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Abstract

Dynamics and control of a single-line maneuverable kite

Christopher Joseph Donnelly

Supervising Professor: Dr. Mario W. Gomes

Through simulation, an automated control system for a single-line maneuverable kite
is developed for application in kite wind energy production. The kite used in this
study is a small, tension-controlled, single-line kite, commonly known as a fighter
kite. These kites have a simple design, but flying them requires complex control of
line tension and visual input. At low tether tension, the kite is unstable; spinning
about the tether. Increasing tension in the tether causes the kite to deform and fly
in the direction it was facing. Experienced fliers can produce intricate maneuvers
and often participate in competitions with other fliers. A simplified physical and
behavioral numeric simulation of the kite’s dynamics was created and shown to closely
approximate the actual kite’s flight characteristics. This model was used to develop
successful control algorithms for autonomous flight. Information of the kite’s state and
orientation used by the controller was gradually reduced to that which is physically
measurable from the ground. An experimental test rig was designed and constructed
for future testing in real wind conditions.
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Nomenclature

ı̂ Inertial coordinate frame, X-axis
̂ Inertial coordinate frame, Y-axis

k̂ Inertial coordinate frame, Z-axis
êθ θ direction, local coordinate frame
êφ φ direction, local coordinate frame
êr Tether direction, local coordinate frame
[T] Transformation matrix between inertial and local frames

k̂s Kite spar direction, orientation coordinate frame

k̂f Kite facing direction, orientation coordinate frame

k̂n Kite normal direction, orientation coordinate frame
[K] Transformation matrix between local and orientation frames
~ω Angular velocity vector

~̇ω Angular acceleration vector
~Vk Kite velocity
AR Aspect ratio
A Kite area
m Mass of kite
Pcrit l Spinning mode transition tension
Pcrit h Tracking mode transition tension
r Tether length
θ Kite position zenith angle
φ Kite position azimuth angle
ψ Rotation angle about tether
β Bridle angle
γ Roll angle
~W Wind velocity
~Wapp Apparent wind velocity
α Angle of attack
~L Lift force

l̂ Lift direction
~D Drag force
~P Tether tension
CD 3-D Drag coefficient
CL 3-D Lift coefficient
Cd 2-D Drag coefficient
Cl 2-D Lift coefficient
ρ Air density
g Gravity



2

Chapter 1

Background Information

1.1 Introduction

The main attraction of kite wind power is that it can be used to harness power from

higher altitudes (above 200 m) than conventional wind turbines on towers. Higher

altitudes tend to have faster, more consistent winds, and thus more available energy.

High-altitude winds around the world contain approximately 100 times the energy

consumption of the entire human population [2]. Wind towers can not reach these

winds because the size and strength of the required tower would not be economically

or in some cases even physically possible. As seen in Fig. 1.1, the aerodynamic

forces acting on the turbine and tower produces a large bending moment, My, which

is approximately equal to the force from the oncoming wind times the tower height.

Conversely, the ground station of a kite-based system only has to withstand a changing

tension vector.

Harnessing this energy is the challenge. Kite power systems use the lift and/or

drag forces from wind to mechanically or electrically transmit energy from the kite to

the ground. Mechanically coupled systems are controlled to alternate between a high

tension power phase and low tension recovery phase. On the power phase, the tension

is used to pull line off a spool and turn a generator. During the recovery phase, a motor

winds tether back onto the spool. When properly controlled, this cycle produces a
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~Fwind

mg

Fwind

mg

Tension
Rz

Rx My

Mwind

Fig. 1.1: Simple loading comparison of kite systems and tower systems. The bending moment grows
with tower height and wind speed.

net positive power. Alternatively, electrical transmission systems use an array of

small turbines on the kite to generate electricity, which is then transmitted along a

conductive tether to the ground. Figure 1.2 (a) and (b) show general schematics of

mechanical and electrical transmission systems, respectively. There are advantages

to both methods in terms of control, efficiency, and continual production. The work

described in this thesis is the beginning of a novel control method for a mechanical

transmission system.

The tension control steering method of the kite studied in this work has advan-

tages and disadvantages in comparison to other kite controls. Many kites used in

power systems are re-purposed kite-boarding kites, which are controlled by multi-

ple tethers. Kite power systems are being designed to fly with hundreds of meters

of release tether. The tether can contribute a significant amount of drag as it flies

through the air, slowing the kite and decreasing power extraction. Single-line kites

produce significantly less drag than multiple line kites, increasing power production
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Motor/Generator

Reel

Tether
release and
recovery
cycle
produces
net power.

Turbines on
kite generate
electricity,
which is
conducted to
the ground by
the tether.

(a) (b)

Fig. 1.2: Basic schematics of (a) mechanically coupled kite “pumping” system and (b) electrically
coupled systems. For (a) power is generated on the ground and tether length oscillates with each
cycle. For (b) power is generated on the kite and conducted along the tether.

potential. There are other systems that use single-line kites for power production,

but their control systems rely on control surfaces and/or adjusting bridles to steer

the kite. A combination of GPS, rate gyros, and accelerometers and/or other on-kite

sensors are generally used to provide attitude and position data, wind speed, and any

other information the controller needs to determine the kite’s current behavior and

how to fly the kite. The single-line tension control method described in this thesis

could offer a simpler solution. A fighter kite’s only control method is changing tether

tension. By controlling tension and using it flex the kite and control its aerodynamic

properties, on-kite measurement and actuation systems could be greatly reduced, if

not eliminated. This makes the kite nearly expendable, easier to fabricate, transport,

and replace. These benefits come with a cost. By removing on-kite instrumenta-

tion, all information on the kite’s orientation and flight path must be measured or

approximated from knowledge of the tension and the direction of the tether. These

approximations reduce overall knowledge of position and control of the kite. Long
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tether lengths and tether sag introduce more error in ground based position estima-

tion, and may reduce responsiveness to tension control adjustments. There are no

existing high lift to drag ratio designs for single-line tension control kites, providing

another hurdle for exploration of this actuation method. Further work will determine

if the benefits make up for these losses.

1.2 Motivation

Despite their long history and popularity, there has been no academic study of fighter

kite dynamics. The work described in this thesis has improved our understanding of

fighter kite dynamics and the extent of control possible without on-kite actuation or

measurement systems for single-line kites. The knowledge gained provides a base for

future research in single-line, mode-switching kite design and power production. The

anticipated reduction in cost, tether drag, and complexity could offer many advan-

tages. It could lead to a cheap, portable power system for use in remote locations,

developing countries, or disaster relief situations, as well as more permanent genera-

tion sites.

1.3 Literature Review

Development of renewable energies is needed to offset the societal and environmen-

tal costs associated with acquiring and burning fossil fuels. High-altitude kite wind

power is one of the more promising alternative energy sources currently available.

Interest in kite wind power systems was sparked by a 1980 publication in the Jour-

nal of Energy. Miles Loyd analyzed the potential power extraction for a kite flown

across the wind to generate high apparent velocity. Loyd conducted theoretical and

numerical analyses, showing that a tethered C-5A airframe could generate as much

as 6.7MW, exceeding the conventional wind tower turbines of the time. Crosswind
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flight is perpendicular to the oncoming wind, and can result in apparent speeds sev-

eral times that of the oncoming wind [16]. This greatly increases the aerodynamic

forces that can be harnessed to generate electricity or do useful work on a system.

Loyd’s vector analysis of crosswind flight is shown in Fig. 1.3.

Fig. 1.3: Vector analysis of crosswind kite flight, showing the large increase in the apparent wind,
~VA, compared to the ambient wind speed, ~VW . Image taken from [16].

At low altitude, wind is slowed by friction with the earth and is also highly variable.

Several hundred meters above the earth, shear effects are minimal and the wind’s

power density and consistency increase. Wind towers are limited to the slower, more

variable winds at lower altitude because the physical forces on the tower are too great

to build higher. Fagiano, Milanese, and Piga analyzed the capacity factor (portion of

rated power that a system is able to produce at a specific site given a set of conditions)

of kite systems and tower systems for several sites across Europe. They found that

the more consistent wind speed at the higher operating range of kite systems nearly

doubled capacity factor at every location [9]. This means that a 1MW kite system
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would produce as much energy over a year as a 2MW wind tower. Higher capacity

factors make it feasible to implement kite wind energy systems at a wide range of

locations.

Unlike wind towers, which are only economical in limited areas, high-altitude

wind is accessible over large geographical areas. Archer and Caldeira investigated

the potential wind resource between altitudes of 500 m and 12,000 m above ground,

showing that near 500 m, energy densities greater than 0.5 kW/m2 are available for

95% of the year in wide areas of northern Africa, North America, and several offshore

sites around the world [2]. The speed increase of wind with altitude is a significant

factor in energy production. The power available in a fluid scales by its speed cubed,

as given in Eqn. 1.1, where As is the swept area of the system.

Pfluid =
1

2
ρfluidAsV

3
fluid (1.1)

At the proper latitudes, kites could encounter the high-speed, consistent wind of the

jet streams, reaching power densities of 20 kW/m2 [18]. Kites can harness wind

energy and transmit it to the ground electrically or mechanically. Regardless of the

conversion and transmission method, crosswind flight paths are generally used to

generate high speeds and increase power output.

The simplest power extraction method is to use the tether tension to pull an

object. Fagiano et al. conducted simulation and experimental testing to propel and

steer a small ship [10]. Using manual flight control, they were able to generate a boat

speed of 1.2m/s from a 2m/s wind, with only a 10m2 kite. The experimental flight

system is shown in Fig. 1.4. Precise trajectory control proved to be a large challenge

in variable wind conditions. Williams et al. have also investigated kite towing systems

for tracked (fixed trajectory) and free moving vehicles [22]. Path optimization was

calculated for both power production and path tracking.

Electrically coupled systems incorporate turbines onto the tethered aircraft to
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Fig. 1.4: Experimental flight tests of a manually operated kite system used for ship steering and
propulsion. Kite is controlled by adjusting relative lengths of the two tethers. Image taken from
[10].

generate power. The turbines are often powered and used to generate lift and fly the

structure to the desired height and initiate its flight path for power production. The

turbines are then used to generate electricity, which is conducted to the ground by a

tether. Roberts et al. analyzed a four turbine flying electric generator that acts as a

simple rotor-craft to gain altitude, and then can maintain elevation by adjusting the

pitch and speed of the turbines [18]. The main advantage of electric systems is their

ability for controlled flight for takeoff, landing, and in low or zero wind conditions.

When producing electricity they generate a near constant positive power, as opposed

to the cyclic production/consumption phases of the mechanical systems discussed

below. A constant signal is advantageous for grid connection or storage. Their main

drawbacks are conduction losses through the tether, and speed reduction of the kite

due to the increased drag from the turbines. A slower kite does not generate as large
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aerodynamic forces to do useful work.

Mechanical systems use the tether tension to generate electricity at the kite’s

ground station. The tether is wound around a drum or spool on the ground, which

is coupled to a generator. In the high tension power phase, tether is released and

electricity is generated as the reel unwinds. A lower tension phase is then used to

recover the tether length, using less energy than was generated in the tension power

phase. This cycle repeats in a periodic “pumping” motion as long as there is sufficient

wind. The scope of this thesis applies to the mechanical pumping systems.

Modeling of kite systems poses some very difficult problems. Most kites are not

rigid, resulting in coupled solutions of the aerodynamics and the mechanics of kite

deflection. The tether model can vary in complexity from a mass-less, drag-less,

straight rod, to multiple point masses connected by flexible links. Motion of the kite

and tether can build to very complex dynamics problems quite rapidly. The wind

velocity model can also range from simple uniform flow to an elevation profile with

random fluctuations, direction change, and gusts. Given these complexities, some

type of simplification is often needed to be able to produce a solution and understand

the kite’s flight characteristics.

Williams et al. created a very complete dynamic model of kite flight including

tether sag and elasticity which they used to determine optimal trajectories for a

vehicle towing system. Analysis of the system moving in a track and moving freely

with a desired direction has shown interesting results. The nature of the optimal paths

were highly dependent on wind speed, shifting from horizontal to vertical figure eights

under faster winds [22]. They were also able to show that there is an optimal tether

length, beyond which drag on the tether reduces gains from higher altitude, or longer

high tension passes.

The tether system has a significant effect on the kite’s performance. One of the
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interesting conclusions from Argatov and Silvennoinen was the following:

PM
(n)

PM
(1)

=
(1 + χ∗)

2

(1 +
√
nχ∗)2

(1.2)

where Pm
(n) is the mechanical power of a kite system with n tethers and χ is a

geometric relationship of the kite area and tether dimensions [4]. For significantly

large values of χ, using L’Hopital’s rule this becomes:

PM
(n)

PM
(1)

=
1

n
(1.3)

and shows that if fewer tethers are used, higher potential power is available. The

power loss is due to drag on hundreds of meters of tether moving through the air and

slowing down the kite. Argatov et al. showed how important the cable characteristics

are in modeling. Beginning with a simple tether model, they increased complexity

until the model accounted for the sag, drag, weight, and flexibility of the tether that

most authors assumed out of their calculations. They also note the effects of tether

sag on the angle of attack and show through numerical analysis that their model is

accurate to within 6% [3]. Tether sag effectively decreases the angle of attack for

systems with a fixed angle to their tether, in some cases by up to five degrees.

Modeling the kite is necessary to develop a control system that will keep the

kite on an optimal flight path and produce the most energy. Control of kites re-

quires some knowledge of the kite’s current condition and the ability to change that

condition. Sanchez and Christoforou employed two-dimensional models to develop

station-keeping angular elevation controls for a kite. Canale et al. and Ilzhfer et al.

analyzed kite systems to develop nonlinear model predictive control (NMPC) solu-

tions. These solutions analyze the behavior of the system and predict what actuation

will be needed at the next time step based on a set of inputs and a mathematical

approximation of an optimization problem. Williams also used a nonlinear solution.
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Houska and Deihl went a different direction, defining stable loops that would not

require feedback.

Fig. 1.5: 2-D model of kite employed by Sanchez for elevation control. Image taken from [19].

Sanchez modeled a flat plate with an shifting bridle. The connection point between

the tether and kite was able to shift along a string connected to the leading and

trailing edges of the kite. Under the assumption that the tether does zero work,

he used Lagrangian equations to remove its mass and derive the below equilibrium

equations.

cos(δ − θ) + β(σ − cos δ)CN(θ) = 0 (1.4)

Γ = arctan

(
βCN(θ) cos θ − 1

βCN(θ) sin θ

)
(1.5)

β =
ρAWo

2

2mg
, σ =

xCP
r

(1.6)

Where d and r are bridle geometry terms, xCP is the location of the center of pressure

acting on the kite to produce lift, and CN is the normal force coefficient (normal to

the kite) [19]. From these equations a control law was developed that will maintain

the system at a set elevation, rejecting disturbances from change in wind speed. The
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system worked well for small changes, but was susceptible to large gusts.

Christoforou conducted similar two-dimensional, station-keeping kite modeling

and expanded his work to include experimental testing. A stable box kite was used,

and bridle angle was changed with a motor and spool system. The motor rotates

the spool and changes the relative lengths of the bridle on either side to change the

angle of attack [8]. The experimental system showed smooth performance in angular

elevation control.

There are several design solutions for mechanical pumping power kite systems.

The three main designs are the laddermill of Delft University of Technology, the

“yo-yo” or pumping systems (widely studied by various authors), and the carousel

configuration of Torino Polytechnic University, Italy. Each is controlled to follow an

optimized path based on either a predefined reference or a constantly optimized path.

The original laddermill concept was designed by Ockels and consists of a series of

kites connected to a single tether wrapped around a drum on the ground, as seen in

Fig. 1.6. The wind pulls out cable, generating electricity. At peak line extension the

kites change in some way to reduce lift and the cable is drawn back in. This essentially

produces a conveyor belt of kites, and generates a constant power [17]. Acting as a

loop, the system poses several difficulties and can not take advantage of the high

tensions associated with crosswind motion. The laddermill has since progressed to

the mechanical pumping kite system.

Most pumping kite systems use a recreational power kite or surf-kite with two

control tethers to fly optimal power paths. Each tether is wound around a drum and

the kite is steered by adjusting the relative lengths of the tethers. This provides roll

control. The kite is controlled to follow an optimal path; reeling out during the high

tension of fast crosswind motion, and reeling in during the low tension phase. The

traction system discussed in [10] for propelling ships follows the same design, but

with a different optimization scheme.
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Fig. 1.6: The original laddermill power generation system design. Image taken from [17].

The carousel configuration is actually a combination of pumping and towing power

systems purposed and studied by Canale, Fagiano, and Milanese. Similar to the yo-yo

configuration, a power kite with two control tethers is used to fly optimal loops by

adjusting the relative lengths of the tethers, expect multiple kites are used simulta-

neously. The ground station is a large “carousel” set on a circular track. The optimal

paths that the kites are controlled to fly along act in unison to rotate the entire struc-

ture. The combination of multiple pumping kites and pulling around the track will

produce a continuous net positive power [7]. A schematic is shown in Fig. 1.7. They

have conducted testing of manually controlled single kite pumping configurations and

shown good correlation with their models, generating up to 1.5kW. Several issues

stand in the way of the carousel configuration, including overall diameter (600m in

their simulation), mechanical losses from multiple generator/gear systems, and po-

tential entanglement of kites. Despite the large size, the authors expect much higher

energy production per land area used than a traditional wind farm due to the wide

spacing needed for wind turbines to avoid each others’ wind shadows.

Previously, Canale et al. had studied optimal control of single kite systems. They

used a pair of NMPC problems to control kite flight; one for the traction phase and
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Fig. 1.7: Carousel configuration kite power system schematic. The individual pumping kites are
optimized to both generate power individually and work cooperatively to rotate the entire system,
which also generates electricity. This combination produces a net positive power at all times. Image
taken from [7].

one for the passive phase. By splitting the problem in two, the authors were able

to optimize each solution for maximum total power production [6]. Due to the need

for a small sampling time, the NMPC was changed to a faster MPC, which is not as

accurate, but allows for more path corrections than an NMPC. The problem directly

optimized the flight path instead of using reference values, and was tested for various

wind disturbances. Path results are shown in Fig. 1.8.

Ilzhfer et al. computed an optimization control solution for a patented kite design.

A set of predetermined flight paths based on wind speed were created and an NMPC

solution based on instrument input acted to maintain flight on the current path or

shift according to changes in wind speed. The authors also modeled the response

to changes in wind speed and direction and found that the system would reach an

optimal loop within 40 seconds. One slight problem occurs with unsustained gusts.

Small, random, and temporary changes in wind speed can trigger excessive shifting

between different optimal paths. If the changes are only short term gusts the kite
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Fig. 1.8: Kite trajectory, showing 3-D motion of optimal power production path. Image taken from
[6].

loses efficiency from switching between multiple paths instead of running on a slightly

less optimal path [12].

Williams et al. solved the controls problem with a pair of nested loops. The outer

loop follows the optimal flight path. The inner loop is used to reduce disturbances

such as wind gusts and maintain flight in case the outer loop fails to solve or times

out. The flight path is optimized for a predetermined set of reference speeds [21].

Having preset optimal paths greatly reduces in flight computational costs, but can’t

account for all speeds and so efficiency is reduced when the wind speed is between

values of the reference set.

Houska and Deihl used their simulation to solve the optimal loops for power pro-

duction, but found them to be unstable. By searching the model’s behavior instead

for stable loops, they were able to find flight paths that do not require any feedback.

To account for wind variation they added a robustness factor in their calculations.

Their final conclusions led to 23% power loss compared to the optimal loop, but

gained stability and therefore simplified controls [11].

Lansdorp et al. continued with experimental work on kite steering mechanisms

for pumping systems. They used a highly curved power kite such as those used for

kite-surfing. Control mechanisms tested include a pair of small servomotors that
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rotated flaps on the kite for differential drag adjustments, a pair of servos that pulled

on the opposite corners of the kite to deform it and change the angle of attack, and

a track and slider assembly on the edges of the kite with a motor that changed the

tether attachment position (later replaced by a translating motor for greater travel

distance). Figure 1.9 shows the various experimental flight actuators tested. From

flight testing it was found that the track system (Fig. 1.9d) was most effective at

overall steering and orientation control. By moving the motors together or separately

it allows changes in angle of attack and left-right steering [15, 14].

(a) Drag flaps for lateral steering. (b) Servomotor to deform opposite corner
of kite for yaw control.

(c) Motor driven sliding attachment to shift
angle of attack.

(d) Motorized track for shifting angle of at-
tack.

Fig. 1.9: Kite actuation methods investigated by Lansdorp et al. Images taken from [14].

Most of these investigations use currently available kites for their analysis that

were designed for something else, and thus have superfluous functionality that leaves

room for optimization. One of the few projects working on designing the actual

kite (besides those exploring electrically coupled systems) is Tensairity. Breuer and

Luchsinger are developing an inflatable kite comprised of simple elements (cables,
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links, and gas bags) that will all be in tension [5]. This approach would be very light

weight and could be filled with helium to provide extra lift so that the kite doesn’t

have to come down during low wind conditions and deployment would be very simple.

Another large gap in the literature is simple performance studies and information for

various kite designs and configurations.

1.4 Fighter Kite Overview

Fighter kites have been used recreationally for centuries throughout the Middle East,

India, and other parts of Asia. They are very popular and come in a wide variety of

shapes and sizes designed to provide different performance characteristics. The object

of traditional fighter kite competitions is to cut the line of your opponent. The kite

tether is coated in a mixture of glue and powered glass. Highly skilled fliers maneuver

their kite so this abrasive tether will “saw” across the opponent’s kite string, cutting

it. On festival days, hundreds of kites can be in the air at a time over a city, all

involved in the competition. The kites are flown with hundreds or even thousands

feet of tether in the air. The work done in this thesis focuses on North American

style fighter kites, which are a more recent development. The main difference between

traditional and North American fighter kites is the objective of the kite competition.

North American fighter kites don’t use cutting line and are used to play line touch

games or complete obstacle/challenge maneuvers. Consequently, the kite design has

been altered to better perform these type of tasks. North American style fighter kites

tend to be smaller, more maneuverable, fly and turn faster, rarely have tails, and are

flown with shorter tether lengths [13]. Their greater maneuverability and speed are

more advantageous for power production.

Despite their differences, nearly all fighter kites are flown by switching between

two distinct modes: spinning and tracking. In the spin mode the kite is essentially

a flat disc. It is aerodynamically unstable and spins about the tether. The tracking
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mode occurs when the kite is flexed into a U-shaped profile. It becomes more stable

and flies in a straight path in the direction it was facing at the time. The transition

between modes is based on the mechanical loads on the kite. High tether tension

pulls the kite into the wind, and causes it to flex into the U-shape. Under lower

tension the kite is stiff enough to remain flat and spins. We think that the switch

between spinning and tracking modes does not occur at a single defined tension value.

Rather, we believe there is a range of tension where the kite could be in either mode.

Its behavior remains the same until it leaves this transitional zone. Spin direction

can be clockwise or counterclockwise. It depends primarily on bridle tuning, mass

distribution, and the kite’s orientation and tether tension during the transition from

tracking to spinning. Other behaviors are possible, but not considered for this study.

Through precise small reductions in tension the kite can be made to hover or “cobra”,

so called because it sways from side to side like a cobra in a snake charming act.

Bottom of kite
Tail

Front

Lower Bridle Segment

Upper Bridle
Segment

Fig. 1.10: Bridle geometry for a three point, adjustable bridle.

The kite’s performance and stability depends on weight distribution, size, shape,

and the bridle geometry. Two, three, four, and five point bridles can be used to

connect the kite to the tether. The bridle lengths can be adjusted to tune the kite’s
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flight characteristics. The kite used in this study has a three-bridle. The three-

point bridle consists of upper and lower segments. The upper segment is attached

to the flexing cross spar at points approximately two inches from the spine. The

lower segment is attached to the spine, approximately one third of the spine’s total

length from the tail. The other end of the lower segment is tied to the middle of the

upper segment with an adjustable knot. Figure 1.10 shows the attachment points

and labels the different segments. The tether is tied to an adjustable point along the

lower segment of the bridle. The tether used in this work is waxed cotton string. The

wax reduces drag in the air and helps to prevent twisting and tangling.

Top and bottom views of a typical North American fighter kite are shown in Figs.

1.11 and 1.12. The top view shows the cross-spar and spine of the kite. The cross-spar

is a bamboo splint that bows across the entire width of the kite. The stiffness of the

cross-spar determines how much force is needed to flex the kite, and effectively what

range of wind speeds the kite can be flown in. The spine is also made of bamboo, but

has a larger cross-section and is much stiffer than the cross-spar. Fighter kites can

use different types of wood, carbon fiber, and/or plastic for the spine and cross-bar

[13]. For traditional fighter kites, tissue paper is used for the sail since it is light and

relatively strong. Many kites now use thin sheets of plastic, such as Mylar for the

sail.
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Flexing
Cross-Spar

Kite Spine

Fig. 1.11: Top of kite, showing flexing crossbar and spine structure.

Reinforced
Bridle
Attachement
Points

Kite Tail

Fig. 1.12: Bottom of kite, showing bridle attachment points.
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Chapter 2

Simulation: Kite Dynamics

2.1 Kite Model Description

In order to investigate the kite’s behavior and rapidly test control algorithms, a

simplified kite model was developed. The model integrates the kite’s equations of

motion through time to simulate kite flight. The model itself is built from several

simplifying assumptions.

The kite is modeled as a point mass on the end of a variable length tether moving

in three-dimensional space. The tether is inelastic, straight, has no mass, and is

unaffected by aerodynamic drag. Only the primary tracking and spinning behaviors

of fighter kites are portrayed in the model. During the spin mode the kite is assumed

to rotate with a positive angular velocity about an axis along the tether. All segments

of the bridle remain in tension and we have neglected aerodynamic moments acting

in the plane of the kite. Since these moments are neglected, it is assumed that the

angle between the tether and the spine of the kite is fixed. The bridle angle, β is

the complement of this angle. To maintain all bridle segments in tension, the roll

angle, γ, is limited to plus or minus forty degrees. Roll angle is assumed to occur

about the spine of the kite, along the facing direction, k̂f . The small mass and inertia

of the kite makes its roll resistance insignificant, therefore we assume that the kite

instantaneously rolls to be perpendicular to the oncoming wind (or as close as possible
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given the limited range). To enforce physical limitations, the simulation produces an

error and exits if the tension becomes negative (the tether is in compression, pushing

the kite) or the zenith angle exceeds ninety degrees (the kite passes through the

ground). The geometry of the kite is chosen as a square as opposed to a diamond.

This simplifies the aerodynamic analysis by having a constant chord length.

The position of the kite is defined in spherical coordinates by tether length r,

azimuth angle φ, and zenith angle θ. Three more angles are used to fully define the

kite’s orientation: spin angle ψ, bridle angle β, and roll angle γ. From an inertial

coordinate frame, [̂ı̂k̂], a ZYZ Euler transformation is used to define the local coor-

dinate frame, [êθ êφ êr]. The local coordinate frame is the moving frame from which

kite orientation is defined. Bridle angle and roll angle are used to relate the local

system to the kite orientation frame, [k̂sk̂f k̂n]. The kite orientation frame is fixed to

the kite and its directions align with features of the kite. The facing direction, k̂f ,

runs along the spine of the kite from the tail to the front. When facing the bottom

of the kite, the spar direction, k̂s, is rotated ninety degrees counter clockwise from

the facing direction. It runs from the center of the kite to the edge of the wing. The

kite’s normal direction, k̂n, is perpendicular to the plane of the kite. It points out of

the top side of the kite, whereas the tether attaches to the bottom of the kite. Figure

2.1 details the transformation from the inertial frame to the local frame. Figure 2.2

depicts the kite, as viewed downed the spar direction, when γ = 0 to better illustrate

the bridle angle β’s relation to the local and orientation coordinate systems. If there

is no roll angle, the spar direction and êθ are aligned. Figure 2.3 shows the kite viewed

along the facing direction with β = 0 to more clearly define the roll angle γ. If there

is no bridle angle (β = 0), the facing direction and êφ are aligned.

Transformation matrices [T] and [K] are used to convert vectors between the

inertial and local, and local and orientation coordinate systems, respectively. [T] is

a full ZYZ transformation built from three discrete rotations; first by φ about the
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k̂

̂

ı̂

θ

φ

êr
êφ êθ

ψ

Fig. 2.1: Kite coordinate systems diagram, showing φ, θ, and ψ rotations to go between inertial and
local systems.

Z-axis, then by θ about an intermediate ̂′ direction (the Y’-axis). The third rotation

is the spin angle, ψ about the tether, the êr direction. The transpose of [T] is used

to convert from the position frame to the inertial frame. The bridle and roll angles

are used to define [K]. The first rotation is β about êθ, followed by γ about k̂f , the
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β

êφ

êr
k̂f

êθ, k̂s

Plane of Kite

k̂n

~Wapp

Tether

Fig. 2.2: Visualization of β angle relating facing direction to tether. Roll angle, γ, is zero.

γ

~Wapp

êθ

k̂f , êφ

k̂n êr Plane of Kite

k̂s

Tether

Fig. 2.3: Visualization of roll angle, γ, relating kite orientation to apparent wind velocity. Bridle
angle, β, is zero.

spine of the kite.
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0 cos β sin β
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 (2.2)

Mode change is based on high and low transition tensions with a hysteresis gap

between them. This gap prevents the kite from switching between spinning and

tracking due to small oscillations about a single transition point. Figure 2.4 displays

the simulation’s method for switching between the tracking and spinning modes.

Pcrit−low

Pcrit−high

Always Tracking

Always Spinning

Spinning

Tracking

Hysteresis Range

Time [s]

Track

Track

Spin Spin

Spin

Track

Tether
Tension
[N ]

Fig. 2.4: Method for applying hysteresis between spinning and tracking modes. Tension must pass
the lower bound to switch from tracking to spinning, or the upper bound to switch from spinning
to tracking.

The kite’s equations of motion are derived below with Eqns. 2.3-2.9. The ṙ and

r̈ terms arise because the tether changes length during flight. In the local coordinate

frame, the kite’s position is simply a distance r along the tether, as seen in Eqn. 2.3.

~r = rêr (2.3)
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Its derivatives follow, giving the velocity and acceleration terms in Eqns. 2.4 and 2.5.

~v = ṙêr + ~ω × rêr (2.4)

~a = r̈êr + ~ω × ṙêr + 2~̇ω × rêr + ~ω × (~ω × rêr) (2.5)

The derivatives of the finite rotations of the system define the angular velocity, ~ω,

and angular acceleration, ~̇ω of the local coordinate frame, as seen in Eqns. 2.6-2.8.

As the kite is a point mass, only rotations θ, φ, and ψ effect the equations of motion.

The unit vector ̂′ is in the ı̂− ̂ plane. This intermediate axis is defined by rotating

the inertial ̂ direction (the Y-axis) by φ degrees about the inertial k̂ direction (the

Z-axis), as seen in Fig. 2.5.

ω = φ̇k̂ + θ̇̂′ + ψ̇êr (2.6)

Equation 2.7 gives the rotations rewritten in the local frame. Unless otherwise noted,

ı̂

̂

k̂, k̂′

ı̂′

̂′

φ

φ

Fig. 2.5: Intermediate step in the ZYZ Euler coordinate transformation, identifying ̂′.

all equations are written in the local coordinate system, as it is the most convenient

for analysis.

~ω =


θ̇ sinψ − φ̇ sinψ sin θ

θ̇ cosψ + φ̇ sinψ sin θ

ψ̇ + φ̇ cos θ

 (2.7)
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~̇ω =


θ̈ sinψ − φ̈ cosψ sin θ + ˙phiθ̇ cosψ − φ̇θ̇ cosψ cos θ + φ̇ψ̇ sinψ sin θ

θ̈ sinψ + φ̈ sinψ sin θ − ˙phiθ̇ sinψ + φ̇θ̇ sinψ cos θ + φ̇ψ̇ cosψ sin θ

ψ̈ + φ̈ cos θ − θ̇φ̇ sin θ

 (2.8)

A free body diagram of the kite and forces acting on it; lift, drag, kite weight, and

tether tension is shown in Fig. 2.6. Equation 2.9 relates the kite’s acceleration to the

forces acting on it using simple Newtonian dynamics, Σ~F = m~a.

~P

~L

~D

−mgk̂

Fig. 2.6: Free body diagram of simplified kite model. Tether tension, P, is along the tether.

~L+ ~D −mgk̂ − P êr = m~a (2.9)

The directions of the drag and lift vectors are determined by the apparent wind

velocity, ~Wapp, and kite orientation. The apparent wind is the wind velocity as mea-

sured from the kite. This relative velocity is therefore the actual wind, ~W , minus

the velocity of the kite, ~Vk, as shown in Eqn. 2.10. The drag vector is parallel to

the apparent wind. The lift direction is more complex. Lift is perpendicular to ~Wapp

and the cross-spar of the kite. Based on the model assumption that the kite rolls
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instantaneously to eliminate the roll moment, the spar of the kite (k̂s) is perpendic-

ular to the apparent wind. So the lift vector is then perpendicular to k̂s and ~Wapp.

The equations for drag and lift, Eqns. 2.11 and 2.12, use steady-state lift and drag

coefficients, CL and CD, to determine their magnitudes. The aerodynamic properties

of the kite are assumed to be comparable to NACA airfoil 0015. NACA 0015 is a

symmetric airfoil that is relatively flat. Sheldahl and Klimas experimentally measured

2-D lift and drag coefficients through 360◦ of attack angles for several airfoils. This

provides coefficients for the necessary range that the simulation may encounter [20].

Conversion of coefficients from 2-D to 3-D is detailed in App. B.2.

~Wapp = ~W − ~Vk (2.10)

~D =
1

2
ρACD| ~Wapp| ~Wapp (2.11)

~L =
1

2
ρACL| ~Wapp|

2
l̂ (2.12)

l̂ =

(
k̂f ×

~Wapp

| ~Wapp|

)
×

~Wapp

| ~Wapp|
(2.13)

The equations of motion result in four unknowns: θ̈, φ̈, r̈, and P (the tether tension).

To simulate control of the kite, the length of the tether and its derivatives are defined

by the control algorithm, and thus r̈ is considered known. This brings the system to

three equations and three unknowns, which can be solved for each of the remaining

unknowns. This solution can be numerically stepped forward in time to simulate kite

flight. The state vector is given in Eqn. 2.14.
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θ

θ̇

φ

φ̇

ψ

ψ̇

r

ṙ



(2.14)

Having generated the equations of motion, kite properties and other simulation

parameters must be chosen. The magnitude of the spin rate was determined from ex-

perimental testing. Video footage of manual kite flight was recorded, and a hand-held

anemometer was used to determine wind speed. Frame by frame analysis from sev-

eral flights showed that spin rate had little dependence on wind speed and primarily

ranged between ten and fifteen radians per second. We selected a constant value of

12.5 rad/s for the simulation as a median between the extremes. Tension transition

values were determined by probing the system’s behavior and experimental insight.

It was difficult for simple experiments to accurately measure tether tension during

the transitions between tracking and spinning. We did note when the kite transi-

tioned from one mode to another, it stayed in that mode until largely perturbed from

it. Initial simulation using a single transition value showed multiple rapid changes

between spinning and tracking modes that did not match the kite’s behavior. A tran-

sitional zone was used to better simulate the kite’s tendency to stay in the current

mode. Values ranging from 1N to 6N were tested in the simulation to adjust the kite

behavior to more closely follow the actual kite. If the gap between was too small the

kite would perform undesirable transitions between spinning and tracking. If the gap

was too large significant tether speed changes would be needed that did not correlate
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Tether

Chord Length

Span

Fig. 2.7: Labeled square kite geometry used to simplify aerodynamic properties by having a constant
chord length.

well to manual flight. A hysteresis range of 1.5N was eventually chosen, starting at

4N for the transition to spinning and 5.5N to transition to tracking. The span, chord,

and kite mass used in simulation are direct measurements of the fighter kite shown

in Figs. 1.10-1.12. The chord and span are shown in Fig. 2.7. Air density was set

to 1.205 kg/m3. This is the density of air at normal temperature and pressure; 1

atmosphere and 20◦C. Table 2.1 lists the simulation parameters, values, and units.

Table 2.1: Table of Simulation Parameters

Parameter Value Units

Time Step 0.001 s

Kite Mass 0.016 kg

Gravity 9.81 m/s2

Chord Length 0.41 m

Span 0.41 m

Air Density 1.205 kg/m3

Upper Critical Tension 5.5 N

Lower Critical Tension 4 N

Kite Spin Rate 12.5 rad/s

A fixed-step size, fourth-order Runge-Kutta scheme was used to simulate the kite’s

flight. A numerical convergence study was conducted to determine an appropriate

time step. Final values of zenith, azimuth, and roll angles, were recorded for three

second simulations at times steps from 0.04 to 0.000005 seconds. The percent relative

error, defined in Eqn. 2.15 and plotted in Fig. 2.8, compared the relative accuracy of
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the simulation for each step size. The term xi denotes the final value of the simulation

for a step size and xi+1 is the final value for the simulation run for the next smaller

step size. As expected with a fourth order integration routine, the slope on the log-

log graph is approximately four. Integration and truncation error accumulated for

time steps smaller than 0.0001, which accounts for the increase in error shown in Fig.

2.15. A time step of 0.001 seconds was chosen to minimize error and still allow for

reasonable simulation run-times.

Initial error analysis did not show fourth order error reduction with time step.

Instead, a slope of one was seen, which would be expected of a first-order integration

routine, such as Euler’s Method. This arose because the state vector did not originally

contain the tether length or rotation angle and their derivatives: r, ṙ, ψ, and ψ̇. Even

though each could be exactly calculated, they introduced error into the Runge-Kutta

integration. The fourth-order Runge-Kutta routine calculates the state vector for

partial steps between each major time step to provide a better approximation. The

terms not included in the state vector were not appropriately updated in the partial

steps and so made the other state variables less accurate. This was solved by simply

extending the state vector to include all of the terms that are now in Eqn. 2.14.

relative error =
∣∣xi − xi+1

xi

∣∣ (2.15)

The full simulation code is available in App. A.1.

2.2 Uncontrolled Simulation Results

The simulation appears to capture the desired behavior of the kite’s flight. Conserva-

tion of energy was the first test used to check the validity of our equations of motion.

The aerodynamic forces were eliminated (as they do work on the system) and the
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Fig. 2.8: Reduction of relative error as time step decreases. The slope is near four decades error
reduction for each decadal reduction in time step, as expected for a fourth order integration routine.

simulation run from various initial conditions. For all cases energy was conserved;

within the tolerances of our numerical integration scheme. System energy during a

three second simulation is plotted in Fig. 2.9.

We were also able to compare the simulation with observed and logically expected

kite behavior. For all figures of kite path, the tether originates at the origin, [0, 0, 0].

Figures 2.10 and 2.11 show the kite path and tension for increasing wind speed. The

wind is directed along the X-axis for these figures. For low wind, minimal tension is

generated, and therefore the kite falls, spinning as it does so. As the wind increases,

it produces more lift on the kite, and the kite moves faster. The faster moving kite,

while still in spin mode, cannot make as tight of loops as a slower kite. For high

enough wind (the light blue path) the spinning kite will gather more speed and thus

increase the aerodynamic forces enough to switch to tracking mode. For the highest
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Fig. 2.9: Plot of energy conservation for kite simulation.

wind speeds (magenta and black paths) the kite doesn’t spin, but tracks to a steady

position. The periodic fluctuation in tether tension seen in Fig. 2.11 occurs as the

kite spins and changes its orientation to the wind. A tension of zero indicates that the

kite has crashed into the ground. It is interesting to note that the tension fluctuates

at the same frequency as the kite’s spin rate.

Kite orientation to wind has a large effect on behavior. Keeping all other con-

ditions the same, initial zenith angle was changed to start the kite at high and low

elevations, zenith angles of 40◦ and 85◦. As seen in Fig. 2.12, at a wind speed of five

m/s the lower elevation case (left side) had enough tension to make the kite initially

track up, whereas at higher elevation (right side) the kite began spinning. This is

because of the bridle angle β. A small beta angle means the kite is almost perpendic-

ular to the tether, so at low elevation the angle of attack is near 90◦. This produces

a large drag force and therefore tension. At higher elevations the spine of the kite is

almost in line with the wind, producing very little drag.

Figures 2.13 and 2.14 show how the drag force acts to move the kite downwind for
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Fig. 2.10: Plot of kite paths for increasing wind speed. Wind is directed along the X-axis. All other
conditions held constant. Initial conditions: r0 = 10m, θ0 = 55◦, φ0 = 15◦.

both high and low wind speeds, respectively. This behavior is expected, as regardless

of the direction the kite is facing and tracking toward, the drag force will always try

to align the tether with the apparent wind. Wind speeds are seven m/s for Fig. 2.13

and five m/s for Fig. 2.14. The wind is directed at 45◦ from the X axis. A fixed 10m

tether is used with various initial release points. The stable point in Fig. 2.13 occurs

because of the high wind speed. Stable points aren’t desirable, because there is no

chance for power extraction. To effectively fly the kite at higher wind speeds would

require a stiffer cross-spar.

Control of the kite will be simulated by changing the speed of tether release/intake.

Reeling in the kite will increase tension, whereas releasing line will lower it. For a

given wind speed, tension can be controlled to make the kite track or spin as desired.
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Fig. 2.11: Magnitude of tether tension for increasing wind speed, given the same initial conditions
as Fig. 2.10.

Figure 2.15 shows the results of tests run with different tether speeds and the same

initial conditions: r0 = 10m, θ0 = 85◦, φ0 = 45◦, V∞ = 3m/s. As expected, when

reeling in (blue path) the tension increases and the kite tracks upward until its angle

of attack becomes too small to provide enough lift and drag to maintain enough

tension for tracking mode. For zero reel speed (black path) the kite spins and falls.

When releasing tether (green path) the kite spins and falls while moving downwind.

If the release speed is too high, the calculated tension can become negative. This

happens because the model assumes a straight tether, so the kite is essentially being

“pushed” by the tether. As stated before, if this occurs our overall model is invalid

and the simulation exits.
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Fig. 2.12: Differences in kite response based on change in initial position. Initial conditions: r0 =
10m, θ0 left = 85◦, θ0 right = 40◦, φ0 = 45◦, V∞ = 5m/s.

2.3 Simulation Conclusions

A numeric simulation of the fighter kite’s behavior was created that appears to provide

an accurate prediction of the kite’s behavior. Several tests have shown that the kite

behaves as seen in manual flights. This work has gained insight into the overall

dynamics and behavior of these kites, how they respond to changes in tether tension

and different wind speeds. Satisfied that this model captures the overall behavior of

the specified kite, our next step was to investigate autonomous flight control.
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Chapter 3

Simulation: Kite Control

3.1 Initial Controller, with Full Knowledge of Kite

Without control, the kite will either track to a stable position (high wind speeds)

or crash into the ground (lower wind speeds). Neither of which are exceptionally

interesting or useful. Conversely, a well controlled kite can be useful in numerous

applications. Heuristic control algorithms were developed with the goal of indefinite

autonomous flight. For development of the initial controller, it was assumed that all

information of the kite’s position, state vector, current mode, and tether is available

for use as control inputs. This is similar to a person flying the kite; both seeing the

position and orientation data and feeling the tether in their hand. This provided a

reasonable starting point for development of our controller.

The mode-switching kite behavior resulted in the development of situational con-

trol algorithms. From the position and orientation of the kite, the algorithm deter-

mines what behavior is needed to avoid a crash, then applies a specific feedback loop

that will give that behavior. Each control algorithm has multiple feedback loops that

it may apply, with goals such as switching from tracking to spinning and maintaining

a desired tether length. This basic architecture is shown in Fig. 3.1, where the dashed

box can contain various positive or negative feedbacks and gains.

The controller’s goal at this time is to keep the kite from crashing into the ground.
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r̈
PlantReferrence GainSum Kite Flight

Fig. 3.1: Basic block diagram of control method. The dashed box will change based on which
behavior the controller is trying to apply.

Path tracking is not investigated in this work. Since the goal of this work is to

maintain altitude, the most important input to the controller is the zenith angle.

For small values of the zenith angle, θ, it is relatively unimportant what the kite is

doing, but as the zenith angle increases past a critical value the controller must act

to turn the kite around and fly it back up or it will continue to fall and crash. To act

appropriately the controller must know if the kite is spinning or tracking, and what

direction it is facing. The initial, full knowledge algorithm is described below and

given in App. A.2.

The first part of the controller checks kite position. If it is above the critical

zenith angle, θ = 55◦, and therefore in no danger of crashing, the controller recov-

ers or releases tether to maintain a desired reference tether length, rref . Negative

proportional feedback from the tether length is used to determine the desired tether

speed. The feedback is scaled by the magnitude of the tension to avoid negative ten-

sion. This condition was added because initial results either ran the tether to zero or

extended it beyond several hundred meters within a few minutes. Neither of which

allows sufficient control in real conditions or shows any promise of a periodic motion.

When in danger of crashing, the controller must check mode (spin or track) and

facing direction before acting. If the kite is spinning, the controller waits until it is

facing upward (0 < ψ < ψup), then rapidly pulls in tether to increase tension. It uses

the positive proportional feedback loop in Eqn. 3.1 to ensure a swift transition into

tracking mode, with C as a constant scaling factor. The range of “upward facing” ψ

is limited from zero to ψup because tension fluctuates during the spin mode. As ψ
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reaches 180◦ the kite begins to accelerate downward, increasing tension. If tether is

accelerated until the rotation angle passes 180◦ but is still spinning, the increase in

tension on the downward part of the spin could be enough to transition to tracking

and start the kite flying straight down. Also, it is preferable to track upward when ψ

is near 90◦ to gain the most altitude. For these reasons, ψup is generally set at 120◦,

but can range based on desired path directions.

r̈ = −C(P + Pcrit h) (3.1)

If the kite is tracking and facing downward (ψ > 179◦), the kite will fly straight into

the ground. Tether must be released relatively quickly to switch to tracking mode,

but a negative tension has to be avoided. The solution is to simply set r̈ to a scaled

value of the tension, as in Eqn. 3.2. So it will quickly release tether, but at a slowing

rate as tension decreases. D is a scaling factor to allow more tuning capabilities.

r̈ = DP (3.2)

Even with the tether length adjustments when the kite is not in danger of crashing,

these cases often consumed all of the initial tether length. As tether length decreases,

the kite becomes more difficult to control, since a shorter tether means less altitude,

and less time for corrective action to prevent crashing. The solution was to slowly

reduce tension after the kite switches to tracking mode. If the kite is below the critical

zenith angle, tracking, and facing upward the acceleration is defined by Eqn. 3.3.

r̈ = E(rref − r)(P − Pcrit l) (3.3)

This scaled feedback avoids negative tension and works to optimize tether length to

the desired rref value. E is a scaling factor. A flow chart detailing the full knowledge
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controller is shown in Fig. 3.2.

Zenith angle, θ

Optimize tether
length
r̈ = AA(rref−r)
AA is 1 or less
if tension is low
to prevent
negative tension

The kite is in the
downward facing
portion of the
spin state, take
no action
r̈ = r̈

tracking
Y N

Y N
θ > θcrit

Selected
Feedback
Path

Feedback
Selection
Inputs

Rotation
angle, ψ

Current kite
state, spin or
track

Y N
ψ < ψup

Y N
ψ > 179◦

Kite is tracking
upward,
release/recover
tension to
maintain length
r̈ = E(rref −
r)(P − Pcrit l)

Kite is spinning
and facing up,
rapidly pull in
tether to initiate
tracking
r̈ =
−C(P + Pcrit h)

Kite is tracking
downward,
release tether
quickly to
initiate spin
r̈ = DP

Fig. 3.2: Flow chart of feedback loop selection for the full knowledge controller.

With the use of full state vector information, this control solution was highly

successful and stable for a range of the scaling factors C, D, and E and various initial

conditions and wind speeds. In constant wind conditions, the controller has been

successful for simulated flight tests of over five hours. One such test is shown in Fig.

3.3.

The shape of the periodic motion that the kite settles into depends largely on the

values of the scaling factors used in the feedback loops and the wind speed. Changing

the scaling values will alter the shape of the path by changing how quickly the kite

switches between modes. Figure 3.4 shows the change in path shape with a change

in scaling factors relative to Fig. 3.3, as well as the large basin of attraction and

apparent stability of the controller.

The controller sets values of the tether acceleration, which are then used to deter-

mine tether speed. This was done in the simulation to avoid instantaneous jumps in

velocity. Instantaneous changes in velocity are essentially infinite acceleration, and
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Fig. 3.3: Kite flight path of initial full knowledge controller using tension feedback. Exact information
allows quick changes in mode to form a stable loop. C = 1.8, D = 1.1, E = 3.0, V∞ = 4.5m/s.

because tether tension is determined from the tether acceleration, this would pro-

duce erroneous infinite tensions. The second reason for setting an acceleration based

on tension is that it makes the solution more robust. If each case gave a set value

of tether speed or acceleration, the controller is only effective in a limited range of

wind speeds. By basing the magnitude of the acceleration on the tension (the driving

force between mode switching) the controller can be applied to a wider range of wind

speeds.

Autonomous control is relatively simple to implement with complete information

of the kite’s position and orientation. To experimentally gather this data, a sys-

tem would require multiple accelerometers, GPS, and rate gyros, some combination
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Fig. 3.4: Path convergence for various initial conditions using the full knowledge controller with
adjusted feedback loop scaling factors. C = 2.2, D = 2.9, E = 0.5, V∞ = 4.5m/s.

thereof, or a computer vision system. The remainder of this thesis focuses on mea-

surement and control of the kite, with the limitation of only using information from

ground-based sensors.

3.2 Reduced Knowledge Controller

Without on-kite instrumentation or an advanced vision system, the full knowledge

controller can not be implemented. The input knowledge to the controller was reduced

to that which is easily measurable from the ground: zenith angle, azimuth angle,

tether tension, and tether length. As the kite flies through the air, the tension vector

changes in magnitude and direction. Using the three-axis load cell system that we

designed, built, and instrumented (described in Chp. 4), this tether information can
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be determined. The exact orientation, velocity and current flight behavior (spinning

or tracking) are unknown. This is analogous to a person flying the kite with their

eyes closed, just being able to feel and control the tether. Approximations can be

made from the kite’s position history to provide a rough estimate of some of these

values. The full code for each controller discussed is given in App. A.2.

A very simple algorithm was attempted that does not require very much infor-

mation of the kite’s current orientation. It uses the sign of θ̇, the derivative of the

zenith angle, to determine the desired rate of tether length, ṙ. The derivative of the

zenith angle is approximated by the second order backwards finite difference method

in Eqn. 3.4.

f ′ ≈ fi−2 − 4fi−1 + 3fi
2δ

(3.4)

Zenith angle, θ

Y N
θ > θcrit

θ̇ > 0
Y N

Kite is moving
downward,
release tether to
intiate spin
r̈ = D(P − 2)

Optimize tether
length
r̈ = EP (rref−r)

Approximate
zenith angular
velocity, θ̇

Kite is spinning
or tracking and
facing up,
rapidly pull in
tether to initiate
or ensure
tracking
r̈ = C(P − 8)

Fig. 3.5: Flow chart describing the feedback loop selection of the simple zenith angular velocity-based
controller.

When the kite is in spin mode the zenith angular velocity will fluctuate between

positive and negative values. As the kite swoops downward it gains speed. This

speed and the spinning behavior of the kite result in a periodic increase and decrease
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of zenith angle. The resulting control solution is simple. For values of θ less than

θcrit = 65◦ (no danger of crashing), the controller attempts to optimize tether length.

For zenith angles greater than 65◦ the sign of θ̇ is considered. If zenith angle is

increasing, θ̇ is positive and the kite is heading toward a crash. Tether is released

to make the kite spin. If zenith angle is decreasing, θ̇ is negative and the kite is,

at least at the moment, moving upward. Whether it is tracking upward or in the

upward portion of a spin, the kite is facing up. Therefore, tether is reeled in to ensure

that the kite is tracking. A flow chart illustrating the controller is shown in Fig. 3.5.

Figure 3.6 shows a successful flight of the zenith angular velocity-based controller.
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Fig. 3.6: Flight path for controller based on zenith angular velocity. C = 3.3, D = 1.0, E =
0.5, V∞ = 4.3m/s.

This very simplified controller was moderately successful, but lacks the robust

stability seen in the full knowledge controller. The final path is stable, but as seen

in Fig. 3.7, only with the proper initial conditions will the kite reach the stable path.

This is particularly evident from the dark green and light blue paths. Each had the

same initial position, with only a small difference in the rotation angle ψ. Though it
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appears to produce a stable periodic motion, the controller’s success is limited. The

main problem is seen in both the light and dark green paths of Fig. 3.7. If the kite

begins tracking with ψ near zero or 180◦, it won’t gain altitude and the controller

will eventually reel in the kite. Any disturbance from that stable path could crash

the kite.
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Fig. 3.7: Path of kite under the simple θ̇-based control for various initial release points. Only some
initial conditions will produce stable motion. Conditions identical to Fig. 3.6.

The problem arises because the controller does not know if the kite is spinning

or tracking or what direction it is moving in. Another difficulty with this simple

controller is that the functional range is small, and it often ends up crashing from

running out of tether. During the spin mode the controller is cycling between releasing

and recovering tether. The recovery must be quick enough to ensure that the kite

begins tracking, whereas the release has to be slower to prevent negative tension.

During tracking mode the controller doesn’t know that the kite is tracking, so it

continues to recover tether faster than necessary. During spin mode the kite doesn’t

know it is spinning, only that θ̇ is positive and that it needs to let out tether to ensure

that the kite is spinning. The limited success of this controller showed the importance
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of knowing the kite’s mode.

From early simulation results, it is shown that the magnitude of the tension and

zenith angle fluctuate at the same frequency as the spin rate of the kite. During

controlled flight, however, this fluctuation is less prominent due to the acceleration

of the tether. Recognizing the signal fluctuation and shape quickly and reliably

is also difficult and requires the kite to stay in the spin mode for at least a full

rotation. An alternative mode approximation was found by stepping back to look at

the kite’s overall behavior. The most significant and recognizable difference between

the spinning and tracking modes is the magnitude of ψ̇, the spin rate of the kite.

To approximate the spin rate, the spin angle was approximated by using the

position history of the kite to approximate the velocity by finite difference methods.

The kite flies generally in the direction it is facing. The velocity vector gives the

direction the kite is moving in, so when projected into the plane perpendicular to

the tether, it shows the facing direction, and thus the rotation angle, ψapprox. The

derivative of the rotation angle was then approximated using Eqn. 3.4. We then

assumed that when the magnitude of ψ̇approx is greater than two rad/s the kite is

spinning, otherwise it is tracking. A value of two radians rather than zero was used to

avoid errors caused by slight changes in the kite’s direction that occur while tracking

due to the forces acting on the kite. ψapprox is compared to the actual value of ψ in

Fig. 3.8. The value of two rad/s was determined from several simulation runs to see

what magnitude was most effective at neglecting the small changes of tracking mode,

while still noticing the more significant change of the spin mode. Of note is the poor

approximation of ψ for the initial entrance into spin mode. This is caused by the

transition of the kite from tracking to spinning mode. The zenith angular velocity, θ̇,

doesn’t change sign until the spin becomes fast enough to increase elevation at the

very top of the spin.

Supplied with knowledge of the kite’s facing direction and mode, an attempt was
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Fig. 3.8: Comparison of actual and approximated rotation angle ψ. The approximation improves
with kite speed.

made to simply apply the full knowledge control algorithm and replace the previously

known values with the approximations. Unfortunately, the full knowledge controller

proved too aggressive; it operates by quickly changing the kite’s mode between track-

ing and spinning. The high error apparent in the facing direction when entering the

spin mode led to mode switching at the wrong orientation and often crashed the kite

before it could recover.

We thought a step back in complexity might provide a better solution, and so

returned to further investigate the θ̇-based controller with these new approximations.

Approximating the rotation angle ψ provided detailed information, but the error was

high. The approximation of θ̇ provides less overall detail of the kite’s orientation, but

is has little error. The mode approximation was successfully incorporated into the

simple controller to correct the tether length issue. A flow chart of the θ̇ and mode

approximation based controller is given in Fig. 3.9. The controller works similarly to
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velocity, θ̇
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Optimize tether
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r̈ = C(P − 10)
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to optimize length and
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Fig. 3.9: Flow diagram used by the reduced knowledge controller to select feedback path based on
θ̇ and an approximation of the current mode.

the full knowledge controller, with the major difference of being based on approxi-

mations. If the kite is above θcrit then the feedback is r̈ = EP (rref − r). Again, this

maintains tether length and avoids a negative tension. If θ is below the critical angle

then the sign of θ̇ and the spin/track mode of the kite are checked. For positive θ̇

and spin mode, the tension is increased to a value near the tracking transition zone.

This makes the transition to tracking occur relatively quickly when desired without a

huge change in tether speed. For positive θ̇ and tracking mode the kite is going down

and must switch to spin quickly. For negative θ̇ and spin mode the kite is in some

upward facing direction and tension must be increased to get the kite to track while

it is still facing up. As seen in Fig. 3.9, a negative feedback of tension is used for this

case instead of the positive feedback of the full knowledge controller. This makes the

controller slower to respond and shift to tracking, but it is more recoverable from if

an error is made and tracking starts in the wrong direction. The addition of spin/-

track approximation helped the algorithm be more effective and produce the periodic

motion seen in Fig. 3.10.
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Fig. 3.10: Flight path of reduced knowledge controller that uses position history to approximate if
the kite is spinning or tracking. Mode knowledge provides better tuning and control of the kite,
producing more stable solutions. C = 1.5, D = 4, E = 1.5, V∞ = 4.5m/s.

Figure 3.11 shows the wide convergence and stability of the reduced knowledge

control solution. The gray section in the center is from the overlap of the nearly

identical paths. The black kite path takes considerably longer to reach the cyclic

path because it starts with a much shorter tether and closer to the ground than the

other initial conditions. The final cyclic path is isolated in Fig. 3.12. The path appears

to be stable, but not completely periodic. This may be due to the system behavior

itself, but is more likely from simulation error. The controller and mode-switching

choices are only checked at every time step, but the condition of the kite may have

changed at any intermediate time between steps. This slight time error could be the

cause of variance from a single repeating path. Even with this error the path appears

to remain within an area and does not drift away.
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Fig. 3.11: Converging flight paths of the kite released from various initial conditions using the
same reduced knowledge controller as Fig. 3.10 with adjusted scaling values. C = 1, D = 4, E =
1.5, V∞ = 4.5m/s.

The success of this controller led to further probing of its capabilities. The full

knowledge controller is only truly effective at a small range of wind speeds between

4 and 5m/s. Above 5m/s the full knowledge controller will track to a steady point

with a slight oscillation driven by the controller overshooting when trying to optimize

tether length. The simple θ̇ controller is still functional at high wind speeds, but

encounters the same issue of tracking in horizontal directions, and is not stable. The

gains of the more complex reduced knowledge controller were adjusted to find a set

that functioned from 4.3m/s to 6m/s. The resulting flight paths at speeds of 4.3, 5,

5.5, and 6m/s are shown in Fig. 3.13.

Though the controller appears to fly the kite well at a range of constant wind

speeds, a truer test of the algorithm is to apply more realistic wind conditions, varying

the magnitude and direction of the wind. Wind magnitude was set at 4.5 m/s and
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Fig. 3.12: The final cyclic path from Fig. 3.11 is shown with initial conditions taken directly from
the final state vector of the blue path in Fig. 3.11.

given random and sinusoidal fluctuations as shown in Eqn. 3.5.

| ~W | = 4.5 + .25 cos

(
time

10

)
+ rand(0 to 0.5) (3.5)

Gradual changes and instantaneous shifts in direction were applied to the kite. Ini-

tially, the wind vector was along the X-axis, then it slowly shifts to the Y-axis. The

wind vector then rapidly changes direction by 90◦ back to the X-axis, followed by

smaller 45◦ jumps, and finally settles to a set direction along the X-axis. A small,

random vertical disturbance of ±0.1m/s is added to simulate small rising and falling

air currents. The magnitude and individual components of the wind are shown in

Fig. 3.14. The more complex reduced knowledge controller was used to fly the kite,

resulting in the path shown in Fig. 3.15.

Large changes in wind speed can prove difficult to adjust to, but as long as the

magnitude remains above the minimum value of 4.3m/s, the controllers have been able

to recover. Significant gusting will introduce more error in the mode approximations

used by the complex reduced knowledge controller. Small and/or gradual shifts in
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wind direction are not highly disruptive to the controller, because it only acts to

maintain altitude. Large, rapid changes in wind direction can generate a negative

tension if the kite is oriented to another direction when the wind changes.

3.3 Kite Control Conclusions

The focus of this work was to investigate the novel control and actuation method that

these kites employ and determine the extent of autonomous control possible. Vari-

ous control algorithms were developed that show potential for sustained autonomous

flight. They have been shown to fly the kite in a range of wind conditions and appear

to functional well when wind remains above a minimum value.

With complete information of the kite’s state vector, highly exact control is fea-

sible. The kite mode can quickly be forced between spinning and tracking to keep

the kite in the air and flying along a very cyclic path. By reducing that knowledge

to ground measured values, there is a loss in the precision of control over the kite’s

behavior. Multiple rapid changes are no longer feasible, as the error in the mode and

facing direction approximations can easily crash the kite. More relaxed controllers

were developed that don’t need as precise information to fly the kite. Both reduced

controllers (simple θ̇-based and the more complex θ̇ with mode approximation) could

prove useful in experimental flight. The more complex controller has produced much

more stable periodic motion and appears to function over a wider wind speed range.

The large advantage of the simple θ̇ controller over incorporating the mode approxi-

mation is that it only uses one differentiation approximation, as opposed to the four

steps used to reach the mode approximation. In simulation this is insignificant, as

the signal is smooth, but any noise could make the controller difficult to execute.

Variation in wind velocity can be a large problem for autonomous flight, path

tracking, and/or power production of any kite system. Balancing the need for keeping

the system aloft and power extraction in real wind conditions has many challenges.
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For the tension-based control system, this is especially true. Alternating high and

low winds can fluctuate the tension and thus the kite mode faster than the controller

has to time to correct for.

The removal of instrumentation and actuation from the kite was an additional goal,

with the overall intent of reducing system complexity. These results show that a kite

can be completely controlled from ground-based sensors and tether tension. Though

other work in single-line kites may return actuation and sensing to the kite, this

simplification can be applied to various tethered kite systems. While a reduction in

sensing and actuation can limit overall control precision (and thus power extraction),

it also reduces system weight, cost, and complexity. Simpler systems are easier to

implement in real world conditions. These benefits should be weighed against each

other in overall system design.
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Fig. 3.13: Controlled kite flight in various wind speeds, using the θ̇ and mode approximation con-
troller. C = 0.8, D = 4, E = 1.8, θ0 = 70◦, φ0 = 25◦, r0 = 18m.
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Fig. 3.14: Variable ambient wind velocity used to simulate extreme wind direction shifts. Both
smooth transitions and jumps in direction are shown.
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58

Chapter 4

Experimental Test-bed Development

4.1 Theoretical Design

We have strong simulation results, but to progress this research accurate experimen-

tal flight measurements and control testing are needed in real wind conditions. An

experimental measurement and data acquisition system was design and constructed

to measure the tension vector and tether length. The initial design was based on

experimental work by Lansdorp et al. [14] that measured tether tension for a fixed

length tether, shown in Fig. 4.1 . This design was adjusted because the kite used in

Fig. 4.1: Fixed tether length load cell used by Lansdorp et al. Image taken from [14].

this thesis relies on rapid changes in tether length to change the tension and control

the kite’s behavior. Three mutually orthogonal strain gauges are aligned to intersect
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Fig. 4.2: Free body diagram of a tether segment and the pinhole guide block of the measurement
system. Because of the large mass difference, any acceleration of the tether is assumed negligible.

at the center of a low friction pinhole guide. The kite’s tether passes through this

guide to a reel attached to the drive motor. The kite’s position is defined in spherical

coordinates by the unwound tether length along the unit vector êr. The encoder on

the drive motor tracks tether length, which can be used to approximate tether speed.

The tether tension and direction are calculated from the summation of forces on

the rig based on the free body diagram of the tether segment and pinhole shown

in Fig. 4.2. Because the tether mass is much smaller than the structure mass, the

acceleration of the tether is assumed to be negligible, thus the tether segment and

measurement structure are treated as a single body, with ~a = 0 in Eqn. 4.1.

~F = m~a (4.1)

Summation of forces at the guide results in the vector Eqn. 4.2, which (when combined

with Eqns. 4.3 and 4.4) has three unknowns: tension magnitude, kite azimuth angle

φ, and kite zenith angle θ.

P êr + Pûmotor = Fxı̂+ Fy ̂+ Fzk̂ (4.2)
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The unit vector êr is along the tether, from the pinhole toward the kite, given in Eqn.

4.3.

êr = sin θ cosφı̂+ sin θ sinφ̂+ cos θk̂ (4.3)

Equation 4.4 defines the fixed unit vector ûmotor, which goes from the guide to the

top of the reel. The angles χ and δ are constant azimuth and zenith angles of -135◦

and 63◦, as illustrated in Fig. 4.3.

ûmotor = sin δ cosχı̂+ sin δ sinχ̂+ cos δk̂ (4.4)

χ = −135◦

δ = 63◦

ûmotor

ı̂

̂

k̂

Fig. 4.3: Visual definition of ûmotor unit vector direction from the pinhole to the edge of the motor
reel.

With the assumption that tension is the same in both segments, the system of

equations was solved to yield the scalar Eqns. 4.5, 4.6, and 4.7.

P =
F 2
x + F 2

y + F 2
z

2Fz cos δ + 2 sin δ(Fx cosχ+ Fy sinχ)
(4.5)

θ = arccos

(
Fz
P
− sin δ

)
(4.6)
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φ = arctan

(
Fy − P sin δ sinχ

Fx − P sin δ cosχ

)
(4.7)

4.2 Construction and Calibration

The drive motor and sensors were mounted on a rigid aluminum frame. Connecting

rods from the strain gauges converge to a point and are attached to the guide holder

by set screws. The pinhole guide is mounted in the small aluminum holding block

to align it with the strain gauges, and allow for replacement of the guide as needed.

The full system is shown in Fig. 4.4.

The general ability of the system to fly the kite was been tested manually before

the instrumentation was complete. The kite reel was connected to the motor with

some initial slack available to launch it into the air. The kite was launched by hand

and once the kite was aloft, we dropped the tether from our hands and began ad-

justing motor speed using the potentiometer shown in Fig. 4.4. Though moderately

successful, this proved difficult, as we had no feel for the magnitude of tether tension

or release/recovery speed. It showed that the motor and test-bed could physically fly

the kite and that the motor transient response can be accounted for.

Calibration of the individual load cells was conducted by orienting the entire

system to align the measured axis with the vertical. The pinhole guide and holding

block were removed and known masses were hung directly from the connecting rod.

Strong linear fits (R2 > .9999) were recorded for each axis. A full description of the

calibration and resulting data is given in App. C.2.

With each separate axis calibrated, the performance of the system as a whole was

determined. Initial testing showed poor measurement of tension magnitude and direc-

tion. The main reason was that the offsets originally determined from the calibration

of each load cell were not applicable for the overall system. When the connecting rods

are attached to the block holding the guide, they produce a slight pre-load on the
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Fig. 4.4: Experimental prototype configured with the motor controller to receive analog voltage
inputs from a potentiometer, allowing for manual speed control.

load cell that the former offsets did not account for. This was solved by calculating

new offsets at the start of the data acquisition system. The system starts under zero

load and takes an average value to be the new offset before entering the main loop.

This allowed much more accurate readings.

The system’s accuracy was measured using a tripod, low friction bar, and known

masses. Positioning the tripod relative to the measurement system set the tether

direction. A protractor and plumb bob were used to measure the azimuth and zenith

angles to within one degree. The kite tether ran from the motor reel through the
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pinhole and over the low friction bar on the tripod. The masses were suspended from

this end and ranged from 100g to nearly 2kg. The setup is shown in Fig. 4.5.

Fig. 4.5: Tripod and hanging mass arrangement used to test measurement system accuracy.

The system was sensitive enough to capture the oscillation in tension of a swinging

weight. Final results show that the system is accurate within five degrees of the zenith

and azimuth angles. Tension magnitude was also very accurate, ranging from one to

ten percent below the actual value. Part of this error is attributed to friction in

the hanging system. The other main source of error in the system is cross stresses.

The strain gauges of the load cells are most sensitive to shear, but will register some

transverse loading. The sensor does not distinguish between axial and cross strains,

it just provides a voltage proportional to the total strain on the cell. The mechanical

design of the system attempted to minimize this transverse loading. The holes in the

ends of the connecting rods were slightly over-drilled for the desired thread size, and

are thus compliant by a few degrees in any off-axis motion, but still maintain axial
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grip. This “wiggle room” significantly minimizes the off-axis loading seen by each

load cell when compared to measurements with the connecting rods tightened snug

against the load cell and guide. Overall, the system works quite well and provides a

good indication of the kite’s position and should prove useful for future experimental

research.
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Chapter 5

Recommendations for Future Work

This thesis has shown that indefinite autonomous control of a single-line tension

controlled kite is possible. As this is a novel actuation method, there is vast potential

for following research and it has proven difficult to define a stopping point. Numerous

aspects of this work warrant further investigation; path tracking, power production,

kite design, robustness, experimental comparison, simulation fidelity.

Sustained flight has been shown possible, though for most applications just keeping

the kite in the air is not enough. Accurate control of kite path is needed for effective

power production and aerial surveying. Smooth path control is somewhat limited

by the behavior of the kite studied in this thesis. There has been significant study

of path optimization and robust control of kites for power production systems that

can be leveraged to apply to these kites. Also, the simulation is available for use

in exploring single-line mode-switching kite design; from simple geometry changes

to drastic differences in steering and overall kite behavior. One of the main lacking

areas of research is in kite design itself. Of the numerous publications on mechanical

pumping systems, only a small handful have designed the kite itself specifically for

energy extraction.

The next large step in this research is to conduct flight tests of the control al-

gorithms and the test rig itself. Having built this initial prototype breaks down a

significant barrier to future students wishing to conduct experimental kite research.
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The main issue that may need to be corrected is system noise. The derivative approx-

imations used in the control algorithms estimate more information from the position

history of the kite by using smooth simulation data. Whereas the noise in the actual

system may prevent proper implementation of the controller algorithm. Improved fil-

tering or other methods may be needed to produce a useful signal. As stated before,

the approximation of kite information introduces error to the control solution. Noise

will only act to amplify that error. System latency could be a huge factor as well. It

may be desirable to slow the kite down for experimental flights. This can be done by

adding a ribbon-type tail to the kite [13].

There is also vast room for increasing the simulation accuracy. The mode-switching

behavior of the kite is based on a change in tension, but this change could occur any

time between two time steps. Including event detection in the simulation to find the

precise time of transitions and updating the integration at that time will improve

accuracy. The model bases lift and drag forces from steady-state lift and drag coeffi-

cients, though there is significant transient in the system. The tether can be improved

to include drag, elasticity, sag, and mass. There has been a wide range of experimen-

tal and numerical studies involving loading of cables and kite tethers that could be

applied. Other significant changes would be to model the kite as a body rather than

a point mass, base the spin and roll behavior on aerodynamic analysis, and include

moment coefficients. By treating the kite as a rigid body and including moment co-

efficients, the bridle angle β could made a variable instead of a constant. The drive

motor’s transient response could also be included in the simulation, though it is a

minimal change. Though significant changes can be made to improve the model, the

payoff in accuracy may not be sufficient to warrant the time investment. The most

beneficial would be to include tether drag and sag, as these would have direct impacts

on the tether tension vector and thus the control implementation.

My final recommendation is to go fly kites.
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Appendix A

Simulation Code

A.1 Kite Dynamics Code

A.1.1 Main Function Loop with gap for Controller

% fighter kite flight simulation

clear;

clf;

clc;

clear all

close all

format compact

global first mk g Fsum rdotdot beta vinf clcd data

global k area rho tout ten state psidot rate

first = 1; %used for animation so the lines are only created once

%!!!!!!!!!!!!!!!!!!!!!!!!! Timing Information

tstart = 0; %start time [sec]

tfinal = 1; %stop time [sec]

tstep = .001; %step size [sec]

tout = (tstart:tstep:tfinal)';

%!!!!!!!!!!!!!!!!!! Kite information

mk = .0160; % mass of the kite [kg]

chord = 0.41; % chord length [m]

span = 0.41; % span of the blade, width, length of leading edge [m]

k area=span*chord;

psidot rate =12.5; % set spin rate [rad/s]

beta = −10*pi/180; % tether angle

tcrit h=5.5; % [N] upper critical tension for changing spin/track
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tcrit l=4.; % [N] lower critical tension, adds hysteresis range

clcd data=xlsread('LiftDragCoefficientsRe of 360000','a2:c118');

rho=1.205; %air density [kg/mˆ3]

vinf = [4/sqrt(2); 4/sqrt(2); 0]; %wind velocity [m/s]

g=9.81; % gravity [m/sˆ2]

% generate empty arrays to improve run speed

yout=zeros(length(tout),8);

contlog=zeros(length(tout),1); % continuous array of rotation angle

% approximation, used to calculate slope to approximate spin rate

%!!!!!!!!!!!!!!! Initial Conditions

state=0; % 0 is high tension tracking, low tension spinning is state=2

Y0(1) =60*pi/180; %initial zenith angle (theta) [rad]

Y0(2) = 0; % initial zenith angular velocity (thetadot) [rad/s]

Y0(3) = 45*pi/180; %initial azimuth angle (phi) [rad]

Y0(4) = 0; %initial azimuthal angular velociy (phidot) [rad/s]

Y0(5)=30*pi/180; %initial rotation angle (psi) [rad]

Y0(6)=0; % inital rotation angular velocity (psidot) [rad/s]

Y0(7)=18; % initial tether length (r) [m]

Y0(8)=0; % tether reel speed (rdot) [m/s]

yout(1,:)=Y0;

rdotdot=0;

contlog(1)=Y0(5);

%%%%%% Hueristic CONTROL PARAMETERS %%%%%%%%%%%%%%%%%%%%%%

C=1.5; %proporitonal for reel in acceleration to get to tracking

D=4; %proportional for reel out accel to get to spinning

E=1.5; %proportional for tether length feedback loop

rref=20; %referrence tether length

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

stateest=state;

for ind = 1:length(tout)−1

[yout(ind+1,:)] = rk 4 int(yout(ind,:)', tstep);

theta=yout(ind+1,1);

thetadot=yout(ind+1,2);

phi=yout(ind+1,3);

phidot=yout(ind+1,4);

r=yout(ind+1,7);

rdot=yout(ind+1,8);

if ind==1 % approximate terms from measureable data

dtheta=(theta−yout(ind,1))/tstep; % thetadot
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dphi=(phi−yout(ind,3))/tstep; % phidot

approx=−atan2(dtheta,dphi); % psi, wrapped from 0 to 360

cont=approx; % psi, continuous

dpsi=(cont−yout(ind,5))/tstep; % psidot

else % use second order finite diff. method to approximate terms

dtheta=(3*theta−4*yout(ind,1)+yout(ind−1,1))/(2*tstep); % thetadot

dphi=(3*phi−4*yout(ind,3)+yout(ind−1,3))/(2*tstep); % phidot

approx=−atan2(dtheta,dphi)+2*pi; % psi, wrapped from 0 to 360

cont=−atan2(dtheta,dphi); % psi, continuous

while contlog(ind)−cont>300*pi/180
cont=cont+2*pi;

end

dpsi=(3*cont−4*contlog(ind)+contlog(ind−1))/(2*tstep); % psidot

end

contlog(ind+1)=cont;

while yout(ind+1,5)>=2*pi % actual psi, wrap into 0 to 360

yout(ind+1,5)=yout(ind+1,5)−2*pi;
end

psia=yout(ind+1,5);

if approx>2*pi % wrap psi approx into 0 to 360

approx=approx−2*pi;
end

F1=Fsum(1); % split the load vector into components

F2=Fsum(2);

F3=Fsum(3);

% calculate tension magnitude

ten=F3*cos(theta) − mk*rdotdot + mk*phidotˆ2*r + mk*r*thetadotˆ2 +...

F1*cos(phi)*sin(theta) + F2*sin(phi)*sin(theta) −...
mk*phidotˆ2*r*cos(theta)ˆ2;

% check magnitde of tension to see if state switches

if ten>tcrit h

state=0; %track state

elseif ten<tcrit l

state=2; %spin state

end

%%%%%%%%% ANIMATE %%%%%%%%%%%%%

drawkite(theta,phi,r,psia)

%%%%%%%%% ANIMATE %%%%%%%%%%%%%

% estimate if kite is spinning or tracking from approximate spin rate

if abs(dpsi)>1

stateest=2;

else

stateest=0;

end

first=0;
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% if the tether tension drops below zero the model is invalid also zero

% tension means that we have no control over the kite, so we avoid it

% if tension does go negative, the simulation exits

if ten<0

fprintf('negative tension \n')
break

end

%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

% INSERT CONTROLLER HERE

% END OF CONTROLLER

%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

if abs(rdotdot)>15

rdotdot=15*sign(rdotdot);

end

if yout(ind+1,1) >=pi/2

fprintf('CRASH after %f seconds, \n',tout(ind+1))
break

end

end

theta = yout(:,1);

thetadot = yout(:,2);

phi=yout(:,3);

phidot=yout(:,4);

psia=yout(:,5);

psidot=yout(:,6);

rlog=yout(:,7);

rdlog=yout(:,8);

ends=ind+1;

if ten<0

ends=ind;

end

posi=zeros(ends,3);

for ii=1:ends % calculate position in inertial frame

T=[cos(theta(ii))*cos(phi(ii)) cos(theta(ii))*sin(phi(ii)) −sin(theta(ii))
−sin(phi(ii)) cos(phi(ii)) 0

sin(theta(ii))*cos(phi(ii)) sin(theta(ii))*sin(phi(ii)) cos(theta(ii))];

posi(ii,:)=(T\[0 0 rlog(ii)]')';

end

% plot kite path

figure

hold on

plot3(posi(1,1),posi(1,2),posi(1,3),'kv')

hold on

plot3(posi(:,1),posi(:,2),posi(:,3))

hold on
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plot3(posi(end,1),posi(end,2),posi(end,3),'rx')

legend('Start','Path','End'),grid on

axis equal,axis ([0 15 0 15 0 15]),title('Kite Path')

xlabel('X (m)'),ylabel('Y (m)'),zlabel('Z (m)')

E=zeros(ind,1);

% Calculate energy of the system for each time step (energy will only be

% conserved if the aerodynamic forces are removed, as they can add and

% remove energy)

for ee=1:ind

w=[thetadot(ee)*sin(psia(ee))−phidot(ee)*cos(psia(ee))*sin(theta(ee))
thetadot(ee)*cos(psia(ee))+phidot(ee)*sin(psia(ee))*sin(theta(ee))

psidot(ee)+phidot(ee)*cos(theta(ee))];

R=[0 0 rlog(ee)]';

dR=[0 0 rdlog(ee)]';

vkite=dR+cross(w,R);

vel=sqrt(vkite(1)ˆ2+vkite(2)ˆ2+vkite(3)ˆ2);

E(ee)=.5*velˆ2*mk + mk*g*r*cos(theta(ee));

end

figure

plot(tout(1:ind),E),title('System Energy')

xlabel('Time (s)'),ylabel('Energy (J)')

A.1.2 Runge-Kutta Integration

function [y out] = rk 4 int(y, step)

%fourth order Runge−Kutta integration

[k1] = kite derivatives(y);

ytemp = y + k1*(step/2);

[k2] = kite derivatives(ytemp);

ytemp = y + k2*(step/2);

[k3] = kite derivatives(ytemp);

ytemp = y + k3*step;

[k4] = kite derivatives(ytemp);

y = y + step/6*(k1 + 2*k2 + 2*k3+ k4);

y out = y;

A.1.3 Calculate State Vector Derivative

function [dy] = kite derivatives(Y)
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% calculates the derivatives of kite's equations of motion

global mk state beta rdotdot vinf g first Fsum

global k area rho mg psidot rate gamma

theta = Y(1); % [rad]

thetadot = Y(2); % [rad/s]

phi = Y(3); % [rad]

phidot = Y(4); % [rad/s]

psia=Y(5); % [rad]

r=Y(7); % [m]

rdot=Y(8); % [m/s]

% transformation matrix, to go from inertial to local coordinates

T=[cos(psia)*cos(theta)*cos(phi)−sin(psia)*sin(phi)...
cos(psia)*cos(theta)*sin(phi)+sin(psia)*cos(phi) −cos(psia)*sin(theta)
−sin(psia)*cos(theta)*cos(phi)−cos(psia)*sin(phi)...
−sin(psia)*cos(theta)*sin(phi)+cos(psia)*cos(phi) sin(psia)*sin(theta)

sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta)];

% kf, facing direction in local system

kf=[0

cos(beta)

sin(beta)];

vk=[ r*(thetadot*cos(psia) + phidot*sin(psia)*sin(theta))

−r*(thetadot*sin(psia) − phidot*cos(psia)*sin(theta))

rdot]; % kite velocity [m/s]

va = T*vinf − vk; % apparent wind velocity

mag va=(va(1)ˆ2+va(2)ˆ2+va(3)ˆ2)ˆ.5; % apparent wind magnitude

vhat=va/mag va; % appartent wind direction

% determine initial spar direction

ksval=[kf(2)*vhat(3)−kf(3)*vhat(2)
kf(3)*vhat(1)−kf(1)*vhat(3)
kf(1)*vhat(2)−kf(2)*vhat(1)];

alpa=acos(−vhat(2)*cos(beta)−vhat(3)*sin(beta)); % angle of attack

if first==1

if ksval(1)<0 % prevents kite from starting upside down

ksval=−ksval;
end

end

magks=sqrt(ksval(1)ˆ2+ksval(2)ˆ2+ksval(3)ˆ2);

ks=ksval/magks; % determine unit vector for spar direction

gamma=acos(ks(1)); % calculate roll angle

%bring gamma into −180 to 180 range

if gamma>pi

gamma=gamma−2*pi;
end

if va(1)<0 %if the wind is from the left roll is counter clockwise

gamma=−gamma;
end
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% limit roll angle magnitude to 40 degrees

if abs(gamma)>40*pi/180

gamma=40*pi/180*sign(gamma);

end

ks=[cos(gamma) sin(gamma)*sin(beta) −sin(gamma)*cos(beta)];
kn=[sin(gamma) −cos(gamma)*sin(beta) cos(gamma)*cos(beta)];

% determine if alpha is negative, if the apparent wind is from the above

% the kite angle of attack is negative. if dot product of apparent wind and

% kite normal direction (kn) is negative, angle of attack is negative

a=kn(1)*va(1)+kn(2)*va(2)+kn(3)*va(3);

if a<0

alpa=−alpa;
end

if alpa==2*pi; % wrap alpa into 0 to 360 range

alpa=0;

elseif alpa<0

alpa=alpa+2*pi;

end

direct l=[va(2)*ks(3)−va(3)*ks(2)
va(3)*ks(1)−va(1)*ks(3)
va(1)*ks(2)−va(2)*ks(1)]; % lift force direction

mag direct l=(direct l(1)ˆ2+direct l(2)ˆ2+direct l(3)ˆ2)ˆ.5; % unit vector

[cL,cD] = airfoil data(alpa*180/pi); % look up lift and drag coefficients

Drag=0.5*rho*k area*mag vaˆ2*cD*vhat; % drag force in local frame

Lift=0.5*rho*k area*mag vaˆ2*cL*direct l/mag direct l; % lift in local frame

mg=[0 0 −g*mk]'; % kite weight in interial frame

Fsum=T'*(Lift+Drag)+mg;

F1=Fsum(1);

F2=Fsum(2);

F3=Fsum(3);

% build derivative of state vector

dy=zeros(4,1);

dy(1)=thetadot;

dy(2)= (F1*cos(phi)*cos(theta) − F3*sin(theta) + F2*cos(theta)*sin(phi))...

/(mk*r) − (− r*cos(theta)*sin(theta)*phidotˆ2 + 2*rdot*thetadot)/r;

dy(3)=phidot;

dy(4)= − (2*phidot*rdot)/r − (F1*sin(phi) − F2*cos(phi) + ...

2*mk*phidot*r*thetadot*cos(theta))/(mk*r*sin(theta));

% set the spin rate

if state<1

dy(5)=0;

else

dy(5)=psidot rate;

end

dy(6)=0;

dy(7)=rdot;
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dy(8)=rdotdot;

A.1.4 Lift and Drag Coefficient Interpolation

function [cl i,cd i] = airfoil data(a)

% this function interpolates the lift and drag coefficient data for

% angles of attack between the given data points.

global clcd data

cl i=interp1q(clcd data(:,1),clcd data(:,2),a);

cd i=interp1q(clcd data(:,1),clcd data(:,3),a);

A.1.5 Animation of System Position and Orientation

function [ ] = drawkite(theta,phi,r,psia)

% draws a pair of subplots, one showing the full kite and tether, the other

% showing kite's orientation

global first gamma beta

T=[cos(psia)*cos(theta)*cos(phi)−sin(psia)*sin(phi)...
cos(psia)*cos(theta)*sin(phi)+sin(psia)*cos(phi) −cos(psia)*sin(theta)
−sin(psia)*cos(theta)*cos(phi)−cos(psia)*sin(phi) ...

−sin(psia)*cos(theta)*sin(phi)+cos(psia)*cos(phi) sin(psia)*sin(theta)

sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta)];

K=[cos(gamma) sin(gamma)*sin(beta) −sin(gamma)*cos(beta)
0 cos(beta) sin(beta)

sin(gamma) −cos(gamma)*sin(beta) cos(gamma)*cos(beta)];

drawing=[0 0 r]'; % position vector in the local frame

ksxyz=T'*K'*[1 0 0]';

kfxyz=T'*K'*[0 1 0]';

knxyz=T'*K'*[0 0 1]';

er=T'*[0 0 1]';

% create handles for each line of the figure so they can be called and

% adjusted at each iteration, rather than recreated

persistent tetherline

persistent kiteline

persistent facing

persistent normal

persistent spar

persistent outline1

persistent outline2

persistent outline3

persistent outline4

persistent tether
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figure(1)

pos=T'*drawing; %postion vector in the inertial frame

%draw the kite string and the lines to represent the kite

if (first == 1)

first = 0;

subplot(1,2,1)

tetherline = line('xdata', [0, pos(1)], 'ydata', [0, pos(2)],...

'zdata',[0,pos(3)],'color','k','linewidth', 3);

kiteline = line('xdata',[pos(1),pos(1)+2*kfxyz(1)],'ydata',...

[pos(2),pos(2)+2*kfxyz(2)],'zdata',[pos(3),pos(3)+2*kfxyz(3)],...

'color','r','linewidth',2);

grid on, axis equal, axis([0 15 0 15 0 15]);

xlabel('X'),ylabel('Y'),zlabel('Z'),title('Kite Motion')

subplot(1,2,2)

facing = line('xdata',[0,kfxyz(1)],'ydata',[0,kfxyz(2)],'zdata',...

[0,kfxyz(3)],'color','r','linewidth',3);

normal = line('xdata',[0,knxyz(1)],'ydata',[0,knxyz(2)],'zdata',...

[0,knxyz(3)],'color','b','linewidth',3);

spar = line('xdata',[0,ksxyz(1)],'ydata',[0,ksxyz(2)],'zdata',...

[0,ksxyz(3)],'color','g','linewidth',3);

outline1 = line('xdata',[ksxyz(1),kfxyz(1)],'ydata',[ksxyz(2),...

kfxyz(2)],'zdata',[ksxyz(3),kfxyz(3)],'color','k','linewidth',1);

outline2 = line('xdata',[kfxyz(1),−ksxyz(1)],'ydata',[kfxyz(2),...
−ksxyz(2)],'zdata',[kfxyz(3),−ksxyz(3)],'color','k','linewidth',1);

outline3 = line('xdata',[−ksxyz(1),−kfxyz(1)],'ydata',[−ksxyz(2),...
−kfxyz(2)],'zdata',[−ksxyz(3),−kfxyz(3)],'color','k','linewidth',1);

outline4 = line('xdata',[−kfxyz(1),ksxyz(1)],'ydata',[−kfxyz(2),...
ksxyz(2)],'zdata',[−kfxyz(3),ksxyz(3)],'color','k','linewidth',1);

tether=line('xdata',[−er(1),0],'ydata',[−er(2),0],'zdata',...
[−er(3),0],'color','k','linewidth',2);

axis equal,axis([−1 1 −1 1 −1 1]),grid on

xlabel('X'),ylabel('Y'),zlabel('Z'),title('Kite Orientation')

else

% use the handles to reset the position of each line

% kite and tether plot

set(tetherline,'xdata',[0, pos(1)], 'ydata', [0, pos(2)],...

'zdata', [0,pos(3)]);

set(kiteline,'xdata',[pos(1),pos(1)+2*kfxyz(1)],'ydata',...

[pos(2),pos(2)+2*kfxyz(2)],'zdata',[pos(3),pos(3)+2*kfxyz(3)]);

%orientation plot

set(facing,'xdata',[0,kfxyz(1)],'ydata',[0,kfxyz(2)],...
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'zdata',[0,kfxyz(3)]);

set(normal,'xdata',[0,knxyz(1)],'ydata',[0,knxyz(2)],...

'zdata',[0,knxyz(3)]);

set(spar,'xdata',[0,ksxyz(1)],'ydata',[0,ksxyz(2)],...

'zdata',[0,ksxyz(3)]);

set(outline1,'xdata',[ksxyz(1),kfxyz(1)],...

'ydata',[ksxyz(2),kfxyz(2)],'zdata',[ksxyz(3),kfxyz(3)]);

set(outline2,'xdata',[kfxyz(1),−ksxyz(1)],...
'ydata',[kfxyz(2),−ksxyz(2)],'zdata',[kfxyz(3),−ksxyz(3)]);

set(outline3,'xdata',[−ksxyz(1),−kfxyz(1)],...
'ydata',[−ksxyz(2),−kfxyz(2)],'zdata',[−ksxyz(3),−kfxyz(3)]);

set(outline4,'xdata',[−kfxyz(1),ksxyz(1)],...
'ydata',[−kfxyz(2),ksxyz(2)],'zdata',[−kfxyz(3),ksxyz(3)]);

set(tether,'xdata',[−er(1),0],'ydata',[−er(2),0],'zdata',[−er(3),0]);
end

drawnow

end

A.2 Kite Control Algorithms

A.2.1 Full Knowledge Controller

% full knowledge controller, knows exact information of kite, entire state

% vector is available

if theta>55*pi/180

if state==0

if psia>179*pi/180

% kite is tracking down, rapidly release line to switch to spin

rdotdot=(ten)*D;

else

% kite is tracking upward, release or recover line to maintain

% desired length

rdotdot=(rref−r)*(ten−tcrit l)*E;

end

else

if psia<150*pi/180

% kite is spinning, facing up, rapidly pull in linte to track

rdotdot=−(ten+tcrit h)*C;

end

end

%the above if statements keep the kite from crashing, this next

%set tries to keep the tether length in a desirable range

else

if r>rref

AA=1;
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else

AA=ten−2;
if ten<2

AA=0;

end

end

rdotdot=AA*(rref−r);
end

A.2.2 Reduced Knowledge Controller: θ̇

% reduced knowledge simple controller, motor speed set according to tether

% tension and the sign of the zenith angular velocity

if theta>65*pi/180

if dtheta>0

% if zenith angle is increasing, the kite is falling, release

% tether to make kite spin

rdotdot=(ten−2)*D;
elseif dtheta<0

rdotdot=(ten−8)*C;
% if zenith angle is decreasing, the kite is rising, recover tether

% to make the kite track

end

else

% kite is safe, maintain desired tether length range

rdotdot=(rref−r)*ten*E;
end

A.2.3 Reduced Knowledge Controller: θ̇ and Spin/Tracking Approxima-

tion

% reduced knowledge controller, motor speed set according to

% tether tesnion, sign of zenith angular velocity, and an approximation of

% the kite mode (spinning or tracking)

if theta>65*pi/180

if dtheta>0

% kite is falling

if stateest==2

% kite is spinning, so increase line tension to up edge of

% spinning zone

rdotdot=(ten−tcrit h)*E;

else

rdotdot=(ten)*D;

% kite tracking downward, release tension quickly to make the
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% kite spin

end

elseif dtheta<0

% kite is moving up

if stateest==2

% kite is in the upward portion of a spin, increase tension to

% make the kite track

rdotdot=(ten−10)*C;
else

rdotdot=(rref−r)*(ten−tcrit l)*E;

% kite is tracking, release or recover tether to maintain

% desired length and stay in tracking mode

end

end

else

% kite is safe, maintain desired tether length

rdotdot=(rref−r)*ten*E;
end

A.2.4 Reduced Knowledge Controller: ψ and Spin/Tracking Approxima-

tion

% reduced knowledge controller, motor speed set according to tether

% tension, mode approximation, and rotation angle approximation

% Identical to full knowledge controller, with known values replaced by

% approximations

if theta>55*pi/180

if approx<150*pi/180 && stateest==2

%if below 55 degrees, spinning, and pointed up, try to switch to

%tracking state

rdotdot=−(ten+tcrit h)*C;

elseif stateest==0 && approx>179*pi/180

%let line out to switch to spin

rdotdot=(ten)*D;

elseif stateest==0

% release or recover line to maintain desired length

rdotdot=(rref−r)*ten*E;
end

%the above if statements take care of getting it

%spinning/tracking to avoid crashing, this next set tries to keep

%the tether length from running away, or getting all used up

else

if r>rref

AA=1;
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else

AA=ten−2;
if ten<2

AA=0;

end

end

rdotdot=AA*(rref−r);
end
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Appendix B

Aerodynamics

B.1 Lift and Drag Coefficient Table

Table B.1: 2-D and 3-D lift and drag coefficients, 2-D coefficients taken from [20].

α Cl Cd CL CD α Cl Cd CL CD α Cl Cd CL CD
0 0.0000 0.0091 0.1100 0.0092 85 0.2300 1.8000 0.0900 1.8000 280 -0.3650 1.7800 -0.5000 1.7350
1 0.1100 0.0092 0.2200 0.0094 90 0.0900 1.8000 -0.0500 1.7800 285 -0.5000 1.7350 -0.6300 1.6650
2 0.2200 0.0094 0.3300 0.0098 95 -0.0500 1.7800 -0.1850 1.7500 290 -0.6300 1.6650 -0.7600 1.5750
3 0.3300 0.0098 0.4400 0.0105 100 -0.1850 1.7500 -0.3200 1.7000 295 -0.7600 1.5750 -0.8750 1.4700
4 0.4400 0.0105 0.5500 0.0114 105 -0.3200 1.7000 -0.4500 1.6350 300 -0.8750 1.4700 -0.9550 1.3450
5 0.5500 0.0114 0.6600 0.0126 110 -0.4500 1.6350 -0.5750 1.5550 305 -0.9550 1.3450 -1.0200 1.2150
6 0.6600 0.0126 0.7390 0.0143 115 -0.5750 1.5550 -0.6700 1.4650 310 -1.0200 1.2150 -1.0500 1.0750
7 0.7390 0.0143 0.8240 0.0157 120 -0.6700 1.4650 -0.7600 1.3500 315 -1.0500 1.0750 -1.0350 0.9200
8 0.8240 0.0157 0.8946 0.0173 125 -0.7600 1.3500 -0.8500 1.2250 320 -1.0350 0.9200 -0.9800 0.7450
9 0.8946 0.0173 0.9440 0.0191 130 -0.8500 1.2250 -0.9300 1.0850 325 -0.9800 0.7450 -0.8550 0.5700

10 0.9440 0.0191 0.9572 0.0211 135 -0.9300 1.0850 -0.9800 0.9250 330 -0.8550 0.5700 -0.8788 0.4600
11 0.9572 0.0211 0.9285 0.0233 140 -0.9800 0.9250 -0.9000 0.7550 333 -0.8788 0.4600 -0.8055 0.4320
12 0.9285 0.0233 0.8562 0.0257 145 -0.9000 0.7550 -0.7700 0.5750 334 -0.8055 0.4320 -0.7511 0.4050
13 0.8562 0.0257 0.7483 0.0283 150 -0.7700 0.5750 -0.6700 0.4200 335 -0.7511 0.4050 -0.7015 0.3790
14 0.7483 0.0283 0.6350 0.0312 155 -0.6700 0.4200 -0.6350 0.3200 336 -0.7015 0.3790 -0.6528 0.3540
15 0.6350 0.0312 0.5384 0.1240 160 -0.6350 0.3200 -0.6800 0.2300 337 -0.6528 0.3540 -0.6045 0.3290
16 0.5384 0.1240 0.4851 0.2170 165 -0.6800 0.2300 -0.8500 0.1400 338 -0.6045 0.3290 -0.5616 0.3050
17 0.4851 0.2170 0.4782 0.2380 170 -0.8500 0.1400 -0.6600 0.0550 339 -0.5616 0.3050 -0.5247 0.2820
18 0.4782 0.2380 0.4908 0.2600 175 -0.6600 0.0550 0.0000 0.0250 340 -0.5247 0.2820 -0.4908 0.2600
19 0.4908 0.2600 0.5247 0.2820 180 0.0000 0.0250 0.6600 0.0550 341 -0.4908 0.2600 -0.4782 0.2380
20 0.5247 0.2820 0.5616 0.3050 185 0.6600 0.0550 0.8500 0.1400 342 -0.4782 0.2380 -0.4851 0.2170
21 0.5616 0.3050 0.6045 0.3290 190 0.8500 0.1400 0.6800 0.2300 343 -0.4851 0.2170 -0.5384 0.1240
22 0.6045 0.3290 0.6528 0.3540 195 0.6800 0.2300 0.6350 0.3200 344 -0.5384 0.1240 -0.6350 0.0312
23 0.6528 0.3540 0.7015 0.3790 200 0.6350 0.3200 0.6700 0.4200 345 -0.6350 0.0312 -0.7483 0.0283
24 0.7015 0.3790 0.7511 0.4050 205 0.6700 0.4200 0.7700 0.5750 346 -0.7483 0.0283 -0.8562 0.0257
25 0.7511 0.4050 0.8055 0.4320 210 0.7700 0.5750 0.9000 0.7550 347 -0.8562 0.0257 -0.9285 0.0233
26 0.8055 0.4320 0.8788 0.4600 215 0.9000 0.7550 0.9800 0.9250 348 -0.9285 0.0233 -0.9572 0.0211
27 0.8788 0.4600 0.8550 0.5700 220 0.9800 0.9250 0.9300 1.0850 349 -0.9572 0.0211 -0.9440 0.0191
30 0.8550 0.5700 0.9800 0.7450 225 0.9300 1.0850 0.8500 1.2250 350 -0.9440 0.0191 -0.8946 0.0173
35 0.9800 0.7450 1.0350 0.9200 230 0.8500 1.2250 0.7600 1.3500 351 -0.8946 0.0173 -0.8240 0.0157
40 1.0350 0.9200 1.0500 1.0750 235 0.7600 1.3500 0.6700 1.4650 352 -0.8240 0.0157 -0.7390 0.0143
45 1.0500 1.0750 1.0200 1.2150 240 0.6700 1.4650 0.5750 1.5550 353 -0.7390 0.0143 -0.6600 0.0126
50 1.0200 1.2150 0.9550 1.3450 245 0.5750 1.5550 0.4500 1.6350 354 -0.6600 0.0126 -0.5500 0.0114
55 0.9550 1.3450 0.8750 1.4700 250 0.4500 1.6350 0.3200 1.7000 355 -0.5500 0.0114 -0.4400 0.0105
60 0.8750 1.4700 0.7600 1.5750 255 0.3200 1.7000 0.1850 1.7500 356 -0.4400 0.0105 -0.3300 0.0098
65 0.7600 1.5750 0.6300 1.6650 260 0.1850 1.7500 0.0500 1.7800 357 -0.3300 0.0098 -0.2200 0.0094
70 0.6300 1.6650 0.5000 1.7350 265 0.0500 1.7800 -0.0900 1.8000 358 -0.2200 0.0094 -0.1100 0.0092
75 0.5000 1.7350 0.3650 1.7800 270 -0.0900 1.8000 -0.2300 1.8000 359 -0.1100 0.0092 0.0000 0.0091
80 0.3650 1.7800 0.2300 1.8000 275 -0.2300 1.8000 -0.3650 1.7800 360 0.0000 0.0091 0.0000 0.0000
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B.2 Conversion of 2-D Lift and Drag Coefficients to 3-D

Sheldhal experimentally measured lift and drag coefficients for angles of attack from

zero to 360 degrees for several Reynolds numbers. The tests used a uniform wing that

crossed the entire wind tunnel, generating values for a 2-D wing. The values must be

converted to 3-D to account for the edge effects of a finite wing. The coefficients are

symbolically changed from Cl and Cd, to CL and CD to reflect this conversion. To

make the model behave more smoothly, all lift and drag coefficients used correspond

to a Reynolds number of 360,000. Initial simulation showed that this was the primary

operating range of the kite.

For an infinite wing, air can only flow over or under the wing. For a finite wing,

air also flows from under the wing, around the tips toward the low pressure area

above the airfoil. This effect reduces lift while increasing drag. To account for this,

the lift and drag coefficients are adjusted by using the lift slope method described by

Anderson [1].

The initial slope of the 2-D data, a0 in Eqn. B.1, and airfoil parameters are used

to calculate a corrected slope, a in Eqn. B.2. The corrected lift coefficient, Eqn. B.3,

is defined by a line of this slope with an offset (zero in this case, as none is needed for

a symmetric airfoil) is extended until it intersects the original 2-D data. Beyond this

point the airflow has separated and there is little difference between 2-D and 3-D lift

coefficients.

a0 =
dCl
dα

(B.1)

a =
a0

1 + a0
πARe1

(B.2)

CL = aα (B.3)

The flow around the wing tips generates induced drag, which is added to the 2-D drag

coefficient to convert to 3-D. Induced drag is related to the lift coefficient as seen in
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Eqn. B.4.

CD = Cd +
C2
L

ARπe
(B.4)

The parameters e and e1 are efficiency factors that typically range from 0.85 to 0.95,

and are assumed to both be 0.9 [1]. AR is the aspect ratio, which for the square kite

used in this study is 1. Figures B.1 and B.2 show the 2-D and converted 3-D lift and

drag coefficients for all possible angles of attack.
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Fig. B.1: Plot of 2-D and 3-D lift coefficients. 2-D coefficients were taken from Sheldhal and Klimas
[20] and converted to 3-D following the method described by Anderson [1].
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[20] and converted to 3-D following the method described by Anderson [1].
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Appendix C

Calibration

C.1 Motor Input

The motor controller receives a serial pulse train from the control algorithm to set the

new desired speed. The motor controller recognizes values from zero to 127, for stop

to full forward, or reverse if negative. To determine the actual speed of the motor

for control purposes, rotation speed was measured using a variable frequency strobe

light. A reflective washer was attached to the wheel and the strobe frequency was

adjusted until the washer appeared to remained stationary from one strobe to the

next. Motor input values from -45 to 45 were measured and are shown in Fig. C.1

along with the linear fit in Eqn. C.1.

Speed [m/s] = .0785 ∗ control input (C.1)

C.2 Load Cells

The load cells are oriented to be mutually orthogonal. Each load cell was calibrated

individually. The tether guide was removed and a mass was tied directly to the corre-

sponding connecting rod. The structure was rotated to vertically align the tested axis
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Fig. C.1: Scaling of motor controller input value to generated motor speed.

to produce pure tension loading. The hanging mass ranged from 0.1kg up to 2.8kg.

The load cells are rated to 5kg, but for mass over 2.8kg the kite tether used to suspend

the masses would break, showing that measurement beyond 2.8kg was unnecessary.

The noise averaged sensor value was recorded and a linear fit line produced for each

axis. Only the slope of the line is important for experimentation, as the offset will

change depending on temperature and any pre-loading from the frame. The measured

data and linear fit for each axis are shown in Fig. C.2 and Eqns. C.2-C.4.

Fx = 47.342 ∗ sensor + xoffset (C.2)

Fy = 46.307 ∗ sensor + yoffset (C.3)

Fz = 47.450 ∗ sensor + zoffset (C.4)

As seen in Fig. C.2, each load cell is highly linear and matches the data well across

the entire tested range. Off-axis loading arising from bending and torsion is not

considered, as the strain gauge cannot distinguish the difference. This will be the
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main source of error for tension and position measurements. The design of the tether

guide minimizes this by allowing some freedom of movement.
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Appendix D

Data Acquisition Code

All automated data acquisition in this study was conducted with National Instruments

LabView program. The code gathers data from the load cells and encoder to estimate

kite position and orientation and uses that information to determine the appropriate

motor speed to maintain flight. A zoomed out image of the full code is given in

Fig. D.1. To better document its function, the code was broken down into smaller,

functional components for each individual measurement.

D.1 Load Cell VI

The load cell code is given in Fig. D.2. The system uses three orthogonal load cells

to measure the tether tension and direction. The program starts by initializing each

of the sensors; setting the data rate and gain to be used. The next step is to zero the

load cells. The calibration conducted in App. C.2 initially provided linear calibration

curves with slope and offset values. The offsets were neglected because the load cells

are sensitive to any temperature change or tightening of the overall structure. This

could cause changes in the offsets, reducing accuracy. Instead, only the slopes of the

lines are used, and a new offset is calculated before the main loop of the program.

The “Zeroing Loop” labeled in Fig. D.2 builds an array of raw sensor values

for zero load and averages them. Due to initial communications errors, the sensors

occasionally read high (106 and above) values. The true/false case structure checks
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the magnitude before appending to the array to avoid these errors. The values are

then averaged and sent into the main while loop where the sensors are polled in each

iteration and the offset and calibration slopes are used to calculate the tether tension,

zenith angle, and azimuth angle. The values are output to a tab delimited text file.

When the user stops the program the while loop exists and the resources are cleared.

D.2 Motor Control VI

The motor code is shown in Fig. D.3. It begins by creating a digital physical channel

(an active voltage output that can either be high or low, 5V or 0V) and starting

a task. It then enters a while loop that keeps the program running until ended by

the user. Within the while loop a series of case structures (boxes with cross-hatched

edges) converts the speed into an 8-bit binary array. The pololu motor controller

is set to TLL Serial mode to read the value. The full motor signal array consists

of 20 bits, each providing different information as shown in Tab. D.1. The motor

reads values in least significant bit first format. The motor direction value is 225 for

forward or 224 for reverse. Converted to binary and bounded by a low start bit and a

high stop bit, this becomes: 0100001111 for forward and 0000001111 for reverse. The

motor speed value is similarly converted. The array is fed into a timed for loop that

runs twenty times. Each iteration of the for loop draws the corresponding value from

the array and sets the output state to either high (true) or low (false). The baud

rate of the the motor controller is set to match the timing of the for loop. Every run

of the while loop generates a new pulse train. When the user ends the while loop,

another for loop sends the stop signal to the motor controller.
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Table D.1: Definition of Digital Pulse Train Sent to Motor to Control Speed

Bit# Value

1 START

2

Motor Direction

3
4
5
6
7
8
9

10 STOP

11 START

12

Motor Speed

13
14
15
16
17
18
19

20 STOP
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D.3 Encoder VI

The encoder is attached to the motor to measure rotation and rotation rate. The

encoder measurement code is shown in Fig. D.4. It starts by setting the encoder

count to zero. Then it polls the counter to determine how far the motor has rotated.

The encoder generates 1440 counts per revolution, or 0.25◦ per count. Using this

value and the radius of the reel (measured to be 0.0604 meters) the tether length can

be calculated, as in Eqn. D.1.

tether length = n counts ∗ 1 rev

1440 counts
∗ 2π ∗ radius

1 rev
(D.1)

To find the speed of the tether, simple finite difference is used. Shift registers feed the

previous tether length and time stamp into the while loop where they are subtracted

from the current value. Equation D.2 is then used to calculate tether speed.

tether speed =
∆length

∆time
(D.2)
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Appendix E

Equipment Specifications

Table E.1: Data Acquisition and Control System Component Specifications

Components Manufacturer Part Number Description

Load Cell Phidgets 3133 0
0-5 kg capacity shear
force load cell

Wheatstone Bridge Phidgets 1046 0
4-input Wheatstone
bridge, 125 sample/s

Motor and Encoder Phidgets 3269E 1
24V, 4.25:1 gear motor,
quadrature encoder,
1440 counts/rev

Motor Controller Pololu JRK 21v3
PID controller, receives
serial or analog input,
variable baud rate

Encoder Counter Phidgets 1065 0
Motor controller, used
for encoder counter

Pulse Train National
NI USB-6210 Digital and analog I/O

Generator Instruments
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