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Abstract 

Leukocyte rolling is known to be mediated by the selectin family of adhesion molecules and 

their corresponding ligands and is characterized by the formation and breakage of receptor-

ligand bonds. Selectin mediated rolling is associated with the initial stages of the leukocyte 

adhesion cascade (LAC) in which the cell passes through several stages including chemo-

attraction, rolling adhesion, tight adhesion and transmigration before moving out of the 

circulatory system towards the site of injury. This thesis studies the initial stages of the leukocyte 

adhesion cascade through a direct numerical simulation based on boundary element techniques. 

Besides, cell deformation during rolling is believed to further enhance rolling interactions. This 

feature is accounted for by implementing a constitutive model that qualitatively represents the 

morphology of white blood cells in the early stages of selectin mediated rolling. This research 

describes the contribution of contact mechanics towards modulation in the contact area for cell 

substrate interactions. The results predict that compliant cells could roll slower (~ 25%) as 

compared to their stiffer counterparts. The effect of variations in cell size and bond compression 

on the decrease in the translational velocity as well as the inherent noisiness in the translational 

velocity is investigated.   

The latter part of this thesis attempts to quantify hydrodynamic recruitment of leukocytes 

with a view to providing insights into cell trafficking in physiological phenomena such as the 

homing of stem cells towards bone marrow. In vivo experimental data of leukocyte 

accumulations during exposure to Zymosan-Activated Serum (ZAS) in rabbits and immune 

response in hamster cheek pouches appears to reinforce this hypothesis. The influence of 

deformation on the attachment of free-stream cells through collisions and near wall interactions 

with adherent cells is numerically investigated. The trajectories of free-stream cells colliding 
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with deformed adherent cells are computed through a series of glancing collisions in order to 

study the influence of cell shape on secondary recruitment.  
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1 INTRODUCTON 

1.1 Immune Response 

 

Fig. 1.1 The Leukocyte Adhesion Cascade. 

The innate immune response involves the recruitment of white blood cells or leukocytes that 

move out of the circulatory system, towards the site of trauma. This process is known as 

leukocyte diapedesis and involves several stages including chemoattraction, rolling-adhesion, 

tight adhesion and transmigration (Ley et al. (2007)). Upon activation by inflammatory stimuli, 

macrophages release cytokines and prompt endothelial cells in the proximity of the infection site 

to express selectins. Leukocyte rolling is mediated by P- and E-Selectin (expressed on 

endothelial cells) and their corresponding ligands found on the tip of the leukocyte microvilli. 

Activated integrins bind tightly to receptors on endothelial cells and further decrease the cell’s 

rolling velocity. Eventually, reorganization of the cytoskeleton causes it to spread over 

endothelial cells. The extension of pseudopodia enhances cell motility and enables the 
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leukocytes to pass through the endothelium and ultimately to the site of trauma (Fig. 1.1). The 

process is characterized by a progressive morphological change from a nearly spherical shape to 

a flat oblate spheroid. It is believed that deformation of rolling leukocytes enhances rolling 

interactions and plays a role in diapedesis (Gee and King (2010)). 

Deficiencies in E- and P-Selectin can negate inflammatory response (Kunkel and Ley 

(1996)). Moreover, defective integrins impair the ability of leukocytes to stop and undergo 

diapedesis resulting in leukocyte adhesion deficiency (LAD) (Kinashi et al. (2004)).  

1.2 Mathematical Modeling of Blood Flow 

Blood consists of erythrocytes, leukocytes and thrombocytes suspended in viscous plasma. A 

milliliter of blood contains approximately 107 white blood cells. As indicated in Figure 1.2, these 

cells are composed of a nucleus, granules, cytoplasmic fluid, cytoskeleton, membrane and other 

organelles.  

 

Fig. 1.2 Structure of neutrophils. 
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The space between the nucleus and cell-membrane is filled with cytoplasmic fluid that 

corresponds to nearly half the volume of the cell. While the membrane controls transport into 

and out of the cell, the granules play a role in lysis. The exterior surface of the membrane is 

covered with undulations (microvilli) which represent folds of excess membrane. 

Figure 1.3 is a scanning electron micrograph which clearly illustrates the surface 

morphology of the leukocyte microvilli. P-Selectin ligands such as P-selectin glycoprotein  

 

Fig. 1.3 Scanning Electron Micrograph (SEM) of a white blood cell (Courtesy: Dr. Thomas R. Gaborski (SiMPore 

Inc.)). 

ligand-1 (PSGL-1) and L-Selectin are expressed on the tips of the microvilli and β2 integrin 

adhesion molecules such as Lymphocyte function-associated antigen 1 (LFA-1) and 

Macrophage-1 antigen (Mac-1) are preferentially located in the folds between successive 

microvilli.  

A variety of computational techniques have evolved to solve problems involving 

immersed objects, following the pioneering work of Fröhlich and Sack (1946). Domain based 

methods including volume of fluid and the immersed boundary method (IBM) have been 

employed to simulate blood flow and have been coupled with finite element methods to model 
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cell deformation. However, such numerical schemes tend to be computationally expensive, since 

they necessitate a complete discretization of the flow domain. Besides, since the flow domain is 

confined by the bounding box, free-stream and rolling cell travels are limited. Moreover, 

simulations involving multiple cells required approximately 100 hours of CPU time (Jadhav et 

al. (2007), Hoskins et al. (2009)). The numerical strategy adopted in this thesis is based on 

boundary element techniques (BEM) that are ideal tools to solve problems involving 

suspensions. A 3D problem could be solved by surface discretization, since the problem 

dimensionality is reduced by one. Multi-particle simulations are thereby not as computationally 

intensive as the aforementioned domain based methods. For instance, King and Hammer (2001a) 

simulated an array of 14 adherent cells as opposed to 6 cells tested by  Pappu et al. (2008), to 

estimate stable rolling of leukocytes. Furthermore, the cell travel is not limited by the size of the 

flow domain. Our method involves a range completion of the double layer and is known as the 

Completed Double Layer Boundary Integral Equation Method (CDL-BIEM) (Phan-Thien and 

Fan (1996), Phan-Thien et al. (1992)).  

The origins of biological cell modeling can be traced back to the fundamental fluid 

dynamics problem of the deformation and dislodging of liquid drops. The complex nature of the 

leukocyte structure has generated considerable debate regarding the appropriate constitutive 

model. Lim et al. (2006) summarize several constitutive models proposed for living cells and 

discuss the advantages and limitations of each model.  While Dong et al. (1999) modeled the cell 

as a Hookean ring surrounding an incompressible fluid, N’Dri et al. (2003) hypothesized that the 

cell could be modeled as a two-dimensional compound liquid drop. These ideas have been 

extended to 3D by Jadhav et al. (2005), Pappu and Bagchi (2008) and Pappu et al. (2008) via a 

Neo-Hookean elastic membrane that describes the non-linearity in material response.  
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Fig. 1.4 Leukocyte modeled as a linear elastic solid. 

The ability of leukocytes to undergo large deformations has also been modeled using 

compound viscoelastic drop models proposed by Khismatullin and Truskey (2012). The present 

study accounts for cell deformation by approximating the leukocyte as a Hookean solid with 

material parameters η, νp (Fig. 1.4). This constitutive material model has been adopted 

previously by Wankhede et al. (2006) and suitably represents the small deformations associated 

with selectin-mediated rolling. 

1.3 Modeling Biochemistry 

Leukocyte rolling is characterized by the formation and breakage of receptor-ligand bonds, 

thereby making the behavior noisy. A probabilistic model formulated by Bell (1978) has been 

frequently employed in prior studies to model adhesive interactions between the cell and the 

substrate and the same is adopted in this work. 
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1.4 Leukocyte Trafficking 

The necessity to quantify factors leading to cell trafficking arises from the accumulation of 

multiple cells to combat an infection. King and Hammer (2001a,b) described a “hydrodynamic 

recruitment” mechanism through which a firmly adherent rigid cell could recruit circulating 

cells. This has been supported by experimental evidence in cell-free assays (King et al. (2001)) 

and measurements of leukocyte capture in vivo using hamster cheek pouch (Lee and King 

(2006)). The multi-particle adhesive dynamics simulation was employed by King and Hammer 

(2001b) to model this phenomenon. 

1.5 Novelties in Proposed Research 

The role of contact forces for deformable leukocytes modeled has not been thoroughly 

investigated for tethered cells in static equilibrium (Smith et al. (1999)). Besides, Wankhede et 

al. (2006) assume a constant, time-independent contact area that arises from the wall reaction. 

Moreover, the existing bio-chemistry subroutine computes the number of receptors available for 

bond formation based on the proximity of the cell to the reactive substrate. The proposed 

formulation supplements this algorithm by including a dynamically evolving interfacial contact 

based on the theoretical model formulated by Hertz for an elastic sphere in contact with a rigid 

wall (Villaggio (1996)).  

 Secondary recruitment studies conducted by King and Hammer (2001b) comprise of 

spherical adherent or slowly rolling cells interacting with free-stream cells. However, in an 

actual physiological scenario, the free-stream leukocytes could potentially encounter adherent 
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cells at varying stages of the adhesion cascade. The influence of adherent cell deformation on 

cell accumulation is thereby accounted for and forms the central theme of this thesis. 

 Additionally, the integration of the adjoint double layer kernel over the singular element 

was achieved by subtracting the contribution of the corresponding integrals over the remaining 

elements. In this thesis, this integration is achieved by subtracting the integration of the double 

layer kernel over the non-singular elements as proposed by Phan-Thien and Fan (1996). 

Moreover, validation of the modified kernel functions for the half-space are investigated through 

a series of test cases involving non-spherical deformable inclusions in the proximity of the rigid 

substrate.  

 Unlike previous studies conducted with the multi-particle adhesive dynamics algorithm, 

that elucidated the ability of lubrication forces to induce cell deformation, the proposed work 

accounts for these short range non-adhesive interactions. From a programming viewpoint, the 

source code has been modified to input different meshes within the same simulation. The 

accuracy of the numerical scheme that was limited to 2nd order Gaussian quadrature has been 

supplemented with the higher order quadrature schemes.      

1.6 Statement of Work 

“To simulate the deformations of rolling white-blood cells adhering to the endothelium in order 

to study effect of deformation on recruitment of WBC’s to sites of injury or  infection with a 

view to reduce the dependency on extensive experimentation.” 
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1.7 Thesis Objectives and Scope 

• The probabilistic bond-kinetics algorithm is appropriately modified to account for cell 

deformation and its effect is assessed on the rolling velocity of the cell. 

• The hydrodynamic recruitment of free-stream leukocytes is investigated using the steady-

state morphologies of deformed, adherent cells.  

• The research only accounts for infinitesimal to moderate deformation of the leukocytes. 

Non-linear material response is beyond the scope of this thesis. 

• Dynamic deformation and mobility simulations have been restricted to solitary cell 

rolling studies. 

• This thesis addresses secondary recruitment through hydrodynamic interactions between 

adherent and free-stream leukocytes. Other modes of secondary recruitment stemming 

from binary interactions between free-stream WBCs or L-selectin mediated cell-cell 

adhesion are only briefly introduced. 

 Chapter 2 discusses the theoretical model including the numerical 

methodology, its implementation and results from several fundamental test cases. Short-range 

adhesive interactions such as electrostatic repulsion and lubrication are reported in Chapter 3. A 

formulation for computing the interfacial contact area stemming from cell compression and its 

subsequent effects on adhesive interactions is addressed through a series of rolling simulations 

for solitary cells of varying sizes and compliances in Chapter 4. Chapter 5 discusses the primary 

goal of this thesis: the phenomenon of secondary recruitment of free-stream leukocytes through 

binary interactions with firmly adherent deformed cells.  
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2 THEORETICAL MODEL 

2.1 Problem Formulation 

We use the parallel plate flow chamber to study cell-substrate adhesion. The flow domain is 

bounded by two infinite parallel plates (the lower surface of which is functionalized with 

adhesion molecules to simulate the inflamed endothelium) and the channel height is much 

greater than the radius of the rolling cell. The flow domain is representative of 2D flow and is a 

reasonable model for leukocytes in microcirculatory flow. The velocity profile near the surface is 

assumed to be linear and the motion of a leukocyte in the proximity of the substrate can be 

described as a treading motion for the inclusion in a semi-infinite shear flow, as indicated in 

Figure 2.1.  

 

Fig. 2.1 Elastically deformable particles in wall bounded shear (Couette) flow. 
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Moreover, the Reynolds number associated with the flow in these experiments is << 1 

and the Navier-Stokes equations reduce to Stokes equations.  

0=⋅∇ v , 2vµ−∇ + ∇ = 0p   (2.1)        

where v, p are velocity and pressure, respectively. No slip boundary conditions are enforced at 

the planar interface at all times. Particles immersed in the flow are subjected to stresses arising 

out of intercellular collisions, adhesive interactions and fluid shear. For a deformable particle, the 

deformation is computed by first determining the traction distribution over the cell surface. Small 

displacements in an isotropic, homogenous elastic solid are governed by Navier’s equation, 

21

1 2 p

u u
ν

∇∇⋅ + ∇ =
−

0  (2.2) 

where u, νp are displacement and Poisson’s ratio, respectively. The three problems of interest 

have been termed mobility (translation and rotation), exterior (surface traction), and interior 

(deformation). The following section discusses the formulation of boundary element techniques 

employed to solve these three problems. 

2.2 Boundary Element Method 

A.      Mobility Problem 

The CDL-BEM is employed to solve the mobility problem of the inclusion. The starting point is 

the integral representation of the Stokes equations, derived using the Lorentz reciprocal theorem. 

( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )ijk kiX x x X x x x X x x xσ+ Σ =∫ ∫
p p

j k i ij k

S S

v n v dS G n dS , D∈X   (2.3) 
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where Gij (Oseen-Burger tensor or Stokeslet) is the i-component of velocity due to a point force 

acting at X in the j-direction, Σijk(x,X) is the associated stress, S = ⋃Sp, where p = 1,2…M and M 

is the number of particles. Here, n represents the outward normal and σσσσ is the fluid stress tensor 

given by 

 ( ( ) )σ I v vµ= − + ∇ + ∇ tp   (2.4) 

The integrals on the right and left hand side of Eq. (2.3) are known as the single and 

double layer potentials, respectively, in analogy with potential theory. Decoupling the mobility 

problem from the traction and displacement problems permits the mobility calculation of the 

particle as a rigid body (Phan-Thien and Fan (1996)). The velocity representation using only the 

single layer potential results in an ill-conditioned Fredholm integral equation of the first kind. 

This problem is circumvented by dropping the single layer term and expressing the velocity 

integral as a Fredholm integral equation of the second kind with an unknown surface density φ, 

( ) ( ) ( , ) ( ) ( )j iξ ξ x ξ x xϕ ϕ= + ∫
p

j ij

S

v K dS , ξ ∈ pS   (2.5) 

where Kij is the double layer kernel and is given by,   

            ( , ) 2 ( ) ( , )ijkx ξ x x ξ= Σij kK n   (2.6)             

 A factor of two is included in the above expression in order to achieve a spectral radius of 

unity. The eigenvalues Γ of the double-layer are real such that |Γ| ≤ 1 (Phan-Thien and Tullock 

(1993)). For Γ = -1, there are six null solutions to the double layer kernel, each corresponding to 

a rigid body mode of the particle. Thereby, for every particle one needs to impose six linearly 

independent constraints in order to render a unique solution. Power and Miranda (1987) 
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recognized this and sought to complete the double-layer representation by using velocity fields 

of point forces and torques and associated them with the null solutions on the particle surface 

( ) ,=p p,l
lF ϕ ϕϕ ϕϕ ϕϕ ϕ   (2.7)                                     

( ) ,+=p p,l 3
lT ϕ ϕϕ ϕϕ ϕϕ ϕ   (2.8)                                            

where (l=1,2,3) represents translation, ((l+3)=4,5,6) represents rotation of particle p, and ,⋅ ⋅

denotes the natural inner product 

( ) ( ), δ δ=p,i q, j
pq ijϕ ϕϕ ϕϕ ϕϕ ϕ   (2.9) 

The null solutions are normalized with respect to the inner product and are given by 

( )l e=p, l

pS
ϕϕϕϕ  (2.10) 

( ) e+ = ×p,l 3
l

l

1

I
ϕ ρϕ ρϕ ρϕ ρ  (2.11) 

where { }el are the unit vectors along the xl directions,ρ ξ x= − (p)
c  is the position vector from the 

center of Sp to a point ξ on the surface (i.e.,ξ ∈ pS ) and  Il are the normalized constraints 

expressed as 

2 2
2 3( )ρ ρ= +∫

p

1

S

I dS  (2.12) 

2 2
3 1( )ρ ρ= +∫

p

2

S

I dS  (2.13) 

dSI
pS

3 )( 2
2

2
1 ρρ += ∫   (2.14) 
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Equations (2.10)-(2.14) are applicable to spherical inclusions. A Gram-Schmidt 

orthonormalization technique is essential for non-spherical inclusions; previously incorporated in 

the formulation by Mody and King (2005) to simulate the mobility of oblate spheroids. The 

aforementioned procedure that maps the eigenvalue of -1 to zero without affecting the rest of the 

spectrum is known as the Wielandt’s deflation scheme and will be employed in the exterior and 

interior problems as well. In order to ensure that the problem could be solved iteratively, the 

eigenvalue of +1 is also deflated by introducing orthonormalized eigenvectors ψp, of the adjoint 

K* such that 

( )p n=
p

ξ
S

ψψψψ , pS∈ξ   (2.15)        

The final integral expression is given by 

( ) ( ) ( ) ( ) ( ) ( )
j j

1
( ) ( , ) ( ) ( ) ( ) , ( ) , ( ) ( ) ,

2j i jξ x ξ x x ξ ξ ξ ξ bϕ ϕ ϕ ψ ψ+ + − = −∫
p

p,l p,l p p p p
ij j

S

K dS bϕ ϕ ψ ϕ ψϕ ϕ ψ ϕ ψϕ ϕ ψ ϕ ψϕ ϕ ψ ϕ ψ  

where 

1

1
( ) ( ) ( ( ) ) ( , )

2 iξ ξ ξ x∞

=

= − + − ×∇∑
M

(p) (p) p
j j i i ji c

p

b v F T G   (2.16)       

Once φ is computed, the velocity is determined using the following expression 

( ) ( )( ) ( ) ,lξ ξϕ= − p,l p,
j jv ϕ ϕϕ ϕϕ ϕϕ ϕ   (2.17)           

The Stokeslet must be supplemented with image and extra terms in order to account for 

the half space (Fig. 2.2) (Tran-Cong and Phan-Thien (1986), Phan-Thien et al. (1992)); 

(Appendix A). This method of reflections (Ainley et al. (2008), Blake (1971), Blake and Chwang 

(1974)) implies that the container surface does not require discretization.  
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B.      Exterior Problem 

The traction based Completed Adjoint Double Layer Boundary Element Method (CADL-BEM) 

(Phan-Thien and Fan (1995)) is adopted for the traction distribution on the cell surface. The 

single layer representation of the velocity field is: 

( ) ( , ) ( ) ( )X x X x x∞= − ∫
p

j j ij i

S

v v G t dS   (2.18) 

 

Fig. 2.2 Method of reflections to satisfy boundary conditions of no-slip and no-displacement boundary conditions at 

rigid substrate. 

The traction at domain point X, with unit normal nk(X), generated by the velocity field is 

2 ( ) 2 ( ) ( , ) ( ) ( )X X x x xξ∞ ∗= − ∫
p

j j ij i

S

t t K t dS  (2.19)    
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where ∞
jt  is the ambient traction and ∗

ijK  is the associated traction of Gij, also known as the 

adjoint double layer kernel. 

),()(2),( XxXXx jikΣ−=∗
kij nK   (2.20)         

Phan-Thien and Tullock (1993) and Phan-Thien and Kim (1994) discuss the spectral properties 

of the double layer and its adjoint in depth. When the domain point � approaches the particle 

surface, the adjoint double layer suffers a jump discontinuity equivalent to –tj. Hence, (2.19) can 

be re-arranged to give 

( ) ( , ) ( ) ( ) 2 ( )ξ x x x ξξ∗ ∞+ =∫
p

j ij i j

S

t K t dS t  , ξ ∈ pS  (2.21)          

The spectral radius of the adjoint double layer is equal to unity. The eigenvalue Γ = -1 is 

associated with six eigenfunctions representing the rigid body motions of the particle (as 

discussed in the previous section). In order to generate a unique solution, six independent 

constraints in the form of forces and torques are specified on the particles. For spherical 

inclusions, 

3 3
( ) ( )

1 1

1 1
, t

= =

= ⋅ =∑ ∑ ∫
p

p,l p,l (p)
l l

l lp ps

e e tdS F
S S

ϕ ϕϕ ϕϕ ϕϕ ϕ   (2.22)        

( )3 3
( ) ( ) ( )

1 1

( )

, t t
δϕ ε

ε

+ +

= =

= × ⋅

=

∑ ∑ ∫
p

p
p,l 3 p,l 3 pil k

j ijk l(p)
l l l S

(p)
pl

jlk k(p)
l

r
e r dS

I

T
                                  r

I

ϕϕϕϕ

 (2.23) 

For non-spherical inclusions, the RHS of Eqs. (2.22-23) are linear combinations of the external 

forces and torques on the particle.  
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Equations (2.22) and (2.23) are linearly combined with Eq. (2.21) to give the final 

boundary integral equation for the traction problem: 

( ) ( )( ) ( , ) ( ) ( ) ( ) , ( )ξ x x x ξ t ξξ∗+ + =∑∫
p

p,l p,l
j ij i j

p,lS

t K t dS bϕ ϕϕ ϕϕ ϕϕ ϕ   (2.24)    

where 

 ( )1
( ) 2ξ ε∞

  = + + 
  

∑
(p)

(p) pl
j j jlk k(p)

p p l

T
b t F r

S I
 (2.25)   

Unlike for the double layer, the Wielandt deflation scheme is employed to map only the 

eigenvalue of -1 to zero. As reported by Phan-Thien and Fan (1996), the deflation of the 

eigenvalue of +1 is not necessary for the exterior problem.  

C.      Interior Problem 

Cell rolling deformations at low to intermediate stresses (≤ 5 dyne/cm2) are relatively small and 

can be approximated by a linear elastic model. Evans et al. (2005) showed that for compressive 

deformations of the order of hundreds of nanometers, neutrophil response is well approximated as 

a Hookean solid. Using Betti’s reciprocal theorem, the integral equation for the displacement u is 

given by 

( ) ( , ) ( ) ( ) 2 ( , ) ( ) ( ) ( )kiξ x ξ x x x ξ x x xσ= − +∫ ∫
p p

j ij i ij k

S S

u K u dS G n dS   (2.26)    

where each particle is assumed to be Lyapunov smooth (i.e., having well-defined unit normal 

vector). Gij(x,ξ) gives the i-component of displacement due to a point force acting at ξ in the j-

direction and is known as the Kelvinlet. Since the spectral radius of the elastic double layer is 

unity, the eigenvalue Γ = -1 has six independent eigenfunctions, each corresponding to a rigid 

body motion of the particle (i.e., e1, e2, e3, e1 x r, e2 x r, e3 x r, where {ek} is the Cartesian unit 
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vector and r = x – x(p) is the position vector from the particle center x(p)). The corresponding 

orthonormalized eigenfunctions for a sphere are 

( )k e=p, k

pS
ϕϕϕϕ    (k = 1, 2, 3) (2.27)                  

( ) r e+ = ×p,k 3 p
kp

k

1

I
ϕϕϕϕ  (2.28) 

where 

2( )r r = ⋅ − ∫
p

p p p p
k k

S

I r  dS  (2.29) 

The six linearly independent constraints imposed on the solution are of the form 

( ) , 0u =p,lϕϕϕϕ    l=1,2…6 (2.30)                   

and are linearly combined with Eq. (2.26) to give the final integral expression, 

( ) ( )( ) ( , ) ( ) ( ) ( ) , 2 ( , ) ( ) ( ) ( )kiξ x ξ x x ξ u x ξ x x xσ+ + =∑∫ ∫
p p

p,l p,l
j ij i ij k

p,lS S

u K u dS G n dSϕ ϕϕ ϕϕ ϕϕ ϕ   (2.31)    

The traction solution from the exterior problem serves as an input to the right hand side of Eq. 

(2.31), using which the displacement is solved for iteratively. The Wielandt deflation maps the 

eigenvalue of -1 to zero, while retaining the rest of the spectrum. Moreover, unlike the mobility 

problem, deflation of the eigenvalue of +1 is not necessary for the interior problem (Phan-Thien 

and Fan (1996)). 
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2.3 Numerical Validation 

The validity of the BEM formulation was determined through a series of simulations involving 

the translation and rotation of deformable spherical and spheroid inclusions in the proximity of 

the substrate.  The surfaces of the particles are discretized using QUAD9 Lagrangian elements 

(Fig. 2.3). 

 

Fig. 2.3 QUAD9 Lagrangian element. 

Super-parametric elements are employed where the unknown is assumed piece-wise 

constant. Numerical integration is performed using up to 3x3 Gaussian quadrature. The six faces 

of a cube are subdivided into 96 elements and projected onto the surface of a sphere (Fig. 2.4a). 

The sphere maybe compressed along an axis to generate oblate spheroids of several aspect ratios 

(Fig. 2.4b). The shear modulus η ranges from 0.5 – 23 Pa (Rosenbluth et al. (2006)), while a 

constant Poisson’s ratio of 0.33 is maintained in all simulations. The positions of all the material 

points are advanced in each time step using Euler’s integration rule. The source code is written in 
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double precision FORTRAN 95 and the output files post-processed in MATLAB. A maximum of 

1000 iterations for solution convergence per unit time step is adopted with the tolerance being set 

at 10-4. All simulations are performed on Sun X4600M2 servers with 2.3GHz AMD Quad Core 

processors at a time step size of 10-4 for a period of 1 s. 

 

                               (a)                                                                                 (b) 

Fig. 2.4 96 element discretization of (a) sphere (b) oblate spheroid. 

A.  EFFECT OF SUBSTRATE ON PARTICLE TRAJECTORIES 

In a zero gravity field, micro-spheres almost move parallel to the wall without crossing the 

streamlines (Bretherton (1962), Goldman et al. (1967a,b)). Vis-à-vis, dense inclusions are found 

to sediment or drift towards the wall (Decuzzi and Ferrari (2006)). On the other hand non-

spherical particles such as spheroids exhibit a more complicated behavior. The Stokes number of a 

particle St is expressed in terms of the Reynolds number Re, particle density ρg and density of the 

surrounding medium ρ as follows: 

ρ
ρ

= gSt Re  (2.32) 

The particle drift was found to increase with increasing St (Lee et al. (2009)). For the simulations  
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discussed in this section Re, St << 1 and the particle follows a periodic motion predicted 

analytically by Jeffery (1922). The variation in the centroidal position of the particle is plotted 

with respect to nondimensional time t that is defined as follows: 

t  = Simulation running time (s) / {Time step (s) x Frequency of data save} 

Therefore for a running time of 1 s, a step size of 10-4 s and data saved every 10 time steps, the 

non-dimensional time is 1000. The same definition is adopted for all simulations described in 

current and subsequent chapters.  

The trajectories of a neutrally buoyant and dense deformable spherical inclusion at shear 

rates of 100 and 200 s-1 are indicated in Figure 2.5. As can be seen, in the absence of gravity, the  

 

Fig. 2.5 Comparison between the trajectories of a buoyant and dense spherical inclusion 

(a = 5 µm, η = 1 Pa, ν = 0.33,γ&  = 100, 200 s-1). 

inclusion appears to move almost parallel to the wall. On the other hand, dense inclusions drift 

towards the wall. Moreover, doubling the shear rate moderately alters the trajectories since the Re 

and St numbers only marginally increase. The particle trajectories for oblate spheroids with aspect 

ratios 0.75 and 0.5 are indicated in Figure 2.6-7.  
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Fig. 2.6 Comparison between the trajectories of a buoyant and dense oblate 

spheroid inclusion (a = 5 µm, η = 1 Pa, ν = 0.33, α = π/2, κ = 0.75,γ&  = 100 s-1). 

 

Fig. 2.7 Comparison between the trajectories of a buoyant and dense oblate 

spheroid inclusion (a = 5 µm, η = 1 Pa, ν = 0.33, α = π/2, κ = 0.5,γ&  = 100 s-1). 

The analytical expression for the time period τ for the Jeffrey’s orbit of a spheroid inclusion with 

aspect ratio κ in an unbounded shear flow (shear rateγ& ) is given by  

( )12πτ κ κ
γ

−= +
&

 (2.33) 
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For an oblate spheroid with κ = 0.75, τ ~ 13/γ&  and for κ = 0.5, τ ~ 16/γ& . The numerical values for 

these time periods are τ ~ 15/γ&  for κ = 0.75 (Fig. 2.6), τ ~ 19/γ&  for κ = 0.5 (Fig. 2.7) and 

represent a modified Jeffrey’s orbit in a wall bounded shear flow (Mody and King (2005)). Figure 

2.8 indicates that by doubling the shear rate, this time period is halved. The results for the 

mobility of both spherical and spheroid inclusions appear to be in good agreement with those 

reported by Lee et al. (2009). 

 

Fig. 2.8 Comparison between the trajectories of a buoyant and dense oblate 

spheroid inclusion (a = 5 µm, η = 1 Pa, ν = 0.33, α = π/2, κ = 0.5,γ&  = 100, 200 s-1). 

B. SHAPE DYNAMICS 

A deformable spherical inclusion placed in a linear shear flow deforms into an ellipsoidal shape 

(Fig. 2.9) in a manner similar to the shearing of a square block into a rhomboidal shape.  

Moreover, the aspect of ratio of the deformed profile is governed by the compliance of the 

material and the fluid shear rate. Steady state profiles for inclusions of varying shear moduli at 

different times are indicated in Figure 2.10.  
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Fig. 2.9 Deformed shape of a spherical inclusion in a shear flow. 

 

Fig. 2.10 Steady state shapes of a deformable spherical inclusion in the proximity of a rigid wall. For both 

simulations a = 5 µm,γ&  = 100 s-1, ν = 0.33: (a), (b) η = 0.5 Pa (c), (d) η = 23 Pa.   
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In Figure 2.10a-b, the shear modulus of the cell is relatively small compared to the fluid 

shear stresses and the sphere deforms into an ellipsoid. On the other hand, in Figure 2.10c-d, the 

shear modulus of the cell is much higher in comparison to the fluid shear stress. The inclusion 

thereby retains its spherical profile. The deformed shapes predicted here are in good agreement 

with those reported for Neo-hookean solids (Gao and Hu (2009)) and elastic capsules (Pozrikidis 

(1995)). Besides, the steady state shapes remain unchanged throughout the simulation (Fig. 2.11). 

 

Fig. 2.11 Tank treading sequence of a deformable spherical inclusion in the proximity of a rigid wall 

(a = 5 µm, η = 1 Pa, ν = 0.33,γ&  = 100 s-1). 

The particle exhibits a ‘tank-treading’ motion in which the particle appears to tumble in place and 

follows the elliptical profile of the deformed shape (Fig. 2.12). This behavior is characterized by 
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the inability of the major-axis of the deformed profile to complete a full revolution comprising of 

2π radians with the minor axis taking its place in every cycle.  

 

Fig. 2.12 Advection of material points along the perimeter of an ellipse. 

The deformation of deformable, initially spheroid particles are similar in nature to their 

spherical counterparts, with the exception that the shape dynamics depends on the aspect ratio of 

these inclusions. Unlike spherical inclusions, a steady state shape is never achieved (Gao et al. 

(2012)). The ratio of the hydrodynamic to the elastic forces is expressed in terms of a 

dimensionless number known as the viscous number Vi.  

µγ
η

=
&

Vi   (2.34)      

Based on the dimensions of the spheroid prior to insertion into the shear flow and the viscous 

number, two forms of shape oscillations are observed – tumbling and trembling. The competition 

between the hydrodynamic shearing forces to deform the material lying along the maximum 

stretch axis (α = π/4) and the elastic forces to restore the deformation generates a condition where 

the long axis in the deformed configuration does not always remain as the reference axis. When 

the hydrodynamic shearing forces are weak as compared to the restoring forces that tend to 
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preserve the shape, the inclusion is said to “tumble.” On the other hand, when the shearing forces 

are comparable in magnitude to the elastic forces, the particle shape deviates from its original 

configuration and is considered to “tremble.” This mode has been observed experimentally by 

Kantsler and Steinberg (2006) and is synonymous to the breathing mode identified by Misbah 

(2006) or the swinging mode described by Noguchi and Gompper (2007). 

 

Fig. 2.13 Tumbling sequence of a deformable oblate spheroid in the proximity of a rigid wall 

(a = 5 µm, η = 1 Pa, ν = 0.33, α = π/2, κ = 0.5,γ&  = 100 s-1). 

In the “tumbling” mode, the major axis makes a complete revolution as observed in Figure 

2.13 for an oblate spheroid with aspect ratio 0.5. A single revolution is characterized by small 

oscillations in the aspect ratio. Unlike tank-treading, where the shape remained stationary, 
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tumbling is associated with a periodic flipping of the particle in the shear plane (Lebedev et al. 

(2007)).  On the other hand, in the “trembling” mode, the long axis never completes a full 

revolution with the minor axis taking its place prior to the completion of 2π radians. In Figure 

2.14, for non-dimensional time t = 750, for the oblate spheroid whose initial aspect ratio was 0.75, 

the deformed configuration is nearly spherical, thereby indicating that a “tumbling” mode 

transitions into a “trembling” mode with an increasing aspect ratio. 

   

Fig. 2.14 Tumbling sequence of a deformable oblate spheroid in the proximity of a rigid wall 

 (a = 5 µm, η = 1 Pa, ν = 0.33, α = π/2, κ = 0.75,γ&  = 100 s-1). 

At a viscous number of 0.1, the present study predicts the transition to occur at an aspect 

ratio in between 0.85 and 0.91. However, at a viscous number of 0.2, the transition occurred at a 
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lower aspect ratio (between 0.5 and 0.75), implying that the strength of the hydrodynamic forces 

equally influenced the trembling or tumbling modes (Appendix B).  

A similar observation was made by Gao et al. (2012) for ellipsoidal inclusions that were 

modeled as a Neo-Hookean solids. For a viscous number of 0.2, the transition from the tumbling 

to the trembling regime was reported to occur at an aspect ratio of 0.681. Moreover, the stress-

strain relation for Neo-Hookean materials can be expressed in terms of the principal stretch ratio λ 

as follows 

2

1σ λ
λ

 = − 
 

E   (2.34)     

where λ = ε +1, ε is the infinitesimal strain. For ε <<1, the term λ2 ~ 1. Thus Eq. (2.34) reduces to     

σ ε= E   (2.35)    

Equation (2.35) represents Hooke’s Law of linear elasticity for infinitesimal deformations. 

Although the non-linear hyperelastic model potentially predicts larger deformations during the 

alternate stretching and compression of the material points, the transition from tumbling to 

trembling as predicted by the linear elastic model is in good agreement with that predicted for 

finite strain models at low hydrodynamic shear forces.  

The computational scheme based on boundary element methods presented here is 

employed in all the simulations in forthcoming chapters including short-range non-adhesive 

interactions between free-stream cells, adhesive interactions for solitary cells and hydrodynamic 

interactions between free-stream and firmly adherent cells. Oblate spheroid shapes have been 

specifically simulated in order to assess the accuracy of the Gram-Schmidt orthonormalization 

introduced into the source code by Mody and King (2005). While Chapters 3 & 4 would involve 
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simulations comprising of spherical cells, this orthonormalization would be crucial to deformed 

cells, whose profiles deviate from a spherical morphology. 
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3 SHORT RANGE NON-ADHESIVE INTERACTIONS 

Collisions between neighboring cells are unavoidable in mathematical modeling of dense 

suspensions of blood cells. Such collisions could potentially lead to membrane overlap of the 

interacting cells. However, in an actual physiological scenario, cells do not overlap or pass 

through the reactive substrate during adhesive interactions. Moreover, the presence of asymptotic 

short-range forces prevents such interferences. While some of these forces arise from the electric 

potential associated with the cells, others prevail due to the pressure buildup stemming from the 

shearing or squeezing of the surrounding viscous plasma. The inclusion of Van Der-Waal’s and 

lubrication forces is to primarily prevent cells from overlapping with each other and interfering 

with the substrate.  

3.1 Van Der-Waal’s Interactions 

At cell membrane separations of 50 - 250 Å, electrostatic repulsive forces prevail since the net 

charge on both cells has the same sign. The magnitude of this force is expressed as 

1

τε

τε
τ −

−=
−
o

rep

F e
F

e
  (3.1)                

where 1/τ – length scale and ε – surface-to-surface separation distance. For cell-cell interactions, 

Frep is directed along the line joining the centers of the two particles and induces perturbations in 

the translation of the interacting particles. For cell-substrate interactions, this force is directed 

normal to the substrate. The value of τ is set at 2000 µm-1, while Fo varies between 106 - 109 pN. 

In order to simplify the modeling, these forces are assumed to not produce any deformation in 

cells in the case of near touching and only affect particle mobilities.  
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The presence of microvilli on the surface of the cell and a steric layer on the wall is 

modeled as a uniform roughness indicated by es and ew, respectively (Fig. 1.4). The values for 

these two parameters were set to 175 and 50 nm, respectively. Both adhesive and non-adhesive 

interactions occur at the tips of these roughness elements. Moreover, since the dimensions of 

these elements are much smaller in comparison with the dimensions of the cell, their effect on 

the flow-field is neglected. 

3.2 Lubricated Collisions 

A thin film of plasma separates interacting cells that are in close contact to one another (Goddard 

(1977)) and the Poisseulle theory of elastohydrodynamic lubrication is applicable to the current 

study where deformations are considered to be infinitesimal. The theoretical background for cell-

cell lubrication is based on the works of Nasseri et al. (2000) and Rognon and Gay (2009). The 

ability of a cell to deform is expressed in terms of the dimensionless elasticity number∈ given by 

1.5
0

2.5
0

4θµ∈=
ε
u a

  (3.2)                

where 0u - initial velocity, 0ε - initial separation,
21 νθ

π
−=

E
, E-Young’s modulus, a-particle radius 

and µ-viscosity of medium. For leukocytes,∈ typically ranges between 10-6 - 10-2 (Chang and 

Wang (1998)), indicating that the cells are reasonably compliant. Although the Poiseulle theory 

of lubrication is synonymous with small deformation theory, the same has been introduced to 

highlight its influence on modulating the intercellular contact area.  

For pairwise interactions, the force inducing deformation Felas is expressed as a sum of 

fluid shear and lubrication forces, 
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lubrshearelas FFF +=   (3.3)        

The lubrication theory has been strictly applied to the deformation of spherical cells with 

identical radii and its effect on particle mobilities has been excluded. Moreover, this study adopts 

a minimum film thickness and assumes that the film is stable with negligible variations in film-

thickness arising from cell deformation. For two equal sized spherical cells ‘A’ and ‘B’ moving 

relative to one another in a viscous medium, the force exerted by particle ‘B’ on ‘A’ is given by, 

sq
lubrAB

sh
lubrABlubr FFF +=   (3.4)        

where the subscripts sh and sq indicate shearing and squeezing, respectively (Nasseri et al. 

(2000)). A unit vector lAB is introduced to define the line joining the centers of particles A and B. 

Additionally, vectors pAB and qAB are defined as follows 

p i j k
⋅ ⋅= + − +
+ +

x z y z
x 2 y 2AB AB AB AB

AB AB ABx 2 y 2 x 2 y 2
AB AB AB AB

l l l l
l l

l l l l
  (3.5)        

q i j= − +
+ +

y x
AB AB

AB x 2 y 2 x 2 y 2
AB AB AB AB

l l

l l l l
 (3.6)                             

where superscripts x, y, z represent global Cartesian co-ordinate system and i, j, k are unit vectors 

in the respective directions. The squeezing and shearing components are given as 

Bllu AABAB
sq

lubrAB

a
F ⋅=

ε
πµ
2

3 2

  (3.7)            

( )BB qqppu AABAABAB
sh

lubrAB

a
aF +⋅






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ε
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where uAB = uA - uB is the relative velocity of cell ‘A’ with respect to ‘B’. Note that the squeeze 

component arises due to the cells approaching each other, while the shear component is 

generated by the cells moving past one another. The right hand side of Eq. (2.25) is suitably 

augmented as per the traction on local elements to compute a converged traction distribution on 

the cell surface. 

3.3 Numerical Validation 

The numerical code has been appropriately modified to account for non-adhesive interactions. 

An adaptive time step of 10-4 - 10-5 is employed based on the proximity of the colliding cells. 

The integration of the double layer and the adjoint double layer over the singular element is 

carried out as per the strategy proposed by Phan-Thien and Fan (1996) with the exception that 

the adaptive discretization of the singular elements has not been included in this thesis.  

The combined effect of colloidal and lubrication forces are illustrated through numerical 

simulations for equal sized cells with a = 5 µm, η = 8 kPa, ν = 0.33 for the first case and a = 5 

µm, η = 4 kPa, ν = 0.33 for the second case. Figure 3.1 indicates the lubrication gap for the two 

cases at the same time instant. Figure 3.1b indicates a larger lubrication gap stemming from the 

compressive deformation of the more compliant cells (η = 4 kPa). The deformed profiles have a 

distinct parabolic profile (Fig. 3.2) (Davis et al. (1986)) and the consequence of the deformation 

is an increased intercellular contact area. Similar cases involving elastic capsules (Jadhav et al. 

(2007)) and droplets (Loewenberg and Hinch (1997)) have been studied previously. 
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                                               (a)                                                                                       (b)                     

Fig. 3.1 Lubricated collisions between two spherical cells in the proximity of the reactive substrate. For both 

simulations a = 5 µm,γ&  = 100 s-1, ν = 0.33: (a) stiff particles, η = 8 kPa (b) relatively more compliant particles, η = 4 

kPa.   

 

Fig. 3.2 Lubricated collisions between elastic spheres. 

Such deformations between colliding neutrophils have been observed in vitro by Kadash 

et al. (2004) in order to understand the influence of the inter-cellular contact area on the shear 

thresholding of leukocytes. The asymptotic variations in the shear and squeeze components with 

surface separation is indicated in Figure 3.3.  
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Fig. 3.3 Variation in shear (□) and squeeze components (◊) of lubrication with increasing cell-cell separation. 

 

Fig. 3.4 Trajectories of free-stream cells undergoing binary collisions in the proximity of the reactive substrate. 

Owing to its position above the wall, the upper cell experiences a lower resistance and 

translates at a higher velocity as compared to its lower counterpart. Eventually, upon catching up 

with the lower cell, the short-range repulsive forces push the cells apart and the lower cell is 

nudged closer to the wall where adhesive interactions are possible (Fig. 3.4). This idea of driving 
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cells towards a reactive substrate via binary collisions has been demonstrated previously (Melder 

et al. (1995, 2000)). Electrostatic repulsion forces introduced in this chapter are also employed in 

simulations involving single cell rolling as this prevents membrane substrate overlap. Moreover, 

the presence of lubrication forces between colliding cells is also acknowledged through the 

aforementioned test cases.  
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4 ADHESIVE INTERACTIONS 

4.1 Modeling Biochemistry 

When a leukocyte is in close proximity to inflamed endothelium, there exists the possibility of an 

antigen on one cell interacting with an antibody on the other cell thereby generating an adhesive 

bond. Bell (1978) studied such adhesive interactions and formulated a theoretical model that 

describes these types of interactions. The model depends on the rates of bond formation and 

breakage, number of receptors per unit area, and the current bond forces. 

The present study models adhesive bonds as Hookean springs and associates the rate of 

bond dissociation kr with the magnitude of the bond force Fbond as 

exp
 

=   
 

bond

0
0

r r
b

r F
k k

k T   (4.1)              

where kr
0, r0 have been determined experimentally, kb is Boltzmann’s constant, and T is absolute 

temperature (King and Hammer (2001a)). Similarly, the rate of bond formation kf follows from 

the Boltzmann distribution for affinity as 

( )0.5
exp

x xσ λ λ − − −
 =
 
 

0
b b0

f f
b

r
k k

k T
  (4.2)       

where σ is the spring constant, λ the equilibrium bond length, x λ−b is the deviation bond 

length. Unlike the studies conducted by Dong and Lei (2000) and Ward et al. (1994), the spring 

constant remains unchanged throughout the simulation. 
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The transient nature of selectin mediated leukocyte rolling has been described as a stop-

and-go motion (Chen and Springer (1999), Kim and Sarelius (2004), Schmidtke and Diamond 

(2000) and Yago et al. (2002)). This stochastic formation and breakage of adhesive bonds is 

modeled using a Monte-Carlo technique.  

The position vector of the microvillus tip xm = {xm ym zm} is tracked as the cell rolls on the 

substrate, while the same for the surface attachment point xo = {xo yo zo} remains fixed. The time 

varying vector describing each bond xb = xo - xm is used to determine the force and torque on 

each bond as follows: 

( ) x x
F x

x
σ λ

 −= −   
 

o m
bond b

b

  (4.3)     

( )bondT x x F= − ×o c bond   (4.4)           

where xc is the position vector of the centroid of the spherical cell. The bond forces and torques, 

as well as the colloidal forces, serve as an input to Equation 2.16 to determine the particle 

mobility, from which the length and orientation of the bonds are updated. 

4.2 Interfacial Compression 

A rolling leukocyte may encounter contact stresses along the interface and deform as a result of 

the interaction. Interfacial compression can increase the contact area (Subramaniam DR (2012)) 

and thereby enhance adhesive interactions (Fig. 4.1). The theory of contact mechanics is 

revisited with a view to explain the modulation of the cell-substrate interface. The distances 

separating the cell and substrate are of the order of 100 nm, thereby permitting a dry contact 

formulation (Rognon and Gay (2008) and Villaggio (1996)).  
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Fig. 4.1 Interfacial compression of an elastic sphere contacting a rigid wall. 

The forces acting on a tethered cell are indicated in Figure 4.2 and for static equilibrium, ΣF  = 0, 

ΣT = 0 (Alon et al., 1995)).  

For equilibrium, 

cosF θ=x
bond bond shearF = F   (4.5)        

sinF θ= =z
bond bond hertzF F   (4.6)         

( ) ( )sin cosθ θ+ + = +x z
bond s shear bond sF a e T F a e   (4.7)  

where θ is the inclination of the bond, es is the cell roughness. The vertical component of the 

bond force Fz
bond tends to restrain the cell against the solid wall. The resulting reaction force 

(Chen and Springer (1999), Smith et al. (1999)) produces a compressive deformation. Similar 

ideas have been proposed by King et al. (2005) and Wankhede et al. (2006) in relation to 

leukocytes modeled as elastic spheres.  
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Fig. 4.2 Force and torque balance on a tethered cell. 

In the absence of tangential traction, using Bondareva’s equation for small contact angles, 

the normal traction distribution on the bottom face is given by Villaggio (1996), 

2

3

2π
= − hertz

0
s

F
t

a
  (4.8)   

where as is the contact radius, and Fhertz is the normal reaction. The contact radius is expressed in 

terms of the cell radius a, the normal reaction and the corrected Young’s modulus Ecorrect (Chang 

and Wang (1998)), 

3
3

4
= hertz

s
correct

F a
a

E
  (4.9)     
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where Ecorrect = E / (1-ν2). Equation (4.8) is used to supplement the right hand side of Eq. (2.25) 

as a traction on local elements to compute a converged traction distribution on the cell surface. 

The area of the interface is then calculated as a circular disk which serves as an input to the bio-

chemistry loop. The logic of the simulation proceeds as follows: 

1. In the first time step, the number of receptors available for bond formation is calculated 

based on the area of a hemispherical cap in the proximity of the substrate (Cozens-

Roberts et al. (1990)). This step serves to “anchor” the cell to the substrate. 

2. In the subsequent time steps, the sum of the normal components of all surviving bonds is 

computed in order to determine the interfacial traction and the contact radius given by 

Eq. (4.8)-(4.9). The resulting contact area is multiplied by the receptor density to 

determine the number of potential bonds that could form in subsequent time steps. 

4.3 Numerical Validation 

Solitary cell rolling simulations were conducted to assess the efficiency of the modified contact 

area logic. The time steps for adhesive interactions were maintained in the range of 10-8 to 10-6, 

while the number of iterations employed for pairwise interactions between free-stream cells were 

adopted in this study. The parameters employed in these simulations are given in Table 4.1. 
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PARAMETER  DEFINITION VALUE 
 a Cell Radius  3-5 µm  
γ&   Shear Rate  100 s-1 
 µ  Viscosity 1 cP  
 ρ  Fluid Density  1 gm/cc 

 ρg   Cell Density  1.05 gm/cc 
es  Cell Roughness  175 nm 
es   Substrate Roughness  50 nm 
σ   Spring Constant  0.5-100 dyn/cm 
λ   Equilibrium Bond Length  30 nm 

kr
0   Unstressed Off-Rate  2.4 s-1 

r0   Reactive Compliance  0.39 Å 
kf

0   Intrinsic On-Rate  365 s-1 
nr   Receptor Density  20 molec/ µm2 

η   Shear Modulus 0.5-10 kPa  
ν   Poisson’s Ratio  0.33 

*Note, some values of shear moduli have been determined using atomic force microscopy 

(AFM) for non-adherent HL-60s, PMNs, and Jurkat cells with v = 0.5 (Rosenbluth et al. (2006)). 

4.3.1. Preliminary Run 

A series of simulations were performed to demonstrate the ability of the area modulation sub-

routine to predict more receptors for deformable cells as compared to their rigid counterparts. 

Adhesive interactions involving two compliant cells with a = 5 µm, η = 0.508 - 1 kPa and ν = 

0.33, and a third rigid cell of the same radius were run for 2000 time steps with σ = 100 dyn/cm. 

Figure 4.3 indicates the effect of the normal reaction on two cells of varying compliance. The 

compliant cell (Fig. 4.3a) is substantially deformed with a flat interface as compared to its rigid 

counterpart (Fig. 4.3b).  

The contact area was found to increase sharply for the most compliant cell, and gradually 

for its stiffer counterparts (Fig. 4.4). Moreover, Figure 4.5 illustrates the direct proportionality 

between the contact area and the normal reaction. Furthermore, the inverse relationship between 
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contact area and compliance is also highlighted in this plot. The average contact area for the 

highly deformable and moderately deformable cell was 6.2 and 1.9 µm2, respectively. The 

increased contact area could result in more receptors being available for bond formation, and 

subsequently slower rolling velocities for more compliant cells. 

 

                                              (a)                                                                                         (b)                     

Fig. 4.3 Tethered cells (a) compressed, compliant (η = 0.508 kPa, ν = 0.33) (b) rigid, a = 5 µm. 

 

Fig. 4.4 Variation in contact area of compliant (◊) and stiff (□) cells with time. 
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Fig. 4.5 Variation in contact area of compliant (◊) and stiff (□) cells with normal contact force. 

Besides, the translational velocities dropped to 130 and 140 µm/s from a free-stream 

velocity of 350 µm/s; for the compliant and stiff cells, respectively (Fig. 4.6). This implies that 

compliant cells could roll considerably slower than their stiff counterparts (Jadhav et al. (2005)).  

 

Fig. 4.6 Drop in the translational velocities of stiff and compliant cells with time. For all simulations a = 5 µm,γ&  = 

100 s-1, ν = 0.33: cell compliance η = 0.508, 1 kPa. 
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4.3.2. Refinement of Results 

Although cell membranes do not possess a yield point, the deformations resulting from these 

simulations were large and may violate the theory of linear elasticity, as well as the Hertzian 

theory for small contact angles. One of the reasons for this ‘large’ deformation appeared to stem 

from the stiffness of the bond in relation to the membrane elasticity. In order to circumvent this 

problem, a series of simulations involving a much smaller bond stiffness (σ = 0.5 dyn/cm) 

(Hammer and Apte (1992)) was run for cells with varying radii (a = 3 - 5 µm) and lower 

compliance (η = 4 - 10 kPa). Besides, this parameter matching was introduced in order to 

generate more stable and longer running simulations. 

 

Fig. 4.7 Rolling sequence of a moderately compliant cell (η = 4 kPa, ν = 0.33, σ = 0.5 dyne/cm, a = 5 µm). 
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The progressive increase in contact area with time is observed from the rolling sequences 

indicated in Figure 4.7-4.8. As compared to the negligible compression observed at t = 250, the 

cell appears to be more compressed at t = 1000, thereby indicating the effect of the wall reaction.  

 

Fig. 4.8 Rolling sequence of a relatively stiff cell (η = 10 kPa, ν = 0.33, σ = 0.5 dyne/cm, a = 5 µm). 

Figure 4.9 compares the drop in the rolling velocity of two cells with identical 

dimensions and varying compliances. The same dropped from a free-stream velocity of 350 µm/s 

to 13 µm/s and 45 µm/s, for the compliant and stiff cells respectively (Fig. 4.9). This implies that 

the adhesion subroutine is consistent irrespective of material parameters. Moreover, the 

translational velocities decreased to a value observed for either in vivo or in vitro cell rolling 

experiments. 
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Fig. 4.9 Drop in the translational velocities of cells of identical dimensions and varying compliance with time. For 

both simulations a = 5 µm,γ&  = 100 s-1, ν = 0.33: cell compliance η = 4, 10 kPa. 

Figure 4.10 compares the drop in the rolling velocities of cells with varying dimensions 

and identical compliance. For a cell with 4 µm radius, the velocity dropped to 7.5 µm/s,  

 

Fig. 4.10 Drop in the translational velocities of cells of identical compliance and varying dimensions with time. For 

both simulations η = 4 kPa,γ&  = 100 s-1, ν = 0.33: cell characteristic radius a = 4, 5 µm. 
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compared to 13 µm/s for a 5 µm radius cell. This implies that smaller cells could potentially roll 

slower than their larger counterparts, primarily because their free-stream velocity is lower. 

 

Fig. 4.11 Variation in contact area for cells with identical compliance and different sizes: a = 4 µm (□), a = 5 µm (◊) 

with normal contact force. For both simulations η = 4 kPa,γ&  = 100 s-1, ν = 0.33.   

The direct proportionality between the contact radius and the cell radius is indicated in 

Figure 4.11. Although the higher contact area for the larger cell resulted in more bonds (39 

surviving bonds) as compared to the smaller cell (33 surviving bonds), the paradox that smaller 

cells could potentially roll slower prevails (Patil et al. (2001)). Besides, the average contact area 

recorded over the entire length of the simulation for the 4 µm and 5 µm cells was 1.87 and 3.19 

µm2, respectively. The contact angle ω is determined using the relation 

1sinω −  =  
 

sa

a
            (4.10) 

For the two cases considered, the same was determined to be approximately 11 degrees, implying 

that the small angle approximation was reasonable.  
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Fig. 4.12 Drop in translational velocities for a compliant cell with adhesive bonds loaded in tension or compression. 

For both simulations η = 8 kPa,γ&  = 100 s-1, ν = 0.33: upper panel – tensile bond forces, lower panel - tensile and 

compressive bond forces.  

In order to portray the noisy nature of leukocyte rolling described earlier, a final set of 

solitary rolling results involving cells with a radius of 3 µm, shear modulus 8 kPa and Poisson’s 

ratio of 0.33 were run for a total of 10000 time steps. An upper limit of 40 bonds was imposed on 

the adhesion loop. In all the aforementioned cases, the adhesive interactions were modeled 

considering tensile bond forces only. Bond compression was included in these simulations to 

illustrate its effect on the translational velocity of the cell. Figure 4.12 compares the drop in the 

translational velocities for the 2 cases as the number of bonds grew from 0 to 40. It was observed 

that for the test case involving only tensile bonds, the velocity dropped to 1 µm/s, compared to 

48 µm/s for the second case involving both tensile and compressive bonds (for the same number 

of time steps). This result implies that bonds under compression negate the effect of tensile 

bonds to retard the cell rolling velocity. 
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Fig. 4.13 Noisy rolling for a compliant cell with adhesive bonds loaded in tension or compression. For both 

simulations η = 8 kPa,γ&  = 100 s-1, ν = 0.33: upper panel – tensile forces, lower panel - tensile and compressive bond 

forces. 

 

Fig. 4.14 Time varying contact area for a compliant cell with adhesive bonds loaded in tension or compression. For 

both simulations η = 8 kPa,γ&  = 100 s-1, ν = 0.33: upper panel – tensile forces, lower panel - tensile and compressive 

bond forces. 

Since the limit on the number of bonds was set to 40, the algorithm mathematically 

‘broke’ any additional bonds that attempted to form in the remaining time steps. The effect of this 

artificially induced bond rupture on the rolling velocity and the contact area is indicated in Fig. 
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4.13-14. The ‘stop-and-go’ motion is quantified in terms of the noisy rolling predicted by the 

transient formation and breakage of the bonds. Moreover, the average rolling velocity (RMS) 

predicted during this period was reported as 135 µm/s for the test case involving tensile bonds, 

and 123 µm/s for the case involving tensile and compressive bonds. The forced breakage of bonds 

also led to a noisy plot for the contact area that originally appeared to continuously increase with 

time. This noise in the trends for rolling velocity and contact area has been simulated and 

observed previously by Hammer and Apte (1992), Jadhav et al. (2005), and Pappu and Bagchi 

(2008). Moreover, the observation that the rolling velocity of adherent leukocytes is many times 

smaller than the free-stream velocity is crucial to the simulations conducted in the forthcoming 

chapter on cell recruitment.   
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5 RECRUITMENT OF IMMUNE CELLS 

5.1 Overview of Physiological Problem  

Cell trafficking is integral to inflammatory response. For example, numerous in vivo experiments 

have revealed large accumulations of leukocytes at the site of tissue injury or infection. For 

instance, Zymosan-Activated Serum (ZAS) induced adhesion of leukocytes occurred within 2 

minutes of exposure in rabbits (Argenbright et al. (1991)) and by the end of 10 minutes 

following exposure, most of the endothelial cells were covered with white blood cells. In another 

trial, acute inflammation in hamster cheek pouches resulted from a 5 minute topical challenge 

with ovalbumin (Raud et al. (1988)). After approximately 5 minutes, an increase in marginating 

and adhering leukocytes was observed in venules of all sizes. Moreover, the accumulation was 

sustained and even after 40 minutes, the number of leukocytes making adhesive interactions with 

the inflamed substrate remained elevated.  

A possible contribution for this cell accumulation is through a phenomenon termed 

“hydrodynamic recruitment” which is defined by King and Hammer (2003) as the downstream 

attachment of a previous free-stream cell resulting from the binary collision with an adherent or 

rolling cell. It is presumed to occur due to a vertical displacement of the free-stream cell induced 

by hydrodynamic interactions with the adherent or rolling cell, and the probability of cell-

substrate interactions is enhanced due to the cell being displaced towards the reactive substrate. 

The flow chamber assay has been employed to observe this phenomenon in vitro. King and 

Hammer (2001b) coated polystyrene micro-spheres with Sialyl-Lewisx (a tetrasacccharide 

expressed on the surface of circulating leukocytes and known to mediate dynamic adhesive 
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interactions with P-selectin) (Rodgers et al. (2000)) and suspended them in 1% BSA* solution. 

Polystyrene slides were coated with P-selectin and then washed with 2% BSA solution. The 

substrate was assembled into a parallel plate flow chamber and the microspheres were perfused 

through the flow chamber using a syringe pump. The coated beads appeared to attach 3 to 4 

diameters downstream of an adherent reference cell for all shear rates employed in the 

experiments. 

 King et al. (2003) also reported that adherent leukocytes in post-capillary venules in 

cheek pouches of anesthetized hamsters appeared to provide a small nucleation site for 

recruitment of additional circulatory cells. Moreover, only a small percentage of secondary 

attachments appeared to stem from cell-cell adhesion (that is, the formation of adhesive bonds 

between pairs of colliding leukocytes, mediated by L-selectin) while a majority of these events 

were attributed to the phenomenon of hydrodynamic recruitment. St. Hill et al. (2003) 

hypothesized that although binary collisions with erythrocytes aided secondary recruitment, 

some of these adhesion events could also be attributed to hydrodynamic interactions between 

adherent cells and free-stream cells. 

5.2 Past Numerical Studies; Modeling Deformable Cells 

Numerical simulations involving a series of in-plane and glancing collisions between rigid model 

cells were conducted by King and Hammer (2001b) to determine the most favorable 

circumstances for secondary recruitment. They found that collisions associated with glancing 

                                                 

* BSA was introduced into solution to block non-specific cell-cell adhesion resulting in neutrophil stringing 
– an alternate form of secondary recruitment described by Kadash, K.E., Lawrence, M.B., Diamond, S.L., 2004. 
Neutrophil String Formation: Hydrodynamic Thresholding and Cellular Deformation during Cell Collisions. 
Biophys J 86, 4030-4039. 
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distances (separation between the centroids of the interacting cells in the lateral direction) of 5 

µm or lower resulted in the lifting of the free-stream cell off the surface resulting in little or no 

possibility of capture.  However, for glancing distances greater than 7.5 µm, the probability of 

downstream attachment appeared to be greatest. It was also reported that a stationary or firmly 

adherent cell could generate a similar effect.  

Numerical studies with deformable cells presents several challenges including variability 

in leukocyte characteristic diameter (Patil et al. (2001)) and cell compliances (Rosenbluth et al. 

(2006)), and, subsequently, variability in the rolling velocities for solitary rolling cells (Section 

4.3). Besides, dynamic deformations of the rolling cell alter the flow field continuously, resulting 

in higher computational time arising out of the complex nature of the updating process (Jadhav et 

al. (2005), Pappu et al. (2008), Pappu and Bagchi (2008)). This problem has been circumvented 

by simplifying the numerical code discussed in the previous chapters to one involving particle 

mobility. A computational strategy proposed by Hoskins et al. (2009) suggested holding the 

shape of a pre-deformed, rigid adherent polymorphonuclear (PMN) leukocyte while simulating 

interactions with a circulating cancer cell. A similar strategy has been adopted in this thesis by 

applying known fluid and chemistry induced external stresses and holding the resulting deformed 

cell shape over the entire length of the simulation. Gram-Schmidt orthogonalization for non-

spherical particles (Section 2.2) has been utilized to determine the disturbance in the flow field 

arising out of arbitrary shaped particles. 

Such a simplification of the problem permits comparison with fundamental flow 

problems and the adoption of computational strategies necessary to solve them. In this case, the 

problem reduces to that of a shear flow over bluff bodies protruding from a plane horizontal 

wall. Previously, two-dimensional finite difference procedures have been formulated to study the 



   55

disturbances in the flow-field around semi-circular and semi-elliptical bodies (Kiya and Arie 

(1975)). This strategy was extended by Brooks and Tozeren (1996) to adherent cells of a variety 

of shapes including circular and cone-shaped cells. They based their computations on the 

assumption that the flow-field around stationary cells could be representative of one that 

dynamically varies (due to cell deformation and movement) since rolling velocities are orders of 

magnitude smaller than free-stream velocities. Besides, analytical solutions for velocity fields 

have been derived for hemispherical protruberances by method of Legendre polynomials 

(Sugiyama and Sbragaglia (2008)) and spherical obstructions (O'Neill (1968)) using Bessel 

functions.  

The boundary element method has been employed to solve similar problems involving 

axisymmetric protruberances (Pozrikidis (1997), Pozrikidis (2000), Blyth and Pozrikidis (2006)). 

The free-space Green’s function for the fluid domain was appropriately modified to account for 

no-slip boundary conditions at the plane wall (Section 2.2). A similar problem involving the 

force distribution on raised endothelial cells was studied by Hazel and Pedley (2000). 

5.3 Results 

The strategy of holding the shape constant for the adherent cell in a binary interaction over the 

entire length of the simulation enabled results to be generated for multiple cells at time steps as 

large as 10-5 s. Although deformable cells with low viscous number have been simulated, the 

numerical code is capable of simulating cells with a range of viscous numbers (Section 2.3). In 

the simulations, cell radius was fixed at 5 µm and three different adherent cells were modeled: 

spherical, moderately deformed or “dome-shaped”, and highly deformed or “box-shaped” (Fig. 
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5.1). A slight bulge is observed in the meshes for the deformed cases owing to the compression 

of the cell.  

 

                                               (a)                                                                               (b)         

Fig. 5.1 96 element discretization of (a) moderately deformed (b) highly deformed cells. 

Moreover, the deformed cell-shapes (Fig. 5.1a,b) are representative of those observed by 

Tözeren and Ley (1992). The following sections discuss the results obtained for binary collision 

events involving one or more firmly adherent cells interacting with a free-stream cell. 

5.3.1. Binary collisions (free-stream cell at least one cell diameter above substrate) 

I. Binary interaction with adherent cell 

A stationary, spherical, adherent cell was maintained with center of gravity at 5.25 µm above the 

substrate. The initial position of the free-stream cell was 13 µm above the substrate and 9 µm 

upstream of its adherent counterpart (centroidal separation distance ~ 12 µm). Simulations 

involving out of plane collisions at glancing distances (δy) of 2, 3.5, 5 and 6.5 µm were 

performed at a shear rate of 100 s-1. The binary interaction for a glancing distance of 2 µm is 

shown in Figure 5.2 and Z(t) of the free-stream cell for all glancing distances considered is 
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plotted in Figure 5.3. Figure 5.2 demonstrates that the electrostatic repulsion forces are sufficient 

to prevent membrane overlap during such interactions.   

 

Fig. 5.2 Binary interaction between a firmly adherent, spherical cell and a spherical free-stream cell 

(δx = -9 µm, δy = 2 µm, δz = 7.75 µm, a = 5 µm,γ&  = 100 s-1). 

As indicated in Figure 5.3, the apparent “roughness” in the trajectories for glancing 

distances of 2, 3.5 and 5 µm arises from the repulsion force being non-negligible due to proximity 

of the cell surfaces. Moreover, for the simulation time considered the vertical displacement of the 

cells for these cases was greater than its initial position which indicates that such collisions would 

not be suitable for recruitment. On the other hand, the case involving a 6.5 µm offset revealed a 

lower influence of the repulsive forces due to minimal surface-surface interference. At the end of 

the simulation, cell vertical displacement was lower than its initial vertical position above the 
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wall. These results suggest that binary interactions at glancing distances of ≥ 6.5 µm is suitable for 

recruitment and are consistent with those predicted by King and Hammer (2001b). 

 

Fig. 5.3 Cell trajectories for binary interactions involving a firmly adherent spherical cell and a  

spherical free-stream cell with increasing glancing offsets. 

In order to facilitate a comparison between rigid and deformable adherent cells, 

simulations involving moderately and highly deformed adherent cells were performed at 

glancing distances of 2 and 3.5 µm. The center of gravity for the adherent cells was located at 4.5 

and 3.25 µm above the wall for the moderately and highly deformed cells, respectively. The 

shear rate and the starting position of the free-stream cell were identical to the test cases 

considered previously. The comparison between the resulting trajectories of the free-stream cells 

for the 2 µm glance is indicated in Figure 5.4, while that for the 3.5 µm glance is shown in Figure 

5.5. For either offset distance, the free-stream cell smoothly passed over the highly deformed cell 

and descended closer to the reactive substrate. In case of the moderately deformed cell, for an 

offset of 2 µm the free-stream cell was displaced further away from the reactive substrate. On the 
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other hand, for a 3.5 µm glance, the free-stream cell eventually descended closer to the reactive 

substrate. 

 

Fig. 5.4 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a spherical free-stream cell for a fixed CGz (13 µm) & fixed δy (2 µm).  

 

Fig. 5.5 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a spherical free-stream cell for a fixed CGz (13 µm) & fixed δy (3.5 µm). 
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This indicates that for the same initial position of the free-stream cell, binary collisions 

with deformed adherent cells drives the free-stream cell closer to the substrate for small glancing 

distances. The shapes of these trajectories illustrate the domain of influence of adherent cells or 

obstructions whose shapes deviate from a spherical morphology. 

II. Effect of membrane separation distance for moderately deformed adherent cell 

Note that as the vertical CG of the free-stream cell is fixed and the adherent cell changes from 

spherical to moderately or highly deformed, the initial membrane separation distance increases, 

possibly affecting the simulation results.  

 

Fig. 5.6 Binary interactions between a firmly adherent, moderately deformed cell and  

a spherical free-stream cell (δx = -9 µm, δy = 3.5 µm, δz = 7.75 µm, a = 5 µm,γ&  = 100 s-1). 
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In order to maintain similar membrane separations as for the spherical case, the initial 

displacement of the free-stream cell was brought down to 12.25 µm above the substrate. A 

stationary, adherent, moderately deformed cell was maintained at CGz = 4.5 µm and the frees-

tream cell was located 9 µm upstream of the adherent cell. A series of simulations involving 

glancing collisions with δy = 3.5, 5 and 6.5 µm were performed at a shear rate of 100 s-1. Note, 

for δy ≥ 10 µm, there is no membrane overlap between the adherent and free-stream cells. The 

binary interaction for a glance of 3.5 µm is indicated in Figure 5.6 and the resulting trajectories 

of the free-stream cell are shown in Figure 5.7. In Figure 5.6, the apparent intersection of the cell 

membranes is observed at lateral (Y-direction) centroidal offsets of 3.5 and 5 µm. In actuality, no 

membrane overlap occurs as the free-stream cell is passing behind and over the adherent cell. As 

may be seen in Figure 5.7, the free-stream cell descended closer to the substrate for δy = 5, 6.5 

µm as compared to the corresponding cases for binary interactions with a spherical adherent cell 

(Fig. 5.3).  

 

Fig. 5.7 Cell trajectories for binary interactions involving a firmly adherent moderately deformed  

cell and a spherical free-stream cell with increasing glancing offsets. 
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III. Effect of membrane separation distance for highly deformed adherent cell 

For a highly deformed adherent cell (CGz = 3.25 µm), in order to maintain a similar membrane 

separation as the previous two cases, the initial displacement of the free-stream cell was brought 

down to 11 µm above the wall. As before, the free-stream cell was located 9 µm upstream of the 

adherent cell. A series of simulations involving glancing collisions with δy = 3.5, 5 and 6.5 µm 

were performed at a shear rate of 100 s-1. The binary interaction for a glancing distance of 3.5 

µm is indicated in Figure 5.8 and the resulting cell trajectories are illustrated in Figure 5.9.  

 

Fig. 5.8 Binary interactions between a firmly adherent, highly deformed cell and  

a spherical free-stream cell (δx = -9 µm, δy = 3.5 µm, δz = 7.75 µm, a = 5 µm,γ&  = 100 s-1). 

As compared to the previous two scenarios, the roughness in the trajectory plot is observed only 

for the simulation involving a δy = 3.5 µm offset. Note that the cell was displaced vertically (i.e., 

Z direction) by a smaller amount as compared to the scenario involving a spherical, adherent cell 
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and approached closer to the substrate following the interaction. For the cases involving 5 and 

6.5 µm offsets, the observed trajectories were similar to the previous scenario involving 

moderately deformed cells. Moreover, the trajectories of a cell undergoing binary collisions with 

a highly deformed cell at various offset distances appear to be favorable, from the point of 

secondary recruitment, since the free-stream cell, post collision, descends closer to the substrate.  

Furthermore, glancing collisions at a 6.5 µm offset resulted in a nearly identical reduction 

in the Z position (i.e., ~500 nm) for the scenarios involving spherical, moderately deformed and 

highly deformed adherent cells. This indicates that with increasing offset in the lateral direction, 

the profile of the streamlines around a spherical obstruction nearly coincided with ones 

corresponding to an arbitrary shape. In the absence of repulsion, the trajectory of an infinitesimal 

free-stream cell would coincide with streamlines around the obstruction (King and Hammer 

(2001b)).  

 

Fig. 5.9 Cell trajectories for binary collisions involving a firmly adherent highly deformed  

cell and a spherical free-stream cell with increasing glancing offsets. 
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The primary goal of running these simulations was to predict glancing distances and cell 

morphologies that were most favorable for an alternative form of secondary recruitment involving 

‘rolling over’ of the free-stream cell as described by Paschall and Lawrence (2008). These 

simulations indicate that for the same membrane separation, binary interactions occurring at a 

glancing distance (i.e., δy) of ≥ 6.5 µm is most favorable for recruitment. With increasing 

deformation of adherent cells, collisions occurring at lower glancing distances resulted in the free-

stream cells to be driven towards the reactive substrate.  

5.3.2. Effect of multiple binary collisions with two moderately deformed adherent cells (free-

stream cell at least one cell diameter above substrate) 

During inflammatory response, a free-stream cell is likely to interact with many rolling or 

adherent cells. In order to study the influence of a recruited cell (predecessor) on a free-stream 

cell (successor) undergoing binary collisions with the recruiting cell, a second deformed cell was 

fixed to the substrate 30 µm downstream and the effect of 2 obstructions on the trajectory of the 

free-stream cell was observed.  

I. Collisions with two moderately deformed adherent cells 

Two in-plane, moderately deformed cells were spaced 30 µm apart with CGz = 4.5 µm for both 

adherent cells. The initial X-displacement of the free-stream cell was 9 µm upstream of the first 

adherent cell (i.e. CGx = -9 µm) with CGz = 12.25 µm.  

Two simulations involving glancing distances of 3.5 and 6.5 µm were performed. A 

snapshot from the simulation involving an offset of 3.5 µm is shown in Figure 5.10 and the 

corresponding trajectories of the free-stream cell are illustrated in Figure 5.11. 
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Fig. 5.10 Collisions involving two firmly adherent, moderately deformed cells and a spherical  

free-stream cell (δy = -9 µm, δz = 7.75 µm, a = 5 µm,γ&  = 100 s-1). 

 

Fig. 5.11 Cell trajectories for binary interactions involving two firmly adherent,  

moderately deformed cells and a spherical free-stream cell for various glances. 

The two “peaks” indicate instances of repulsion in the trajectory. Upon comparison with 

the trajectory for a binary collision with a single adherent cell, it was observed that the final 

particle elevation for the free-stream cell for a sequence of binary collisions was slightly higher, 

by 60 - 150 nm, at the end of the simulation. The slope of the trajectory (i.e., dZ/dt) for δy = 6.5 

µm is non-zero unlike the corresponding trajectory for binary interactions involving a single 
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moderately deformed adherent cell (Fig. 5.7). This suggests that the free-stream cell would 

continue to descend towards the reactive substrate downstream of the second cell.    

II. Collisions with two highly deformed adherent cells 

Two in-plane, highly deformed, adherent cells were spaced 30 µm apart with CGz = 3.25 µm for 

both adherent cells. The initial X-displacement of the free-stream cell was 11 µm above the 

substrate and 9 µm upstream of the first adherent cell. Simulations similar to the previous 

scenario for two moderately deformed adherent cells were performed and the trajectories of the 

free-stream cell are plotted in Figure 5.12. 

Upon comparison with the trajectory for a binary collision with a single adherent cell, it 

was observed that the final particle elevation for a sequence of binary collisions was slightly 

higher, by 90 - 170 nm, at the end of the simulation. Unlike the nearly asymptotic trajectories for 

binary interactions involving a single highly deformed adherent cell (Fig. 5.9), the trajectories in  

 

Fig. 5.12 Cell trajectories for binary interactions involving two firmly adherent,  

highly deformed cells and a spherical free-stream cell for various glances. 
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the present scenario suggest that the cell would continue its descent towards the reactive 

substrate. The trajectory plots from the preceding two scenarios indicate that the presence of a 

second cell attached three diameters downstream of the primary cell drives the free-stream cell 

towards the substrate.  

One of the motives for simulating test cases away from the wall was to assess the ability 

of the code to generate a disturbed flow field around protruberances of arbitrary shapes. Besides, 

the effectiveness of the Gram-Schmidt orthonormalization is illustrated from the shapes of the 

trajectories of cells flowing in the vicinity of the obstruction. The results from the simulations in 

Section 5.3.1 suggests that with increasing levels of deformation and glancing distances, free-

stream cells are driven towards the reactive substrate. A sequence of binary interactions results in 

the free-stream cells to be driven closer to the reactive substrate as compared to collisions 

involving a single adherent cell.      

5.3.3. Binary collisions (free-stream cell less than a diameter above substrate) 

In Sections 5.3.1 and 5.3.2, the glancing distance that is most favorable for recruitment was 

assessed where it was found that for δy ≥ 6.5 µm, the free-stream cell descended towards the 

substrate. In the present and subsequent sections, we will present and discuss results for free-

stream cells initially closer to the substrate (while the offset distance between the free-stream and 

adherent cell is fixed).   

Two sets of simulations for free-stream cell elevations of 7.5 and 6 µm were performed at 

shear rates of 100 s-1. A glancing distance of 10.5 µm was maintained in all the simulations in 

order to negate the effects of trajectory changes stemming from cell-cell repulsion and thereby 

assess the effect of streamlines around the adherent cell on the trajectory of the free-stream cell. 



   68

 

Fig. 5.13 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a spherical free-stream cell (CGx = -9 µm, CGy = 10.5 µm, CGz = 7.5 µm, a = 5 µm,γ&  

= 100 s-1). 

 

Fig. 5.14 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a spherical free-stream cell (CGx = -9 µm, CGy = 10.5 µm, CGz = 6 µm, a = 5 µm,γ&  = 

100 s-1). 

The free-stream cell was maintained 9 µm upstream of the adherent cell and simulations 

involving spherical, moderately and highly deformed cells were studied. The resulting particle 
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trajectories are illustrated in Figure 5.13 for an initial elevation of 7.5 µm, and Figure 5.14 for an 

initial elevation of 6 µm. Figure 5.13 indicates that for binary interactions with a moderately 

deformed cell, the free-stream cell was lifted off by 50 nm following which it descended to an 

elevation that was 275 nm lower than its starting height. The corresponding values for 

interactions with a highly deformed cell were 100 and 290 nm, respectively. On the other hand, 

for collisions with the spherical cell, the upward movement experienced by the free-stream cell 

was negligible and it subsequently descended to a height that was lower by 230 nm. Figure 5.14 

indicates that for the highly deformed case, the free-stream cell was lifted off by 70 nm while the 

same for the spherical and moderately deformed cell was almost negligible. The cell eventually 

dropped by heights of 90, 120 and 140 nm for binary interactions with a spherical, moderately 

deformed, and highly deformed adherent cells, respectively. Although these displacements are 

small, they are indicative of the effectiveness of an adherent cell to drive a free-stream cell closer 

to the reactive substrate. The final elevations also suggest that binary collisions with deformed 

cells could potentially cause the free-stream cell to contact the endothelium nearer to the 

adherent cell.  

 The streamlines around a protruberance in the lateral or Y direction are influenced by the 

shape of the obstruction. In order to illustrate this, the lateral displacement of the free-stream cell 

i.e. Y(t) is plotted for binary collisions of a free-stream cell (initial CGz = 6 µm) with spherical, 

moderately and highly deformed adherent cells (Fig. 5.15). These plots are representative of the 

flow field as observed in the top view or X-Y plane. For a deformed adherent cell, the interfacial 

compression arising out of adhesion (Section 4.2), results in cell spreading in the Y direction. As 

observed in Figure 5.15, at nondimensional time ~ 50, the free-stream cell is displaced to a larger 
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extent in the lateral direction while interacting with deformed adherent cells as compared to 

binary collisions involving spherical adherent cells. 

 

Fig. 5.15 Lateral displacement of cells for binary interactions involving a firmly adherent spherical, moderately or 

highly deformed adherent cell and a spherical free-stream cell (CGx = -9 µm, CGy = 10.5 µm, CGz = 6 µm, a = 5 

µm,γ&  = 100 s-1). 

In order to test the validity of the claim that effectiveness of secondary capture was 

profile dependant, some additional simulations were performed. While most of the setup was 

retained from the previous test case, the shear rate was varied and the cells were made neutrally 

buoyant. 

I. Influence of Shear Rate  

All other things being equal, with increasing shear rate, particle deformation increases, and vice 

versa. Subsequently, the particle shape is altered and its center of gravity is either lowered (for 

higher shear rates) or raised (for lower shear rates) (Dong et al. (1999)). Meshes for moderate 

and highly deformed cells were generated for shear rates of 80 s-1 and 120 s-1. Simulations for a  



   71

 

Fig. 5.16 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a spherical free-stream cell (CGx = -9 µm, CGy = 10.5 µm, CGz = 6 µm, a = 5 µm,γ&  = 

80 s-1). 

 

Fig. 5.17 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a spherical free-stream cell (CGx = -9 µm, CGy = 10.5 µm, CGz = 6 µm, a = 5 µm,γ&  = 

120 s-1). 

free-stream cell elevation of 6 µm were performed and the resulting free-stream cell trajectories 

are illustrated in Figure 5.16-17 for shear rates of 80 s-1 and 120 s-1, respectively. 
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It was observed that at lower shear rates, the free-stream cell was displaced by a smaller 

value as compared to the corresponding displacement at higher shear rates. With the above 

exception, the trends were more or less similar to the baseline case involving a free-stream cell 

with initial CGx = -9 µm, CGz = 6 µm at a shear rate of 100 s-1 and δy = 10.5 µm (Fig. 5.14). In 

both cases, the highly deformed cell was the most effective “recruiter”. Thus, the deformed cell 

shape continued to significantly impact recruitment, irrespective of shear rate. 

II. Influence of Buoyancy 

In order to assess the role of gravity in driving the cell towards the wall, the cell density was 

made equivalent to the surrounding plasma density and test cases were studied at a shear rate of 

100 s-1, while retaining the rest of the setup. The resulting trajectories of a free-stream cell 

flowing at a height of 6 µm are indicated in Figure 5.18. The cell descended by 40, 65 and 90 nm  

 

Fig. 5.18 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a neutrally buoyant spherical free-stream cell (CGx = -9 µm, CGy = 10.5 µm, CGz = 6 

µm, a = 5 µm,γ&  = 100 s-1). 
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following collisions with spherical, moderately deformed and highly deformed cells, 

respectively. This indicates that although gravity assists sedimentation, the cell trajectory 

following binary collision is more significantly influenced by the shape of the obstruction. 

Moreover, the similarity in the trends enables one to conclude that the highly-deformed cell 

continues to be the most effective recruiter, even under conditions of neutral buoyancy.  

The domain of influence of the adherent cells was assessed by increasing the glancing 

distances to 15 and 25 µm, while retaining the initial position of the free-stream cell (shear rate = 

100 s-1). Figure 5.19-20 indicate the resulting trajectories of the free-stream cell. For a glancing 

distance of 15 µm (Fig. 5.19), while the trajectories corresponding to binary collisions with 

spherical and moderately deformed adherent cells followed a trend similar to that for a 10.5 µm 

glance (Fig. 5.14), the cells descended by only 80-100 nm. For binary collisions with a  

 

Fig. 5.19 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a spherical free-stream cell (CGx = -9 µm, CGy = 15 µm, CGz = 6 µm, a = 5 µm,γ&  = 

100 s-1). 
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Fig. 5.20 Cell trajectories for binary interactions involving a firmly adherent spherical, moderately or highly 

deformed adherent cell and a spherical free-stream cell (CGx = -9 µm, CGy = 25 µm, CGz = 6 µm, a = 5 µm,γ&  = 

100 s-1). 

highly deformed adherent cell, the descent of the free-stream cell nearly coincided with that for a 

moderately deformed cell. For an offset distance of 25 µm, the trajectory of the free-stream cell 

was nearly independent of the shape of the adherent cell (Fig. 5.20) implying that with an 

increasing glance, the adherent cell morphology has little impact on the trajectory of free-stream 

cells. Moreover, the free-stream cell descended by 55-65 nm indicating that the strength of the 

disturbance flow-field decreases with increasing distance from the source.  

The results from the test cases discussed in this section suggest that for a fixed glancing 

distance, binary interactions involving highly deformed adherent cells present the most favorable 

scenario for recruitment of free-stream cells. Although variations in the shear rate and cell 

buoyancy are found to affect the free-stream cell trajectories, adherent cell deformation 

significantly impacts the process of secondary recruitment. Moreover, for offset distances ≥ 5 



   75

times the cell radius, the trajectories of the free-stream cells is independent of adherent cell 

shapes.    
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6 CONCLUSIONS AND FUTURE DIRECTIONS 

This thesis presented a different perspective in computational biology through boundary element 

techniques. Results of the treading simulation reinforced the validity of the kernel functions for 

the relevant computational domains and were in good agreement with similar studies conducted 

in the field of emulsions and biorheology. While neutrally buoyant particles translated almost 

parallel to the wall, dense particles appeared to drift towards the wall. Besides, the Jeffrey’s orbit 

for spheroid inclusions was slightly modified as compared to an unbounded shear flow.  

Deformable and initially spherical particles were found to exhibit a tank treading motion 

(Section 2.3) while initially spheroid particles were shown to portray either a tumbling motion or 

a trembling motion that was dependant on the aspect ratio and the viscous number (Section 2.3, 

Appendix B). When the hydrodynamic forces were much smaller compared to the elastic 

restoring forces, the transition to the breathing mode occurred at higher aspect ratio. Conversely 

the swinging mode was observed at lower aspect ratios when the viscous number was doubled. 

Moreover, a linear elastic constitutive model was sufficient to represent the infinitesimal 

deformations stemming from weak hydrodynamic forces and the transition from tumbling to 

trembling appeared to be independent of the constitutive model. 

Binary collisions between free-stream leukocytes resulted in the free-stream cells being 

driven closer to the substrate. Moreover, the slight modulation in the contact area offered insights 

into neutrophil string formations through L-selectin mediated cell-cell adhesion (Section 3.3). 

Solitary cell rolling studies indicated that the membrane compliance should be 

comparable to the bond stiffness in order to be consistent with the theory of linear elasticity and 

the theory for Hertzian contact. Small deformations resulted in more bonds and potentially 
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slower rolling amongst compliant cells, as compared to their rigid counterparts (Section 4.3.2). 

Moreover, cells with smaller diameter were observed to roll slowly, while the inclusion of bonds 

under compression increased the rolling velocity (Section 4.3.2). These results are particularly 

significant in the context of the large variability in cell sizes, as well as material properties of the 

membrane. The drop in translational velocity was observed to be deterministic, albeit for a small 

fraction of time. Once the upper limit on the bonds (here set to 40) was reached, the variations in 

rolling velocities and contact area became noisy. Moreover, the number of receptors on the cell 

could certainly limit the number of bonds formed in an actual physiological scenario. Although 

these results seem quite feasible, additional test cases would have to be run in order to validate 

this claim. 

Binary collisions between spherical, moderately, or highly deformed, adherent cells and 

free-stream cells located away from the reactive zone were simulated for several glancing or out 

of plane offset distances. With increasing offset, the collisions became smoother and the free-

stream cell displaced closer to the substrate. The results for the highly deformed adherent cell 

indicated that the free-stream cell descended closer to the substrate as compared to the 

moderately deformed or spherical adherent cell, irrespective of the glancing distance (Section 

5.3.1). A sequence of binary collisions involving multiple deformable cells showed that although 

the presence of the second cell altered the final elevation of the free-stream cell, the difference 

was of the order of nanometers. Although the presence of the second cell appears to be 

detrimental to recruitment, the slope of the trajectory of the free-stream cell indicates an 

enhanced descent towards the wall, as compared to single binary interactions (Section 5.3.2). 

Test cases involving more than two cells were specifically introduced to demonstrate the abilities 
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of the code. Significantly, one can introduce an infinite number of obstructions to predict the 

trajectories of free-stream cells.  

  Binary collisions between adherent and free-stream cells in the proximity of the reactive 

zone were conducted at a fixed glancing distance that was chosen to avoid the effect of repulsive 

forces and assess the domain of influence of the obstruction. It was observed that a slight 

deviation from the spherical morphology had a profound influence on the descent of the free-

stream cell and the highly-deformed cell emerged as the most effective recruiter. Moreover, 

neither shear rate nor gravity was found to significantly impact this trend (Section 5.3.3). 

Besides, with an increasing glance, the cell trajectory was almost independent of the shape of the 

adherent cell. Furthermore, the reduced displacement of the free-stream cells implied a vanishing 

effect of the disturbance flow-field with increasing distance from the source (Section 5.3.3).  

Although hydrodynamic recruitment appears to be an important mode of secondary 

recruitment of leukocytes, it does not correspond to all secondary attachment events. Binary 

collisions with red blood cells and leukocyte-leukocyte adhesion have also been found to 

contribute to cell accumulation on activated endothelium. Therefore, one could conclude by 

stating that although multiple modes of secondary recruitment have been identified, it is difficult 

to quantify the relative importance of a single mode without inhibiting the other two possibilities. 

Moreover, the inherent difficulties in measuring the glancing distances either in vivo or in vitro 

presents an interesting challenge to experimentalists in the field of cell adhesion, thereby 

necessitating more research in this direction. 
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Appendix A: Half Space Green’s Functions 

A. NO SLIP BOUNDARY CONDITIONS 
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B. NO DISPLACEMENT BOUNDARY CONDITIONS 

KELVINLET: 
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The vectors r and R are defined as r = x – X and R = x – X* where x – integration variable of 

particle surface, X - source point, X* - image source point, r =|r|, R =|R| and δij - Kronecker delta 

(Fig. 2.2). 
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Appendix B: Supplementary Trembling Results 

 
Fig. B-1 Tumbling sequence of a deformable oblate spheroid in the proximity of a rigid wall 

(a = 5 µm, η = 1 Pa, ν = 0.33, α = π/2, κ = 0.5,γ&  = 200 s-1). 
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Fig. B-2 Trembling sequence of a deformable oblate spheroid in the proximity of a rigid wall 

(a = 5 µm, η = 1 Pa, ν = 0.33, α = π/2, κ = 0.75,γ&  = 200 s-1). 
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Appendix C: Binary Collisions Front Views 

 

Fig. C-1 Binary interactions between a firmly adherent, spherical cell and a spherical free-stream cell 

(δx = -9 µm, δy = 2 µm, δz = 7.75 µm, a = 5 µm,γ&  = 100 s-1).  
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Fig. C-2 Binary interactions between a firmly adherent, moderately deformed cell and  

a spherical free-stream cell (δx = -9 µm, δy = 3.5 µm, δz = 7.75 µm, a = 5 µm,γ&  = 100 s-1). 
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Fig. C-3 Binary interactions between a firmly adherent, highly deformed cell and  

a spherical free-stream cell (δx = -9 µm, δy = 3.5 µm, δz = 7.75 µm, a = 5 µm,γ&  = 100 s-1). 
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