physical laws or their interactions can be provided in tensor form, it is valid in all frames

of reference, given some assumptions regarding our physical space.

Variational calculus according to Washizu [3], is concerned with the study of the

stationary value of functionals (functions of functions) with the intent of finding among

the group of admissible functions, the one which makes the given functional stationary.

The concept of a scalar representing the energy of a body motivates the use of variational

methods in problems of continuum mechanics of solids.

Thermoelasticity, according to Nowacki [4], is concerned with the theory of the stress

and strain fields in an elastic body, resulting from a flow of heat when the temperature

and strain fields are coupled. It also involves the theory of thermodynamics.

Mechanics of continua is concerned with the formulation of equations which describe

the motion of deformable bodies. It includes the concepts of continuous medium, work

and energy, and forces and stresses.

Thermal stresses will be defined as those stresses resulting from a change in the

temperature field of a body. This does not imply that a change in the temperature field

alone is sufficient to produce thermal stresses. Further, it does not imply in general that

the change in the temperature field is entirely a result of the addition of heat energy to

the body from an external source.

Problems of continuum mechanics of solids involve, in general, three groups of



relationships which describe the kinematics of a body, the kinetics of body, and the

relationship between the first two.

The kinematic relationships are concerned solely with the geometry of a body as a

function of time. They consist of a description of the location of all material points of

the body relative to a reference frame at two distinct points in time. The difference in

position is termed a displacement. In the study of deformable bodies, the concern is

primarily with situations in which the shape of the body is different at the two points

in time. This interest leads to the need for a definition of a measure of the deformation

or straining and to the formulation of strain-diplacement equations. In addition, there

are some compatibility requirements (restrictions, constraints) on the relative position of

the points of the body after deformation (which limit what are acceptable changes to

the geometry).

The second group of relationships is concerned with the balance or conservation

laws for mass and energy. These are described as kinetic relationships and are concerned

with the concepts of forces, stresses and various forms of energy. They are, in general,

dependent on the position and shape of the deformed body.

The first two groups are independent of the nature of the material of which the body

is composed. The relationships between the variables in the kinematic relationships

and those in the expressions of the conservation laws are called particular laws, or

more generally, constitutive relationships. The third group consists of these constitutive

relationships which interrelate the first two groups. These are restricted by certain

principles. The nature of these relationships are also restricted [5] by certain other

general principles such as determinism, local action, and objectivity.

In general, the equations associated with the above three sets of relationships are all

nonlinear and therefore not solvable in a closed-form without simplifying assumptions.

The increase in computing power and its availability to practicing engineers in the last

ten years or so and the expected continued increase in the foreseeable future allows for



routine numerical investigation of problems involving a variety of nonlinearities. This

seems to drive the research in at least two directions: 1. Ensuring a problem formulation

which although
"messy"

when written out in a component form is reasonably robust when

attacked numerically. 2. Continued efforts to develop consistent, sound mathematical

formulations of nonlinear behaviors which were not addressed in-depth previously, due

to the inability to obtain a closed-form solution.

The kinetic relationships can be divided into two general classes: (a) the loads

are time dependant (the body is in a state of dynamic equilibrium) and (b) the loads

are independent of time (the body is in a state of static equilibrium). These can be

further subdivided by making assumptions concerning the distribution of the loads on

the body (concentrated or distributed, symmetric or nonsymmetric). If the loads are time

dependant further assumptions regarding the duration of the time interval of the loading

can be made (e.g., shock or impulse type load).

One usually begins by making assumptions regarding the kinematic relationships. A

variety of classes of problems can be developed by limiting the domain (geometry) that

the material points occupy. For example, one can limit the geometry to rectilinear,

cylindrical or spherical shapes. Also one can attempt to simplify the equations by

making assumptions about the relative magnitudes of the dimensions of the shapes

considered. Additional simplifications can be achieved by making assumptions regarding

the magnitude of the strains and displacements.

The constitutive equations describe the relationship between the dynamical state of a

body and the kinematic state at the same instants of time and possibly the kinematical state

of the body's past history. Again, assumptions are usually made to limit the relationships

to particular classes of problems.

This treatment is concerned mainly with the subject of thermal stresses in shells and

more specifically with linear thermoelastic stresses in closed spherical shells. The shell

is assumed to be initially stress free.



There are many ways of presenting a treatment of this type. At one extreme, the

pertinent equations expressed in terms of spherical coordinates for some assumed simple

material and loading and boundary conditions could be presented. At the other extreme,

one could attempt to discuss in some detail all or at least many of the basic concepts

involved in continuum mechanics, tensor analysis, differential geometry and any number

of other related subjects and how eventually one is led to the subject of thermal stresses

in spherical shells. We attempt to maintain a course closer to the former than the latter,

however, the equations and concepts required are presented in reasonably general form

and then refined for the limitations mentioned above.

In addition, to discuss thermal stresses without mentioning some of the more esoteric

issues which are often avoided due to the simplifying assumptions required, does an

injustice to the amount of work invested in attempting to bring them into clearer

focus. Examples of these are the principles or axioms associated with the constitutive

relationships, the issue of the second law of thermodynamics in problem formulation,

the application of Cosserat surface theory to shell problems, and the infinite speed of

propagation of thermal disturbances in the classical formulations.

Familiarity with vector and general tensor analysis and notation is assumed. Lower

case Latin indices are assumed to have the range of 1,2,3 while lowercase Greek indices

are assumed to have the range of 1,2, unless otherwise noted. When the term continuous

function is used, it is further assumed that the functions are of class Cn, where n is one

more than the highest order derivative required in the formulation or derivation. When the

term neighboring (neighborhood) is used, it is assumed that distances can be represented

by differential elements. The basic concepts associated with three-dimensional continuum

mechanics are presented in both direct and general tensor notation. The three-dimensional

equations are reduced to the two-dimensional equations of shells under going finite dis

placements. These are subsequently reduced to those pertaining to spherical shells.

This work is organized as follows:



Chapter 2 provides an overview of the notations used. Additional information

regarding some of the basic elements of general tensor analysis is provided in

Appendix A.

Chapter 3 provides a brief historical review of the subject of thermal stresses in shells.

Chapters 4-7 contain a review the main elements of kinematics of continuous media

and the principles associated with curves and surfaces, in general tensor form.

Chapter 8 reviews the main elements of the kinematics of continuous media in direct

notation.

Chapters 9-13 consider the kinetic and constitutive relationships in direct notation.

Chapters 14-16 consider the general equations for shells.

Chapters 17-18 discuss spherical shells and the reduction of the general equations

to the spherical shell equations.

Chapter 19 provides a review of recent literature associated with thermal stresses in

spherical shells.

Chapter 20 contains conclusions associated with this work.

We briefly review the main elements of continuum mechanics in three dimensions

because, although a reduction in the total number of scalar equations involved is generally

achieved by reducing the dimension of the body of interest from three to two, the main

problems associated with a full three-dimensional treatment still have to be dealt with

along with the problems or limitations
imposed by the reduction to the two dimensional

theory. In addition, it is sometimes necessary to reintroduce the three-dimensional theory

in order to treat various boundary conditions.



2 NOTATIONS

Due to the fact that a variety of notations for the same operations appear in the

literature, we define the notations used here, which are those used by Malvern [6]. When

vector or tensor quantities are written out in terms of their components and base vectors

it is assumed that they are defined in a general curvilinear coordinate system.

Boldface small and capital letters represent vectors and second-order tensors respec

tively, unless otherwise noted. Second-order tensors will be assumed to be linear vector

functions. In the following v and w are arbitrary vectors.

The magnitude of a vector a will be denoted by |a| .

Scalar (inner or dot product) of two vectors a and b will be denoted by ab .

Vector or cross product of two vectors a and b will be denoted by a x b .

Tensor or open (dyad) product of two vectors a and b which is a second order tensor

will be denoted by ab, and defined by (ab) v= a(b-v). Higher order tensor (polyad)

products are similarly written (e.g., abc and abed for third and fourth order tensors

respectively.)

The transpose of a tensor T, written as
TT

and defined by

v.(T-w)=(tt-v) -w 2.1

for all vectors v and w, where if T = ab, then
TT

= ba .

If a tensor T is symmetric then T =
Tr

.

If a tensor T is skew symmetric then T =
.

The trace of a tensor T written as trT where if T = ab , then trT = ab .

The operational product of a vector u and a tensor T which yields a vector v will

be written as

v = u-T=TTu 2.2



Tensor or open product of two second-order tensors T and U, written as TU, is

defined by

(T-U)-v=T-(U-v) 2.3

The inverse (when it exists) of a second-order tensor T is denoted by
T_1

and

defined by

T -

T-1
=
T_1

T = 1 2.4

The relationship between
T-1

and T is

i

(TT)T

T"1
= L_L- 2.5

detT

where T^ is the tensor of cofactors of T and is referred to as the adjugate of T [5].

We denote the operation of a fourth-order tensor on a second-order tensor which

results is a second order tensor [5] as H[D], where H and D are fourth-order and

second-order tensors, respectively. If H = abed and D = ef ,
then

H[D] = (d e)(c f)ab 2.6

The two forms of the scalar (inner or double dot) product of two second-order tensors

written as T : U and T -U defined by

T:U =

tr(T-Ur) =tr(Tr-u)
2.7

and

T--U = tr(T-U) 2.8

or

T--U = Tr:U =

T:Ur

2.9



where if either of the two tensors are symmetric, the two forms of the scalar product

are equivalent. If T = ab and U = cd then

T:U = (a-c)(b-d) 2.10

and

T--U = (a-d)(b-c) 2.11

The three principal invariants of a second-order tensor T will be written as It, II7-,

and IIIt, where

It = trT 2.12

IIr = |(T:T-I2T) 2.13

IIIr = detT 2.14

When a tensor is written out in component form (e.g., T = T'-'gigj = Tfg'gj) the

first index on the component belongs with the first vector of the dyad.

If a vector v is defined in terms of the covariant and contravariant bases by

v = v'giVig', then the following formulas for differentiation apply, where the
xl

are the coordinates and the double vertical bars denote covariant differentiation with

respect to the metric of the three dimensional space associated with the base vectors:

dv

dxn
= v llngm

= "+CM-

<iv = ^&"=m||&"gm = ^mgra 2.16



dv dv
dx"

_

m

dx"

_

Svm

The physical components of a vector or tensor will be indicated by enclosing the

indices in angled brackets. For example the vector v when expressed in terms of its

physical components has the form

V=VMM.-V{k*

2.18

|g*l g

When it is necessary to distinguish between symmetric and skew-symmetric tensor

components of a tensor parentheses will be used for the former and square brackets

for the latter. For example

j^ij j,(y)_|_j'[y] 2.19

The two forms of the gradient (del or nabla) operator will be denoted by

V=^g"

2.20

V = gn -̂ 2.21
dxn

The gradient of a scalar (/> is given by

grad<^ = ^V =
V^=^g"

2.22

10



The gradient of a vector field v is the tensor T defined by

^ = u-T = TT-u 2.23
ds

dv -^ *

= u-Vv=vV-u 2.24
ds

where u is a unit vector and ^L is the rate of change of v with respect to distance

in the direction of u and denoted by

< dv
vV = 2.25

Vv =
vVT

= g"-|^- 2.26
6 dxn

The gradient of a tensor T is likewise

"

dxn

< dT
TV =

#^gn
2.27

VT =
g"-^- 2.28
6 dxn

The divergence of a vector, which results in a scalar

divv = v-V = V-v = vm\m 2.29

di" =^^"i) 23

The two forms of the divergence of a tensor T which results in a vector

T-V ,
V-T=rM|g, 2.31

11



where

V-T = Tr-V 2.32

The Laplacian of a scalar <f> is written as V2(/> = div(V^), and is given by

V'-TSU^)-

When it is necessary to distinguish with respect to which basis the operator is referred,

a subscript will be used and/or the indices will have upper or lowercase letters, e.g.,

V,
=
g"

2.35

dXN

dgr

dxT
= {

S

}. 2"37

dGM r s

dXN
~

\MNr S}G.? 2.38

The scalar triple product of three vectors a, b, and c will be written as [a,b,c] where

[a,b,c] = a (b x c) 2.39

The general permutation symbols

ijk = [gi,gy,gfc] = vr9'^ijk 2.40

12



Jjk
_

g',gJ,gfc

Vs~

Jjk

where

and

[g.-,gj,gfc,]2
= 9= det[ffij]

g jg ?g 5

i2

5-^det^]

2.41

2.42

2.43

and the alternator symbols are given by

{0, when any two indices are equal

+1, when i,j, k are a cyclic permutation of 1, 2, 3

1, when i,j, k are a non cyclic permutation of 1, 2, 3

2.44

The Kronecker delta symbols are

3
11, if 1=7

2.45

and the relationship between the alternator symbols and the Kronecker delta symbols

is

etjkeir

=8*81-8*81 2.46

and from [2]

K si si
8i 81 %
S'r

S* *k

e^kerst=8^=

or in expanded form

8l(8j8*
-

6>6k,)
- SiWi

- S>6i) + 8lt(8}8k3 -

8$8*)

2.47

2.48

2.49

The cross products of the base vectors is

g, X gj
= ijkg

g'

x = e*gjfc

2.50

2.51

13



The cross product of two vectors a and b in terms of their components is

axb =
eijka,b3gk

=
eijk

aibjgk 2.52

The curl of the vector a is curl a = V x a or

- da
VXa =

S'

Xdx~>=
GJll^(g,

X gJ) = t3kaJ\\&k 2"53

The curl of the tensor T is curl T = V x T or

dl

dx

* dT
VxT =

gfcx-r
=
Tmk(gk

x g'V
=
TmekilglZ3 2.54

or in an alternate form

^ dT
TxV = = Timg'(g3xgk) = Time*lgigl 2.55

DIVERGENCE THEOREM: The divergence theorem, also known as Gauss's theorem,

relates a surface integral of a vector function over a closed surface with the volume

integral over the volume enclosed by the surface (Haines [7], p. 179). Let a be a

continuous vector function and n be the unit normal to the surface, then in vector notation

/ a ndS = / idivadV 2.56

v

or in tensor notation

j ainidS= /aj, dV 2.57

A generalized divergence theorem can be written as

14



fn*AdS= jV*AdV 2.58

s v

where A can represent a scalar, vector or tensor, and
*
represents a generalized

product.

GREEN'S THEOREM: If u and v are two continuous scalar functions of the coordinates

in the X frame, then Green's theorem can be written as

/ uV2vdV = un-VvdS - /Vu -VvdV 2.59

v s v

or in equivalent symmetric form as

j (uV\
-

vV2u)dV = JL^- v^\ dS 2.60

v

or in tensor notation as

gtJ (uvi\\j+ViUj)dV - (uvin')dS 2.61

STOKES THEOREM: Stokes theorem relates the surface integral of a continuous vector

function, over an open surface, to a line integral around the boundary of the surface

(Haines [7], p. 182), where the direction of integration around the boundary is in the

"proper direction". If a is the vector function (as before) and n is the unit normal vector

to the surface S, and t is the unit tangent vector to the boundary curve C, then in vector

notation Stokes theorem can be written as

/ n curl adS = /
cm-lads'

= / a-tds 2.62

s c

15



or in tensor notation as

s c

A generalized Stokes Theorem can be written as

/ ey

a,jp.nidS = / aids 2.63

M V x

n)
*AdS= ft* Ads 2.64

c

16



3 HISTORICAL REVIEW

The formulation of three-dimensional elasticity problems including the effect of

temperature variation is attributed to Duhamel (1835). G. Green (1840) is credited with

deriving what we refer to as Green's strain-energy function. He started with what we

refer to as the Principal of Conservation of Energy. He assumed a scalar function which

is opposite in sign to the potential energy of the deformed body per unit volume which he

expressed in terms of the strain components. The partial derivative of the function with

respect to a strain component yields the corresponding stress component. He derived

the three-dimensional equations of elasticity (in terms of stresses and strains), containing

in the general case 21 constants and in the isotropic case two constants. Lord Kelvin

(1855) based the argument for the existence of such a function on the first and second

laws of thermodynamics.

Shell theory originated historically as a special case of elastic plates. Sophie Gemaine

(1821) provided simplified equations for the vibration of cylindrical shells based on the

assumption that the deflections in the plane of the neutral surface were negligible, however

the equations contained errors. A. Cauchy and S. D. Poisson (1828-29) achieved a

dimensional reduction from the three-dimensional equations by a power-series expansion

of the displacement in the direction normal to the middle surface.

Aron (1874) derived general equations for the bending of shells in curvilinear

coordinates from the three-dimensional equations of elasticity. Rayleigh (1882) proposed

simplifications based on the assumption that the neutral surface was either extensible

(bending is unimportant) or nonextensible (bending is important).

G. Kirchhoff (1876) developed a theory for thin plates based on the assumptions

that normals to the reference surface remain normal after deformation and that normals

do not change length during deformation. A. E. H. Love (1888) applied the theory to

shells using the principal of virtual work. The assumptions provided an easy was to

17



achieve a dimensional reduction but could not be fully reconciled with three-dimensional

theory. The difficulty was that when the stress resultants were calculated by integrating

the three-dimensional stresses across the thickness the shear resultants did not vanish.

This difficulty prompted some authors to attempt a different approach. Duhem (1893)

suggested that physical bodies should be considered as oriented bodies (assemblies of

points and directions). E. and F. Cosserat (1907) constructed theories based on this idea.

Very little activity followed their initial work. Sudria (1935) noted an error in
then-

theory and gave a different proof of invariance. Ericksen and Truesdell (1958) provided

a general theory of oriented bodies in invariant form. Since then, P. M. Naghdi is the

most prolific author regarding shell theories developed by assuming the shell can be

treated as Cosserat surface.

The two different approaches to developing shell theories appear to have left the

research community divided. For example, Niordson [8] writes in his introduction: "It

has been demonstrated that there is no hindrance to the construction of such a two-

dimensional theory, but the mere fact that a shell is a special case of a three-dimensional

body should be a decisive argument against the introduction of any additional hypotheses

in the theory. It is also contrary to the strive in science to unify
theories."

The above information is contained in: Boley [9], Kraus [10], Love [11], Niordson

[8], Soedel [12], and C. Truesdell and R. A. Toupin [13].

18



4 GEOMETRY OF CONTINUOUS MEDIA

A. Introduction

We begin by considering a general n-dimensional space R, and consider a general co

ordinate frameX with coordinates
x'

and basis g,. The scalar invariant ds2, representing

the square of the differential distance between two neighboring points is
ds2

= gijdx'dx3,

where gij is the symmetric covariant metric tensor associated with the covariant base

vectors
g,-

. If the quadratic form ds2
is positive definite, the space is n-dimensional Rie-

mannian space. If the quadratic form ds2
is positive definite and if the gij are constants,

the space is referred to as Euclidean. This implies that the Christoffel symbols and the

Riemann-Christoffel tensor associated with the X frame vanish identically. We are left

with a linear vector space for which all the concepts of linear algebra apply.

We assume, once and for all, that the space of interest S is a three-dimensional

Euclidean space in which all events can be ordered in a continuous manner in the time

variable t. We assume that the metric of the space is independent of the mass of a body

p, which may occupy it. We assume that the time variable t and the mass of a body are

independent of the motion of any reference system.

We construct, as our frame of reference, a Cartesian frame Y with coordinates yl, an

orthonormal basis ct, and with the origin at some point O. The location of a point P can

be given by a vector r, originating at O and terminating at P, where r = y'c,-. If we

consider the totality of points P, rather than an individual point, r can be considered a

vector field describing the location of all points P in S relative to the Y reference frame.

Let dv represent the vector from P to a neighboring point
P'

. If the position of a point

varies continuously with some variable, say time, the coordinates are functions of the

time variable t. The equation r = r(t ) describes the path (trajectories) of the points P.

The velocity vector

dr
v= 4.A.1

dt

19



and the acceleration vector

d2r
4.A.2

dt2

represent the instantaneous velocity and acceleration of a point as its location varies with

time. These can also be thought of as the instantaneous velocity and acceleration fields

associated with all points P in S. The velocity vectors are tangent to the curve. We

could also parameterize r relative to some other scalar value, such as curve length s,

and perform the same differential operations and have a different physical interpretation

of the results.

B. Metric Properties

We could have just as well chosen any number of other coordinate frames as our

frame of reference. The vectorial representation of the quantities would be invariant but

their analytical form could be different, depending on the frame chosen. We demonstrate

this by considering a general curvilinear coordinate frame X with coordinates
x'

and

basis g,-, and assume that the functional relationship between the coordinates of the Y

and the X frames is given by
yx

=
y'ix1

,x2,x3,i). We assume that the transformation

functions are continuous, and the Jacobian of the transformation does not vanish. The

scalar invariant ds2, representing the square of the differential distance between two

neighboring points, is

ds2
= 4.B.3

where gtj
= g, gy and

dx'
g, = jn

4.B.4

The base vectors are dependent on the coordinates and are referred to as a local basis.

Consider a vector a given by a = a'g,. The magnitude of vector a is

1 .1
...

|a| = (a -a)2=(a'gi =

gij
a*

a3
= 'i 4.B.5
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If 0 is the angle between two vectors a and b, then

n
a ' b gija'b3

|a||b| yjgijala>^gijblb3

The scalar V, representing the volume of a parallelepiped with sides parallel to three

vectors a, b and c emanating from a corner is (assuming the orientation of a, b and

c is such that V is positive) is given by V = a b x c . The volume of a differential

element in the X frame is

dV = dx1gi dx2g2 x dx3g3 = 4.B.7

where g is equal to the determinant of the matrix of covariant metric tensor components,

\gij\, which is equal to the square of the Jacobian / of the transformation connecting the

coordinates in the Y and X frames where

J =

dyi

dxi
4.B.8

We note that the concepts of measurement of length, angle, areas and volumes

are all scalar quantities obtained though tensor operations involving the tensor whose

components are gy.

Consider two vectors a and c whose components are
a*

and c\ respectively. If

a c = 0 the vectors are orthogonal and if a a = 1 the vector a is called a unit vector.

In tensor notation this would be stated: if gija'c3 = 0, the vectors a and c are orthogonal,

and if gija'a3 = 1, the vector a is called a unit vector. It is common practice in tensor

analysis to refer to a vector by its components. Rather than refer to the vector a, we

refer to the vector a1, where the appropriate basis is implied.

We will eventually want to reference our results to our physical space. We therefore

need to distinguish between tensor components and physical components. For example,
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the physical components a^ of a vector a are the components of a in the X frame when

referred to a orthonormal basis, or a^ =
y/giia*, (no sum).

The velocity vector v is

dr dr dx1

v =

dt dx' dt

or in terms of the base vectors
g,-

dx'

v=~gi = vgi

The acceleration vector a is

dv
__

d2
r

_

d2r
dx1 dx3

~dl
"

It2
~

dx'dxi dt dt

or in terms of the base vectors g,-

and the associated Christoffel symbols

r d2x' ( i ) dx3 dxkd2x' ( i )

dt2 +{jkf dt dt
gt = a

4.B.9

4.B.10

4.B.11

4.B.12

The quantity in brackets is referred to as the absolute or intrinsic derivative of the vector
v'

with respect to the parameter t and is written as ^- or in terms of the covariant derivative

It
= v

dx3

Wi~dT
4.B.13

The acceleration vector can be written as

dx3 8v'

a=%-dThi=-8Thi

The length of the path s, traced by r between two instants of time is given by

4.B.14

-I

dx' dxi

9t3irnrdt 4.B.15
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C. Space Curves

If we choose arc length s as our parameter for r, then from differential geometry, a

unit vector t, tangent to a curve at P described by r is given by

dr
__

dr
dx' dx'

ds dx' ds ds

The fact that t is a unit vector is easily shown by taking the inner product of t with

itself. If we differentiate t with respect to s, we can define a vector c, referred to as

the curvature vector by

dt d2r
c = = - r- = kii 4.C.17

ds ds1

where k is a scalar, referred to as the curvature of the curve at P, and is the magnitude

of c . The vector n is called the principal normal to the curve at P, and its direction

is assumed to be from P towards the center of curvature or towards the center of the

osculating circle. The plane containing t and n is referred to as the osculating plane. The

binormal vector is a unit vector orthogonal to both t and n and is given by

b = t x n 4.C.18

The plane containing n and b is sometimes referred to as the normal plane, while the

plane containing t and b is sometimes referred to as the rectifying plane [14]. The vectors

t, n, and b form a unique, local orthonormal basis at all points P along the curve. By

local, we mean that the orientation of the orthonormal triad changes as we move along

the curve. The manner in which the basis changes orientation, determines the intrinsic

properties of the curve. These properties are given by the Serret-Frenet formulas. In

vector notation they are:

^ = ku 4.C.19
ds

= -rn 4.C.20
ds

~ = rb
- n 4.C.21

ds
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where k is the scalar previously mentioned, and r is a scalar referred to as the torsion of

the curve at P. The second equation is found by differentiating the inner product of b and

t with respect to s and recognizing that ^ is orthogonal to both b and t and therefore

parallel to n. The scalar r is the magnitude of g. The direction of g is assumed to

be opposite of n, although this is not always the case in all presentations (e.g., Seeley

[15]). The third formula is found by differentiating the equation n = b x t with respect

to s and utilizing the first two equations and the relationship between the cross products

of t, b, and n. Assuming the components of t, b and n are A', //, and
i/'

respectively,

the Serret-Frenet formulas can be written in tensor notation as follows:

8)S_ _ dX_ f i
\xjdxk

_

8s ds \jk ) ds

8ul dul

[ i }

8s-=ds-+\ikV-d7
= TV-*X 4-C23

^=d7+b4"^=K" 4-C24

The Serret-Frenet equations uniquely (within a rigid body motion) determine a curve C,

when the functions k and r are given as continuous functions of s along C. If the torsion

of a curve is equal to zero, the curve is referred to as a plane curve. Analogous equations

are available for surfaces.

D. Surfaces

Recall the vector r = r(y1,y2,y3) which describes all points P in Y. When the

coordinates are continuous functions of a single parameter, the vector r represents a space

curve. When the coordinates are continuous functions of two independent parameters,

the vector r represents a surface.

Let the functional relationship between the coordinates in Y and the two parameters

be given by:

yl

=

yi(u1,u2) 4.D.25
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and assume that the functions are continuous and that the Jacobian of the transformation

is of rank 2.

The parametric form of the surface is given by

r = r(u\u2) =yi(u\u2)ci 4.D.26

We could also introduce the transformation to our general X frame at this point, but will

not do so. If one of the parameters is held constant, r describes a curve on the surface.

By assigning a series of fixed values to the first parameter and then to the second, a net

of curves can be described on the surface. These curves are referred to as coordinate

curves. The assumed independence of the two parameters ensures the curves obtained

by fixing the first parameter then the second, will intersect at some unique point P on

the surface. The value of the parameters at P are referred to the curvilinear or Gaussian

coordinates on the surface. If we consider the vector dr from point P on the surface to

a neighboring point, then

dr = =
aadua

4.D.27
dua

The vector aa = -^
is tangent to the

ua

curve at P. The length of dr is given by

ds2
= dr-dr = -P- -^duadJ =

aQfiduadu^ 4.D.28
dua duP

The quantity
aapduadu^ is called the first fundamental form of the surface and the tensor

components aap, play the same role on the surface as the metric tensor components gij,

previously described. The plane containing the tangent
vectors is called the tangent plane

and is tangent to the surface at P. The unit vector n normal to the tangent plane at P

is given by

n =
aiXa2

4.D.29

|ai x a2|

The normal vector n is also normal to all curves on the surface passing through point

P and, therefore, is independent of the choice of coordinate curves. The differential
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distance along the coordinate curve is dsa = (no sum). An element of area

is dA =
y/adv}du2

where a = \aap\. The surface metric tensor determines all intrinsic

properties of the surface, but not how the surface appears to an observer in our physical

space. A plane, cone, and cylinder are examples of surfaces which can be shown to have

the same metric coefficients but obviously appear different to our observer. Surfaces

which have the same metric coefficients are referred to as isometric surfaces.

Another quadratic form called the second fundamental form of the surface helps

define the true shape of a surface. It is related to the way the unit normal to the surface

changes as we move along the surface or to the way the surface deviates from the tangent

plane in the neighborhood of P Its value is approximately one-half the distance between

the tangent plane and a point on the surface in the neighborhood of P (Lass [16], p.75;

Stoker [17], p.85). Recall that the first fundamental form of the surface was defined by

A = dr dr = .duadup

= aagduadup 4.D.30
dua duP

The second fundamental form of the surface is defined by

B=-dn-dr = -^-- -^duadup=
ba0duadup 4.D.31

dua duP

The quantities aag and bag are referred to as the first and second fundamental form

magnitudes respectively. If the first and second fundamental forms are given as continu

ous functions of the parameters
ua

and are positive definite, and satisfy conditions called

the Gauss-Codazzi conditions, the surface is uniquely determined (within a rigid body

motion). When bag are zero, the surface is a plane.

A third fundamental form is sometimes introduced. Its form is

C= dn dn= -^~ P^duadu^
=
ca0duadup 4.D.32

dua duP

The third fundamental form represents the square of the length of the line element of

the spherical image of the surface (Stoker [17] ,p.98). A spherical image is obtained

by translating all of the unit normals to the surface, to the center of a unit sphere. The
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surface curve traced by the unit vector n, on the surface of the unit sphere, as we move

along the actual surface is called the spherical image of the surface.

The three fundamental forms are not independent. This can be shown by using the

equations of Gauss and Weingarten (see following section) in the equation for the third

fundamental form, with the following result

C = 2HB-KA 4.D.33

where H and K are the mean and the total curvature of the surface and are related to the

first and second fundamental form magnitudes by

H =

-aaHa0 ,
K = - 4.D.34

2
p

a

where b = \ba0\ and a = \aQ0\ and the relationship between the contravariant and

covariant components of the surface metric tensor is aa!3a01
= 8". We write out the

tensor representations explicitly for illustration and future use:

b = bnb22 - (bu? 4.D.35

a = ai\d22 (012) 4.D.36

fln

=

^2
ai2

=
a2i

=
?

fl22

=

^11
4D.37

a
'

a a

1 / Q22&11
- 2ai2 + Q11&22 \

4 D 38

2 \ ana22
- (an) J

K = bnh2-(bi2)^ 4 D 39

011022
- (^12)
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If the parametric directions are the lines of principal curvatures, ai2 = 612 = 0, then

H and K are related to the principal curvatures Ka by

H =

-(K1+K2) and K = KXK2 4.D.40

Formulas for the three fundamental forms and the relationship between them will prove

useful for deriving the fundamental forms for surfaces which are parallel to a given

surface, in terms of the fundamental forms of the given surface.

E. Gauss-Codazzi Conditions

The Gauss-Codazzi equations (conditions) are related to the assumption of the in

dependence of the order of second order, partial derivatives of the tangent and nor

mal vectors (when treated as vectors in three dimension Cartesian space, or ntOt0
=

nt0a and ayt(x0
= ali0a, where the comma in the subscript indicates partial differ

entiation with respect to the variables following it. Kraus [10] derives the equations,

using vector notation, directly from the above assumptions for an orthonormal set of

tangent and normal vectors. Sokolnikoff [2] derives the equations for the more general

case using general tensor notation (implied base vectors), the more general integrability

conditions, and an intermediate coordinate transformation. This presentation follows that

of Sokolnikoff, but with an explicit representation of the base vectors and without the

intermediate coordinate transformation.

The second fundamental form magnitudes can be written as

1/fln dr dn dr \
_

d2r

af}
"

2 \du<*
'

duP
+

duaduP

or by using the comma notation for indicating partial differentiation and the relationship

a"
= a<*' as

Kp = ~2^n'a
'

a/? + n>fi
'

a")
= n "

a<*.0 4.E.42

(We note that assumptions about the direction of the normal are implicit in determining the

fact that the quantities above, representing the second fundamental form magnitudes, are

28



assumed to be positive or negative. Kraus [10] and others assume an opposite direction

of the normal vector.) The following equation is referred to as the formula(s) of Gauss,

and can be shown to yield the same result as 4.E.42, when the inner product of 4.E.43

and n is taken:

nba0
=

aa>0 4.E.43

Recall that the normal vector n is a unit vector. Therefore, if we take the partial

derivative of the inner product of n with itself, with respect to one of the surface

parameters, we find n)tv n= 0, which indicates that the two vectors are orthogonal

and, therefore, the vector na lies in the tangent plane and can be written in terms of a

linear combination of the tangent vectors:

n)tt = apt~ib0aa1
= 6^a7 4.E.44

The above equations are called the Weingarten formulas. Taking the second partial

derivative of the above equation

n
/j
=

~(K,pay + h>t,p) 4-E-45

and after making use of

aT>/?=[7/JaA + &7/?n 4-E-46

we find

-w
= *2,/7 + bz{tf}*i + *^n 4-E-47

After interchanging a and /? we have

~n,P<*
= blaai + K { 7a }af + H bT*n 4-E'48
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Equating the above two equations and taking the inner product with
a^

and after

simplifying we have

^UH--*^}-0

Recall that

After substituting the above equation into the previous one with the proper adjustment

in the indices we have

&7ii*-^ii =0 4.E.51
<*||/J P\\a

which are the equations of Codazzi.

Next

aa,/?7
= \ n \ aA + < >ax,y + ba0<yn + ba0n7 = 4.E.52

,7

After interchanging /3 and 7 we have

*"Ul/A+ {<r}{wh+hA-,}a+b^n+h" 4-E-54

Equating the above two equations and taking the inner product with
a"

and after

simplifying we have

The left side of the above equation is recognized as the components of the
Riemann-

Cristoffel tensor of the surface or

K7p = bafi$-ba7ti 4-E-56
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which is the equation of Gauss.

The two independent equations of Codazzi are

Ka,p
~ Kp,a = 0, (q ^ /?), (no sum) 4.E.57

while the one independent equation of Gauss is

hib22 -

b22 = R1212 4.E.58

The equations of Codazzi in expanded form are

dbaa dbai , f 8 ) , f 8 1
-d^-&F-ba6Ut3j+S4= ' {a*^ (nosum) 4-E-59

while the equation of Gauss is (sum on /?)

"--*-(#-#+}U}-{}U})
4EW

Recall that the Gaussian or total curvature of the surface
"

is given by

T. Ruu
Art-,

K = 4.E.61
a

where a = a\\a22 a?2, or

K = h^22~h\ = I 4.E.62

011^22 ^12 a

The Gaussian curvature is equal to the product of the principal curvatures. When the

parametric curves are lines of the principal curvatures the Codazzi equations take the

form

while the Gauss equation is

d ( 1 dAA

du1
\At du1 J

+
du2

\A2
du2

J
"

RXR2

where Aa = y/aaa (no sum), and Ra is the reciprocal of the principal curvature Ka.
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F. Parallel Surfaces

In Section D we considered the metric properties of a surface described by

r = r(u1, u2). At every point P on the surface it was possible to construct two in

dependent vectors which were tangent to the surface and a unit vector n normal to the

surface. If we consider the totality of points P located a distance h along the normal

n from P, the points
P'

define a surface parallel to the original surface. Let quantities

with a bar denote those referencing the parallel surface while those without, reference

the original surface. We want to relate quantities on the parallel surface to those on the

original surface. The equation of the parallel surface is

r = r(u1,u2) =r(ul,u2) + hn 4.F.65

Recall that

dua

ax x a2

dr =
P-dua

=
aadua

4.F.66

n = 4.F.67

|ai x a2|

Equation 4.F.66 can be written as

dr = dr + h dn 4.F.68

We compute the first fundamental form for the parallel surface in terms of the quantities

associated with the original surface and find

A = dr dr = dr-dr + 2h dn dr + dn dn 4.F.69

Recalling the definitions for the three fundamental forms, the
above equation reduces to

A = A + 2hB + C 4.F.70

But from 4.D.33, which defines the relationship between the three forms, the above

equation reduces to

A = A(l- h2K)
- 2hB(l - hH) 4.F.71
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The above equation, in terms of the fundamental form magnitudes, is simply

aa0
= aa0(l

-

h2K)
- 2hba0(l -

hH) 4.F.72

Similarly, the second fundamental form is

B= - dn-dr= - dri (dr + hdn) 4.F.73

Recall that n and n are unit vectors orthogonal to the tangent planes at
P'

and P,

respectively, and dri. and dn lie in the two respective tangent planes and are therefore

orthogonal to the respective normals. If we take the inner product of 4.F.68 with n,

we find

drn = dr-n + hdn-n = 0 4.F.74

But dr n = 0, therefore n = n. The equation for the second fundamental can then

be written as

B = -dn- dr - hdn dn 4.F.75

or

B = B-hC 4.F.76

Using 4.D.33 again

B = B(1- 2hH)+hKA 4.F.77

or in terms of the fundamental form magnitudes

K0 =M1 ~ 2hH)+hKaa0 4.F.78
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5 DEFORMATIONS

We will develop the tensor equations defining the deformation of a region of our

physical space. In doing so, we will follow closely the approach and notations used by

Sokolnikoff [18] (Chap. 6). Three coordinate frames will be used: a global stationary

frame, a local stationary frame (Lagrangian frame) and a local moving frame (Eulerian

frame).

We consider a region rD (initial state), of our physical space at a time r0, and refer

to the totality of points contained in the region as P0. We assume that as time increases,

the points move (are displaced) in a continuous manner to a new region of space r (final

state). We are interested in the case when the region r0 is deformed as it moves to

the region r.

An orthonormal Cartesian frame Y, with coordinates yl, and basis c,, will be used

for the global stationary frame. At every point in r0, we construct two local general

curvilinear coordinate frames X, with convected coordinates x*. Convected coordinates

are coordinates which move with the material points. Any changes in the distance between

material points is represented by changes in the base vectors and not in changes in the

coordinates. We denote the basis of the local stationary frame as h,-, and the basis of the

local frame which moves with the points, as g,. The points P0, when located in r, will be

referred to aP. The position vector ofP0 is r0, and the position vector ofP is r. Likewise,

the vector from a point to a neighboring point, in a region, is dr0 and dr, for the initial

and final states, respectively. We denote the magnitude of the two vectors as ds0 and ds,

respectively. We refer to the final state as being deformed or strained when ds ^ ds0.

The vectors dr0 and dr, when expressed in terms of their local basis are:

dr0 = dx'hi and dr = dx'gi 5.1

We denote the covariant metric tensor components associated with r0 as htj, and those

associated with r, as gy. By calculating the square of the distance element in the initial
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state and subtracting it from that in the final state we find,

(ds) (dsQ) = (gij
hij)dx'dx3 5.2

We let

Eij = 2^'J

~

h'i) 5-3

We note that the Ey represent the components of a symmetric tensor, due to the manner

in which it was formed. We let E denote the tensor when referred to the base vectors in

the initial state and
E*

denote the tensor when referred to the base vectors in the final

state. Operations on the components of E and E*, involving the metric tensor, require

use of the metric associated with their respective basis, and the results distinguished as

such. The tensor E is referred to as the Lagrangian strain tensor, and
E*

as the Eulerian

strain tensor. If we express both tensors in terms of their covariant components then

E =
Eijh'h3 and

E*
=

.

First, from the viewpoint of an observer in the initial state, let
e,-

represent the change

in length per unit length (elongation) of the base vectors in the initial state, then

c.

=
lliUM (no sum) 5.4

|n,|

The above equation, when expressed in terms of the metric tensor components, results in

yj^vgj= /i + gZJ!L.i= /i + gft-i (nosum) 5.5

y/hii V ha V ha

This can also be written as

y/gTi
= (1 + ei)\/hii (no sum) 5.6

If we rewrite the fraction under the radical as (no sum)

g
- h\

|gl2-|h.l2

Ogfl + Nj) (|g,-|-|h.-|)_(|g.-| + N)c.
57

hu
J'

|h,|2

Ih.l |h,| |h,|
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we note that when the elongation of the base vectors is small compared to unity, the

quantity to the left of the equality sign in the equation above is likewise. Therefore, the

quantity under the radical can be expanded in the form of a Maclaurin series as

. 9H
~ ha 1 (ga -

hu\l +^-_ = l + -(^-j-..., (nosum) 5.8

when only the first two terms are retained. The elongations of the base vectors in the

initial state, is then given by

et=2{h) (nSUm) 5"9

Utilizing the definition of the strain tensor components in terms of the metric tensor

components with the above, we find

En
e{ =

-r^- (no sum) 5.10
ha

The strain tensor components En (no sum) are related to the elongations in the direction

of the base vectors and are referred to as the normal components. When the base vectors

in the initial state are unit vectors the above simplifies to

e{ = En (no sum) 5.11

From the viewpoint of an observer in the final state

IMzJiil (no sum) 5.12(no sum)

Ig.'l

or

y/JJL^M = t _ A
_

ffLZJ"
= i - Jl-^ (nosum) 5.13

s/gTi v 9ii V 9ii

When assumptions, similar to those made in the initial state, are made, we find

p*.

ei =
- (no sum) 5.14

ga
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A. Shearing Components

Let 6ij represent the angle between the base vectors
g,-

and gy in the final state while

9f , represent the angle between the base vectors h, and h, in the initial state. The

strain tensor components, in terms of the base vectors and the angles between them, can

be written as

Eij = ^{\gi\\gj\ cos 9ij
-

|h,||h,|cos0t/) 5.A.15

or in terms of the metric tensor components and angles as

Eij = -\y/gliy/g^ cos 0{j y/f^i^/hjj cos 9^) (nosum) 5.A.16

If we assume that the base vectors of the initial state are orthogonal and let 0,-y = f atJ;,

the above equation reduces to

Eij = -(y/giiy/gjj
sin aij) (nosum) 5.A.17

or when expressed in terms of the elongations and metric components of the initial state

Eij
9
(C1 + ei)(l + ei)y/hiiy/hj] sin aij J 5.A.18

The strain tensor components Eij (i ^ j) are referred to as the shearing components

and are related to the change in the angle between elements which are orthogonal in the

initial state. If the elongations are small compared to unity and <*,y are small, then

E{j = -y/hiiy/hjjacij
(no sum) 5.A.19

From the viewpoint of an observer in the final state

Eij = 2^1~ei^1~e^v/9iiv/9jjsin^j) (nosum) 5.A.20

where the ev are the elongations along the base vectors in the final state, and /3 =
9-

f .
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B. Strain Invariants

We are interested in determining invariant forms related to the strain tensor com

ponents in the initial and final state. We will use the viewpoint of an observer in the

final state first Recall that a unit vector in the direction of dr in the final state, has

the following form

dr
dx'

, g, = A'g, 5.B.21
as ds

The
A1

are components of a unit vector in the final state which determines the direction

of dr. We seek a quadratic form involving the strain tensor components and the unit

vector components. We proceed as follows:

dr dr (ds)
dx' dx3

ds ds (ds)2 y
ds ds

5.B.22

^ =h,^ 5.B.23
ds ds

drQ drQ
=

(ds0)2

_ h

dx' dx3

5 B 24

ds ds (ds)2 y
ds ds

(ds)2 (dsQ)2 dx'dx3

(^"W

=^ ''^^

The equation above may be rewritten as

(ds) -(dsQ)
_ E*xixj 5.B.26

2(ds)2 y

We want to determine the directions for which the quadratic form Q(X) =
E^X'X3 has

extreme values. To do this we maximize the form subject to the constraint

<f>(\)
= gijXX -1 = 0 5.B.27

Using the Lagrange multiplier method, where e is the multiplier, we find

?9.-e^ = 0 5.B.28
d\' dX'
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which may be simplified to

(Et}-egtJ)X3=0 5.B.29

or upon use of the contravariant metric components

(e? -

4)AJ=0 5.B.30

This system has a nontrivial solution if and only if

Ef
-

e8k

= 0 5.B.31

Recall from linear algebra that any real symmetric form can be reduced by means of a

similarity transformation to a diagonal form. The eigenvalues of the diagonal form are

identical to those of the original form, and all other similar forms, and are, therefore,

invariant. The eigenvalues of the diagonal form are simply the diagonal elements and their

associated eigenvectors are orthogonal. Let
e,- be the diagonal elements (eigenvalues) of

the diagonalized form, then

,tfc
jp*

glKEtj
-

e8

= + d1e2-ti2e + tf3 = 0 5.B.32

where the coefficients are

di = e\ + e2 + 63 5.B.33

d2 = t\t2 + 2^3 + ^1^3 5.B.34

$3 = ^162^3 5.B.35

The eigenvalues are invariant and therefore the
??,

are likewise. Recall that the eigenvec

tors X\, A^, A3 are determined by successive substitution of the eigenvalues t\, e2, e$, into
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(Ejk
e8j)X3 = 0 . If we let the components of the eigenvectors be the coordinates of

an orthonormal Cartesian frame in the final state and denote the coordinates by
z'

then

Q(z) = + + ez(z3f 5.B.36

The quantities ei,e2,e3 are referred to as the principal strains. The principal directions

are those orthogonal directions for which the tensor components representing the shearing

strain vanish. The only way the shearing strain components can vanish is when the change

in the angle between elements which are orthogonal in the initial state is identically zero.

We can, therefore, conclude that the principal directions are those orthogonal directions

in the initial state which remain orthogonal in the final state.

The equation EfAx)X'X3 = const, defines a quadratic surface at every point P in

the final state. The principal directions are coincident with the major axes.

The invariants, in the final state, when expressed in terms of the
Ej*

, are as follows:

i?i
=

E? 5.B.37

d2 =
i-8k\EfE*1

5.B.38

^3 = ^nEtE]mEr 5.B.39

where S1-1'".1? is tne generalized Kronecker delta.

Since the principal strains are invariant we can, without loss of generality, reference

them to an orthonormal Cartesian frame and the equation for the elongation in the

principal directions reduces to

=

da ds
= l _ 5>B>4o

ds'
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From the viewpoint of an observer in the initial state similar invariant quantities can

be developed and referenced to an orthonormal Cartesian frame. The equation for the

elongation in the principal directions, in the initial state, is then

_

ds1 ds*
.

6'
ds'Q

=Vl+W-l 5.B.41

By solving each of the two equations above for^ and equating the results we can find

the relationship between the principal strains in the initial and final states, or

e,-

= %- 5.B.42
1 -

2et-

=

if^
5B-43

Further, the above equations allow us to relate, similarly,*!? and tf, . We note when the

principal strains are "small", the principal strains and their associated invariants in the

initial state are identical to those in the final state.

C. Volume Elements

We will now relate the change in the differential volume elements in the initial and

final states to the strain invariants previously described. Let the element in the initial

state be denoted by dV0 while the element in the final state, by dV. From the previous

definition of a volume element we find, for the initial state,

dVa =
y/hdxldx2dxz

5.C.44

and for the final state

.1 J_2 7 3
dV = 5.C.45

or after combining

dVQ h

~dV~V g

5.C.46
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The metric tensor components associated with the initial state can be considered

the components of a tensor defined in the final state and can, therefore, be contracted by

operations involving the metric tensor of the final state, or gikhij = hk, and
gikhk

= hij.

From the theory of determinants we know that the determinant of a product is equal to

the product of the determinants, or

gikh = \gik\ ht \hij\ 5.C.47

which reduces to

h

9

5.C.48

Recall the definition of the strain tensor components, which after rearranging yields

hij 9ij
~ %E1j 5.C.49

or after use of the contravariant components of the metric tensor associated with the

final state

h) = q-2E? 5.C.50

Therefore,

dK

dV

8l- -

2E*%

j j
5.C.51

After expanding the determinant and substituting the strain invariants, we find

\8) - 2Ef\ = 1 2i?i + 4i?2 - 8t?3 5.C.52

If we disregard the terms involving the products of the strains, consistent with the linear

theory, we have

dVo

dV
= y/l

- 2^1 5.C.53
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But if the strains are "small", after a Maclaurin series expansion and disregarding higher

order terms, we find

dVQ

dV
= 1 - tfi 5.C.54

which may be rewritten as

dV - dVa
ar" - ' 5-c-55

The equation above represents the change in volume per unit volume for an observer in

the final state, and the quantity on the right hand side is referred to as the dilatation. For

an observer in the initial state, with the same assumptions as above, we find

dV-dV=K 5.C.56
dVr,
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6 STRAIN-DISPACEMENT

We want to relate the components of the strain tensor to the components of a displace

ment vector. We define a displacement vector d, which has the form d = u'h, = w'gi,

when written in terms of its components in the initial and final states, respectively. We

consider first our frame of reference to be the initial state. The vector d, when written

in terms of the position vectors, is given by d = r r0. Taking the covariant derivative

of d with respect to
x*

and recalling the definition of the base vectors (equation 4.B.4),

we find

u
dd

*1

g, = h, +t
6.1

Computing the inner product of the base vectors in the final state and using the equation

above, we find

, i ,
dd

i
dd dd dd

gt-.gi
=

h,-.hi+h,.^7 + h>.^7 + ^7-^7
6.2

Rearranging the above equation and recalling the definition of the strain tensor we find

,
dd

,
dd dd dd ,_

2Ei3 = hi-o^ + hj-d^ +
dxJ-dJ

63

The relationship between the partial derivative of the displacement vector with respect

to and the covariant derivative of its components is

Using this equation in 6.3 we find

2E{j = ufyhu + u\ihkj +44^* 6-5

where the covariant derivative involves use of the metric
tensor components of the initial

state. If we used the final state as our frame of reference,
vector d would have the form

d = Fo
_ r. The relationship between the base vectors and displacement vectors are

dd
^

dx'
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Computing the inner product of the base vectors in the initial state and using the equation

above and after carrying out operations similar to those previously performed, in terms

of the final state we find

2Eij = w\\j9n + ^k\i9kj
-

w\iW\jgik 6.7

where the covariant derivative involves use of the metric tensor components of the final

state.

The last term in both equations involves products of the derivatives of the displace

ments, products of the displacements, and products of the derivatives of the displacements

and the displacements. When these product terms are disregarded we have a set of lin

ear equations and the theory using them is referred to as a linear theory of strain. The

equations associated with the linear theory are

2Eij = ul^htl + uk^hkj 6.8

2E*j = wfygu + w^gkj 6.9

If the displacements are small enough so that the strain tensor components can be regarded

as infinitesimal, the two equations above are identical and the associated theory is called

the infinitesimal theory.

If the functions describing the displacements are given in terms of the initial state

or the final state the strain components can be calculated. If the functions describing

the strain components are given, we usually seek to integrate the equations in order to

determine the displacement fields.
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7 COMPATIBILITY CONDITIONS

In order to integrate the field equations relating the strain and displacement tensor

components, the strain tensor components must satisfy a set of conditions referred to

as the compatibility or integrability conditions. These conditions are obtained using the

equation relating the strain tensor components to the metric tensor components in the

initial and final states, gij
= hij + 2Eij, and the equations for the Riemann-Christoffel

tensors formed from the metric tensor components of the initial state and the metric

tensor components of the final state. Recall that the Riemann-Christoffel tensor consists

of various combinations of terms involving the appropriate metric tensor components.

The Riemann-Christoffel tensors formed from the metric tensor components of the

initial state and the metric tensor components of the final state, must both vanish

identically due to the previous definition of our physical space. We first form the

Riemann-Christoffel tensor for the final state in terms of the gij and set it equal to

zero. We replace the terms containing the gij with terms containing hij and Eij by making

use of hij = gij 2E{j. We next rearrange some of the terms containing hij into the

form of the Riemann-Christoffel tensor of the initial state and eliminate them due to the

vanishing of the tensor components. We are left with an equation of the form

Ujkl + grs(tjksiir
-

Zjlstikr)
= 0 7-1

where

tijki = Ejqik + Eik\\ji
- Eij\\kl

-

Ekl\\ij 7.2

and

tijk = Eik\\j + Ekj\\i
- Eij\\k 7.3

which are referred to as the Christoffel deviators. The equations can be linearized by

disregarding the terms in parentheses which are the product terms. Upon doing so we

obtain

Eji\\ik + Eik\\ji - Eij\\kl
-

Ekl\\ij = 0 7.4
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These equations reduce to those of Saint Venant, when the general coordinate frames are

orthonormal Cartesian and the strains are infinitesimal.
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8 KINEMATICS

In Chapters 5 and 6 we introduced the concept of strain and the strain-displacement

relationships in general tensor notation in terms of convected coordinates. In this chapter

we revisit the subject in direct notation without the use of convected coordinates. In

addition, other stain measures and strain rated are introduced.

Assuming that "a body can be mapped smoothly onto a
domain,"

Truesdell [19]

describes four equivalent methods of describing its motion. These are referred to as

the material, the referential, the spatial and the relative descriptions. The material

description uses the actual particles and the time as the independent variables while

the referential description uses the coordinates of the particles relative to some fixed,

arbitrary frame of reference and the time as the independent variables. The spatial

description uses the coordinates of a point in space and time as the independent variables.

The relative description uses a variable referential description. The referential and the

relative descriptions are the ones most commonly used in the mechanics of solids. When

the referential description is taken at time t=0 it is called Lagrangian and when it is taken

at some variable time t it is referred to as the relative description [20].

Let R and r denote vector fields describing the position ofmaterial points of a body in

an initial and current configuration, respectively. Assume that both vector fields originate

from the origin of a single orthonormal Cartesian frame Y, with coordinates T. Assume

a functional transformation between the orthonormal frame and two general curvilinear

frames X and x with coordinates
X1

and jc*, in the initial and current configuration,

respectively, where

Y{= Y'(X\X2,X3)= Y'(x\x2,x3) 8.1

Let dR and dr denote vector fields describing distances to neighboring points in the

respective configurations with magnitudes dS and ds respectively. The relationships

between R and r is given by r= i>(R, t) and R= ^(r, t), where the vector functions
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are smooth and continuous and where r= ip(R,
tQ= 0) = R. Let F and its inverse

F_1

denote the two-point tensors representing the material and spatial deformation gradients,

respectively, where

dr = FdR =
dRFT

= (r%V<fR = dR- for) 8.2

<fR=F_1-<fr = dr-(F~1)T= (lLVx\-dr= dr-

foil) 8.3

and

detF = J > 0 8.4

Let dR and dr have the following representation in terms of general curvilinear frames

in the reference and current configuration, respectively

dR =
dX/G/=dX/G/

8.5

dr =
dx%gi=dx{gx

8.6

where the symmetric metric tensors associated with the reference and current configura

tion, respectively, are given by

GIJG!Gj =
G/jG7G7

= /G/Gj 8.7

9iJSiSj
=

<7yg'gJ
= S'iS'Sj 8-8

with the respective components given by

G7
GJ

= 8/ 8.9

G7 G7 = Gn 8.10

G7-GJ
=

G77 8.11
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and

gyg'

=

5/ 8.12

Si-Sj
=

9ij 8.13

g'-gj
= gij

8.14

Let u represent the displacement vector field such that r = R+u. The deformation

gradients can be expressed in terms of the displacement gradients by

F = l+u\^ 8.15

and

rp

FT
= l + ^u = l + (uty) 8.16

when u is expressed in terms of the coordinates, X\ of the reference configuration and

F-1
= 1 - u\7 8.17

(F-1)T

= l-VIu =

l-(uVx)
8.18

when u is expressed in terms of the coordinates, x1, of the current configuration. In

terms of the curvilinear bases the deformation gradients and their transposes have the

following forms

FT
= |^G7gj 8.20

F"1
=
^-G7g

8.21
dx' J&
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w-%* 8.22

If the curvilinear coordinates are convected (i.e., = X') then the component represen

tation of the deformation gradients assume the following simple forms:

F =
g,G'

8.23

F1
= G'g, 8.24

i-i G,g'

8.25

(F-^^g'G.-
8.26

Let C and B denote the right and the left Cauchy-Green deformation tensors, respectively,

where

(ds)2

= dr-dr = dR- (V-FT)-dR =dR-C-dR 8.27

(dSy = dR-dR = dr- (F"1) F dr=dRB~1-dR 8.28

Let E and
E* denote the Lagrangian and Eulerian strain tensors respectively, where

(ds)2
-

(dS)2

= 2 dR-E-dR 8.29

(ds)2
-

(dS)2
= 2dr- E*-dr 8.30

The relationship between the strain tensors, the deformation gradients, the deformation

tensors and the displacement gradients is given by

E = FrF-l = i[C-l] 8.31
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E =

g
(u^c +

u%r

+
u%u\r)

8.32

E*

=

2

l_(F-i)T.F-i ^[l-B-]

E*

= ^(uV, + u^r- u^-uV/)

8.33

8.34

By use of the polar decomposition theorem (see for example Billington [5] orMalvern

[6]) the deformation gradient can be written as

F = RU = V R 8.35

where R now represents the second order rotation tensor and U, and V are the right, and

the left stretch tensors, respectively, where
R-RT

= 1 The deformation tensors can be

expressed in terms of the stretch tensors by

C =
U2

= FT-F

B =
VJ

= FF

8.36

8.37

and the relationship between the two stretch tensors and the two deformation tensors is

given by

V =
RURT

B =
RCRT

8.38

By making use of the above three equations in equations 8.31 and 8.33, the strain tensors

can represented in various equivalent forms. For example the Green-Lagrange strain

tensor can be given by

E =

l r
FJF-1

R1 V2

R-l

[C-l] 8.39

R1

B R-l
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The above equation is useful for determining relationships between the principal scalar

invariants associated with the various tensors.

The fully coupled equations of thermoelasticity contain terms which include a mea

sure of the rate strain and therefore we need relationships for the Lagrangian and Eulerian

strain rates. Recall that dr = F dR and dR =
F-1

dr. If we differentiate the first re

lationship with respect to time and substitute the second relationship into the result we

find

d
J 1

dF
m

dF -,
,

dr = dv= dR= -F-1-dr 8.40
at dt dt

where we made use of the fact that

j-dR = 0 8.41
dt

Let

dF i

L = 8.42
dt

where L is the spatial velocity gradient tensor [5]. The above equation can be rearranged

as

<*F _

= L F 8.43
dt

and

= 8.44

dF1

_T T

dt

The velocity gradient tensor can be written as the sum of a symmetric and skew-symmetric

tensor (Cauchy-Stokes decomposition [5]) or, L = D +W where D and W represent

the symmetric rate of deformation (stretching) tensor and skew-symmetric spin (vorticity)

tensor respectively, and

D = i(L + LT)
8.45

W=^(L-LT)
8.46
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The appropriateness of the description of D as the rate of deformation tensor can be

shown by differentiating
(ds)2

= dr dr with respect to time or

= 2dr-dr = 2dr dv 8.47
dt dt

and after making use of equations 8.40, 8.45, and 8.46 we find

(ds)2

=2dr-L-dr = 2dr-T)-dr + 2dr-W-dr 8.48
dt

Recall that W is a skew-symmetric tensor which implies that the last term in the above

equation is identically zero or

^-(ds)2
= 2dr D dr 8.49

dt

The above equation relates the rate of change of the square of the differential length

element in the current configuration to the tensor D.

Recall that the Green-Lagrange strain tensor can be expressed in terms of the material

deformation gradient tensor. Rate forms of the strain tensor will involve rate forms of

the material deformation gradient tensor. If we differentiate the Green-Lagrange tensor

with respect to time we find

f =1(*I.P +FT) 8.50
dt

2V

dt
dt'

or after use of equations 8.43 and 8.44

*&
=
hFT

.

LT
. F +

FT
. L .

F)
1
(FT

. (LT+L) .

F) g>51

dt 2 2

The Lagrangian strain rate is

= FTDF 8.52
dt

where use was made of equation 8.45. The Eulerian strain rate is

dF
=D- (E*-L + Lr-E*)

8.53
dt
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If we let dv and dV represent differential volume elements in the final and initial config

urations, respectively, and let dr,
dr'

and
dr"

represent the lengths of a parallelepiped

in the final state then

dv = (dr x dr')
dr"

8.54

and

dV = (dR xdR')-
dR"

8.55

After substituting dr = F dR into equation 8.54 we have

dv = (F-dR x F-dR') (F-dr") 8.56

Utilizing the relationship [5]

(F-dR x F-dR') =
FT (dR x dR') 8.57

and (see equation 2.5)

FT
=
detF(F-1)T 8.58

and the definition of the transpose of a tensor, we find

dv = JdV 8.59

where recall that detF = J.

The relationship between the differential areas in the final and initial configurations

is found by a similar process and is given by

nda^JN-F-UA 8.60

or alternately as

da = JdA
F_1 8.61

where da = nda represents the area vector in the final configuration and dA = NdA

represents the area vector in the initial configuration and n and N are unit normals to the

area elements in the final and initial configurations, respectively.
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9 CONSERVATION OF MASS

Let pQ and p represent the mass per unit volume in the initial and final states,

respectively. The mass in the final state is equal to mass in the initial state or

dV 9.1

v

pdv= / pQ

v V

The relationship between the differential volume elements was given by equation 8.59 or

dv = JdV 9.2

When the equation above is substituted into 9.1 we find

j pJdV = f PodV 9.3

v v

or

Po = Jp 9.4

which is a form of the Law of Conservation of Mass in the Lagrangian frame.

If we had selected a Eulerian frame (i.e., we focus on a region of space rather than

on the material points) the equation for the Law of Conservation of Mass would have a

different form. Assuming that mass is not created or destroyed in the region, the rate of

change of mass in the region is equal to the rate of mass flow into the region.

Let the total mass in the region M, be given by

M= I odv 9.5= / pdv

The rate of change of mass in the region is given by

dM dM f dp

I %
dv 9.6

dt dt J dt
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where the total derivative reduces to a partial derivative due to the fact that the volume

remain constant. The rate of mass flow into the region through a surface S with an

outward normal n and differential area da is

- pv nda= - / Vx (pv)dv 9.7

5 v

where v is the velocity vector. Equating the above two equations we find

^+^-(pv) = 0 9.8

which is the equation for the Law of Conservation of Mass in the Eulerian frame.
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10 STRESS and EQUILIBRIUM

Let the Cauchy stress tensor be represented by T and the first and the second Piola-

Kirchhoff stress tensors by
T

and T, respectively. Some authors use Tr for the first

Piola-Kirchhoff stress tensor, where

TR=(T)T

10.1

If the Cauchy stress tensor is defined by

dP rp

t = = n-T = Trn 10.2
da

or rewritten as

d~P = tda = n Tda 10.3

where n is a unit vector normal to the differential surface area element da, in the current

configuration and dP is the actual force transmitted across the surface 5 and t is the

Cauchy stress vector. In this description when the tensor is written in terms of its

components the second index indicates the direction of the component

If in the current configuration, b represents the body forces per unit mass and p

the mass per unit volume and v the velocity, then the integral form of the equation for

conservation of linear momentum can be written as

/ tda+ / pbdv= / pvdv 10.4

S V V

or

/ n-Tda+ / pbdv= / pvdv 10.5

S V V

By making use of the divergence theorem to transform the surface integral to a volume

integral we find or

-- dv
(Vx-T+pb-p)dv=0 10.6/

v
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or

V,
- T+/>b= p~ 10.7

which is Cauchy 's first law of motion.

The integral form of the equation for conservation of angular momentum is given by

/ (r x t)da+ / (rxph)dv=
j (rxpv)dv 10.8

s V V

The term to the right side of the equal sign in the above equation can be written as

J (rxpv)dv
=

j (v x pv)dv + f(r x p-7r)dv= I(r x p^-)dv 10.9

V V V V

Substituting the above into equation 10.8 and after simplifying we find

(rxt)da= (prx(-^--h))dv 10.10

or

J
(rxTT

-n)da=f(prx(^-b))dv 10.11

S V

After using the divergence theorem in the following form (Billington, p.70 [5])

/ r x (TT
n)da= / (r x (\7 .

T) +
TT

- T)dv 10.12

S V

in the above equation and simplifying we find

TT
= T 10.13

which implies the symmetry of the Cauchy stress tensor, which is Cauchy's second law

of motion [6]. In the linearized theory of thermoelasticity the symmetry of the Cauchy

stress tensor is a consequence of the symmetry of the strain and elasticity tensors [21]

in the constitutive relationships.

The actual force in the current configuration can be related to a force dP in the

reference configuration by

dP =
F~1

dP =
JP-(F_1)T

10.14
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which is similar to

dR=F~1-dr = dr- (F"1)
T

10.15

The Cauchy stress tensor associates the actual force per unit area in the current configu

ration with the base vectors in the current configuration. The first Piola-Kirchhoff stress

tensor (sometimes referred to as the engineering stress tensor [22]) associates the actual

force in the current configuration per unit area in the reference configuration with the

base vectors of the current configuration or

dP = tQdA = (N T)dA 10.16

The second Piola-Kirchhoff stress tensor associates the force dP per unit area in the

reference configuration with the base vectors of the reference configuration and is given

by

dP=UA= (N-T)<L4 10.17

The relationship between the first Piola-Kirchhoff stress tensor and the Cauchy stress

tensor is found by equating equations 10.3 and 10.16 and making use of equation 8.60.

The relationship between the second Piola-Kirchhoff stress tensor and the Cauchy stress

tensor is found by equating equations 10.14 and 10.17 and making use of 10.3 and 8.60.

The relationship between the three tensors is as follows:

To
_ jF-!.t =

T-Ft 10.18

T= 10.19

T =
J'1 FTFr

=
J-1 FT0 10.20

The three stress tensors can be expressed in terms of their components and base vectors

as

T = Tijg,gj
10-21

60



T0
=

or7jG/gi
10.22

T = r/JG/Gj 10.23

where

flyi

= J^-T13 10.24
dx1

fU
=
j^i^ir3 10.25
dx* dx)

In [23] Mason describes two additional stress measures. The first, which he refers to as

the Lagrangian stress tensor, relates the actual force in the current configuration per unit

area in the reference configuration with the base vectors of the reference configuration.

If
TL

denotes the Lagrangian stress tensor then

TL
=
lTuGiGj

=
To

.

(Z-1)7

10.26

where Z represents the two point shifter tensor which transforms the components of

a vector in one coordinate system to the components of the same vector in another

coordinate system such that

p
= Z P 10.27

where P and p are the same vector in the reference and
current configuration respectively.

In terms of the curvilinear systems we have

Z =
giLgtGL 10.28

and

Z-1
=

^GLg 10.29
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The components of the shifter tensor are

9kK
=

Sk-GK =
GK-gk

=
gk

10.30

gKk
=GK
-Sk=gk-GK

=
9kK

10.31

The components of the Lagrangian stress tensor are

f)vl

=

gf
=

J^j-gf
Ti3

10.32
J ox' J

The second is a tensor
Tx

which is the Cauchy stress tensor expressed in terms of the

base vectors in the reference configuration or

T*
=

TTug,Gj = T (Z"1)
T

10.33

where

=
TikgkJ

10.34

In [24] the Kirchhoff stress tensor
Tk

is defined by

Tk
= J T 10.35

If the material behavior includes stress rates then material derivatives of one of the stress

tensors is required. For example if T is an objective tensor (see equation 12.6) [5] then

T*

=QT
QT

10.36

must hold. The material time derivative of T, T, is not objective but the co-rotational

stress rate
Tr

and the convected stress rate
T

are objective tensors [6,5], where

Tr
= T-WT +TW 10.37

and

TC
= T + LT-T + T-L 10.38
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The equations of motion in the current state are

d2r
Vx-T + pb =

P^

while the equations of motion in the initial state are

d2r
Vx-T

+ p0b0 = pc
dt2

10.39

10.40

or

Vx- T F +p0b0 = pQ

dh

dt2

where bQ is the body force per unit volume in the initial state.

10.41
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11 ENERGY EQUATION

For the nonpolar case in the current configuration the local form of the first law of

thermodynamics (energy balance) is

/J^
= T--L + /3r-^.q 11.1

with the classical form of the Fourier law of heat conduction

q=-Kg 11.2

where the spatial temperature gradient g is

g
= Vx9 11.3

and r is the internal heat supply per unit mass, e the internal energy per unit mass, q the

outward directed heat flux vector, K the conductivity tensor, 9 the absolute temperature,

assumed greater than zero, and

T--L=tr(T-L) 11.4

is the stress power (power per unit volume) in the current configuration. Assuming that

the Cauchy stress tensor is symmetric, the stress power in the reference configuration is

~ dF
^a

dF

T-r =T-- 11.5
dt dt

The following conjugate pairs of stress and strain variables are listed in [20] and attributed

to [25].

<t.l}.{*.
},{^-t.F.<*},{*

*-},{To,}
n,

The heat flux vector and the temperature gradient in the reference configuration are q0

and g0 and are defined by [26]

q0 = JF-1-q 11.7
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go = Fr-g 11.8

The local form of the Clausius-Duhem inequality which is one form of the second

law of thermodynamics (entropy inequality) is

dn r l q
-L > v - 11.9dt~

9 P
x

9

where n is the entropy per unit mass. It is worth noting that this mathematical statement

of second law is not without criticism. Coleman and Noll [27] used the above form

for obtaining restrictions on the thermo-mechanical behavior (constitutive relationships)

of elastic materials. Green and Laws [28], Green and Naghdi [29], and Day [30] raise

objections to use of the Clausius-Duhem inequality citing particular examples where its

use allows heat to flow from a colder region to a warmer one, which is in direct violation

of the essence of the second law.

The Helmholtz free energy per unit mass ifi can be expressed in terms of the entropy,

internal energy and absolute temperature by

i> = e-<n9 11.10

Differentiating the above equation with respect to time t and rearranging we find

d1 = _d +
drLe+d9

nn
dt dt dt dt

Solving equation 11.1 for r and substituting the result into equation 11.2 and after using

the above equation and simplifying we find

which is the local dissipation inequality [21] in terms of the Helmholtz free energy per unit

mass, the absolute temperature, the entropy
per unit mass, the Cauchy stress tensor, the

temperature gradient vector and the heat conduction vector for the current configuration.
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12 CONSTITUTIVE EQUATIONS

According to Truesdell [19] "a constitutive equation is a relation between forces and

motions. In [13] Truesdell and Toupin list a number of general mathematical principles

to be used as an aid in formulating constitutive equations.

They are as follows:

1. Consistency - The equations must be consistent with the general balance laws.

2. Coordinate invariance - The equations must be valid in all inertial coordinate systems.

3. Isotropy and aeolotropy
- If the materials exhibit no preferred directions of response

(isotropy) or symmetry with respect to certain preferred directions (aeolotropy) then

these properties should be mathematically precise.

4. Just setting
- When the equations are combined with the general balance laws, a

unique solution, which is continuous in the variables, should result for appropriate

initial and boundary conditions.

5. Dimensional invariance - All dimensionally independentmaterial constants should be

included in each constitutive equation (but need not be fisted). This is accomplished

by using Buckingham's t theorem. According to Shames [31], the total number of

independent dimensionless groups required to describe a phenomenon which involves

n variables is n-r where r is the rank of the dimensional matrix.

6. Material indifference - The response of the material should be independent of the

observer.

7. Equipresence - A variable present as a variable in one constitutive equation should

appear in all of the constitutive equations.

The most frequently used is the principle of material frame indifference which is

briefly described as follows.
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If/, a, and A are arbitrary scalar, vector, and tensor fields, respectively, referred to

an orthonormal Cartesian frame and are subjected to the observer transformation

r*

=

c(i) + Q(*)-r 12.1

t*

= t-a 12.2

where a is a scalar, c is a vector and Q is a proper rotation tensor where

Q
QT

= 1 12.3

and if

/(rV) = f(r,t) 12.4

a(r*,t*)
= Q(t)-a(r,t) 12.5

A(r*,t*) = Q(t)-A(r,t)-QT(t) 12.6

then /, a, and A are material indifferent or objective fields. The deformation gradient

tensor F transforms as a vector when a=0, or

F(rV) = Q(0-F(r,*) 12.7

As an example Carlson in [21], presents an elastic material defined by the following

constitutive equations:

V> = ^(F,0,g,r) 12.8

T = T(F,0,g,r) 12.9

>7
=

f7(F,0,g,r) 12.10

q = q(F,0,g,r) 12.11
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In general the constitutive equations could also contain first and higher order spatial and

temporal derivatives of F, 9, g, and r or other quantities and their derivatives depending

on the nature of the material we are concerned with. For example Ghoneim and Dalo [32]

(see also Ghoneim [33]) introduce an elastic heat flow vector and a set of internal state

variables into the constitutive equations to develop a set of coupled thermoviscoplasticity

equations which include second sound effects (thermo-mechanical disturbances propagate

with finite speed).

Assuming a nonpolar thermoelastic medium (no assigned traction couples or body

couples) the Clausius-Duhem inequality can be put in the following form

->^T>L-'('+*)'-'-4-*-q20 I212

where a superimposed dot indicates the material derivative. From the equation above,

for an arbitrary admissible thermodynamic process the following relationships must hold,

where dependence on r is implied:

tp
= j>(F,6), T = T(F,0), v

=
v(F,9) 12.13

*-*' --S

q.g<0 12.15

d20 dt dr,

also

12.16
d9dF d9 dF

which is referred to as the Maxwell relation. The energy equation can now be put in

the form

9v = pr-Xx-q 12.17
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Due to the Helmholtz free energy equation 11.10, the internal energy takes the form

e = e(F,0) 12.18

Now, by partiaUy differentiating the Helmholtz free energy equation with respect to 9

d^> fde df,\ fde dfj\ dij>

-d9
=

{d9-ed9 -V=={d9-9d9)+-dl
m9

we find

d9 d9

Let eg given by

de df)
~

e^7i 12.20

<* =

*(F,.)-g=,g
,2.21

represent the specific heat at constant strain.

The principle of material frame indifference requires

il> = j>(F,0) = ti>(Q-F,e) 12.22

T=t(F,0) = Qr-T(Q-F,0)-Q 12.23

rj
=

ij(F,9)
=

ij(Q-F,9) 12.24

q
=

q(F,0,g)
=
QT

q(Q -F,9,Q-g) 12.25

By letting Q =
RT

and recalling that from the polar decomposition theorem F = R U,

the equations can be put in the following form:

tp
= ^(F, 9) = V(U, 9) 12.26

T = f(F, 9) = F
U_1

t(U, 9)
U_1 Fr

12.27
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n = ij(F,9)
=

TJ(U,9) 12.28

q
=

q(F,0,g)
= F

U-1
q^^U"1 Fr

g)
12.29

Recalling that

E=I(U2-l) = I(Fr.F-l)
and

12.30

P = J = detF = IIIF 12.31

9

or

IIIF = (IIIu)= = (1 + 2IE + 4IIE + 8IIIE)^ 12.32

the equations can be written as

ip
= j>(E,e) 12.33

T=F-T(E,0)-Fr

12.34

n = fj(E,9) 12.35

q
= J-1F-q0(E,^g0) 12.36

Taking the material derivative of 12.33 we find

-=?ldE 8d9_
*

dE dt d0 dt

But

dl.dE
=

dl(T^^[T

dE dt dE V / dE
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where we recall that

D = -(L + LT) 12.39

Due to the symmetry of both
||j- and D, 12.37 can be written as

; _,
dj>

^T T
djdd

^ = F--^-FT:L+-J 12.40
dE d9 dt

Now taking the material derivative of xp
=

ip(F,9) we find

; d$ -

T
d$dO

Equating equations 12.40 and 12.41 we have

<=FM dj^^d^
dF dE d9 d9

Recalling equation 12.14 and utilizing the first of the above equations we have

which shows that

T(E,0) =
pj 12.44

Recalling the relationship between the Cauchy and Piola-Kirchhoff stress tensors we find

T =

pF^-FT

12.45
dE

T =

Po^

TR =

(T)T
=

PoF-^
12.47

71



13 THERMOELASTICITY

The equations for the nonlinear theory of thermoelasticity expressed in the reference

configuration consist of:

The balance equation for linear momentum

rf2x
^T

+ pobo = p0
dt2

13.1

or

Vx- T F +Pob0 = Pi

<J2X

'

dt2

and the balance equation for thermal and mechanical energy

13.2

po0fi
= pQr

-

Vx -qQ 13.3

The constitutive equations

ip
= j>(E,9) 13.4

rj = fj(E,9) 13.5

TR = (T) = JF f(E,0) 13.6

or

f = JT(E,9) 13.7

q0 = qo(E,0,go)
13.8

with

F = 1 + U^r
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p

and subject to the thermodynamic restrictions

E =

-(FT-F-l)
13.10

go = ^r.0 13.11

J=^
13.12

d4>(E,9)
v{EJ)

=

~d9
m3

T(E,9) = pd-^l

qo(E,9,go)-go<0 13.15

The conclusion that the heat flux vector vanishes with the spatial gradient of the

temperature (equation 13.15) is demonstrated by Carlson in [21] by use of a Taylor

series expansion and Chadwick and Sect in [26] by use of the mean-value theorem.

Following Chadwick and Seet [26] and applying the mean-value theorem to q0(E, 0, g0)

between qo(E,0,O) and q0(E, 9, g0)and assuming 8 > \gQ\ > 0, we find

dqo(E,Mg0)

<9go

with 1 > A > 0. If we let

go = qo(E,0,go)-qo(E,0,O) 13-16

K=
dqo(E,Mgo)

131?

5go

and

go = ea 13.18
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where |e| < 8 and a is an arbitrary unit vector, solve for q0(E, 9, g0) and substitute into

13.15 we find

ea q0(E, 9, 0)
- e2a {K(E, 9, eXgQ) a} < 0 13.19

Dividing by e and allowing e > 0 we find

qo(E,0,O)
= O 13.20

which implies that the heat flux vector is identically zero when the spatial gradient of

the temperature vanishes. By making use of the above relationship equation 13.19 can

be rewritten as

e2a-{K(E,0,eAgo)-a} >0 13.21

After dividing by
e2

and allowing e ? 0 we find that K(E, 0,0) is a positive semi-

definite second order tensor.

The linearized versions of the equations of thermoelasticity can be obtained by

expanding the various scalar, vector and tensor functions in a Taylor series (see also

Hughes and Pister [34]) about E = 0, qQ = 0 and 9 = 9Q and assuming that the following

quantities are less than or"equal to 8

u\k , u\ , \0-eo\, 9, |go| 13.22

where 8 1. Recall that

E = \ (u^ +
u%r

+
u%-u%r)

which can be rewritten as

E=1-e+1-(u%-u\T)
= 1-e + 0(82)

where

e=\(u\ + u\T)=0(8)

13.23

13.24

13.25
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Also

F = 1 + 0(8) 13.26

and

J = 1 + 0(8) 13.27

For example

*(E^)-*(0^-)+(?^lE = ol[E]+f%fllE = o)(^-)+0(0

V 9 = 9J \ 9 = 9J
13.28

By assuming that the residual stress is equal to zero, i.e.,

T(O,0O) = O 13.29

and letting

c
dt(E,9)
dE

' E =

0 = 0O

0 = 0o

and substituting

E = e + 0(8) 13.32

equation 13.28 can be written as

f(E, 9) =C[e] + M(9 -

90) + 0(8) 13.33

The equations of the linear theory of fhermoelasticity consist of the following:

Strain - displacement relationship

e = (u\ + u\T) 13.34
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Conservation of linear momentum

VK-T-FT^Pob0 = p0~ 13.35

Stress - strain - temperature relationship

T =C[e] + M(9 -

90) 13.36

Conservation of energy

Vx qo + 9QM : e + pQr = poc0 13.37

Heat conduction relationship

q0 = -K SfrO 13.38

In 13.36 C is the fourth-order elasticity tensor and in 13.36 and 13.37 M is the second-

order stress-temperature tensor. Assuming that the inverse of C exists then

e = C
-l

+ C-1[M](0-0o) 13.39

If we let

A = C-1[M] 13.40

then

e = C
-l

+ A(9 -

0O) 13.41

where C
1
is the compliance tensor and A is the thermal expansion tensor.
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When the material of the body is isotropic the equations reduce to

1. Strain - displacement relationship

e=2(U^ + U^T) 13-42

2. Conservation of linear momentum

,T .
d2u

Vx-T-F'+pob^po
13.43

3. Stress - strain - temperature relationship

f =2//e + A(tre)l+m(0-0o)l 13.44

4. Conservation of energy

-Vx qQ + m0o(tre) + p0r = pQc9 13.45

5. Heat conduction relationship

q0 = -kXfrO 13.46

where use is made of the following for isotropic tensors. Given a general fourth-order

tensor, C, where

C = Cijklgigjgkgj 13.47

If C is isotropic then [1]

Cijkl=
Xx8i38kl

+
X28ik83'1

+
X38il8jk

13.48
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where Ai,A2,A3 are scalars. If, in addition, C is symmetric then

Cjikl=
X18ji8kl

+
X28jk8il

+
X383l8ik

13.49

Subtracting the above two equations, one from another, and rearranging we have

(A2 -

X3)(8ik8jl
-

8jk8u) = 0 13.50

which implies

If we let

and

we have

A2 = A3 13.51

A = A! 13.52

p, X2 = A3 13.53

Cija=
X8ij8kl

+
p(8ik8jl

+ 8il8jk) 13.54

Given a general second-order tensor A, where

A = Ai3gigj 13.55

if the tensor is isotropic then [5]

Aij= <f>8ij 13.56

where <f> is a scalar. Let

T = C[e] 13.57

where T and e are second-order tensors and C is a fourth-order symmetric isotropic

tensor, then

T= X8i38klelk + p8ik83lelk + p8il83'kelk 13.58
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which can be rewritten as

Ti3= X8i38klelk + p8ik83lelk + p8ik83lekl 13.59

If e is symmetric then

Ti3=X8i38klelk + 2p8ik83lelk 13.60

where A and p, are the Lame constants. In direct notation the above equation has the form

T = C[e] =A(tre)l + 2pe 13.61

The second order isotropic tensors can be written as

M =ml 13.62

K =kl 13.63

A = al 13.64

where m, k, and a are scalars representing the stress-temperature modulus, the thermal

conductivity and the coefficient of thermal expansion, respectively. Taking the trace of

equation 13.44 and rearranging we find

tre = -

l 3
(0 - 90) 13.65

2// + 3A 2p +
3XK ;

Substituting the above into 13.44 and rearranging yields

T ( trT 1 1

2p 2^/(2// + 3A)V J (2/X +
3A)'

e,-r- - :-_(trT)l-^^-*0)l 13.66

or

e = ii-
2p 2^/(2/a + 3A)

(trT)l + a(0-0o)l 13.67
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where the coefficient of thermal expansion a is given by

m

(2p + ZX)
a = -- ?2 13.68

and

m =
-a(2p + 3A) 13.69

The relationship between the Lam6 constants and Poisson's ratio and Young's modulus

are given (Sokolnikoff [18]) as:

E
.

Ev
P = rr, r -,

X = 7-.
r- 13.70^

2(1 + :/)
'

(l + i/)(l-2i/)

The converse relationships (Gurtin [35]) are

E=i^mt 13.7i

p + X 2(p + X)

The initial value -

boundary value problem of linear thermoelasticity consists of the

following:

Strain displacement relationship

=4(u% +
u^T)

13.72

Conservation of linear momentum

dt2
%-f + Pob0 = p0-^ 13.73

Stress - strain - temperature relationship

T=2^e + A(tre)l+m(0-0o)l 13.74
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Conservation of energy

~VX qQ + m0o(tre) + Por = pocE0 13.75

Heat conduction relationship

qQ = -kV^0 13.76

and the following initial conditions for the body for t=0 :

Displacement u = u0

Velocity li = u0

Temperature difference d 0 0O = dQ

and the following boundary conditions on any boundary:

Displacement u = u

or

Traction t = T n = t

and

Temperature difference i? = 0 0O = i?

or

Heat flux q
=

q n = q

The momentum and energy equations are fully coupled through the strain rate tensor

which implies that changes in the strain produce changes in the temperature field and an

increase in entropy (thermoelastic dissipation) or changes in temperature produce changes

in strain (thermally induced vibrations). The equations imply that thermal and elastic

disturbances propagate at infinite speeds which is contrary to physical observations [36].
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There are two generally accepted theories which resolve the discrepancy [37]. The

classical form of the Fourier law of heat conduction

q
=

-Kg 13.77

can be written in a generalized form [38] as

da

q + r-^
=
-K-g 13.78

where t is the relaxation time. H. W. Lord and Y. Shulman [39] are credited with in

corporating this modification into a thermoelasticity theory. The second theory attributed

to A. E. Green and K. A. Lindsay [40] involves two relaxation times and is based on

an alternate representation of the entropy inequality (second law of thermodynamics).

Ignaczak [37] describes the classical theory (C), the Lord-Shulman (L-S) theory, and the

Green-Lindsay (G-S) theory succinctly with the following equations which he refers to

as the equations of generalized dynamic thermoelasticity (GDT):

Strain - displacement relationship

e = i(u% + u^T)
13.79

Conservation of linear momentum

Vx.T-FT+p0b0 =
Po^

13.80

Stress - strain - temperature relationship

dt

d9

t =2pe + A(tre)l+m(0 - 0O)1 +mr,-! 13.81

Conservation of energy

-

n f de\ d9 d29

~^X qo + m0ol
tr I + pQr =

PoCE-^
+ />ocE7"o^2

U-^Z
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Heat conduction relationship

qQ +
r-^

= -fc%0 13.83

where r, rQ, ti, are relaxation times. The equations reduce to the classical theory (C) if

t = r0 = T! = 0. The equations reduce to the Lord-Shulman (L-S) theory if r > 0

and r0 = ti = 0. The equations reduce to the Green-Lindsay (G-S) theory if r = 0

and t\ > tq > 0. Kranyg in [41] introduces a general form of hyperbolic operators for

converting various parabolic equations to hyperbolic form.

The stress/strain/displacement field and temperature field have to solved for simul

taneously. The equations uncouple when changes in temperature due to mechanically

induced straining can be ignored. Therefore, we can solve for the temperature field in

dependently and then solve for the stress/strain/displacement field. When in addition the

time rate of change of load application is gradual enough that the inertia term can be

disregarded, the resulting equations are referred to as the quasi-static problem.

In the previous formulation is was assumed that the displacements were to be treated

as the unknown variables. When the strains are treated as the unknown variables the

compatibility equation

Vx x e x% = 0 13.84

needs to be added to the set of equations. When equation 13.44 is substituted into the

above equation the compatibility conditions can be expressed in terms of the stresses.
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14 SHELL THEORIES

A. Introduction

A thin shell is defined by Kraus [10] as a body bounded by two closely spaced

curved surfaces called faces and having three identifying features: a reference surface, a

thickness, and edges. The edges are usually assumed to be perpendicular to the reference

surface however in [42] Libai and Simmonds point out that Koiter has attempted to treat

beveled (non-perpendicular) edges in some unpublished work. Shells without edges are

called closed shells.

The goal in developing a shell theory is to be able to exploit the fact that the distance

between the faces, the thickness, is small compared to the other dimensions of the shell.

Shells are usually classified as thick or thin based on the magnitude of the ratio of the

thickness to some characteristic length on the reference surface. Some shells of constant

thickness can be classified as both. In [43] Rubin and Florence point out that although

a conical shell may be considered thin at its base, it has to be considered thick near the

tip. Thin shell theories generally disregard transverse shear and changes in thickness.

When the shell is considered thin enough that bending can be disregarded, the shell is

called a membrane shell (e.g., balloons, bubbles). Shells are usually classified as deep

or shallow based the ratio of the characteristic length to the minimum principal radius

of curvature of the reference surface. Shallow shell theories typically disregard various

terms involving the curvature.

The approaches to developing shell theories can be classified as either direct or

indirect. The indirect approach consists of the reduction of the three-dimensional

equations to a set of two dimensional equations which are valid for the reference surface

of the shell. In the three-dimensional formulations we are dealing with various thermo-

mechanical quantities which are expressed per unit volume or per unit area. In the
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two-dimensional formulations we seek to represent the quantities per unit area and per

unit length. The reduction is generally accomplished by one of two general methods.

The first method is based on asymptotic approximations. The three-dimensional

equations are expressed as various series expansions in terms of some parameter which

is a function of the shell thickness. By appealing to Saint-Venant's principle, (see Horgan

[44]) the three-dimensional stress distribution is replaced by a statically equivalent set of

resultant forces and moments which are obtained by integrating the stresses across the

thickness. The resultants are expressed per unit length of elements on and intersecting

the reference surface. The reactions at the edges of the shell (open shells) are treated

similarly. This is the most generally used approach and the one which will be presented

here. The second method involves a priori error estimates of the various quantities

associated with the three-dimensional equations (see for example John [45,46]).

The direct approach is concerned with regarding the shell as a Cosserat surface.

The shell is regarded a priori as a two dimensional body, a surface, with a field of

non-tangential vectors attached to it. The vectors are called directors and can be used to

represent the thickness of the shell. All of the thermo-mechanical quantities are expressed

initially, per unit area of the surface and per unit length of curves on and intersecting the

surface. Although this approach simplifies the formulation of the kinematic and kinetic

relationships it complicates the formulation of constitutive relationships.

Isothermal elastic shells via Cosserat surface theory are treated by Langhaar in [47]

and by Zhilin in [48]. Elastic shells, including thermal effects, via Cosserat surface theory

are treated by Green, Naghdi, et al. in [49-53]. In [54] Rubin considers a uniqueness

proof for generalized boundary conditions which allows for mechanical contact and

thermal radiation.

In addition to the different ways of developing shell theories briefly described above,

the equations can be presented in either vector or component form and they may be

formulated either in terms of the strain measures (intrinsic formulation) or in terms of
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the displacements. Recall that when the strains are treated as the unknown variables,

rather then the displacements, the general set of equations must be supplemented with

the compatibility equations. Axelrad and Emmerling discuss the advantages of the vector

form of the intrinsic relationships in [55].

The general shell theories developed are usually described as either nonlinear or

linear. The nonlinear theories can be subdivided into those involving geometric non-

linearities and those involving material nonlinearities. The material nonlinearities are

a result of nonlinear constitutive relationships (stress-strain relationships). Geometric

nonlinearities result from retaining product terms involving the displacements and their

gradients in the strain measures.

Recall that the strain measures in general involve changes in the lengths of curves and

changes in the angles between intersecting curves. The change in the angle between two

intersecting curves can be described as a rotation. In the case of shells we are concerned

with rotations of elements on the reference surface and the rotation of the normal to the

reference surface. When the rotations are finite they do not transform as vectors [56],

and care must taken to ensure the formulation is invariant (see for example [57] and

[58]). Pietraszkiewicz in [59] suggests subdividing finite rotations into categories where

the two rotations are described as large/small, large/moderate, and large/large where the

second term describes the inplane rotations. The definition of small, moderate, and large

are provided in [59]. The large/small description implies the shell is undergoing large

displacements with small strains. Axelrad and Emmerling in [60] describe this class

of shell as a flexible shell. They further argue that within this class, the deformation

typically varies more strongly with one of the surface coordinates than with the other.

They term displacements of this type as realizable large displacements. In [61] Nolte et

al. provide a comparison of large rotation shell theories.

The equations are formulated in either a Lagrangian, relative or Eulerian reference

frame or some variation thereof. In [62] Levesque and Bertrand discuss the disadvantages
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of using a quasi-Eulerian for problems involving fluid-structure interactions.

We will follow the Lagrangian formulation (see for example [59,63]), and in addition

we follow the formulation used by Basar in [64] and Basar and Kratzig in [65].

The formulation used is for shells undergoing finite deformations. They introduce an

independent rotation vector to describe the rotation of the normal to the reference surface.

Other authors (eg., Libai and Simmonds [42], Axelrad and Emmerling [55], Taber [66])

use a formulation involving an orthonormal frame which rigidly rotates and translates

with a material point.

B. Coordinates

In addition to being concerned with descriptions of the metric properties of the initial

and final configuration and the connection between them, we have to be able to define

metric properties at points off the reference surface in terms of metric properties at

points on the reference surface.

We begin by considering a vector r, originating from the origin of an orthonormal

Cartesian frame, which describes a general surface, where r has the form r = r(x1,x2),

where x1and
x2

are independent variables. We construct a unit vector n normal to the

surface at the terminus of r and directed out from the surface (opposite to the direction

of the normal to the lines of principal curvature). The position vector p to any point P in

the shell, in terms of the vector r to the reference surface and the unit vector n, normal

to the reference surface is given by

p= r+z3n 14.B.1

where
x3

is the distance from the reference surface along the normal. The space described

by this vector is referred to as the normal space of the shell (Lukasiewicz [67]). The

vector from P to a neighboring point is then

dp= dr+dx3n + x3dn 14.B.2
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The scalar invariant representing the square of the distance from point P to a neighboring

point is then

ds2
= dp - dp= dr dr+2x3dn dr+(x3fdn-dn +

(dx3)2

14.B.3

where the following relationships have been used

dn n = 0 14.B.4

dr-n = 0 14.B.5

n n = 1 14.B.6

Recalling the definition of the first, second and third fundamental forms of the reference

surface and substituting those into equation 14.B.3 we find

ds2=A-2x3B+(x3fc+(dx3)2

14.B.7

The first three terms are recognized as the first fundamental form of a surface parallel

to the reference surface and offset a distance
x3

from it. By making use of the equation

for the relationship between the three fundamental forms

C = 2HB - KA 14.B.8

the above equation can be reduced to

ds2= A(l - (x3)2K)-2x3B(l - x3H)+
(dx3)2

14.B.9

whereK andH are the Gaussian andmean curvature of the reference surface, respectively.

Recall that

ds2
= dp - dp=
gijdxidxj=ga0dxadxP+dx3dx3

14.B.10

where gy are covariant components of the metric
tensor in the normal space of the shell.

Equating the above two equations we find the relationship between the metric tensor
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components in the normal space of the shell in terms of those on the reference surface

or

9afi
= aapO- ~ (xz)2K)-2x3ba0(\ -

x3H) 14.B.11

533= 1

The relationship for the second fundamental form magnitudes (components of the cur

vature tensor) is

Kp = Kp
~

u3ca0 14.B.12

or

Kp = (l -

2x3H)ba0 + x3Kaa0 14.B.13

where the overbar indicates the components are for the normal space of the shell.
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15 SHELL EQUATIONS
r

Although references have been included where appropriate, the following authors

provide an extensive treatment of the shell theory: Lukasiewicz [67], Libai and Simmonds

[42], Naghdi [68,69], Niordson [8].

Let
xl

be a set of convected curvilinear coordinates which describe a collection of

material points in a body, where relative to a right-handed orthonormal Cartesian frame

with material coordinates z', the following transformations hold.

x*

=xi(z1,z2,z3) 15.1

z*

=

zi(x\x2,x3) 15.2

In what follows Latin indices have values of 1,2,3 while Greek indices have values of

1,2. Let the boundary surfaces of the body be specified by

x3

=

a(xa) ,

x3

= /3(xa) ,
a <0 < 0 15.3

The surface defined by

x3

= 0 15.4

will be referred to as the reference surface and is located between the two bounding

surfaces. The above equations loosely describe a shell of variable thickness. In this

section a comma is used to denote partial differentiation relative to the convected

coordinates. For example,

-^ = r0 15.5
dx<*

'"

An overbar is used to indicate quantities referred to the current configuration while the

same quantities referred to the reference configuration are indicated without the overbar.
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The quantities referred to the current configuration are in general time dependant, while

the quantities referred to the reference configuration are not.

Let r and p be position vectors to a point on the reference surface and in the shell

space, respectively. Let the metric tensors in the shell space be denoted by

9tJSiSj
=
9ijSlS3

= S\glgj 15.6

while the metric tensors on the surface are

aaPaaa0
=
aa0aaaP 15.7

where

P,. = Si 15-8

r>0 = aa 15.9

Let a3 represent the unit normal to the same point on the reference surface defined by

a3 =
a3

= \eaP(aa x a0) 15.10

where the permutation tensor of the surface is

eafi
= ^-= 15.11

y/a

Let the curvature tensor of the surface be given by

B = 15.12

with components

Kp = -a<*
-

a3,/? 15-13

Let U and u represent the displacement fields for the shell space and the reference

surface such that

p
= p + u 15.14

r = r + U 15.15
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Let the position vectors to points in the normal space of the shell in the reference and

current configurations be given by

oo

p(xa,x3)=r(xa)+ (x3)ndn(xa) 15.16

n=l

oo

p(xa,x3,t)=f(xa,t) + (x3)"dn (xa,t) 15.17

n=l

where the terms involving dn and dn represent vectors attached to the reference surface

and are referred to as directors. In terms of the displacement vectors

oo

u(xa,x3,t)=V(xa,t)+ (x3)nwn(x,t) 15.18

n=l

where

w = d - d 15.19

The series term in (15.18) allows the displacements in the shell space to be approximated

to any desired degree. Other quantities such as temperature can be similarly expressed.

The base vectors in the shell space are given by

CO oo

g.=P,, = r,-+
(*3)"

d+ E (*T dn,, 15.20

ra=l n=l

Ifwe assume a shell of constant thickness h and assume the reference surface to be located

midway between the two bounding surfaces and disregard terms in the equation above for

n>2 and assume the director in the reference configuration is normal to the surface or

(x3)"

= 0
,
i^3 15.21

h o h

-2
<

*3

<
+2

I5-22

di = a3 15.23

di = d 15.24

d = dn = 0 n > 2 15.25

wi = w 15.26
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equations (15.16), (15.17), and (15.18) can be rewritten simply as

p(xa, x3)
=

r(xa) + x3az (xa) 15.27

p(xQ, x3,t)= f(xa, t) + x3d(xa, t) 15.28

where

and

u(xa, x3,t)= XJ(xa, t) + x3w(xa, t) 15.29

p-p=u=U+ a;3w 15.30

w = d -

a3

15.31

The base vectors for the normal space in the reference configuration are

ga = P,a = r> + z3a3,a = aa + x3a3ja 15.32

g3 = a3 15.33

while those in the current configuration are

Sa=
P,a

= F,a + *3d a
= aa+x3d)a 15.34

g3
= d 15.35

Let Z represent the shifter tensor (see Wagner [70]) which relates quantities in the shell

space to those on the reference surface, be given by

Z = z/a.a'
=
aaaa

+
a3a3

-

x3

B 15.36

The components of the shifter tensor can be written as

za0
= 8a0-

x3ba0 15.37

z\
= 1 15.38
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The determinant of the shifter tensor components can be expressed in terms of the

determinants of the two metric tensor components or in terms of the mean and total

curvature as

z)\
= z = ^L = l-2x3H+(x3)2K

J
yja

15.39

where

H = \aaf)ba0 ,
K = - 15.40

The components of the inverse of the shifter tensor are [68]

(*?)
1
=

-z[Sap+x3(ba0-2H8a0)}
15.41

(z3)"1

= 1 15.42

The relationship between the covariant base vectors can be written as

g-
= Za, = a,

ZT
15.43

while the relationship between the contravariant base is

^ =
Z~1-ai

=
a{

15.44

The relationship between the covariant and contravariant
components of the metric tensor

of the shell space and those on the reference surface, in terms of the components of the

shifter tensor is

gij
= z\z]au 15.45

and

gij
=

(4rl(4rlkl
15-46

The displacement vectors expressed in terms of the base vectors in the reference con

figuration are

U = Uaaa+U3a3 15.47

w = waaa+w3a3 15.48
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From

p = p+u = p+U + x3w 15.49

we can obtain

P,,
=
P,.+u,,-

=
P.i+U,,-

+ 83w + x3wti 15.50

or

g,
= g,+u ,

=
g,+U,,-

+ 3w +
x3w,,- 15.51

Taking the dot product of the above equation with itself we obtain

gij
~

gij
=

Siu,j + gj u, + u, u,i 15-52

Recall (see equation A.C.57) that

u,-
= u||'gfc =

Uk\\iSk

15-53

where the double vertical bar denotes covariant differentiation with respect to the metric

of the normal space. The components of the Green-Lagrange strain tensor for the normal

space are

Eij = ^fe
~

9ij) 15-54

Making use of the above three equations we have

Eij =
- (v\\j9ik + ufakj + u\\iu\\jgki)

15-55

which reduces to

Eij =
g
(u"lli + uill + ufiu*lli)

15-56

The strains can be separated into strains in the plane of the reference surface and those

not in the plane or

EaP =
g (Ua\\P + Up\\a + ulaUf\\P + UlaU3\\p)

15'57
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Ea3 = - (uQp + u3\\a + wjfQ,w7||3 + Jaw3||3)
15.58

#33 =
^
(2u3||3 + upu-i\\Z + ^^p) 15-59

where equation 15.57 represents the inplane strains, equation 15.58 represents the trans

verse shear strain, equation 15.59 represents the transverse normal strain. We can derive

the relationship between the covariant derivatives in the normal space and those on the

surface by making use of

u,,-
= u|,-gjt = u"aa+uaaati + u3a3 + u3a3); 15.60

and

gk=z'kai ,

gm

= (^)-V 15.61

The covariant derivatives in the normal space can be expressed as

u\\i
= (zkj)~l(uP<* +

uaJ ,

+ a3)l) 15.62

or

uk\\i = (4)_1 +
^aa

-

a0ti +
u3aa

a3,,)+ 15.63

(zk)-\u3i+^a3.a0ti)

By making use of the Weingarten equations

a-a3i/?
=

-&
15.64

a3

aa>0
= ba0 15.65

a3

a3i/?
= 0 15.66

a3 3
= 0 15.67

aa,3 = 0 15.68

4 = 4 = 0 15-69
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the covariant derivatives can be written as

U~L\P1\\p = (zir1(u\p-u3b0) 15.70

7ll3 = (zl)~lu% 15.71

u*\\p
=

u30 + uaba0 15.72

ii3||3 = u33 15.73

where the single vertical bar denotes covariant differentiation with respect to the metric

of the reference surface. Recalling that

gik = ziziaji 15-74

ulli
= uh9ik = u\\jzizkaJi 15-75

zi(zk)-'

= 8) 15.76

we also can find the relationship for the covariant derivatives of the contravariant

components or

ui\\P
=

zi(ua\P
~

u3Kp)
15-77

ut||3
= 4U.3 15-78

3||/J
=

u\\p
15J9
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u3||3
=

up
15.80

When we substitute into the equations for the strain components (equations 15.57, 15.58,

15.59) we have for the normal space of the shell

Eap = ^(za(u\\p
~ ^Kp)+z0(uX\a ~

u3ha)+ 15-81

(U\a
~

uZK)(up\P
~

U3bp0)+

(u3Q + uXbXa)(u30 + upbp0)

Eaz = \(zXaux>3 + u% + uxbXa + (uPa
-

u%)up,3 + (u% + uxbXa)u33) 15.82

E3z = l(2u33 + u%ua,3 + (u%)2) 15.83

Recalling that

u= U + z3w 15.84

u,a= U a + z3w,a

u3= w

we can find that

7ii3 = (ziriw

A\p = (u?p + uaba0)+x3(w30 + waba0)

15.85

15.86

ui\\p
= (zlTl((U$

-

U3b0)+x3(w?0
-

w3b0)) 15.87

7iL =

fz-n-i,,,* 15.88

3(?3 4- wab) 15.89
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m3||3 =
w3

15.90

ull]0
=

z((Ual0
-

U3ba0)+x3(wa\0
-

w3ba0)) 15.91

w7||3
= zwa 15.92

When the above results are substituted in equations 15.81, 15.82, and 15.83 we find

EQp = ~(zX(Ux{0
-

U3bX0+x3(wx]0
-

w3bX0))+ 15.93

zp(Ux\a
- U3bXa+x3(wx]a -

w3bXa))+

(U[a
-

U3bp+x3(wpQ
-

w3bpa))(Up\p
~

U3bp0+x3(wp]0
-

w3bp0))+

(U3a + UXbXa + x3(w3a + wXbXa))(Uf0 + Upbp0 + x3(w30 + w%0))

Eaz = \(zXwx + UxbXa + x3(w% + wxbXa) + 15.94

((U[a
-

U3bpa) + x3(wpa
-

w3bpa))wp+

((U% + UXbXa) + x3(w% + wXbXa))w3)

E33 = l-(w3(2 + w3) + wawa) 15.95

In order to simplify the results when the strain tensor components are presented the

following (or variations of) substitutions are often made:

U a
=

<AaaA + &taa3 =
<j>Xaax

+ <j>3aa3 15.96

w,a = *pXaax + ip3aa3 =
ipXaax

+ ip3aa3 15.97

99



where

4>ap = Ua\p
~

U3ba0 , ipa0
=

wQ\0
-

w3ba0 15.98

4$ = Ufa
-

U3bap , r0 =

w^-w3ba0 15.99

fop = ^3,/9 + ^A&/? , ^3/3 = w3<0 + wxb0 15.100

When we substitute the above equations into the equations for the covariant derivatives

in the normal space of the shell we find

!/ = (zlT'^+x3^) 15.101

l3 =
(zl)~lwa

15.102

"3H/ = ^3/9+ar3^3/9 15.103

ui\\P
=
z^(4>ap+x3rpa0) 15.104

U7J|3
= zyWa 15.105

3||j8
=

u\\p
15-16

3||3
=

up
15-17

U3||3 =
W3

15.108

When the equations above are substituted into 15.57, 15.58, and 15.59 we have

Eap = l(zX(4>xp+x^\p)+zp"(foa + x3xPXa)+ 15.109

(<f>Pa+X3tpPQ)(4>pp+X3tpp0)+ (foa + X3i>3a)(fo0 + X3i>30)
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Ea3 = ~(zX(UXj3 + x3u;A)3 + w\) + 4>3a + x3xp3a + 15.110

(<f>pa + x3xppa)wp + (<j>3a + x3ip3a)w3)

E33 = -(w3(2 + w3) + wawa) 15.111

or after substitution for the shifter tensor

Eap = ~((<f>ap + 4>pa + <i>Pa<t>pP + foafop) 15.112

+x3(ipap + ippa + <f>pa*Ppp+ippa<f>Pp
-

bX<j>X0
- b$<j)Xa+il>30<j>3a + rp3a<t>30)

(x3)2(tp3ai>30+ippaipp0 - b&Xfi - bX0xpXa))

Ea3 = -(wa + 4>3a +
<t>3aw3

+ <f>pawp + 15.113
1
2l

x3(-bXwx + tp3a + tppawp + *p3aw3))

Ezz = \(w*(2 + w*) +a) 15-114

which are the full three-dimensional, nonlinear strain displacement relationships.

In order to proceed further, assumptions regarding the behavior of the shell are usually

made. In equation 15.112 the last term, which is quadratic in x? is usually disregarded.

Equation 15.112 is assumed to be of the form

Eap = aap + x tap 15.115

where

are membrane strains and

<*aP
=

ldaaP
~

aap) 15.116

Kap
=
-(Kp~Kp) 15.117
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are the bending strains. The base vectors in the current configuration can be expressed

in terms of the base vectors of the reference configuration by

a*=
*P +K) + fo**z

The unit normal to the deformed surface is given by

15.118

a3

=

-^(aaxa

or

a3

=

From which

(~foy + SgfihaW + (1 +K +
^;fCfi)a3

^=(l+2a2 + 2(a2aj-a|aj))i

15.119

15.120

where

and

J -

aa
=

^(^ap + 4>pa + foa^.p + foafop)a,PP

15.121

15.122

< = K + \(foa<f>Xp + foafop)apa

15.123

The components of the curvature tensor in the deformed configuration are given by

aa a0

By using equation 15.118 the membrane strains are given by

1
Lx

15.124

<*aP
=

nC^a/?
+ ^Pa + fooc<i>p + foafop) 15.125

In [64] it is assumed that the shear deformation is constant throughout the shell or

d d=constant 15.126

from which

(d d),a=0
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or

d d,a = 0 15.128

Recalling that

d = w +
a3

=
waaa

+
(w3+l)a3

=
iuaaa+(u;3-|-l)a3

15.129

d,a = w,a + a%
= ^AaaA + 03aa3 + afa 15.130

d d,a = 1p3a + Wpll>?a + W31p3a Wpb% =0 15.131

which shows that the second term in equation 15.113 vanishes. When changes in the

thickness of the shell are neglected or

dd = l 15.132

We find

w3(2 + w3) + wawa = 0 15.133

or the transverse normal strain (equation 15.114) is identically zero. In addition this

assumption allows for calculation of the normal component ofw in terms of the tangential

components (Basar and Kratzig [65], Basar [64]) or

w3 = -1 >/(l
-

wQwa) 15.134

and the introduction of a rotation vector ft which relates w to the rotation of the normal

on the undeformed reference surface or

ft = a3 x w 15.135

The magnitude of ft in terms of the angle u between sl^ and d is simply |ft| = |sinu>|.
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The Kirchhoff-Love assumptions consist of:

Normals to the reference surface do not change length after deformation or

dd = l 15.136

Normals to the reference surface remain normal after deformation or

a3=d = a3+w 15.137

If we assume that

a3

= d =
a3

+ w 15.138

and recall that

aa
-

aj,
=

-ba0 15.139

we find

~(Kp
~

Kp) = Tppa
-

<f>ppK + <f>0*Pp<* + 1p3afop 15.140

and due to the symmetry of the curvature tensors

-(Kp
~

Kp) = -^Ppa
-

</>PpK + <j>p0tppa + ip3afop + 15.141

*Pap
~

<f>pabP0 + <t>Ztpp0 + tpzpfoa)

If we assume small but finite strains such that products of the strains can be disregarded

we find

'-w(l + 2fl)f = l + <*2 15.142
a

a3

= J^
(nTa7

+ n3a3) 15.143
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If we retain the Kirchhoff-Love assumptions we find

Ea0 = aa0 + x3Ka0
15.144

ea3 = 0 15.145

where

e33 = 0 15.146

<*aP
=

^(fofi + <f>Pa + <f>\a<t>p + foafop) 15.147

Kap
=

2~(^/?
+ tap

~

PpK
~

<$>p<xbP0 +
15.148

<^VV<* + foafop + Va^pP + fopfoa)

When we reintroduce the previous substitutions in equations 15.147 and 15.148 we find

the strain measures in terms of the displacements or

<*ap
=
^(Ua\0+U0\a -2U3ba0 15.149

(U[a
-

U3bp)(Up]0
-

U3bp0)+(U3a + UxbXa)(U30 + Upbp0))

1
3

*ap
=
~(wa\p+wp\a

~ 1w ba0- 15.150

(Up{0
- U3bp0)bp-(Up]a

- U3bpa)bp+

(Upp
- U3bp)(wpla

-

w3bpa)+(Upa
-

U3bp)(wpl0
-

w3bp0)+

(U% + UxbXa)(w30 + wpbp0)+(U30 + UxbX0)(w% + wpbpa))

When equations 15.147 and 15.148 are linearized by dropping terms involving products

of the displacement gradients we find

<*aP
= ^aP +^) 15.151
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KaP
= ^Pa + fop

~

4>ppK
~

<f>pab0)
15.152

- = ! + <% 15.153

=
= 1 - C 15.154

and

from which

H^^ _ J,n a7 i Q3

a*& -
<fo7a7

+
a6

=
tu7a7

+ (1 +
u>3)a3

15.155

Wy=
(j>3y 15.156

w3 = 0 15.157

The two linearized strain tensors (equations 15.151 and 15.152) are symmetric and when

the displacements are substituted in, can be written as

/ =

^(Ua\p + U0\a
-

2U3ba0) 15.158

*ap
=
^(wa\0+w0la -(Upl0

-

U3bp0)bp-(Up\a -

U3bpa)bp) 15.159

KaP
=

-\(foa\P+fop\a+(Up\0
-

U3

bp0)bp+(Up\a -

lf3bpa)bP) 15.160

where

foa\p = U3\ap + U\K\p + KUX\p 15.161

U3\a0 = U3,Q0
- {^U3,X 15.162
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or after substituting the above and making use of the compatibility equations

*\pap
=

-(U3\ap+Uxbxlf} + bxUM0 +
Up]0bp

-

U3bp0bp) 15.163

For convected coordinates the deformation gradient is given by

F =
g,g'

15.164

The Green-Lagrangian strain tensor in the shell space is denoted by E<s, and is defined

by

Ea = |&0--w),V 15-165

The Green-Lagrangian strain tensor on the reference surface is denoted by E, and is

defined by

E=
(Z-1)T-Ev8-Z-1

15.166

Likewise if T<g and T = fap'aaa0 represent the second Piola-Kirchhoff stress tensor in

the shell space and on the reference surface, respectively, then

f = Zr-TVZ 15.167

The work conjugate stress resultant and stress couple tensors are [70] given by

rh/2

= /
TaPaaa0detZdx3

15.168

J-h/2
N

-h/2

rh/2

M

-h/2

x3faptaaa0detZdx3

15.169

h/2

fh/2

Q= /
fa3aaa3detZ<fc3

15.170

J-h/2

where the relationship between the first and second Piola-Kirchhoff and Cauchy stress

tensors is given by

tSb =
JF-1-Tt8-(F-1)T

=

T^{F-1)T

15.171
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T<b =
J~l F-T<b-Ft

=
J"1

F-T& 15.172

Ts = JF-1-Ti8 =
Ts-FT

15.173

where

j =
dv

=

(Ixg>)-g3
15 1?4

dv (gaXgp)-g3

The tensor N is the stress resultant tensor, M the moment tensor and Q the shear stress

vector and are work conjugate to the strain tensors with components aag, Kag, and

Ea3. The general equations presented become reasonably complex when expressed in

component form. In [55] Axelrad and Emmerling discuss the advantage of using an

intrinsic form of the equations, (i.e., using the strains as unknowns rather than the

classical approach of using the displacements as unknowns.)

The equations of motion and constitutive relationships can be derived by appropriate

substitutions into the following:

Conservation of linear momentum

%-T<b-Ft
+ Pob0 =

Po-^
15.175

Stress - strain - temperature relationship

f =2pE<s + A(trE<8)l+m(0 - 0O)1 15.176

Conservation of energy

-Vx q0 + m0o[tTE^) + pQr = poCE0 15.177
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Heat conduction relationship

q0 = -k^0 15.178

For example the stress - strain - temperature relationship in direct notation for the shell

space is

T93 =2/iE<8 + A(trE<8)l+m(6 - 0O)1 15.179

while in component notation (after dropping the subscript *8 for clarity)

f-
= XEZ8'j+2pEJ+m(0

-

0O)8) 15.180

or

fik=(XEZ8'j+2pEi+m(0 -

0o)8ij)g3k
15.181

fik=(XEnkgkn8ij+2pEjngin+m(0 -
60)6})g* 15.182

Use of the relationship

9ij
=
(ztrHz3)-1^1

15.183

in equation 15.182 shifts the stress tensor from the normal space to the reference surface.
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16 COMPATIBILITY EQUATIONS

The compatibility equations connect the two measures of strain previously described.

They can be derived from the Gauss equation

RsyPa = KybpS ~ bpybQS 16.1

where the left side of the above equation when expressed in terms of the Christoffel

symbols is

RSyfia = [7, *\p
~ bfi, *\a + {^ }^X]~{7t } [Sfi> A] 16'2

and the Codazzi equations

Kp\f Ky\p 0 16.3

where the Riemann-Christoffel tensor and covariant differentiation are associated with

the Christoffel symbols in the deformed configuration. The Gauss equation produces one

distinct equation

Rpapa = [aa, P\p
- [a/3, 0]>a + {^ } [aa, A]

-

{^ } \J30, A] 16.4

RpaPa = Kabpp
-

b0aKp 16.5

The Codazzi equations produce two distinct equations

Ka\p
- Kp\a = 0 no sum a^/3 16.6

Recall that the relationship between the strain and the metrics of the deformed and

undeformed reference surface is given by

1.
,

aap
=

-^{aQp
~

aap) 16.7
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and

k0j3 = Kp Kp 16-8

from which the covariant components of the metric tensor of the deformed reference

surface in terms of the strain measure and metric tensor of the undeformed reference

surface are

aa0
= 2aa0 + aa0 16.9

Kp = *ap + bap 16.10

The contravariant components [67] are given by

art
=

ep<x^aaP
=
^(2aaPepae^

+ a"*) 16.11

where use of the following has been made

f>aP paP

rp
= ~

,

ea/3

= ^= 16.12
y/a

The relationship between the Christoffel symbols for the deformed and undeformed

reference surface can be found by considering the difference between Christoffel symbols,

which is referred to by Niordson [8] as the Christoffel deviator. First we express the

Christoffel symbols for the deformed reference surface in terms of
its'

associated metric

tensor.

{ ap } = 7fX(a\a,P + axp,a
~

aap,x) 16.13

Next, subtract the Christoffel symbols of the undeformed reference surface and multiply

by the covariant components of the metric tensor of deformed reference surface to

eliminate the contravariant components from the right side of the equation

"7* ({ ap }
~ { ap } ) = 2^5a'^

+^ ~

"a/?'*)
~

"t6 { fi } 16'14
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Next, substitute 16.9 into the above equation and recall the formula for covariant

differentiation of the covariant components of a second order tensor

<*a/?|7
=

<*ap,y
~

| | aXp
~

| g \aaX 16-15

and

7*( \ap\
~

\Jp\j
= ^H/? + aWW

-

aap\6) + (a6a\p + <*6p\ct
~

aaP\$) 16.16

Recalling that the covariant derivative of the metric tensor is zero the above equation

can be written simply as

{ 2p } = { 2p } + al6(asa\p + asp\a
-

aap]s) 16.17

[a/3, A] = [ap, A] + (aXa\p + axp\a
-

aaP]x) 16.18

Rpapa = [aa, p\p
- [ap, p\a + {^ } [aa, A]

-

j^ } [pp, A] 16.19

RpaPa = baabpp bpabap 16.20

The Codazzi equations produce two distinct equations

KQ\p
- Kp\a = 0 no sum a^p 16.21

The Gauss and Codazzi equations can be written [67] in more condensed form as

e"V* ( [a, Pp\x + {^ } [, /8A] + &a6,A j 16.22

ea/?V

V| = 0 16.23

respectively. After making the appropriate substitutions we find

eap,eXtl(Kpx]lJl + aKp(bKX
-

KKX)(apPl/l + apAp
-

aaAp))
= 0 16.24
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where

Ka\ + ea/3ex,i(aatl\px
- baflnpx + -Kap.Kpx + 16.25

^(a/ca^ + aKp\a
-

aafl^)(apP^ + apfl\p
-

aQfl\p))
= 0 16.26

aKp
=
U^a^eKKpw

+ aKp) 16.27
a

The linear equations are obtained by dropping terms involving products of the strains

and their derivatives. When this is done we find

ea/?eA/t(/c/?A|M + -aKpbKX(apP^ + apfl\p
-

aail\p))
= 0 16.28

Kax

+ eaPex(aa(llpx
-

ba(1Kpx) = 0 16.29
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17 SPHERICAL SHELLS

Next to shells of cylindrical shape, shells of spherical shape are probably the most

often analyzed in journal articles. The reasons are possibly as follows:

1. Shells of spherical shape are in very common usage as parts of structures, manufac

turing equipment, and many recreational items. They are constructed in a spherical

shape in order to exploit particular features of the geometry (e.g., the property of a

spherical shape to maximize the volume contained within the bounding surface. The

ability to react to uniform internal or external pressures loads without bending, under

some circumstances. In other cases the symmetry associated with a closed spherical

shell has some value. The sports of basketball, soccer, volleyball, tennis, etc. would

be radically different without a spherical shell.

2. Shells of nearly spherical shape frequently occur in nature.

3. The mathematics associated with spherical coordinates is well known.

4. Components which are not truly spherical are often treated as such for purposes of

simplifying the analysis. For example in [71] Hodges et al. treat a parabolic mirror

constructed of two layers of CFRP (carbon fiber reinforced plastic) with a aluminum

honeycomb sandwich as a spherical shell. In the field of biomechanics, Takamizawa

and Matsudaa ([72]) use a thick-walled spherical model to analyze the left ventricle

of the heart.

5. Since the spherical shell represents the simplest shell of nonzero Gaussian curvature,

it is often used to investigate more complicated displacements, material behaviors,

loads, boundary conditions etc.

Spherical shells find applications in the civil, mechanical, nuclear, aerospace, and

ordnance engineering fields among others. Although the military, nuclear, and aerospace

applications are usually considered the most extreme from a thermal loading standpoint,

this obviously depends on the properties from which a component is constructed and its
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intended use. From an engineering standpoint, thermal stresses need to be considered

simply because they are always present to some degree and they are either undesirable

or desirable. The nuclear or aerospace engineer's task would be gready simplified if he

had structural materials with a coefficient of thermal expansion equal to zero, whereas

an engineer working on instruments to detect thermal displacements would have his

task gready complicated with the same materials. Bimetallic shallow spherical shells are

sometimes used as an elastic element for thermal sensitivity in precision instruments [73].

The need for consideration of thermal effects is evident by considering some of the

temperature extremes objects can be subjected. Objects in orbit around the Earth are

subjected to temperature ranges of from 45F to -325F depending on whether they

are in sunlight or shadow [71]. For radiation problems the Sun can be considered as a

blackbody radiator with an effective temperature of approximately 10,000F [74]. The

components used in pressure vessels in the nuclear energy industry can be subjected to

equilibrium temperatures approaching 1600F [75].

In addition the use of high powered lasers can produce large heat fluxes. The

phenomena of thermal ratcheting and creep and thermal shock and stability are important

design considerations. The extreme design parameters may require use of ceramics,

plastics and reinforced composites which maybe more sensitive to thermal effects than

metals.
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18 SPHERICAL SHELL EQUATIONS

The transformation between an orthonormal Cartesian coordinate system and a

spherical coordinate system is given

z = rsin^cos^ 18.1

z = r sin <j> sin 0 18.2

z3

= rcos<j) 18.3

where r is the length of a vector from the origin to an arbitrary point, (j> is a measure of

the azimuthal angle from the
z3

axis and 0 is a measure of the longitudinal angle from

the
z1

axis. The transformation holds for

0 < (j) < 7T

0 < 0 < 2tt

0 < r < oo

We can utilize the results from the previous sections by letting

(f> =
x1

,
0 =

x2

18.4

18.5

18.6

18.7

and let the distance in the direction perpendicular to the tangent plane and away from

the center of curvature be represented by x3. The matrix of covariant and contravariant

metric tensor components are

[gij] =

rz

0 0

0
(rsincf)2

0

0 0 1

18.8

and

["]

r"2

0 0

0
(rsin<^)-'"

0

0 0 1

18.9
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respectively. The scalar invariant representing the square of distance between neighboring

points is

(ds)2
=

(rd<f>)2

+ (r sin +
(dr)'

18.10

18.11

The nonzero Christoffel symbols of the second kind are

= ~r { 86 } = ~r(sin j f$ J =
-

sin <j> cos <j>

=
r~1 {^}=r_1 {i}=>t^

When the above relationships are used with the three-dimensional equations we can find

the component form of the equations describing the thermoelastic behavior of a solid in

spherical coordinates.

If we let the length of the radius vector remain constant, we describe the surface of a

sphere. We are interested in describing various quantities on the surface of the sphere and

outside and inside the surface (i.e., the normal space of the shell) for both the reference

and current configuration. The metric tensor components for the surface are

-2

0

[aap] = 0 (r sin <f>Y

18.12

ap

-2

0

0
(rsin</>)~

\W = -

,-l

0

,-1

18.13

18.14

[Kp] -

|^0

and the nonzero Christoffel symbols of the second kind for the surface are

[gg j
= -sin (j>COS<j)

, |^|=cot<

18.15

18.16

When the above relationships are used with the two-dimension equations we can find the

equations describing the thermoelastic behavior of a spherical shell.
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As an example of the process involved we develop the linearized strain measures

in terms of the physical components of a spherical shell. The covariant derivatives on

the surface are given by

U^
= U+t+ 18.17

U*\e = u<t>,9 ~ Ug cot <f>

Ug\g Ugfi + U4 sin <j> cos (j)

Ug\4> = Uoj
- Ug cot <f>

and

Uf. = Ut 18.18
\<t> ,v

Ufe
=
U*g-Ue

sin </> cos <f>

C/J
= Uee +

U*
cot <j>

U\4
= U% +

U+
cot 4>

Recall that the functions involved with the linearized strain measures were given by

fop = Ua\P
-

U3baP 18.19

fo*p = Ufa
-

U3bap 18.20

fop = U3tP + Uabap 18.21

and the covariant derivative of foa by

foa\p = U3]ap + UXbx[p + bxUxlP 18.22

From equation 18.14 we find

bxalp
= 0 18.23
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Recall that

U3[aP = U3taP-l '\\U3X 18.24

or

-{>>

foa\p = U3,aP
- |o

X
|t/3)A + bxUx]p 18.25

The functions associated with the strain measures are

4>M = U<t>,<t> + rU* 18-26

= U$ft
- Ug cot <f>

Ugtg + U,j, sin (f> cos <f> + U3r
sin2

<^>

= #0,^
~ Ug cot <

A = < + \U3 18.27
<t>

iv t>

^ = [/^ / sin <^> cos <^>

fo* = U^ + Ul+ 18.28

foe = U3g + -Ug
r

fo<j,\<j> = U3,4>4> ~

-U4>,4> I8-29

4>z*\e = u3,4>e
~ U*,<t> cot <t>

~

-U<l>,<> + ~uo cot $

U3igg + U3j<j, sin 4>cos<f> Ugtg U$ sin <f> cos 0

&tf|* = UW4> ~

UW cot ^ ~

rUe>+

+rUe 0t ^
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Recall that the linearized membrane strains were given by

aaP
=

-(fop + <f>pa)
18-30

or in terms of the surface coordinates

aH
= U+j + rU3

18.31

agg Ug$ + U$ sin <f> cos <f> + U3r sin <f> 18.32

a+g = \(U*,e + U6t4> - 2Ug cot <j>) 18.33

The curvature strains were given by

<*/? = Mfia + fop
-

<t>ppbPa
-

<f>pabp) 18.34

K-aP
=
-~(foa\p+fop\a+<f>ppba+<i>pabp) 18.35

1 2

*ap
=
j(foa\p+fop\a

~

~aap)
18-36

or in terms of the surface coordinates

k^
=
-(U3M~U^+U3)

18.37

He = -\(U3Ae
-

U3,+ cot
<f>Uw+- Ue cot </>+ 18.38

U3,e<f, - U3,g cot
<j>-- Ugj)

22 2 1

KM
=
-(U3tgg + U3j sin < cos <f> Ugfi

- -

U4 sin <cos <j> -
- U3

sinz

<f>) 18.39
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The physical components of the displacement vector are given by

Uj, = Uwr 18.40

Ug = U/g\r sin (f> 18.41

u*
=

uwl
18.42

Ue
= U{0)^- 18.43

The relationship between the partial derivatives is given by

V*A =

rUW,4> I8-44

u*,e = rUWig 18.45

Ugf = U(g)tgr sin <f> 18.46

#0,^ - U{9),<t>r sin ^ + ^fy)r cos ^ 18-47

The physical components of a second order tensor are given by

e(<f><t>)
= r~2e</>4> 18.48

e(00)
= (r-sin<?!>)~2e^ 18.49

e<i9^>
=

r_2(sin<^)_1e^ 18.50

The physical components of the strain-displacement relationships have the familiar form

am
= \(U{m + Us) 18.51

<00)
= "((sin fo)~lU{e)f + U{4>) cot <j> + U3) 18.52

1
x-l

a^e)
= ^-((sin <f>) Uw>g + Up)j

-

U^e) cot <f>) 18.53

*{M)
=
-r~l(U3M-2U{4>u+U3) 18.54

^0>
=

-2r2sin<^(^3^
~

U*>+ cot <l,-2U{4>),6+2U{e) cos 4>+

U3,e<j> - ^3,0 cot <f>-2 U(g)j(j> sin <f>)

18.55
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Ki(>a\ =
"(00) 2 2/(^3,00 + U3i<f,sin4>cos (j>-2U(g}tgsin<j)

2U((j)\j sin 4>cos<j) U3
sin2

</>)

18.56
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19 REVIEW OF THE LITERATURE

In preparation for this work a reasonably comprehensive review of the literature

associated with the general subject of thermal stresses in shells was done [76]. Additional

information was collected regarding the general subjects of thermoelasticity and shell

theory.

Some of the names which appeared frequendy in connection with the general subject

of thermoelasticity are: V. K. Agarwal, M. Anwar, Z. Bern, B. A. Boley, D. E. Carlson,

P. Chadwick, B. D. Coleman, W. A. Day, R. Dhaliwal, H. Ghoneim, A. E. Green, R. B.

Hetnarski, D. Iesan, J. Ignaczak, K. E. Lindsay, H. W. Lord, I. Miiller, P. M. Naghdi,

W. Nowacki, J. L. Nowinski, Y. H. Pao, H. Parkus, Y. Schulman, L. T. C. Seet, H.

Sherief, Y. Takeuti, J. H. Weiner.

Some of the names which appeared frequendy in connection with the general subject

of shells are: S. A. Ambartsumian, E. L. Axelrad, Y. Basar, B. Budiansky, W. Z. Chien,

F. A. Emmerling, W. Flugge, A. E. Green, A.L. Gol'denveizer, W. T. Koiter, W. B.

Kratzig, H. Kraus, S. A. Lukasiewicz, A. I. Lur'e, K. Marguerre, P. M. Naghdi, F. I.

Niordson, R. P. Nordgen, V. Novozhilov, W. Pierraszkiewicz, E. Reissner, J. L. Sanders

Jr., J. L. Synge, G. Wempner, W. Zerna.

There are a large variety of problems covered under the general category of thermal

stresses in spherical shells. When spherical shells are used as containment vessels for

fluids, an opening in the shell structure is required. These openings (discontinuities) can

result in stress concentrations. The analysis of spherical shells with discontinuities is

given in [77-80].

When a shell is described as thick, the effect of transverse shear and/or changes

in the thickness of the shell have to be considered. Doxsee [81] points out that when

laminated composites are heated they expand more in the direction normal to the plane

of the laminate than in the plane of the laminate. These materials are often used in shell
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structures and use of a thin shell theory to predict their behavior would prove inadequate.

Thermal stresses in thick-walled spherical shells are considered in [43,82-95] while

spherical shells made specifically of composite materials are addressed in [71,75,96-99].

The behavior of spherical shells composed of thermoplastic materials is addressed in

[86,87,92,93,97,100-105]. The fully coupled equations of thermoelasticity allow for

the possibility of thermally induced vibrations which are treated in [106,107]. If the

loads are time dependant then the problem is transient in nature. Transient problems are

considered in [85,88,105,108-111].

The subject of creep in spherical shells is considered in [82,112].

If the thermal loading occurs abrupdy the phenomena of thermal shock must be

considered. Problems involving thermal shock are given in [100,113-116].

Thermal ratcheting, the phenomenon of net strain accumulation due to plastic strain

ing under cyclic thermal loading, an important factor in the design of nuclear reactor

pressure vessels, is considered in [117]. The subject of stability of spherical shells is

considered in [23,73,101,102,112,118-126].

If the thermal-mechanical loads are axisymmetric and/or the shell can be considered

shallow the equations assume a much simpler form. Either or both of these assumptions is

often made when studying nonlinear material behavior in spherical shells. Spherical shells

subjected to axisymmetric loads are addressed in [85,114,118,123,127-133]. Problems

involving shallow spherical shells are given in [23,73,75,77-79,99,101,102,112] and

[121,124,127,132,134-140].
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20 CONCLUSIONS

The intent of this work was to: (1) Discuss the basic elements of three-dimensional

continuum mechanics and develop the basic equations which describe the behavior of a

linear thermoelastic solid. (2) Describe the process of reduction of the three-dimensional

formulation to the two-dimensional equations of a general shell theory. (3) Show how

the two-dimensional general shell equations reduce to those describing the behavior of a

spherical shell. The equations were, in most cases, presented in both direct and component

form. The use of direct notation provides a succinct way of describing the kinematic,

kinetic, and constitutive relationships and the associated boundary and initial conditions

independent of any particular coordinate system.

However, from an engineering viewpoint, we eventually need a solution to the

equations. The need for a solution requires that the equations be expressed in component

form. In addition, we want numbers which represent the magnitudes of the variables

of interest. For example, given some thermo-mechanical loadings and a set of material

properties, we might want to know the magnitudes of the stresses and displacements in

the body of interest. These numbers have to have units associated with them, which relate

to our three-dimensional locally Cartesian world. In other words we need the solution

variables expressed in terms of physical components.

The shell equations are by their vary nature approximations to the three-dimensional

equations. The assumptions made during equation formulation determine the range of

applicability to various problems. In many cases the assumptions are not unambiguous

unless the equations are written out in component form. In component form the terms

which are disregarded or some how altered can be described explicitly. The descent from

expressing the equations in direct notation to expressing them in component form in terms

of general curvilinear coordinates is, in my opinion, the most logical. The equations

maintain their invariant quality and are still reasonably compact. The introduction of
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the appropriate representation of the metric tensors allows the general equations to be

applied to a specific geometry. The descent to Cartesian tensors is easily accomplished.

In addition, the majority of the current literature on shell theory uses a combination of

direct and general tensor component notation, in a variety of different forms. There is

not a standard mathematical representation for the numerous variables and the various

mathematical operations involved in problem formulation. There is even variation from

paper to paper for the same author.

The goal in this work was to be consistent in terminology and notation. While this,

when expressed in words, seems a rather simple and straightforward task, in practice is

reasonably difficult. The intent here, is not to make excuses for the inadequacies of this

work, but alert those who may attempt to follow a similar path to the obstacles they will

have to deal with. One of the major limitations is the inability of various publishing

"type"

software to easily produce the variety of symbols required. For example, the

software used to produce this paper was incapable of producing bold lowercase Greek

symbols and various accented symbols.

The effort to deal with the subjects covered in this paper was at the expense

of not discussing a number of equally important, related topics. These topics when

covered in some reasonable depth could constitute papers by themselves. Some examples

are the subjects of curvature measures, constitutive relationships, boundary conditions,

variational methods, uniqueness theorems, finite element formulations, static-geoemetric

analogies, error estimation, non-dimensional formulations, and solution methods for

various classes of shell problems.
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Appendix A

A. Metric Tensor

The metric tensor components of a general curvilinear system are related to various

combinations of the inner products of the base vectors and their reciprocals. The covariant

components are given by

Si'Sj=9ij A.A.I

The contravariant components are given by

g'

g3
= 9ij A.A.2

while the mixed components are simply the components of the Kronecker delta

Si
S3
= <7.J= % A.A.3

due to the definition of a reciprocal basis. The tensor is symmetric due to the symmetry of

the inner product The metric tensor is a unit tensor for the space and can be written as

1 =
gig'

=

9ijgigj
= 9ijg'g3 A.A.4

The relationship between the base vectors and the metric tensor components and a

coordinate transformation can be demonstrated as follows. Let a vector r when referred

to an orthonormal coordinate system with coordinates
yl

and base vectors b,- be given by

r = y'b, A.A.5

where by definition of an orthonormal coordinate system

y%

= yi A.A.6

b, =
b'

b/ bj = 8ij
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Then

dr = ^-dy^dy'bi A.A.7
oy*

Let the relationship between the coordinates in this system with those in a general

curvilinear system with coordinates
x1

be given by

yi

=

yi(x1ix2,...,xn) A.A.8

x'

=

xV,y2,---,J/n) A.A.9

We find

dv'

dy'
=
^dx3 A.A.10y
dxJ

Substituting the above equation into A.A.7 we find

dr = ^dy^dy'bi = (^Cb^dx3 A.A.11
dy' y y ydxJ ,J

If the vector r is given as a function of the coordinates in the general curvilinear system

then dr is given by

dr
dr = = dx'gi A.A. 12

dx' 6

From equations A.A. 11 and A.A. 12 we find

dr dV%u A A 1-2

S3
=

dxl
=
dxlh>

AA-13

Substituting the above into A.A.I we find

dr dr
dykdyk

9ij
=

SiSj
=

^7^7
A-A'14

The contravariant components are given by

a i j
dr dr

dxkdxk

a a k
*"

=
*

=

d?-a?
=

WW
A'15
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The definition of the metric tensor components allows us to define the relationship

between the covariant, contravariant, and mixed components of other tensors. For

example, let a vector v be defined by

v = v'gi
Vig*

A.A.16

Taking the inner product of the above with the covariant base vector and then the

contravariant base vector we find

vi = v3gij A.A.17

v{

= Vjgi3 A.A.18

Let a tensor T be defined by

T = T'3gigj =
T'gig3

= Tijg'g3 A.A.19

we find

Tij = Tkgik = Tklgikgjl A.A.20

Tij
=
T}jgik

=
TkigikgJi

AA2l

Taking the partial derivative of A.A. 13 we find

gij
= Sj,i A.A.22

B. Christoffel Symbols

The Christoffel symbols are related to the inner product of the base vectors with

their partial derivatives with respect to the coordinates. The Christoffel symbol of the

first kind is given by

[hjk] = g,; -jjjfc
= g,

-

gjjk A.B.23
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Recall that

SiJ
= Sj,i A.B.24

so that

[i,jk] = [i,kj] A.B.25

The Christoffel symbols can be expressed in terms of various combinations of partial

derivatives of the metric tensor. Recall that

Si Sj
=

gij A.B.26

If we take the partial derivative of the above equation we find

Sj Si,k + Si Sj,k = 9ij,k A.B.27

After permuting the indices in the above equation we find

Sj Sk,i + Sk Sj,i = 9kj,i A.B.28

Sk gij + gi Sk,j
=

9ik,j A.B.29

Making use of A.B.24 in the above three equations they can be rewritten as

gi gi,Jb + gi Sj,k = 9ij,k A.B.30

gj gi.Jfc + g* g>,i = 9kj,i A.B.31

gifc Sj,i + Si Sj,k = 9ik,j A.B.32

Adding A.B.30 and A.B.32 we find

2gi Sj,k
=

9ij,k+9ikj
~

(gi gi.it + gfc gij) A.B.33
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and after substitution of A.B.31 and rearranging we find

Si gfcj
=

^(9ij,k+9ik,j

-

9kj,i)
A.B.34

or after making use of A.B.23 and A.B.25 we find the desired result

[*'.#] = -^(9ij,k+9ik,j
~

9kj,i) A.B.35

The Christoffel symbols of the second kind are given by

jkj=s'-Sj,k
A.B.36

The relationship between the Christoffel symbols of the first and second kind are

;}=/[<*].,
, ,..,

A.B.37
jk

The remaining combinations of the inner products of the base vectors with their partial

derivatives can be derived by making use of the relationship between the inner product

of the base vectors with their reciprocals or

gi
S3
= % A.B.38

Taking the partial derivative of the above equation we find

S3

Si,k+Si gffc
= 0 A.B.39

or after substitution of the Christoffel symbols and rearranging

wi{a} A-R4

If we multiply the above equation by the covariant components of the metric tensor we

have

r-i=-*{i}
a-b-41

In summary we have in terms of the base vectors

Si-Sj,k=[iJk] A.B.42
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U*J
g Sj,k = <

, r
A.B.43

SiSJk
=
-< , > A.B.44

gr-s!, -<r\ :;
;> a.b.45

or in terms of the metric tensor

[*>#] = ~j(3ij,k+9ik,j
-

9kj,i) A.B.46

{ jk }
=

29^gi3'k+9lkJ

~

9k3',J ABA1

where

[k]=9il[hJk] A.B.48

{?>} = (ln^' A-B-49

The Christoffel symbols of the first and second kind are often [67,68,1] written as

Tijk and T^ respectively.

The partial derivatives of the base vectors are given by

gi,*=[*',i%'

A.B.50

Sj,k = < ], )Si A.B.51

<k = -{Jk}^ A.B.52

132



4=-f{L}* A-B-53

C. Covariant Derivative

Let the representation of a vector in a general curvilinear coordinate system, in terms

of its contravariant components be given by

u = u'gi A.C.54

If we take the partial derivative of the vector with respect to the coordinates of the

general curvilinear system we find

dn
_

du'

i

dg1

dx3 dx3
'

dxi

or if we use a comma to denote partial differentiation then

u
j
= u'jgi + u'gij A.C.56

If we assume that the partial derivative of the vector can be expressed as

uj
= Tijjygi A.C.57

then we can equate the above two equations, and after taking the inner product of the

result with the contravariant base vectors we find

||fc
=

"!jfc + ">(g,'-gi,t) A.C.58

or in terms of the Christoffel symbols of the second kind

ui*
=

M!* +
u,'{jb}

AQ59

If the vector is expressed in terms of its covariant components then

"ip
= "*

~

u'{ #}
A.C.60
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The quantities
u'^

and
u^y are referred to as the mixed and covariant components of

the covariant derivative of the vector u. Covariant differentiation raises the rank of

the tensor by one and is also a tensor and can therefore be differentiated covariantly

again. The covariant derivative of higher order tensors can be found in a similar manner.

For example, if the representation of a second order tensor in the general curvilinear

coordinate system is given by

T = Ti3g,gj A.C.61

then the partial derivative of the tensor is

T,k = Titgigj+TVgijgj+TVgigjt A.C.62

If we assume

T t = T^gigj A.C.63

then after equating the above two equations and taking the inner product of the result with

the contravariant base vectors (twice) and using the Christoffel symbols of the second

kind we find

ijJ = +

r*{jt}
+ rto{n(T a.c.64

Formulas for the covariant derivative of the mixed and covariant components of second

order tensors are given below

%
=

^-^{;}+7V"U}
AC65

Tan
= t<>*

- T>- {# }
"

T" { 7k } AC66

The second covariant derivative of a tensor can be found by following the above forms.

For example, the second covariant derivative of the covariant components of the vector

u, which is a third order tensor, is given by

Ui\\jk
=

(ui\\j),k-^i\\m^jk j-Um\\j{2 } A-C67
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The formulas for covariant differentiation of sums and products of tensors can be

shown to be the same as for ordinary differentiation. The metric tensor and the Kronecker

deltas behave as constants during covariant differentiation.

D. Intrinsic Derivative

Given a vector u in a general curvilinear coordinate system which is a function of

the coordinates x*, where

x'=
*'(*) , h<t<t2 A.D.68

and t is a scalar parameter, then

dn du dx*

,

dx'

Tt
=

oTir
=

u\\'irSj AD-69

or after substituting for the covariant derivative

du
j
dxi fdu3dxi

k(j\dxi\

Tt
=

"for*
= U^+u

{}*> AD-70

which reduces to

du fdu3
k(j)dxi\

8u3

Tt
- br1- {*,}*>

=

it* A-D-71

where

8u

Tt

3 du3
k( j

Wij

~~~dt+U

\ki)~dt
A.D.72

is referred to as the intrinsic derivative of the contravariant components of the vector

u. Formulas for intrinsic differentiation follow from the results presented here and in

the previous section.

The formulas for intrinsic differentiation of sums and products of tensors can be

shown to be the same as for ordinary differentiation. The metric tensor and the Kronecker

deltas behave as constants during intrinsic differentiation.
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E. Riemann-Christoffel Tensor

The Riemann-Christoffel tensor is a tensor of rank 4, consisting of various combina

tions of partial derivatives of the Christoffel symbols. It sometimes is referred to as the

curvature tensor or the acceleration tensor. The following definitions and properties are

from [2]. The mixed Riemann-Christoffel tensor or the Riemann-Christoffel symbol of

the second kind written in terms of determinants is :

a d { i \ { i \
1 mk J 1 ml J

R)kl =

or when written out as

3F 3? \mkj \mlj A.E.73

v =

{*}, -U},,+{-}{^}-{-}{3} a-ew

Similarly, the covariant Riemann-Christoffel tensor or the Riemann-Christoffel sym

bol of the first kind is

Rijki

d d
dxk dx1

[jk, i] [jl, i]
+ {5} {?>}

[ik, m] [il, m]

or

A.E.75

A.E.76Rijkl = [jl, i],k
~ Uk, *],/ + { ffc J

I*''ml
~

{ ,7 j
tifc' m^

The relationship between the two tensors is:

Rijkl = giaRjki A.E.77

Rijkl=9iaRajkl A.E.78

The Riemann-Christoffel tensor has the following properties:

1. The tensor is skew-symmetric with respect to the first two and last two indices or

Rjiki = -Rijkl A.E.79

Rijik = -Rijkl A.E.80
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2. The tensor is symmetric with respect to groups of the first two and last two indices or

Rkhj = Rijik A.E.81

Rijik + Rikij + Riijk = 0 A.E.82

Rjlk + Riij + R\jk = 0 A.E.83

4. If three or more of the indices are equal, then

Rijkl = 0 A.E.84

Due to the above properties, the number of distinct nonzero components, N, is given by

n2

N =
(n2

-

1) A.E.85
12v '

where n is the dimension of the space. If R*-kl = 0 then the order of covariant

differentiation in immaterial.

In [16,2] a number of other associated tensors are developed. The Ricci tensor is

given by

RiJ = Rijr = {Ir},j-{lJ}!r + {mJ}{^-{^r}{TJ} A.E.86

which can be shown to be symmetric by use of

{;r} = (lnV?),i A.E.87

which implies that the number of distinct components, N, is given by

N = |(n + 1) A.E.88
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where n is the dimension of the space. For a four dimensional space, with the Ricci

tensor set equal to zero, one obtains ten partial differential equations which were used

by Einstein in his general theory of relativity [2].

From the Bianchi identity which is

R%jkl\\m + R)lm\\k + Rtjmk\\l = A.E.89

which can be written as

Rijkl\\m + ^ii/m||fc + Rijmk\\l = A.E.90

which after using property 1 we find

Rijkl\\m
~ Rijml\\k

~ Rjimk\\l = A.E.91

Next multiply by
gdg3k

and find

9ikRl,ki\\m
~

9jkR'jml\\k
-

^RLm = 0 A.E.92

which after substituting for Ricci's tensor we have

9jkRjk\\m
~

9jkRjm\\k
~

9ilRim\\i
= 0 A.E.93

and simplifying

Rkk\\m-2Rkn\\k=0 A-E'94

or alternatively as

(Rkm
~ \skmRi)\\k = 0 A.E.95

where the quantity in
parentheses is known as Einstein's tensor [2], and denoted by

Gi = Rkm
~ l^i A.E.96

The quantity R\ in called the scalar curvature [16].
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