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Abstract 

 
In this thesis, a previously developed, novel one-dimensional attitude estimation device is 

expanded through the development and implementation of an innovative method for estimation 

of two-dimensional attitude making use of a unique low-cost, dual arc accelerometer array 

measuring longitudinal and transverse rotational rates in real-time.  The device and method 

proposed is an expansion of a previously developed method for one-dimensional attitude 

determination and rate gyro bias estimation utilizing a one-dimensional accelerometer array.  

This new revolutionary device utilizes a dual arc accelerometer array and an algorithm for 

accurate and reliable two-dimensional attitude determination and rate gyro bias estimation in 

real-time.  The method determines the local gravitational field vector from which attitude 

information can be resolved.  Upon determining the location of the local gravitational field 

vector relative to two consecutive accelerometer sensors, the orientation of the device may then 

be estimated and the attitude determined.  However, this measurement is discrete in nature; 

therefore, integrated rate gyro measurements are used to determine attitude information resulting 

in a continuous signal.  However, attitude estimates and measurements produced by 

instantaneous rate sensors and gyroscope integration tend to drift over time due to drift and bias 

inherent to the rate gyro sensor.  The integration of the acquired instantaneous rate signals 

amplify measurement errors leading to an undependable and imprecise estimate of the vehicles 

true attitude and orientation.  A method for compensation of these errors is proposed in this work 

resulting in a highly accurate and continuous attitude estimate.  For this thesis, simulations of the 

proposed method and device will be conducted with the inclusion of characteristic, real-world 

sensor noise and bias estimates produced from corrupted and biased sensors to analyze and 

assess the feasibility and validity of the proposed method and system configuration for two-

dimensional attitude determination.  The end goal of this work is to produce a precise and 

reliable longitudinal and transverse attitude estimation array capable of measuring rate senor and 

gyro bias online so as to produce highly accurate and reliable pitch and roll angle tracking in 

real-time while under subjection to simulated flight conditions and scenarios.  While this thesis is 

an expansion of a previously developed device and method, it is a departure from past works in 

that a new, two-dimensional accelerometer array arc is utilized and additional rotational 

dimensions are being included in the simulated analysis. 
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 1 

Chapter 1 

Introduction 
 

1.1 Background   
 

Accurate and reliable attitude estimation is critical for determining a vehicle’s orientation within 

a multi-dimensional operating environment and for the execution of aircraft and vehicle 

maneuvers during vital operations requiring up to date attitude estimates in real-time.  

Traditionally, the attitude and orientation of an aircraft or vehicle can be described by three 

consecutive rotations characterized through the use of Euler angles for bank, elevation, and 

heading, where the aircraft’s or vehicle’s body orientation is related to a fixed frame of 

reference.  For static or trim flight conditions, Euler angles may be measured and calculated 

directly because the motion of the vehicle is insignificant.  However, during dynamic maneuvers, 

Euler angles may be calculated and determined from the instantaneous integration of the 

vehicle’s body rotational rates that transform the inertial frame of reference fixed to the Earth, 

where a flat Earth assumption is assumed.  For problems addressing aircraft dynamics and 

orientation, the flat Earth assumption where Earth is used as an inertial frame of reference is 

characteristically used.  This is known as the Earth-fixed coordinate frame. 

 

The measurement of motion relative to an aircraft’s or vehicle’s frame of reference is typically 

measured through the use of angular and translational rate sensors integrated with initial 

conditions relative the fixed, inertial frame of reference.  This integration of sensor 

measurements relative to the fixed reference frame produces a measureable instantaneous vehicle 

displacement.  Common sensors typically used to measure inertial quantities are accelerometers, 

inclinometers, magnetometers, and GPS.  Rate gyroscopes are more commonly used for 

describing and measuring aircraft or vehicle motion through rotational rates.  However, in real-

world applications operating in various environments, the accurate measurement of vehicle 

movement and orientation has proven to be complicated due to the inherent sensor and rate gyro 

biases existing due to operational hardware or environmental noises and conditions.  The 

integration of these bias effects over time for the determination of a vehicle’s attitude estimate 

will result in large errors that deviate greatly from the vehicle’s true orientation and 

displacement.  This effect is commonly referred to as a drift effect.  To accommodate for these 

drift effects from inherent sensor and rate gyro biases, magnetic field sensors or GPS receivers 

may be used to reduce and eliminate drift effects.  Constraints limiting the use of such additional 

receivers and sensors are increased size, weight, and monetary costs which make the 

implementation of such additional measurement units and systems unreasonable for such 

applications as micro and unmanned air vehicles or robotic applications.  To account for such 

limiting design constraints as size and weight, implementation of filtering techniques such as a 

Kalman filter has become common practice in the industrial world for online attitude estimation 

of the aircraft or vehicle.  Assimilating both sensor measurements and an algorithm method to 

handle sensor biases enables a precise and dependable online solution for accurate determination 

of an aircraft’s or vehicle’s attitude and orientation in real-time. 
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This thesis expands upon a previously proposed device consisting of a one-dimensional 

accelerometer array fused with a rate gyro for estimating longitudinal pitching motion by 

developing a innovative, two-dimensional dual arc accelerometer array incorporated with rate 

gyros and an expanded attitude determination and sensor bias estimation algorithm intended for 

the study of variable, simulated aircraft loading scenarios.  To determine the feasibility of the 

proposed expanded attitude determination method, the algorithm developed was implemented in 

a full nonlinear aircraft model executing variable maneuvers with sensor biases, noise, and 

environmental turbulence present during the simulations performed.  The validation of this new 

and innovative method for two-dimensional attitude determination and rate gyro bias estimation 

algorithm was demonstrated through a comparative analysis of the estimated parameters and the 

true vehicle parameters for attitude and rate gyro bias respectively.  While this study is a 

continuation and expansion of prior work, the feasibility assessment conducted in this work is a 

major step toward achieving the final goal of a highly accurate and reliable three-dimensional 

attitude determination device targeted for micro air vehicle and unmanned air vehicle 

applications without compromising such constraints as size, weight, power consumption, and 

overall cost. 

 

1.2 Innovation and Motivation for Current Work 
 

The work and research performed in this feasibility study is focused on the design and 

development of a two-dimensional, dual-arc accelerometer array for highly accurate and reliable 

longitudinal and transverse attitude estimation coupled with an algorithm for effective and 

precise rate gyro bias elimination utilizing low-cost sensors in order to accurately and repeatedly 

produce vehicle orientation in real-time.  This work is an expansion of previous work, were the 

fundamental concept was previously applied to the simulation of a nonlinear aircraft performing 

longitudinal maneuvers for precise and reliable pitch attitude estimation.  This thesis expands on 

the previous work completed by implementing an innovative two-dimensional dual arc 

accelerometer array in a full nonlinear aircraft simulation for both longitudinal and transverse 

maneuvers.  The main goal and focus of this revolutionary device and configuration is to provide 

highly accurate and reliable on-line attitude and rate gyro bias estimates without the need for 

traditional INS systems, GPS systems, or magnetometers that may be used.   

 

The configuration of the device consists of two semi-circular arcs containing 13 equally spaced 

accelerometers with rate gyros positioned at the center of the device, or the center of the arcs 

respectively.  The offset distance and orientation relative to the center-of-gravity of the device 

are implemented and utilized in the algorithm method developed to determine the orientation and 

attitude of the vehicle and provide accurate rate gyro bias estimates in real-time.  Figure 1.1 

displays the proposed device setup and orientation for the longitudinal, or pitch plane array, and 

the transverse, or the roll plane array of the dual-arc accelerometer array respectively. 
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Figure 1.1:  Dual

The dual-arc accelerometer array shown in Figure 1.1 

transverse attitude determination and rate gyro bias estimation in real

accelerometers positioned equidistant from one

transverse arcs, a separation of 15 degrees 

Figures 1.2 and 1.3 for the pitch plane array and roll plane array respectively.  

Figure 1.2:  

 

Figure 1.3:  Roll Plane Array Configuration
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Dual-Arc Accelerometer Array Configuration 

 

ccelerometer array shown in Figure 1.1 was utilized for both 

attitude determination and rate gyro bias estimation in real-time.  Consisting of 13 

accelerometers positioned equidistant from one another along both the lo

transverse arcs, a separation of 15 degrees is consistent between each accelerometer as shown in 

Figures 1.2 and 1.3 for the pitch plane array and roll plane array respectively.   

 

Figure 1.2:  Pitch Plane Array Configuration 

Figure 1.3:  Roll Plane Array Configuration 
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utilized for both longitudinal and 

time.  Consisting of 13 

another along both the longitudinal and 

each accelerometer as shown in 
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The innovative device configuration and estimation algorithm developed will be implemented 

and assessed in a full nonlinear operating environment and compared to the true simulated 

aircraft parameters and sensor biases, and evaluated through the use of Simulink® and 

MATLAB®.  The outline for the research and work conducted in this thesis is as follows: 

 

1. Design and Implement a full nonlinear aircraft simulation model able to produce and 

replicate highly dynamic, real-world flight conditions and maneuvers.   

 

2. Design and develop a highly precise and reliable attitude determination and rate gyro bias 

estimation algorithm utilizing the dual-arc accelerometer array configuration. 

 

3. Implement and assess the feasibility of the device configuration and algorithm method 

developed within a full nonlinear operating environment consisting of rate sensor noise, 

biases, and environmental conditions consistent with real-world operating scenarios. 

 

4. Analyze and contrast the parameter estimates of the dual-arc accelerometer array with the 

true values of the aircraft simulation model.   
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Chapter 2 

Theory Development 
 

2.1 Rigid Body Dynamics 
 

2.1.1 Coordinate System Representations [3, 4, 24, 44, 49] 
 

Traditional simulation of a rigid body’s attitude is represented by three Euler angles, or angular 

displacement parameters about a references axis and coordinate system frame.  Translational 

displacement representation in respect to a fixed axes or coordinate system in three-dimensional 

or Cartesian space may be described by three translational parameters.  Therefore, the 

translational and rotational representation of a rigid body for means of accurate and reliable 

aircraft simulation, in terms of body position and orientation, is a combination of three 

translational displacements and three rotational displacements about a reference coordinate 

system.   

 

When developing precise and dependable aircraft simulation models and algorithms, a major 

need and concern arises for the correct and appropriate definition of governing coordinate system 

frames.  In terms of navigation; position, velocity, and attitude knowledge with respect to the 

Earth is essential for accurate and reliable aircraft simulation modeling.  In contrast to this, when 

dealing with aircraft simulation modeling with respect to overall aircraft performance, position 

and velocity are needed with respect to the Earth’s atmosphere.  The former is utilized in this 

work, with all coordinate systems being right-handed and orthogonal.   

 

Body – Fixed Coordinate Frame 
 

In this study, the body-fixed coordinate frame is when the origin and axes of the coordinate 

frame are fixed with respect to the structure and geometry of the aircraft or rigid body.  In this 

coordinate frame, the origin lies at the center-of-gravity of the aircraft or rigid body, where xB is 

the primary axis, yB is the secondary axis, and zB is the tertiary axis as shown in Figure 2.1.  The 

body-fixed coordinate frame then rotates and translates about a defined stationary, reference, 

coordinate frame [44]. 
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Figure 2.1: Body-Fixed Coordinate Frame [44] 

 

Earth – Fixed Coordinate Frame 
 

The Earth – fixed coordinate frame has its origin fixed to an arbitrary point located along the 

surface of the Earth, where the assumption is made that the Earth is represented by a uniform 

sphere.  In the Earth – fixed coordinate frame, the primary axis, xE, points due North.  The 

secondary axis, yE, points due East.  The tertiary axis, zE, points inward toward the center of the 

Earth as shown in Figure 2.2.  Typically, in the aerospace community, this frame of reference is 

also known as the “Flat – Earth” assumption, and will be utilized throughout this work.   

 

 
 

Figure 2.2:  Earth – Fixed Coordinate Frame [44] 
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Earth – Centered Coordinate Frame 
 

Implicated by its name, the Earth – centered coordinate frame has its origin located at the center 

of the Earth.  Once a fixed position along the surface of the Earth has been defined, the axes may 

then be selected arbitrarily as shown by Figure 2.3. 

 

 
Figure 2.3:  Earth – Centered Coordinate Frame [44] 

 

Euler Angle Representation 
 

Euler angles are angular displacement angles about the body-fixed coordinate frame known as 

the pitch, roll, and yaw angles.  As stated previously, the primary or roll axis of the aircraft 

extends outward along the nose of the aircraft, the secondary or pitch axis extending out the 

starboard side of the aircraft, and the tertiary or yaw axis extends downward, in the direction of a 

cross product between the primary and secondary axes respectively.  In this work, the body-fixed 

coordinate frame is utilized in conjunction with the Earth-fixed inertial coordinate frame as 

shown in Figure 2.4.  Table 2.1 provides a short description and reference summation of axis 

designation, angle, position, and angular rate.   
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Figure 2.4: Earth –

Table 2.1:  Earth and Body 

In addition to aircraft attitude descriptors such as Euler angle displacements 

the direct cosine matrix, additional attitude descriptors such as Euler 

Formulation must be considered and implemented when dealing with the transformation of 

vehicle angular displacement rates (pitch, roll, and ya

Lock singularity condition.  Gimbal Lock is a singularity condition caused by the occurrence of 

two rotational axes of an aircraft

arises in aircraft dynamics when a vehicle achieves a pitch angle rotation of plus or minus 90 

degrees from the primary reference axis.  At this orientation, a divide by zero error, or singularity 

condition, occurs from the vehicle to reference rate transformation matrix

 

 CHAPTER 2. THEROY DEVELOPME%T

 

 

– Fixed and Body – Fixed Coordinate Frames [44]

 

Table 2.1:  Earth and Body – Fixed Axis Parameter Definitions [6]

 

In addition to aircraft attitude descriptors such as Euler angle displacements through the use of 

the direct cosine matrix, additional attitude descriptors such as Euler – Rodrigues

Formulation must be considered and implemented when dealing with the transformation of 

vehicle angular displacement rates (pitch, roll, and yaw rate) due to the occurrence of the Gimbal 

Lock singularity condition.  Gimbal Lock is a singularity condition caused by the occurrence of 

two rotational axes of an aircraft or vehicle pointing in the same direction [49]

t dynamics when a vehicle achieves a pitch angle rotation of plus or minus 90 

degrees from the primary reference axis.  At this orientation, a divide by zero error, or singularity 

condition, occurs from the vehicle to reference rate transformation matrix [4].   
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[44] 

 
[6] 

through the use of 

Rodrigues Quaternion 

Formulation must be considered and implemented when dealing with the transformation of 

w rate) due to the occurrence of the Gimbal 

Lock singularity condition.  Gimbal Lock is a singularity condition caused by the occurrence of 

[49].  This condition 

t dynamics when a vehicle achieves a pitch angle rotation of plus or minus 90 

degrees from the primary reference axis.  At this orientation, a divide by zero error, or singularity 
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Traditional three gimbal mechanical assemblies experience this phenomena due to their reliance 

on Euler angle relationships for attitude determination and is corrected through the use of an 

additional, fourth gimbal.   

 

When developing aircraft simulation models, it is necessary to mathematically resolve the 

Gimbal Lock condition by including a fourth element to the attitude representation convention.  

To do this, it is necessary to construct the Euler Axis, or Eigen Axis, where the orientation of the 

non-inertial frame is characterized by a singular rotation through an angle, Θ, about the Euler 

Axis, E [4].  This comparative assessment between the Euler Axis rotation and Euler angle 

rotations for pitch, roll, and yaw respectively are a common practice for constructing attitude 

descriptors in the aerospace world.  While the Gimbal Lock condition has now been resolved, a 

singularity condition still remains during integration of the Euler Axis when the Eigen angle is 

either 0 or 180 degrees.  The most reliable and commonly used method for mathematically 

eliminating the Gimbal Lock condition is through the derivation and implementation of the Euler 

– Rodrigues Quaternion Formulation.  The quaternion formulation is related to the Euler axis 

formulation through a change of variables where the previous four Euler axis descriptors are 

utilized to define four new, different parameters that avoid the mathematical occurrence of a 

singularity [3, 4]. 

 

2.1.2 Application of $ewton’s Second Law for a Rigid Body  

 [3, 4, 32] 

 
For simulation of an aircraft or vehicle in Cartesian space, rigid body equations of motion must 

be applied from Newton’s second law, which states that the summation of all external forces 

acting on a rigid body must be equal to the time rate of change of the momentum of that body 

and the summation of all external moments acting on a body is equal to the time rate of change 

of the angular moment of the body as shown in Equations 2.1 and 2.2, 

 

( )
d

F W mV
dt

+ =∑  

    (2.1) 

( )
d

M I
dt

ω
→ ↔

=∑  

                (2.2) 

 

Where F is the net force vector acting on the body, W is the weight vector of the body, V is the 

translational rate vector of the body, M is the net moment vector about the body-fixed origin 

(center-of-gravity), m is the mass of the body, ω is the angular rate vector, and I is the inertia 

tensor defined by Equations 2.3, 2.4, and 2.5.   
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xx xy xz

yx yy yz

zx zy zz

I I I

I I I I

I I I

↔
 − −
   = − −     − −   

 

    (2.3) 

2 2

, ( )ij i j
m

I i j dm≠ = +∫∫∫  

    (2.4) 

2 2( )ii
m

I j k dm= +∫∫∫  

    (2.5) 

 

From Equation 2.3, the Inertia tensor is symmetric about its diagonal.  As discussed previously, 

the body-fixed coordinate frame, common to aircraft dynamics, has the xB axis pointing forward 

from the center-of-gravity along the aircraft plane of symmetry.  The yB axis is normal to the 

plane of symmetry pointing out the right-hand side of the aircraft, and the zB axis pointing 

downward within the aircraft plane of symmetry.  It is typical in aircraft simulation to assume 

that the aircraft is symmetric about the plane created by the primary and tertiary axes, and that 

there is a negligible contribution to the inertia formed by the primary and secondary axes.  

Therefore, since the coordinate frame chosen for the aircraft is symmetric in yB, the Ixy, Iyx, Iyz, 

and Izy terms are generally set to zero.  For the simulations conducted in this study, this 

assumption and simplification was not utilized to provide for the development of a more accurate 

and complete simulation model. 

 

Equations 2.1 and 2.2 are defined for one-dimensional motion along the vehicle’s body frame of 

reference.  To correlate these equations from the vehicle’s body-fixed frame to the inertial frame 

of reference, Equation 2.6 must be utilized so the vehicle’s motion in the body frame is related to 

the inertial frame by an arbitrary body frame vector Gveh. Utilizing an angular velocity vector, ����, 

this relationship may be related to a reference frame vector, Gref, shown in Equation 2.6 [32]. 

 

ref veh veh

d d
G G G

dt dt
ω= + ×
�

 

    (2.6) 

 

Equation 2.6 is then applied to Equations 2.1 and 2.2 to relate the force and moment equations in 

the vehicle, body-fixed, reference frame to the inertial, Earth-Fixed, frame of reference resulting 

in Equations 2.7 and 2.8. 
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( ) ( )
ref ref veh veh

d
F W mV mV

dt
ω+ = + ×∑ �

 

    (2.7)           

( ) ( )
veh vehref

d
M I I

dt
ω ω ω= + ×∑ � � �

 

    (2.8) 

 

In scalar form, Equations 2.7 and 2.8 may be written as Equations 2.9 and 2.10 for calculation of 

the net force and moment terms. 

 

( )

( )

( )

x

y Ref Aerodynamic Thrust

z ref

F m u vr wq

F m v ur wp W F F

F m w uq vp

− +   
   = + + = + +   

− +      

ɺ

ɺ

ɺ

 

    (2.9) 

 
2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

xx xy xz yy zz xy xy xz

xy yy yz zz xx xz yz xy Extern

xz yz zz xx yy xy xz yz

L pI qI rI qr I I q r I prI pqI

M M pI qI rI pr I I r p I pqI qrI M

% pI qI rI pq I I p q I qrI prI

  − − − + − − + 
   = = − + − = − + − − + +   
  − − + − + − − +      

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

al

 

                                           

(2.10) 

 

Equation 2.9 accounts for the forces resulting from aerodynamic and propulsive forces, while 

Equation 2.10 accounts for additional moments arising from the aerodynamic and propulsive 

forces.  During simulation, the thrust force on the aircraft is assumed to act along the negative 

primary axis, or – xB direction.  The utilized and governing nonlinear, six degree-of-freedom 

equations for aircraft flight are well documented [3, 4, 32, 44], with additional equations of 

motion utilized in the development of the nonlinear aircraft simulation provided in Appendix E. 

 

While the equations provided in this section are the basic rigid body equations of motion and 

force equations governing the dynamics and stability of an aircraft, equations describing the 

orientation and position of the aircraft are critical to include as well when developing aircraft 

simulation models in three-dimensional space and are discussed in the following section. 
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2.1.3 Aircraft Orientation:  Euler Kinematics [3, 4, 44] 
 

In the preceding section, Newton’s second law was utilized to derive equations of motion for an 

aircraft where the coordinate frame is fixed to the aircraft or vehicle, known as the body-fixed 

coordinate frame.  While the body-fixed frame of reference does well when working with aircraft 

dynamics, simulation of an aircraft for describing position and orientation also requires a 

coordinate frame fixed to the Earth as previously discussed, known as the Earth-fixed coordinate 

frame.  The position of the aircraft being simulated is then specified by the location of the origin 

of the body-fixed frame relative to that of the Earth-fixed frame.  To do this, Euler angles must 

be utilized to orientate the aircraft relative to the Earth.   

 

The body-fixed frame define by xB, yB, and zB, relative to the Earth-fixed coordinate frame, xf, 

yf, and zf, may be described in three consecutive rotations through three Euler angles in a specific 

sequence as shown by graphically by Figure 2.5 and summarized in Table 2.2. 

 

 
 

Figure 2.5: Euler Angle Rotations Following the Standard Rotational Convention [4] 

 

Rotational Axis Rotational Description 

Zf 

Rotate the Earth-fixed coordinate frame (xf, yf, zf) about the zf-axis through an 

angle ψ to the coordinate frame (x1, y1, z1), as graphically shown in Figure 2.5a 

y1 

Rotate the coordinate frame (x1, y1, z1) about the y1-axis through an angle θ to the 

coordinate frame (x2, y2, z2), as graphically shown in Figure 2.5b 

x2 

Rotate the Earth-fixed coordinate frame (x2,y2, z2) about the x2-axis through an 

angle � to the body-fixed coordinate frame (xb, yb, zb), as graphically shown in 

Figure 2.5c 

Table 2.2:  Euler Angle Rotational Convention 
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Utilizing the Euler angle rotations described above, the equations of motion derived for a body-

fixed coordinate frame must be re-derived in terms of orientation and the position of the vehicle 

relative to the Earth-fixed frame of reference.  Euler angles therefore allow for the orientation of 

the body-fixed frame of reference to be effectively related to the Earth-fixed frame of reference, 

as stated previously. Figure 2.6 provides a final reference for axis designation, angle, and angular 

rate for an aircraft operating in Cartesian space.  The work conducted in this study utilizes a “3-

2-1” Euler transformation sequence for the inertial Earth-fixed reference frame transformation to 

the body-fixed coordinate frame. 

 

 
 

Figure 2.6:  Body-Fixed Axis, Angle, and Angular Rate Designations [24] 

 

Equations 2.11, 2.12, and 2.13 represent the rotations about the xf, yf, and zf axes for a 

transformation from the Earth-fixed coordinate frame to the vehilce’s xB, yB, and zB axes 

respecitvely. 

 

1

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )

R φ φ
φ φ

 
 =  

−  

 

              (2.11) 

2

cos( ) 0 sin( )

0 1 0

sin( ) 0 cos( )

R

θ θ

θ θ

− 
 =  
  

 

  (2.12) 
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3

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

R

ψ ψ
ψ φ

 
 = − 
  

 

  (2.13) 

 

From these relationships defined in Equations 2.11 through 2.13, Equations 2.14 and 2.15 

defines the transformation matrix that performs the transformation from the inertial, Earth-fixed 

coordinate frame to the body-fixed coordinate frame. 

 

 3 2 1Earth BodyT R R R− = ∗ ∗  

  (2.14) 

cos( ) sin( ) 0 cos( ) 0 sin( ) 1 0 0

sin( ) cos( ) 0 0 1 0 0 cos( ) sin( )

0 0 1 sin( ) 0 cos( ) 0 sin( ) cos( )

Earth BodyT

ψ ψ θ θ
ψ ψ φ φ

θ θ φ φ
−

−     
     = −     

−          
 

  (2.15) 

 

Combining Equations 2.11 through 2.13 in the manner given by Equation (2.16) defines the 

inverse transformation from the body-fixed coordinate frame to the Earth-fixed coordinate frame, 

as Equation 2.17. 

 

1 2 3Body EarthT R R R− = ∗ ∗  

  (2.16) 

 

1 0 0 cos( ) 0 sin( ) cos( ) sin( ) 0

0 cos( ) sin( ) 0 1 0 sin( ) cos( ) 0

0 sin( ) cos( ) sin( ) 0 cos( ) 0 0 1

Body EarthT

θ θ ψ ψ
φ φ ψ ψ
φ φ θ θ

−

−     
     = −     

−          

 

 

  (2.17) 

 

The individual matrices given in Equations 2.15 and 2.17 may now be multiplied together to 

form a two, single transformation matrices for each of the defined equations.  At this point, it is 

convenient to introduce shorthand notation as,  

 

( ) sin( ), ( ) cos( )s cφ φ φ φ= =  

 

and so on.   
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Multiplying the individual matrices of Equations 2.15 and 2.17 together forms the transformation 

matrices for the Earth-fixed to body-fixed coordinate frame transformation and the body-fixed to 

Earth-fixed coordinate frame transformation.  These matrices are given in Equations 2.18 and 

2.19 respectively. 

 

c s cx fixed x body

y fixed y body

z fixed z body

V c c s s c c s s s V

V c s s s s c c c s s s c V

V s s c c c V

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

− −

− −

− −

   − + 
    = + −    
   −     

 

 

  (2.18) 

 

c s c

x body x fixed

y body y fixed

z body z fixed

V c c c s s V

V s s c c s s s s c c s c V

V s s c s s s c c c V

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

− −

− −

− −

   − 
    = − +    
   + −     

 

 

  (2.19) 

 

The transformation matrix given in Equation 2.18 is known as the Direct Cosine Matrix or DCM, 

and will be utilized throughout this work and research for transforming components of the Earth-

fixed coordinate frame to the body-fixed coordinate frame of the aircraft.  It is worth noting that 

the inverse of the transformation matrix given in Equation 2.18 is its transpose due to the nature 

of the inverse of square orthogonal matrices.   

 

In the body-fixed coordinate frame, the velocity of the of the aircraft is given by u, v, and w, and 

in the Earth-fixed coordinate frame, the time rate of change of the position vector is designated 

by dx/dt, dy/dt, and dz/dt respectively.  The transfer of vehicle, body-fixed rates, to inertial, 

Earth-fixed rates requires the utilization of the transformation matrix given in Equation 2.19 and 

the addition of wind components in the inertial, Earth-fixed coordinate frame as given by 

Equation 2.20, 

 

c s c

f

f

f

wind xEarth fixed

Earth fixed wind y

Earth fixed
wind z

Vx c c c s s u

y s s c c s s s s c c s c v V

z s s c s s s c c c w V

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

−−

− −

− −

   −           = − + +      
     + −        

ɺ

ɺ

ɺ

 

 

  (2.20) 
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where Vwind-x, Vwind-y, and Vwind-z are the components of the constant wind vector in the Earth-

fixed coordinate frame.  The integration of Equation 2.20 leads to the position of the aircraft 

relative to the Earth-fixed coordinate frame [4].    

 

The relationship between angular velocities in the body-fixed frame and the Euler angular rates 

for the Aerospace 3-2-1 conventional rotation is given by Equation 2.21 and derived in full in 

Appendix A. 

 

1 0

0

0

p s

q c c s

r s c c

θ φ
φ θ φ θ
φ θ φ ψ

−     
    =     
 −        

ɺ

ɺ

ɺ

 

  (2.21) 

Equation 2.21 can be solved for the Euler rates in terms of body angular velocities and is given 

by Equation 2.22. 

 

1 tan tan

0

0 sec sec

s c p

c s q

s c r

φ φ θ φ θ
θ φ φ
ψ φ θ φ θ

     
     = −     
         

ɺ

ɺ

ɺ

 

  (2.22) 

 

By integrating Equation 2.22, one may determine the Euler angles ψ, θ, and � for the coordinate 

frame of interest.  As previously discussed, the Gimbal Lock condition is represented in Equation 

2.22 for a plus or minus 90 degree rotation, where the heading (yaw) and bank (roll) angles 

become unable to determine due to the parallel alignment of the roll and pitch axes [3, 4]. 

 

As previously mentioned, Euler first introduced the concept of relating a noninertial reference 

frame to the inertial reference frame described in terms of a single rotation known as the Euler 

axis or Eigen axis to eliminate the condition of parallel axes.  The Euler axis developed makes 

use of a fourth component for orientation description.  The three components describing a vector 

along the Euler axis are Ex, Ey, and Ez with the fourth component representing the total rotational 

angle, Θ.  Utilizing this manner of orientation classification, an additional mathematical degree 

of freedom has been introduced.  Figure 2.7 displays the Eigenvector and total rotation angle, Θ. 
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Figure 2.7:  Euler Axis and Total Rotation Angle Reference [4] 

 
During formulation of the Euler axis rotation, the components of both the inertial and noninertial 

coordinate frame are the same.  Therefore, the vector, E, may be shown as Equation 2.23. 

 

x fixed x body x

y fixed y body y

z fixed z body z

E E E

E E E

E E E

− −

− −

− −

     
     

= ≡     
     

    

 

  (2.23) 

 

The components of an arbitrary vector, ν, may be related from the body-fixed frame of reference 

to the Earth-fixed frame of reference through Euler’s Formula [4] given by Equation 2.24, 

 

cos( ) ( ) sin( )

sin( ) cos( ) sin( )

sin( ) sin( ) cos( )

x body xx xy z xz y x fixed

y body xy z yy yz x y fixed

z body xz y yz x zz z fixed

v E E E Sin E E v

v E E E E E v

v E E E E E v

− −

− −

− −

     + Θ − Θ − Θ
    = − Θ + Θ + Θ    
    + Θ + Θ + Θ     

 

 

  (2.24) 

where (1 cos( ))ij i jE E E= − Θ .  The inverse of the transformation matrix given in 

Equation 2.24 may be obtained by simply rotating through the negative of the total rotation angle 

utilized during the forward rotation.  The inverse transformation therefore allows for the 

transformation of a vector from the inertial, Earth-fixed coordinate frame, to the body-fixed 

coordinate frame and is given by Equation 2.25. 
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cos( ) ( ) sin( )

sin( ) cos( ) sin( )

sin( ) sin( ) cos( )

x fixed xx xy z xz y x body

y fixed xy z yy yz x y body

z fixed xz y yz x zz z body

v E E E Sin E E v

v E E E E E v

v E E E E E v

− −

− −

− −

     + Θ − Θ + Θ
    = + Θ + Θ − Θ    
    − Θ + Θ + Θ     

 

 

  (2.25) 

 

The relationship between the body angular rates of the aircraft and the rate of change of the Euler 

axis rotational parameters may be given as Equation 2.26 

 

' ' '

' ' '

' ' '

2 2 2

/1

/2

/

x y z

xx xy z xz yx

xy z yy yz xy

xz y yz x zzz

E E E
p

E C S E E E EE
q

E E E C S E EE
r

E E E E E C SE

 Θ 
    + − +    =   + + −         − + +   

ɺ

ɺ

ɺ

ɺ

 

  (2.26) 

where 
' / , sin( / 2), cos( / 2)ij i jE E E C S S C= − = Θ = Θ .   

 

Equations 2.24 through 2.26 represent the kinematic transformation equations in terms of the 

Euler axis convention.  The use of Equation 2.26 eliminates the Gimbal Lock condition at plus or 

minus 90 degrees; however, the use of this new equation now possesses a singularity condition 

when the aircraft is at an orientation of 0 or 180 degrees. 

 

2.1.4 Quaternion Formulation  
 

In order to avoid the singularity difficulties associated with the use of Euler angles and the large 

computational terms of the Direct-Cosine Matrix, another attitude representation must be 

utilized.  The Quaternion is a commonly used method of attitude description in the aerospace 

community due to its freedom from the analytical complexities that are synonymous with the use 

of the Euler angle convention.   

 

Quaternion Attitude Convention [4, 26, 35, 45] 
 

The four parameters established by the formulation of the Euler axis orientation are utilized to 

describe four new parameters that are much more computationally less burdening.  These four 

new parameters are defined by Equation 2.27 as  
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0

0

0

cos( / 2)

sin( / 2)
ˆˆ ˆ( ) ( ) ( )

sin( / 2)

sin( / 2)

x x

x y z

y y

z z

q

q E q
Q q q i q j q k

q E q

q E

Θ   
   Θ     

= = = + + + =     
Θ     

   Θ   

 

  (2.27) 

 

and are known as the Euler-Rodrigues symmetric parameters, or alternatively, as the quaternion 

of finite rotation.  The four parameters given by Equation 2.27 for the basis of a commonly used 

orientation and rigid-body rotation descriptor utilized in the aerospace community where the first 

element of the Quaternion is the scalar component, denoted by the 0 subscript.  The other three 

components for the Quaternion vector, and are denoted by the x, y, and z subscripts respectively.   

A relationship between the four parameters of the Quaternion may be seen by squaring the four 

components and adding them together as shown in Equation 2.28. 

 

2 2 2 2 2 2 2 2 2

0 cos ( )sin
2 2

x y z x y zq q q q q q q
Θ Θ   + + + = + + +   

   
 

  (2.28) 

Due to the fact that there are four components governing a three axes rotation, it is necessary to 

eliminate the mathematical redundancy present.  As previously stated, the Euler axis, E, is a unit 

vector.  Applying the trigonometric identity given by Equation 2.29, 

 

2 2cos ( / 2) sin ( / 2) 1Θ + Θ =  

              (2.29) 

it may be seen that: 

2 2 2 2

0 1x y zq q q q+ + + =  

  (2.30) 

 

Quaternion Algebra and Mathematics [4, 33, 37] 

 
In general, a quaternion is defined as 

 

{ } 0
ˆˆ ˆ

x y zQ q q i q j q k= + + +  

  (2.31) 

 

A Quaternion has properties of both a scalar and a vector.  While all the elements of the 

quaternion are real numbers, they may be designated as a hyper-complex number 
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Similar to complex algebra, quaternion algebra allows for the magnitude of a quaternion to be 

expressed like that of a complex number as shown in Equation 2.32 and the conjugate of the 

quaternion expressed as Equation 2.33. 

 

{ } 2 2 2 2

0 x y zQ q q q q= + + +  

  (2.32) 

{ } 0
ˆˆ ˆ

x y zQ q q i q j q k
∗
= − − −  

  (2.33) 

 

In terms of attitude determination, differencing a quaternion with another quaternion and 

multiplying quaternions by scalar terms does not either give one the overall rotation angle or 

change the rotation angle.  To do this, a quaternion must be normalized, which requires the use 

of the quaternion conjugate as shown by Equation 2.34. 

 

( ) ( )
Q

%orm Q % Q
Q Q∗

= =  

  (2.34) 

 

The product of a quaternion, as given by Equation 2.35, consists of separate quaternion rotations 

where the sequence of rotation is of critical importance.  The quaternion, Q, represents the first 

rotation and P, the second rotation.  The product of a quaternion and its inverse must have a 

unitary value, just as the Euler transformation matrices, due to the quaternion representing a 

transformation from one coordinate frame to another. 

 

0 0 0 0PQ p q p q p q q p p q= − + + + ×i  

  (2.35) 

 

A quaternion operation is known as a quaternion rotation of an attitude vector.  In a quaternion 

rotation, the attitude vector of the reference coordinate frame, HEarth-Fixed, is rotated from the 

Earth-fixed frame of reference, to the body-fixed coordinate frame via Q.  This operation 

produces a coordinate frame output vector, HBody-Fixed, in the body-fixed frame as given by 

Equation 2.36.  

 
22

0 0( ) ( ) 2( ) 2 ( )T

Body Fixed Earth Fixed Earth Fixed Earth Fixed Earth FixedH Q H Q q q H qq H q q H− − − − −= ∗ = − + − ×
 

  (2.36) 

 

By completing the mathematical operations, Equation 2.36 may be expanded to the derived 

transformation matrix given by Equation 2.37. 
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2 2 2 2

0 0 0

2 2 2 2

0 0 0

2 2 2 2

0 0 0

2( ) 2( )

2( ) 2( )

2( ) 2( )

x y z x y z x z y

Body Fixed x y z y x z y z x Earth Fixed

x z y y z x z x y

q q q q q q q q q q q q

H q q q q q q q q q q q q H

q q q q q q q q q q q q

− −

 + − − + −
 = − + − − − 
 + − + − − 

 

  (2.37) 

 

In a similar manner, a transformation from the body-fixed frame to the Earth-fixed coordinate 

frame can be established and is presented by Equation 2.38. 

 
* 2

0 0( ) 2( 1) 2( ) 2 ( )Earth Fixed Body Fixed Body Fixed Body Fixed Body FixedH Q H Q q H q H q q q H− − − − −= = − + + ×i

 

 (2.38) 

 

An aerospace quaternion rotation for an Earth-fixed coordinate frame to an aircraft or vehicle 

body-fixed frame can be established by applying Equation 2.27 to each inertial coordinate frame 

axis.  This procedure allows for the direct formulation of rotation quaternions as defined by 

Equations 2.39, 2.40, and 2.41.  The aerospace quaternion rotation may now be mathematically 

represented by Equation 2.42.   

ˆˆ ˆ- : cos sin 0 0
2 2

     XRotation about the Earth Fixed X axis Q i j k
φ φ   = + + +   

   
 

  (2.39) 

ˆˆ ˆ- : cos 0 sin 0
2 2

     YRotation about the Earth Fixed Y axis Q i j k
θ θ   = + + +   

   
 

  (2.40) 

 

ˆˆ ˆ- : cos 0 0 sin
2 2

     ZRotation about the Earth Fixed Z axis Q i j k
ψ ψ   = + + +   

   

 
  (2.41) 

Trans X Y ZQ Q Q Q=  

  (2.42) 

 

Therefore, the total transformation equation from the Earth-fixed coordinate frame to the body-

fixed coordinate frame may now be expressed as Equation 2.43. 

 

Body Fixed Trans Earth Fixed TransH Q H Q∗
− −=  

  (2.43) 
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Quaternion Attitude Descriptors [4, 26, 28, 33, 37] 

 
It is necessary to be able to relate the Euler-Rodrigues quaternion to the Euler angle formulation 

in order to aid in the physical description and interpretation of the Euler-Rodrigues quaternion 

model.  To do this, a relationship must be established between the direct cosine matrix, given in 

Equation 2.19, and the Euler-Rodrigues formulation.  This relationship is established through the 

use of Equation 2.44. 

 
2 2 2 2

0 0 0

2 2 2 2

0 0 0

2 2 2 2

0 0 0

2( ) 2( )

2( ) 2( )

2( ) 2( ) c s c

x y z x y z x z y

x y z y x z y z x

x z y y z x z x y

q q q q q q q q q q q q c c c s s

q q q q q q q q q q q q s s c c s s s s c c s c

q q q q q q q q q q q q s s c s s s c c c

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

 + − − + − − 
   − + − − − = − +   
 + − + − − + −   

 

  (2.44) 

 

The quaternion matrix equations relating the four terms of the Euler-Rodrigues formulation to 

the three Euler parameters through the use of the nine matrix components result in six additional 

levels of redundancy.  The reduced relationship is presented by Equation 2.45 and is derived in 

full in Appendix B.  

/ 2 / 2 / 2 / 2 / 2 / 20

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

x

y

z

c c c s s sq

s c c c s sq

c s c s c sq

s s c c c sq

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

+  
   −   

= ±   +   
   −   

 

              (2.45) 

 

Equation 2.45 proves useful in the absence of the direct cosine matrix; however, if the 

transformation matrix is known, the quaternion may be determined alternatively through the use 

of Equation 2.46 and 2.47 which provide an alternative, direct determination of the quaternion 

from the off-diagonal elements of the direct cosine matrix [4].   

 

0 11 22 33

1
1

2
q DCTM DCTM DCTM= + + +  

              (2.46) 
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23 32

0

31 13

0

12 21

0

1
( )

4

1
( )

4

1
( )

4

x

y

z

DCTM DCTM
q

q

q DCTM DCTM
q

q

DCTM DCTM
q

 
− 

  
  

= −   
   
   

− 
 

 

  (2.47) 

: ,

cos .

th

ij

th

%ote DCTM i row and

j column of the direct ine transformation matrix

=

      

 

 

Both solutions to Equation 2.45 are valid because the two solutions are mathematically possible 

due to the orientation of the one coordinate frame relative to another being described in terms of 

two right-handed rotations.  Relating the quaternion back to the Euler angle representation for 

aircraft simulation is achieved through the use of Equation 2.48, where the Gimbal Lock 

singularity condition reappears [4, 28].   

 

2 2 2 2

0 0

0

2 2 2 2

0 0

tan 2[2( ),( )

sin[2( )]

tan 2[2( ),( )

x y z z x y

y x z

z x y x y z

a q q q q q q q q

a q q q q

a q q q q q q q q

φ
θ
ψ

 + + − − 
   

= −   
   + + − −   

 

  (2.48) 

 

In order to deal with this condition, a general algorithm formulation for determining Euler angles 

from the corresponding quaternion components may be implemented and is shown as Equation 

2.49 for attitude estimation when the condition of Gimbal Lock is possible. 
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0

0

2 2 2

0 0

( 0.5)

sin[2 / cos( / 4)]

/ 2

( 0.5)

sin[2 / cos( / 4)]

/ 2

tan 2[2( ),(

y x z

x

y x z

x

x y z z x y

if q q q q

a q

arbitrary

if q q q q

a q

arbitrary

else

a q q q q q q q e

φ π ψ
θ π
ψ

φ π ψ
θ π
ψ

φ
θ
ψ

− =

+   
   

=   
   
   

− = −

−   
   

= −   
   
   

+ + − − 
 

= 
 
 

2

0

2 2 2 2

0 0

)

sin[2( )]

tan 2[2( ),( )

y x z

z x y x y z

a q q q q

a q q q q q q q q

 
 

− 
 + + − − 

 

              (2.49) 

 

Quaternion Formulation for a Constantly Rotating Rigid-Body [4, 26, 28, 33] 

 
Formulation of a closed-form quaternion solution for a rigid-body under constant rotation is 

possible; however, this condition is more common to spacecraft rather than aircraft applications 

[26]. 

 

The development of a closed-form quaternion solution to an aircraft experiencing constant 

angular rates is an excellent method for verification and validation of the numerical algorithm 

method derived and implemented to integrate the quaternion formulation.  Therefore, for a rigid-

body rotating at a constant angular velocity, the governing system of differential equations may 

be written in quaternion form as Equations 2.50 and 2.51.   

 

{ } { }[ ] 0Q Q= Κ =ɺ  

  (2.50) 
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[ ]

0

01

02

0

p q r

p r q

q r p

r q p

− − − 
 − Κ =

− 
 − 

 

  (2.51) 

 

The solution to the first-order linear differential equation given as Equation 2.50 is presented as 

Equation 2.52 with the full derivation presented in Appendix B.   

 

{ } [ ] { }
0

2
cos( / 2) [ ]sin( / 2)

t
Q i t t Qω ω

ω =

 = + Κ  
 

  (2.52) 

 

An excellent method for testing this numerical algorithm is to utilize the special case where the 

initial conditions of all three Euler angles are zero, given be Equation 2.53, reducing the 

quaternion to the form presented in Equation 2.54. 

 

0 (0) 1

(0) 0

(0) 0

(0) 0

x

y

z

q

q

q

q

   
   
   

=   
   
     

 

  (2.53) 

0 cos( / 2)

( / )sin( / 2)

( / )sin( / 2)

( / )sin( / 2)

x

y

z

q t

q p t

q q t

q r t

ω
ω ω
ω ω
ω ω

   
   
   

=   
   
     

 

  (2.54) 

 

 
 

 

 

 



26  CHAPTER 2. THEROY DEVELOPME%T 

 

   

2.2 Signal Processing 

 
2.2.1 Signal $oise Corruption 
 

Contamination of sensor signals is common, if not expected, when operating in variable 

environments that may cause a deviation of the measured signal from the true signal.  Such 

environments include operational environments with extreme weather conditions and 

fluctuations in the Earth’s magnetic field that may deviate and disrupt the sensor signal.  The 

hardware environment of the sensor also plays a role.  The hardware environment may allow the 

interface and instrumentation of the surrounding electronics to cause interference and 

degradation of the signal of concern.  Another consideration to signal noise corruption is the 

surrounding signal interface with the electronic operating environment.  Interaction with 

surrounding electronics may cause signal corruption and inaccuracies to occur.   

 

For accurate and reliable attitude estimation algorithms to be developed, it is necessary and 

critical to filter the sensor signals of concern in the presence of noise.  A standard model for 

noise corruption is presented as Equation 2.55, where the measured value of the sensor signal is 

the sum of the sensor signal and the measurement noise [46]. 

 

( )

Measured Value True Value Measurement %oise

x x v t

= +

= +

       

                                                           ɶ
 

  (2.55) 

2.2.2 Influence of a Biased Signal [21, 28, 33, 42, 46, 48] 
 

The bias, or bias error, of a rate gyro is the signal output from the gyro when it is not 

experiencing any rotational movement.  Almost all rate gyros have inherent biases in them as a 

source of measurement error.  Typically, a gyro bias is presented as a voltage that corresponds to 

a rotational velocity measured in degrees per second.  Unfortunately, gyro biases are not 

typically fixed values, but vary over time.  A biased rate gyro signal may occur for a multitude of 

reasons ranging from errors in the manufacturing process to inaccuracies during the calibration 

process of the hardware setup.   

 

Biased signals must be accounted for in the signal processing algorithm to ensure precise 

measurement of the signal model.  Therefore, Equation 2.55 may be expanded to include a term 

that accounts for the signal biases that may occur [46, 48], and is shown by Equation 2.56. 

 

( ) ( )

          

                                                                           

Measured Value True Value Measurement %oise Bias

x x v t b t

= + +

= + +ɶ

   

  (2.56)
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Estimation of a bias associated with a rate gyro measurement may range from simple to difficult.   

Algorithms utilized for bias estimation depend upon the aircraft or vehicle operating 

environment and the information known about the rate gyro.  In this work, an Extended Kalman 

Filter (EKF) algorithm is implemented utilizing the multi-dimensional device model, rate gyros, 

and accelerometer measurements operating in a multitude of scenarios.   

 

2.2.3 The Kalman Filter [5, 26, 28, 29, 30, 31, 39] 

 

The Kalman filter is a set of mathematical equations that provide a sequential recursive means to 

estimate the state of a process in a manner that minimizes the mean of the squared error, based 

upon actual system measurements and predicted state values [29].  The Kalman filter (KF) is a 

powerful state estimator because of its ability to support estimates of the past, present, and future 

states even when exact information and the nature of the modeled system is not known [28]. 

 

The purpose of the Kalman filter is to mathematically force the measured and estimated values 

of the Kalman filter’s states to converge and for the covariance, or the difference in value of the 

estimate and true states, to be minimized during the algorithms process.  Figure 2.8 displays a 

graphical representation of the Kalman filter’s underlying mechanics. 

 

 
Figure 2.8:  Kalman Filter Mechanics [29] 

 

The Kalman filter was developed by R.E Kalman in 1960 when he published his paper, which 

has since become famous, detailing a mathematical solution to a discrete-data linear filtering 

problem.  Since the inception of the Kalman filter, the Kalman filter has become a large subject 

of extensive research and application methods, especially in the area of autonomous and 

unmanned navigation applications.   
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The Extended Kalman Filter [6, 26, 28, 29, 30, 39, 48] 
 

As discussed previously, the Kalman filter is a set of mathematical equations addressing the 

problem of estimating a state governed, typically, by a set of linear stochastic difference 

equations.  In the case that the process or measurement correlation is nonlinear, an extended 

Kalman filter must be used.  The extended Kalman filter is a Kalman filter that linearizes about 

the current mean and covariance [28].  

 

Nonlinearities in modeled systems include Coulomb friction inherent to the system, centripetal 

forces experience in rotational systems, and sensor saturation or an imposed dead-zone of a 

motor model in the system. Nonlinear system models must be developed prior to operation.  

Unlike linear systems, nonlinear systems do not possess the superposition characteristic 

associated with linear systems where multiple systems may be added to one another to form a 

single, composite operating system.  The addition of one nonlinear system to another creates a 

condition where the conglomerate of nonlinear systems become susceptible to multiple nonlinear 

system models mimicking the characteristics of the overall system, therefore not producing the 

true output of the overall system operation.   

 

For a continuous-time, nonlinear system, the nonlinear state-space truth model is given as 

Equation 2.57. 

 

( ) ( ( ), ( ), ) ( ) ( )

( ) ( ( ), ) ( )

x f x u w

        y h x v

t t t t G t t

t t t t

= +

= +

ɺ

ɶ
 

  (2.57) 

 

where f(x(t), u(t), t) and h(x(t), t) are assumed to be continuously differentiable with respect to 

the state, x(t).  The variables w(t) and v(t) represent zero-mean Gaussian noise processes, while 

the control input, u(t), represents a deterministic quantity. 

 

There are numerous ways to produce a linearized form of the Kalman filter while working in a 

nonlinear operating environment.  The implementation of the extended Kalman filter is one of 

these methods.  The main concept utilized in the implementation of the extended Kalman filter is 

that the EKF assumes that the true state is sufficiently close to the estimated state, allowing for 

the error dynamics to be represented fairly accurately by a Taylor-Series expansion of the first-

order about a nominal state, x(t), as shown by Equation 2.58 [28, 30]. 

 

( )

( ( ), ( ), ) ( ( ), ( ), ) [ ( ) ( )]
x

f
f u f x u x x

x t

d
x t t t t t t t t

d
≅ + −  

  (2.58) 

 

The output equation may also be expanded upon, and is expressed as Equation 2.59. 
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( )

( ( ), ) ( ( ), ) [ ( ) ( )]
x

h
h x h x x x

x t

d
t t t t t t

d
≅ + −  

  (2.59) 

 

In the extended Kalman filter, the current estimate of the state is used as the nominal state 

estimate as shown in Equation 2.60. 

 

( ) ( )x xt t=  

  (2.60) 

 

Utilizing Equation 2.60, and applying it to both sides of Equations 2.58 and 2.59 allows for the 

formulation of Equations 2.61 and 2.62,  

 

{ } ˆ( ( ), ( ), ) ( ( ), ( ), )f u f uE x t t t x t t t=  

  (2.61) 

{ } ˆ( ( ), ) ( ( ), )h x h xE t t t t=  

              (2.62) 

  

where the structure of the state and output estimate of the extended Kalman filter may be given 

as Equations 2.63 and 2.64 respectively. 

 

ˆ ˆ ˆ( ) ( ( ), ( ), ) ( )[ ( ) ( ( ), )]x f x u y h xt t t t K t t t t= + −ɺ ɶ  

  (2.63) 

ˆ ˆ( ) ( ( ), )y h xt t t=  

  (2.64) 

 

A summary of the continuous-time extended Kalman filter is presented in Table 2.3. 
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System Model 

 

( ) ( ( ), ( ), ) ( ) ( ) ~ ( , ( ))

( ) ( ( ), ) ( ) ~ ( , ( ))

x f x u w 0

        y h x v 0

t t t t G t t % Q t

t t t t % R t

= +

= +

ɺ

ɶ
 

Initialization of 

the State and 

Covariance { }
0 0

0 0 0

ˆ ˆ( )

( ) ( )

   x x

x x
T

t

P E t t

=

= ɶ ɶ
 

Kalman Gain 
1ˆ( ) ( ) ( ( ), ) ( )x

TK t P t H t t R t−=  

Update 

Covariance 

1

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ( ), ) ( ) ( ) ( ( ), )

ˆ ˆ( ) ( ( ), ) ( ) ( ( ), ) ( ) ( ) ( ) ( )

f
ˆ ˆ( ( ), ) , ( ( ), )

x x

            x x

x x

h
             x   x

x x

T

T T

t t

P t F t t P t P t F t t

P t H t t R t H t t P t G t Q t G t

d d
F t t H t t

d d

−

= +

− +

≡ ≡

ɺ

 

Estimation 

“State Update” ˆ ˆ ˆ( ) ( ( ), ( ), ) ( )[ ( ) ( ( ), )]x ft x t u t t K t y t h x t t= + −ɺ ɶ  

Table 2.3:  Continuous-Time Extended Kalman Filter Algorithm 

 

The matrices, ˆ ˆ( ( ), ), ( ( ), )x xF t t H t t , are generally not consistent.  Therefore, a steady-state 

gain cannot be determined resulting in an increased computational burden since n(n+1)/2 

nonlinear equations need to be integrated in order to determine P(t).  A summary of the 

continuous-discrete extended Kalman filter is given in Table 2.4. 
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System Model 

 

( ) ( ( ), ( ), ) ( ) ( ) ~ ( , ( ))

( , ) ~ ( , )

x f x u w 0

        y h x v 0k k k k

t t t t G t t % Q t

t % R

= +

= +

ɺ

ɶ
 

Initialization 

of the State 

and 

Covariance { }
0 0

0 0 0

ˆ ˆ( )

( ) ( )

   x x

x x
T

t

P E t t

=

= ɶ ɶ
 

Kalman Gain 

ˆ

ˆ ˆ ˆ( )[ ( ) ( ) ]

ˆ( )
x

x x x

                          x

k

T T T

k k k k k k k k k k

k k

K P H H P H R

h
H

x −

− − − − −

−

= +

∂
≡

∂

 

Update 

Covariance 

ˆ ˆ ˆ[ )]

ˆ[ ( )]

x x h(x

P x P

k k k k k

k k k k k

K y

I K H

+ − −

+ − −

= + −

= −

ɶ
 

Estimation 

“State 

Update” 

ˆ ( )

ˆ ˆ( ) ( ( ), ( ), )

ˆ ˆ( ) ( ( ), ) ( ) ( ) ( ( ), ) ( ) ( ) ( )

ˆ( ( ), )

                          x f

P

f
                             

x

T T

x t

t x t u t t

t F x t t P t P t F x t t G t Q t G t

F x t t

=

= + +

∂
≡

∂

ɺ

ɺ  

Table 2.4:  Continuous-Discrete Extended Kalman Filter Algorithm 

 

The approach utilized in the application and implementation of the extended Kalman filter 

assumes the true state is “close” to the estimated state.  This restriction can be very destructive 

for highly nonlinear applications with large initial condition errors.  Proving convergence in the 

extended Kalman filter is extremely difficult for simple systems where the initial conditions are 

not well known.  Despite this, the extended Kalman filter is used heavily in practice, and is 

typically robust to initial condition errors, which may be verified through simulations [28]. 

 

An alternative approach to the extended Kalman filter is to linearize about the nominal state 

vector known a priori, instead of about the current state vector.

For this method, the Kalman filter equations for the output estimate are given by Equations 2.65 

and 2.66. 

{ }
ˆ ˆ( ) ( ( ), ( ), ) ( ( ), )[ ( ) ( )]

ˆ( ) ( ) ( ( ), ) ( ( ), )[ ( ) ( )]

x f x u x x x

y h x x x x

t t t t F t t t t

K t t t t H t t t t

= + −

+ − − −

ɺ

ɶ
 

  (2.65) 
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ˆ ˆ( ) ( ( ), ) ( ( ), )[ ( ) ( )]y h x x x xt t t H t t t t= + −
 

  (2.66) 

 

The covariance equation remains in the same form as presented in Table 2.5, with the partial 

derivatives now evaluated at the nominal state rather than the current state.  This approach is 

known as the “Linearized Kalman Filter” [28, 30].  Typically, the linearized Kalman filter is less 

accurate compared to the extended Kalman filter; however, the computational burden associated 

with this method is greatly reduced because the nominal state is known.   

 

Enhancement of the extended Kalman filter accuracy may also be made by implementing a 

continuous linearization about the most recent estimate and then determining once again the 

covariance matrix, P, and Kalman gain, K.  This method is known as the “Iterated Extended 

Kalman Filter” [28, 30].  The iterations of this method are given by Equations 2.66, 2.67, and 

2.68 where, 
0

ˆ ˆx xk k

+ −= .  In this approach, the iterations are continued until the estimate no 

longer experiences an improvement.  

 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )( )x x y h x x x x
i i i i ik k k k k k k k kK H+ − + + − + = + − − − ɶ  

  (2.66) 

1

ˆ ˆ ˆ( ) ( ) ( )x x x
i i i i

T T

k k k k k k k k k kK P H H P H R
−− + + − + = +   

  (2.67) 

ˆ( )x
i i ik k k k kP I K H P+ + − = −   

  (2.68) 

Kalman Filter Foundations [6, 26, 28, 30, 31, 39] 
 

The development of a Kalman filter requires adequate knowledge of the dynamics and signal 

measurements that are critical to the modeled system.  An initial error in the dynamic modeling 

of the system or the associated system noise will result in a propagated error during the entire 

operation period of the filter.  An assumption that is often made is the vehicle or aircraft of study 

utilizes relatively accurate sensors and the system model implemented is generally precise.   

 

In the Kalman filter, the state error covariance matrix, P, possess a large amount of tuning 

sensitivity.  This tuning sensitivity is accountable when the standard deviation of the noise to 

signal amplitude ratio is greater than a unity value or in the case where the diagonal elements of 

the matrix are very close to zero in value.  In the case where the diagonal elements are set very 

close to zero, the filter no longer continues to update the system material causing either a 

divergence of the filter or possibly a very long convergence time.  When the ratio of standard 

deviation of the noise to signal amplitude is greater than unity, it may be said that the measured 

signals are saturated by the sensor noise resulting from failed (or failing) sensors.   
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To ensure the correct operation of the filter, the biases of the sensors utilized must be accurately 

known in order to produce a correct tracking estimate [30]. However, as long as terms of the 

covariance matrix are not set to zero, the filter will converge nicely to the expected estimates.  

The only difference will be the time to convergence.   

 

A process in the Kalman filter known as “warm starting” is where the convergence transient of 

the filter is reproduced and good initial state estimates are provided [28].  This “warm starting” 

leads to a lower initial covariance matrix.  In the case that no “a priori” state information is 

provided or exists, the filter may still be initialized by setting the diagonal elements of the state 

covariance matrix to infinity, with the off-diagonal elements of the matrix set equal to zero and 

some arbitrary state vectors.  Initializing the state covariance matrix to infinity allows the filter to 

ignore the initial state estimate.  Essentially, this allows the filter to act like a recursive filter in 

the absence of process noise.  However, in the presence of process noise, the filter will ignore the 

initial state estimates.  Therefore, the filter acts in a quasi-recursive nature until the state vector 

and the covariance matrix, P, can be updated and allowed to propagate.   

 

For verification and validation of the filter operation online, the state error residuals calculated 

from the difference between the estimated states produced by the filter’s algorithm and the input 

state measurements are needed.  The state error cannot be calculated using the true state values 

because if the true states are known, the need for a filter is negligible.  The variance of the 

estimated states, represented by the diagonal elements of the output state covariance matrix, 

allow for a comparative analysis of the state error determined within the ± 1σ and ± 3σ bounds 

[28, 30, 39].  This assessment verifies proper filter operation and order of the filter state model. 

 

Proper operation of the filter algorithm implemented requires, from a statistical view, 

approximately 68% of the state error to lie within the defined ± 1σ bounds and approximately 

99% of the state error to lie within the ± 3σ bounds.  These statistical bounds imposed on the 

state error as determined from the output state covariance matrix, are developed under the 

assumption the filter is operating with a Gaussian distribution according to the Central Limit 

Theorem presented in Appendix C.  An assessment such as this only verifies the steady-state 

operation of the filter because the state covariance update and propagation equations do not take 

the system inputs into account. 

 

2.2.4 Design of an Extended Kalman Filter for Attitude Estimation Utilizing 

Rate Gyros [17, 26, 28, 30, 33, 34] 
 

In this feasibility study, an extended Kalman filter algorithm was utilized to sequentially estimate 

the attitude and rotational rate bias values of a vehicle through the use of a dual-arc 

accelerometer array for producing attitude estimates utilizing low-cost sensors and rate 

gyroscopes.  As mentioned previously, numerous parameterizations may be utilized to represent 

attitude.  Common methods for representing attitude are through the use of Euler angles, 

rotational vectors, or quaternions.  In this study, quaternions are implemented in the design of the 

extended Kalman filter since no singularities are present and the kinematic equation is bilinear.   
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The successful implementation of quaternions in a standard EKF model is difficult since the 

quaternions must obey a normalization constraint.  This constraint of the quaternion mathematics 

can violate the linear measurement update process associated with the EKF.  Therefore, a 

multiplicative error quaternion must be computed to deal with this short coming.  Formulation 

and operation of the multiplicative quaternion error reduces the higher-order terms, therefore 

allowing the four-component quaternion to be replaced by a three-component error vector.  

 

Multiplicative Quaternion Error Formulation for Attitude Estimation [26, 28] 
 

The extended Kalman filter developed and implemented in this feasibility study for the purpose 

of accurate and reliable attitude estimation of a vehicle or aircraft operating in three-dimensional 

space begins with the formulation of the quaternion kinematic model given as Equation 2.69. 
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  (2.69) 

 

The quaternion, q, must obey a normalization constraint mentioned previously, where 1Tqq = .  

A direct design method for construction of an extended Kalman filter is to utilize Equation 2.69 

in the EKF presented in Table 2.4.  The additive approach used in this formulation however, will 

eliminate the normalization constraint necessary [26].  A simple example of this may be shown 

below in Equations 2.70 through 2.72 where the additive error quaternion shown as Equation 

2.72 is not close to being a unit vector as the normalization constraint requires.  This result 

shown through the use of this simple example may cause significant difficulties and errors during 

the filtering process of the EKF algorithm [28].   

 

[0,0, 0.001, 0.999]Tq =  

  (2.70) 

ˆ [0,0,0,1]Tq =  

  (2.71) 

ˆ [0,0, 0.001, 0.999]Tq q− = − −  

  (2.72) 

 

 

 

 



2.2 SIG%AL PROCESSI%G  35 

 

 

A true approach to this problem involves the use of the multiplicative error quaternion shown 

below as Equation 2.73.  The quaternion inverse is defined previously in Equation 2.69.  Taking 

the derivative with respect to time of Equation 2.73 leads to the derivation of Equation 2.74, an 

estimate of the quaternion kinematic model, where ⊗ represents the tensor product.   

 

1ˆq q qδ −= ⊗  

  (2.73) 

1 1ˆ ˆq q q q qδ − −= ⊗ + ⊗ ɺɺ ɺ  

          (2.74) 

1 1
ˆ ˆ ˆ ˆ ˆ( ) ( )

2 2
q q w w q= Ξ = Ωɺ  

  (2.75) 

If we take the time derivative of 
1ˆ ˆ [0,0,0,1]Tq q−⊗ = , we obtain Equation 2.76. 

 

1 1ˆ ˆ ˆ ˆ 0q q q q− −⊗ + ⊗ =ɺ ɺ  

  (2.76) 

Inserting Equation 2.75 into 2.76 gives Equation 2.77. 

1 11
ˆ ˆ ˆ ˆ ˆ( ) 0

2
w q q q q− −Ω ⊗ + ⊗ =ɺ  

  (2.77) 

Since 
1ˆ ˆ [0,0,0,1]Tq q−⊗ = , and defining ˆ( )wΩ  as Equation 2.78, Equation 2.77 may 

be reduced down to the form presented in Equation 2.79. 
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1
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ˆ ˆ 0
02
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  (2.79) 

Solving for 
1q̂−ɺ yields Equation 2.80 as shown below 

1 1
ˆ1

ˆ ˆ
02

w
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  (2.80) 
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Utilizing the identity given in Equation 2.81 and substituting it with Equation 2.79 into Equation 

2.74, and using the definition of the multiplicative error quaternion given in Equation 2.73 gives 

the following formulation presented as Equation 2.82. 

1 1
( )

02 2

w
q w q q

 
= Ω = ⊗ 

 
ɺ  

  (2.81) 

ˆ1

0 02

w w
q q qδ δ δ

    
= ⊗ − ⊗    

    
ɺ  

  (2.82) 

 

Defining the angular velocity as Equation 2.83, we can substitute Equation 2.83 into Equation 

2.82 leading to the derivation of Equation 2.84. 
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ˆ ˆ1 1

0 0 02 2
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ɺ  

  (2.84) 

 

Utilizing the identities presented in [28] and presented in this work as Equations 2.85, Equation 

2.86 may be derived by substituting these identities into Equation 2.84. 
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In Equation 2.86, the nonlinear term is presented in the last term on the right-hand side and its 

first-order approximation is given by  

1 1

0 02 2

w w
q

δ δ
δ

   
⊗ ≈   

   
 

  (2.87) 

 

If Equation 2.87 is substituted into Equation 2.86, the following linearized model may be derived 

and is presented as Equations 2.88 and 2.89. 

1
ˆ[ ]

2
q+q w wδ δ δ= − ×ɺ  

  (2.88) 

0 0qδ =ɺ  

  (2.89) 

 

From the formulation and derivation performed, it may be seen that the fourth error-quaternion 

component is a constant value.  Therefore, the order of the system implemented in the EKF 

model may be reduced by one state, reducing the overall computational burden of the filter 

algorithm. 

 

Design of a Rate Gyro Model for an Extended Kalman Filter [6, 26, 28, 48] 
 

The work completed in this feasibility study focused on the development of an algorithm and 

device capable of determining the attitude of a vehicle given a dual-arc accelerometer array and 

accurately estimate the rate gyro bias in real-time.  A model widely used for simulation of this 

sensor was originally stated in [48] and is shown here as Equations 2.90 and 2.91 

 

vω ω β η= − −ɶ  

  (2.90) 

uβ η=ɺ  

  (2.91) 

where   v uandη η are zero-mean Gaussian white-noise processes with covariances given by 

2 2

3 3 3 3  v x u xI and Iσ σ , respectively.  β , represents the bias vector, and ωɶ  is the measured 

observation. 

 

The estimated angular velocity of the vehicle may then be given as Equation 2.92 where the 

estimated bias differential equation may be shown as Equation 2.93.   

 

ˆω̂ ω β= −ɶ  

  (2.92) 
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ˆ 0β =ɺ  

  (2.93) 

If we substitute Equation 2.90 and 2.92 into Equation 2.83 given previously, we obtain  

 

( )vδω β η= − ∆ +  

  (2.94) 

 

where ˆβ β β∆ ≡ − .  Inserting Equation 2.94 into Equation 2.88 given previously, we 

obtain 

1
ˆ[ ] ( )

2
q q vδ ω δ β η= − × − ∆ +ɺ  

  (2.95) 

 

A common simplification technique utilized is to assume a small angle approximation where 

/ 2qδ δα≈ , and δα  contains the components of roll, pitch, and yaw error angles for the 

rotation sequence.  Applying this simplification technique to Equation 2.95 gives way to the 

formulation of Equation 2.96. 

 

ˆ[ ] ( )vδα ω δα β η= − − × − ∆ +ɺ  

  (2.96) 

 

Utilizing this approach and simplification techniques minimizes the use of factors of 1/2 and 2 in 

the formulation of the extended Kalman filter algorithm method and gives direct meaning to the 

state error-covariances, which may then be used to formulate the ±1σ and ±3σ bounds [28].  The 

model for the extended Kalman filter may now be given as Equation 2.97 
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  (2.97) 
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(2.100) 

 

As it may be seen, these matrices are now 6 x 6 matrices because the order of the system has 

been reduced by one original state. Establishment of the sensitivity matrix, ˆ( )-

kxkH , for 

implementation in the extended Kalman filter algorithm requires the use of multiple, n, vector 

measurements as shown in Equation 2.101, where A(q) denotes the actual attitude matrix and 

“diag” denotes a diagonal matrix of the correlated dimension. 
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2 2 2

1 3 3 2 3 3 3 3. .x x n xR diag I I Iσ σ σ =    

(2.102) 

 

The attitude matrix, A(q), is defined as 

 

( ) ( ) ( )q
TA q q= Ξ Ψ  

(2.103) 

Where: 

0 3 3

0 3 3

[ ]
( )

[ ]
( )

q
 

q

q

q

x

T

x

T

q I
q

q I
q

+ × 
Ξ ≡  − 

− × 
Ψ ≡  − 

 

(2.104) 

 

The propagation of the attitude may then be written as 

 

-ˆ( ) ( ( )q q) qA A Aδ=  

(2.105) 
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where the first-order approximation of the error-attitude matrix is represented by Equation 2.106 

and δα once again represents the small angle approximation utilized previously. 

 

3 3( ) [ ]q xA Iδ δα≈ − ×  

            (2.106) 

 

For an individual sensor measurement, the true and estimated body vectors may be given by 

Equations 2.107 and 2.108 respectively.   

 

( )qb A r=  

(2.107) 

-ˆ ˆ( )qb A r− =  

(2.108) 

 

Substituting Equations 2.105 and 2.106 into Equations 2.107 and 2.108 yields Equation 2.109, 

where ˆb b b
−∆ ≡ − . 

-ˆ[ ( ) ]qb A r δα∆ = ×  

(2.109) 

 

With these relationships established, the sensitivity matrix may now be defined as Equation 

2.110, where the number of columns is again six, the order of the reduced-order state. 
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(2.110) 

 

With the sensitivity matrix now defined, the attitude determination and rate gyro bias estimation 

extended Kalman filter is summarized in Table 2.5.  The first three diagonal elements of the 

output error-covariance matrix correspond to the attitude errors, while the last three diagonal 

elements correspond to the bias estimation errors.  The Kalman gain, K, is determined through 

the use of R, the measurement-error covariance matrix and the sensitivity matrix given in 

Equation 2.110.  The predicted performance of the extended Kalman filter algorithm for attitude 

and rate gyro bias estimation can be determined by checking the covariance of the diagonal 

elements of the attitude and bias estimation error covariance as stated previously 
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Table 2.5:  Extended Kalman Filter for Attitude and Rate Gyro Bias Estimation [28] 
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Chapter 3 

Simulation Model Development 
 
3.1 $onlinear Aircraft Model 
 

In this feasibility study, a nonlinear six degree-of-freedom aircraft model was utilized to verify 

and validate the feasibility and functionality of the innovative two-dimensional attitude 

estimation device and algorithm simulated in a real-world operating environment.  

Implementation of a nonlinear aircraft simulation model requires the use of the rigid-body 

equations given previously in section 2.1.2.  In conjunction with the rigid-body equations, 

aircraft force and stability equations were utilized and are given in Appendix E for accurate and 

precise representation of an operational aircraft response to control surface inputs and the 

surrounding operating environment. 

 

Simulation of the control surface inputs such as the horizontal tail input, asymmetric trailing-

edge flap input, and symmetric rudder input, of the nonlinear aircraft model were conducted 

through the use of a six degree-of-freedom table look up model based on Mach number, altitude, 

and angle-of-attack.  The simulations developed in this feasibility study were conducted for 10 

second time periods at a “cruising” flight condition of 300 knots and an altitude of 20,000 feet. 

 

The nonlinear plant model was implemented in conjunction with the attitude determination 

algorithm in three phases.  The first phase of the feasibility study was to simulate the full 

nonlinear aircraft model performing only a pitch, or longitudinal, maneuver at the cruise flight 

condition, subject to the imposed loads due to aerodynamic, environmental, and thrust forces.    

The second phase of the feasibility study was to simulate the nonlinear aircraft model performing 

a roll, or transverse, maneuver only, again being subjected to the imposed loads due to the 

aerodynamic, environmental, and thrust forces.  Upon verification of the correct operation of the 

proposed method, the third phase of the feasibility study was to be conducted.  The third phase of 

the feasibility study was to conduct a combined pitch and roll (longitudinal/transverse) maneuver 

of the nonlinear aircraft simulation model to validate and confirm the proposed method and 

algorithm for accurate and reliable two-dimensional attitude estimates of both the pitch and roll 

angle for a maneuver operating in more than one dimension.  In all three phases of the feasibility 

study performed, each phase was performed twice.  The first iteration of each phase of the study 

was performed without the use of a Dryden Wind model.  Upon verification of the method and 

algorithm operating correctly, the second iteration of each phase was implemented with the use 

of the Dryden Wind model to add enhanced dynamic environmental factors to the simulation 

model. The implementation of the Dryden Wind model allowed for the assessment and 

validation of the proposed methods ability to produce accurate and reliable attitude and rate gyro 

bias estimates while operating in a harsh and highly dynamic environment.   
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3.2 Dual Arc Accelerometer Array Device Model 
 

3.2.1 Instrument Orientation [23] 

 

For accurate simulation of an aircraft in three-dimensional, Cartesian Space, not only are the 

equations of motion governing the aircraft critical for successful implementation of the 

simulation models and algorithm, transformation equations must also be applied and developed 

accurately pertaining to the relationship between the reference axis and the instrument axis in 

order to achieve precise and reliable transformation relationships.  Figure 3.1 below was utilized 

to establish and define the relationship between accelerometer locations and the center-of-gravity 

of the body-fixed axis and the reference axis.   In this feasibility study, the center-of-gravity of 

the device and the center-of-gravity of the reference axes are the same, leading to the 

development of the accelerometer locations relative the device’s center-of-gravity. 

 

 
 

Figure 3.1:  Axis System for Transformation from Vehicle C.G to new Reference C.G [23] 

 

From Figure 3.1, three conclusions may be made with respect to the location of an accelerometer 

relative to the center-of-gravity location, such as: 

 

• If the accelerometer is located forward of the center-of-gravity (CG) location, then X	 is 

positive. 

• If the accelerometer is located right of the center-of-gravity (CG) location, then Y	 is 

positive. 

• If the accelerometer is located down of the center-of-gravity (CG) location, then Z� is 

positive. 
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Having established the accelerometer locations relative the device’s center-of-gravity, the 

orientation of the accelerometer instrument axis may be established relative to the device 

reference axis for both the longitudinal and transverse accelerometer arrays.  In Figure 3.2 

below, the orientation of the instrument axis relative the device reference axis is established and 

characterized. 

 

 
 

Figure 3.2:  Instrument Axis Relative to the Device Reference Axis [23] 

 

From Figure 3.2, two conclusions may be made with respect to the accelerometer orientation 

relative to the reference axis, such as: 

 

• If the accelerometer is pitched up from the x-axis, then θ (pitch) is positive. 

 

• If the accelerometer is banked downward from the y-axis, then � (roll) is positive. 

 

With the location and orientation of the instrumentation utilized relative to both the instrument 

axis and reference axis defined, the configuration for both the longitudinal and transverse 

accelerometer arrays may be established.  In this feasibility study, a second accelerometer array 

in the transverse plane consisting of 13 additional accelerometers placed every 15 degrees about 

a semi-circular array will be included in order to assess and analyze movement not only in the 

longitudinal pitch plane, but in the transverse plane for both longitudinal and transverse 

maneuvers.   
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3.2.2 Device Configuration 
 

The device models implemented in this feasibility study expanded up the previously [2, 6] 

developed and successfully implemented bias estimation algorithm and attitude determination 

device consisting of 13, one axis accelerometers equally spaced about a 180 degree semi-circular 

plane with a radius of 3 inches and a rate gyroscope positioned at the center of the device 

(center-of-gravity location of the device) orthogonal to the measurement plane of the axis as 

shown in Figure 3.3.  In this figure, the device is oriented so the axes of the device are collinear 

with the vehicle’s axes.  The red axes indicate the Earth-fixed coordinate frame of reference, 

while the black axes indicate the reference coordinate frame of the device.  The blue axes in this 

figure represent the body-fixed coordinate frame of the aircraft.   

 

 
Figure 3.3:  Longitudinal Pitch Array with Rate Gyro at 0 degrees of Pitch Displacement 

 

The previously implemented method [2, 6] and device model utilized an accelerometer spacing 

of 15 degrees in the longitudinal, or x-z plane, beginning at negative 90 degrees pitch and 

moving counterclockwise about the semi-circular array to positive 90 degrees of pitch as shown 

once again in Figure 3.3.  Therefore, in this previously established device configuration, 

Accelerometer # 1 lies on the negative x-axis at negative -90 degrees of pitch, Accelerometer # 4 

at -45 degrees of pitch, Accelerometer # 7 lies directly on the tertiary, or z-axis, at 0 degrees, 

Accelerometer # 10 lies at 45 degrees of pitch, and Accelerometer # 13 lies on the positive 

primary axis, or x-axis of the aircraft, at 90 degrees of pitch.  All angle measurements are taken 

with respect to the z-axis and are measured positive counterclockwise as shown in Figure 3.4. 
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Figure 3.4:  Longitudinal Pitch Array Pitch Offset Angle Convention 

 

In this study, the previous method utilized for the development of an accurate and reliable 

attitude estimation device was expanded from a one-dimensional, longitudinal plane attitude 

estimation device to a two-dimensional, dual arc accelerometer array operating in both the 

longitudinal (x-z plane) and transverse (y-z) planes of motion for precise and dependable two-

dimensional attitude determination.  The work conducted throughout this feasibility study 

utilized the previously implemented orientation for the longitudinal pitch array for determining 

pitch attitude estimates.  However, in conjunction with this configuration, a second 

accelerometer array consisting of an additional 13 accelerometers was implemented for the 

development and implementation of a transverse roll array.  The configuration established for the 

transverse roll array is similar in nature to the previously established device.  The transverse roll 

array consists of 13 accelerometers equally spaced about a 3 inch radius semi-circular array.  As 

displayed in Figure 3.5, Accelerometer # 1 lies at 0 degrees of roll displacement on the positive 

y-axis, Accelerometer # 4 lies at 45 degrees of displacement, Accelerometer # 7 lies directly on 

the z-axis of the device at 90 degrees, Accelerometer # 10 lies at 135 degrees of displacement, 

and Accelerometer # 13 lies directly on the negative secondary, or y-axis, at 180 degrees of 

displacement.  In the configuration of the transverse roll array, the roll angle, �, is measured 

positive counterclockwise from the positive secondary axis, or y-axis, as depicted in Figure 3.5.  

Similar to the previously developed device, a rate gyro is utilized at the center-of-gravity of the 

device for measuring rotational rates.   

 

 



47 CHAPTER 3. SIMULATIO% MODEL DEVELOPME%T 

 

  

 
Figure 3.5:  Transverse Roll Array Roll Offset Angle Convention 

 

3.2.3 Static Operation 
 

Longitudinal Accelerometer Array [2, 6] 
 

An aircraft is said to be operating in a trim condition when no imposed rotational or translational 

accelerations are imparted upon the aircraft.  When operating in this static state, the 

measurements of the accelerometers utilized along the longitudinal accelerometer array may be 

used to determine the aircrafts attitude.  When the aircraft’s or vehicle’s primary body-fixed axis 

(x-axis) is parallel with the level of the ground and Accelerometer # 7 is parallel with the tertiary 

body-fixed axis (z-axis), the accelerometer readings denoted as gAz,i, become a function of the 

offset angle, θi, measured from the tertiary axis.  This formulation is given by Equation 3.1, 

where “g” represents the acceleration of gravity in gees.  One gee is equal to 9.81 m/s
2
 or 32.17 

ft/s
2

.   

, (cos )z i igA g θ=  

    (3.1) 

 

On the longitudinal accelerometer array, the offset angle is taken to be negative when measured 

clockwise from the tertiary axis and positive when measured counterclockwise.  Appendix D.1 

provides a table designating each accelerometer offset angle utilized throughout this work.  

During a static operating condition, the only acceleration experienced by the aircraft is gravity.  

Therefore, accelerometer measurements during any static state in which the aircraft pitch angle, 

θManeuver, is not equal to zero is denoted by Equation 3.2.  Figure 3.6 shows the device at a static 

orientation of + 45 degrees of pitch displacement. 
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, cos( )z i Maneuver igA g θ θ= +  

    (3.2) 

 

 
Figure 3.6:  Longitudinal Accelerometer Array with Pitch Displacement of 45 degrees 

 

Equation 3.2 may be solved for the angle calculation term, θManeuver, and is given as Equation 3.3.  

Maneuvers of the aircraft of the set (0, +180) degrees yield a positive accelerometer reading, 

gAz,1, and a negative valued accelerometer reading for maneuvers of (0, -180) degrees.  This 

condition yields Equation 3.4 presented below.  Complete static resolution of the longitudinal 

array may be determined when the aircraft is at a displacement of 0 or 180 degrees, allowing 

Accelerometer # 7 to measure a +1 or -1 gee respectively. 

 

, ,cos( )Maneuver z i i staticar gAθ θ= −  

    (3.3) 

,1( )Maneuver Maneuver zgAθ θ= ∗  

    (3.4) 
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Transverse Accelerometer Array 
 

As previously stated, an aircraft is said to be operating in a trim condition when no imposed 

rotational or translational accelerations are imparted upon the aircraft.  When operating in this 

static state, the measurements of the accelerometers on the transverse array may be utilized to 

determine the aircrafts attitude.  When the aircraft’s secondary body-fixed axis (y-axis) is 

parallel with the level of the ground and Accelerometer # 7 is parallel with the tertiary body-

fixed axis (z-axis), the accelerometer readings denoted as gAy,i, become a function of the offset 

angle, �i, measured from the secondary axis.  This formulation is given by Equation 3.5, where 

“g” once again represents the acceleration of gravity in gees.  One gee is equal to 9.81 m/s
2
 or 

32.17 ft/s
2

.   

, (sin )y i igA g φ=  

    (3.5) 

 

On the transverse accelerometer array, the offset angle is taken to be measured positive 

clockwise from the positive secondary axis of the aircraft.  Appendix D.2 provides a table 

designating each accelerometer offset angle utilized on the transverse array throughout this 

study.  During a static operating condition, the only acceleration experienced by the aircraft is 

gravity.  Therefore, accelerometer measurements during any static state in which the aircraft 

pitch angle, �Maneuver, is not equal to zero is denoted by Equation 3.7.  Figure 3.5 shows the 

device at a static orientation of + 45 degrees of roll displacement. 

 

 

, sin( )y i Maneuver igA g φ φ= +  

    (3.6) 

 
 

Figure 3.7:  Transverse Accelerometer Array with Roll Displacement of 45 degrees 
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Equation 3.6 may be solved for the angle calculation term, �Maneuver, and is given as Equation 

3.7.  Maneuvers of the aircraft of the set (0, +180) degrees yield a positive accelerometer 

reading, gAy,1, and a negative valued accelerometer reading for maneuvers of (0, -180) degrees.  

This condition yields Equation 3.8 presented below.  Complete static resolution of the transverse 

array may be determined when the aircraft is at a displacement of 0 or 180 degrees, allowing 

Accelerometer # 7 to measure a +1 or -1 gee respectively. 

 

, ,sin( )Maneuver y i i staticar gAφ φ= −  

    (3.7) 

,1( )Maneuver Maneuver ygAφ φ= ∗  

    (3.8) 

 

3.2.4 Loading of an Arbitrary Accelerometer 

 
Longitudinal Accelerometer Array [2, 6, 23] 
 

The accurate simulation and modeling of translational acceleration and rotational loading as 

measured by an arbitrary sensor requires the translational accelerations experienced along the 

vehicle axes as well as the rotational rates experienced by the vehicle to be resolved to sensor 

locations about the longitudinal, or pitch accelerometer array.  The measured acceleration of an 

arbitrary sensor displaced from the vehicle center-of-gravity is given by Equation 3.9 and 

derived in full in Appendix D.3.  The angles in Equation 3.9 are representative of the 

misalignment angles of an “ith’’ accelerometer from the vehicle axes [23]. 

 

( )

( )

2 2

, ,

2 2

,

2 2

,

( ) ( ) ( ) cos( )sin( )cos( ) sin( )sin( )

( ) ( ) ( ) sin( )sin( )cos( ) cos( )sin( )

( ) ( ) ( )

x x xz i x cg z z z z z

y y yy cg z z z z z

z z yz cg

gA gA r q X pq r Y rp q Z

gA pq r X p r Y qr p Z

gA pr q X qr p Y q p Z

ψ θ φ ψ φ

ψ θ φ ψ φ

 = − + + − + + + 

 + + + − + + − − 

 + + − − + + + 

ɺ ɺ

ɺ ɺ

ɺ ɺ ( )cos( )cos( )z zθ φ

 

    (3.9) 

 

The angular rates are given as p, q, and r for roll, pitch, and yaw rates respectively and their 

subsequent derivatives as p� , q� , and  r�.  The distances X	, Y	, and Z� are defined as the displaced 

distances from the vehicle’s center-of-gravity along each of the axes.  In order to reduce 

Equation 3.9, we must first assume that � = ψ= 0 and that all Y	 dimensions are equal to zero 

within the longitudinal pitch plane.  Implementing this configuration on a semi-circular array in 

the x-z plane for pitching motion about the y-axis, allows for polar relationships to be defined as 

Equations 3.10 and 3.11.  Applying the defined polar relationships to Equation 3.9 allows for 

Equation 3.9 to be presented in a simplified form given as Equation 3.12. 
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sin( )d iX r θ=  

  (3.10) 

cos( )d iZ r θ=  

  (3.11) 

 
2 2 2 2 2

, , ,g sin( ) cos( ) sin ( ) (2 ) cos( ) sin( ) cos ( )z i x cg i z cg i d i i i iA g A A r r pr p qθ θ θ θ θ θ  = + − − + +     

 

  (3.12) 

  

Equation 3.12 utilizes both translational and rotation acceleration terms to determine the 

accelerometer measurements when translational components are dependent upon the 

accelerometer offset angles from the z-axis of the vehicle and the rotational components are 

dependent on the radius of departure from the vehicle’s center-of-gravity.   

 

As a result of imposed loads due to the vehicle’s acceleration and the gravity vector along each 

axis, translational accelerations along each of the vehicle’s axes occur and are given by Equation 

3.13.    

,

,

,

sin( )

cos( )sin( )

cos( )cos( )

x x imposed man

y y imposed man man

z z imposed man manCG

gA A

gA gA A g

gA A

θ
θ φ
θ φ

  −   
    = = +    
        

 

  (3.13) 

 

Applying Equation 3.13 to Equation 3.12 along the tertiary and primary axes allows for the 

derivation of Equation 3.14 and 3.15 for simulation of the accelerometer measurements when the 

imposed translational acceleration, Euler angle orientations, and pitch, roll, and yaw vehicle rates 

are known for full longitudinal loading and pure rotation in the longitudinal plane.  Equation 

3.15 may be reduced through the use of the trigonometric identity, cos(α + β) = cos α cos β −
sin α sin β, and is given as Equation 3.16.   

 

Simulation of an Accelerometer under Full Longitudinal Loading 

 

, , ,

2 2 2 2 2

( sin( ) (sin( )sin( )) ( cos( ) (cos( ) cos( )cos( ))

sin ( ) (2 )cos( )sin( ) cos ( )

z i x imposed i man i z imposed i i m i

d i i i i

gA A g A g

r r pr p q

θ θ θ θ θ θ

θ θ θ θ

= − + + φ

 − − + + 
 

  (3.14) 

Simulation of an Accelerometer under Pure Rotation in the Longitudinal Plane 
 

2

, (sin( )sin( )) (cos( ) cos( )) ( )z i man i man i dgA g g r qθ θ θ θ= − + −  

  (3.15) 
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2

, (cos( ) ( )z i man i dgA g r qθ θ= + −  

  (3.16) 

 

Equation 3.16 is primarily utilized when the device is mounted to a rotary test bed to simulate the 

accelerometer readings.  During static operation of the device, Equation 3.16 reduces to the form 

previously given by Equation 3.2. 

 

Transverse Accelerometer Array 
 

The accurate simulation and modeling of translational acceleration and rotational loading as 

measured by an arbitrary sensor requires the translational accelerations experienced along the 

aircraft axes as well as the rotational rates experienced by the aircraft to be resolved to sensor 

locations about the transverse, or roll accelerometer array, in a similar manner utilized previously 

for the development of the longitudinal accelerometer array equations.  The measured 

acceleration of an arbitrary sensor displaced from the vehicle’s center-of-gravity is given as 

Equation 3.17 and derived in full in Appendix D.3.  The angles in Equation 3.17 are 

representative of the misalignment angles of an “ith’’ accelerometer from the vehicle axes [23]. 

 

( )
( )

2 2

, ,

2 2

,

2 2

,

( ) ( ) ( ) cos( )sin( )sin( ) sin( ) cos( )

( ) ( ) ( ) sin( )sin( )sin( ) cos( )cos( )

( ) ( ) ( )

x x xy i x cg y y y y y

y y yy cg y y y y y

z z yz cg

gA gA r q X pq r Y rp q Z

gA pq r X p r Y qr p Z

gA pr q X qr p Y q p Z

ψ θ φ ψ φ

ψ θ φ ψ φ

 = − + + − + + − 

 + + + − + + − + 

 + + − − + + + 

ɺ ɺ

ɺ ɺ

ɺ ɺ ( )cos( )sin( )y yθ φ

 

  (3.17) 

 

As stated previously, the angular rates are given as p, q, and r for roll, pitch, and yaw rates 

respectively and their subsequent derivatives asp� , q� , and  r�.  The distances X	, Y	, and Z� are 

defined as the displaced distances from the vehicle’s center-of-gravity along each of the axes.  In 

order to reduce Equation 3.17, we must first assume that θ = ψ= 0 and that all X	 dimensions are 

equal to zero within the transverse roll plane.  Implementing this configuration on a semi-circular 

array in the y-z plane for rolling motion about the x-axis, allows for polar relationships to be 

defined as Equations 3.18 and 3.19.  Applying the defined polar relationships to Equation 3.17 

allows for Equation 3.17 to be presented in a simplified form given as Equation 3.20. 

 

cos( )d iY r φ=  

  (3.18) 

sin( )d iZ r φ=  

  (3.19) 

 
2 2 2 2 2

, , ,cos( ) sin( ) (2 )sin( )cos( ) cos ( ) sin ( )y i y cg i z cg i d i i i igA g A A r qr p r qφ φ φ φ φ φ  = + + − − −   
 

 

  (3.20) 
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Equation 3.20 utilizes both translational and rotation acceleration terms to determine the 

accelerometer measurements when translational components are dependent on the accelerometer 

offset angles from the z-axis of the vehicle and the rotational components are dependent on the 

radius of departure from the vehicle’s center-of-gravity.  As a result of the imposed loads due to 

the aircraft’s acceleration and the gravity vector along each axis, translational accelerations along 

each of the vehicle’s axes occur and are given previously by Equation 3.13.    

 

Applying Equation 3.13 to Equation 3.20 along the tertiary (z-axis) and secondary (y-axis) axes 

allows for the derivation of Equation 3.21 and 3.22 for simulation of the accelerometer 

measurements when the imposed translational acceleration, Euler angle orientations, and pitch, 

roll, and yaw vehicle rates are known for full transverse loading and pure rotation in the 

transverse plane.  Equation 3.22 may be reduced through the use of the trigonometric identity, 

cos(α + β) = cos α cos β − sin α sin β, and is given as Equation 3.23.   

 

Simulation of an Accelerometer under Full Transverse Loading 

 

, , ,

2 2 2 2 2

( cos( ) (cos( )sin( ) cos( )) ( sin( ) (cos( ) cos( )sin( ))

(2 ) cos( )sin( ) sin ( ) cos ( )

y i y imposed i man man i z imposed i i m i

d i i i i

gA A g A g

r pr q r p

φ θ φ φ φ θ θ φ

φ φ φ φ

= + + +

 + − − − 
 

  (3.21) 

 

Simulation of an Accelerometer under Pure Rotation in the Transverse Plane 
 

2

, (sin( ) cos( )) (cos( )sin( )) ( )y i man i man i dgA g g r pφ φ φ φ= + −  

  (3.22) 
2

, (sin( ) ( )y i man i dgA g r pφ φ= + −  

  (3.23) 

 

Equation 3.23 may be utilized when the device is mounted to a rotary test bed to simulate the 

accelerometer readings in the transverse plane.  During static operation of the device, Equation 

3.23 reduces to the form previously given by Equation 3.6. 

 

3.3 Dryden Wind Model [24, 47] 
 

The work conducted in this feasibility study makes use of the ability of the two-dimensional 

accelerometer array to produce accurate and reliable attitude estimates while operating online in 

a simulated real-world environment.  For accurate simulation of real-world environmental flight 

conditions, a Dryden wind turbulence model was implemented in order to verify and validate the 

ability of the method developed to produce precise and reliable real-time attitude estimates 

despite the presence of severe turbulence and wind.   

 

The Dryden wind turbulence model adds turbulence to the simulation model by passing band-

limited white noise through appropriate filters.  In this study, the mathematical representation 

utilized for continuous simulation of turbulence and wind effects was the Military Specification 

MIL-F-8785C.   
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The component spectra functions utilized in this implementation of the MIL-F-8785C are given 

in Table 3.1.  Based on the military guidelines, turbulence is defined as a stochastic process 

defined by a velocity spectrum [24].  For an aircraft operating at a speed, V, through a turbulence 

field with a defined spatial frequency of �, measured in radians per meter, the circular 

frequency, ω, is calculated by multiplying the velocity by � [47]. 
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Table 3.1:  MIL-F-8785C Component Spectra Functions [47] 

 

The variable, b, is defined as the aircraft wingspan and the variables Lu, Lv, and Lw represent the 

turbulence scale length.  The variables σu, σv, and σw represent the turbulence intensities.  The 

term, Φp(w), is known as the longitudinal turbulence angular rate spectrum and is a rational 

function derived from a curve-fitting complex algebra function, not the vertical turbulence 

velocity spectrum, Φw(w), which is multiplied by a scale factor.  In practice, the implementation 

of the turbulence angular rate spectrum contributes far less to the aircraft gust response than the 

turbulence velocity spectrum [47].   
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The Dryden wind turbulence model focuses on the implementation of a generated signal 

possessing the correct characteristics of a unit variance, band-limited white noise signal passed 

though forming filters.  As approximations of the Von Karman velocity spectra, the forming 

filters utilized in the Dryden wind turbulence model are valid in a range of normalized 

frequencies of less than 50 radians per meter.  The transfer functions utilized for the MIL-F-

8785C model are given and summarized in Table 3.2 below. 
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Lateral MIL-F-8785C 
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Table 3.2:  MIL-F-8785C Forming Filter Transfer Functions [47] 

 

When implementing the Dryden wind turbulence model, the model is divided into two distinct 

regions where the turbulence scale and intensities are a function of the altitude at which the 

simulation takes place.  In this feasibility study, a medium to high altitude scale (altitude > 2000 

feet) was utilized.  At the medium to high altitude level, the turbulence scale lengths and 

intensities operate on the assumption that the turbulence is isotropic.  The military reference 

scale lengths utilized are presented in Table 3.3 below [24].   
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Scale Lengths MIL-F-8785C 

Lu 2500 feet 

Lv 2500 feet 

Lw 2500 feet 

Table 3.3:  MIL-F-8785C Scale Lengths [24] 

 

The correct turbulence intensities are critical to the implementation of the Dryden wind 

turbulence model.  Turbulence intensities are determined from a lookup table, presented as 

Figure 3.8 below, providing the turbulence intensities as a function of altitude and how the 

probability of the turbulence intensities are being exceeded.  In Figure 3.8 the turbulence axes 

are aligned with the body-fixed coordinates where the relationship amongst turbulence intensities 

is given by Equation 3.53. 

u v wσ σ σ= =  

  (3.53) 

 
Figure 3.8 Medium/High Altitude Turbulence Intensities [24, 47] 

 

Figures 3.9, 3.10, and 3.11 display the turbulence inputs implemented during each phase of the 

simulation study with a summary of the maximum turbulence inputs given in Tables 3.4, 3.5, and 

3.6 respectively. 
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Figure 3.9: Longitudinal Maneuver – Turbulence Inputs 

 

Longitudinal Maneuver Maximum Turbulence Input (feet/second) 

bu  50.71 

bv  44.83 

bw  56.59 

Table 3.4:  Longitudinal Maneuver Maximum Turbulence Inputs 

 
Figure 3.10:  Transverse Maneuver – Turbulence Inputs 
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Transverse Maneuver Maximum Turbulence Input (feet/second) 

bu  51.32 

bv  49.80 

bw  59.98 

Table 3.5:  Transverse Maneuver Maximum Turbulence Inputs 

 

 
Figure 3.11:  Longitudinal/Transverse Maneuver – Turbulence Inputs 

 

Longitudinal/Transverse Maneuver Maximum Turbulence Input (feet/second) 

bu  50.74 

bv  45.19 

bw  56.74 

Table 3.6:  Longitudinal/Transverse Maneuver Maximum Turbulence Inputs 

 

Implementation of the Dryden wind turbulence model was critical in this feasibility study for 

accurate assessment of the proposed method to reliably produce precise and sustainable attitude 

and rate gyro bias estimates despite functioning in a harsh and severe operating environment.  

The turbulent simulations conducted in this feasibility study simulated highly vibrational 

characteristics with a maximum turbulence magnitude of approximately 60 feet per second (three 

times the level of the highest probability encountered). 
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3.4 Algorithm Operation 
 

The algorithm implemented in this feasibility study makes use of the data from the rate gyro and 

accelerometer array measurements to calculate both longitudinal and transverse attitude 

estimates while continuously producing an estimate of the rate gyro bias in real-time dynamic 

maneuvers of the vehicle or aircraft.   

 

3.4.1 Extended Kalman Filter Bias Estimation  
 

An extended Kalman filter model was designed and implemented to determine the rate gyro bias 

and longitudinal and transverse attitude estimates from the accelerometer array and gyro 

measurements generated from the nonlinear aircraft model.  The initial state vectors of the 

extended Kalman filter are set to zero degrees of longitudinal and transverse displacement.  The 

model utilized for the extended Kalman filter implementation is given in Figure 3.12 below. 

 
Figure 3.12:  Extended Kalman Filter Diagram 

 

The extended Kalman filter in Figure 3.12 relies on the rate gyro measurements and the attitude 

estimates produced by the two-dimensional accelerometer array as inputs to the system.  The 

extended Kalman filter also relies on the measurement and initial error covariances for the rate 

gyro and bias measurements.  In this study, the bias of the rate gyro is assumed to be unaffected 

by the operating conditions allowing the extended Kalman filter to be implemented with a 

constant noise variance.  The bias of the rate gyro is assumed to be constant because once the 

rate gyro reaches its functional peak and a constant operating temperature; the bias varies 

minimally over time and may be assumed to be a constant value. 
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3.4.2 Parameter Estimation  
 

In this feasibility study, parameter estimation was utilized to effectively verify and validate the 

accuracy of the attitude estimates produced by the extended Kalman filter.  Implementing this 

method of verification required the use of Equations 3.54, 3.55, and 3.56 where the body velocity 

terms could be estimated by solving each equation for the body acceleration terms and 

integrating once to obtain the body velocity components [3, 4]. 

 

, sin( ) ( )x cg est estA mg m u qw rvθ− − = + −ɺ  

  (3.54) 

, sin( ) ( )y cg est estA mg m v ru pwφ+ = + −ɺ  

  (3.55) 

, cos( )cos( ) ( )z cg est est estA mg m w pv quθ φ− + = + −ɺ  

  (3.56) 

 

The body velocity estimates may now be used in conjunction with the attitude estimates 

produced by the extended Kalman filter to determine the aircraft’s, or vehicle’s, velocity 

components through the use of Equation 3.57 below.  The positional estimates and parameters of 

the aircraft may be determined by solving for , ,   x y zV V and V and then integrating once.    

 

c s cx est est est est est est est est est est est est est

y est est est est est est est est est est est est est

z est est est est est est

V c c s s c c s s s u

V c s s s s c c c s s s c v

V s s c c c w

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

− +    
    = + −    
   −      

 

     

  (3.57) 

 

Determining velocity parameters and inertial position estimates through the use of simple 

kinematic equations for the body and aircraft velocity components and comparing them to the 

truth measurements produced by the nonlinear aircraft model, is a viable method to validate and 

confirm the extended Kalman filter’s attitude estimates are accurate and reliable.  
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3.4.3 Hardware Considerations 
 

The precision of the attitude and bias estimation algorithm implemented is dependent upon the 

configuration of the two-dimensional accelerometer array and the operational condition of the 

rate gyro.  In this section, a brief discussion is had addressing the use of the rate gyro and the 

number of accelerometers utilized. 

 

The work completed in this feasibility study addresses the primary problem of expanding upon a 

previously developed one-dimensional attitude and rate gyro bias estimation algorithm and 

device to a two-dimensional attitude array and rate gyro bias estimation algorithm operating in 

real-time.  Is this study, a rate gyroscope model was implemented with variable zero mean white 

Gaussian noise and rate gyro ramp inputs with a constant rate gyro bias of 0.200 degrees per 

second where the rate gyroscopes are assumed to mounted at the center-of-gravity location of the 

accelerometer array model implemented, therefore aligning the gyro with the x-z and y-z planes 

of motion being assessed in this feasibility study. 

 

This feasibility study conducted research expanding upon previous iterations of this method [2, 

6] by adding an additional accelerometer array for both longitudinal and transverse attitude 

assessments along with an updated algorithm method for estimation of the rate gyro bias in a full 

nonlinear operating environment with longitudinal and transverse imposed acceleration loading.  

The work conducted in this study utilized 13 accelerometers on both the longitudinal and 

transverse accelerometer arrays displaced equally about the 180 degree arcs for 15 degrees of 

resolution between accelerometers.  If more accelerometers would have been utilized, the 

accuracy of the attitude and bias estimate would have increased; however, if less accelerometers 

had been implemented in this study, the accuracy of the attitude and rate gyro bias estimate 

would have decreased due to a decrease resolution between adjacent accelerometer locations 

along the array.  In the work conducted in this study, the number of accelerometers was 

maintained at 13 in order to sustain a consistent basis between studies utilizing this method and 

to keep the focus of this study on validating the concept of a two-dimensional accelerometer 

array for determining accurate and reliable attitude and rate gyro bias estimates in real-time.   
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Chapter 4 

Simulation Results 
 

4.1 Simulation Overview 
 

For verification and validation of the proposed device and algorithm method, three simulation 

phases were conducted.   Within each of the three simulation phases of the feasibility study, two 

simulations were constructed and assessed utilizing a full nonlinear aircraft plant model with 

applied rotational and translational acceleration loading along the primary, secondary, and 

tertiary vehicle axes.  Phase I of this study included the construction of two longitudinal 

simulations, while Phase II consisted of two transverse simulations to simulate and assess the 

effectiveness of the two-dimensional accelerometer array model for estimation of the rate gyro 

bias online while correctly determining the longitudinal and transverse attitude.  Upon 

verification of the simulation models and algorithm operating appropriately, Phase III of the 

study was conducted through the implementation of two additional simulations constructed to 

assess the ability of the device model and algorithm to accurately and reliably measure the rate 

gyro bias and estimate the longitudinal and transverse attitude for a combined longitudinal and 

transverse maneuver.  The aircraft simulation maneuver imposed during Phase III of the 

simulation study was in essence a combined longitudinal and transverse maneuver.   

 

In each phase of the simulation study, the first simulation was performed in the absence of 

turbulence and extreme environmental conditions.  The second simulation was then implemented 

with the Dryden wind model, described previously in Section 3.3, to determine the effectiveness 

of the proposed device and algorithm to accurately estimate the rate gyro bias and correctly 

determine the attitude despite the presence of harsh environmental conditions and extreme 

vibrational effects.  The turbulence implemented in the second simulation of each simulation set 

is modeled as an extreme operating condition; however, is of great importance when assessing 

the ability of the method to function and operate correctly despite the presence of severe 

environmental and vibrational surroundings. 

 

Throughout this feasibility study, the accelerometer signals implemented were modeled with a 

zero mean white Gaussian noise input with a variance of 0.000015 gee
2
.  In each of the 

simulations conducted, the accelerometer signals from the two-dimensional accelerometer array 

where modeled with a different “seed” input to the Gaussian white noise so as to more accurately 

simulate the variability in noise inputs characteristics of real-world operating conditions.  The 

rate gyro signals utilized in this study were modeled with a white Gaussian noise variance of 

0.15 (deg/sec)
2
 and a constant rate gyro bias of 0.200 degrees per second.   
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In addition to the device model implemented, a complimentary filter was also utilized in the 

developed simulation models to produce longitudinal and transverse attitude estimates during 

each of the simulated flight maneuvers.  The complimentary filter implemented utilizes an 

established threshold tolerance value for reinitializing the initial conditions of the filter integrator 

to estimate the longitudinal and transverse attitude through the use of consecutive 

accelerometers.  Once two consecutive accelerometers along either the longitudinal or transverse 

accelerometer array have identical readings within the defined threshold value, the local 

gravitational field vector can be localized within the given device configuration.  Upon localizing 

the gravitational field vector, the algorithm triggers the complementary filter integrators at this 

state.  The threshold tolerance value on the longitudinal array was set to a value of 0.0003 gees 

and on the transverse array a value of 0.0005 gees. 

 

4.2 $onlinear Aircraft Model Implementation 
 

In this feasibility study, the nonlinear six degree-of-freedom aircraft model discussed previously 

in Section 3.1 and presented in Appendix E is implemented to verify and assess the overall 

performance and functionality of the utilized, innovative two-dimensional accelerometer device 

model and algorithm method simulated in a real-world operating environment.  Longitudinal 

motion of the aircraft was performed utilizing horizontal tail inputs, while the transverse and 

heading motion of the aircraft was controlled using inputs to the asymmetric trailing-edge flap 

and symmetric rudder.  The implementation of the device and proposed algorithm method was 

performed by simulating the nonlinear aircraft model at a “cruise” configuration of 300 knots 

and an altitude of 20,000 feet allowing for the accelerometers along each of the arrays to 

experience full translational loading during the maneuvers assessed in each simulation.  The 

resulting accelerometer measurements along the longitudinal and transverse array were 

calculated using Equation 3.14 and 3.21 respectively and shown here as Equations 4.1 and 4.2.   

 

Simulation of an Accelerometer under Full Longitudinal Loading 

 

, , ,

2 2 2 2 2

( sin( ) (sin( )sin( )) ( cos( ) (cos( ) cos( )cos( ))

sin ( ) (2 )cos( )sin( ) cos ( )

z i x imposed i man i z imposed i i m i

d i i i i

gA A g A g

r r pr p q

θ θ θ θ θ θ

θ θ θ θ

= − + + φ

 − − + +   

    (4.1) 
Simulation of an Accelerometer under Full Transverse Loading 

 

, , ,

2 2 2 2 2

( cos( ) (cos( )sin( ) cos( )) ( sin( ) (cos( ) cos( )sin( ))

(2 ) cos( )sin( ) sin ( ) cos ( )

y i y imposed i man man i z imposed i i m i

d i i i i

gA A g A g

r pr q r p

φ θ φ φ φ θ θ φ

φ φ φ φ

= + + +

 + − − −   

    (4.2) 
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The imposed translational and rotational loads are determined from the forces experienced by the 

aircraft during flight.  During dynamic operation, the translational loads experienced along the 

vehicle’s axes are a result of the vehicle thrust and aerodynamic forces experienced during the 

aircraft’s dynamic maneuver.  Operation of the aircraft in this dynamic state of abrupt maneuvers 

or maneuvers where the equilibrium may not be assumed to be quasi-static, allows the forces 

experienced during the dynamic operation of the aircraft to become unbalanced.  The unbalanced 

forces experienced during dynamic maneuvers results in non-constant accelerations as shown in 

Figures 4.1 through 4.6, where “A1” through “A13” represent the output of the thirteen 

accelerometers utilized on each accelerometer array respectively.  In a static condition, the lift 

force of the aircraft negates the weight force and the aircraft’s thrust force negates the vehicle’s 

drag allowing for a condition of balanced forces.   

 

Phase I – Longitudinal Maneuver: Full Longitudinal Loading of an Accelerometer 

 
Figure 4.1:  Full Longitudinal Loading of an Accelerometer during a Longitudinal Maneuver 

 

Phase I – Longitudinal Maneuver: Full Transverse Loading of an Accelerometer 

 
Figure 4.2:  Full Transverse Loading of an Accelerometer during a Longitudinal Maneuver 
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Phase II – Transverse Maneuver: Full Longitudinal Loading of an Accelerometer 

 
Figure 4.3:  Full Longitudinal Loading of an Accelerometer during a Transverse Maneuver 

 

Phase II – Transverse Maneuver: Full Transverse Loading of an Accelerometer 

 
Figure 4.4:  Full Transverse Loading of an Accelerometer during a Transverse Maneuver 
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Phase III – Longitudinal/Transverse Maneuver: Full Longitudinal Loading of an Accelerometer 

 
Figure 4.5:  Full Longitudinal Loading of an Accelerometer during a Longitudinal/Transverse 

Maneuver 

 

Phase III – Longitudinal/Transverse Maneuver: Full Transverse Loading of an Accelerometer 

 
Figure 4.6:  Full Transverse Loading of an Accelerometer during a Longitudinal/Transverse 

Maneuver 
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Attitude estimation for the conditions of full longitudinal and transverse loading requires 

knowledge of the translational accelerations experienced along the primary, secondary, and 

tertiary axes of the vehicle.  To obtain this information, the array must be augmented with three 

accelerometers at the center-of-gravity location.  This method is shown in Equation 3.13 where 

the sum of the imposed loads and weight of the aircraft is determined by the accelerometers at 

the center-of-gravity location.  With knowledge of these values, the vehicle’s longitudinal and 

transverse attitude may be accurately estimated using the measurements produced by the two-

dimensional accelerometer array and Equations 4.1 and 4.2 respectively. 

 

4.2.1 Algorithm for Imposed Loading Determination 
 

Longitudinal Accelerometer Array [2, 6] 
 

In the previous research conducted [2], linear plant models were examined that underwent both 

gravitational and rotational accelerations.  Expanding upon this research [6], a method for 

estimating the imposed translational accelerations along the aircraft’s primary and tertiary axes 

during dynamic maneuvers of the aircraft was developed.  In order to ensure accurate bias 

estimation and attitude determination during the aircraft’s or vehicle’s maneuvers, the previously 

developed device was augmented with two additional accelerometers at the aircraft’s center-of-

gravity to measure the imparted translational accelerations occurring along the aircraft’s primary 

and tertiary axes during maneuvers [6].  

 

From Equation 3.13 the accelerometers located at the center-of-gravity location along the 

longitudinal array may be resolved in terms of the registered sum of imposed motion and 

gravitational accelerations.  The total acceleration, measured in gees, experienced along the 

primary axis, AX,CG, and tertiary axis, AZ,CG, are given by Equations 4.3 and 4.4 respectively and 

derived in full in Appendix D. 

,

, (sin )
X imposed

X CG Man

A
A

g
θ= −  

    (4.3) 

,

, (cos cos )
Z imposed

Z CG Man Man

A
A

g
θ φ= +  

    (4.4) 

 

Due to the inability to directly measure the imposed translational or rotational acceleration 

imparted on the aircraft during maneuvers, an estimation of the imposed acceleration loads must 

be performed utilizing previous measurements from the accelerometer array and the 

accelerometers placed at the center-of-gravity of the aircraft or vehicle simulated.  Rearranging 

Equation 4.1 in terms of the imposed translational accelerations along the tertiary and primary 

axes, Equations 4.5 and 4.6 may be resolved respectively.  When the imposed loads along the 

vehicle axes are calculated, the attitude of the vehicle may be determined utilizing trigonometric 

relationships given in Equations 4.3 and 4.4. 
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Full Longitudinal Imposed Loading Calculations 

 
2 2
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    (4.6)

 

 

For calculation of the imposed loading along the tertiary axis, Accelerometers #2 through #12 

are utilized to avoid a divide by zero singularity condition due to the location of Accelerometers 

#1 and #13.  For the determination of the imposed loading along the primary axis, 

Accelerometers #1 through #6 and Accelerometers # 8 through #13 are used to avoid a 

singularity condition due to the location of Accelerometer #7.   

 

The imposed translational loading along the primary and tertiary axes may be solved for during 

pure rotational motion by resolving the rd(q
2
) term directly from Accelerometer #7 that lies along 

the tertiary axis and from the accelerometer at the aircraft’s center-of-gravity that senses 

acceleration along the tertiary axis, AZ,CG.  The acceleration measured by Accelerometer #7 is 

not influenced by the acceleration experienced along the aircraft’s primary axis due to the 

orientation of Accelerometer #7 directly along the tertiary axis of the vehicle.  Therefore, the 

acceleration experienced by Accelerometer #7 will register equal to the value of the 

accelerometer placed at the center-of-gravity location of the aircraft with the rotational 

component remaining present as shown in Equation 4.7. 

 
2

, ,7

[ ]
( ) ( )d

z cg z

r q
A A

g
= −  

    (4.7) 

 

A continuous attitude estimate is produced by the observer, therefore allowing for the previous 

estimated pitch angle, θMan, Prev, to be known and utilized to produce an estimation of the current 

imposed translational acceleration.  This result is valid because the attitude of the aircraft varies 

minimally over a small time interval and is shown graphically in Figure 4.7 where the maximum 

deviation is 0.1985 degrees from one time interval to another during the longitudinal maneuver.  

The algorithm method developed and implemented relies on a delayed attitude estimate from the 

accelerometer array therefore; Equations 4.8 and 4.9 are approximations of the imposed loads 

along the tertiary and primary axes for pure rotation respectively. 
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Pure Rotational Imposed Loading Calculations 

 

, , , , ,7

,

( sin( )) ( ) ( )
(cos( )) , [2 :12]

cos( )

z imposed z i x cg i z cg z

man prev

i

A A A A A
for i

g

θ
θ

θ

− + −  
≈ − =  

   
 

    (4.7) 

, , , , ,7

,

( cos( )) ( ) ( )
(sin( )) , [1: 6]  [8 :13]

sin( )

x imposed z i z cg i z cg z

man prev

i

A A A A A
for i and

g

θ
θ

θ

− + −  
≈ + =  

   
 

    (4.8) 

 

 
Figure 4.7: Longitudinal Attitude Change over a Time Interval 

 

With the rotational acceleration approximations and imposed loading calculations derived, an 

estimate for the present vehicle longitudinal, or pitch attitude may be calculated from the 

previously derived equations for imposed loadings and is given by Equation 4.9, or alternatively 

as 4.10.  Figures 4.8 through 4.13 represent the longitudinal attitude estimate determined by the 

accelerometer array against the truth value of the longitudinal attitude of the nonlinear aircraft 

model for each phase of the simulation study.  Table 4.1 presents the maximum and mean 

attitude error experienced during each of the simulation phases. 

 

Present Pitch Maneuver Angle Estimation  
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    (4.9) 
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Phase I – Longitudinal Maneuver: %o Turbulence 

 
Figure 4.8:  Phase I Attitude Estimation Results –Assessment of θEstimate and θTruth 

 

Phase I – Longitudinal Maneuver: Turbulence 

 
Figure 4.9:  Phase I Attitude Estimation Results – Turbulence Assessment of θEstimate and θTruth 
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Phase II – Transverse Maneuver: %o Turbulence 

 
Figure 4.10:  Phase II Attitude Estimation Results –Assessment of θEstimate and θTruth 

 

Phase II – Transverse Maneuver: Turbulence 

 
Figure 4.11:  Phase II Attitude Estimation Results – Turbulence Assessment of θEstimate and θTruth 
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Phase III – Longitudinal/Transverse Maneuver: %o Turbulence 

 
Figure 4.12:  Phase III Attitude Estimation Results –Assessment of θEstimate and θTruth 

 

Phase III– Longitudinal/Transverse Maneuver: Turbulence 

 
Figure 4.13:  Phase III Attitude Estimation Results – Turbulence Assessment of θEstimate and 

θTruth 
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Aircraft Simulation Maneuver 
Maximum Longitudinal 

Attitude Error (degrees) 

Mean Longitudinal 

Attitude Error (degrees) 

Longitudinal Maneuver 3.4194 1.7305 

Longitudinal Maneuver with 

Turbulence 
3.3652 1.6993 

Transverse Maneuver 3.0682 1.4751 

Transverse Maneuver with Turbulence 3.1306 1.4837 

Longitudinal/Transverse Maneuver 3.3400 1.6742 

Longitudinal/Transverse Maneuver 

with Turbulence 
3.2912 1.6332 

Table 4.1: Maximum and Mean Longitudinal Attitude Error 

 

As shown in Table 4.1, the attitude estimate produced by the longitudinal accelerometer array 

relying on body rotational rates produces a fairly accurate estimate of the longitudinal attitude 

with maximum errors for all maneuvers being less than 3.5000 degrees and mean errors less than 

1.7500 degrees.  The present estimate of the longitudinal attitude is then used in conjunction with 

the present pitch rate determined by the rate gyroscope for estimation of the rate gyro bias.  

 

A pure rotational acceleration estimate is needed for the implementation of the complementary 

filter.  The triggers of the complementary filter occur when the difference between two 

consecutive accelerometers fall within a defined threshold value as described previously in 

Section 4.1.  The derivation of the pure rotational approximation must be performed prior to the 

differencing execution of the complementary filter algorithm and is shown in Equation 4.11. 

 
2

, ,

, sin( ) cos( ) (cos( )cos( )) (sin( )sin( ))
x imposed z imposed d

z i i i Man i Man i

A A r q
A

g g g
θ θ θ θ θ θ

    
− − = − −    
     

 

   

  (4.11) 

 

The left side of Equation 4.11 is determined utilizing accelerometer readings in conjunction with 

the imposed loading values along the tertiary and primary axes given previously by Equations 

4.7 and 4.8 respectively for pure rotation conditions.  Equation 4.12 represents a pure rotation 

approximation of the accelerometer measurements where the imposed loading terms and 

therefore the effects of wind gust, turbulence, and environmental factors are subtracted out from 

the accelerometer signals during dynamic maneuvers. 
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  (4.12) 
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Transverse Accelerometer Array 
 

The work completed in this feasibility study focuses on the expansion of the method previously 

developed [2, 6] through the addition of a third accelerometer at the vehicle’s center-of-gravity 

to measure the imposed translational accelerations that occur not only along the aircraft’s 

primary and tertiary axes, but also along the secondary axis as well.  

 

Utilizing the same method implemented on the longitudinal array, Equation 3.13 may be utilized 

to resolve the accelerometers located at the center-of-gravity location along the transverse array 

in terms of the registered sum of the imposed motion and gravitational accelerations.  The total 

acceleration, measured in gees, experienced along the secondary axis, AY,CG, and tertiary axis, 

AZ,CG, are given by Equations 4.13 and 4.14 respectively and are derived in full in Appendix D. 
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g
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  (4.13)
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g
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As stated previously, due to the inability to directly measure the imposed translational or 

rotational acceleration imparted on the aircraft during maneuvers, an estimation of the imposed 

acceleration loads must be performed utilizing previous measurements from the accelerometer 

arrays and the accelerometers placed at the center-of-gravity of the aircraft.  Rearranging 

Equation 4.2 in terms of the imposed translational accelerations along the secondary and tertiary 

axes, Equations 4.15 and 4.16 may be resolved respectively.  When the imposed loads along the 

vehicle axes are calculated, the attitude of the vehicle may be determined utilizing trigonometric 

relationships given in Equations 4.13 and 4.14. 

 

Full Transverse Imposed Loading Calculations 

 
2 2 2 2 2

, ,

,

[ sin( ) (cos( )sin( ) cos( ))] (2 )cos( ) sin( ) sin ( ) cos ( )
, [1: 6]  [8 :13]

cos( )

y i z cg i man man i d i i i i

y imposed

i

g A A r pr q r p
A for i and

φ θ φ φ φ φ φ φ

φ

 − − − − − − = =

 

  (4.15) 

 
2 2 2 2 2

, ,

,

[ cos( ) (cos( ) cos( )sin( ))] (2 ) cos( )sin( ) sin ( ) cos ( )
,  [2 :12]

sin( )

y i y cg i man man i d i i i i
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i

g A A r pr q r p
A for i

φ θ φ φ φ φ φ φ

φ

 − − − − − − = =

 

  (4.16)
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For calculation of the imposed loading along the tertiary axis as given by Equation 4.16, 

Accelerometers #2 through #12 are utilized to avoid a divide by zero singularity condition due to 

the location of Accelerometers #1 and #13.  For the determination of the imposed loading along 

the secondary axis, Accelerometers #1 through #6 and Accelerometers # 8 through #13 are used 

to avoid a singularity condition due to the location of Accelerometer #7.   

 

The imposed translational loading along the secondary and tertiary axes may be solved for 

during pure rotational motion by resolving the rd(p
2
) term directly from Accelerometer #7 that 

lies along the tertiary axis and from the accelerometer at the aircraft’s center-of-gravity that 

senses acceleration along the tertiary axis, AZ,CG.  The acceleration measured by Accelerometer 

#7 is not influenced by the acceleration experienced along the aircraft’s secondary axis due to the 

orientation of Accelerometer #7 directly along the tertiary axis of the aircraft.  Therefore, the 

acceleration experienced by Accelerometer #7 will register equal to the value of the 

accelerometer placed at the center-of-gravity location of the aircraft with the rotational 

component remaining present as shown in Equation 4.17. 

 

2

, ,7

[ ]
( ) ( )d

z cg z

r p
A A

g
= −  

  (4.17) 

 

Discussed previously, a continuous attitude estimate is produced by the accelerometer array from 

both the longitudinal and transverse accelerometer arrays.  Therefore the previous estimated roll 

angle, �Man, Prev, may be known and utilized to produce an estimate of the current imposed 

translational acceleration.  This result is valid because the attitude of the aircraft varies 

minimally over a small time interval and is shown graphically in Figure 4.14 where the 

maximum deviation is 0.2206 degrees from one time interval to another during the transverse 

maneuver.  The algorithm method developed and implemented relies on a delayed attitude 

estimate from the accelerometer array.  Therefore Equations 4.18 and 4.19 are approximations of 

the imposed loads along the tertiary and secondary axes for pure rotation respectively. 

 

Pure Rotational Imposed Loading Calculations 

 

, , , , ,7
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( cos( )) ( ) ( )
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sin( )
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A A A A A
for i

g

φ
φ

φ

− + −  
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  (4.18) 

, , , , ,7

,

( sin( )) ( ) ( )
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y imposed y i z cg i z cg y

man prev

i

A A A A A
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φ
φ

φ

− + −  
≈ − =  

   
 

  (4.19) 
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Figure 4.14: Transverse Attitude Change over a Time Interval 

 

With the rotational acceleration approximations and imposed loading calculations derived, an 

estimate for the vehicle’s present transverse, or roll attitude may be calculated from the 

previously derived equations for imposed loadings and is given by Equation 4.20.  Figures 4.15 

through 4.20 represent the transverse attitude estimate determined by the accelerometer array 

against the truth value of the transverse attitude of the nonlinear aircraft model for each phase of 

the simulation study.  Table 4.2 presents the maximum and mean attitude error experienced 

during each of the simulation phases. 
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  (4.20) 
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Phase I – Longitudinal Maneuver: %o Turbulence 

 
Figure 4.15:  Phase I Attitude Estimation Results – Assessment of �Estimate and �Truth 

 

Phase I – Longitudinal Maneuver: Turbulence 

 
Figure 4.16:  Phase I Attitude Estimation Results – Turbulence Assessment of �Estimate and �Truth 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3

4

Time (s)

P
h
i 
(d

e
g
re

e
s
)

Comparative Plot: Phi Truth Value vs. Phi Array Estimate

 

 

Phi Truth

Phi Array Est.

0 1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3

4

Time (s)

P
h
i 
E

rr
o
r 
(d

e
g
re

e
s
)

Phi Error

 

 

Phi Error

0 1 2 3 4 5 6 7 8 9 10
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

Time (s)

P
h
i 
(d

e
g
re

e
s
)

Comparative Plot: Phi Truth Value vs. Phi Array Estimate

 

 

Phi Truth

Phi Array Est.

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

Time (s)

P
h
i 
E

rr
o
r 
(d

e
g
re

e
s
)

Phi Error

 

 

Phi Error



4.2 %O%LI%EAR AIRCRAFT MODLE IMPLEME%TATIO% 78 

 

  

Phase II – Transverse Maneuver: %o Turbulence 

 
Figure 4.17:  Phase II Attitude Estimation Results – Assessment of �Estimate and �Truth 

 

Phase II – Transverse Maneuver: Turbulence 

 
Figure 4.18:  Phase II Attitude Estimation Results – Turbulence Assessment of �Estimate and �Truth 
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Phase III – Longitudinal/Transverse Maneuver: %o Turbulence 

 
Figure 4.19:  Phase III Attitude Estimation Results – Assessment of �Estimate and �Truth 

 

Phase III – Longitudinal/Transverse Maneuver: Turbulence 

 
Figure 4.20:  Phase III Attitude Estimation Results –  

Turbulence Assessment of �Estimate and �Truth 
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Aircraft Simulation Maneuver 
Maximum Transverse Attitude 

Error (degrees) 

Mean Transverse Attitude 

Error (degrees) 

Longitudinal Maneuver 3.2866 1.6609 

Longitudinal Maneuver with 

Turbulence 
4.2167 1.9752 

Transverse Maneuver 3.2186 1.9803 

Transverse Maneuver with Turbulence 3.2148 2.1148 

Longitudinal/Transverse Maneuver 3.8026 1.9282 

Longitudinal/Transverse Maneuver 

with Turbulence 
3.7895 2.0192 

Table 4.2: Maximum and Mean Transverse Attitude Error 

 

As shown in Table 4.2, the attitude estimate produced by the transverse accelerometer array 

relying on body rotational rates produces a fairly accurate estimate of the transverse attitude with 

maximum errors for all maneuvers conducted valued at less than 4.250 degrees and mean errors 

less than 2.150 degrees.  The present estimate of the transverse attitude is then used in 

conjunction with the present roll rate determined by the rate gyroscope for estimation of the rate 

gyro bias, just as the present estimate of the longitudinal attitude was utilized as stated 

previously.  

 

A pure rotational acceleration estimate is needed for the implementation of the complementary 

filter.  The triggers of the complementary filter occur when the difference between two 

consecutive accelerometers fall within a defined threshold value as described previously in 

Section 4.1.  The derivation of the pure rotational approximation must be performed prior to the 

differencing execution of the complementary filter algorithm and is shown in Equation 4.21. 

 
2

, ,

, cos( ) sin( ) (sin( )cos( )) (cos( )sin( ))
y imposed z imposed d

y i i i Man i Man i

A A r p
A

g g g
φ φ φ φ φ φ

    
− − = + −     
     

 

 

  (4.21) 

 

The left side of Equation 4.21 is determined utilizing accelerometer readings in conjunction with 

the imposed loading values along the tertiary and secondary axes given previously by Equations 

4.18 and 4.19 respectively for pure rotation conditions.  Equation 4.22 represents a pure rotation 

approximation of the accelerometer measurements where the imposed loading terms and 

therefore the effects of wind gust, turbulence, and environmental factors are subtracted out from 

the accelerometer signals during dynamic maneuvers. 

 

, ,

, ,

( ) ( )
, cos( ) sin( )

y imposed z imposed

y i y i i i

A A
A PureRotationApproximation A

g g
φ φ

   
≈ − −   

   
 

  (4.22) 
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4.2.2 Signal Differencing Imposed Loading Determination  
 

Longitudinal Accelerometer Array 
 

The concept of signal differencing (SD) involves taking the difference of symmetric 

accelerometer signals along the accelerometer array, allowing for the feedback of the nonlinear 

bracket terms given in Equations 4.5 and 4.6 to be simplified in terms of symmetric 

accelerometer signals. Utilization of this method allows for a more accurate and reliable solution 

to the desired imposed loading terms, and ultimately the estimation of the vehicle’s attitude, 

without a reliance on the rate gyro measurements.  Therefore, in the absence or malfunction of 

the aircraft’s rate gyro angular rate terms, the method of signal differencing may be utilized to 

accurately determine the value of the imposed translational and rotational accelerations for 

estimation of the aircraft’s attitude. 

 

Implementation of the signal differencing method requires the establishment of two symmetric 

planes within the longitudinal pitch array.  The two symmetric planes are characterized by a left-

half plane where all negative angles of θ are considered and a right-half plane where all positive 

angles of θ are considered.  Utilizing this distinction allows for the formulation of the following 

two generalized forms, given by Equations 4.23 and 4.24, for the left-half and right-half plane of 

the longitudinal accelerometer array respectively. 

 

Left-Half Pitch Plane:  Sin (θ) = �egative 

 
2 2 2 2 2

,14 , ,[ (sin( )) cos( )] sin ( ) (2 ) cos( ) (sin( )) cos ( )z i x cg i z cg i d i i i igA g A abs A r r pr abs p qθ θ θ θ θ θ−  = + − − + +   

   

  (4.23) 

Right-Half Pitch Plane:  Cos (θ) = Positive

 
2 2 2 2 2

, , ,[ (sin( )) cos( )] sin ( ) (2 ) cos( ) (sin( )) cos ( )z i x cg i z cg i d i i i igA g A abs A r r pr abs p qθ θ θ θ θ θ = − + − − + +   

   

  (4.24) 

 

Derivation of the imposed loading equations, given previously as Equations 4.5 and 4.6, in terms 

of the signal differencing expression requires the nonlinear bracket term, r�[(r� sin� θ −
(2pr) cos θ sin θ +p� cos� θ ) + q�], to be separated into two separate expressions defined by 

Equation 4.25. 

 
2 2 2 2 2 2 2 2 2 2
sin ( ) (2 ) cos( ) (sin( )) cos ( ) [( sin ( ) cos ( ) )] [( 2 ) cos( )sin( )]d i i i i d i i d i ir r pr abs p q r r p q r prθ θ θ θ θ θ θ θ − + + = + + + − 

 

   

  (4.25) 
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Generalization of the rd (2pr) Bracket Term 

 

A generalized representation of the rd (2pr) expression in terms accelerometer signals is 

necessary and critical due to the configuration and displacement of the accelerometer locations 

along the longitudinal accelerometer array.  Differencing Equation 4.24 from 4.23 yields the 

generalized representation of the (rd) 2pr term as an expression of symmetric accelerometer 

signals and is shown as Equations 4.26 and 4.27. 

 

,14 , ,( ) 2 ( ) (sin( )) 2 cos( ) (sin( ))z i z i x cg i d i ig A A g A abs r absθ θ θ− − = +  

   

  (4.26) 

[ ]
,14 , ,( ) 2( ) (sin( ))

(2 )   ,  [1: 6]
2 cos( ) (sin( ))

z i z i x cg i

d

i i

g A A A abs
pr r for i

abs

θ

θ θ
− − −  = =  

  (4.27) 

 

Generalization of the "#["$ %&'$ (& + )$ *+%$ (& + ,$] Bracket Term 

 

Implementing the same method utilized to represent the rd (2pr) term as an expression of 

symmetric accelerometer signals about the longitudinal array, the rd [r
2
sin

2
θi + p

2
cos

2
θi + q

2
] is 

also represented in terms of symmetric accelerometer signals.  However, to complete this 

formulation, the right-half and left-half accelerometer plane equations given previously as 

Equations 4.23 and 4.24 must be added together to ensure the (2pr)(cos θ (sin θ ))  term drops 

out during the derivation sequence.  Therefore, utilizing Equations 4.23 and 4.24, Equations 4.28 

and 4.29 may be derived for the representation of the rd [r
2
sin

2
θi + p

2
cos

2
θi + q

2
] term as an 

expression of symmetric accelerometer signals. 

 

 

2 2 2 2 2

,14 , ,( ) 2 ( )(cos( )) 2 sin cosz i z i z cg i d i ig A A g A r r p qθ θ θ−  + = + + +   

 

  (4.28) 

,14 , , 2 2 2 2 2
( ) 2( )(cos( ))

[ sin ( ) cos ( ) ]
2

z i z i x cg i

d i i

g A A A
r r p q

θ
θ θ− + −  = + +

−
 

  (4.29) 

 

The two expressions of the large nonlinear equation are now expressed in terms of symmetric 

accelerometer signals as given by Equations 4.27 and 4.29.  With these two expressions now 

defined, the imposed loading terms defined previously as Equations 4.5 and 4.6 may be 

redefined and expressed solely in terms of accelerometer signals. Utilizing this method of 

imposed loading determination eliminates the reliance on the aircraft’s angular rate terms 

resolved by the rate gyroscopes.   
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The imposed loading expression for translational and rotational loadings experienced along the 

aircraft’s tertiary and primary axes are redefined in terms of signal differencing expressions as 

Equations 4.30 and 4.31 respectively.   
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  (4.30) 
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                         (4.31) 

 

where “A” and “B” are defined as Equations 4.27 and 4.29 given previously. 
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θ
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,14 , ,( ) 2( )(cos( ))

2

z i z i x cg ig A A A
B

θ− + − =
−

 

 

The method of differencing symmetric accelerometer signals along the longitudinal 

accelerometer array for resolution of the nonlinear expression and eliminating the reliance of 

angular rate terms resolved from the use of rate gyroscopes enables an alternative method for the 

algorithm scheme developed and implemented to assess and determine the imposed loads along 

the primary and tertiary axes respectively for means of accurate and reliable attitude estimation. 

 

Equations 4.30 and 4.31 may now be utilized for attitude estimation in the longitudinal plane 

through the use of the defined Equations for estimates of the present pitch angle given previously 

as Equations 4.9 and 4.10.  Figures 4.21 through 4.26 represent the longitudinal attitude estimate 

determined by the signal differencing imposed loading algorithm for longitudinal attitude 

estimation against the truth value of the longitudinal attitude of the aircraft simulation model for 

each phase of the simulation study conducted.  Table 4.3 presents the maximum and mean 

attitude error experienced during each phase of the simulation performed. 
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Phase I – Longitudinal Maneuver: %o Turbulence 

 
Figure 4.21:  Phase I SD Attitude Estimation Results –Assessment of θSD-Estimate and θTruth 

 

Phase I – Longitudinal Maneuver: Turbulence 

 
Figure 4.22:  Phase I SD Attitude Estimation Results –  

Turbulence Assessment of θSD-Estimate and θTruth 
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Phase II – Transverse Maneuver: %o Turbulence 

 
Figure 4.23:  Phase II SD Attitude Estimation Results –Assessment of θSD-Estimate and θTruth 

 

Phase II– Transverse Maneuver: Turbulence 

 
Figure 4.24:  Phase II SD Attitude Estimation Results –  

Turbulence Assessment of θSD-Estimate and θTruth 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

T
h
e
ta

(d
e
g
re

e
s
)

Comparative Plot:  Signal Differencing Attitude Estimate vs. True Longitudinal Attitute

 

 

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

6
x 10

-15

Time (s)

T
h
e
ta

 E
rr
o
r 
(d

e
g
re

e
s
)

Theta Attitude Error

 

 

True Theta

Theta SD

Theta Error

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

3

4

Time (s)

T
h
e
ta

(d
e
g
re

e
s
)

Comparative Plot:  Signal Differencing Attitude Estimate vs. True Longitudinal Attitute

 

 

0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

x 10
-14

Time (s)

T
h
e
ta

 E
rr
o
r 
(d

e
g
re

e
s
)

Theta Attitude Error

 

 

True Theta

Theta SD

Theta Error



4.2 %O%LI%EAR AIRCRAFT MODLE IMPLEME%TATIO% 86 

 

   

Phase III – Longitudinal/Transverse Maneuver: %o Turbulence 

 
Figure 4.25:  Phase III SD Attitude Estimation Results –Assessment of θSD-Estimate and θTruth 

 

Phase III – Longitudinal/Transverse Maneuver: Turbulence 

 
Figure 4.26:  Phase III SD Attitude Estimation Results – 

 Turbulence Assessment of θSD-Estimate and θTruth 
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Aircraft Simulation Maneuver 
Maximum Longitudinal SD 

Attitude Error (degrees) 

Mean Longitudinal SD Attitude 

Error (degrees) 

Longitudinal Maneuver 2.8422e-014 5.4253e-015 

Longitudinal Maneuver with 

Turbulence 
2.8422e-014 5.4134e-015 

Transverse Maneuver 5.7732e-015 2.4505e-015 

Transverse Maneuver with 

Turbulence 
9.7700e-015 2.4390e-015 

Longitudinal/Transverse Maneuver 2.8422e-014 5.2616e-015 

Longitudinal/Transverse Maneuver 

with Turbulence 
2.8422e-014 5.4546e-015 

Table 4.3: Maximum and Mean Signal Differencing Longitudinal Attitude Error 

 

As shown in Table 4.3, the attitude estimate produced by the longitudinal accelerometer array 

implementing the signal differencing method produces an extremely accurate estimate of the 

longitudinal attitude with maximum errors for all maneuvers being less than 2.8500e-14 degrees 

and mean errors less than 5.4600e-15 degrees.   

 

The present estimate of the longitudinal attitude determined through the implementation of the 

signal differencing method is then used in conjunction with the present pitch rate determined by 

the rate gyroscope for estimation of the rate gyro bias.  As it may be seen in Table 4.3, the 

longitudinal attitude error produced during the operation of the signal differencing imposed 

loading determination algorithm is far less than the error produced during the attitude estimation 

method reliant on the body rotational rates produced by the rate gyro.    

 

Transverse Accelerometer Array 
 

The model of signal differencing may also be implemented on the transverse accelerometer array 

for resolution of the large nonlinear expression in terms of symmetric accelerometer signals 

along the transverse array. Utilization of this method allows for a more accurate and reliable 

solution to the desired imposed loading terms along the secondary and tertiary axes without a 

reliance on the angular rate terms resolved by the use of rate gyroscopes.  Therefore, in the 

absence or malfunction of the aircraft’s rate gyro angular rate terms, the method of signal 

differencing may be utilized on the transverse accelerometer array to accurately determine the 

value of the imposed translational and rotational accelerations for precise estimation of the 

aircraft’s present attitude. 

 

Implementation of the signal differencing method requires the establishment of two symmetric 

planes within the transverse roll array. The two symmetric planes are characterized by a left-half 

plane where all negative angles of � are considered and a right-half plane where all positive 

angles of � are considered.  Utilizing this distinction allows for the formulation of the following 

two generalized forms, given by Equations 4.32 and 4.33, for the left-half and right-half plane of 

the transverse array respectively. 
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Right-Half Roll Plane: Cos (����) = Positive 

 
2 2 2 2 2

, , ,
(cos( ) sin( ) [(2 )sin( ) (cos( )) ( ) ( cos ( )) ( sin ( ))]

y i y cg i z cg i d i i i i
gA gA abs gA r qr abs p r q= φ + φ + φ φ − − φ − φ

 

  (4.32) 

Left-Half Roll Plane: Cos (����) = �egative 

 
2 2 2 2 2

,14 , ,(cos( ) sin( ) [(2 )sin( ) (cos( )) ( ) ( cos ( )) ( sin ( ))]y i y cg i z cg i d i i i igA gA abs gA r qr abs p r q− = − φ + φ + φ φ − − φ − φ
 

 

  (4.33) 

 

Derivation of the imposed loading equations along the secondary and tertiary axes, given 

previously by Equations 4.15 and 4.16, in terms of the signal differencing terms requires the 

nonlinear bracket expression, r�[-−2qr) sin ϕ abs(cos ϕ 0 − -p�) − -r� cos� ϕ 0 −
(q� sin� ϕ 0], to be divided into two separate terms defined by Equation 4.34. 

 
2 2 2 2 2 2 2 2 2 2[(2 )sin( ) (cos( )) ( ) ( cos ( )) ( sin ( ))] [(2 )sin( )cos( )] ( ( ) ( cos ( )) ( sin ( )))]d i i i i d i i d i ir qr abs p r q r qr r p r qφ φ − − φ − φ = φ φ − − − φ − φ

 

  (4.34) 

Generalization of the ($,"("#)) Bracket Term 

 

A generalized representation of the rd (2qr) term is necessary and critical due to the configuration 

and displacement of the accelerometer locations along the transverse accelerometer array.  

Differencing Equation 4.32 from Equation 4.33 yields the generalized representation of the (rd) 

2qr term as an expression of symmetric accelerometer signals on the transverse array and is 

shown by Equation 4.35 and 4.36. 

 

,14 , ,( ) 2 ( ) (cos( )) [_( 4 )sin( ) (cos( ))]y i y i y cg i d i ig A A g A abs r qr absφ φ φ− − + = −
 

 

  (4.35) 

,14 , ,( ) 2( ) (cos( ))
(2 )   ,  [1: 6]

2( cos( ))(sin( ))

y i y i y cg i

d

i i

g A A A abs
qr r for i

abs

− − + φ = =
− φ φ

 

  (4.36) 

Generalization of the "#[−()$) − ("$ *+%$ 1&) − (,$ %&'$ 1&)] Bracket Term 

 

Implementing the same method utilized to develop a generalized representation of the rd (2qr) 

term as an expression of symmetric accelerometer signals about the transverse array, the 

23[−(4�) − (2� 567� �8) − (9� 7:;� �8)] is represented in terms of symmetric accelerometer signals.  

However, to complete this formulation, the right-half and left-half accelerometer plane equations 

given previously as Equations 4.33 and 4.34 must be added together to ensure the (2qr) term 

drops out during the derivation sequence.   
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Therefore, summing Equations 4.33 and 4.34 allows for Equations 4.37 and 4.38 to be derived 

for the generalized representation of the rd [-p
2 

- r
2
cos

2�i - q
2
sin

2�i] term as an expression of 

symmetric accelerometer signals along the transverse accelerometer array without a reliance on 

the rate gyro body rate terms. 

 
2 2 2 2 2

,14 , ,[( ) 2 sin ] 2 [ ( cos ) ( sin )]y i y i z cg i d i ig A A A r p r qφ φ φ− + − = − − −  

 

  (4.37) 

,14 , ,2 2 2 2 2
( ) 2( )(sin( ))

[ ( ) ( cos ( )) ( sin ( ))]
2

y i y i z cg i

d i i

g A A A
r p r q

− + − φ − − φ − φ =  

  (4.38) 

 

The two terms of the large nonlinear expression are now represented in terms of symmetric 

accelerometer signals along the transverse array as given by Equations 4.36 and 4.38.  With these 

two expressions now defined, the imposed loading calculations defined previously as Equations 

4.15 and 4.16 may be redefined and expressed solely in terms of accelerometer signals. Utilizing 

this method of imposed loading determination once again eliminates the reliance on the aircraft’s 

angular rate terms as resolved by the rate gyro.  The imposed loading expression for translational 

and rotational loadings experienced along the aircraft’s tertiary and secondary axes are defined 

as Equations 4.39 and 4.40 respectively.   

 

, ,

,

[ cos( )] (cos( )sin( ))
[cos( ) cos( )]  ,  [2 :12]

sin( )

y i y cg i i i

z imposed man man

i

g A A C D
A for iθ

− φ − φ φ −
= − φ =

φ
 

  (4.39) 

, ,

,

[ sin( ) (cos( )sin( ))
[cos( )sin( )]  ,  [1: 6]  [8 :13]

cos( )

y i z cg i i i

y imposed man man

i

g A A C D
A for i andθ

− φ − φ φ −
= − φ =

φ

              (4.40) 

 

where “C” and “D” are defined as Equations 4.36 and 4.38 given previously. 

 

,14 , ,( ) 2( ) (cos( ))

2( cos( ))(sin( ))

y i y i y cg i

i i

g A A A abs
C

abs

− − + φ =
− φ φ  

 

,14 , ,( ) 2( )(sin( ))

2

y i y i z cg ig A A A
D

− + − φ =  
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The method of differencing symmetric accelerometer signals along the transverse accelerometer 

array for resolution of the nonlinear expression and eliminating the reliance of angular rate terms 

resolved from the use of the rate gyroscopes enables an alternative method for the algorithm 

scheme developed and implemented to calculate and determine the imposed loads along the 

secondary and tertiary axes respectively for means of accurate and reliable attitude estimation. 

 

Equations 4.39 and 4.40 may now be utilized for attitude estimation in the transverse plane 

through the use of the defined equation for estimates of the present roll angle given previously as 

Equations 4.20.  Figures 4.27 through 4.32 represent the transverse attitude estimate determined 

by the signal differencing imposed loading algorithm for transverse attitude estimation against 

the truth value of the transverse attitude of the aircraft simulation for each phase of the feasibility 

study.  Table 4.4 presents the maximum and mean attitude error experienced during each of the 

simulation phases. 

 

Phase I – Longitudinal Maneuver: %o Turbulence 

 
Figure 4.27:  SD Attitude Estimation Results –Assessment of �SD-Estimate and �Truth 
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Phase I – Longitudinal Maneuver: Turbulence 

 
Figure 4.28:  SD Attitude Estimation Results – Turbulence Assessment of �SD-Estimate and �Truth 

 

Phase II – Transverse Maneuver: %o Turbulence 

 
Figure 4.29:  SD Attitude Estimation Results –Assessment of �SD-Estimate and �Truth 
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Phase II – Transverse Maneuver: Turbulence 

 

Figure 4.30:  SD Attitude Estimation Results – Turbulence Assessment of �SD-Estimate and �Truth 

 

Phase III – Longitudinal/Transverse Maneuver: %o Turbulence 

 
Figure 4.31:  SD Attitude Estimation Results – Assessment of �SD-Estimate and �Truth 
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Phase III – Longitudinal/Transverse Maneuver: Turbulence 

 
Figure 4.32:  SD Attitude Estimation Results – Turbulence Assessment of �SD-Estimate and �Truth 

 

Aircraft Simulation Maneuver 
Maximum Transverse SD 

Attitude Error (degrees) 

Mean Transverse SD 

Attitude Error (degrees) 

Longitudinal Maneuver 2.1996e-014 4.5896e-015 

Longitudinal Maneuver with 

Turbulence 
3.0198e-014 5.0101e-015 

Transverse Maneuver 1.4211e-014 2.6774e-015 

Transverse Maneuver with Turbulence 1.4211e-014 2.8036e-015 

Longitudinal/Transverse Maneuver 3.9080e-014 4.3250e-015 

Longitudinal/Transverse Maneuver 

with Turbulence 
3.9080e-014 4.7777e-015 

Table 4.4: Maximum and Mean Signal Differencing Transverse Attitude Error 

 

As shown in Table 4.4, the attitude estimate produced by the transverse accelerometer array 

utilizing the signal differencing method produces an extremely accurate estimate of the 

transverse attitude with maximum errors for all maneuvers being less than 3.9500e-14 degrees 

and mean errors less than 5.1000e-15 degrees.   

 

The present estimate of the transverse attitude determined through the implementation of the 

signal differencing method is then used in conjunction with the present roll rate determined by 

the rate gyroscope for estimation of the rate gyro bias.  As it may be seen in Table 4.4, the error 

produced during the operation of the signal differencing imposed loading determination 

algorithm is far less than the error produced during the attitude estimation method reliant on the 

body rotational rates produced by the rate gyro.   Figure 4.33 displays the flow chart algorithm 

for the imposed loading calculation in conjunction with the attitude estimate produced by the 

two-dimensional accelerometer array for both the longitudinal and transverse attitudes. 
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Figure 4.33: Flowchart for Full Longitudinal and Transverse Imposed Loading and Attitude 

Determination 

 

Comparative Analysis of Two-Dimensional Attitude Estimation Methods 
 

The attitude estimation results obtained from Sections 4.2.1 and 4.2.2 are summarized in Tables 

4.5 and 4.6.  

 

Aircraft Simulation 

Maneuver 

Max 

Longitudinal 

Attitude 

Error 

(degrees) 

Mean 

Longitudinal 

Attitude 

Error 

(degrees) 

Max 

Longitudinal 

SD Attitude 

Error 

(degrees) 

Mean 

Longitudinal 

SD Attitude 

Error 

(degrees) 

Percent 

Decrease 

in Mean 

Error 

Longitudinal 

Maneuver 
3.4194 1.7305 2.8422e-14 5.4253e-15 ≈ 100% 

Longitudinal 

Maneuver with 

Turbulence 

3.3652 1.6993 2.8422e-14 5.4134e-15 ≈ 100% 

Transverse 

 Maneuver 
3.0682 1.4751 5.7732e-15 2.4505e-15 ≈ 100% 

Transverse Maneuver 

with Turbulence 
3.1306 1.4837 9.7700e-15 2.4390e-15 ≈ 100% 

Longitudinal/ 

Transverse Maneuver 
3.3400 1.6742 2.8422e-14 5.2616e-15 ≈ 100% 

Longitudinal/ 

Transverse Maneuver 

with Turbulence 

3.2912 1.6332 2.8422e-14 5.4546e-15 ≈ 100% 

Table 4.5:  Longitudinal Array Attitude Estimation Comparison 
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Aircraft Simulation 

Maneuver 

Max 

Transverse 

Attitude 

Error 

(degrees) 

Mean 

Transverse 

Attitude 

Error 

(degrees) 

Max 

Transverse 

SD Attitude 

Error 

(degrees) 

Mean 

Transverse SD 

Attitude Error 

(degrees) 

Percent 

Decrease 

in Mean 

Error 

Longitudinal 

Maneuver 
3.2866 1.6609 2.1996e-14 4.5896e-15 ≈ 100% 

Longitudinal 

Maneuver with 

Turbulence 

4.2167 1.9752 3.0198e-14 5.0101e-15 ≈ 100% 

Transverse  

Maneuver 
3.2186 1.9803 1.4211e-14 2.6774e-15 ≈ 100% 

Transverse Maneuver 

with Turbulence 
3.2148 2.1148 1.4211e-14 2.8036e-15 ≈ 100% 

Longitudinal/ 

Transverse Maneuver 
3.8026 1.9282 3.9080e-14 4.3250e-15 ≈ 100% 

Longitudinal/ 

Transverse Maneuver 

with Turbulence 

3.7895 2.0192 3.9080e-14 4.7777e-15 ≈ 100% 

Table 4.6:  Transverse Array Attitude Estimation Comparison 

 

From the results presented in Tables 4.5 and 4.6, the signal differencing imposed loading 

algorithm produces superior attitude estimation results as compared to the imposed loading 

algorithm reliant on the body angular rate terms measured by the rate gyroscopes.  While one of 

the main advantages of the signal differencing method is the drastic improvement in attitude 

estimation accuracy, another considerable advantage of the signal differencing method is the 

non-reliance of the method on the body angular rate terms and solely on the accelerometer 

signals produced by the two-dimensional accelerometer array. 
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4.3 Extended Kalman Filter Bias Estimation  
 

The extended Kalman filter algorithm described previously in Section 2.2.3 was implemented 

with the imposed loading algorithm derived in Section 4.2.2.  From the results obtained in 

Section 4.2.2, the signal differencing imposed loading method was utilized in conjunction with 

the extended Kalman filter attitude and bias estimation algorithm due to the accuracy of the 

process to produce accurate and reliable estimations of the vehicle’s attitude despite the presence 

of severe environmental conditions.  

 

In each phase of the feasibility study conducted, the extended Kalman filter was implemented for 

estimation of the rate gyro bias and determination of the vehicle’s attitude according to Section 

2.2.3 over a 10 second time interval.  The sampling time of the extended Kalman filter was set to 

0.01 seconds with the attitude estimates provided by the signal differencing algorithm and 

accelerometer measurements according to Section 4.2.2.  The process noise and measurement 

noise standard deviations are listed in Table 4.7.  The rate gyro variance was set to 0.15 

(deg/sec)
2
, yielding a standard deviation, σ, equal to 0.3873 degrees per second.  The extended 

Kalman filter was used to estimate the rate gyro bias in real-time utilizing the attitude estimates 

produced by the two-dimensional accelerometer array. 

 

To allow for proper convergence of the covariance matrix within the ±1σ and ±3σ bounds, the 

extended Kalman filter was implemented with turbulent and non-turbulent bias process noise and 

gyro process noise variances.  The initial state estimates implemented are those discussed 

previously in Section 2.2.4, while the initial state covariance matrix was given diagonal elements 

as described in Table 4.7 to ensure proper convergence of the extended Kalman filter’s 

covariance matrix.  The bias process noise variance was implemented with the same value in 

both the turbulent and non-turbulent operating environments because the values are independent 

of the operating environment unlike the accelerometer and rate gyro measurements.  Feasibility 

simulations were conducted utilizing the EKF parameter values given in Table 4.7 for each phase 

of the study conducted.  The results from each simulation study conducted are presented in the 

following sections.   

Extended Kalman Filter Parameters Values 

Parameter Value 

0

aP  91 10×  

0

bP  41 10−×  

0P  
0 0 0 0 0 0[ ]
a a a b b b

Diag P P P P P P  

3/ 2( / sec )u radσ  
Non-Turbulent 61 10−×  

Turbulent 51 10−×  

1/ 2( / sec )v radσ  
Non-Turbulent 21 10−×  

Turbulent 21 10−×  

(deg/ sec)β  0.2  

(deg/ sec/ )hourΓ  0.05  

Table 4.7:  EKF Parameter Values 
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4.3.1 Phase I Study – Longitudinal Aircraft Maneuver  
 

Phase I – Longitudinal Maneuver: $o Turbulence 
 

The extended Kalman filter derived previously in Section 2.2.3 with the parameter values given 

in Table 4.7 was implemented as an observer to the nonlinear aircraft simulation model to 

improve upon the attitude and rate gyro bias estimation online.  A comparison of the attitude 

determined by the dual-arc accelerometer array algorithm developed in Section 4.2.1 with the 

observer estimates utilizing the EKF algorithm are shown in Figures 4.34 through 4.37 where 

Table 4.8 presents a summary of maximum and mean attitude and rate gyro bias estimation 

errors.  In this phase of the analysis, no turbulence was injected into the simulation model. 

 
Figure 4.34:  Nonlinear Pitch Attitude Tracking Results – Phase I No Turbulence 

 
Figure 4.35:  Nonlinear Roll Attitude Tracking Results – Phase I No Turbulence 
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Figure 4.36:  Nonlinear Pitch Rate Bias Estimation Results – Phase I No Turbulence 

 
Figure 4.37:  Nonlinear Roll Rate Bias Estimation Results – Phase I No Turbulence 
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Phase I Maximum and Mean Error Results $o Turbulence 

Rate Gyro 

Bias (deg/sec) 

Rate Gyro 

Slope 

(deg/sec/hr) 

Phase I – Longitudinal Maneuver with $o Turbulence 

0.2 0.05 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.20607   0.05015   0.10369   0.03305 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.01315   0.00332   0.10000   0.01840 

Table 4.8:  Maximum and Mean Attitude and Bias Estimation Results – Phase I No Turbulence 

 

From the simulation performed, the attitude estimates for both the longitudinal and transverse 

attitude of the vehicle stay within a ±0.250 degrees error, while Figures 4.36 and 4.37 show a 

maximum bias error of ±0.125 degrees per second as displayed and summarized in Table 4.8. 

 

Additionally, plots of the pitch and roll rate bias estimation errors are provided for an assessment 

of the ±1σ and ±3σ bounds on the rate gyro.  The rate gyro variance for the study conducted was 

set to 0.15 (degrees/second)
2
.  Taking the square root of this value gives a standard deviation, σ, 

of 0.3873 degrees/second.  Figures 4.38 demonstrate how the extended Kalman filter provides 

accurate and well behaved pitch and roll bias estimation errors bounded by the rate gyro signal.   

 

 
Figure 4.38:  Nonlinear EKF Bias Estimation Error with Bounds – Phase I No Turbulence 
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The maximum bias error is acceptable due to the error remaining in the ±1σ and ±3σ bounds of ± 

0.3873 degrees per second and ± 1.1619 degrees per second imposed from the rate gyro noise 

variance as displayed in Figure 4.38.  Staying within these statistical bounds is essential because 

99.7% of a normally distributed value lies within the ±3σ bounds and 68.3% within the ±1σ 

bounds [41].  Therefore, the extended Kalman filter rate gyro bias and attitude estimation 

algorithm implemented in Phase I of this study with no turbulence injections proves to produce 

accurate and reliable attitude tracking results and rate gyro bias estimations in real-time. 

 

The simulation plant model utilized in this feasibility study was nonlinear; therefore the EKF 

parameters were checked to ensure proper filter operation and convergence.  The check for 

correct filter operation is conducted by comparing the attitude tracking and rate gyro bias 

estimation errors against the ±1σ and ±3σ values taken from the diagonal elements of the 

extended Kalman filters covariance matrix, P.  Figures 4.39 and 4.40 demonstrate a properly 

operating extended Kalman filter due to the attitude and bias estimation errors versus variance 

operating within the ±1σ and ±3σ bounds established by the covariance matrix of the EKF. 

 
Figure 4.39:  Nonlinear Attitude Error Covariance Check – Phase I No Turbulence 
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Figure 4.40:  Nonlinear Bias Error Covariance Check – Phase I No Turbulence 
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Phase I – Longitudinal Maneuver: Turbulence 
 

A comparison of the attitude determined by the dual-arc accelerometer array algorithm 

developed in Section 4.2.1 with the observer estimates utilizing the EKF algorithm are shown in 

Figures 4.41 through 4.44 where Table 4.9 presents a summary of maximum and mean attitude 

and rate gyro bias estimation errors.  In this phase of the analysis, turbulence was injected into 

the simulation model through the use of the Dryden wind and turbulence model discussed 

previously in Section 3.3 where the maximum turbulence input to the simulation model 

approaches approximately 60 feet per second.  The injection of such severe turbulence and 

vibrational effects is utilized to display the robustness of the algorithm developed and 

implemented to produce accurate and reliable attitude and rate gyro bias estimates while 

operating in harsh environments. 

 
Figure 4.41:  Nonlinear Pitch Attitude Tracking Results – Phase I with Turbulence 

 
Figure 4.42:  Nonlinear Roll Attitude Tracking Results – Phase I with Turbulence 
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Figure 4.43:  Nonlinear Pitch Rate Bias Estimation Results – Phase I with Turbulence 

 
Figure 4.44:  Nonlinear Roll Rate Bias Estimation Results – Phase I with Turbulence 
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Phase I Maximum and Mean Error Results with Turbulence 

Rate Gyro 

Bias (deg/sec) 

Rate Gyro 

Slope 

(deg/sec/hr) 

Phase I – Longitudinal Maneuver with Turbulence 

0.2 0.05 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.20478   0.05422   0.12495   0.03271 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.23970   0.09496   0.58871   0.13752 

Table 4.9:  Maximum and Mean Attitude and Bias Estimation Results – Phase I with Turbulence 

 

From the simulation performed, the attitude estimates for both the longitudinal and transverse 

attitude of the vehicle stay within a ±0.250 degrees error while Figure 4.43 and 4.44 shows a 

maximum bias error of ±0.600 degrees per second as displayed and summarized in Table 4.9.  

Staying within these statistical bounds is once again essential because 99.7% of a normally 

distributed value lies within the ±3σ bounds and 68.3% within the ±1σ bounds [41].  Therefore, 

the extended Kalman filter rate gyro bias and attitude estimation algorithm implemented in Phase 

I of this study with severe turbulence injections proves to provide accurate and reliable attitude 

tracking results and rate gyro bias estimations in real-time. 

 

Additionally, plots of the pitch and roll rate bias estimation errors are provided for an assessment 

of the ±1σ and ±3σ bounds on the rate gyro. Figures 4.45 demonstrate how the extended Kalman 

filter provides accurate and well behaved pitch and roll bias estimation errors bounded by the 

rate gyro signal.   

 
Figure 4.45:  Nonlinear EKF Bias Estimation Error with Bounds – Phase I with Turbulence 
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The maximum bias error is acceptable due to the error remaining in the ±1σ and ±3σ bounds of ± 

0.3873 degrees per second and ± 1.1619 degrees per second imposed from the rate gyro noise 

variance as displayed in Figure 4.45. 

 

The check for correct filter operation is once again conducted by comparing the attitude tracking 

and rate gyro bias estimation errors against the ±1σ and ±3σ values taken from the diagonal 

elements of the extended Kalman filters covariance matrix, P.  Figures 4.46 and 4.47 

demonstrate a properly operating extended Kalman filter due to the attitude and bias estimation 

errors versus variance operating within the ±1σ and ±3σ bounds established by the covariance 

matrix of the EKF. 

 
Figure 4.46:  Nonlinear Attitude Error Covariance Check – Phase I with Turbulence 

 
Figure 4.47:  Nonlinear Bias Error Covariance Check – Phase I with Turbulence 
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Utilizing the EKF parameters given previously in Table 4.7, the rate gyro bias magnitude was 

varied between values of 0.2 and 10 degrees/second while the rate gyro bias slope was varied 

between values of 0 and 1 degree/second/hour in order examine and assess the sensitivity of the 

extended Kalman filter implemented to changes in rate gyro bias magnitude and slope.  The 

results of the Phase I assessment are summarized in Tables 4.10 through 4.13 given below. 

 

Impact of Changing Rate Gyro Bias Magnitude with a Constant Slope 

Phase I:  Longitudinal Maneuver $o Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.20607 0.05018 0.10369 0.03308 

1 0.20866 0.05112 0.90000 0.22516 

3 0.21513 0.05413 2.90000 0.70535 

5 0.22160 0.05727 4.90000 1.18550 

10 0.23778 0.06548 9.90000 2.38600 

0.5 

0.2 0.20607 0.05018 0.10369 0.03279 

1 0.20866 0.05111 0.90000 0.22486 

3 0.21513 0.05413 2.90000 0.70505 

5 0.22161 0.05727 4.90000 1.18520 

10 0.23778 0.06548 9.90000 2.38570 

1.0 

0.2 0.20607 0.05018 0.10369 0.03249 

1 0.20866 0.05111 0.90000 0.22457 

3 0.21514 0.05413 2.90000 0.70476 

5 0.22161 0.05727 4.90000 1.18500 

10 0.23778 0.06548 9.90000 2.38540 

Phase I:  Longitudinal Maneuver with Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.20478 0.05422 0.12495 0.03272 

1 0.20514 0.05429 0.90000 0.06738 

3 0.20604 0.05463 2.90000 0.15968 

5 0.20694 0.05506 4.90000 0.25292 

10 0.20919 0.05635 9.90000 0.48601 

0.5 

0.2 0.20478 0.05422 0.12495 0.03261 

1 0.20514 0.05429 0.90000 0.06713 

3 0.20604 0.05463 2.90000 0.15934 

5 0.20694 0.05505 4.90000 0.25258 

10 0.20919 0.05635 9.90000 0.48567 

1.0 

0.2 0.20478 0.05422 0.12495 0.03250 

1 0.20514 0.05429 0.90000 0.06689 

3 0.20604 0.05463 2.90000 0.15900 

5 0.20694 0.05505 4.90000 0.25224 

10 0.20919 0.05635 9.90000 0.48533 

Table 4.10:  Sensitivity of Extended Kalman Filter to Changes in Rate Gyro Bias Magnitude 

with Constant Rate Gyro Slope – Phase I Pitch Attitude and Bias Summary 
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Impact of Changing Rate Gyro Bias Magnitude with a Constant Slope 

Phase I:  Longitudinal Maneuver $o Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2   0.01315   0.00332 0.10000   0.01843 

1   0.01529   0.00393 0.90000   0.21051 

3   0.03414   0.00740 2.90000   0.69070 

5   0.05354   0.01182 4.90000   1.17090 

10   0.10360   0.02372 9.90000   2.37140 

0.5 

0.2   0.01315   0.00332 0.10000   0.01814 

1   0.01529   0.00393 0.90000   0.21021 

3   0.03414   0.00740 2.90000   0.69040 

5   0.05354   0.01182 4.90000   1.17060 

10   0.10360   0.02372 9.90000   2.37110 

1.0 

0.2   0.01315   0.00332 0.10000   0.01784 

1   0.01529   0.00393 0.90000   0.20992 

3   0.03414   0.00740 2.90000   0.69011 

5   0.05354   0.01182 4.90000   1.17030 

10   0.10360   0.02372 9.90000   2.37080 

Phase I:  Longitudinal Maneuver with Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 
� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.23970 0.09496 0.58876 0.13752 

1 0.23943 0.09510 0.90000 0.15312 

3 0.23874 0.09546 2.90000 0.22183 

5 0.23805 0.09583 4.90000 0.29762 

10 0.23633 0.09677 9.90000 0.51140 

0.5 

0.2 0.23970 0.09496 0.58831 0.13752 

1 0.23943 0.09510 0.90000 0.15309 

3 0.23874 0.09546 2.90000 0.22176 

5 0.23805 0.09583 4.90000 0.29750 

10 0.23633 0.09677 9.90000 0.51117 

1.0 

0.2 0.23970 0.09496 0.58786 0.13752 

1 0.23943 0.09510 0.90000 0.15306 

3 0.23874 0.09546 2.90000 0.22168 

5 0.23805 0.09583 4.90000 0.29737 

10 0.23633 0.09677 9.90000 0.51093 

Table 4.11:  Sensitivity of Extended Kalman Filter to Changes in Rate Gyro Bias Magnitude 

with Constant Rate Gyro Slope – Phase I Roll Attitude and Bias Summary 
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Tables 4.10 and 4.11 assessed the sensitivity of the extended Kalman filter to changes in the rate 

gyro bias magnitude while maintaining a constant rate gyro bias slope. Tables 4.12 and 4.13 

display a summary of attitude determination and bias estimation results for sensitivity of the 

extended Kalman filter to changes in the rate gyro bias magnitude while maintaining a constant 

rate gyro bias slope for Phase I of the feasibility study conducted. 

 

Impact of Changing Rate Gyro Bias Slope with Constant Bias Magnitude 

Phase I:  Longitudinal Maneuver $o Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.20607 0.05018 0.10369   0.03308 

0.5 0.20607 0.05018 0.10369   0.03279 

1.0 0.20607 0.05018 0.10369   0.03249 

1 

0.0 0.20866 0.05111 0.90000   0.22516 

0.5 0.20866 0.05111 0.90000   0.22486 

1.0 0.20866 0.05111 0.90000   0.22457 

3 

0.0 0.21513 0.05413 2.90000   0.70535 

0.5 0.21513 0.05413 2.90000   0.70505 

1.0 0.21514 0.05413 2.90000   0.70476 

5 

0.0 0.22160 0.05727 4.90000   1.18550 

0.5 0.22161 0.05727 4.90000   1.18520 

1.0 0.22161 0.05727 4.90000   1.18500 

10 

0.0 0.23778 0.06548 9.90000   2.38600 

0.5 0.23778 0.06548 9.90000   2.38570 

1.0 0.23778 0.06548 9.90000   2.38540 

Phase I:  Longitudinal Maneuver with Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.20478 0.05422 0.12495 0.03272 

0.5 0.20478 0.05422 0.12495 0.03261 

1.0 0.20478 0.05422 0.12495 0.03250 

1 

0.0 0.20514 0.05429 0.90000 0.06738 

0.5 0.20514 0.05429 0.90000 0.06713 

1.0 0.20514 0.05429 0.90000 0.06689 

3 

0.0 0.20604 0.05463 2.90000 0.15968 

0.5 0.20604 0.05463 2.90000 0.15934 

1.0 0.20604 0.05463 2.90000 0.15900 

5 

0.0 0.20694 0.05506 4.90000 0.25292 

0.5 0.20694 0.05505 4.90000 0.25258 

1.0 0.20694 0.05505 4.90000 0.25224 

10 

0.0 0.20919 0.05635 9.90000 0.48601 

0.5 0.20919 0.05635 9.90000 0.48567 

1.0 0.20919 0.05635 9.90000 0.48533 

Table 4.12: Sensitivity of Extended Kalman Filter to Changes in Rate Gyro Bias Slope with 

Constant Rate Gyro Bias Magnitude – Phase I Pitch Attitude and Bias Summary 
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Impact of Changing Rate Gyro Bias Slope with Constant Bias Magnitude 

Phase I:  Longitudinal Maneuver $o Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.01315 0.00332 0.10000 0.01843 

0.5 0.01315 0.00332 0.10000 0.01814 

1.0 0.01315 0.00332 0.10000 0.01784 

1 

0.0 0.01529 0.00393 0.90000 0.21051 

0.5 0.01529 0.00393 0.90000 0.21021 

1.0 0.01529 0.00393 0.90000 0.20992 

3 

0.0 0.03414 0.00740 2.90000 0.69070 

0.5 0.03414 0.00740 2.90000 0.69040 

1.0 0.03414 0.00741 2.90000 0.69011 

5 

0.0 0.05354 0.00118 4.90000 1.17090 

0.5 0.05354 0.01181 4.90000 1.17060 

1.0 0.05354 0.01182 4.90000 1.17030 

10 

0.0 0.10360 0.02372 9.90000 2.37140 

0.5 0.10360 0.02372 9.90000 2.37110 

1.0 0.10360 0.02373 9.90000 2.37080 

Phase I:  Longitudinal Maneuver with Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.23970 0.09496 0.58876 0.13752 

0.5 0.23970 0.09496 0.58831 0.13752 

1.0 0.23970 0.09496 0.58786 0.13752 

1 

0.0 0.23943 0.09510 0.90000 0.15312 

0.5 0.23943 0.09510 0.90000 0.15309 

1.0 0.23942 0.09510 0.90000 0.15306 

3 

0.0 0.23874 0.09546 2.90000 0.22183 

0.5 0.23874 0.09546 2.90000 0.22176 

1.0 0.23874 0.09546 2.90000 0.22168 

5 

0.0 0.23805 0.09583 4.90000 0.29762 

0.5 0.23805 0.09583 4.90000 0.29750 

1.0 0.23805 0.09583 4.90000 0.29737 

10 

0.0 0.23633 0.09677 9.90000 0.51140 

0.5 0.23633 0.09677 9.90000 0.51117 

1.0 0.23633 0.09677 9.90000 0.51093 

Table 4.13: Sensitivity of Extended Kalman Filter to Changes in Rate Gyro Bias Slope with 

Constant Rate Gyro Bias Magnitude – Phase I Roll Attitude and Bias Summary 
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The results of the Phase I study conducted show bias magnitude has little to negligible effect on 

the attitude estimation of the EKF and noticeable effect on the bias estimate as the bias 

magnitude imposed increases.  From the study performed, the results show that varying the bias 

magnitude has more effect on attitude and bias estimation results as compared to varying the rate 

gyro bias slope.  For the Phase I simulation study, the bias estimate is reasonable and the attitude 

estimate does not drift outside of the acceptable range of ±1 degree based on instrumentation 

from [49].  The inaccuracies of the algorithm method implemented result from accelerometer and 

rate gyro measurement noises and severe turbulence effects causing a highly dynamical 

operating environment.   

 

4.3.2 Phase II Study – Transverse Aircraft Maneuver  
 

Phase II – Transverse Maneuver: $o Turbulence 
 

Phase II of the feasibility study focused on the implementation of the extended Kalman filter 

derived previously in Section 2.2.3 implemented as an observer to the nonlinear aircraft 

simulation model to improve upon the attitude and rate gyro bias estimation for a transverse or 

roll maneuver of the nonlinear aircraft simulation plant model.  A comparison of the attitude 

determined by the dual-arc accelerometer array algorithm developed in Section 4.2.1 with the 

observer estimates utilizing the EKF algorithm are shown in Figures 4.48 through 4.51 where 

Table 4.14 presents a summary of maximum and mean attitude and rate gyro bias estimation 

errors.  In this phase of the analysis, no turbulence was injected into the simulation model. 

 
Figure 4.48:  Nonlinear Pitch Attitude Tracking Results – Phase II No Turbulence 
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Figure 4.49:  Nonlinear Roll Attitude Tracking Results – Phase II No Turbulence 

 

 
Figure 4.50:  Nonlinear Pitch Rate Bias Estimation Results – Phase II No Turbulence 
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Figure 4.51:  Nonlinear Roll Rate Bias Estimation Results – Phase II No Turbulence 

 

Phase II Maximum and Mean Error Results $o Turbulence 

Rate Gyro 

Bias (deg/sec) 

Rate Gyro 

Slope 

(deg/sec/hr) 

Phase II – Transverse Maneuver with $o Turbulence 

0.2 0.05 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.02046   0.00392   1.78140   0.34301 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.40759   0.13165   0.11779   0.05733 

Table 4.14:  Maximum and Mean Attitude and Bias Estimation Results – Phase II No Turbulence 

 

From the simulation performed, the attitude estimates for both the longitudinal and transverse 

attitude of the vehicle stay within a ±0.410 degrees error, while Figures 4.50 and 4.51 show a 

maximum bias error of ±0.1.800 degrees per second as displayed and summarized in Table 4.14. 

 

As was previously done in Phase I of the study, plots of the pitch and roll rate bias estimation 

errors are provided for an assessment of the ±1σ and ±3σ bounds on the rate gyro.  The rate gyro 

variance for the Phase II of the study were kept consistent and set to 0.15 (degrees/second)
2
.  

Figure 4.52 demonstrates how the extended Kalman filter provides accurate and well behaved 

pitch and roll bias estimation errors bounded by the rate gyro signal.   
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Figure 4.52:  Nonlinear EKF Bias Estimation Error with Bounds – Phase II No Turbulence 

 

The maximum bias error is acceptable due to the error remaining in the ±1σ and ±3σ bounds of ± 

0.3873 degrees per second and ± 1.1619 degrees per second imposed from the rate gyro noise 

variance as displayed in Figure 4.52.  While the maximum bias error lies outside the ±3σ bounds, 

the error is very minimal and as the simulation time increases, shows excellent convergence 

within the imposed rate gyro signal bounds.  Staying within these statistical bounds is one again 

essential because 99.7% of a normally distributed value lies within the ±3σ bounds and 68.3% 

within the ±1σ bounds [41].  Therefore, the extended Kalman filter rate gyro bias and attitude 

estimation algorithm implemented in Phase II of this study with no turbulence injections proves 

to provide accurate and reliable attitude tracking results and rate gyro bias estimations in real-

time. 

 

The extended Kalman filter parameters were checked to ensure proper filter operation for the 

transverse maneuver imposed.  The check for correct filter operation is once again conducted by 

comparing the attitude tracking and rate gyro bias estimation errors against the ±1σ and ±3σ 

values taken from the diagonal elements of the extended Kalman filters covariance matrix, P.  

Figures 4.53 and 4.54 demonstrate a properly operating extended Kalman filter due to the 

attitude and bias estimation errors versus variance operating within the ±1σ and ±3σ bounds 

established by the covariance matrix of the EKF. 
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Figure 4.53:  Nonlinear Attitude Error Covariance Check – Phase II No Turbulence 

 
Figure 4.54:  Nonlinear Bias Error Covariance Check – Phase II No Turbulence 
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Phase II – Transverse Maneuver: Turbulence 
 

A comparison of the attitude determined by the dual-arc accelerometer array algorithm 

developed in Section 4.2.1 with the observer estimates is once again assessed utilizing the EKF 

algorithm and are shown in Figures 4.55 through 4.58 where Table 4.15 presents a summary of 

maximum and mean attitude and rate gyro bias estimation errors.  In this phase of the analysis, 

turbulence was injected into the simulation model through the use of the Dryden wind and 

turbulence model from Section 3.3 where the maximum turbulence input to the simulation model 

approaches approximately 60 feet per second.  The injection of such severe turbulence and 

vibrational effects is utilized in this Phase II portion of the feasibility study to display the 

robustness of the algorithm developed and implemented to produce accurate and reliable attitude 

and rate gyro bias estimates while operating in harsh environments and multiple dimensions. 

 
Figure 4.55:  Nonlinear Pitch Attitude Tracking Results – Phase II with Turbulence 

 
Figure 4.56:  Nonlinear Roll Attitude Tracking Results – Phase II with Turbulence 
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Figure 4.57:  Nonlinear Pitch Rate Bias Estimation Results – Phase II with Turbulence 

 
Figure 4.58:  Nonlinear Roll Rate Bias Estimation Results – Phase II with Turbulence 
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Phase II Maximum and Mean Error Results with Turbulence 

Rate Gyro 

Bias (deg/sec) 

Rate Gyro 

Slope 

(deg/sec/hr) 

Phase II – Transverse Maneuver with Turbulence 

0.2 0.05 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.05083   0.01659   2.19600   0.47764 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.46355   0.19930   0.17773   0.05399 

Table 4.15:  Maximum and Mean Attitude and Bias Estimation Results –  

Phase II with Turbulence 

 

From the Phase II simulations performed with turbulence injections, the attitude estimates for 

both the longitudinal and transverse maximum attitude of the vehicle stay within a ±0.500 

degrees error, while Figures 4.57 and 4.58 show a maximum bias error of ±0.2.200 degrees per 

second as displayed and summarized in Table 4.15. 

 

Additionally, plots of the pitch and roll rate bias estimation errors are provided for an assessment 

of the ±1σ and ±3σ bounds on the rate gyro. Figures 4.59 demonstrate how the extended Kalman 

filter provides accurate and well behaved pitch and roll bias estimation errors bounded by the 

rate gyro signal.  While the maximum bias error lies outside the ±3σ bounds, the error is very 

minimal and as the simulation time increases, shows excellent convergence within the imposed 

rate gyro signal bounds at a simulation time above approximately five seconds. 

 
Figure 4.59:  Nonlinear EKF Bias Estimation Error with Bounds – Phase II with Turbulence 
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The maximum bias error is acceptable due to the error remaining in the ±1σ and ±3σ bounds of ± 

0.3873 degrees per second and ± 1.1619 degrees per second imposed from the rate gyro noise 

variance as displayed in Figure 4.59.  Staying within these statistical bounds is one again 

essential because 99.7% of a normally distributed value lies within the ±3σ bounds and 68.3% 

within the ±1σ bounds [41].  Therefore, the extended Kalman filter rate gyro bias estimation and 

attitude determination algorithm implemented in Phase II of this study with severe turbulence 

injections proves to provide accurate and reliable attitude tracking results and rate gyro bias 

estimations in real-time. 

 

The check for correct filter operation in this Phase II, turbulent, portion of the feasibility study is 

once again conducted by comparing the attitude tracking and rate gyro bias estimation errors 

against the ±1σ and ±3σ values taken from the diagonal elements of the extended Kalman filters 

covariance matrix, P.  Figures 4.60 and 4.61 demonstrate a properly operating extended Kalman 

filter due to the attitude and bias estimation errors versus variance operating within the ±1σ and 

±3σ bounds established by the covariance matrix of the EKF. 

 
Figure 4.60:  Nonlinear Attitude Error Covariance Check – Phase II with Turbulence 
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Figure 4.61:  Nonlinear Bias Error Covariance Check – Phase II with Turbulence 

 

Utilizing the EKF parameters given previously in Table 4.7, the rate gyro bias magnitude was 

varied between values of 0.2 and 10 degrees/second while the rate gyro bias slope was varied 

between values of 0 and 1 degree/second/hour in order examine and assess the sensitivity of the 

extended Kalman filter implemented to changes in rate gyro bias magnitude and slope.  The 

results of the Phase II assessment are summarized in Tables 4.16 through 4.19 given below. 
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Impact of Changing Rate Gyro Bias Magnitude with a Constant Slope 

Phase II:  Transverse Maneuver $o Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.02046 0.00392 1.78140 0.34302 

1 0.01875 0.00433 1.59810 0.40333 

3 0.03473 0.00715 2.90000 0.64570 

5 0.05359 0.01108 4.90000 0.96253 

10 0.10270 0.02274 9.90000 2.03690 

0.5 

0.2 0.02046 0.00392 1.78160 0.34293 

1 0.01875 0.00433 1.59830 0.40316 

3 0.03473 0.00716 2.90000 0.64550 

5 0.05359 0.01108 4.90000 0.96229 

10 0.10270 0.02275 9.90000 2.03660 

1.0 

0.2 0.02046 0.00392 1.78170 0.34285 

1 0.01875 0.00433 1.59850 0.40299 

3 0.03473 0.00716 2.90000 0.64529 

5 0.05359 0.01109 4.90000 0.96206 

10 0.10270 0.02275 9.90000 2.03630 

Phase II:  Transverse Maneuver with Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.05083 0.01659 2.19600 0.47762 

1 0.05072 0.01654 2.17330 0.48961 

3 0.05045 0.01655 2.90000 0.52405 

5 0.05277 0.01667 4.90000 0.56397 

10 0.10270 0.01726 9.90000 0.68302 

0.5 

0.2 0.05082 0.01659 2.19620 0.47778 

1 0.05071 0.01654 2.17350 0.48975 

3 0.05044 0.01655 2.90000 0.52414 

5 0.05277 0.01667 4.90000 0.56399 

10 0.10270 0.01726 9.90000 0.68290 

1.0 

0.2 0.05082 0.01658 2.19640 0.47795 

1 0.05071 0.01654 2.17380 0.48989 

3 0.05044 0.01655 2.90000 0.52423 

5 0.05277 0.01667 4.90000 0.56402 

10 0.10270 0.01726 9.90000 0.68277 

Table 4.16:  Sensitivity of Extended Kalman Filter to Changes in Rate Gyro Bias Magnitude 

with Constant Rate Gyro Slope– Phase II Pitch Attitude and Bias Summary 
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Impact of Changing Rate Gyro Bias Magnitude with a Constant Slope 

Phase II:  Transverse Maneuver $o Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.40759 0.13165 0.11780 0.05735 

1 0.40619 0.13215 0.90000 0.24212 

3 0.40268 0.13405 2.90000 0.72231 

5 0.39917 0.13623 4.90000 1.20250 

10 0.40935 0.14258 9.90000 2.40300 

0.5 

0.2 0.40759 0.13164 0.11769 0.05711 

1 0.40618 0.13215 0.90000 0.24182 

3 0.40267 0.13405 2.90000 0.72201 

5 0.39916 0.13623 4.90000 1.20220 

10 0.40935 0.14258 9.90000 2.40270 

1.0 

0.2 0.40758 0.13164 0.11758 0.05688 

1 0.40618 0.13215 0.90000 0.24153 

3 0.40267 0.13405 2.90000 0.72172 

5 0.39916 0.13623 4.90000 1.20190 

10 0.40935 0.14258 9.90000 2.40240 

Phase II:  Transverse Maneuver with Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 
� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.46355 0.19930 0.17777 0.05402 

1 0.46388 0.19948 0.90000 0.07995 

3 0.46470 0.19992 2.90000 0.17066 

5 0.46552 0.20038 4.90000 0.26390 

10 0.46757 0.20153 9.90000 0.49698 

0.5 

0.2 0.46355 0.19930 0.17732 0.05375 

1 0.46388 0.19948 0.90000 0.07966 

3 0.46470 0.19992 2.90000 0.17032 

5 0.46552 0.20038 4.90000 0.26356 

10 0.46757 0.20153 9.90000 0.49664 

1.0 

0.2 0.46355 0.19930 0.17688 0.05349 

1 0.46388 0.19948 0.90000 0.07936 

3 0.46470 0.19992 2.90000 0.16998 

5 0.46552 0.20038 4.90000 0.26322 

10 0.46757 0.20153 9.90000 0.49630 

Table 4.17:  Sensitivity of Extended Kalman Filter to Changes in Rate Gyro Bias Magnitude 

with Constant Rate Gyro Slope – Phase II Roll Attitude and Bias Summary 

 

Tables 4.16 and 4.17 assessed the sensitivity of the extended Kalman filter to changes in the rate 

gyro bias magnitude while maintaining a constant rate gyro bias slope. Tables 4.18 and 4.19 

display a summary of attitude determination and bias estimation results for sensitivity of the 

extended Kalman filter to changes in the rate gyro bias slope while maintaining a constant rate 

gyro bias magnitude for Phase II of the feasibility study conducted. 
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Impact of Changing Rate Gyro Bias Slope with Constant Bias Magnitude 

Phase II:  Transverse Maneuver $o Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.02046 0.00392 1.78140 0.34302 

0.5 0.02046 0.00392 1.78160 0.34293 

1.0 0.02045 0.00392 1.78170 0.34285 

1 

0.0 0.01875 0.00433 1.59810 0.40333 

0.5 0.01875 0.00433 1.59830 0.40316 

1.0 0.01874 0.00433 1.59850 0.40299 

3 

0.0 0.03473 0.00716 2.90000 0.64570 

0.5 0.03473 0.00716 2.90000 0.64550 

1.0 0.03473 0.00716 2.90000 0.64529 

5 

0.0 0.05359 0.01108 4.90000 0.96253 

0.5 0.05359 0.01108 4.90000 0.96229 

1.0 0.05359 0.01109 4.90000 0.96206 

10 

0.0 0.10270 0.02274 9.90000 2.03690 

0.5 0.10270 0.02275 9.90000 2.03660 

1.0 0.10270 0.02275 9.90000 2.03630 

Phase II:  Transverse Maneuver with Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.05083 0.01659 2.19600 0.47762 

0.5 0.05082 0.01659 2.19620 0.47778 

1.0 0.05082 0.01658 2.19640 0.47795 

1 

0.0 0.05072 0.01654 2.17330 0.48961 

0.5 0.05071 0.01654 2.17350 0.48975 

1.0 0.05071 0.01654 2.17380 0.48989 

3 

0.0 0.05045 0.01655 2.90000 0.52405 

0.5 0.05044 0.01655 2.90000 0.52414 

1.0 0.05044 0.01655 2.90000 0.52423 

5 

0.0 0.05277 0.01667 4.90000 0.56397 

0.5 0.05277 0.01667 4.90000 0.56399 

1.0 0.05277 0.01667 4.90000 0.56402 

10 

0.0 0.10270 0.01726 9.90000 0.68302 

0.5 0.10270 0.01726 9.90000 0.68290 

1.0 0.10270 0.01726 9.90000 0.68277 

Table 4.18: Sensitivity of Extended Kalman Filter to Change in Rate Gyro Bias Slope with 

Constant Rate Gyro Bias Magnitude – Phase II Pitch Attitude and Bias Summary 
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Impact of Changing Rate Gyro Bias Slope with Constant Bias Magnitude 

Phase II:  Transverse Maneuver $o Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.40759 0.13165 0.11780 0.05735 

0.5 0.40759 0.13164 0.11769 0.05711 

1.0 0.40758 0.13164 0.11758 0.05688 

1 

0.0 0.40619 0.13215 0.90000 0.24212 

0.5 0.40618 0.13215 0.90000 0.24182 

1.0 0.40618 0.13215 0.90000 0.24153 

3 

0.0 0.40268 0.13405 2.90000 0.72231 

0.5 0.40267 0.13405 2.90000 0.72201 

1.0 0.40267 0.13405 2.90000 0.72172 

5 

0.0 0.39917 0.13623 4.90000 1.20250 

0.5 0.39916 0.13623 4.90000 1.20220 

1.0 0.39916 0.13623 4.90000 1.20190 

10 

0.0 0.40935 0.14258 9.90000 2.40300 

0.5 0.40935 0.14258 9.90000 2.40270 

1.0 0.40935 0.14258 9.90000 2.40240 

Phase II:  Transverse Maneuver with Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.46355 0.19930 0.17777 0.05402 

0.5 0.46355 0.19930 0.17732 0.05375 

1.0 0.46355 0.19930 0.17688 0.05349 

1 

0.0 0.46388 0.19948 0.90000 0.07995 

0.5 0.46388 0.19948 0.90000 0.07966 

1.0 0.46388 0.19948 0.90000 0.07936 

3 

0.0 0.46470 0.19992 2.90000 0.17066 

0.5 0.46470 0.19992 2.90000 0.17032 

1.0 0.46470 0.19992 2.90000 0.16998 

5 

0.0 0.46552 0.20038 4.90000 0.26390 

0.5 0.46552 0.20038 4.90000 0.26356 

1.0 0.46552 0.20038 4.90000 0.26322 

10 

0.0 0.46757 0.20153 9.90000 0.49698 

0.5 0.46757 0.20153 9.90000 0.49664 

1.0 0.46757 0.20153 9.90000 0.49630 

Table 4.19: Sensitivity of Extended Kalman Filter to Change in Rate Gyro Bias Slope with 

Constant Rate Gyro Bias Magnitude – Phase II Roll Attitude and Bias Summary 
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The results of the Phase II study conducted show bias magnitude has little to negligible effect on 

the attitude estimation of the EKF and noticeable effect on the bias estimate as the bias 

magnitude imposed increases just as in the previous phase of the study conducted.  From the 

simulations performed, the results show that varying the bias magnitude has more effect on 

attitude and bias estimation results as compared to varying the rate gyro bias slope.  For the 

Phase II simulation study, the bias estimate is reasonable and the attitude estimate does not drift 

outside of the acceptable range of ±1 degrees based on instrumentation from [49].  The 

inaccuracies of the algorithm method implemented are once again a result from accelerometer 

and rate gyro measurement noises and severe turbulence effects causing a highly dynamical 

operating environment.   

 

4.3.3 Phase III Study – Longitudinal/Transverse Aircraft Maneuver  
 

Phase III – Longitudinal/Transverse Maneuver: $o Turbulence 
 

Phase III of this feasibility study focused on the implementation of the extended Kalman filter 

derived previously in Section 2.2.3 implemented as an observer to the nonlinear aircraft 

simulation model to improve upon the attitude and rate gyro bias estimation for a combined 

longitudinal/transverse maneuver of the nonlinear aircraft simulation plant model.  A comparison 

of the attitude determined by the dual-arc accelerometer array algorithm developed in Section 

4.2.1 with the observer estimates utilizing the EKF algorithm are shown in Figures 4.62 through 

4.65 where Table 4.20 presents a summary of maximum and mean attitude and rate gyro bias 

estimation errors.  In this Phase III portion of the analysis, no turbulence was injected into the 

simulation model. 

 
Figure 4.62:  Nonlinear Pitch Attitude Tracking Results – Phase III No Turbulence 
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Figure 4.63:  Nonlinear Roll Attitude Tracking Results – Phase III No Turbulence 

 

 
Figure 4.64:  Nonlinear Pitch Rate Bias Estimation Results – Phase III No Turbulence 

 

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

20

25

30

35

40

Time (s)

(d
e
g
re

e
s
)

Comparative Plot: Phi Array vs. Phi EKF Est

 

 

Array

EKF

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (s)

(d
e
g
re

e
s
)

Roll Attitude Error

 

 

Error

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Time (s)

(d
e
g
/s

e
c
)

Comparative Plot: Pitch Rate vs. Pitch Rate EKF Est

 

 

Truth

EKF

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

Time (s)

(d
e
g
/s

e
c
)

Pitch Rate Error

 

 

Error



4.3 EXTE%DED KALMA% FILTER BIAS ESTIMATIO% 126 

 

   

 
Figure 4.65:  Nonlinear Roll Rate Bias Estimation Results – Phase III No Turbulence 

 

Phase III Maximum and Mean Error Results $o Turbulence 

Rate Gyro 

Bias (deg/sec) 

Rate Gyro 

Slope 

(deg/sec/hr) 

Phase III – Longitudinal/Transverse Maneuver with $o 

Turbulence 

0.2 0.05 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.20602   0.04766   1.92040   0.47859 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.25716   0.06274   2.29640   1.20530 

Table 4.20:  Maximum and Mean Attitude and Bias Estimation Results –  

Phase III No Turbulence 

 

From the Phase III simulation performed, the attitude estimates for both the longitudinal and 

transverse maximum error of the vehicle attitude stay within a ±0.260 degree error, while Figure 

4.64 and 4.65 show a maximum bias error of ±2.300 degrees per second as displayed and 

summarized in Table 4.20. 

 

As was previously done in Phase I and Phase II of the study, plots of the pitch and roll rate bias 

estimation errors are provided for an assessment of the ±1σ and ±3σ bounds on the rate gyro.  

The rate gyro variance for this phase of the study were kept consistent and set to 0.15 

(degrees/second)
2
.  Figure 4.66 demonstrate how the extended Kalman filter provides accurate 

and well behaved pitch and roll bias estimation errors bounded by the rate gyro signal.   
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Figure 4.66:  Nonlinear EKF Bias Estimation Error with Bounds – Phase III No Turbulence 

 

The maximum bias error is acceptable due to the error remaining in the ±1σ and ±3σ bounds of ± 

0.3873 degrees per second and ± 1.1619 degrees per second imposed from the rate gyro noise 

variance as displayed in Figure 4.66.  While the maximum bias error lies outside the ±3σ bounds, 

the error is very minimal and as the simulation time increases, shows excellent convergence 

within the imposed rate gyro signal bounds.  Staying within these statistical bounds is essential 

because 99.7% of a normally distributed value lies within the ±3σ bounds and 68.3% within the 

±1σ bounds [41].  Therefore, the extended Kalman filter rate gyro bias and attitude estimation 

algorithm implemented in Phase III of this study with no turbulence injections proves to provide 

accurate and reliable attitude tracking results and rate gyro bias estimations in real-time. 

 

The extended Kalman filter parameters were checked once again in this Phase III portion of the 

feasibility study to ensure proper filter operation for the combined longitudinal/transverse 

maneuver imposed.  The check for correct filter operation again conducted by comparing the 

attitude tracking and rate gyro bias estimation errors against the ±1σ and ±3σ values taken from 

the diagonal elements of the extended Kalman filter’s covariance matrix, P.  Figures 4.67 and 

4.68 demonstrate a properly operating extended Kalman filter due to the attitude and bias 

estimation errors versus variance operating within the ±1σ and ±3σ bounds established by the 

covariance matrix of the EKF. While the roll rate bias error covariance verification does not fall 

within the ±3σ bounds at the end of the simulation period, if the simulation period is expanded to 

50 seconds, the roll rate bias error does converge within the ±1σ and ±3σ bounds to validate 

proper filter operation as shown in Figure 4.69. 
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Figure 4.67:  Nonlinear Attitude Error Covariance Check – Phase III No Turbulence 

 
Figure 4.68:  Nonlinear Bias Error Covariance Check – Phase III No Turbulence 
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Figure 4.69:  Nonlinear Bias Error Covariance Check – Phase III Simulation Period Expanded to 

50 seconds No Turbulence 
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Phase III – Longitudinal/Transverse Maneuver: Turbulence 
 

A comparison of the attitude determined by the dual-arc accelerometer array algorithm 

developed in Section 4.2.1 with the observer estimates is once again assessed utilizing the EKF 

algorithm and are shown in Figures 4.70 through 4.73 where Table 4.21 presents a summary of 

maximum and mean attitude and rate gyro bias estimation errors.  In this Phase III analysis, 

turbulence was injected into the simulation model through the use of the Dryden wind and 

turbulence model from Section 3.3 where the maximum turbulence input to the simulation model 

approaches approximately 60 feet per second.  The injection of such severe turbulence and 

vibrational effects is utilized in this Phase III portion of the feasibility study to display the 

robustness of the algorithm developed and implemented to produce accurate and reliable attitude 

and rate gyro bias estimates while operating in harsh environments and multiple dimensions. 

 
Figure 4.70:  Nonlinear Pitch Attitude Tracking Results – Phase III with Turbulence 

 
Figure 4.71:  Nonlinear Pitch Attitude Tracking Results – Phase III with Turbulence 
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Figure 4.72:  Nonlinear Pitch Rate Bias Estimation Results – Phase III with Turbulence 

 
Figure 4.73:  Nonlinear Roll Rate Bias Estimation Results – Phase III with Turbulence 
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Phase III Maximum and Mean Error Results with Turbulence 

Rate Gyro 

Bias (deg/sec) 

Rate Gyro 

Slope 

(deg/sec/hr) 

Phase III – Longitudinal/Transverse Maneuver with Turbulence 

0.2 0.05 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.20238   0.05023   2.7103   0.68214 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.35895   0.10839   2.7555   1.49450 

Table 4.21:  Maximum and Mean Attitude and Bias Estimation Results –  

Phase III with Turbulence 

 

From the Phase III simulation performed with turbulence injections, the attitude estimates for 

both the longitudinal and transverse maximum attitude of the vehicle stay within a ±0.360 degree 

of error, while Figures 4.72 and 4.73 show a maximum bias error of ±0.2.760 degrees per second 

as displayed and summarized in Table 4.21. 

 

Additionally, plots of the pitch and roll rate bias estimation errors are provided for an assessment 

of the ±1σ and ±3σ bounds on the rate gyro. Figure 4.74 demonstrates how the extended Kalman 

filter provides accurate and well behaved pitch and roll bias estimation errors bounded by the 

rate gyro signal.  While the maximum bias errors for both pitch and roll rate bias values lie 

outside the ±3σ bounds, the error is very minimal over the time period and as the simulation time 

increases, shows excellent convergence within the imposed rate gyro signal bounds at a 

simulation time exceeding ten seconds. 

 
Figure 4.74:  Nonlinear EKF Bias Estimation Error with Bounds – Phase III with Turbulence 
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The maximum bias error is acceptable due to the error remaining in the ±1σ and ±3σ bounds of ± 

0.3873 degrees per second and ± 1.1619 degrees per second imposed from the rate gyro noise 

variance as displayed in Figure 4.74.  Staying within these statistical bounds is essential because 

99.7% of a normally distributed value lies within the ±3σ bounds and 68.3% within the ±1σ 

bounds [41].  Therefore, the extended Kalman filter rate gyro bias estimation and attitude 

determination algorithm implemented in Phase III of this study with severe turbulence injections 

proves to provide accurate and reliable attitude tracking results and rate gyro bias estimations in 

real-time. 

 

The check for correct filter operation in this Phase III, turbulent, portion of the feasibility study is 

conducted by comparing the attitude tracking and rate gyro bias estimation errors against the ±1σ 

and ±3σ values taken from the diagonal elements of the extended Kalman filter’s covariance 

matrix, P.  Figures 4.75 and 4.76 demonstrate a properly operating extended Kalman filter due to 

the attitude and bias estimation errors versus variance operating within the ±1σ and ±3σ bounds 

established by the covariance matrix of the EKF.  While the roll rate bias error covariance 

verification does not fall within the ±3σ bounds at the end of the simulation period, if the 

simulation period is expanded to 50 seconds, the roll rate bias error does converge within the ±1σ 

and ±3σ bounds to validate proper filter operation as shown in Figure 4.77. 

 
Figure 4.75:  Nonlinear Attitude Error Covariance Check – Phase III with Turbulence 
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Figure 4.76:  Nonlinear Bias Error Covariance Check – Phase III with Turbulence 

 
Figure 4.77:  Nonlinear Bias Error Covariance Check – Phase III Simulation Period Expanded to 

50 seconds with Turbulence 

 

Utilizing the EKF parameters given previously in Table 4.7, the rate gyro bias magnitude was 

varied between values of 0.2 and 10 degrees/second while the rate gyro bias slope was varied 

between values of 0 and 1 degree/second/hour in order examine and assess the sensitivity of the 

extended Kalman filter implemented to changes in rate gyro bias magnitude and slope.  The 

results of the Phase III assessment are summarized in Tables 4.22 through 4.25 given below. 
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Impact of Changing Rate Gyro Bias Magnitude with a Constant Slope 

Phase III:  Longitudinal/Transverse Maneuver $o Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.20602 0.04766 1.92030 0.47860 

1 0.20860 0.04862 1.73770 0.52047 

3 0.21506 0.05169 2.90000 0.72035 

5 0.22152 0.05487 4.90000 1.00560 

10 0.23767 0.06318 9.90000 1.98420 

0.5 

0.2 0.20602 0.04766 1.92050 0.47853 

1 0.20860 0.04862 1.73790 0.52037 

3 0.21507 0.05169 2.90000 0.72018 

5 0.22153 0.05487 4.90000 1.00540 

10 0.23768 0.06318 9.90000 1.98390 

1.0 

0.2 0.20602 0.04766 1.92070 0.47846 

1 0.20861 0.02086 1.73810 0.52027 

3 0.21507 0.05169 2.90000 0.72000 

5 0.22153 0.05487 4.90000 1.00520 

10 0.23768 0.06318 9.90000 1.98360 

Phase III:  Longitudinal/Transverse Maneuver with Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.20238 0.050223 2.71030 0.68214 

1 0.20274 0.05029 2.68900 0.69591 

3 0.20365 0.05058 2.90000 0.73362 

5 0.20456 0.05097 4.90000 0.77527 

10 0.20684 0.05219 9.90000 0.89432 

0.5 

0.2 0.20238 0.05022 2.71060 0.68219 

1 0.20274 0.05029 2.68920 0.69595 

3 0.20365 0.05058 2.90000 0.73362 

5 0.20456 0.05097 4.90000 0.77523 

10 0.20684 0.05219 9.90000 0.89421 

1.0 

0.2 0.20238 0.05022 2.71080 0.68225 

1 0.20274 0.05029 2.68950 0.69599 

3 0.20365 0.05058 2.90000 0.73363 

5 0.20456 0.05097 4.90000 0.77518 

10 0.20684 0.05219 9.90000 0.89409 

Table 4.22:  Sensitivity of Extended Kalman Filter to Changes in Rate Gyro Bias Magnitude 

with Constant Rate Gyro Slope – Phase III Pitch Attitude and Bias Summary 
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Impact of Changing Rate Gyro Bias Magnitude with a Constant Slope 

Phase III:  Longitudinal/Transverse Maneuver $o Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.25716 0.06274 2.29640 1.20530 

1 0.26017 0.06344 2.42260 1.39740 

3 0.26770 0.06576 2.90000 1.87760 

5 0.27523 0.06822 4.90000 2.35780 

10 0.29407 0.07477 9.90000 3.55830 

0.5 

0.2 0.25716 0.06274 2.29610 1.20500 

1 0.26017 0.06344 2.42230 1.39710 

3 0.26770 0.06576 2.90000 1.87730 

5 0.27523 0.06822 4.90000 2.35750 

10 0.29407 0.07478 9.90000 3.55800 

1.0 

0.2 0.25716 0.06274 2.29580 1.20470 

1 0.26017 0.06344 2.42200 1.39680 

3 0.26770 0.06576 2.90000 1.87700 

5 0.27524 0.06822 4.90000 2.35720 

10 0.29407 0.07478 9.90000 3.55770 

Phase III:  Longitudinal/Transverse Maneuver with Turbulence 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

Bias (deg/sec) 
� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.0 

0.2 0.35895 0.10839 2.75550 1.49460 

1 0.35936 0.10858 2.77360 1.52480 

3 0.36040 0.10905 2.90000 1.61800 

5 0.36144 0.10953 4.90000 1.71130 

10 0.36404 0.11075 9.90000 1.94440 

0.5 

0.2 0.35895 0.10839 2.75520 1.49420 

1 0.35937 0.10858 2.77330 1.52450 

3 0.36040 0.10905 2.90000 1.61770 

5 0.36144 0.10953 4.90000 1.71090 

10 0.36404 0.11075 9.90000 1.94400 

1.0 

0.2 0.35895 0.10839 2.75490 1.49390 

1 0.35937 0.10858 2.77300 1.52410 

3 0.36040 0.10905 2.90000 1.61740 

5 0.36144 0.10953 4.90000 1.71060 

10 0.36404 0.11075 9.90000 1.94370 

Table 4.23:  Sensitivity of Extended Kalman Filter to Changes in Rate Gyro Bias Magnitude 

with Constant Rate Gyro Slope – Phase III Roll Attitude and Bias Summary 

 

Tables 4.22 and 4.23 assessed the sensitivity of the extended Kalman filter to changes in the rate 

gyro bias magnitude while maintaining a constant rate gyro bias slope. Tables 4.24 and 4.25 

display a summary of attitude determination and bias estimation results for sensitivity of the 

extended Kalman filter to changes in the rate gyro bias slope while maintaining a constant rate 

gyro bias magnitude for Phase III of the feasibility study conducted. 
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Impact of Changing Rate Gyro Bias Slope with Constant Bias Magnitude 

Phase III:  Longitudinal/Transverse Maneuver $o Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.20602 0.04766 1.92030 0.47860 

0.5 0.20602 0.04766 1.92050 0.47853 

1.0 0.20602 0.04766 1.92070 0.47846 

1 

0.0 0.20860 0.04862 1.73770 0.52047 

0.5 0.20860 0.04862 1.73790 0.52037 

1.0 0.20861 0.04862 1.73810 0.52027 

3 

0.0 0.21506 0.05169 2.90000 0.72035 

0.5 0.21507 0.05169 2.90000 0.72018 

1.0 0.21507 0.05169 2.90000 0.72000 

5 

0.0 0.22152 0.05487 4.90000 1.00560 

0.5 0.22153 0.05487 4.90000 1.00540 

1.0 0.22153 0.05487 4.90000 1.00520 

10 

0.0 0.23767 0.06318 9.90000 1.98420 

0.5 0.23768 0.06318 9.90000 1.98390 

1.0 0.23768 0.06318 9.90000 1.98360 

Phase III:  Longitudinal/Transverse Maneuver with Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.20238 0.05023 2.71030 0.68214 

0.5 0.20238 0.05022 2.71060 0.68219 

1.0 0.20238 0.05022 2.71080 0.68225 

1 

0.0 0.20274 0.05029 2.68900 0.69591 

0.5 0.20274 0.05029 2.68920 0.69595 

1.0 0.20274 0.05029 2.68950 0.69599 

3 

0.0 0.20365 0.05058 2.90000 0.73362 

0.5 0.20365 0.05058 2.90000 0.73362 

1.0 0.20365 0.05058 2.90000 0.73363 

5 

0.0 0.20456 0.05097 4.90000 0.77527 

0.5 0.20456 0.05097 4.90000 0.77523 

1.0 0.20456 0.05097 4.90000 0.77518 

10 

0.0 0.20684 0.05219 9.90000 0.89432 

0.5 0.20684 0.05219 9.90000 0.89421 

1.0 0.20684 0.05219 9.90000 0.89409 

Table 4.24: Sensitivity of Extended Kalman Filter to Change in Rate Gyro Bias Slope with 

Constant Rate Gyro Bias Magnitude – Phase III Pitch Attitude and Bias Summary 
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Impact of Changing Rate Gyro Bias Slope with Constant Bias Magnitude 

Phase III:  Longitudinal/Transverse Maneuver $o Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.25716 0.062739 2.29640 1.20530 

0.5 0.25716 0.062739 2.29610 1.20500 

1.0 0.25716 0.062739 2.29580 1.20470 

1 

0.0 0.26017 0.063441 2.42260 1.39740 

0.5 0.26017 0.063441 2.42230 1.39710 

1.0 0.26017 0.063441 2.42200 1.39680 

3 

0.0 0.26770 0.065760 2.90000 1.87760 

0.5 0.26770 0.065760 2.90000 1.87730 

1.0 0.26770 0.065761 2.90000 1.87700 

5 

0.0 0.27523 0.068216 4.90000 2.35780 

0.5 0.27523 0.068217 4.90000 2.35750 

1.0 0.27524 0.068218 4.90000 2.35720 

10 

0.0 0.29407 0.074774 9.90000 3.55830 

0.5 0.29407 0.074775 9.90000 3.55800 

1.0 0.29407 0.074776 9.90000 3.55770 

Phase III:  Longitudinal/Transverse Maneuver with Turbulence 

Rate Gyro Bias 

(deg/sec) 

Rate Gyro Bias 

Slope 

(deg/sec/hr) 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

0.2 

0.0 0.35895 0.10839 2.75550 1.49460 

0.5 0.35895 0.10839 2.75520 1.49420 

1.0 0.35895 0.10839 2.75490 1.49390 

1 

0.0 0.35936 0.10858 2.77360 1.52480 

0.5 0.35937 0.10858 2.77330 1.52450 

1.0 0.35937 0.10858 2.77300 1.52410 

3 

0.0 0.36040 0.10905 2.90000 1.61800 

0.5 0.36040 0.10905 2.90000 1.61770 

1.0 0.36040 0.10905 2.90000 1.61740 

5 

0.0 0.36144 0.10953 4.90000 1.71130 

0.5 0.36144 0.10953 4.90000 1.71090 

1.0 0.36144 0.10953 4.90000 1.71060 

10 

0.0 0.36404 0.11075 9.90000 1.94440 

0.5 0.36404 0.11075 9.90000 1.94400 

1.0 0.36404 0.11075 9.90000 1.94370 

Table 4.25: Sensitivity of Extended Kalman Filter to Change in Rate Gyro Bias Slope with 

Constant Rate Gyro Bias Magnitude – Phase III Roll Attitude and Bias Summary 
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The results of the Phase III study conducted show bias magnitude again has little to negligible 

effect on the attitude estimation of the EKF and noticeable effect on the bias estimate as the bias 

magnitude imposed increases just as was shown in the previous two phases of the study 

conducted.  From the simulations performed, the results show that varying the bias magnitude 

has more effect on attitude and bias estimation results as compared to varying the rate gyro bias 

slope.  For the Phase III simulation study utilizing a combined aircraft maneuver, the bias 

estimate is reasonable and the attitude estimate does not drift outside of the acceptable range of 

±1 degree based on instrumentation from [49].  The inaccuracies of the algorithm method 

implemented are a result from accelerometer and rate gyro measurement noises and severe 

turbulence effects causing a highly dynamical operating environment.   
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4.4 Comparative Analysis of Algorithm Operation 

 with Sensor $oise Affects  
 

4.4.1 Comparison of Algorithm Operation with Sensor $oise  

 Affects:  Part I  
 

The validation of the algorithm concept and operation implemented in this feasibility study for 

two-dimensional attitude determination and rate gyro bias estimation requires a comparative 

analysis of the method and noise parameters employed in this feasibility study against sensor 

noise parameters of similar works and studies.  The sensor noise values in [50] were simulated 

and implemented in the nonlinear aircraft simulation model utilized in this feasibility study with 

the use of the extended Kalman filter algorithm from Section 4.3.  Table 4.26 compares the noise 

parameters instituted in this study against the noise parameters in [50], where the sensor noise 

parameters were chosen based on manufacturer specifications and experimental data.  The rate 

gyro bias magnitude remained at 0.200 degrees/second for this analysis since the algorithm 

implemented previously in Section 4.3 showed negligible variations in output errors over the 

simulation intervals due to changes in the magnitude of the rate gyro bias.   

 

Sensor 
Previous Simulation Values 

(Standard Deviation) 

Alternative Sensor Values 

(Standard Deviation) 

Accelerometer 

(gees) 0.00387  
42.0387 10−×  

Rate Gyroscope 

(degrees/second) 0.387  0.03  

Table 4.26:  Previous Sensor Noise Parameters versus Alternative Sensor Noise Parameters [50] 

 

Utilizing the values published and shown in Table 4.26 in the nonlinear aircraft simulation for 

Phase I of the feasibility study with the extended Kalman filter algorithm parameters used 

previously, the attitude and rate gyro bias estimation results are shown in Figures 4.78 and 4.79 

respectively for both the longitudinal and transverse accelerometer array measurements. 
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Figure 4.78:  Phase I Non-Turbulent Attitude Estimation Results using  

Alternative Sensor Noise Values 

 
Figure 4.79:  Phase I Non-Turbulent Bias Estimation Results using  

Alternative Sensor Noise Values 

 

As shown in Figures 4.78 and 4.79, the attitude and rate gyro bias estimation results produced by 

the extended Kalman filter algorithm utilizing the alternative sensor noise parameters from [50] 

in the nonlinear aircraft simulation model results in relatively minimal errors for a Phase I, 

longitudinal maneuver without turbulence injections where the results are summarized in Table 

4.27 below.   
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Phase I Maximum and Mean Error Results for Alternative Sensor $oise Parameters 

Rate Gyro 

Bias (deg/sec) 

Rate Gyro 

Slope 

(deg/sec/hr) 

Phase I – Longitudinal Maneuver with $o Turbulence 

0.20 0.05 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.19946   0.04979   0.10000   0.02882 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.00214   0.00058   0.10000   0.02589 

Table 4.27:  Attitude and Rate Gyro Bias Estimation Errors for Phase I Simulation with 

Alternative Sensor Noise Parameters 

 

The EKF parameters were checked to ensure proper filter operation and convergence for the 

nonlinear simulation model utilizing the alternative sensor noise values. Figures 4.80 and 4.81 

demonstrate a properly operating extended Kalman filter due to the attitude and bias estimation 

errors versus variance operating within the ±1σ and ±3σ bounds established by the covariance 

matrix of the EKF. 

 

 
Figure 4.80:  Phase I Non-Turbulent Attitude Error Covariance Check using  

Alternative Sensor Noise Values 
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Figure 4.81:  Phase I Non-Turbulent Bias Error Covariance Check with  

Alternative Sensor Noise Values 

 

From Figures 4.80 and 4.81, the extended Kalman filter is shown to converge during on-line 

operation within the ±1σ and ±3σ bounds while utilizing the alternative sensor noise values from 

[50].  While the simulations conducted in this feasibility study and [50] differ, the results 

published in [50] address both maximum pitch and roll maneuvers of ±20 degrees with minimal 

pitch and roll rates.  These low angular rates of the simulated maneuvers in [50] result in 

negligible imposed translational loads.  While each phase of the simulation study was completed 

for the analysis of the proposed algorithm implemented in this feasibility study against the 

published noise parameter values, the plots were omitted in this section and are presented in 

Appendix F.1 for completeness.   

 

However, Tables 4.28 and 4.29 below present a summary of the maximum and mean attitude and 

bias errors experienced during each phase of the study conducted utilizing the alternative sensor 

noise values from [50] for turbulent and non-turbulent simulations.  The rate gyro bias 

magnitude and slope were maintained at 0.200 degrees/second and 0.05 degrees/second/hour for 

each simulation performed. 
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Maximum and Mean Attitude and Rate Gyro Bias Estimation Errors Using  

Sensor $oise Values:  $on-Turbulent Simulations 

Phase I – Longitudinal Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.19946   0.04979   0.00214   0.00058 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  0.10000   0.02882   0.10000   0.02589 

Phase II – Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.01106   0.00209   0.40175   0.13078 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  1.78530   0.34385   0.11861   0.06126 

Phase III – Longitudinal/Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.19957   0.04731   0.25357   0.06218 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  1.92500   0.47929   2.30680   1.21280 

Table 4.28:  Non-Turbulent Maximum and Mean Error Values Using Alternative Sensor Values 

 

From the simulations conducted utilizing the alternative sensor noise values for non-turbulent 

aircraft simulation maneuvers, the maximum longitudinal attitude errors experienced were less 

than ±0.200 degrees, while the maximum transverse attitude errors experienced were less than ± 

0.410 degrees.  The maximum pitch rate bias errors experienced during the non-turbulent 

simulations performed were less than ±1.950 degrees/second, while the maximum roll rate bias 

errors experienced during the non-turbulent simulations were less than ±2.310 degrees/second.   
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Maximum and Mean Attitude and Rate Gyro Bias Estimation Errors Using  

Sensor $oise Values:  Turbulent Simulations 

Phase I – Longitudinal Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.19814   0.053995   0.23885   0.09505 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  0.10000   0.02570   0.59536   0.14007 

Phase II – Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.04001   0.01630   0.45703   0.19918 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  2.20370   0.47702   0.18550   0.05799 

Phase III – Longitudinal/Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.19574   0.04998   0.35537   0.10838 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  2.72330   0.68101   2.77480   1.50240 

Table 4.29:  Turbulent Maximum and Mean Error Values Using Alternative Sensor Values 

 

From the simulations conducted utilizing the alternative sensor noise values for turbulent aircraft 

simulation maneuvers, the maximum longitudinal attitude errors experienced were less than 

±0.200 degrees, while the maximum transverse attitude errors experienced were less than ± 

0.460 degrees.  The maximum pitch rate bias errors experienced during the turbulent simulations 

performed were less than ±2.730 degrees/second, while the maximum roll rate bias errors 

experienced during the turbulent aircraft simulations were less than ±2.780 degrees/second.  

From the simulation performed, the bias estimates produced are reasonable and the longitudinal 

and transverse attitude estimates do not drift outside of the acceptable range of ±1 degrees based 

on instrumentation from [49]. 

 

The derived and implemented algorithm method utilized in this feasibility study has already 

proven to provide very accurate attitude tracking results and estimates of the rate gyro biases as 

shown in the figures and tables provided in the previous sections.  The algorithm method 

proposed in this work addresses the problem of accurate and reliable two-dimensional attitude 

and rate gyro bias estimation during dynamic aircraft simulation maneuvers subjected to large 

imposed acceleration loading and harsh environmental conditions.  Therefore, it may be said that 

the algorithm utilized in this study would possess similar if not improved two-dimensional 

attitude and rate gyro bias estimation results when subjected to a low or negligible imposed 

loading and dynamical operating environments.   
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4.4.2 Comparison of Algorithm Operation with Sensor $oise  

 Affects:  Part II  
 

In Section 4.4.1, the algorithm method developed and implemented in this feasibility study was 

assessed directly utilizing alternative sensor noise parameter values from [50].  The results found 

from the study completed in the previous section of this work showed accurate attitude tracking 

and rate gyro bias estimation results while using the alternative sensor noise values in 

conjunction with the extended Kalman filter algorithm developed.   

 

While the study in Section 4.4.1 represented a direct implementation of the noise values utilized 

in [50], the work completed in this Part II analysis will analyze the impact of utilizing similar 

alternative sensor noise values from [51] while varying the magnitude of the noise inputs to the 

nonlinear operating system and algorithm method developed.  Tables 4.30, 4.31, and 4.32 

compare the sensor noise parameter values instituted in this study previously and the alternative 

sensor noise values similar to those utilized [51].  The rate gyro bias magnitude remained at 

0.200 degrees/second for this analysis since the algorithm implemented previously in Section 4.3 

showed negligible variations in output errors over the simulation intervals due to changes in the 

rate gyro bias magnitude.   

 

Sensor 
Previous Simulation Values 

(Standard Deviation) 

Alternative Sensor Values: ADXRS450 

±300 degree/second Rate Gyro 

(Standard Deviation) 

Rate Gyroscope 

(degrees/second) 0.3873  0.1407  

Table 4.30: Previous Gyro Noise Parameters versus Alternative Gyro Noise Parameters 

 

Sensor 
Previous Simulation Values 

(Standard Deviation) 

Alternative Sensor Values:  ADXL326 

±16 gee Accelerometer 

(Standard Deviation) 

Accelerometer 

(gees) 0.00387  0.00155  

Table 4.31: Previous Accelerometer Noise Parameters versus Alternative  

Accelerometer Noise Parameters 

 

Variation of Alternative Sensor $oise Values for Simulation 

Sensor 
Study A Study B Study C 

σ  2σ  3σ  

ADXRS450:   

Rate Gyro 0.1407  0.2814  0.4421 

ADXL326: 

Accelerometer 0.00155  0.00310  0.00465  

Table 4.32: Variation of Alternative Sensor Noise Parameter Magnitudes for Simulation 
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Implementing the values published for the accelerometer and rate gyro presented in Table 4.32, 

Studies A, B, and C were conducted using the nonlinear aircraft simulation model for Phase I of 

the feasibility study utilizing the extended Kalman filter algorithm method developed previously 

for accurate and reliable two-dimensional attitude determination and rate gyro bias estimation.  

Figures 4.82 and 4.83 represent the longitudinal and transverse attitude and bias estimation 

results respectively for Study A of the employed alternative noise parameter values as given in 

Table 4.32.   

 
Figure 4.82:  Phase I - Study A Non-Turbulent Attitude Estimation Results using  

Alternative Sensor Noise Values 

 
Figure 4.83:  Phase I - Study A Non-Turbulent Bias Estimation Results using  

Alternative Sensor Noise Values 
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As shown in Figures 4.82 and 4.83, the attitude and rate gyro bias estimation results produced by 

the extended Kalman filter algorithm utilizing the alternative sensor noise parameters similar to 

[51] and presented in Table 4.32, produce relatively minimal errors for a Phase I - Study A, 

longitudinal maneuver without turbulence injections and are summarized in Table 4.33 below.   

 

Phase I-Study A Maximum and Mean Error Results for Alternative Sensor $oise Parameters 

Rate Gyro 

Bias (deg/sec) 

Rate Gyro 

Slope 

(deg/sec/hr) 

Phase I – Longitudinal Maneuver with $o Turbulence 

0.20 0.05 

θ Max 

Absolute Error 

(deg) 

θ Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.20150   0.04985  0.10000   0.03013 

� Max 

Absolute Error 

(deg) 

� Mean 

Absolute Error 

(deg) 

Max Bias 

Absolute Error 

(deg/sec) 

Mean Bias 

Absolute Error 

(deg/sec) 

  0.00526   0.00129  0.10000   0.02357 

Table 4.33:  Attitude and Rate Gyro Bias Estimation Errors for Phase I - Study A Simulation 

with Alternative Sensor Noise Parameters 

 

The EKF parameters were checked to ensure proper filter operation and convergence for the 

nonlinear simulation model utilizing the alternative sensor noise values. Figures 4.84 and 4.85 

demonstrate a properly operating extended Kalman filter due to the attitude and bias estimation 

errors versus variance operating within the ±1σ and ±3σ bounds established by the covariance 

matrix of the EKF. 

 
Figure 4.84:  Phase I - Study A Non-Turbulent Attitude Error Covariance Check using  

Alternative Sensor Noise Values 
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Figure 4.85:  Phase I-Study A Non-Turbulent Bias Error Covariance Check using  

Alternative Sensor Noise Values 

 

From Figures 4.84 and 4.85, the extended Kalman filter is shown to converge during on-line 

operation within the ±1σ and ±3σ bounds while utilizing the alternative sensor noise values 

similar to [51] and presented in Table 4.32.  While the simulations conducted in this feasibility 

study and [51] differ, the results published in [51] address maximum roll maneuvers of 20 

degrees with minimal angular rotational rates while utilizing low-cost, low power consumption, 

consumer off the shelf (COTS) sensors.  The low angular rates of the simulated maneuvers in 

[51] result in negligible imposed translational loads.  While each phase of the simulation study 

was completed for the analysis of the proposed algorithm implemented in this feasibility study 

against the published noise parameter values for Studies A, B, and C, the plots were omitted in 

this section for brevity and are presented in Appendix F.2 for completeness.   

 

However, Tables 4.34, 4.35, and 4.36 below present a summary of the maximum and mean 

absolute attitude and bias errors experienced during each phase of Study A, Study B, and Study 

C conducted utilizing the alternative sensor noise values from Table 4.32 for turbulent and non-

turbulent simulations.  The rate gyro bias magnitude and slope were maintained at 0.200 

degrees/second and 0.05 degrees/second/hour for each simulation performed. 

 

From the simulations conducted utilizing the alternative sensor noise values in Table 4.32 for 

both non-turbulent and turbulent aircraft simulation maneuvers, the maximum attitude errors 

experienced were less than ±0.465 degrees, while the maximum bias errors experienced during 

the simulations performed were less than ±2.800 degrees/second.  From the simulation studies 

performed, the bias estimates produced are reasonable and the longitudinal and transverse 

attitude estimates do not drift outside of the acceptable range of ±1 degrees based on 

instrumentation from [49]. 
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Maximum and Mean Attitude and Rate Gyro Bias Estimation Errors Using  

Sensor $oise Values:  $on-Turbulent Simulations – Study A 

Phase I – Longitudinal Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20150   0.04985   0.00526   0.00129 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  0.10000   0.03013   0.10000   0.02357 

Phase II – Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.01351   0.00245   0.40356   0.13094 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  1.78400   0.34358   0.11756   0.05994 

Phase III – Longitudinal/Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20144   0.04736   0.25468   0.06229 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  1.92330   0.47907   2.30350   1.21050 

Maximum and Mean Attitude and Rate Gyro Bias Estimation Errors Using  

Sensor $oise Values:  Turbulent Simulations – Study A 

Phase I – Longitudinal Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20020   0.05403   0.23911   0.09501 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  0.10000   0.02786   0.59311   0.13898 

Phase II – Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.04264   0.01633   0.45905   0.19921 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  2.20130   0.47716   0.18271   0.05637 

Phase III – Longitudinal/Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.19779   0.04999   0.35648   0.10838 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  2.71930   0.68135   2.76870   1.49970 

Table 4.34:  Maximum and Mean Error Values Using Alternative Sensor Values – Study A 
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Maximum and Mean Attitude and Rate Gyro Bias Estimation Errors Using  

Sensor $oise Values:  $on-Turbulent Simulations – Study B 

Phase I – Longitudinal Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20411   0.05001   0.00976   0.00244 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  0.10066   0.03179   0.10000   0.02062 

Phase II – Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.01748   0.00323   0.40586   0.13131 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  1.78250   0.34325   0.11767   0.05841 

Phase III – Longitudinal/Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20405   0.04751   0.25609   0.06253 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  1.92160   0.47880   2.29940   1.20750 

Maximum and Mean Attitude and Rate Gyro Bias Estimation Errors Using  

Sensor $oise Values:  Turbulent Simulations – Study B 

Phase I – Longitudinal Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20281   0.05412   0.23945   0.09497 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  0.10674   0.03062   0.59060   0.13783 

Phase II – Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.04731   0.01645   0.46162   0.19926 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  2.19830   0.47742   0.17945   0.054628 

Phase III – Longitudinal/Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20041   0.05010   0.35789   0.10838 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  2.71420   0.68180   2.76110   1.49640 

Table 4.35:  Maximum and Mean Error Values Using Alternative Sensor Values – Study B 
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Maximum and Mean Attitude and Rate Gyro Bias Estimation Errors Using  

Sensor $oise Values:  $on-Turbulent Simulations – Study C 

Phase I – Longitudinal Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20709   0.05027   0.01490   0.00377 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  0.10526   0.03370   0.10000   0.17252 

Phase II – Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.02200   0.00429   0.40848   0.13184 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  1.78080   0.34288   0.11785   0.05680 

Phase III – Longitudinal/Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Mean Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20703   0.04775   0.25770   0.06285 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Mean Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Mean Roll Rate Bias 

Absolute Error (deg/sec) 

  1.91970   0.47848   2.29480   1.20410 

Maximum and Mean Attitude and Rate Gyro Bias Estimation Errors Using  

Sensor $oise Values:  Turbulent Simulations – Study C 

Phase I – Longitudinal Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20579   0.05428   0.23983   0.09496 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  0.13437   0.03379   0.58774   0.13750 

Phase II – Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 
� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.05264   0.01667   0.46455   0.19932 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  2.19480   0.47776   0.17684   0.05384 

Phase III – Longitudinal/Transverse Maneuver 

θ Max Absolute Error 

(deg) 

θ Max Absolute Error 

(deg) 

� Max Absolute Error 

(deg) 

� Mean Absolute Error 

(deg) 

  0.20339   0.05030   0.35950   0.10840 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Pitch Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

Max Roll Rate Bias 

Absolute Error (deg/sec) 

  2.70840   0.68233   2.75260   1.49370 

Table 4.36:  Maximum and Mean Error Values Using Alternative Sensor Values – Study C

 



153  CHAPTER 4. SIMULATIO% RESULTS 

 

   

4.5 Complementary Filter Triggering Estimation  
 

In addition to the device model and extended Kalman filter algorithm implemented, a 

complimentary filter was also utilized in the developed simulation models to produce 

longitudinal and transverse attitude estimates during each of the simulated flight maneuvers 

through dynamic triggering of a predefined threshold value along the longitudinal and transverse 

accelerometer arrays.  A complementary filter is essentially a frequency domain filter.  In a 

sense, the complementary filter may be defined as the utilization of two or more transfer 

functions, which are mathematical complements of one another as shown in Equation 4.41.  

Therefore, the complementary filter either blends or fuses similar or redundant data from 

variable inputs in order to determine and generate a robust estimate of a single state input. 
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  (4.41) 

 

The work completed in this feasibility study utilizes two complementary filters for accurate and 

reliable verification of the longitudinal and transverse attitude estimates through the 

implementation of dynamic triggering at predefined threshold values. The complementary filter 

implemented utilizes an established threshold tolerance value for reinitializing the 

complementary filter initial conditions to estimate the longitudinal and transverse attitude 

through the use of consecutive accelerometer pairs along each array since the attitude is known 

precisely at that condition.  The dynamic triggering algorithm implemented for reinitialization of 

the complementary filter is shown in Figure 4.86. 

 

 

Figure 4.86:  Complementary Filter Dynamic Triggering Algorithm 
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The threshold tolerance value on the longitudinal array was tuned to a value of 0.0003 gees and 

on the transverse array a value of 0.0005 gees.  Figures 4.87 through 4.104 display the 

longitudinal and transverse attitude estimates during each phase of the simulation study 

determined by the complementary filter with the implementation of the dynamic triggering 

reinitialization algorithm.  Tables 4.37 through 4.42 display the maximum and mean attitude 

errors during each phase of the simulation conducted. 

Phase I – Longitudinal Maneuver:  %o Turbulence 

 
Figure 4.87:  Complementary Filter Attitude Estimation –  

Phase I No Turbulence:  θ Comparison

 
Figure 4.88:  Complementary Filter Attitude Estimation –  

Phase I No Turbulence: � Comparison 
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Figure 4.89:  Complementary Filter Longitudinal and Transverse Array Reinitialization  

Triggers – Phase I No Turbulence 

Figure 4.89 shows the longitudinal and transverse accelerometer array trigger magnitudes during 

a pure longitudinal maneuver compared to the truth value of the pitch and roll angle of the 

aircraft during the simulation. The dynamic triggers of the complementary filter occurred at 7.5 

degree increments of resolution based on 13 accelerometers placed around the two 180 degree 

accelerometer arcs and are verified in the Figure 4.89 as being operational during the 

longitudinal maneuver along the longitudinal array.  This result is expected because no motion is 

maneuver is imposed in the transverse, or y-z, plane of motion during the simulation of the 

aircraft.  

Longitudinal Maneuver – $o Turbulence Maximum Absolute Error (degrees) 

:  Max ErrorPhase I θ −  0.1978 

:  Max ErrorPhase I φ −  0.0008 

Longitudinal Maneuver – $o Turbulence Mean Absolute Error (degrees) 

:  Mean ErrorPhase I θ −  0.0456 

:  Mean ErrorPhase I φ −  0.0003 

Table 4.37:  Phase I – Longitudinal Maneuver No Turbulence Data Summary 

 

The output time histories of the complementary filter attitude estimates overlaid with the true 

attitudes show good agreement between the true and estimated attitude time histories.  The 

complementary filter experienced maximum attitude errors less than ±0.200 degrees and mean 

errors less than ±0.050 degrees during a pure longitudinal maneuver with no turbulence injected 

into the simulation model.   
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Phase I – Longitudinal Maneuver: Turbulence 

 
Figure 4.90:  Complementary Filter Attitude Estimation –  

Phase I with Turbulence:  θ Comparison 

 
Figure 4.91:  Complementary Filter Attitude Estimation –  

Phase I with Turbulence:  � Comparison
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Figure 4.92:  Complementary Filter Longitudinal and Transverse Array Reinitialization Triggers 

– Phase I with Turbulence 

Figure 4.92 shows the longitudinal and transverse accelerometer array trigger magnitudes during 

a pure longitudinal maneuver compared to the truth value of the pitch and roll angle during the 

simulation. The dynamic triggers of the complementary filter occurred at 7.5 degree increments 

of resolution based on 13 accelerometers placed around the two 180 degree accelerometer arcs 

and are verified in the Figure 4.92 as being operational during the longitudinal maneuver along 

the longitudinal array and partially along the transverse array due to extreme vibrational effects 

of the simulation which causes triggers to occur in the transverse plane as well. 

Longitudinal Maneuver –Turbulence Maximum Absolute Error (degrees) 

:  Max ErrorPhase I θ −    1.3832 

:  Max ErrorPhase I φ −    2.9961 

Longitudinal Maneuver –Turbulence Mean Absolute Error (degrees) 

:  Mean ErrorPhase I θ −    1.8446 

:  Mean ErrorPhase I φ −    0.4912 

Table 4.38:  Phase I – Longitudinal Maneuver with Turbulence Data Summary 

 

The output time histories of the complementary filter attitude estimates overlaid with the true 

attitudes show good agreement between the true and estimated attitude time histories during 

Phase I of the study with turbulence injected into the simulation model.  The complementary 

filter experienced maximum attitude errors less than ±0.4000 degrees and mean errors less than 

±0.7500 degrees during a pure longitudinal maneuver with turbulence.  
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Phase II – Transverse Maneuver:  %o Turbulence 

 
Figure 4.93:  Complementary Filter Attitude Estimation –  

Phase II No Turbulence:  θ Comparison 

 
Figure 4.94:  Complementary Filter Attitude Estimation –  

Phase II No Turbulence:  � Comparison 
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Figure 4.95:  Complementary Filter Longitudinal and Transverse Array Reinitialization Triggers 

– Phase II No Turbulence 

Figure 4.95 shows the longitudinal and transverse accelerometer array trigger magnitudes during 

a pure transverse maneuver compared to the truth value of the pitch and roll angle during the 

simulation. The dynamic triggers of the complementary filter occurred at 7.5 degree increments 

of resolution based on 13 accelerometers placed around the two 180 degree accelerometer arcs 

and are verified in the Figure 4.95 as being operational during the transverse maneuver along the 

transverse array only due to the aircraft experiencing no motion in the longitudinal, or x-z, plane 

during the simulated aircraft maneuver. 

Transverse Maneuver – $o Turbulence Maximum Absolute Error (degrees) 

:  Max ErrorPhase II θ −  0.0512 

:  Max ErrorPhase II φ −  0.5537 

Transverse Maneuver –$o Turbulence Mean Absolute Error (degrees) 

:  Mean ErrorPhase II θ −  0.0118 

:  Mean ErrorPhase II φ −  0.1146 

Table 4.39:  Phase II – Transverse Maneuver No Turbulence Data Summary 

 

The output time histories of the complementary filter attitude estimates overlaid with the true 

attitudes show good agreement between the true and estimated attitude time histories during 

Phase II of the study with no turbulence injected into the simulation model.  The complementary 

filter experienced maximum attitude errors less than ±0.5600 degrees and mean errors less than 

±0.1200 degrees during a pure transverse maneuver.  
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Phase II – Transverse Maneuver:  Turbulence 

 
Figure 4.96:  Complementary Filter Attitude Estimation – 

 Phase II with Turbulence:  θ Comparison 

 
Figure 4.97:  Complementary Filter Attitude Estimation –  

Phase II with Turbulence:  � Comparison 
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Figure 4.98:  Complementary Filter Longitudinal and Transverse Array Reinitialization Triggers 

– Phase II with Turbulence

Figure 4.98 shows the longitudinal and transverse accelerometer array trigger magnitudes during 

a pure transverse maneuver compared to the truth value the pitch and roll angle during the 

simulation. The dynamic triggers of the complementary filter occurred again at 7.5 degree 

increments based on 13 accelerometers placed around the two 180 degree accelerometer arcs and 

are verified in the Figure 4.98 as being operational during the transverse maneuver along the 

transverse array only due to the aircraft experiencing no motion in the longitudinal, or x-z, plane 

during the simulated aircraft maneuver despite the presence of severe turbulence and vibrational 

effects. 

Transverse Maneuver –Turbulence Maximum Absolute Error (degrees) 

:  Max ErrorPhase II θ −  0.0708 

:  Max ErrorPhase II φ −  2.1657 

Transverse Maneuver –Turbulence Mean Absolute Error (degrees) 

:  Mean ErrorPhase II θ −  0.0217 

:  Mean ErrorPhase II φ −  0.2627 

Table 4.40:  Phase II – Transverse Maneuver with Turbulence Data Summary 

 

The output time histories of the complementary filter attitude estimates overlaid with the true 

attitudes show good agreement between the true and estimated attitude time histories during 

Phase II of the study with turbulence injected into the simulation model.  The complementary 

filter experienced maximum attitude errors less than ±0.5600 degrees and mean errors less than 

±0.1200 degrees during a pure transverse maneuver.  
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Phase III – Longitudinal/Transverse Maneuver:  %o Turbulence 

 
Figure 4.99:  Complementary Filter Attitude Estimation –  

Phase III No Turbulence:  θ Comparison

 

 
Figure 4.100:  Complementary Filter Attitude Estimation –  

Phase III No Turbulence:  � Comparison 
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Figure 4.101:  Complementary Filter Longitudinal and Transverse Array Reinitialization 

Triggers – Phase III No Turbulence 

Figure 4.101 shows the longitudinal and transverse accelerometer array trigger magnitudes 

during a combined longitudinal/transverse maneuver compared to the truth value of the pitch and 

roll angle during the simulation. The dynamic triggers of the complementary filter occurred at 

7.5 degree increments based on 13 accelerometers placed around the two 180 degree 

accelerometer arcs and are verified in the Figure 4.101 as being operational during the combined 

maneuver along the longitudinal and transverse array due to the aircraft experiencing motion in 

both the longitudinal and transverse plane of motion during the simulated aircraft maneuver.

 

Longitudinal/Transverse Maneuver –$o 

Turbulence 
Maximum Absolute Error (degrees) 

:  Max ErrorPhase III θ −    2.8706 

:  Max ErrorPhase III φ −    1.9755 

Longitudinal/Transverse Maneuver –$o 

Turbulence 
Mean Absolute Error (degrees) 

:  Mean ErrorPhase III θ −    0.4609 

:  Mean ErrorPhase III φ −    0.3186 

Table 4.41:  Phase III – Longitudinal/Transverse Maneuver No Turbulence Data Summary 
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The output time histories of the complementary filter attitude estimates overlaid with the true 

attitudes show good agreement between the true and estimated attitude time histories during 

Phase III of the study for combined multi-dimensional maneuver with no turbulence injected into 

the simulation model.  The complementary filter experienced maximum attitude errors less than 

±2.0000 degrees and mean errors less than ±0.2000 degrees during the simulated aircraft 

maneuver.  

 

Phase III – Longitudinal/Transverse Maneuver:  Turbulence 

 
Figure 4.102:  Complementary Filter Attitude Estimation –  

Phase III with Turbulence:  θ Comparison

 

 
Figure 4.103:  Complementary Filter Attitude Estimation –  

Phase III with Turbulence:  � Comparison 
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Figure 4.104:  Complementary Filter Longitudinal and Transverse Array Reinitialization 

Triggers – Phase III with Turbulence 

Figure 4.104 shows the longitudinal and transverse accelerometer array trigger magnitudes 

during a combined longitudinal/transverse maneuver compared to the truth value of theta and phi 

during the simulation. The dynamic triggers of the complementary filter occurred at 7.5 degree 

increments based on 13 accelerometers placed around the two 180 degree accelerometer arcs and 

are verified in the Figure 4.104 as being operational during the combined maneuver along the 

longitudinal and transverse array due to the aircraft experiencing motion in both the longitudinal 

and transverse plane of motion during the simulated aircraft maneuver despite the presence of 

severe turbulence and vibrational effects. 

 

Longitudinal/Transverse Maneuver –

Turbulence 
Maximum Absolute Error (degrees) 

:  Max ErrorPhase III θ −    8.8864 

:  Max ErrorPhase III φ −    2.5682 

Longitudinal/Transverse Maneuver –

Turbulence 
Mean Absolute Error (degrees) 

:  Mean ErrorPhase III θ −    1.2651 

:  Mean ErrorPhase III φ −    0.3733 

Table 4.42:  Phase III – Longitudinal/Transverse Maneuver with Turbulence Data Summary 
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The output time histories of the complementary filter attitude estimates overlaid with the true 

attitudes show good agreement between the true and estimated attitude time histories during 

Phase III of the study for combined multi-dimensional maneuver with turbulence injected into 

the simulation model.  The complementary filter experienced maximum attitude errors less than 

±2.5000 degrees and mean errors less than ±0.2500 degrees during the simulated aircraft 

maneuver.  
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4.6 Inertial Position and Parameter Estimation  
 

A focus of this feasibility study was the assessment and verification of the developed model and 

algorithm methods ability to provide accurate and reliable inertial position and parameter 

estimates through the use of mathematical and kinematic relationships.  Equations 3.54, 3.55, 

and 3.56 given previously in Section 3.4.2 may be utilized and solved for the body acceleration 

terms along the primary, secondary, and tertiary axes respectively.  These equations and their 

respective derivations for the body accelerations terms are presented in this section as Equations 

4.42, 4.43, and 4.44 respectively. 

 

,

1
( sin( ))est x cg estu A mg qw rv

m
θ= − − − +ɺ  

  (4.42) 

( ),

1
sin( )est y cg estv pw ru A mg

m
φ= − + +ɺ  

  (4.43) 

( ),

1
cos( )cos( )est z cg est estw qu pv A mg

m
θ φ= − − −ɺ  

  (4.44) 

 

Equations 4.42, 4.43, and 4.44 may then be integrated once to obtain the body velocity estimates 

needed to solve for the aircraft velocity parameters given previously as Equation 3.57 in Section 

3.4.2.  Integration of the body velocity parameters give a valid inertial position estimate of the 

aircraft during each phase of the simulation study.  Figure 4.105 shows the algorithm method 

utilized where the attitude estimates produced by the extended Kalman filter are utilized as input 

parameters to the inertial position estimate equations.   

 

 
Figure 4.105:  Aircraft Velocity Parameter and Inertial Position Estimation Algorithm 
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Aircraft parameter and inertial position estimates were obtained during each of the three phases 

of the simulation study and the results are shown in Figures 4.106 through 4.111.  Table 4.43 

presents the maximum and mean errors occurred during each phase of the study. 

 

Phase I – Longitudinal Maneuver:  %o Turbulence 

 
Figure 4.106:  Inertial Position Estimates – Longitudinal Maneuver No Turbulence  

 

Phase I – Longitudinal Maneuver:  Turbulence 

 
Figure 4.107:  Inertial Position Estimates – Longitudinal Maneuver with Turbulence 
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Phase II – Transverse Maneuver:  %o Turbulence 

 
Figure 4.108:  Inertial Position Estimates – Transverse Maneuver No Turbulence  

 

Phase II – Transverse Maneuver:  Turbulence 

 
Figure 4.109:  Inertial Position Estimates – Transverse Maneuver with Turbulence 
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Phase III – Longitudinal/Transverse Maneuver:  %o Turbulence 

 
Figure 4.110:  Inertial Position Estimates – Longitudinal/Transverse Maneuver No Turbulence 

 

Phase III – Longitudinal/Transverse Maneuver:  Turbulence 

 
Figure 4.111:  Inertial Position Estimates – Longitudinal/Transverse Maneuver with Turbulence 
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Inertial Position 

Parameter 

Maximum Absolute Error 

(feet) 

Mean Absolute Error 

(feet) 

Phase I – Longitudinal Maneuver with $o Turbulence 

X 1.1967 0.6551 

Y 0.0095 0.0041 

Z 4.0625 2.6531 

Phase I – Longitudinal Maneuver with Turbulence 

X 179.3200 86.1520 

Y 51.6700 20.2240 

Z 54.3900 35.6400 

Phase II – Transverse Maneuver with $o Turbulence 

X 0.1378 0.0502 

Y 1.7607 1.0778 

Z 0.6374 0.4022 

Phase II – Transverse Maneuver with Turbulence 

X 121.6530 58.0000 

Y 101.0810 44.7430 

Z 46.7620 21.3120 

Phase III – Longitudinal/Transverse Maneuver with $o Turbulence 

X 1.2153 0.6869 

Y 3.3836 1.8367 

Z 3.6284 2.2432 

Phase III – Longitudinal/Transverse Maneuver with Turbulence 

X 180.5910 86.6910 

Y 105.2200 41.6250 

Z 103.8510 50.5190 

Table 4.43:  Inertial Position Estimation Maximum and Mean Error Summary 

 

From the time history plots displayed in Figures 4.106 through 4.111, it may be shown during 

simulated aircraft maneuvers not experiencing turbulence, the algorithm and method 

implemented provides relatively good estimates of the vehicle’s inertial position in real-time.  

During each phase of the simulation study conducted, maximum positional errors in the x-

direction did not exceed ±1.25 feet, in the y-direction ±3.40 feet, and in the z-direction maximum 

errors were less than ±4.25 feet.  During simulated aircraft maneuvers exposed to extreme 

turbulence and vibrational effects, the maximum error in the x-direction was approximately ±180 

feet, in the y-direction ±106 feet, and in the z-direction ±104 feet.  While these values are large 

deviations from the true inertial position of the aircraft, the turbulence injected and simulated 

during each phase of the simulation study utilizing the Dryden wind and turbulence model, 

discussed in Section 3.3, were exposed to turbulence and vibrational effects upwards of 60 feet 

per second, or three times the highest likely turbulence to be experience during any real-world 

flight condition.  Deviations and errors in the attitude estimates during turbulent flight 

simulations will cause an increase and propagation in the error of the inertial position estimates 

determined during the duration of the simulated aircraft maneuver.   
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Chapter 5 

Conclusion and Future Work  
 

5.1 Conclusion  
 

In this feasibility study, the ability of an innovative, low-cost, two-dimensional accelerometer 

array to estimate and eliminate a rate gyro bias online for accurate and reliable two-dimensional 

attitude estimation was assessed and verified.  The device and algorithm method implemented in 

this feasibility study was an expansion of a previous work; however, is a unique departure from 

previous studies and conventional parameter identification and attitude estimation due to the 

implementation of a two-dimensional, cost-effective, accelerometer array utilizing the 

measurement of one inertial reference vector, gravity. The development of this device provides 

numerous benefits over conventional reference frame sensors and inertial measurement units 

such as GPS and inclinometers which are largely susceptible to environmental conditions, signal 

interruption, or the governing dynamics of the operating system.  The method implemented and 

assessed in this study provides a robust algorithm method for estimation of the rate gyro bias and 

two-dimensional attitude determination through the algorithm’s ability to measure and eliminate 

the imposed acceleration loads imparted upon the vehicle due to the dynamics of the vehicle 

maneuver and the affects of the environmental operating conditions. 

 

The developed method and algorithm implemented in this feasibility study expanded upon 

previous research conducted by expanding the previous one-dimensional analysis in the 

longitudinal plane, to a  multi-dimensional assessment in both the longitudinal and transverse 

planes by utilizing cost-effective accelerometers along two 180 degree arcs and a rate gyro 

placed at the center-of-gravity location with an extended Kalman filter algorithm for rate gyro 

bias estimation yielding robust longitudinal and transverse attitude estimation in real-time.  The 

accelerometer and rate gyro measurements were simulated utilizing rotational displacements, 

center-of-gravity accelerations, and rotational rate outputs from a constructed nonlinear six 

degree-of-freedom aircraft simulation model.  Simulation of the nonlinear aircraft model 

included highly dynamical maneuvers and operating environments resulting in imposed loads up 

to 3.5 gees.  The rate gyro was simulated with an imposed, constant 0.200 degree/second bias 

magnitude and rate gyro slope of 0.050 degrees/second/hour.  The algorithm implemented 

produced a bias estimation maximum error of ±2.750 degrees/second during non-turbulent 

maneuvers and ±2.850 degrees/second during maneuvers injected with maximum body axis 

velocities of up to 60 feet per second through the use of a Dryden wind gust model.  Maximum 

attitude estimation errors produced from the extended Kalman filter for longitudinal attitude 

estimates were shown to be approximately ±0.210 degrees, while transverse attitude estimates 

experienced maximum attitude errors of ±0.400 degrees for simulated aircraft maneuvers subject 

to non-turbulent flight conditions.  Aircraft simulation maneuvers subjected to imposed 

turbulence inputs experience maximum attitude error of up to ±0.220 degrees for longitudinal 

attitude estimates and ±0.470 degrees for transverse attitude estimates.   
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The inertial position estimation algorithm

up to 4.00 feet during non-turbulent flight conditions and maximum position errors of up to 180 

feet during simulated aircraft maneuvers with turbulence injections of up to 60 feet per second.

The end result of this feasibility study is the development 

two-dimensional, dual-arc accelerometer array model fused with an algorithm method composed 

of mathematical operations and kinematic relationships requiring knowledge of sensor operat

parameters and the accelerometer array location relative the aircraft’s center

The characteristics of the developed two

only to be cost-effective, but easily implementable in a

and robust attitude estimation such as unmanned air and micro air vehicle

marine applications. 

 

5.2 Future Work 
  

The work conducted in this feasibility study and research initiative focused 

and implementation of a two-dimensional accelerometer array for accurate and reliable rate 

sensor bias estimation for precise attitude determination of the longitudinal and transverse angle 

measurement during simulated highly 

modeling development of the proposed two

simulation development to assess and validate the functionality and feasibility of the device in a 

real-world, nonlinear operating environment.  However, a real

imposing rotational and translational accelerations for evaluation of the 

method of operations is required for 

a real-world operating environment.  

 

The next research phase is the development and testing of a miniaturized, two

attitude determination and rate gyro bias estimation algorithm coupled with an accelerometer 

bias estimation and clipping compensation algorithm for precise attitude and inertial position 

estimation.   

 

In the next phase of work and research conducted, prototype hardware testing 

on a relevant test platform such as a laboratory testing, shaker table testing

on a highly dynamic vehicle such as a sounding rocket or flight test vehicle

method and device developed in a such a manner

validation testing of the proposed hardware prototype 

Figure 5.1:  Prototype Hardware Accelerometer Based Attitude Estimation Device
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The inertial position estimation algorithm implemented resulted in maximum position errors of 

turbulent flight conditions and maximum position errors of up to 180 

feet during simulated aircraft maneuvers with turbulence injections of up to 60 feet per second.

feasibility study is the development and successful implementation 

accelerometer array model fused with an algorithm method composed 

of mathematical operations and kinematic relationships requiring knowledge of sensor operat

parameters and the accelerometer array location relative the aircraft’s center-of-

The characteristics of the developed two-dimensional accelerometer array enable the device not 

effective, but easily implementable in a variety of applications requiring critical 

and robust attitude estimation such as unmanned air and micro air vehicles, and terrestrial

The work conducted in this feasibility study and research initiative focused on the development 

dimensional accelerometer array for accurate and reliable rate 

sensor bias estimation for precise attitude determination of the longitudinal and transverse angle 

highly dynamic flight conditions.  This study focused on system 

modeling development of the proposed two-dimensional accelerometer array and signal 

simulation development to assess and validate the functionality and feasibility of the device in a 

ting environment.  However, a real-world test platform capable of 

imposing rotational and translational accelerations for evaluation of the developed algorithm and 

is required for verification and validation of the hardware configurati

world operating environment.   

The next research phase is the development and testing of a miniaturized, two

attitude determination and rate gyro bias estimation algorithm coupled with an accelerometer 

compensation algorithm for precise attitude and inertial position 

In the next phase of work and research conducted, prototype hardware testing is 

on a relevant test platform such as a laboratory testing, shaker table testing and implementation 

on a highly dynamic vehicle such as a sounding rocket or flight test vehicle.  Testing of the 

method and device developed in a such a manner would offer significant 

validation testing of the proposed hardware prototype as shown in Figure 5.1.    

 
Figure 5.1:  Prototype Hardware Accelerometer Based Attitude Estimation Device
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resulted in maximum position errors of 

turbulent flight conditions and maximum position errors of up to 180 

feet during simulated aircraft maneuvers with turbulence injections of up to 60 feet per second.  

and successful implementation of a 

accelerometer array model fused with an algorithm method composed 

of mathematical operations and kinematic relationships requiring knowledge of sensor operating 

-gravity location.  

dimensional accelerometer array enable the device not 

variety of applications requiring critical 

and terrestrial or 

on the development 

dimensional accelerometer array for accurate and reliable rate 

sensor bias estimation for precise attitude determination of the longitudinal and transverse angle 

ght conditions.  This study focused on system 

dimensional accelerometer array and signal 

simulation development to assess and validate the functionality and feasibility of the device in a 

world test platform capable of 

developed algorithm and 

validation of the hardware configuration in 

The next research phase is the development and testing of a miniaturized, two-dimensional 

attitude determination and rate gyro bias estimation algorithm coupled with an accelerometer 

compensation algorithm for precise attitude and inertial position 

is to be performed 

and implementation 

.  Testing of the 

significant verification and 

Figure 5.1:  Prototype Hardware Accelerometer Based Attitude Estimation Device 
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Appendix A 

Aerospace Transformations 
 

A.1 Translational Vector Sequence [2, 3, 4, 6, 28, 32] 
 

Resolution of displacements in a body-fixed coordinate frame relative to an Earth-fixed 

coordinate frame of reference by means of a rotational angle sequence is presented in the figures 

and trigonometric identities shown in this section for derivation of the necessary and appropriate 

rotational matrices.  The standard aerospace rotation sequence is utilized to derive the 

displacements in a body-fixed coordinate frame to an Earth-fixed coordinate frame of reference. 

 

Consider a rotation of the xf, yf, zf frame about the zf-axis thorugh a rotation angle, ψ, allowing 

the new frame of reference to be represented as x1, y1, z1 as shown in Figure A.1.  Equation A.1 

relates the displacements in the body-fixed frame relative to the Earth-fixed coordinate frame 

through the transformation reference frame. 

 
Figure A.1:  Rotation about the Z-Axis [4] 
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180 APPE%DIX A. AEROSPACE TRA%SFORMATIO%S 

 

   

Consider a rotation of the x1, y1, z1 coordinate frame about the y1-axis through a rotation angle, 

θ, to the coordinate system defined as x2, y2, z2 as shown in Figure A.2.  Equation A.2 represents 

the rotation sequence through the rotation angle, θ. 

 

 
Figure A.2:  Rotation about the Y-Axis [4] 
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   (A.2) 

 

Consider a rotation of the x2, y2, z2 coordinate frame about the x2-axis through a rotation angle, 

�, to the coordinate system defined as the body-fixed coordinate frame of xb, yb, zb as shown in 

Figure A.3.  Equation A.3 represents the third rotation sequence through the rotation angle, �. 
 

. 

Figure A.3:  Rotation about the X-Axis [4]
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The rotation about a general normalized axis, â , through a particular rotation angle, β, is defined 

by Equation A.4 as given in [32]. 

 

ˆ ˆ ˆ ˆ( , ) cos (1 cos ) sin [ ]I
TR a aa axβ β β β= + − −  
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A.2 Rotational Vector Sequence [4, 28, 32] 
 

In a similar manner utilized in the previous section, the time rate of change of the Euler angles (

, ,φ θ ψɺ ɺ ɺ ), may be related to the body-fixed coordinate frame components of the angular velocity 

vector, (p, q, r), of the aircraft.  For derivation of this sequence, it is critical to consider all 

rotational coordinate systems for each Euler angle.  The bank angle, �, is defined relative to the 

coordinate system x2, y2, z2, while the pitch angle, θ, is defined with respect to x1, y1, z1.  The 

heading angle, ψ, is defined relative to the Earth-fixed coordinate frame, xf, yf, zf.  The 

establishment of these relationships and reference designations result in Equation A.5 for 

transformation between the Euler angle rates and the vehicle, or aircraft rates.   
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Combining and reducing terms in Equation A.5 allows for the derivation of Equation A.6 in 

terms of the angular velocity vector. 
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   (A.6) 

 

Inverting Equation A.6 gives the Euler rates in terms of pitch, roll, and yaw rates respectively.  

Equation A.6 is a non-orthogonal three by three element matrix.  Therefore, the implementation 

of matrix inverse operations is required to obtain the transformation matrix given in Equation 

A.7.  Equation A.7 displays the mathematical phenomenon known as Gimbal Lock where φɺand 

ψɺ  may not be computed due to the divide by zero singularity occurring when two axes become 

aligned with one another.  Matrix inversion operations may be performed using the steps 

provided in any linear algebra or matrices book such as [40] and therefore are not provided 

explicitly in this work. 

 

1 sin sin / cos cos sin / cos

0 cos sin

0 sin / cos cos / cos

p

q

r

φ φ θ θ φ θ θ
θ φ φ
ψ φ θ φ θ

     
    = −    
        

ɺ

ɺ

ɺ

 

   (A.7) 
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Appendix B 

Quaternion Mathematics 
 

This section of the Appendix provides additional mathematical background for quaternion 

operations, relationships, and transformations taken from [4], [28], [35], and [37]. 

 

B.1 Quaternion Algebra 
 

A general quaternion, {Q}, is defined as Equation B.1 in the hypercomplex form. 

 

{ } 0
ˆˆ ˆ

x y zQ q q i q j q k= + + +  

   (B.1) 

 

Where q0, qx, qy, and qz are scalars and i, j, and k are unit vectors in Cartesian space.  Given a 

scalar constant, C, multiplication of a quaternion by a scalar constant is shown in Equation B.2. 

 

{ } 0
ˆˆ ˆ

x y zC Q Cq Cq i Cq j Cq k= + + +  

   (B.2) 

 

If another quaternion, {P}, is defined in the hypercomplex form shown as Equation B.3, 

multiplication of two quaternions may be performed by following the quaternion multiplication 

rules given in Figure B.1. 

 

{ } 0
ˆˆ ˆ

x y zP p p i p j p k= + + +  

   (B.3) 

 
Figure B.1:  Rules for Quaternion Multiplication [35] 
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The product of two quaternions follows the distributive law.  Therefore, the quaternion product 

of {Q} and {P} may be displayed as Equation (B.4). 

 

{ } { } 0 0

0 0

0 0

0 0

0 0

ˆ ˆˆ ˆ ˆ ˆ( ) ( )

( )

ˆ( )

ˆ( )

ˆ( )

x y z x y z

x x y y z z

x x y z z y

y x z y z x

z x y y x z

Q P q q i q j q k p p i p j p k

q p q p q p q p

q p q p q p q p i

q p q p q p q p j

q p q p q p q p k

⊗ = + + + ⊗ + + +

= − − −

+ + + −

+ − + +

+ + − +

   

   (B.4) 

 

Quaternions possess properties of both scalars and vectors, but also contain similarities common 

with complex algebra.  The magnitude of a quaternion may be defined in the same manner as a 

complex number or vector as shown in Equation B.5. 

 

{ } 2 2 2 2

0 x y zQ q q q q= + + +  

   (B.5) 

The conjugate of the quaternion may be defined as Equation B.6. 

 

0
ˆˆ ˆ{ } x y zQ q q i q j q k∗ = − − −  

   (B.6) 

 

Similar to a complex variable, the product of quaternion with its conjugate generates a scalar 

equal to the square of the magnitude of the quaternion as shown in Equation B.7. 

 

{ } 22 2 2 2

0{ } { } x y zQ Q q q q q Q∗⊗ = + + + =  

   (B.7) 

The derivation of the quaternion inverse is shown in the following derivation. 
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1 1

1 1

-1

2

1

{ }

{ } { } { }

{ } { } , ( )

{ }

( )

      

     

         

   

G iven Q Q Q Q by defin ition of the inverse

M ultiply by the quatern ion conjugate Q

Q Q Q Q Q Q Q

T herefore because Q Q equals the square of the norm % Q

Q
Q

% Q

B ecause the unit

− −

∗

− ∗ ∗ − ∗

∗

∗

= =

= =

=

-1

1. :

{ }

   

       

quaternion is used

the norm is equal to T herefore

Q Q ∗=  
 

B.2 Relationship between the Quaternion and Euler   

 Angles 
 

It is necessary in aircraft simulations to be able to relate the quaternion to the Euler angles.  Such 

a relationship may be established from Equation 2.44 in Section 2.1.4 and is utilized as the 

starting point in this section. 

 
2 2 2 2

0 0 0

2 2 2 2

0 0 0

2 2 2 2

0 0 0

2( ) 2( )

2( ) 2( )

2( ) 2( ) c s c

x y z x y z x z y

x y z y x z y z x

x z y y z x z x y

q q q q q q q q q q q q c c c s s

q q q q q q q q q q q q s s c c s s s s c c s c

q q q q q q q q q q q q s s c s s s c c c

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

 + − − + − − 
   − + − − − = − +   
 + − + − − + −   

 

 

   (B.8) 

 

By combining the diagonal elements of Equation B.8 with the understanding that the magnitude 

of the quaternion must be equal to 1, a 4x4 algebraic equation for the squares of the quaternion 

components may be obtained and is shown as Equation B.9. 

 

2

0

2

2

2

1 1 1 1 cos cos

1 1 1 1 sin sin sin cos cos

1 1 1 1 cos cos

1 1 1 1 1

x

y

z

q

q

q

q

θ ψ
φ θ ψ φ ψ

φ θ

− −     
    − − +     =   

− −     
         

 

   (B.9) 

 

The matrix equation is readily solved by direct elimination yielding Equation B.10. 
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2

0

2

2

2

1 cos cos sin sin sin cos cos cos cos

1 cos cos sin sin sin cos cos cos cos1

1 cos cos cos cos sin sin sin cos cos4

1 cos cos cos cos sin sin sin cos cos

x

y

z

q

q

q

q

θ ψ φ θ ψ φ θ φ ψ
φ θ φ θ ψ φ ψ θ ψ
θ ψ φ θ φ θ ψ φ ψ
θ ψ φ θ φ θ ψ φ ψ

+ + + +  
   − − − +  

=  
− − + +  

   − + − − 








 

 (B.10) 

 

Implementing half-angle identities, Equation B.10 may be written as Equation B.11. 

 

( )
( )
( )
( )

2
2

0
22

2 2

2
2

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

x

y

z

C C C S S Sq

S C C C S Sq

q C S C S C S

q S S C C C S

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

 +     −  
=   

+   
     − 

 

 (B.11) 

 

Extracting the off-diagonal elements of Equation B.8 produces Equation B.12. 

 

0

0

0

0 0 2 2 0 0 cos sin

0 0 2 2 0 0 sin sin cos cos sin

0 2 0 0 2 0 sin

0 2 0 0 2 0 cos sin cos sin sin

2 0 0 0 0 2 sin cos

2 0 0 0 0 2 cos sin sin sin cos

x

y

z

x y

x z

y z

q q

q q

q q

q q

q q

q q

θ ψ
φ θ ψ φ ψ

θ
φ θ ψ φ ψ

φ θ
φ θ ψ φ ψ

    
    − −    
 − −   

=     +    
   
   

− −    




 

 

 (B.12) 

 

This algebraic system may be solved by adding and subtracting appropriate pairs of equations 

giving way to Equation B.13.  Therefore, s0, sx, sy, and sz are the unknown signs of the 

quaternion.   
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0

0

0

sin cos cos sin sin sin cos

cos sin cos sin sin sin

cos sin sin sin cos cos sin1

cos sin sin sin cos cos sin4

cos sin cos sin sin sin

sin cos cos

x

y

z

x y

x z

y z

q q

q q

q q

q q

q q

q q

φ θ φ θ ψ φ ψ
φ θ ψ φ ψ θ

θ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ

φ θ ψ φ ψ θ
φ θ φ

− + 
  + + 
  − +

= 
+ − 

  + −
 

+  sin sin sin cosθ ψ φ ψ

 
 
 
 
 
 
 
 

− 

 

 (B.13) 

 

Therefore, the off-diagonal elements of Equation B.8 provide only three additional pieces of 

information given by Equation B.14.   

0

0

0

1

1

1

x

y

z

s s

s s

s s

=

=

= −

 

 (B.14) 

 

Applying this information with Equation B.11 produces Equation 2.45 and is shown again here 

as Equation B.15. 

 

/ 2 / 2 / 2 / 2 / 2 / 20

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

x

y

z

c c c s s sq

s c c c s sq

c s c s c sq

s s c c c sq

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

+  
   −   

= ±   +   
   −     

 (B.15) 
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B.3 Quaternion Calculus 
 

Beginning with Equation 2.27 from Section 2.1.4 and restating it here as Equation B.16 yields, 

 

0

0

0

cos( / 2)

sin( / 2)
ˆˆ ˆ( ) ( ) ( )

sin( / 2)

sin( / 2)

x x

x y z

y y

z z

q

q E q
Q q q i q j q k

q E q

q E

Θ   
   Θ     

= = = + + + =     
Θ     

   Θ     
 (B.16) 

 

Equation B.16 may be differentiated yielding the time rate of change of the Euler-Rodrigues 

symmetric parameters with respect to the time rate of change of the Euler axis parameters as 

shown in Equation B.17. 

 

0 sin( / 2) 0

cos( / 2) sin( / 2)

cos( / 2) sin( / 2)2

cos( / 2) sin( / 2)

x x x

y y y

z z z

q

q E E

q E E

q E E

− Θ     
     Θ ΘΘ     

= +     
Θ Θ     

     Θ Θ     

ɺ

ɺɺɺ

ɺɺ

ɺɺ

 

(B.17) 

 

Applying Equation B.16 yields, 

 

0

0

0

0

1

2

x y z

z yx

z xy

y xz

q q qq
p

q q qq
q

q q qq
r

q q qq

− − −  
    −    =   −         −   

ɺ

ɺ

ɺ

ɺ

 

 (B.18) 

 

Equation B.18 is linear in both the noninertial angular rates and Euler-Rodrigues symmetric 

parameters.  Therefore, it may be written as the form given previously as Equations 2.50 and 

2.51 in Section 2.1.4. 
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0 00

01

02

0

x x

y y

z z

q qp q r

q qp r q

q qq r p

q qr q p

− − −    
    −    =   

−    
    −    

ɺ

ɺ

ɺ

ɺ

 

 (B.19) 

 

Derivation of the Quaternion Integral with Constant Rotation 

 

Beginning with Equation 2.50 we have: 

 

{ } { }[ ] 0Q Q= Κ =ɺ
 

             (B.20) 

Such that: 

0

001 1

02 2[ ]

0

T

p q r

p r q
K

q r p

r q p

ω
ω ω

− − − 
 − −  

= =   
−− ×   

 − 

�

� �  

 (B.21) 

: [ ]

0

[ ] 0

0

    
TWith p q r

r q

r p

q p

ω

ω

=

− 
 × = − 
−  

�

�  

 (B.22) 

 

We may then solve utilizing the first order separable homogenous differential equation 

techniques: 

 

Q
K

Q
=
ɺ

 

 (B.23) 
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ln( )

exp[ ]

  
Q

dt K dt
Q

Q Kt C

Q C Kt

=

= +

=

∫ ∫
ɺ

 

 (B.24) 

 

Where C is a constant with the value Qt=t0 and exp represents the matrix exponential.  The scalar 

and matrix expansion series expressions may be written as: 

 

Scalar: 
2 3

exp[ ] 1
2! 3! !

n
x x x x

e x x
n

= = + + + ⋅⋅ ⋅ +  

 (B.25) 

Matrix: 

exp[ ]
2! 3!

:        

A

nxn

AA AAA
e A I A

W here I is the Identity M atrix

= = + + + + ⋅ ⋅ ⋅  

 (B.26) 

Allowing A = Kt gives the following derivation by means of direct matrix multiplication of 

Equation B.21: 

2

4 4

2 2 2

1

4

:

    I xKK

Where p q r

ω

ω

= −

= + +

�

�
 

 (B.27) 

 

Applying Equation 2.27’s relationship and grouping the odd and even terms from the series 

expansion of the matrix exponential develops the following relationships: 

 

2 4 3 5

4 4

2
1

2! 4! 3! 5!

:
2

I

                                

Kt

xe K
w

t
Where

λ λ λ λ
λ

ω
λ

   
= − + + ⋅⋅ ⋅ + − + + ⋅⋅ ⋅   

   

=
�

 

 (B.28) 
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Inputting trigonometric relationships for the series expansions allows Equation B.28 to become 

Equation B.29. 

 

4 4

2
cos sin

2 2
I

Kt

x

t K t
e

ω ω
ω

    = +        
 

 (B.29) 

 

Equation B.24 then becomes Equation 2.52 and is presented as Equation B.30. 

 

04 4

2
cos sin

2 2
I x t t

t K t
Q Q

ω ω
ω =

    = +        
 

 (B.30) 

Quaternion Integration Example 

 

Integration of a quaternion, 
0t t

Q =
, with the initial conditions of the Euler angles set equal to zero 

and undergoing a constant rotation, ω� , over time, t, results in the following solution sequence. 

 

0

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2 / 2 / 2

1

0

0

0

t t

c c c s s s

s c c c s s
Q

c s c s c s

s s c c c s

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

=

+   
   −   

= ± =   +   
   −   

 

[ ]
2 2 2

      
T

p q r

p q r

ω

ω

=

= + +

�

 

 

04 4

2
cos sin

2 2
I x t t

t K t
Q Q

ω ω
ω =

    = +        
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cos
2

sin
2

sin
2

sin
2

t

p t

Q
q t

r t

ω

ω
ω

ω
ω

ω
ω

  
    

    
       

=  
           

 
            

 

 

B.4 Quaternion Rotation Sequences 
 

B.4.1 “3-2-1” Standard Aircraft Rotation Sequence [37] 
 

The “3-2-1” standard Euler angle aircraft rotation sequence is shown in Figure B.2. 

 
Figure B.2:  Euler Angle “3-2-1” Sequence [37] 

 

The quaternion dynamic transformation model for a standard aircraft “3-2-1” rotation is given by 

Equation B.31. 
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0

0

0

0

1

2

x y z

z yx

z xy

y xz

q q qq
p

q q qq
q

q q qq
r

q q qq

− − −  
    −    =   −         −   

ɺ

ɺ

ɺ

ɺ

 

 (B.31) 

 

The initial conditions of the “3-2-1” rotation and the conversion from quaternion formulation to 

Euler angle convention are given as Equations B.32 and B.33 respectively. 

 

0 (0) cos cos cos sin sin sin
2 2 2 2 2 2

(0) cos cos sin sin sin cos
2 2 2 2 2 2

(0) cos sin cos sin cos
2 2 2 2

x

y

q

q

q

ψ θ φ ψ θ φ

ψ θ φ ψ θ φ

ψ θ φ ψ

           = +           
           

           = −           
           

       = +       
       

sin
2 2

(0) sin cos cos cos sin sin
2 2 2 2 2 2

zq

θ φ

ψ θ φ ψ θ φ

   
   
   

           = −           
           

 

 (B.32) 

 

0

0

2 2

0

2 2

arcsin( )

2( )
arctan

1 2( )

2( )
arctan

1 2( )

   y x z

x y z

x y

z x y

y z

q q q q

q q q q

q q

q q q q

q q

θ

φ

ψ

= −

 +
=   − + 

 +
=   − + 

 

 (B.33) 
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B.4.2 “1-2-3” Standard Spacecraft Rotation Sequence [37] 
 

The “1-2-3” standard Euler angle spacecraft rotation sequence is shown in Figure B.3. 

 
Figure B.3:  Euler Angle “1-2-3” Sequence [37] 

 

The quaternion dynamic transformation model for a standard aircraft “1-2-3” rotation is given by 

Equation B.34. 

0

0

0

0

1

2

z y x

y zx

x zy

x yz

q q qq
p

q q qq
q

q q qq
r

q q qq

− − −  
    −    =   −         −   

ɺ

ɺ

ɺ

ɺ

 

 (B.34) 

 

The initial conditions of the “1-2-3” rotation and the conversion from quaternion formulation to 

Euler angle convention are given as Equations B.35 and B.36 respectively. 

 

0 (0 ) s in cos co s co s s in s in
2 2 2 2 2 2

(0 ) co s s in cos s in cos s in
2 2 2 2 2 2

(0 ) cos cos s in s in sin
2 2 2 2

x

y

q

q

q

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ

           = +           
           

           = −           
           

       = +       
       

co s
2 2

(0 ) co s co s cos s in s in s in
2 2 2 2 2 2

zq

θ ψ

φ θ ψ φ θ ψ

   
   
   

           = −           
           

 

 (B.35) 
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0

0

2 2 2 2

0

0

2 2 2 2

0

arcsin( )

2( )
arctan 2

2( )
arctan 2

   y x z

x y z

x y z

x y z

x y z

q q q q

q q q q

q q q q

q q q q

q q q q

θ

φ

ψ

= +

 − −
=   − − + + 

 − −
=   − − + 

 

 (B.36) 
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Appendix C 

Extended Kalman Filter Supplement 
 

C.1 Statistical Information [6, 28, 30, 31, 41, 43] 
 

A summation of the calculation of the statistical variables and nomenclature utilized in the 

construction of the extended Kalman filter are presented in Table C.1. 

 

Variable Process Description 

x  Measured/Estimated State Vector 

x  Measured/Estimated State Scalar 

~ (0, )w % Q  Random Number 
Normal distribution between 0 

and Q 

{ }E xµ =  [ , ]xpdf x t dx

∞

−∞
∫  Mean of x  

2 { }V xσ =  
2( ) [ , ]x pdf x t dxµ

∞

−∞

−∫  Variance of x  

σ  { }V x  Standard Deviation of x  

P  ( )( ){ }ˆ ˆ- -x x x x
T

E  State Error Covariance Matrix 

Q  

2

2

{ } { }

{ } { }

E p E pq

E pq E q

 
 
 

 Process Noise Covariance 

R  ( ){ }( )TE x xµ µ− −  Measurement Noise Covariance 

Table C.1:  Summary of Statistical Variables 

 

The most commonly accepted distribution for state estimation utilizes the Gaussian random 

process.  For a scalar, x, the Gaussian or normal probability density function is shown as 

Equation C.1 and for a multidimensional case for a vector, X, Equation C.2 [41].   

 

2

2

1 ( )
( ) exp

22

x
p x

µ
σσ π

 −
= − 

 
 

   (C.1) 
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1

1/ 2

1 1
( ) exp ( ) ( )

det[(2 )] 2
x x x

Tp R
R

µ µ
π

− = − − −  
 

   (C.2) 

 

The notation for this distribution is displayed as Equation C.3. 

 

( ) ~ ( , )xp % Rµ  

   (C.3) 

 

The central limit theorem states a given distribution with mean, μ, and variance, σ
2
, the sample 

distribution (regardless of the original shape of the distribution) will approach a Gaussian 

distribution with mean, μ, and variance, σ
2
/N, as the sample size, N, continues to increase [41].  

The limiting form of the distribution may be shown as Equation C.4. 

X
Z

n

µ
σ

−
=  

   (C.4) 

For a zero-mean Gaussian white-noise process, the following properties hold true: 

 

2 2

{ } 0

{( ) }

 xE

E x

µ

σ µ

= =

= −
 

   (C.5) 

 

For a normal or Gaussian distribution with a mean, μ, and standard deviation, σ, the probabilities 

associated with a normal or Gaussian distribution are shown in Table C.2 [41]. 

 

Bounds Percentage of data within the Bounds 

( )P Xµ σ µ σ− < < +  0.6827  

( 2 2 )P Xµ σ µ σ− < < +  0.9545  

( 3 3 )P Xµ σ µ σ− < < +  0.9973  

Table C.2:  Data Distribution for a Gaussian or Normal Distribution 
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C.2 Continuous to Discrete Transformation  

[30, 42, 43] 
 

Continuous and discrete-time data measurements occur in different manners.  While continuous-

time domain measurements signify a collection of a continuous stream of data representing 

exactly what is being measured, in the same manner as an analog measurement, digital or 

discrete-time data measurements sample a continuous stream at discrete data points  Creating a 

representation of a discrete-time signal in the continuous-time domain requires data utilized in 

discrete measurement collection to be extrapolated using recursive mathematical techniques or 

by being held constant.  This is commonly known as a first-order and zero-order hold 

respectively.  A first-order hold retains the value of the previous sample, along with the present 

sample, and predicts, by extrapolation the next sample value.  A higher-order hold such as a 

second-order hold will reconstruct a signal more accurately; however, is subject to an 

undesirable time delay in the period. 

 

The conversion process utilized in digital signal processing of a transformation from the 

continuous-time to discrete-time representation is accomplished through the use of a bilinear 

transformation or “Tustin Method’s”.  The bilinear transformation is a first-order approximation 

of the natural logarithmic function mapping the z-plane to the s-plane given Equation C.6 and the 

sampling interval, T. 

 

sTz e=  

   (C.6) 

 

The sampling interval is then used in the first-order Padé approximation given as Equation C.7. 

 

1

1

sTz e
sT

= ≈
−

 

   (C.7) 

 

In discrete-time, the matrix, kT , may be found by substituting “s” as a function of “z”  This 

relationship uses the Laplace transform of the continuous-time matrix, ( )T t , as shown in 

Equation C.8. 

 

( )
( )k s f z

T T s
=

=  

   (C.8) 

 

The derivation method utilizes the Padé approximation as given in Equation C.9, where a zero-

order hold is represented by n =1 and a first-order hold by n = 2. 
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11
n

n z
s

T

− −
=  
 

 

   (C.9) 

 

The inverse of this mapping and the first-order bilinear approximation is shown in the sequence 

presented by Equation C.10. 

1

1

1
ln( )

2 1

1

2 1

1

s z
T

z

T z

z

T z

−

−

=

−
≈

+
−

≈
+

 

 (C.10) 

 

An alternative approach to utilizing a Taylor-Series expansion of a fundamental matrix,Φ , for a 

system which uses a time invariant state transition matrix with no external input or noise may be 

used.  In state-space formulation, the equation is given by 

 

x Fx=ɺ  

 (C.11) 

 

The fundamental matrix is then used to propagate the state forward for any time, t0 to tf, as 

shown in Equations C.12 and C.13.  Utilizing the inverse Laplace transform. 

 

0 0( ) ( ) ( )x t t t x t= Φ −  

 (C.12) 

1 1( ) [( ) ]It s F− −Φ = −L   

 (C.13) 

 

Taking the inverse Laplace transform allows for the fundamental matrix,Φ , in continuous-time 

to be expressed and approximated through the use of a Taylor-Series expansion. 

 

( ) ( ) ( )2 3

( )
2! 3! !

I

n

Ft Ft Ft Ft
t e Ft

n
Φ = = + + + ⋅⋅ ⋅  

 (C.14) 
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The discrete-time fundamental matrix, kΦ , may be determined by evaluating the continuous-

time fundamental matrix at the sampling time, Ts, and with an approximation utilizing the first 

two terms of the Taylor-Series expansion. 

 

( )k sTΦ = Φ  

 (C.15) 
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Appendix D 

Two-Dimensional Accelerometer 

Array Supplement 
 

D.1 Longitudinal Array Offsets 
 

Accelerometer Offset from Accelerometer #7 – Degrees (Radians) 

1 -90 (-1.5708) 

2 -75 (-1.3090) 

3 -60 (-1.0472) 

4 -45 (-.78540) 

5 -30 (-.52360) 

6 -15 (-.26180) 

7 0 (0) 

8 15 (-.26180) 

9 30 (-.52360) 

10 45 (-.78540) 

11 60 (-1.0472) 

12 75 (-1.3090) 

13 90 (-1.5708) 

Table D.1:  Longitudinal Accelerometer Array Offsets [2, 6] 

D.2 Transverse Array Offsets 
 

Accelerometer Offset from Accelerometer #1 – Degrees (Radians) 

1  0  (0) 

2 15   (.26180) 

3 30   (.52360) 

4 45   (.78540) 

5 60   (1.0472) 

6 75   (1.3090) 

7 90   (1.5708) 

8 105 (1.8326) 

9 120 (2.0944) 

10 135 (2.3562) 

11 150 (2.6180) 

12 165 (2.8798) 

13 180 (3.1416) 

Table D.2:  Transverse Accelerometer Array Offsets 
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D.3 Resolution of Center-of-Gravity Acceleration to   

 Device Location [23, 32] 
 

For accurate and reliable operation of the two-dimensional accelerometer array, the acceleration 

experienced at the center-of-gravity of the vehicle must be resolved to the device accelerometer 

locations.  Allow the inertial reference system to be represented as XYZ and the vehicle 

reference system to be represented as xyz for both translational and rotational systems.  R is the 

position vector of the origin of the xyz system, where r and r’ are position vectors of point P in 

the XYZ and xyz systems respectively.  The variable, r, represents the distance from the inertial 

frame origin to a particular accelerometer on the device, while r’ represents the distance from the 

vehicle’s center-of-gravity to the same accelerometer location.  The angular rotation rate is given 

asω� .  These parameters are shown in Figure D.1 from [32].  The derivation utilized in this 

section assumes the vehicle to be a rigid-body with respect to the manner in which the device is 

mounted to the vehicle. 

 
Figure D.1:  Translational and Rotational Reference System Relative 

 to an Inertial Frame of Reference [32] 

 

Therefore 

'r R r= +
�� �

 
   (D.1) 

Differentiating Equation D.1 with respect to time yields Equation D.2. 

 

' '( )r R r rω= + + ×
� �� � �ɺɺ ɺ  

' '( )iv r R r rω′= = + + ×
� �� � � �ɺɺ ɺ  

   (D.2) 

 

P 

C.G 
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The variable iv is the linear velocity term experienced by the i
th

 accelerometer in the inertial 

coordinate frame system.  Due to the rotation of the vehicle about the vehicle’s center-of-gravity, 

the 
'rω ×

� �
term arises where ω�  is the rotation rate vector of the vehicle.  Differencing 

Equation D.2 gives the acceleration of the device in the reference coordinate frame where 

Equation D.3 results from the collection of like terms and the introduction of acceleration as the 

second derivative of position.   

 

' ' ' 'r R r r r r rω ω ω ω ω= + + × + × + × + × ×
� � � � � �� � � � � �ɺɺɺɺ ɺɺ ɺ ɺ  

 

' ' ' '2( )ia r R r r r rω ω ω ω= = + + × + × + × ×
� � � � �� � � � � �ɺɺ ɺɺɺ ɺɺ ɺ  

   (D.3) 

In Equation D.3, ia represents the acceleration measured by the i
th

 accelerometer in the inertial 

frame of reference.  The derivatives of the vector, R, are the velocity and acceleration vectors 

experienced by the center-of-gravity, origin, and of the vehicle.  Newton’s second law must now 

be applied assuming there is no change in the mass of the vehicle. 

( )
d

F mv m
dt

= =
� �

ɺ v mv ma+ =
� � �ɺ  

   (D.4) 

 

As stated previously, the vehicle is a rigid body.  Therefore, r’ is constant because it is the 

distance from the vehicle’s center-of-gravity to the accelerometer locations along the device 

arrays.  Thus, the subsequent derivatives are zero and Equations D.5 and D.6 may be brought 

about from Equation D.2 and D.3.  Equations D.5 and D.6 define the velocity and acceleration at 

the accelerometer locations in the inertial coordinate frame when the translational velocity, 

acceleration of the vehicle’s center-of-gravity, and the vehicle’s rotational rates and distance 

from the vehicle’s center-of-gravity to the device center-of-gravity are known precisely.  The last 

term in Equation D.5 along with the last two terms in Equation D.6 is representative of the 

moment arm contribution to the measured velocity and acceleration of a displaced accelerometer.   

 

'( )i vehv V rω= + ×
� �� �

 

   (D.5) 

' ' ' 'i veha R r r a r rω ω ω ω ω ω= + × + × × = + × + × ×
� � � � � � �� � � � � �ɺɺ ɺ ɺ  

   (D.6) 

 

In this work, resolution of the vehicle’s accelerations at the center-of-gravity to the instrument 

location is considered only.  Therefore, Equation D.5 is not utilized.  The sensor coordinate 

frame axes for both the longitudinal and transverse accelerometer arrays are assumed to be 

orthogonal and only translated along the vehicle coordinate frame axes.  Thus, carrying out the 

first cross-product for the i
th

 accelerometer gives the following derivation as Equation D.7. 
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'

ˆˆ ˆ ˆ( )

ˆ( )

ˆ( )

i i i

i i i

i i i i i i

p x i j k qz ry i

r q y p q r pz rx j

r z x y z py qx k

ω

 −  
    

× = × = = − −     
     −     

ɺ ɺ ɺ
�ɺ ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ

 

   (D.7) 

 

. .

. .

. .

:

 

 

 

  

   

  

i C G Vehicle C G

i C G Vehicle C G

i C G Vehicle C G

x Fuselage Station Fuselage Station

Where y Buttline Station Buttline Station

z Waterline Station Waterline Station

−   
   

= −   
   −   

 

 

   (D.8) 

 

Performing the vector triple product gives the following derivation sequence as Equation D.9. 

 

( )
( )

2 2

2 2

2

ˆ( )

ˆ' ( )

ˆ( )

ˆˆˆ ˆ

ˆ

( ) ( ) ( )

i i i

i i i

i i i

i i i i

i i i i

i i i i i i
i

p p x p qz ry i

r q q y q pz rx j

r r z r py qx k

qpy q x rpz r x ii j k

p q r p y pqx rqz r y j

qz ry pz rx py qx p z

ω ω

 −      
        

× × = × × = × − − =         
         −        

− + −

= − − − −

− − − − −

� � �

( )
( )
( )
( )

2

2 2

2 2

2 2

ˆ

ˆ( )

ˆ: ' ( )

ˆ( )

 

i i i

i i i

i i i

i i i

prx q z qry k

q r x pqy rpz i

Simplifying yields r pqx p r y rqz j

prx qry q p z k

ω ω

 
  
 
 

+ − +  

 − + + +
  

× × = − − + + − 
 

+ − +  

� � �

 

   (D.9) 

 

Substituting Equation D.7 and Equation D.9 into Equation D.6 allows for the acceleration of the 

vehicle’s center-of-gravity to an i
th

 accelerometer translated along the vehicle axes to be resolved 

and is shown as Equation D.10. 
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2 2

2 2

2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x i

i y i

z iCG

a q r pq r rp q x

a a pq r p r rq p y

a pr q qr p p q z

 − + − +   
    

= + + − − −    
    − + − +    

�
ɺ ɺ

� �
ɺ ɺ

�
ɺ ɺ

 

 (D.10) 

 

The proposed two-dimensional accelerometer array device possesses accelerometers rotated 

about the vehicle’s primary and secondary axes.  Therefore, a transformation must be applied to 

Equation D.10 to account for axis misalignment angles.  Because the angular displacement of the 

accelerometers along each array from the vehicle axes are known, the use of the fixed-reference 

frame to body-fixed coordinate frame transformation may be applied where the vehicle 

coordinate frame becomes the reference frame and the accelerometer is the body being rotated 

from the reference coordinate frame.  Applying the transformation, Earth BodyT − , previously 

from Equation 2.14 to Equation D.5 and D.6 gives Equations D.11 and D.12 respectively. 

 

'

, ( )i misalign Earth Body iv T V rω−  = ∗ + × 
� �� �

 

 (D.11) 

'

,i misalign Earth Body ia T a r rω ω ω−  = ∗ + × + × × 
� � �� � � �ɺ  

 (D.12) 

 

Where the transformation, Earth BodyT − , is stated again using the misalignment angles of the i
th

 

accelerometer as shown in Equation D.13. 

 

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

i i i i i

Earth Body i i i i i i i i i i i i

i i i i i i i i i i i i

T

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

−

− 
 = − + 

+ −  

 

 

 (D.13) 

With the transformation equation, Earth BodyT − , now defined, the acceleration of the vehicle’s 

center-of-gravity to the i
th

 accelerometer for each vehicle axis may be resolved and are shown as 

Equations D.14, D.15, and D.16. 

 

, , , , , , , , ,cos cos cos sin sin x i misalign x i x i x i y i x i x i z i x ia a a aθ ψ θ ψ θ= + −          
� � � �

 

 

 (D.14) 
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, , , , , , ,

, , , , , ,

, , ,

sin sin cos cos sin

sin sin sin cos cos

sin cos

 y i misalign x i y i y i y i y i y i

y i y i y i y i y i y i

z i y i y i

a a

a

a

φ θ ψ φ ψ

φ θ ψ φ ψ

φ θ

 = − 

 + + 

 +  

� �

�

�

 

 (D.15) 

, , , , , , ,

, , , , , ,

, , ,

cos sin cos sin sin

cos sin sin sin cos

cos cos

 z i misalign x i z i z i z i z i z i

y i z i z i z i z i z i

z i z i z i

a a

a

a

φ θ ψ φ ψ

φ θ ψ φ ψ

φ θ

= +  

+ −  

+   

� �

�

�

 

 (D.16) 

Where: 
2 2

, ,

2 2

, ,

2 2

, ,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x i x CG x x x

y i y CG y y y

z i z CG z z z

a a q r x pq r y rp q z

a a pq r x p r y rq p z

a a pr q x qr p y p q z

= − + + − + +

= + + + + − +

= + − + − − +

� �
ɺ ɺ

� �
ɺ ɺ

� �
ɺ ɺ

 

 (D.17) 
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D.4 Simulated Acceleration Measurements 
 

The following are accelerometer measurements along the longitudinal accelerometer array,

,z igA , and accelerometer measurements along the transverse accelerometer array, 
,y igA , for 

each aircraft simulation maneuver performed.  The accelerometer measurements along each 

accelerometer array are shown with and without Gaussian noise inputs, where the variance of the 

accelerometer noise inputs were simulated at a value of 0.000015 gee
2
. 

 

Phase I – Longitudinal Maneuver with %o Turbulence 

 
Figure D.2:  Longitudinal Accelerometer Array Measurements –  

Phase I Nonlinear Aircraft Model 

 
Figure D.3:  Transverse Accelerometer Array Measurements –  

Phase I Nonlinear Aircraft Model 
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Phase I – Longitudinal Maneuver with Turbulence 

 
Figure D.4:  Longitudinal Accelerometer Array Measurements – Phase I Nonlinear Aircraft 

Model with Turbulence 

 

 
Figure D.5:  Transverse Accelerometer Array Measurements – Phase I Nonlinear Aircraft Model 

with Turbulence 
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Phase II – Transverse Maneuver with %o Turbulence 

 
Figure D.6:  Longitudinal Accelerometer Array Measurements –  

Phase II Nonlinear Aircraft Model 

 

 
Figure D.7:  Transverse Accelerometer Array Measurements –  

Phase II Nonlinear Aircraft Model 
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Phase II – Transverse Maneuver with Turbulence 

 
Figure D.8:  Longitudinal Accelerometer Array Measurements – Phase II Nonlinear Aircraft 

Model with Turbulence 

 

 
Figure D.9:  Transverse Accelerometer Array Measurements – Phase II Nonlinear Aircraft 

Model with Turbulence 
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Phase III – Longitudinal/Transverse Maneuver with %o Turbulence 

 
Figure D.10:  Longitudinal Accelerometer Array Measurements –  

Phase III Nonlinear Aircraft Model 

 

 
Figure D.11:  Transverse Accelerometer Array Measurements –  

Phase III Nonlinear Aircraft Model 
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Phase III – Longitudinal/Transverse Maneuver with Turbulence 

 
Figure D.12:  Longitudinal Accelerometer Array Measurements –  

Phase III Nonlinear Aircraft Model with Turbulence 

 

 
Figure D.13:  Transverse Accelerometer Array Measurements –  

Phase III Nonlinear Aircraft Model with Turbulence 
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D.5 Simulated Imposed Loading Measurements 
 

The following figures are the imposed loading measurements along the vehicle axes during each 

of the simulated aircraft maneuvers performed.  In each of the figures generated, “Gen” refers to 

the imposed loading calculation determined through the use of the body angular rate terms 

discussed in Section 4.2.1.  The term, “SD” refers to the imposed loading calculation determined 

through the use of the signal differencing method as discussed in Section 4.2.2. 

 

Phase I – Longitudinal Maneuver with %o Turbulence 

 

 
Figure D.14:  Phase I Longitudinal Array Imposed Load Measurements – Nonlinear Aircraft 

Model 

 
Figure D.15:  Phase I Transverse Array Imposed Load Measurements – Nonlinear Aircraft Mode 
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Phase I – Longitudinal Maneuver with Turbulence 

 
Figure D.16:  Phase I Longitudinal Array Imposed Load Measurements – Nonlinear Aircraft 

Model with Turbulence 

 
Figure D.17:  Phase I Transverse Array Imposed Load Measurements – Nonlinear Aircraft 

Model with Turbulence 
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Phase II – Transverse Maneuver with %o Turbulence 

 
Figure D.18:  Phase II Longitudinal Array Imposed Load Measurements – Nonlinear Aircraft 

Model  

 
Figure D.19:  Phase II Transverse Array Imposed Load Measurements – Nonlinear Aircraft 

Model  
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Phase II – Transverse Maneuver with Turbulence 

 
Figure D.20:  Phase II Longitudinal Array Imposed Load Measurements – Nonlinear Aircraft 

Model with Turbulence 

 
Figure D.21:  Phase II Transverse Array Imposed Load Measurements – Nonlinear Aircraft 

Model with Turbulence 
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Phase III – Longitudinal/Transverse Maneuver with %o Turbulence 

 
Figure D.22:  Phase III Longitudinal Array Imposed Load Measurements – Nonlinear Aircraft 

Model  

 
Figure D.23:  Phase III Transverse Array Imposed Load Measurements – Nonlinear Aircraft 

Model 
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Phase III – Longitudinal/Transverse Maneuver with Turbulence 

 
Figure D.24:  Phase III Longitudinal Array Imposed Load Measurements – Nonlinear Aircraft 

Model with Turbulence 

 
Figure D.25:  Phase III Transverse Array Imposed Load Measurements – Nonlinear Aircraft 

Model with Turbulence 
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D.6 Two-Dimensional Accelerometer Array Simulink   

 Models 
 

The figures presented in this section display the two-dimensional accelerometer array models 

constructed and implemented in Simulink. 

 

 
Figure D.26:  Generalized Longitudinal and Transverse Accelerometer Measurement Systems 
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Figure D.27:  Longitudinal Accelerometer Array Measurement Subsystem 
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Figure D.28:  Transverse Accelerometer Array Measurement Subsystem 
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Appendix E 

$onlinear Aircraft Model 
 

E.1 Modeling Equations 
 

In addition to the rigid-body equations of motion provided in Section 2.1.2, additional equations 

are needed to fully describe and characterize the motion of an aircraft.  This section of work 

utilizes references [3], [4], and [32] to provide the additional derivations necessary for correct 

and accurate construction of the rigid-body nonlinear aircraft simulation model. 

 

E.1.1 Aircraft Stability Axes Coordinate Frame 
 

The stability axes coordinate frame of an aircraft simulation model utilizes three primary 

parameters such as the true velocity of the aircraft, TV , defined as the magnitude of the body 

axes velocities.  The angle-of-attack,α , which is the angle of pitch of the aircraft relative to the 

oncoming wind.  And third, the yaw or heading angle,β , relative to the oncoming wind.  

Equations E.1 through E.6 provide the necessary transformation equations from the vehicle’s 

body axes to the stability axes and stability axes back to the vehicle’s body axes. 

 

Body Axes to Stability Axes: 

1tan
w

u
α −  =  

 
 

   (E.1) 

1sin
T

v

V
β −  

=  
 

 

   (E.2) 

2 2 2

TV u v w= + +  

   (E.3) 

Stability Axes to Body Axes: 

cos cosTu V α β=  

   (E.4) 

sinTv V β=  

   (E.5) 

sin cosTw V α β=  

   (E.6) 
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The force equations utilized are: 

( )

( )

cos sin tan
cos

cos cos cos sin sin
cos

T

T

LOM
q p r

V

g

V

α α α β
β

θ φ α θ α
β

= − + −

+ +

ɺ

 

   (E.7) 

( )

( )

1
sin cos cos sin

cos sin cos sin sin cos cos cos sin sin

T

T

p r YOM DOM
V

g

V

β α α β β

θ φ β θ β α θ φ β α

= − + +

+ + −

ɺ

 

   (E.8) 

( )
sin cos

cos cos sin sin cos cos cos sin sin

TV YOM DOM

g

β β

θ φ α θ α β θ φ β

= −

+ − +  

ɺ

 

   (E.9) 

Where: 

cos sin
, ,  

D T Y L T
DOM YOM LOM

m m m

α α− +
= = =  

             (E.10) 

 

It is also assumed that the thrust force, T, acts along the positive primary axis of the aircraft, xb.  

For longitudinal and transverse acceleration loading of the accelerometers along each array, the 

primary, secondary, and tertiary acceleration loading at the aircraft’s center-of-gravity must be 

defined respectively.  Figure E.1 displays the normal and axial forces and moments, along with 

the lift and drag force directions.  The angle-of-attack is also shown in Figure E.1 

 
Figure E.1:  Forces and Moments in the Normal and Axial Directions along an Airfoil [4] 
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In Figure E.1, the velocity is represented byV
�

, flowing over the airfoil and the drag, D
�

, acting 

collinear.  The lift variable, L
�

, is perpendicular to the drag force.  The variable A
�

 represents the 

axial force direction of the airfoil, while %
�

represents the airfoil normal vector.  The angle-of-

attack is given as α , which represents the angle between the vehicle’s primary axis, bx , and 

the vehicle’s velocity vector.  Utilizing Figure E.1, the lift and drag forces acting along the 

vehicle’s primary, secondary, and tertiary axes may be determined yielding the imposed, inertial 

accelerations measured by the accelerometers placed at the vehicle’s center-of gravity.    

 

Equations E.11, E.12, and E.13 summarize the vehicle’s imposed loading and the weight of the 

vehicle.  The imposed inertial loads, 
bX ,ImposedF , 

bY ,ImposedF , and 
bZ ,ImposedF  result 

from the thrust and aerodynamic forces imparted on the vehicle during the simulated maneuvers 

performed.   

, bX ,Imposed bX CG xA F W= +  

 (E.11) 

, bY ,Imposed bY CG yA F W= +  

 (E.12) 

, bZ ,Imposed bZ CG zA F W= +  

 (E.13) 

 

Since Newton’s second law is being applied, the gravitational force in the body-fixed coordinate 

frame must also be expressed in the Earth-fixed coordinate frame.  The gravitational force is 

given as (0, 0, W) in the Earth-fixed frame.  Therefore, the gravitational force vector in the body-

fixed coordinate frame is given as 

 

sin( )

sin( )cos( )

cos( )cos( )

b

b

b

x

y

z

W

W mg

W

θ
φ θ
φ θ

  − 
   

=   
   

  

 

 (E.14) 

E.1.2 Stability Derivatives and Aircraft $omenclature 
 

The forces and moments acting upon an aircraft are the sum of the loads due to the gravitational 

force, aerodynamic loading, and thrust.  The force vector, FAerodynamic, given previously in 

Equation 2.9 may be written in conjunction with the body-fixed gravitational components as 

Equation E.15. Figure E.2 displays the body-fixed coordinate frame components of the 

gravitational force. 

 



225                APPE%DIX E. %O%LI%EAR AIRCRAFT MODEL 

 

   

0

2

0

0

0

cos( ) sin( )
1

0 sin( )cos( )
2

sin( ) cos( )cos( )

cos( ) sin( )

0 sin( )cos( )

sin( ) cos( )cos( )

L T

D

Y T

L T

D

Y T

C

F W pV S C T mg

C

C

qS C T mg

C

α θ
φ θ

α φ θ

α θ
φ θ

α φ θ

−    
     

+ = + +     
     −    

−    
     

= + +     
     −    

� �

 

 (E.15) 

 

 
Figure E.2:  Gravitational Forces in the Body-Fixed Coordinate Frame [4] 

 

The external moment vector, MExternal, given previously in Equation 2.10 may be written as 

Equation E.16.  Figure E.3 represents the body-fixed components of the aerodynamic forces and 

moments.  

 

21

2
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m m
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bC bC
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 (E.16) 
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Figure E.3:  Aerodynamic Forces and Moments in the Body-Fixed Coordinate Frame [4] 

 

The force and moment coefficients are shown below in Equations E.17 through E.22. 

 

Force Coefficients 
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( )
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c
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 (E.18) 

( )
0 2 p r a r

Y Y Y Y Y Y a Y r

T

b
C C C C p C r C C

Vβ δ δ
β δ δ= + + + + +  

 (E.19) 

Moment Coefficients 

( )
0 2 p r a r

l l l l l l a l r

T

b
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 (E.20) 

( )
0 2 q e fm m m m m m e m f

T

c
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ɺ
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 (E.21) 

( )
0 2 p r a r

n n n n n n a n r

T

b
C C C C p C r C C

Vβ δ δ
β δ δ= + + + + +  

 (E.22) 
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The constants and stability derivatives utilized in the nonlinear aircraft simulation model during 

this feasibility study conducted are given in Tables E.1 through E.7 along with their respective 

values.  In Tables E.1 through E.6, the “naught” terms represent dimensionless parameters while 

the other parameters are per radian.  Figures E.4, E.5, and E.6 represent the aircraft response 

parameters during each phase of the feasibility study conducted. 

 

Phase I – Longitudinal Maneuver 

 
Figure E.4:  Longitudinal Maneuver Aircraft Simulation Parameters 
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Phase II – Transverse Maneuver 

 
Figure E.5:  Transverse Maneuver Aircraft Simulation Parameters 

 

Phase III – Longitudinal/Transverse Maneuver 

 
Figure E.6:  Longitudinal/Transverse Maneuver Aircraft Simulation Parameters 
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Variable Description Value 

LC  Total Lift Coefficient Equation E.17 

0LC  Initial Lift Coefficient 0.459069 

LC
α

 Lift Change with respect to α  4.566721 

LC
αɺ

 Lift Change with respect to αɺ  2.420000 

qLC  Lift Change with respect to pitch rate 8.049999 

e
LC
δ

 Lift Change with respect to eδ   0.423988 

f
LC
δ

 Lift Change with respect to fδ  1.145916 

Table E.1:  Lift Force Aerodynamic Coefficients 

 

 

 

 

 

 

 

 

Variable Description Value 

DC  Total Drag Coefficient Equation E.18 

0DC  Initial Drag Coefficient 0.040905 

DC
α

 Drag Change with respect to α  0.469378 

DC
αɺ

 Drag Change with respect to αɺ  0.0 

qDC  Drag Change with respect to pitch rate 0.0 

e
DC

δ
 Drag Change with respect to eδ  0.017762 

f
DC

δ
 Drag Change with respect to fδ  0.0 

Table E.2:  Drag Force Aerodynamic Coefficients 
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Variable Description Value 

YC  Total Side Force Coefficient Equation E.19 

0YC  Initial Side Force Coefficient 0.0 

YC
β

 Side Force Change with respect to β  -0.675760 

pYC  Side Force Change with respect to roll rate 0.0 

rYC  Side Force Change with respect to yaw rate 0.0 

a
YC
δ

 Side Force Change with respect to aδ  0.0 

r
YC
δ

 Side Force Change with respect to rδ  -0.658901 

Table E.3:  Side Force Aerodynamic Coefficients 

 

 

 

 

 

 

 

Variable Description Value 

lC  Total Rolling Moment Coefficient Equation E.20 

0l
C  Initial Rolling Moment Coefficient 0.0 

lC
β

 Rolling Moment Change with respect to β  -0.023000 

plC  Rolling Moment Change with respect to roll rate -0.450000 

rl
C  Rolling Moment Change with respect to yaw rate 0.2650000 

a
lC
δ

 Rolling Moment change with respect to aδ  -0.1719860 

r
lC
δ

 Rolling Moment change with respect to rδ  -0.0022900 

Table E.4:  Rolling Moment Aerodynamic Coefficients 
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Variable Description Value 

mC  Total Pitching Moment Coefficient Equation E.21 

0mC  Initial Pitching Moment Coefficient 0.489826 

mC
α

 Pitching Moment Change with respect to α  -4.585108 

qmC  Pitching Moment Change with respect to pitch rate -0.366000 

mC
αɺ

 Pitching Moment Change with respect to αɺ  -11.00000 

emC
δ

 Pitching Moment change with respect to eδ  -1.972694 

fmC
δ

 Pitching Moment change with respect to fδ  0.0 

Table E.5:  Pitching Moment Aerodynamic Coefficients 

 

 

 

 

 

 

 

 

Variable Description Value 

nC  Total Yawing Moment Coefficient Equation E.22 

0nC  Initial Yawing Moment Coefficient 0.0 

nC
β

 Yawing Moment Change with respect to β  0.254531 

pnC  Yawing Moment Change with respect to roll rate -0.11000 

rnC  Yawing Moment Change with respect to yaw rate -0.20000 

a
nC
δ

 Yawing Moment change with respect to aδ  0.021772 

r
nC
δ

 Yawing Moment change with respect to rδ  -0.107716 

Table E.6:  Yawing Moment Aerodynamic Coefficients 
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Variable Description Value 

q  Dynamic Pressure 
21

2
TVρ  

S  Wing Platform Area 300.00 ft 

b  Wingspan 30.00 ft 

c  Wing Chord 11.32 ft 

m  Aircraft Mass 756.53 slugs 

p  Air Density 0.001496 slug/ft
3
 

g  Acceleration of Gravity 32.17 ft/sec
2
 

xxI  Primary Axis Mass Moment of Inertia 8691.46 slug-ft
2 

yyI  Secondary Axis Mass Moment of Inertia 70668.58 slug-ft
2
 

zzI  Tertiary Axis Mass Moment of Inertia 70418.67 slug-ft
2
 

xzI  Cross Product Mass Moment of Inertia 0.0 slug-ft
2
 

xyI  Cross Product Mass Moment of Inertia 151.44 slug-ft
2
 

yzI  Cross Product Mass Moment of Inertia 0.0 slug-ft
2
 

Table E.7:  Aircraft Aerodynamic Constants 
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Figure E.7:  Nonlinear Aircraft Simulink Model 
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Figure E.8:  Simulink Aerodynamic and Equations of Motion Model 
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Appendix F 

Supplemental Figures 
 

This appendix section displays additional figures in support of the work and study conducted. 

 

F.1 Section 4.4.1 – Comparative Analysis of Algorithm 

 Operation and Sensor $oise Affects: Part I 
 

In this section of the appendix, supplemental figures omitted from Section 4.4.1 for conciseness 

are presented for each phase of the feasibility study conducted to demonstrate correct operation 

of the algorithm method developed utilizing sensor noise values as given in [50].  A summation 

of the maximum and mean absolute attitude and bias estimation errors for each phase of the 

feasibility study performed was presented previously in Section 4.4.1 in Tables 4.28 and 4.29 for 

non-turbulent and turbulent aircraft simulation maneuvers respectively. 

 

F.1.1 Phase I: $on-Turbulent Longitudinal Aircraft Simulation  

 Maneuver – Part I 
 

This phase of the study was previously conducted and displayed in Section 4.4.1.  The results 

and conclusions developed from the performed nonlinear simulations are presented in 

completeness in Section 4.4.1.  

 

F.1.2 Phase I: Turbulent Longitudinal Aircraft Simulation  

 Maneuver – Part I 

 
Figure F.1:  Phase I Turbulent Attitude Estimation Results using Sensor Noise Values 
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Figure F.2:  Phase I Turbulent Bias Estimation Results using Sensor Noise Values 

 
Figure F.3:  Phase I Turbulent Attitude Error Covariance Check using Sensor Noise Values 
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OPERATIO% A%D SE%SOR %OISE AFFECTS: PART I   

 

 

 
Figure F.4:  Phase I Turbulent Bias Error Covariance Check using Sensor Noise Values 

 

F.1.3 Phase II: $on-Turbulent Transverse Aircraft Simulation  

 Maneuver – Part I 

 
Figure F.5:  Phase II Non-Turbulent Attitude Estimation  

Results using Sensor Noise Values 
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Figure F.6:  Phase II Non-Turbulent Bias Estimation  

Results using Sensor Noise Values 

 
Figure F.7:  Phase II Non-Turbulent Attitude Error Covariance  

Check using Sensor Noise Values 
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Figure F.8:  Phase II Non-Turbulent Bias Error Covariance  

Check using Sensor Noise Values 

 

F.1.4 Phase II: Turbulent Transverse Aircraft Simulation  

 Maneuver – Part I 

 
Figure F.9:  Phase II Turbulent Attitude Estimation Results using Sensor Noise Values 
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Figure F.10:  Phase II Turbulent Bias Estimation Results using Sensor Noise Values 

 
Figure F.11:  Phase II Turbulent Attitude Error Covariance Check using Sensor Noise Values 

 

 

 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

Time (s)

(d
e
g
/s

e
c
)

Comparative Plot: Pitch Rate vs. Pitch Rate EKF Est

 

 

Truth

EKF

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

Time (s)

(d
e
g
/s

e
c
)

Pitch Rate Error

 

 

Error

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Time (s)

(d
e
g
/s

e
c
)

Comparative Plot: Roll Rate vs. Roll Rate EKF Est

 

 

Truth

EKF

0 1 2 3 4 5 6 7 8 9 10
-0.2

-0.15

-0.1

-0.05

0

0.05

Time (s)

(d
e
g
/s

e
c
)

Roll Rate Error

 

 

Error

0 1 2 3 4 5 6 7 8 9 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (s)

A
tt
it
u
d
e
 E

rr
o
r 
(d

e
g
)

Attitude Error Covariance Check (Phi)

 

 

Error

±1σ

±3σ

0 1 2 3 4 5 6 7 8 9 10
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (s)

A
tt
it
u
d
e
 E

rr
o
r 
(d

e
g
)

Attitude Error Covariance Check (Theta)

 

 

Error

±1σ

±3σ



F.1 SECTIO% 4.4.1 – COMPARATIVE A%ALYSIS OF ALGORITHM 241 

OPERATIO% A%D SE%SOR %OISE AFFECTS: PART I 

 

   

 
Figure F.12:  Phase II Turbulent Bias Error Covariance Check using Sensor Noise Values 

 

F.1.5 Phase III: $on-Turbulent Longitudinal/Transverse Aircraft  

 Simulation Maneuver – Part I 

 
Figure F.13:  Phase III Non-Turbulent Attitude Estimation Results using  

Sensor Noise Values 
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Figure F.14:  Phase III Non-Turbulent Bias Estimation Results using  

Sensor Noise Values 

 
Figure F.15:  Phase III Non-Turbulent Attitude Error Covariance Check using  

Sensor Noise Values 
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Figure F.16:  Phase III Non-Turbulent Bias Error Covariance Check using  

Sensor Noise Values 

 
Figure F.17:  Phase III Non-Turbulent Roll Rate Bias Error Covariance Check using Sensor 

Noise Values with Simulation Expanded to 50 Seconds. 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Pitch Rate

 

 

Error

±1σ

±3σ

0 1 2 3 4 5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Roll Rate

 

 

Error

±1σ

±3σ

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Roll Rate

 

 

Error

±1σ
±3σ



244               APPE%DIX F. SUPPLEME%TAL FIGURES 

 

   

F.1.6 Phase III: Turbulent Longitudinal/Transverse Aircraft  

 Simulation Maneuver – Part I 

 
Figure F.18:  Phase III Turbulent Attitude Estimation Results using  

Sensor Noise Values 

 
Figure F.19:  Phase III Turbulent Bias Estimation Results using Sensor Noise Values 
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Figure F.20:  Phase III Turbulent Attitude Error Covariance Check using Sensor Noise Values 

 
Figure F.21:  Phase III Turbulent Bias Error Covariance Check using Sensor Noise Values 
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Figure F.22:  Phase III Turbulent Roll Rate Bias Error Covariance Check using Sensor Noise 

Values with Simulation Expanded to 50 Seconds. 
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F.2 Section 4.4.2 – Comparative Analysis of Algorithm 

 Operation and Sensor $oise Affects: Part II 
 

In this section of the appendix, supplemental figures omitted from Section 4.4.2 for brevity are 

presented for each phase of the feasibility study conducted to demonstrate correct operation of 

the algorithm method developed utilizing sensor noise values similar to those given in [51] and 

presented previously in Table 4.32 in Section 4.4.2.  A summation of the maximum and mean 

absolute attitude and bias estimation errors for each phase of the feasibility study performed was 

presented previously in Section 4.4.2 in Tables 4.34, 4.35, and 4.36 for non-turbulent and 

turbulent aircraft simulation maneuvers respectively. 

 

F.2.1 Phase I: $on-Turbulent Longitudinal Aircraft Simulation  

 Maneuver – Part II 
 

$onlinear Aircraft Simulation: Study A 
 

This phase of the study was previously conducted and displayed in Section 4.4.2.  The results 

and conclusions developed from the performed nonlinear simulations are presented in 

completeness in Section 4.4.2.  

 

$onlinear Aircraft Simulation: Study B 

 
Figure F.23:  Phase I Non-Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study B 
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Figure F.24:  Phase I Non-Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study B 

 
Figure F.25:  Phase I Non-Turbulent Attitude Error Covariance Check using Sensor Noise 

Values: Part II - Study B 
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Figure F.26:  Phase I Non-Turbulent Bias Error Covariance Check using Sensor Noise Values: 

Part II - Study B 

 

$onlinear Aircraft Simulation: Study C 
 

 
Figure F.27:  Phase I Non-Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study C 
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Figure F.28:  Phase I Non-Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study C 

 
Figure F.29:  Phase I Non-Turbulent Attitude Error Covariance Check using Sensor Noise 

Values: Part II - Study C 
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Figure F.30:  Phase I Non-Turbulent Bias Error Covariance Check using Sensor Noise Values: 

Part II - Study C 

 

F.2.2 Phase I: Turbulent Longitudinal Aircraft Simulation  

 Maneuver – Part II 
 

$onlinear Aircraft Simulation: Study A 

 

 
Figure F.31:  Phase I Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study A 
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Figure F.32:  Phase I Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study A 

 

 
Figure F.33:  Phase I Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study A 
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Figure F.34:  Phase I Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study A 

 

$onlinear Aircraft Simulation: Study B 

 

 
Figure F.35:  Phase I Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study B 
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Figure F.36:  Phase I Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study B 

 

 
Figure F.37:  Phase I Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study B 
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Figure F.38:  Phase I Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study B 

 

$onlinear Aircraft Simulation: Study C 
 

 
Figure F.39:  Phase I Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study C 
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Figure F.40:  Phase I Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study C 

 

 
Figure F.41:  Phase I Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study C 
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Figure F.42:  Phase I Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study C 

 

F.2.3 Phase II: $on-Turbulent Transverse Aircraft Simulation  

 Maneuver – Part II 
 

$onlinear Aircraft Simulation: Study A 
 

 
Figure F.43:  Phase II Non-Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study A 
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Figure F.44:  Phase II Non-Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study A 

 

 
Figure F.45:  Phase II Non-Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study A 
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Figure F.46:  Phase II Non-Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study A 

 

$onlinear Aircraft Simulation: Study B 
 

 
Figure F.47:  Phase II Non-Turbulent Attitude Estimation Results using  

 Sensor Noise Values: Part II - Study B 
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Figure F.48:  Phase II Non-Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study B 

 

 
Figure F.49:  Phase II Non-Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study B 
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Figure F.50:  Phase II Non-Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study B 

 

$onlinear Aircraft Simulation: Study C 
 

 
Figure F.51:  Phase II Non-Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study C 
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Figure F.52:  Phase II Non-Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study C 

 

 
Figure F.53:  Phase II Non-Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study C 
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Figure F.54:  Phase II Non-Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study C 
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Figure F.55:  Phase II Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study A 
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Figure F.56:  Phase II Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study A 

 

 
Figure F.57:  Phase II Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study A 
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Figure F.58:  Phase II Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study A 

 

$onlinear Aircraft Simulation: Study B 
 

 
Figure F.59:  Phase II Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study B 
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Figure F.60:  Phase II Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study B 

 

 
Figure F.61:  Phase II Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study B 
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Figure F.62:  Phase II Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study B 

 

$onlinear Aircraft Simulation: Study C 
 

 
Figure F.63:  Phase II Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study C 
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Figure F.64:  Phase II Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study C 

 

 
Figure F.65:  Phase II Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study C 
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Figure F.66:  Phase II Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study C 
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Figure F.67:  Phase III Non-Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study A 
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Figure F.68:  Phase III Non-Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study A 

 

 
Figure F.69:  Phase III Non-Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study A 
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Figure F.70:  Phase III Non-Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study A 

 

 
Figure F.71:  Phase III Non-Turbulent Roll Rate Bias Error Covariance Check using  

Sensor Noise Values with Simulation Extended to 50 Seconds: Part II - Study A 
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$onlinear Aircraft Simulation: Study B 
 

 
Figure F.72:  Phase III Non-Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study B 

 

 
Figure F.73:  Phase III Non-Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study B 
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Figure F.74:  Phase III Non-Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study B 

 

 
Figure F.75:  Phase III Non-Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study B 
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Figure F.76:  Phase III Non-Turbulent Roll Rate Bias Error Covariance Check using  

Sensor Noise Values with Simulation Extended to 50 Seconds: Part II - Study B 

 

$onlinear Aircraft Simulation: Study C 
 

 
Figure F.77:  Phase III Non-Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study C 
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Figure F.78:  Phase III Non-Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study C 

 

 
Figure F.79:  Phase III Non-Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study C 
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Figure F.80:  Phase III Non-Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study C 

 

 

Figure F.81:  Phase III Non-Turbulent Roll Rate Bias Error Covariance Check using  

Sensor Noise Values with Simulation Extended to 50 Seconds: Part II - Study C 

 

 

 

 

 

 

  

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Pitch Rate

 

 

Error

±1σ

±3σ

0 1 2 3 4 5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Roll Rate

 

 

Error

±1σ

±3σ

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Roll Rate

 

 

Error

±1σ
±3σ



F.2 SECTIO% 4.4.2 – COMPARATIVE A%ALYSIS OF ALGORITHM 277 

OPERATIO% A%D SE%SOR %OISE AFFECTS: PART II 

 

   

F.2.6 Phase III: Turbulent Longitudinal/Transverse Aircraft  

 Simulation Maneuver – Part II 
 

$onlinear Aircraft Simulation: Study A 
 

 
Figure F.82:  Phase III Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study A 

 

 

Figure F.83:  Phase III Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study A 
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Figure F.84:  Phase III Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study A 

 

 
Figure F.85:  Phase III Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study A 
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Figure F.86:  Phase III Turbulent Roll Rate Bias Error Covariance Check using  

Sensor Noise Values with Simulation Extended to 50 Seconds: Part II - Study A 

$onlinear Aircraft Simulation: Study B 

 

 
Figure F.87:  Phase III Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study B 
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Figure F.88:  Phase III Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study B 

 

 
Figure F.89:  Phase III Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study B 
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Figure F.90:  Phase III Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study B 

 

 
Figure F.91:  Phase III Turbulent Roll Rate Bias Error Covariance Check using  

Sensor Noise Values with Simulation Extended to 50 Seconds: Part II - Study B 
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$onlinear Aircraft Simulation: Study C 
 

 
Figure F.92:  Phase III Turbulent Attitude Estimation Results using  

Sensor Noise Values: Part II - Study C 

 

 
Figure F.93:  Phase III Turbulent Bias Estimation Results using  

Sensor Noise Values: Part II - Study C 
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Figure F.94:  Phase III Turbulent Attitude Error Covariance Check using  

Sensor Noise Values: Part II - Study C 

 

 
Figure F.95:  Phase III Turbulent Bias Error Covariance Check using  

Sensor Noise Values: Part II - Study C 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (s)

A
tt
it
u
d
e
 E

rr
o
r 
(d

e
g
)

Attitude Error Covariance Check (Phi)

 

 

Error

±1σ

±3σ

0 1 2 3 4 5 6 7 8 9 10
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (s)

A
tt
it
u
d
e
 E

rr
o
r 
(d

e
g
)

Attitude Error Covariance Check (Theta)

 

 

Error

±1σ

±3σ

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

6

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Pitch Rate

 

 

Error

±1σ
±3σ

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

6

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Roll Rate

 

 

Error

±1σ
±3σ



284               APPE%DIX F. SUPPLEME%TAL FIGURES 

 

   

 
Figure F.96:  Phase III Turbulent Roll Rate Bias Error Covariance Check using  

Sensor Noise Values with Simulation Extended to 50 Seconds: Part II - Study C 

 

 

 

0 5 10 15 20 25 30 35 40 45 50
-6

-4

-2

0

2

4

6

Time (s)

E
rr
o
r 
(d

e
g
/s

e
c
)

Bias Error Covariance Check: Roll Rate

 

 

Error

±1σ

±3σ


	Two dimensional rate gyro bias estimation for precise pitch and roll attitude determination utilizing a dual arc accelerometer array
	Recommended Citation

	Microsoft Word - Billy_Thesis_MS

