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ABSTRACT

The stability of a gravity gradient satellite with a

rigid main body and elastic antennas is studied using Liapunov's

Direct method. The complete conditions for equilibrium and

stability for a particular class of two dimensional models

are determined. Previous work restrained the analysis to

elastic stability, in the small, and only for equilibrium

positions corresponding to zero initial elastic deformation.

Although the work presented here is for two dimensional motion,

the intent is to bring forth an approach to the determination

of the complete equilibrium and stability criteria in the

large as well as the small. The effect of different parameters

on the equilibrium and stability is also determined. It is

shown that: (1) a satellite will alxvays be in equilibrium at

0 and 90 attitude angle positions, (2) a satellite if

stable at 0, will always be unstable at 90 orientation and

vice versa, and (3) there can exist only one more equilibrium

position between 0 and 90
,
and if so, 0 and 90 will be

unstable equilibrium positions and the stability of the third

position must be ascertained. A truncated power series is

used to approximate the shape of the elastic antennas. The

results are compared to those obtained by a more conventional

method using the eigenfunctions of the freely vibrating

antennas as comparison function. It is found that using the

power series 'yields a more conservative stability criteria.
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NOMENCLATURES

A,B,C Principle moments of inertia of the main

body about the x,y and z axes respectively.

A'jB'jC Principle moments of inertia of the
"complete"

undeformed satellite about the x,y and z

axes respectively.

EI Flexural rigidity of the elastic antennas.

H Hamiltonian

K Earth gravity constant

k Curvature of the beam

L Lagrangian

Lb. Lagrangian density

M Mass of the rigid satellite

m Mass of the elastic antennas

Q. Generalized forces
J

R,y,Z Orbiting particle coordinate system with

respect to inertial coordinate system

T Kinetic Energy

U Dynamic Potential

u Elastic displacement of antenna in x direction

v Elastic displacement of antenna in y direction

V Potential

VT Liapunov function
Li

V Absolute velocity of particle dm
m

VM Absolute velocity of particle dM

V Velocity of partical dm relative to x,y,z

mxy
coordinate system



ii

VQ Gravity potential

Vg Elastic Potential

VQ)M Gravity potential of rigid satellite

VQ)E Elastic potential of elastic antenna

6 Attitude angle

\ Generalized coordinates



CHAPTER I

EQUILIBRIUM EQUATIONS

1.1 Introduction

Budynas and Poll (References 1 & 2) analyzed the equili

brium of three dimensional models and established the stability

for 0, 90,
180

and
270

orientations.

In this study, a particular class of two dimensional

models are examined. Particular attention s given to the

behaviour of a satellite in positions other than those mentioned

above. The equilibrium positions and stability requirements

for a given satellite a;re sought and the effect of change in

parameters on the stability studied.

For this analysis it is assumed that : the centre of the

mass of the satellite follows a Keplerian orbit and is

unaffected by the attitude motion of the spacecraft; and that

damping in the elastic antennas is negligible.

Let the centre of the earth (considered fixed) be the

origin of the reference cylindrical co-ordinate system Ry-Z

(see figure 1.1). The satellite's reference cartesian

co-ordinate system Ls such than when the antennas ire un-

deformed, xyz is the principal axis system with the centre

of mass of the composite satellite as origin. Let 6 be the

attitude angle of the satellite, relating the xyz and R^Z

systems.



The first equilibrium equation lis obtained from the

Lagrangian analysis of the equations of motion and the second

one
' is derived from the virtual work method using the

Hamiltonlan pronciple.

1. 2 Lagrangian Analysis:

For an elastic system, the Hamiltonlan is an integral

which is a function of system's generalized elastic positions,

a

V., and velocities, <_. , and spatial derivatives.
J J

HE

- I ^St'' dx (1)

X
o

Where Z, called the Lagrangian density, is the

Lagrangian per unit lenth of infinitesimal element located

at x. The Lagrangian of a rigid and elastic coupled body can

be expressed as,

xl *

L = L1(q1,q1) + J /^ ,q. ,^. ,^. , x, ^ ,^ .
- - -

) (2)

Xo

where L, is the part of Lagrangian expressible as a funcion

of rigid body terms alone; and L, is the part that can be

expressed as a funciton of coupled rigid-elastic terms. The

Hamiltonlan in this case can be written as,

H=

j?iq'*v J '
m X 4

X



Defining generalized coordinates (/>. as

0i
=

Q
i = 1.2,3, ,n

thus above equation can be rewritten asj_

V ^Ln f 1 C* Vi
H

x^x?
+ i S^t' dx - h (*>

o

the kinetic energy takes the form;

. mm
k

^> m -

) ,rN

+ Uz: ^x.x,. *

ZXi3^'

X f5>

where the first term is total kinetic energy of the

rigid elements and second term is the total kinetic energy

of the elastic elements. The coefficients <*
. .
, ft. , V are

functions of rigid body coordinates <j5v(i-l,23 n) only,

andc*
. .
, (S. , -y are funcions of spatial coordinates x and

generalized coordinates $. (i = l,2, n+m) .

Denoting the potential energy of the system by V,

and substituting
equation (5) Into the Lagrangian, L, where

L = T - V

equation (4) can be written in the form

H =

T2 V -

Tq

* - For the detailed derivation see reference 2.



Where T,

and

'Zv *j ?_ ?

*/ Y ; i.
1 = 1 x J 6-u Jx J
] 5i x.j=1

= 3g y +

4>i dx

*/ Y dx

V-To is referred as dynamic potential 'U', hen ce

H =

T2 + u (6)

The kinetic energy, (K.E.), of the satellite.isy

T = ^/(Vr.r^) dM +
Js/f^.y dm +

Ss/c^.V dm

/7 fti w

where the first term is the K.E. of the rigid satellite

and the remaining terms are the K.E. of the two antennas.

(7)

and

-M

^m

*c

*c

H x *m

n x r + v
=-m -mxy

(8)

where fi = Y + 0 the total angular velocity of the

satellite .

However R and r can be rewritten as

c m

Rc
=

(Rc cose +
Rc sine) i + (Rc cose -

Rc sine) (9)

(10)

^
* xi+yj_+zk

substituting equations (9) and(lO) in to the equation (7)

Irr. R cosG + R y sine - y(y + G)
c c (11)

Rc Y cos-G - R sinQ + x( + Q) I
_j_



Thus the first term on the right hand side of

equation (7) becomes,

/(vr.rvM)dM =

hj\kn +
R2 y2

+
(x2

+ y2)( i +
e)2

M

since

and

M

J x dM =

J y dM

J
(x*

+ y*) dM

dM

= 0

= C

Equation (12) takes the form

/(JM.VM) dM = ^M
(R2

+
R2

i) + 3gC ( +
0)2

M

however
-m

= (x + u) i + y i

(12)

and v = u i + v 1
mxy

l

substituting the above in equation (11) ,

-m

=

LRc cosQ +
Rc Y sin9 +u~v( Y + 0) ] i

+ I Rc Ycose -

Rc sine + v + (x + u)(

Thus the total kinetic energy is,

Y + e) M]i

T = h (M + 2m) (R +
R2

Y) + 3g. C'( +
0)2

+ 3g j
|u2

+
v2

+ (2ux +
u2

+ v2)( y +
0)2

IL

. r.
, x

+
2R'c <(u -

v( + 6)) cose - (v + u( Y + e)J)sin0

+ 2R <(u -

v( Y + 0)) sine

:....!

1
+ (v + u( Y + 0))>cos

(13)

e

+ 2( + 0)(v(x + u)
-

uv) dm



Neglecting all external forces except the gravitational

force of earth, the total potential energy V is,

v -

vG
? vB,

where V_ and V,, are gravity and elastic potentials

respectively.

VG '
" <Vm + (Vm

K

R
dM -

M

M

j JM.
(1*)

and R
M

-1

=

Rc
+
r

=

r.RM.RM):

Sm
['

1-V
(R + rJ.(Rn + r X

2

c m> c m
Li

ft1
1 + + K (r

v]

~h

Representing R and r with respect to x, y axis,

R .r
= (R cosG i - R sinG J).(xi+yJ + z k)

C *"* J*l C
**m

C *^ mm
-~

w*

R xcosG - R ysinG
c c

h^nce = i 1 + -4r + (x cose
v\ 0 I rjd

. n_
L- R_

*

c

y sin 0)
r>

/< > am / < >

1L

-i

dm + J ( ) dm

-JU



R l - h

2
,
2^2

x + y + z

R2 R
(x cosG

-

y sine) + 3=- (x2cos20 + y sin 0 - 2xy sinGcosQ)

since xyz is a principal axis system,

;
M

and

V )
GyM

x dM = j y dM =

j xy dM = 0dM

M M

C
M

n

2,2.2

r,
+ ^~p(x2cos 0 + y2sin20) jdM

K 2K
J

c c
(15)

nov/ A J
(y2

+ z2) dM

M

B =

j
(x2

+ z2) dM

M

C =

J
(x2

+ y2) dM

M

Substituting these in equation (15), yields,

Vm
KM

+
IK U+ B+ c)

Rc

2j
_

3K I (C + B - A)cos20 + (C + A - B)Sin2G (16)
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VG^jnmay be determlned in a similar fashion. The final

form of the potential is;

K

G
( M + 2m) + ~ (A + B + C) -

'^KC1 + B - A)cos2G
K_ fl 3 j,R3 L

1 K_

R:

+ (C -I- A - B)sin G +

m2e] R^*

( 2ux + u2)(l - 3cos2G)

c IL

+ v2(l - 3sin20)
-J- 3v(x + u) sin2e + 2*R (ucosG

-

vsinQ) dm

']
(17))

The elastic potential V for an inextensible beam

due to the bending alone is

VE
= h I EI

r
,2

2
,2

2.

where [ (-^) + (^-|)
L >x ox

-J

r(i|}2
+

L dx2 fcx2
-

dx (18)

= K is the curvature of the beam.

Since the Lagrangian, L is

L = T - V

and considering the orbit of satellite to be circular,

that is,

(19)

R

Rc

constant

0

K
*

Rc

= constant



then equations (13), (17), (18), and (19) when substituted

into equation (1) yields,

= x.
rA2

_. HiH = h
C9'

- ^X? (C'+B-A)cos2e + (C'+A-B')sin2G

c

m

J ) "o

u2

+ + (2ux-Ki2+v2)( Y2-i-02)

* / *

+ - 2R
Y2

(u. sin 0 - v cos 0) + 20 lv(x+u) -- uv

c o

K_

R:

(2ux+u2)(l-3 cos20) + v2(l-3sin20) + 3v(x+u)sin2e

2RC (u cos e - v sin 0)
'1

+
Elk2

> d: (20)

Since H = T + U, the dynamic potential U can be

obtained simply by excluding all terms in equation (20)

which involves u,v, and 0. After further simplification,

the form of U can be shown to be,

U =

7|^'2(B'~A) cos28 + h \ l- -P-t-

ip2 f
o p

(2ux+u )cos G

2 2 ?
+ v sin G - v(x+u)sin G + EI rX } dx (21)
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The axial deformation of an in extenslonable beam can

be written in terms of the lateral deformation (figure 1.2)

2*
dx + du =

((dx)2
-

(dv)j
h

h

expanding binomially and neglecting the fourth and higher

order terms ,

du -
-MgXx

the axial deformation, u, along the beam is obtained by

integrating. du from 0 to x. Thus,

x x

\ --*/ {<ff>2|
0 0

since = 0 for 0 ^ x K i ,
dx

v
o
'

x

dx

u
-x {mn

dx-

JTo

since u is a function of the square of the slope,
^r

,
the

terms u
,vu,

and
-5-

can be neglected as they are much smaller
lx2

than the other termsin equation (21). Thus only one term

involving u is left to be considered, xu. Thus,

( xu dx = - h ( x J (|^,)
dx'

^O '' *o to
-

.

Jt

=
-h

j
h [(

lo

dx

t^2)<|2

**
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Substituting these, equation (21) reduces to,

\(?-x2)(|^)2cos2G

2 2
- v sin 0 + vx sin20

bx

2
\

2'
+ EI (

^)2

> dx (22)

Differentiating the above with respect to 0 and equating

to zero yields one of the equilibrium equations.

1.3 Virtual Work Principle :

From Hamiltohls':principle
,
the equation of motion for a

.nonconservativesystem is written as (Reference 9)

2

$1 =

Sj (T + W) dt = 0

1

where T is the total kinetic energy and W is the work done

by applied forces in going from state 1 to 2. The work W can

be e.a.p.r-eGSs'edl in two parts, (1) work done by conservative forces

derivable from generalized potential, -V, and (2) work

done by nonconservative forces, Q . . If the virtual displace

ment is expressed as Sq., force per unit length -Q , and

J x

virtual elastic displacement <_>n, then the above equation

can be rewritten as :

2 2 m
2 x,

1 -

1 J=l
/ r
1

xo

Q in dx dt = 0 (23)
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The Lagrangian L can be written as the sum of the rigid

body component LR, and elastic component / (see Reference 9).

1 o m

$/LRdt + sf f /Edx dt +

j
V Q ? dt

1 1 x l fc
2

xx

J
j"

Qx S n dx dt

1
*o

= 0

(24)

It has been shown that (reference 9),

. 2
r

j LR(qj,qi,t) dt

i wi "J ai*

.
, 6q . dt
-J ^J

and

2 x

//^

2 x

dx dt =

1 x

f f1(\r ^ _

d_^E ;

q . dt m
So

[~^E
_ d_ , b^E

L&n dt
( ^ )
*n

+ ^6(M)

^E
s2

"

\ 2

(bn}
bx

bx^

5 (M ) 1 dx dt
(25)

Integrating by parts, simplifying and equating the coefficients

of <Sq. and 6n to zero,
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= 0

(26)

_
b_&

-0

where "& is the dynamic potential of the elastic components.

Differentiating equation (22) with respect to 0 and substituting

the value of /> yields first of the equilibrium equation,

and substituing the value of in equation (26) yields

second equilibrium equation.

The two governing equilibrium equations with the

corresponding boundary conditions are:

(B'-A) sin 2G - -

X sin2Q 1
, , /2 2wdv
*U -x

)(,-
)2

+ v dx

I
/ L- -_

1

. r
2cos2G I xv dx = 0

EI
!Lv

_

dx

3
-EL

co2 / 2n d

^
cos G

^

", ,2 2v

>
-x 5

d___
+ 2v sin2Q

- x sin2G J

(27)

(28)

With the Boundary Conditions :

dx2

dv

dx

d3v

dx3

= 0 at x = J

(29)

= 0 at x = .



in

The above equations can be reduced to the following

nondimensional form:

d v
- K

dx

where K.

r 2n d
. cos e -

i L dx

3 m y l

2 EI

(!_x2)Cx I + 2vsin20

dx

- xsin20 j
= 0 (30)

sin26 - K. sin20 J J 3g(i_x2)(||)2 + Idx - 2cos20 J xv dx

1 I J L

where K,
ml

Tb^-a)

= 0

(3D

with the boundary conditions

d

dx
= 0: at x = 0

d v

dx

d3v

~3dxJ

0; at x = 1.

(32)
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CHAPTER II

SOLUTION OF EQUILIBRIUM EQUATIONS

2.1. Method of Solution :

Equations (30) and (31) represent a set of two

nonlinear, homogenous, simultaneous, differential,

integral equations with two unknowns 0 and v(x). These are

solved as follows:

*

Using the boundary conditions (32), for a given

orientation 0
, equation (30) is solved for deflection v

as function of x. V being known, equation (31) is solved

for the attitude angle 0. If 0 is the same as 0 ,
then

there exists a valid equilibrium position. The procedure

is then repeated for different values of 0 .

2.2 Procedure:

Assuming deflection v as a function af an infinite

power series in x with constant coefficients,

CO

v(x)
=

y
anx

dx
= Y na

^n"1

/ n

n=TJ

d2v V
, ,

x-sn-2

- y^-2

dx
nxo

"3/

Sv
. y n(n.1) (n.2)a

?n-2

^ X

i-J - y
n(n-l)(n-2)(n-3)an^n~3

dx ^-q
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Substituting these in equation (3P),

y
n=6

- K
vl

"

2n d
cos e

^x

^ .00. n

2 x \ ~n- 1 .

, (l-xXM-an
n=0 J

+ 2sin20
yanxn

- x sin20
= 0

/JL n
-J

n=0

simplifying,

K.

n=(

cos20 I (l-x2)^>
n="0

-

2xynanxn~1 V +
2sin2e^anxn

- x

sin20j
= 0

n=0 J n=0n=0

rearranging and simplifying;

~n-2
yn(n-l)(n-2)(n-3)anxn"4

-

^
cos26^(n-1)^

=0
_

"

n=0

+ yiKlCos2e n(n-l)an
+ 2KlCos2G.nan

-

2KlSin2e.an j
xn

n=0

+ K1xsin2G (33)

The set of series in the above equation are expanded

and the coefficients of each power of "x are arranged

together. This represents an infinite power series in x

with coefficients as function of parameters of satellite

and attitude angle 0.
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The right hand side of the above series being

zero, the coefficients of each power of x must identically

be equal to zero. Hence an infinite number of simultaneous

equations in a (n=0, 1,2,3, ) are obtained. As the

solution of a set of infinite simultaneous equations is

not feasible, the series -is truncated. The computer time

involved in using a larger series and the fact that the

contribution of 21st term and onwards 'is of 'the order of

-13

10
,
which

' is beyond the accuracy of the method used

resulted in truncating the series after 20 terms.

The Boundary conditions ( 3 2) .ace applied as follows,

v = ^ = 0 at x = 0; $h = $h - 0 at x - 1

dx dx
dx5

(32a)

Substituting equation (28) in above,

ao
= 0

a
= 0

2a2
+ 6a3

+ +> 380
a2Q

= 0

6a, + 2^ + + 380.l8a20= 0

Thus equations (32a) in conjunction with the set of

simultaneous equations (obtained as explained above) can

be solved for unknowns a , a,, a2, a^o"
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CHAPTER III

RESULTS

It has been shown (References 1 & 2) that for a

gravity-gradient type satellite, there are at least

four possible equilibrium positions. These occur at 0,

90, 180, and
270

attitude angles. If stability exists

at
0

and
180

attitude angles, there will be instability

at 90 and 270 orientation and vice versa.

Figure 3.1 illustrates the region of asymptotic

stability and instability for
0

and
180

positions for

this type of satellite. The curves are plots of orbital

spin rate P/ts) versus dimensionless inertia parameter

(B'-A) / B'. Figure 3.2 illustrates the region of asymptotic

stability and instability for
90

and

270

orientations.

Consider three points P,, P, and P_, in three

different regions in figure 3.1. The corresponding points

in figure 3.2 are represented by
P' P'

and
P'

respectively,

Pj^ represents Elastic and coupled elastic-rigid stability;

Rigid body instability region.

P represents Elastic Stability; coupled elastic-rigid and

Rigid body instability region.

P'
represents Elastic, coupled elastic-rigid and Rigid

body Instability region.
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3.1 Elastic and Coupled Elastic-Rigid Stability; Rigid

Body Instability.

From figure 3.2, it is obvious that for a satellite

to be in elastic and coupled elastic-rigid instability and

rigid body instability region, orbital spin rate^

should be in the neighborhood of 0.0 to 0.4 - the exact

value depending on h2,(na /A), wherec*^
is the fundamental

natural frequency of vibration of the antenna'.

Consider a satellite with the following parameters:

m = 0.32b!d slugs

EI = 15.277
lb-ft2

y =
0.667-'

rev./hr.

V; = 0.2

wi

Hence
Wl

=
12.362 EI

iU3

r-
0.2

X001164134

0.2

= 0.00582

Solving for ly I 258 ft.

The method described in section 2.1 gives all possible

equilibrium positions for a particular satellite. However,

for a given attitude angle 0, equation (3D can also be solved

.2

for the ratio
>., where ^ =

gri^ ,
instead of 0 as outlined

previously. The advantage of this method being that for a

satellite to have an equilibrium position at a desired attitude

angle ,
other parameters being known, the moment of inertia

can be made such that:
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mV
(B'-A) =

y . In this case, the given satellite will

always have an equilibrium position at
0'

orientation.

Typical results are tabulated in table I.

Attitude Angle Maximum Deflection Ratio

0 V
max

X

0 0.0 8.641

10 -0.020576 9.2639

20 -0.039477
11.684

30 -0.054943
19.48

40 -0.065113
107.40

50 -0.068171 -28.25

60 -0.062714 -12.9257

70 -0.048367 -8.9227

80 -0.026408 -7.4786

90 0.0 -7.0715

Figures 3.3 through 3.12 illustrate the deflection

curves for elastic antennas at various attitude angles.

Figure 3.13 shows the graph for X vs. 9 for a particular

value of EI, while figure 3.14 shows the effect of EI on

A-

From figure 3.13 it can be seen that,

(1) The
0

and
90

orientations will always be equilibrium

positions. Depending on the value of X, there may or may
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not exist a third equilibrium position. Thus, there

can exist a maximum of only three equilibrium positions

in the range of 0-90. For example, if 8.62 > X> -7-07,

then 0and
90

are the only possible equilibrium positions.

However, if X= 11.684 then equilibrium exist for 0 = 0,

20, and
90

attitude angles.

2) If the moment of inertia about the y axio
(B' ) is

greater than the moment of inertia about the x axis, (A),

then the equilibrium position will occur between 0 and

42

; and if A is greater then B

,
the equilibrium will occur

at an attitude angle between
42

and 90 .

3) The effect of X on the attitude angles diminishes in

the region of 30 and
60

orientation and increases in the

rest of the region.

3.2 Elastic Stability; Coupled Elastic-Rigid and Rigid

Body Instability.

As explained in section 3.1, for a satellite to be in'

"elastic stability and coupled and rigid body instability

region", the orbital spin rate^Ao, should be in the

neighborhood of 0.4 to 0.55. For the orbital spin rate to

be equal to 0.5, the length of antennas isj; calculated to

be 474 ft.

Substituting this value of i and other parameters,

equation (30) is solved for deflection v. However unlike

section 3.1, the deflection for this case beoomes too
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large such that the linear theory of elasticity can no longer

be used.

The curvature of the deflected beam/, as derived from

the theory of elasticity:

e ei (34)

from the geometry of the deflected beam,

I -

-

P fl '+ (dy/dx)2]
213/2

For small deflections
(dy/dx)2

is very small and can

be neglected. Thus the above equations /.'are reduced to

1 M_ dfy_

P

" "

EI
"

dx2

M El *k
dx

Differentiating this expression twice with respect to x

yields the force intensity, w(x),

,4

w(x)
= ElSO.

dxH

However,, when deflections are large, the slope and

p
(dy/dx) can no longer be neglected. Hence from equations

(35)

(34) and (35},
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M El

2 7dy/dx*

+ (dy/dx)
3/2

Differentiating the above equation twice with respect to

'x', and simplifying and rearranging the terms, an expression

for force for large deflections
' j.s ohtained.

1 + (to
dv

dx'

J dx

4" - 9
dv,

L1 + <a_->

2
dv d v cXv

dx , 2 , 3
cdx dx

'

?
3 m

___

2 El

1 +
dx

dv

,2 3 , 2 ,2 3
,d vX . /dv, ,d

VvJ

(~2) + 15 (dl} (-7T}
dx dx

2i 7 1

1 + (S> J2

[
i 2o d
cos 0

^ U2-x2)

g-'

dx

- xsin2G

+ 2vsin 0

(36)

where the right hand side of the above equation is the

force intensity w(x).

As explained in chapter 2, a set of simultaneous

equations in a (n=0, 1, 2, . . . . ) is obtained. These equations

turn out to be nonlinear in nature and their solution

is extreamely difficult to obtain.

As. a result "elastic stability; coupled and rigid

body
instability"

and "elastic, coupled and rigid body

instability"

regions are not investigated in detail.
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CHAPTER IV

STABILITY TEST

4.1 Liapunov Function :

As derived in Chapter I

H =

T2
+ U

The total energy of the system being T + V,

Hamiltonlan in general is not the total energy. In order

to make Liapunov function zero at equilibrium,. VL is

defined as VT = H - H . where H is Hamiltonlan evaluated
L O3

O

at equilibrium. Thus

VT = T~ + U - H
L 2 O

since T is zero at equilibrium, H = U and the above
2

^ '
o o

expression can be rewritten as

VT = T~ + U - U>
L 2 o

4.2 Stability Matrix:

It has been shown ..(references2,4,6) that for a

satellite to be stable in the region about equilibrium,

VT must be positive definite ( if VT > 0 in a neighborhood
Li * Li

about an equilibrium point except that it may possibly

be zero at equilibrium, then VL is defined as positive

definite). Given the Liapunov function VL
=

T2 + U - U ;

T? being known: to be positive definite, for VL to be

positive definite, U-U must be positive definite.

2

If matrix S. = LJliR^^) is positive definite,

*qi,.e-q1..
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then U - U will be positive definite, and the system

o

will be stable in the region about equilibrium. If the matrix

S. . is not positive definite, then the system will be

unstable in the neighborhood of the equilibrium position.

By Sylvester's theorom (reference 8), the matrix

S., will be positive definite only if the principal

determinants of the matrix are greater than zero. That is,

D.

D,

D.

11

11

21

11

21

31

> 0

S12

22

S
12

22

'32

> 0

'13

'23

'33

> 0

and so on. It can be shown that to satisfy the above

inequalities all the principle diagonal elements must be

greater than zero.

The dynamic potential :

U(>

and

= _

'

| i,2(B,_A) cos 20 + Jg

1

|EiX
(X2)

,&V\2 2_ 2 . 2_
, .

*

{jp-) cos 0 - v sin Q + vx sin2Q + EI( ^ )2

>dx
&x"

^

v(x) 1 *X
n=0
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To ease the computation the above series was further

truncated after six terms without any appreciable loss. Thus

v(x,qj,) ai x

n=0

= a + a,x +
su-x2

+
xx3

+ a^x +
a^

Boundary conditions imply that a = a, = 0

therefore
v(x)

.3= a2x +
a^x-"

+ aj,x + a,-x
,5

"3
'
"1" ' "5'

Differentiating U successively with respect to 0,a2, a~,

a^, and a^, stability matrix S . . is formed as outlined Above,

4.3 Stability Check for
0

Attitude Angle :

Substituting the values of a?, a~, a^, a^ ,
and 0

in the stability matrix, and simplifying stability matrix

for
0

attitude angle is reduced to

3i2(B'-A)

2

4

-2

8jUX 8EB>

15

2DJL'

5

6

3
2DJL

7

6 o 7 3
8 'h

jl_ +12EIJT l6nfc +16EI 5_JU + 20EI
'

2 35

2tU

5

n*

2QJ1

7

< p 7 q

rU +12EI l&U +24EI

.2 '35

8 4
r\i +36EI

7 o 8 4 9 5
16 n A +

16ED&3

n_ +36eI 32 n +288Ei,

35 2
5T"

~

5

12

9 5

ion*, + 48EHj
21 i

t

j

10 6

,!)_ + 80EIfc|

8 a 9 5
5_p H2QEDT l_Qn- +48EUI

12 21

10 6 11 -7

r}_ +80EIS, 50 nil +800EI ;

2 99 7 |
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2
where ^7 = 3 mf

Substituting the values of m, El,^, and I. for a

given satellite, its stability can be determined as

outlined in section 4.2.

4.4 Stability Check for
90

Attitude Angle :

Substituting the values of a? a,., a^,, a^, and 0 in
*

*

the stability matrix and simplifying, stability matrix

for
90

attitude angle -vis reduced to:

/* 3 3
7r

Z 5 3 7 t-,

2-nt?

+

'

rZUEll -jf 4-36 ex; -2Xli +Ar*i

5
3"

7 A 9

.
>^r -zj

+ uEit ->i +31 exI
-zn-t

+zz? *r
-ni

+
&oi

5 7 4 9 <5

7

7
-7LL^Z0BTi -ZVjr-AZEli -y0+XDELt 4-%&

E?l

rr y

2.

where
<\~

3^l> as before.

Substituting the values of m, EI, V s
and for a

given satellite, its stability can be determined as

explained earlier.

Examining the first term in the above stability

matrix and the first term in the stability matrix for 0
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it can be noted that both terms are the same except for

the sign. Hence, if any satellite if stable at 0 will

be unstable at
90

orientation and vice versa.

4.5 Stability Check for
20

Attitude Angle :

As explained in Chapter 3, parameters m and (B'-A)

are- selected such that there will be an equilibrium at

20

attitude angle. From Table 1, to have equilibrium at

o
ni._

20
> (B'-A)

= H684, m being equal to .3269 slugs,

/

i= 258 ft, (B'-A) <-ean-. be calculated.
For' these values

of parameters the stability matrix 'is reduced to:

116x10?
315xl08 8l3xl010 206xl013

Il6xl06 340xl02 128xl05 434xl07
139x10

206x10

10

315xl08

128x10?
646xl07 248xl010 849xl912

8l3xl010 434xl07 248xl010 102xl013

724x10
18

n13

139x10mB
849xl012 724xl018 134xl0l8

Since all the principle diagonal elements are

not greater than zero, there will be instability at 20

attitude angle.



4.6 Stability Check for
30

Attitude Angle :

As in the previous section, parameters 'are selected

for equilibrium at
30

orientation. For these values of

parameters, the stability matrix "lis reduced to :

29

-890x10

10

226x10

610x10
8

399x10
13

8226x10 6i0xl0B
158X1011

,2

13
399x10

333xl02
I26xl05 430xl07 138x^10:10"

126xl05 640xl07 247xl010 846xl012

158X1011
430xl07 247xl010

101xl013 375xl023

138xl010 846xl012
375xl023 133xl018

Once again as all the principle diagonal elements

are not greater than zero there will be instability at

30

attitude angle.

4.7 Stability :

Comparing the curves 3.1 and 3.13, it is noted

that the upper half of the curve 3.13 corresponds to the

curve in figure 3.1 for a particular value of h,(h, = 1 in

this case). The stable region on the right hand side of the

curve for h, = 1 in figure 3.1 corresponds to the curves

OF and O'E in figure 3.13- The unstable region on the left

hand side of the curve for h, = 1 in figure 3.1 corresponds

to the curves FC, FG and ED in figure 3.13.
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From the analysis of figures 3-1 and 3-13, for a given

set of parameters, we can conclude that : (1) for values

of A in the range of 0-F there will only be two equilibrium

positions, namely the
0

and
90

orientations, of which 0

positi6n will be stable and
90

position unstable. (2) For

values of X in the range F to + CO there will be three

equilibrium positions, where
0

and
90

positions will

always be unstable, and the third equilibrium position

must be checked to ascertain stability as outlined in section

4.2. For the examples studied here, the third position is

found to be unstable.

A similar analogy exists between a curve in figure

3.2, and the lower half of the curve 3.13.
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CHAPTER V

CONCLUSIONS

The classical problem of the stability of a rigid

satellite was dealt with in references 3 and 4. Whereas

in references 1 and 2, the equilibrium equations were set

up for a large flexible satellite, and the equilibrium op

positions and stability were determined for "0 ,
STO

,
180

,

and
270

attitude angles. The effect of flexibility of

a satellite on its stability was discussed, and it was

shown that it had no effect on its equilibrium positions.

These studies, however, did not discuss all the possible

equilibrium positions.

The present study solves the equilibrium equations

for any given attitude angle by assuming a truncated power

series solution. Equilibrium positions for a particular

satellite are determined and its stability ascertained. The

relation between different parameters is set up to have

equilibrium at a desired position.

The discussion on stability up to this point has been

limited to the possibility of an equilibrium position

being asymptotically stable for only small disturbances

about it. Hence, stability in the large has not been determined,

However, in this study it has been shown that

in the range of
0-90

attitude angles,
0

and
90

will always be equilibrium positions, and depending on

the value of X, there may exist one more equilibrium

position. It has also been shown that if there are only
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two equilibrium positions, one of them will be stable.

However, if three equilibrium positions exist, 0 and

90

will definitely be unstable, and the third position

should be checked for stability. Thus one can trace the

behaviour of a oarticular class of satellite and can

successfully prodict its equilibrium positions and stability.

Compared with Reference (2), which used the eigenfunctions

of the freely vibrating antennas to solve the equilibrium

equations, the method used in this analysis is in close

agreement for low values of the orbital spinrate, and starts

deviating in a more conservative direction as the spin rate

increases. The results are plotted in figure 5-1, where curve

A represents the method using eigenfunctions while curve B

represents the truncated power series method. However it

should be noted that for the particular class of satellites

consired in this study, it is necessary that the spinrate be

low, hence one can assure tha analysis to be quire accurate.

It should be noted that the results obtained are

approximate solutions, rather than exact. Also the "matrix

inversion"

method is used to solve the simultaneous equations

and hence an eigenvalue solution (which has been shown to

exist in references 1 and 2 ) is not possible. A numerical

iterative procedure would be much more suited for solving

these equations, particularly for
90

and
270

positions and

their neighborhood.

Since the equilibrium equations are
set'

up in a linear

fashion, only elastic and coupled stability could be determined,

Thus satellites of only one class is studied in detail.
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Coupled and rigid body instability could not be checked.

However, the nonlinear equations for these cases are set up,

and if one desires to persue this further, one could very

well start from sect. 3.2. If this is done, the complete

behaviour of any given satellite can be predicted.
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